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Chapter 1

General Introduction

1.1 Computational Ethology: Integration of Bioinformatics

and Ethology

From ancient times, mankind has been interested in the unique behavior of diverse ani-

mal species. In the 4th century BC, Aristotle presented a broad overview of ethological

knowledge, derived from careful observation, in his book “History of Animals”[1]. Since

then, countless ethological studies based on natural historical approaches have been per-

formed, which have provided fascinating insights into animal behavior. As in other fields

of biology, experimental methods were introduced to the discipline of ethology at the

beginning of the 20th century AD. Karl von Frisch, Nikolaas Tinbergen, and Konrad

Lorenz pioneered the field of “experimental ethology”, and were awarded the Nobel Prize

in Physiology and Medicine in 1973. Currently, as large-scale data represented by ge-

nomic sequencing data are being introduced to biology, big behavioral data are also being

introduced to ethology [2]. This new area of ethology, based on the analysis of big behav-

ioral data by computer science, is termed “Computational Ethology”, and has attracted

much attention recently [3].

Here, I will discuss the advantages of computational ethological approaches from the

viewpoint of the quantification of animal behavior. In order to examine theories and

hypotheses about animal behavior, statistical analysis must be performed to investigate

the significance of the hypothesis. For that, animal behavior must be quantified under

some conditions. Count-based quantification, which measures the frequency (or the num-

ber of times) with which animals perform a specific behavior as observed by human eye,

is the most popular quantification method due to its simplicity. However, count-based

quantification suffers from two disadvantages.

The first disadvantage of count-based quantification is the loss of qualitative infor-

mation on behavior (Fig. 1.1a). This is illustrated by the following example: when

evaluating communication between two individuals, if the number of communications is

counted when the distance between the two individuals is smaller than a given value,

information about the speed of each individual is lost. If the speed has significance for
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Fig. 1.1 Schematic illustration of defects caused by count-based quantification. (A)

When one counts these two approach as same behavior, speed information drops out.

(B) When one counts complex behavior, the subjectivities of observers influence

count results.

communication between these two individuals, evaluation based solely on the distance-

based index results in an incomplete understanding of the behavior begin studied. In

the worst case scenario, this may result is incorrect interpretation of the behavior. The

loss of speed information may be prevented by counting separately the communication

with different speed. However, a large amount of information, such as approach angles

or movement trajectories, would still be lost. As the classification criteria for avoiding

loss of information increase, misclassification by human error is also expected to increase.

Furthermore, as increasing classification criteria leads to an increase in the amount of

data required for statistical analysis, long-term observation becomes necessary, and this

study become more laborious and time-consuming.

The second defect of count-based quantification is that subjectivity of each observer

influences the results (Fig. 1.1b). When one counts the frequency of complex behavior

such as aggressive behavior and courtship behavior, unification of the evaluation criteria

between different observers is difficult. In other words, when one counts a behavior that

is composed of subtle movements, different observers may report different count results.

Video-based quantification, which quantifies behavior by video recording and analysis

of the video data based on computer science, potentially overcomes these two defects

of count-based quantification. This approach enables the simultaneous quantification

of various parameters, such as velocity and direction, without loss of raw behavioral

data. If necessary, researchers may obtain new parameters from the original movie by

developing new measurement tools. In addition, this quantification method enables the

analysis of long-term video data. Furthermore, as the usage of the same software and

video data gives consistent results, the subjectivity of the data analyst does not influence

the analysis. Therefore, computational Ethology, based on video-based quantification, is

expected to become an important discipline in the investigation of animal behavior.

In addition to video-based quantification, logger-based quantification has also at-
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tracted a large amount of attention recently. In this field of research, referred to as “Bi-

ologging Science”, animal behavior is quantified by attaching loggers, such as GPS-based

devices and accelerometers, to animals that are allowed to freely perform the relevant

behavior [4]. Then, the instruments are retrieved and the behavior of interest is quanti-

fied. An advantages of logger-based quantification is that it enables the investigation of

behavior in environments where direct observation may be difficult, e.g. in the deep-sea

and the sky [5, 6]. In addition, non-behavioral information, such as air temperature and

the wind direction, may additionally be obtained by using various types of loggers simul-

taneously. However, a disadvantage of logger-based quantification is that it has limited

applicability in small animals, including numerous model organisms, because attachment

of loggers to small animals is challenging. Moreover, unlike video-based quantification,

obtaining information on the subtle movements of animals may be difficult. Although

logger-based quantification is of great interest as a behavior quantification method, this

thesis will focus on video-based quantification.

1.2 Video Tracking System for Quantification of Animal Be-

havior

In this section, I review previously developed animal tracking software. Tracking refers to

the acquisition of movement trajectories of individuals via the computational recognition

of each individual from video data. This task constitutes a most basic and important step

in computational ethology [7]. While bioinformatics involves the computational analysis

of molecular data, such as sequence data or protein structure data, the field of “bioimage

informatics”, which is concerned with the development of software for the analysis of

biological image data or video data, has grown rapidly in recent years [8, 9, 10]. Object

tracking is a frequently investigated subject in this research area, and numerous software

products for tracking cells or nuclei have been developed [7, 11].

In the first step of a tracking algorithm, unnecessary background objects are removed

by image processing in order to obtain pixel data related only to the animal of inter-

est in each image frame. In this step, conventional image processing methods such as

background subtraction and binarization are frequently used [12]. However, when exper-

imental conditions are not suitable for image processing, e.g. in the inappropriate light

conditions, this extraction step cannot be achieved solely by simple image processing.

In such cases, refinement of the experimental conditions is a simpler, easier, and more

accurate solution than the development of new and complex image-processing algorithm.

For example, Simon et al. prevented overlaps between each individual in a Drosophila

tracking system by using a chamber with sloped walls instead of vertical ones , thereby
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Fig. 1.2 Occlusion problem in multiple animal tracking. (A) Swapping of identity

error. (B) Loss of identity error.

enabling the tracking software to recognize each individual easily [13]. However, the

development of tracking systems for video recording in open fields is challenging, as it

is difficult to control experimental conditions in such environments, which lowers the

quality of the video data obtained.

In the second step, the tracking algorithm determines the movement trajectories of

each individual by concatenating animal objects along the time sequence. When only

a single animal is filmed, the trajectory of the animal may be obtained by a simple

concatenation of extracted animal objects. However, when multiple animals are filmed,

a problem related to the correspondence of animal identities between different frames

arises. This problem may be resolved by ensuring correspondence so that the sum of

the distance moved by each animal is minimal between successive frames. This method

is based on the assumption that each position of the animal does not suddenly change

between successive frames. However, contacts and overlaps between several animals

may cause misidentification, such as “swapping of identity error” and “loss of identity

error” (Fig. 1.2). This problem, termed the “occlusion problem”, remains an unresolved

challenge to the development of tracking software.

Some researchers have solved the occlusion problem by devising video recording condi-

tions. The simplest solutions are embedding sensors into animals or physically marking

each animal with different signs or colors [14, 15, 16]. While these methods prevent

occlusion problem with high accuracy, there is a risk that physical interference with ex-

perimental animals influences the behavior of individuals. In addition, when the number

of individuals is large, preparation of computationally distinguishable marks or colors

is not easy. Another solution to the occlusion problem involves three-dimensional video

recording by multiple video cameras [17]. In this method, although animals may over-

lap with each other when viewed from one camera angle, they should not overlap with

each other when filmed from different camera angles. While this method also provides

an effective solution to the occlusion problem, it is necessary to set up a transparent

experimental tank and multiple video cameras whose viewing fields encompass the full

6



range of animal activity. Therefore, some researches put instruments in video view for

investigating the reaction behavior to the instruments, but this three-dimensional video

recording method cannot be applied to the researches [18, 19].

Other researchers have tackled the occlusion problem by developing new tracking

algorithm. Delcourt et al. assumed that the motion state for each animal represents

uniform linear motion, and assigned identities to each animal so that their movement

trajectories were more similar to uniform linear motion [20]. Unfortunately, this method

lacks high accuracy as animals frequently show movements that deviate from uniform

linear motion to large extents. Recently, Prez-Escudero et al. developed idTracker, which

computationally discriminates between animals on the basis of natural characteristic

marks indistinguishable to the human eye [21]. When the resolution of video data is

high, idTracker is able to accurately solve occlusion problems for various species such as

zebrafish, mice, and flies. On the other hand, this method cannot be applied to species

whose pattern on body surface patterns are unclear, for example the himedaka variety of

Oryzias latipes.

In the final step of the tracking algorithm, the shape of each animal is assessed. Several

tracking software products are capable of performing previous steps simultaneously with

this step. This step may be omitted when only the movement trajectories are required

for subsequent analysis. The development of general algorithm that targets every species

is challenging, because animals exhibit a large diversity of morphologies. To date, a

number of species-specific video tracking systems have been developed mainly for model

organisms such as nematodes [22, 23, 24], mice [15, 25, 26], fruit flies [27, 28], ants [29],

and fish [20, 30, 31].

This section concludes with a brief discussion of the execution time of tracking soft-

ware. In many cases, tracking software and video recording are run separately, because

the execution time of many tracking software is longer than the video recording time. On

the other hand, several real-time tracking systems have been developed for interfering in

animal behavior [32, 33]. For example, FlyMAD software is capable of targeting freely

moving flies with an infrared laser using real-time tracking [32].

1.3 Methods for the Analysis of Tracking Data

After the movement trajectory of each animal is obtained, the tracking data are analyzed.

Some researches only carry out general statistical tests of basic parameters such as inter-

individual distance and velocity of each individual, whereas other studies utilize more

sophisticated methods for the analysis of tracking data. In this section, I review three

methods for the analysis of tracking data: behavioral annotation analysis, behavioral
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Fig. 1.3 Schematic illustration of sophisticated analytic method of tracking data.

(A) Behavioral annotation analysis. (B) Behavioral pattern analysis. (C) Social

network analysis.

pattern analysis, and social network analysis (Fig. 1.3). These methods are adaptations of

supervised learning, unsupervised learning, and network science to tracking data analysis.

Behavioral annotation analysis involves the classification of animal behavior into cat-

egories such as “walk”, “run”, and “turn”, and annotates the behavioral category of

each animal along time sequences (Fig. 1.3A). When the data size of the video is small,

this task may be performed manually. However, when the data size of video is large,

manual annotation is extremely laborious. Numerous annotation systems based on su-

pervised learning have been developed for the automatic annotation of animal behavior

[26, 27, 28, 34, 35].

In behavioral annotation analysis, tracking results such as the velocity and shape of

each animal are regarded as input vectors, and behavioral categories are regarded as out-

put values. First, training datasets are constructed by manual annotation of small-sized

datasets. Several support tools for manual annotation have been developed. For exam-

ple, JAABA software enables the interactive annotation of behavior using a graphical
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user interface [36]. Next, the classifier is learned from training datasets using conven-

tional supervised learning methods such as support vector machine and random forest

[37, 38]. Finally, behavioral categories of unannotated large-scale dataset are predicted

by adapting the learned classifier to the dataset. One of the advantages of behavioral

annotation analysis is that interpretation of analysis results is relatively easy, as behav-

ioral categories are determined on the basis of the expert’s knowledge and experiences.

However, this is also disadvantage in that the detection of undefined behavior is difficult

in principle. In addition, the subjectivity of each annotator has the potential to influence

the construction of training datasets. In practice, disagreements of manual annotation

results between different annotators are common [34]. Therefore, behavioral annotation

analysis may lack objectivity, which is a big advantage of computational ethology-based

approaches.

Behavioral pattern analysis involves the detection of characteristic and frequently ap-

pearing behavioral patterns from tracking data using unsupervised learning (Fig. 1.3B)

[39, 40, 41, 42]. Unlike behavioral annotation analysis, this method possesses an advan-

tage in that it is possible to detect unknown behavior and the subjectivity of the analyst

does not affect the results. On the other hand, interpretation of detected behavioral

motifs is not easy. In other words, the merits and demerits of behavioral annotation

analysis and behavioral pattern analysis exhibit complementary relationships.

Social network analysis expresses animal groups as a network by regarding each in-

dividual and inter-individual relationship as a node and an edge, respectively. Then,

the dominance hierarchy or social structure of animal groups is determined by applying

network theory to the drawing network. Social network analysis was used in ethology

before the introduction of big behavioral data. In a pioneering study, Croft et al. and

Lusseau constructed a social network for guppies or dolphins using the mark-recapture

method and individual recognition, respectively [43, 44]. In these studies, edges represent

individual pairs belonging to same group. They revealed the existence of significantly

familiar pairs that has numerous edges. In addition to the analysis of such basic network

structures, big behavioral data enables the investigation of the dynamics of network

structure or the type of a relationship between individuals. For example, Mersch et

al. studied the time-series changes in ant social network structures based on long-time

video recording [45]. They investigated time-series change in division of jobs, such as for-

aging and nursing for worker ants, and analyzed the relationships between the changes

in network structure and job category for each ant. Nagy et al. discovered a hierarchy in

pigeon flocks by describing pigeon social structure as a directed graph [46]. By assuming

that followers change their direction of travel after the leader changes the direction, re-

searchers detected leader-follower relationships in pigeon groups by correlation analysis
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with time delay of traveling direction change. Although this study was performed using

logger-based quantification, the analyticcal method may be applied to the analysis of

tracking data obtained by video-based quantification [21].

1.4 Purpose of This Thesis

While bioinformatics for understanding animal behavior has flourished in recent years,

there are still many unsolved problems. In this thesis, I especially grappled with the

following three research tasks: 1) Solution of the occlusion problem described in section

1.2. 2) Development of analytic method of tracking data described in section 1.3. 3)

Revealing the molecular mechanism of animal behavior based on other omics data.

The following chapters are organized as follows. Chapter 2 describes tracking soft-

ware, called GroupTracker, which is a multiple animal tracking system that accurately

tracks individuals even under severe occlusion. Chapter 3 shows bioinformatic analysis of

C.elegans tracking data. Chapter 4 demonstrates that several RBPs related to neuronal

disorder bind to their target molecules under specific RNA secondary structural contexts.

In Chapter 5, conclusions of this thesis are presented with discussion and future work.

A part of this thesis is based on the following publications written by the author and

others: [47, 48].
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Chapter 2

GroupTracker: Video Tracking
System for Multiple Animals
under Severe Occlusion

2.1 Introduction

In this section, I present a Gaussian mixture model-based, multiple animal tracking sys-

tem that accurately tracks individuals even under severe occlusion. Severe occlusion

occurs not only under typical experimental settings but also during interesting inter-

individual behaviors such as courtships ([49]). Thus, most studies so far required labo-

rious manual annotations of identities and positions of individuals, and the ability to

perform large-scale systematic analyses is greatly inhibited.

Recently, the Gaussian mixture model has been adopted by several multiple animal

tracking methods, where animal individuals are represented by components of a Gaussian

mixture ([27, 28, 50, 15]). Through this approach, latent variables such as true positions

of individuals are explicitly represented. The associated probability models and numerical

methods are also well-established. Although a Gaussian distribution cannot represent, for

example, bending shapes of a nematode, it has been successfully applied to many animals

such as mice and fruit flies ([27, 15]). Nevertheless, methods adopting the Gaussian

mixture model also suffer from the severe occlusion problem, because the maximum

likelihood estimation of the Gaussian mixture model is theoretically an ill-posed problem

under the condition where multiple components can overlap ([51]).

My key idea was the introduction of constraints to the eigenvalues of the covariance

matrices of the Gaussian mixture components, by taking advantage of the fact that

the size of each individual usually remains almost constant during a video sequence. I

developed algorithm that effectively estimates the Gaussian mixture parameters under

these additional constraints, and implemented a publicly available software tool named

‘GroupTracker’ (GROUP: Gaussian Reinterpretation of OcclUsion Problem).
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Fig. 2.1 (A) An image frame in a video sequence that contained eight individual

medaka fish. (B) The same image frame, after the preprocessing step. (C) Tracks

of eight individuals from a one-minute video segment. Colors represent different

individuals.

2.2 Material and Methods

2.2.1 Video Sequence Dataset

Medaka fish (Oryzias latipes) was selected for demonstrative purposes in this study.

As fish swim around in three dimensions and frequently overlap each other, they are

suitable for evaluating multiple animal tracking system under occlusion conditions. It

should be noted that, partly because of these characteristics, tracking systems for fish are

underdeveloped compared with those for other organisms ([52]). Furthermore, medaka

fish has been used as a model organism in many fields of animal sciences. It shows vari-

ous interesting behaviors that involve inter-individual interactions such as schooling and

aggressive behaviors ([53, 54, 55]), while rich resources are available for its neurobiology

and genomics ([56, 57]).

Five ten-minute video sequences that recorded one, two, four, eight, and sixteen indi-

viduals were prepared. Medaka fish (Hd-rR strain) were hatched and bred in laboratory

aquariums. In each case, equal numbers of female and male individuals (one female

in the case of one individual) at six months of age (adult, body lengths ≈ 3 cm) were

transferred to a white, opaque, cylindrical ring-shaped, plastic water tank (outer radius

= 46 cm, inner radius = 24 cm, depth ≈ 4 cm, water temperature = 26◦C; Fig. 2.1A).

This shape of the tank enhanced the schooling behavior of medaka. A white polarized

LED lamp (10.7 cm × 22.5 cm) located above the tank was used as the light source

during video recording (Fig. 2.2). A high-definition digital video recorder (HDR-HC9

Sony Corp., Japan) was set approximately 140 cm above the water surface. A polarizing

filter (VF-37CPKS, Sony Corp., Japan) was used to reduce light reflection. Videos were

recorded in eleven-minute sequences during daytime (from 2pm to 5pm) using default

12



LED lamp�

Plastic bucket�

Digital video 

recorder�

Polarizing 

plate�

about 

140cm 

Fig. 2.2 A schematic illustration of the video-recording apparatus.

video settings. Blackout curtain was set up surrounding the entire apparatus to prevent

external (human) interference. Final Cut Pro (Apple Inc., U.S.A.) was used to convert

the videos into the Motion JPEG format (frames per second = 30, resolution of the

image frames = 872 × 480). The first one-minute segment was deleted from each video

sequence.

2.2.2 Method Overview

The method consists of three major steps: preprocessing, tracking, and post-processing.

At the preprocessing step, objects outside of the movable areas (i.e., outside of the

water boundary in case of fish) are removed and pixels composing the animal shapes are

extracted from every image frame using conventional image-processing methods ([12])

(Fig. 2.3A). Then, the tracking step determines the precise position of each individual

by fitting the Gaussian mixture model to the preprocessed image frames (Fig. 2.3B).

The post-processing step consists of three minor steps: identity-swapping alert, identity-

swapping correction, and head-direction determination. At the identity-swapping alert

step, the system alerts the user to image frames that may contain identity-swapping

errors. The identity-swapping correction step then automatically correct a portion of
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Fig. 2.3 Overviews of the (A) preprocessing step and (B) tracking step.

these errors. Finally, at the head-direction determination step, the direction of the head

of each individual is determined in each image frame.

2.2.3 Preprocessing Step

At this step, first, every image frame in the video sequence is converted to 8-bit grayscale

(into the 0―255 range from dark to bright by the NTSC conversion) and, to remove light

reflection, any values higher than the threshold value of 100 is set to this value. Next,

dynamic threshold binarization and statistical background subtraction are conducted to

select pixels that likely constitute animal shapes. The former technique selects every pixel

whose brightness value is lower than a dynamic threshold that is the average brightness

value of the surrounding pixels (5× 5 square pixels) plus or minus a user-defined value.

Because medaka’s body were darker than the surrounding environment, the user-defined

value was set to −5. The latter technique selects every pixel whose brightness value is

lower than a static threshold calculated as follows. Thirty image frames are collected at

even intervals from the entire video sequence and, for each pixel coordinates, the mean

µ and variance σ of the brightness values are calculated. The static threshold is then set

to µ− 2σ. Common pixels selected by both techniques are obtained and a median filter

is applied to remove noises. Finally, the remaining pixel set is passed on to the tracking

step.
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C	 D	

まず、混合ガウス分布における一般の EMアルゴリズムを概説した後、分散共分散行列の固有値を固定し
た EMアルゴリズムについて論ずる。

1 一般の場合
K個のガウス分布の混合分布は以下のような線形重ね合わせで表現出来る。

λ
1
2
1

λ
1
2
2

µ

p(x) =
K∑

k=1

πkN(x|µk,Σk)

この時、πk は混合係数であり、それぞれのガウス分布が選択される 確率として解釈される。次に、観測した
データ集合 X = {x1, ...,xN}に混合ガウス分布を当てはめ、データ集合を良く説明するパラメータ (π,µ,Σ)

を求めたい。パラメーターに対する最尤推定を考えると、以下の対数尤度関数を最大化するパラメーターを求
めれば良い事になる。

ln p(X|π,µ,Σ) =
N∑

n=1

ln

{ K∑

k=1

πkN(xn|µk,Σk)

}

これを最大化する解は、各パラメーターについて微分した値を 0 と置き、その方程式を解く事で求められ
る。γ(znk) =

πkN(xn|µk,Σk)∑
j πjN(xn|µj ,Σj)

、Nk =
∑N

n=1 γ(znk)とすると、

πk = Nk/Nµk =
1

Nk

N∑

n=1

γ(znk)xn

Σk =
1

Nk

N∑

n=1

γ(znk)(xn − µk)(xn − µk)
T

とすれば良い事がわかる。しかしながら、γ(znk)の計算に既に各パラメーターを用いているため、解を求
める事が出来ない。そこで、以下のような繰り返し手続きが考案されている。

1.パラメータ (π,µ,Σ)を初期化する。
2.初期化されたパラメーターから γ(znk)を計算する。(Eステップ)

3.2で計算した γ(znk)を用いてパラメータ (π,µ,Σ)を計算する。(Mステップ)

4.2と 3を尤度が収束するまで繰り返す。
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まず、混合ガウス分布における一般の EMアルゴリズムを概説した後、分散共分散行列の固有値を固定し
た EMアルゴリズムについて論ずる。

1 一般の場合
K個のガウス分布の混合分布は以下のような線形重ね合わせで表現出来る。
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µ

p(x) =
K∑

k=1

πkN(x|µk,Σk)

この時、πk は混合係数であり、それぞれのガウス分布が選択される 確率として解釈される。次に、観測した
データ集合 X = {x1, ...,xN}に混合ガウス分布を当てはめ、データ集合を良く説明するパラメータ (π,µ,Σ)

を求めたい。パラメーターに対する最尤推定を考えると、以下の対数尤度関数を最大化するパラメーターを求
めれば良い事になる。

ln p(X|π,µ,Σ) =
N∑

n=1

ln

{ K∑

k=1

πkN(xn|µk,Σk)

}

これを最大化する解は、各パラメーターについて微分した値を 0 と置き、その方程式を解く事で求められ
る。γ(znk) =

πkN(xn|µk,Σk)∑
j πjN(xn|µj ,Σj)

、Nk =
∑N

n=1 γ(znk)とすると、

πk = Nk/Nµk =
1

Nk

N∑

n=1

γ(znk)xn

Σk =
1

Nk

N∑

n=1

γ(znk)(xn − µk)(xn − µk)
T

とすれば良い事がわかる。しかしながら、γ(znk)の計算に既に各パラメーターを用いているため、解を求
める事が出来ない。そこで、以下のような繰り返し手続きが考案されている。

1.パラメータ (π,µ,Σ)を初期化する。
2.初期化されたパラメーターから γ(znk)を計算する。(Eステップ)

3.2で計算した γ(znk)を用いてパラメータ (π,µ,Σ)を計算する。(Mステップ)

4.2と 3を尤度が収束するまで繰り返す。

この手続きは、混合ガウス分布における EMアルゴリズムとして知られ、局所最適解に収束する事が保証
されている。
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位置 µの輝度を f(x, y)とすると、エッジの強度 g(x, y)は、

g(x, y) =
√
(∂xf(x, y))2 + (∂yf(x, y))2

∂xf(x, y) = f(x+ 1, y)− f(x, y)

∂yf(x, y) = f(x, y + 1)− f(x, y)

で表す事が出来る。

1

Pixels composing individuals	

Gaussian mixture 
components	Occlusion	

Collapsed component	

Fig. 2.4 (A) A schematic illustration of a preprocessed image frame. (B) Two-

dimensional Gaussian mixture representation of the same image frame. (C) A

schematic illustration of a case that two Gaussian mixture components overlap and

one of component collapses to a single pixel. (D) A schematic illustration of the

interpretation of eigenvalues and a covariance matrix of a Gaussian distribution. λi

represents the two eigenvalues, while µ and the ellipse represent the mean value and

a constant probability density contour, respectively.

2.2.4 Tracking Step

At this step, the two-dimensional Gaussian mixture model is applied to the preprocessed

images (Figs. 2.4A and 2.4B) using the same number of mixture components as that of

animal individuals. Hence, the mean value and covariance matrix of each component

represent the position and shape of each individual, respectively.

First, the system processes the first image frame. K-means++ algorithm ([58, 59])

is applied to divide the pixels identified during the preprocessing step into K clusters,

where K is the number of individuals. Because K-means++ algorithm can converge to

local optima, the clustering process is repeated R = 100 times and the result with the

smallest K-distance calculated as follows is chosen.

K-distance =
K∑

k=1

∑
x∈Ck

1

|Ck|
(d(x, ck))

2

where x is a pixel coordinate, Ck is a cluster, ck is the coordinate of its centroid, and

d(·, ·) is the Euclidean distance. Then, the mean value µk and the covariance matrix Σk

of each mixture component are set to ck and K-distance×0.1× I, where I is the identity

matrix, respectively. The mixture ratio of each component πk is set to 1/K.

Then, for each successive image frame, the parameters of the Gaussian mixture dis-

tributions are estimated by the Expectation-Maximization (EM) algorithm ([51]) using

the parameter estimate of the previous frame as the initial values. This relies on an

assumption that the position and shape of an individual do not change abruptly between

adjacent frames, which is generally true when the number of frames per unit time is
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sufficiently large. It should be noted that this approach naturally preserves the identities

of individuals in most cases.

In its original formulation, the EM algorithm described is as follows ([51]). The log-

likelihood function is defined as:

ln p(X|π,µ,Σ) =
N∑

n=1

ln

{ K∑
k=1

πkN (xn|µk,Σk)

}
where N is the number of pixels determined during the preprocessing step of each

image frame and N is the Gaussian probability density function. The E step calculates

γ(znk) =
πkN (xn|µk,Σk)∑

l
πlN (xn|µl,Σl)

, where znk indicates whether xn belongs to the mixture com-

ponent k and γ(znk) represents ‘responsibility’ that the mixture component k explains

the observation xn. Then, the M step updates the parameters using γ(znk). The E and

M steps are repeated until the likelihood function converges to a local maximum.

Nevertheless, this EM algorithm could not be applied to the current problem because

the maximum likelihood estimation of the Gaussian mixture model is intrinsically an

ill-posed problem if any two components can severely overlap ([51]) (Fig. 2.4C). In this

case, a Gaussian mixture component can collapse to a single pixel x and the likelihood

function can contain the term N (x|x,Σ) = (2π|Σ| 12 )−1, which diverges to infinity as

|Σ| → 0.

Therefore, I developed a novel algorithm that overcomes this limitation. The key idea

was to fix the eigenvalues of Σk since they represent the sizes of the individuals, which

can be considered constant during a video sequence (Fig. 2.4D). If the eigenvalues are

fixed, a Gaussian mixture component cannot collapse to a single pixel and |Σ| cannot
approach 0. First, the original EM algorithm described above is applied to the first

image frame and the eigenvalues of Σk are calculated. This requires that all animal

individuals do not overlap in the first frame, though it is trivial to choose any frame

that fulfills this condition in a video sequence. Then, the adapted EM algorithm that

maximizes the likelihood function while fixing the eigenvalues is applied to the first

and subsequent frames, using the eigenvalues calculated above as input. Note that the

likelihood function does not change even if the eigenvalues are fixed; in other words, only

the M step needs to be revised. Since the covariance matrix of a Gaussian distribution

is a real symmetric matrix, I can choose the eigenvectors that form an orthonormal set

([51]). Given eigenvalues λik and eigenvectors uik, the covariance matrix is written by

Σk = λ1ku1ku
T
1k + λ2ku2ku

T
2k

=

(
λ1k cos

2 θk + λ2k sin
2 θk (λ1k − λ2k) sin θk cos θk

(λ1k − λ2k) sin θk cos θk λ1k sin
2 θk + λ2k cos

2 θk

)
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Note that I can set u1k to (cos θk, sin θk)
T and u2k to (− sin θk, cos θk)

T (0 ≤ θk < π),

where θk ∈ [0, π) is the angle of the major axis of the Gaussian component.

The log-likelihood function can also be represented by using θk, λ1k, and λ2k. By

calculating its partial derivatives with respect to θk and setting it to zero, I obtain the

following equation:

N∑
n=1

γ(znk)

{
λ2k − λ1k

λ1kλ2k
×
(1
2
(a21nk − a22nk) sin 2θk − a1nka2nk cos 2θk

)}
= 0

where (a1nk, a2nk) is (xn − µk)
T . The solution of this equation is given by

if
N∑

n=1

γ(znk)(a
2
1nk − a22nk) = 0 ⇒ θk =

π

4
and

3π

4

otherwise θ′k =
1

2
arctan

(
2
∑

γ(znk)a1nka2nk∑
γ(znk)(a21nk − a22nk)

)
θk =

{
θ′k + π

2 and θ′k + π (θ′k < 0)
θ′k and θ′k + π

2 (θ′k ≥ 0)

The two possible solutions represent the local maximum and local minimum. By

selecting the one whose second order differential is negative, the solution for the local

maximum is obtained and passed on to the next iteration of the EM algorithm.

When it comes to real datasets, animal individuals sometimes move too fast and

the solutions to the EM algorithm from the previous frame could become inappropriate

as the initial parameters. These ‘loss of individual’ events are detected by calculating

the likelihood function for a mixture component k with the initial parameter values µk

and Σk. If the calculated likelihood is less than a threshold α, a round of K-means++

algorithm is performed by fixing the parameters of all other components, and µk and Σk

are updated as described earlier. On the other hand, if no ‘loss of individual’ events are

detected, noise reduction is then conducted where any pixel whose likelihood, according

to the initial parameters, lies below a threshold β is regarded as noise and removed. In

the current implementation, α = β = 10−15.

2.2.5 Post-processing Step

As described earlier, the tracking step preserves the identity of each individual across

frames in most cases; however, identity-swapping errors may occur at frames that contain

occlusion. This step alerts the user to them.

First, for each pixel xn in each frame, this step finds k1, k2 ∈ {k|1 ≤ k ≤ K} that

constitute the largest and second largest values of γ(znk), i.e., the top two mixture
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Fig. 2.5 Identity-swapping errors that are corrected at the identity-swapping cor-

rection step. (A) A case that sudden changes in directions of movement are detected.

(B) A case that sudden changes in speed of movement are detected.

components that best explain xn. A γ(znk1) value less than a threshold a = 0.7 indicates

that these components get close in that frame. In this case, a combination of the frame

number, k1, and k2 are recorded. A series of successive frames allowing at most one-

frame gaps with the same recorded component pair (k1, k2) are then grouped into an

“incident”. Incidents spanning less than a threshold b = 5 frames are discarded to

exclude potential false positives. In addition, the differences between angles θk1 and θk2

of the two recorded components are calculated for all frames within an incident and, if the

minimum difference is larger than a threshold c = π/6, that incident is discarded. This

is because large angle differences result in large Kullback-Leibler divergences between

the mixture components that prevent identity-swapping errors. Finally, the remaining

incidents are presented to the user as possible cases of identity-swapping errors.

Not every identity-swapping error can be corrected completely automatically. This

step aims at correcting errors by detecting unnatural sudden changes in directions or

speed of each individual’s movement.

Given a user-defined value t0 (default t0 = 10) and an incident beginning at frame

number ffirst and ending at frame number flast, the values of µk for the recorded

components k1 and k2 at frames (ffirst − t0),
1
2 (ffirst + flast), and (flast + t0) are

extracted. For simplicity, I defined them as µk pre, µk mid, and µk post, respectively. To

look for sudden changes in directions, the angle formed by µk1 pre, µk1 mid, and µk1 post

and the angle formed by µk2 pre, µk2 mid, and µk2 post are examined. If both angles are

smaller than a threshold d = π/2, the incident is judged as an identity-swapping error

and corrected by re-swapping the identities mapped to the two components starting from
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the frames of the incident (Fig. 2.5A). To detect sudden changes in speed, I first define the

distances d1pre, d1post, d2pre, and d2post as |µk1 pre − µ
k1 mid|, |µk1 mid − µk1 post|,

|µk2 pre − µ
k2 mid|, and |µ

k2 mid − µk2 post|, respectively. Then, if dscore = |d1pre −
d1post|+ |d2pre−d2post|− |d1pre−d2post|− |d2pre−d1post| is greater than a threshold

e = 20 pixels, the incident is judged as an identity-swapping error and corrected in the

same manner (Fig. 2.5B).

At the tracking step, I introduced θk ∈ [0, π), which represents the angle of the major

axis of the Gaussian component representing individual k. The upper limit was π instead

of 2π, because the covariance matrices are diagonal and did not discriminate between

the head and tail of an individual. At this step, the head directions of the individuals

are explicitly determined and θk is updated to be in the range [0, 2π).

First, because the head direction of the individual k does not abruptly change between

successive image frames, frames are grouped if the differences between their θk values

are less than π/4 (or greater than 3π/4). Note that, if the individual k does not overlap

with any other individuals during the entire video sequence, all frames usually formed a

single group. This process is repeated for each individual. For each frame f in the frame

group for individual k, the velocity vk(f) is obtained as the difference vector between

µk at frames f − t0 and f + t0. At the frame fmax where |vk(fmax)| is maximized, the

movement of individual k is assumed to be its head direction. Thus, if the difference

between the angle of vk(fmax) and θk at fmax is greater than π/2, to the value of θk at

fmax is updated to θk + π. Finally, π is added to θk at any frame so that the differences

between θk from adjacent frames are always less than π/4 (or greater than 7π/4).
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Fig. 2.6 Intermediate states during the preprocessing step. (A) An input raw image

frame. (B) After gray-scaling. (C) After brightness-value thresholding. (D) After

dynamic threshold binarization. (E) After statistical background subtraction. (F)

The product set of (D) and (E). (G) After deleting pixels outside of the movable

area. (H) After median-filter application.

20



Fig. 2.7 (A) A tracking result without performing the noise reduction. The red

circle indicates an individual whose position was inaccurately tracked. (B) The re-

gions surrounded by the yellow rectangle in (A) after the preprocessing step. The red

pixels are noise that caused the inaccurate position estimation. (C) The corrected

result after performing the noise reduction.

2.3 Results

2.3.1 Application to Medaka Video Sequences

GroupTracker was applied to five ten-minute video sequences that recorded one, two,

four, eight, and sixteen individuals. Figure 2.1B shows the final product of the prepro-

cessing step of a raw image frame shown in Figure 2.1A (intermediate states are shown

in Fig. 2.6). For most frames, the preprocessing step successfully identified pixels that

constitute animal shapes. Any noise pixels that remained were removed by the noise

reduction algorithm at the tracking step (Fig. 2.7). Figure 2.1C shows the movement

tracks of the mean values of the eight Gaussian components during a one-minute video

segment.

The present method requires several user-defined parameters that largely depend on

the nature of the video data and the desired applications. Among these parameters, I

note that the number of K-means++ trials R should be set sufficiently large to increase

the accuracy of the subsequent EM algorithm. For example, setting R = 1 resulted in

incorrect clusterings for the cases of eight and sixteen medaka individuals. On the other

hand, setting R = 100 yielded 100% accuracy in every case (Fig. 2.8).

2.3.2 Evaluation of Identity-Swapping Errors

Since it is natural for the user to only manually check the alerted frames for identity-

swapping errors, I prioritize sensitivity of the identity-swapping alert and report every

frame that might contain the errors. To achieve this, I investigated the sensitivity of

the system under various choices of threshold parameters a, b, and c (see Material and

Methods). Manual inspection of all identity-swapping errors confirmed that the sensi-
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Fig. 2.8 Success rate of dividing pixels to K clusters at correct positions by the

K-means++ algorithm. The x-axis represents the number of medaka. The y-axis

represents the success rate. The solid line and broken line represent cases that the

number of K-means++ trials were 100 and 1, respectively.

tivity was 100% for a ≥ 0.6 (Fig. 2.9A , b = 0 and c = π/2 are fixed). By definition,

the larger a was, the more frames were recorded during the first phase of the identity-

swapping alert step (Fig. 2.9B). Nonetheless, the actual number of alerted incidents did

not monotonically increase with a and in some instances reached its minimum value

around a = 0.7 (Fig. 2.9C), probably because some incidents were mistakenly divided

into smaller ones when the value of a was too small. Then, I fixed a = 0.7, and optimized

the values for b and c so that the 100% sensitivity is maintained while minimizing the

number of incorrectly reported incidents. I found that setting b = 5 frames and c = π/6

is appropriate because the minimum length of confirmed incidents was 9 frames and the

maximum angle difference of the two individuals in an incident was 19◦ (Fig. 2.10A and

2.10B). With these threshold values, the precision of the identity-swapping alert step was

improved from 0.033 to 0.143 while maintaining perfect sensitivity (Fig. 2.10C).

Table 2.1 Ratios of cases that identities were correctly preserved by the system.

K=2 K=4 K=8 K=16 Total

Without correction step 1.00 0.72 0.93 0.88 0.88

With correction step 1.00 0.80 0.93 0.96 0.92

The bold figures indicate the better value in each case.
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Fig. 2.9 (A) The sensitivity of alerting identity-swapping errors with regard to the

parameter a. Note that b = 0 and c = π/2 in this panel. The x-axis represents the

parameter a. The y-axis represents the sensitivity. (B) The numbers of recorded

frames with regard to the parameter a. (C) The numbers of alerted incidents with

regard to the parameter a.

On the other hand, at the identity-swapping correction step, precision becomes fun-

damental, i.e., false positives should be avoided. I found that setting d = π/2 and e = 20

pixels (see Material and Methods) safely maintains 100% precision. For incidents that

did not contain identity-swapping errors, the angles defined by individual’s changes in

direction are well above π/2 (data not shown), and the maximum dscore was 14 pixels

(Fig. 2.10D).

Next, I evaluated the performance of my system regarding the identity-swapping errors

by calculating the accuracy of the correction step over all image frames where some fish

individuals overlap. First, I extracted all image frames in which individuals are confirmed

to be overlapped. In the present dataset, I could manually judge every identity-swapping

case without ambiguity. Table 2.1 summarizes the accuracy of the systems with and

without the identity-swapping correction step. Although the overall accuracy was already

high (0.88) even without any corrections, utilizing the identity-swapping correction step

improved it to 0.92. These results show that the system accurately preserves individual

identities under occlusion.

2.3.3 Evaluation of Position and Angle Estimation

Next, I evaluated the accuracy of the estimated positions and angles, i.e., head-to-tail

directions of fish individuals, by comparing them with the ground truth that was obtained

as follows. I selected one frame per five seconds, i.e., 120 frames per one ten-minute

video sequence, and manually measured the coordinates of the head, center, and tail of

all individuals. The coordinates of the centers were regarded as the ground truth for the

positions, and the angles of the difference vectors between the head and tail coordinates

were regarded as the ground truth for the angles.

Tables 2.2 and 2.3 show the percentile errors of the estimated positions and angles,
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Fig. 2.10 (A) Lengths of incidents that contained identity-swapping errors and

those did not. The y-axis represents relative frequencies in any case of two, four,

eight, and sixteen. (B) Angle differences between the two individuals. (C) Number

of alerted incidents with regard to the parameters b and c. (D) dscore of incidents

that contained identity-swapped errors and those did not.

respectively. In all case, 90% of the estimation fell within the errors of 3.16 pixels in

position and 8.31 degrees in angle, and the number of individuals has little effects on

these errors. These results show that the estimated positions and angles agree well

with the ground truth and also that this performance scales well with the number of

individuals (Visualized in Fig. 2.11).

2.3.4 Evaluation of Running Time

I evaluated the speed of the system by comparing its running time with the time required

for manual annotations. The computation was performed on an Intel(R) Core(TM) i5-

3320M 2.6 GHz CPU with 4 GB of memory. Figure 2.12 shows the times required for the

system, those required for manual annotation, and the relative efficiency. Overall, the

system is 250-fold to 1800-fold faster than manual annotation and the efficiency increases
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Fig. 2.11 Visualization of percentile errors in the position and angle estimation in

the case that the number of individual was one. The black area represents pixels

that constituted a medaka shape in an image frame. The red color represents the

ground truth, while the blue, yellow, and purple colors represent the ranges of the

50th, 75th, and 90th percentile errors, respectively.

Table 2.2 Percentile errors in the estimation of the positions.

Percentile K=1 K=2 K=4 K=8 K=16

25th 1.0 1.0 1.0 1.0 1.0

50th 1.0 1.0 1.41 1.41 1.41

70th 2.0 2.0 2.0 2.24 2.24

90th 2.24 2.24 2.83 3.16 3.0

(in pixels)

Table 2.3 Percentile errors in the estimation of the angles.

Percentile K=1 K=2 K=4 K=8 K=16

25th 1.98 1.75 1.47 1.22 1.39

50th 3.68 3.35 3.37 2.84 2.79

70th 5.38 5.41 5.85 5.01 4.49

90th 7.52 7.99 8.31 7.43 7.65

(in degrees)

with the increasing number of individuals. Even in the case of sixteen individuals, the

system required less than 90 minutes to process a ten-minute video sequence, and is thus

time-efficient enough for practical uses.
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Fig. 2.12 Time required for the system and manual annotation. The x-axis repre-

sents the number of medaka individuals. The left y-axis represents time in second

per frame in a logarithmic scale (solid lines). The right y-axis represents the time

efficiency (dashed line).

2.4 Conclusion

In the present study, I developed a multiple animal tracking system called ‘Group-

Tracker’. Its primary algorithm is based on an adaptation of the EM algorithm for

Gaussian mixture model with fixed eigenvalues. This enables the system to accurately

track individuals under severe occlusion. Recently, Mr. Rito Taekeuchi and Mr. Os-

amu Yamanaka have developed UMATracker, which is a GUI system to track multiple

animals (http://ymnk13.github.io/UMATracker/). Tracking step of GroupTracker is im-

plemented in this UMATracker software, and thus ethologists can use my algorithm with

ease. In addition, as UMATracker system can change tracking algorithm to the other al-

gorithm, software developers can compare their developed algorithm with GroupTracker

algorithm on the same condition with ease.

I envision three future improvements and utilizations of GroupTracker. The first is

speeding up of the system. Although the system already illustrated reasonable time-

efficiency, further improvements may be needed, for example, for real-time tracking or

tracking of a large flock of animals. This can be achieved by parallelization. In particular,

the preprocessing step is clearly parallelizable because the processing of each frame is

independent. The tracking and post-processing steps could also be parallelizable if an in-

put video sequence is divided into segments separated by frames where all individuals are

clearly identified. The second is the possibility of adopting more-sophisticated machine
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learning techniques for the detection and correction of identity-swapping errors. Tech-

niques such as the support vector machine have been widely utilized in bioinformatics

fields ([60, 61]) and could improve the accuracy, sensitivity, and specificity of tracking.

Last but not least, the third is the actual utilization of the system to gain novel bio-

logical knowledge. I aim at revealing unexplored social network structures ([46, 6]) and

behavioral patterns ([39, 41]) behind animal interactions, which would provide insights

into the high-order functions of their nervous systems.
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Chapter 3

Bioinformatic analysis of postural
change patterns for Caenorhabditis ele-
gans mutants

3.1 Introduction

In this section, I present an analytic method for understanding Caenorhabditis elegans

behavior based on unsupervised learning. C. elegans has been used as a model organism

in many fields of biology because of its simple body plan and neural system. At present,

various research resources are available for its molecular biology and neuroscience, for

example, the complete genome sequence, a highly curated and integrated database, and

the complete neuronal wiring diagram [62, 63, 64]. In addition to these rich resources, we

can also utilize various tracking systems for quantifying C. elegans behavior automatically

[22, 23, 24, 65, 66]. Therefore, this animal is one of the most suitable organisms to

elucidate the molecular and neural mechanisms of animal behavior.

Worm posture is a key phenotype for revealing relationships between their behavior

and the molecular mechanisms. This is because mutations of genes expressed in neuron

changes their posture [67], and also their postural change patterns decide their movement

trajectories [68]. Therefore, several C. elegans tracking systems can measure not only

their locations but also their postures, and the analysis of the obtained large-scale worm

postural dataset has been conducted. For example, Brown et al. detected frequently

repeated postural change patterns of C. elegans by unsupervised learning analysis [39].

They revealed that feature vectors calculated from these postural change patterns provide

sufficient information for classifying mutants whose responsible genes have related func-

tions. As another example, Schwarz et al. revealed that worms show different postural

change patterns as a responses to optogenetic stimuli [69].

However, it is not still unclear how postural change patterns of mutants are different

from those of wild type (WT) strain. There are several possible behavioral cases. For

example, if a mutant takes different posture set from WT, naturally the mutant should
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Fig. 3.1 Description of worm postures. Left figure shows a picture of N2 strain’s

contour and midline highlighted. This picture is a frame from C. elegans behavioral

database. Right figure represents a zoomed illustration of the midline, and shows

calculation method of angles along the midline.

show different postural change patterns from WT. On the other hand, if a mutant takes a

same set of posture as WT but the postural change speed is faster than WT, the mutant

also shows different postural change patterns from WT. Although these two examples

mean clearly different behavioral patterns, but they were putted in the same category, and

the classification of these behavioral patterns had not attracted the attention in previous

research. By regarding these different behavioral patterns as different phenotypes, we

can accurately infer the effect that genetic mutation influences worm behavior.

In this study, I analyzed mutant strains that show abnormal postural change patterns,

and revealed the cause in behavioral level. I classified these behavioral reasons into four

categories; the usage of different postural set, the frequency change of quiescence be-

havior, the change of behavioral speed, and taking the novel postural change patterns.

I firstly calculated posture occurrence probabilities and posture transition probabilities

for 322 C. elegans strains using template posture set, which was obtained by binning

postural space. Then, I detected some mutant strains that show similar posture occur-

rence probabilities to N2 but different posture transition probabilities from N2. Finally,

by investigating the distribution of postural change speed for each strain, I revealed the

cause of the abnormal behavioral pattern for these mutant strains.

3.2 Methods

3.2.1 Data preparation

I downloaded worm behavioral feature dataset from the C. elegans behavioral database

[70]. This dataset consisted of 9975 individual worms covering 338 strains (21 wild
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types and 317 mutants), and each individual worm data consisted of pre-calculated 702

behavioral features such as the velocity and the orientation. The experimental condition

is that hermaphroditic worms are freely crawling on the surface of agar plates with

food. I focused on only “Eigen Projections” feature, which represents a worm posture

by a few value. The “Eigen projections” feature was pre-calculated from the movie data

as follows. Firstly, midline of worm shape was obtained by image processing for each

image, and 48 angles were measured along the midline (Fig. 3.1 shows the illustration).

Next, these angles were normalized so that the mean value of these 48 angles is zero in

order to represent these angles independently of the worm’s orientation. Then, principal

component analysis was conducted against pooled angle data of multiple individual worm

data of N2 strains, and some principal components were extracted. In this research, four

principal components were extracted because even only these four values can reconstruct

the worm posture with high accuracy (92%) [39, 71]. As a result, a worm posture and

the time-series change were represented by four principal components and the time series

of these four values, respectively. The details of the calculation method were given in the

database paper [70]. This eigenvalue representation of animal shapes has been widely

used to characterize the dynamics of animal locomotion [42, 72, 73].

I excluded individual worm data that met one of the following three criteria from the

analysis; (1) The video length is shorter than 890 seconds or longer than 910 seconds.

(2) The percentage of gap frame in all video frames is larger than 40 percentage. (3) The

number of individuals belonging to the strain is smaller than 5. The second criterion

was adopted because the “Eigen Projections” feature includes gap frames derived from

tracking failure, and the large gap percentage may have bad effects on the analysis results.

The distribution of gap percentage in all individual worm data is shown by Fig. 3.2A. As

a result, I obtained 322 strains dataset (20 wild types and 302 mutants) consisting of 8769

individual worm data. As data pre-processing, all gap frames were linearly interpolated.

In addition, frames per second (fps) of all individual worm data were downsampled and

unified to 5 fps. This is because the original dataset includes individual worm data with

various fps (Fig. 3.2B), and individual worm data with different fps cannot be directly

compared with each other.

3.2.2 Template posture detection algorithm

To calculate posture occurrence probabilities and posture transition probabilities for

each strain, I firstly obtained template posture set by binning the postural space. Then,

all posture data were assigned to any of template posture, and worm postural change

patterns were transformed into sequences of template postures. As binning method of

postural spaces, I evaluated the performances of two methods that are K-means cluster-
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A	 B	

Fig. 3.2 (A) The distribution of gap percentage in the dataset. The x-axis and

the y-axis represent the gap percentage and the frequency, respectively. (B) The

distribution of fps in the dataset. The x-axis and the y-axis represent the fps and

the frequency, respectively.

ing and Gaussian Mixture Model (GMM) [51]. Note that K-means clustering was used

by previous research in order to bin the postural space [69].

K-means-based binning method was conducted as follows. First, 1% of postural data

was sampled from all postural data in order to speed up parameter estimation. The

number of sampled postural data was 385,790. Then, K-means clustering was applied

to the pooled postural dataset, and the model parameters were estimated by Lloyd

algorithm [58]. The initial parameters were estimated by K-means++ algorithm [59]. I

regarded the centroid of each cluster after the convergence as a template posture. The

number of K was set to 90, 44, 95, or 459 . 90 is the number that was used by previous

research [69], and the other numbers were obtained by GMM-based binning method,

which will be described later. After parameter estimation, the cluster assignment of the

remaining 99% of postural data was conducted using estimated parameter.

GMM-based binning method was conducted as follows. First, data sampling was

conducted like K-means-based binning method. Then, four-dimensional GMM was fitted

to the pooled postural dataset, and the model parameters were estimated by Factorized

Asymptotic Bayes (FAB) algorithm [74, 75]. FAB algorithm automatically selects the

number of mixture component based on Factorized Information Criteria (FIC), which

can be applied to the mixture model unlike conventional information criteria such as

Bayes Information Criteria. FAB algorithm is different from conventional EM algorithm

in only two of the shrinkage step and the calculation formula of E-step. More specifically,

after the modified E-step, this algorithm shrinks the components whose mixture ratio is
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smaller than a given threshold ϵ. In this analysis, ϵ was set to 0.01, 0.005, or 0.001. The

initial parameters were estimated byK-means++ algorithm [58, 59]. I regarded the mean

value of each Gaussian distribution after the convergence as a postural motif, and finally

obtained 44, 95, and 459 postural motifs when ϵ is 0.01, 0.005, and 0.001, respectively.

After the parameter estimation by FAB algorithm, the responsibility calculation of the

remaining 99% of postural data was conducted using estimated parameter.

3.2.3 Calculation of posture occurrence probabilities and posture transition probabilities

Posture occurrence probabilities for each individual worm were calculated as follows.

When K-means algorithm and GMM algorithm were used as binning method, each pos-

ture occurrence frequency of each individual worm were counted as the assigned number

to each cluster and the summation of responsibilities of each cluster, respectively. Then,

the frequencies were normalized as the posture occurrence probabilities. In addition,

posture occurrence probabilities for each strain were defined as the average of posture

occurrence probabilities of all individuals belonging to the strain.

Posture transition probabilities from a template posture i to a template posture j for

each individual worm were defined as follows:

transition probability(i,j) =
1

N

∑
t

rt−1,irt,j

where rt,i and N represent responsibility of template posture i at frame t on the movie

and the number of frame, respectively. Finally, posture transition probabilities for each

strain were defined as the average of posture transition probabilities of all individuals

belonging to the strain.

3.2.4 Quantification of the difference of postural patterns and postural change patterns

between N2 and the other strain

To quantify the difference of postural patterns and postural change patterns between

N2 and the other strain, I calculated the Jensen-Shanon Divergence (JSD) of posture

occurrence probabilities and posture transition probabilities between N2 and the other

strain, and I termed these scores as JSDoc and JSDtr, respectively. In addition, I

calculated the difference between JSDoc and JSDtr for each strain, and termed this

score as JSD Difference (JSDD). Note that JSDoc of a strain is equal to smaller than

JSDtr of the strain (See Appendix).

3.2.5 Evaluation criteria of template posture detection algorithm

I assessed the performance of template posture detection algorithm on the basis of intra-

strain consistency performance, which evaluates that posture occurrence probabilities of
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Table 3.1 Ratios of strains whose posture occurrence probabilities were significantly

similar to each other by each binning method.

Binning method Parameter Intra-strain performance

K-means K = 44 207/322

K = 90 203/322

K = 95 213/322

K = 459 205/322

GMM ϵ = 0.01 238/322

ϵ = 0.005 242/322

ϵ = 0.001 229/322

individual worms belonging to the same strain are similar to each other. More specifically,

intra-strain consistency performance was evaluated as follows. Firstly, I regarded the set

of posture occurrence probabilities of all individual worms belonging to the evaluated

strain as a positive dataset. Next, I randomly sampled the individual worms belonging

to the different strains as many as the positive dataset, and regarded the set of posture

occurrence probabilities of sampled strains as a negative dataset. Then, I calculated a

positive score and a negative score for an individual worm i as follows:

positive score(i) =
1

|P | − 1

∑
j∈P,j ̸=i

d(xi, xj)

negative score(i) =
1

|N |
∑
j∈N

d(xi, xj)

where P , N , d, and x represent the positive dataset, the negative dataset, a dissim-

ilarity function and a posture occurrence probability, respectively. As the dissimilarity

function, I used JSD. In short, a positive score and a negative score represent an av-

eraged dissimilarity between the positive datum and the other positive data, and the

positive datum and negative data, respectively. After the positive and negative scores

of all individual worms in the evaluated strain were calculated, I computed P value

using the one-sided Wilcoxon-Mann-Whitney test against a set of positive scores and

a set of negative scores. This P value computation was conducted against all strains.

Benjamini-Hochberg FDR approach was used for multiple testing (q < 0.05) [76].

3.3 Results

3.3.1 Performance of template posture detection algorithm
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10	

GMM	 K-‐means	

Fig. 3.3 The Venn diagram that represents relationship between intra-strain consis-

tency result ofK-means algorithm (K = 95) and that of GMM algorithm (ϵ = 0.005).

Red and Green color shows K-means algorithm and GMM algorithm, respectievly.

To obtain a set of template postures, I binned postural space by clustering method. To

select more better clustering method, I evaluated intra-strain consistency performances

of two clustering methods that are K-means algorithm and GMM algorithm (Table

3.1). This table shows that GMM algorithm achieved better performance than K-means

algorithm. The parameter K and ϵ did not have a strong impact on intra-strain con-

sistency performances. Next, I investigated whether strains that show significance by

these two methods are different from each other. Fig. 3.3 shows Venn diagram that rep-

resents the relationship between intra-strain consistency results of K-means algorithm

and that of GMM algorithm. As a result, almost all strains that show significance by

K-means algorithm also show significance by GMM algorithm. These results suggested

that GMM algorithm is superior method to K-means algorithm as detecting template

posture. Therefore, I used GMM algorithm (ϵ = 0.005) in the following analysis.

3.3.2 Analysis of JSDoc, JSDtr, and JSDD for each non-N2 strain

Next, to investigate whether each non-N2 strain takes different postural patterns and

postural change patterns from N2 strain, I calculated JSDoc and JSDtr for all non-

N2 strains. Fig. 3.4 shows the relationship between two JSDs. As overall trends, the

relationship was approximately linear, and JSDtr was small when JSDoc was small.

In order to estimate whether the reason why mutants show large JSDtr is “the usage

of different postural set”, I calculated the JSDD for all non-N2 strains. The large JSDD

means that the strain shows abnormal postural transition patterns independent from the

difference of the usage of postural set. In this study, in order to focus on the strains that

show small JSDoc but large JSDD, I excluded strains that have larger JSDoc than 0.1
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Fig. 3.4 The relationships between JSDoc and JSDtr. The x-axis corresponds to

the JSDoc, whereas the y-axis is the JSDtr

Table 3.2 JSDoc, JSDtr, and JSDD of top 5 strains that have large JSDD.

strain JSDoc JSDtr JSDD

npr-1 0.0299 0.1404 0.1106

npr-3 0.0333 0.1249 0.0915

egl-30 0.0376 0.1192 0.0815

eat-16 0.0149 0.0831 0.0683

lon-2 0.0481 0.1150 0.0669

in the following analysis. Fig. 3.5 shows the distribution of JSDD. Although many strain

showed small JSDD, there were some strains that have large JSDD (Table 3.2).

Interestingly, both the strain with the largest JSDD (npr-1 mutant) and the strain

with the second largest JSDD (npr-3 mutant) mutated neuropeptide receptor (npr) gene,

but the other npr mutant strains did not show large JSDDs (Table 3.3). In addition,

JSD of posture occurrence probabilities and posture transition probabilities between npr-

1 and npr-3 mutants were 0.0003 and 0.0049, respectively. These differences were quite

small. These results suggested that npr-1 gene and npr-3 gene have a similar function

with each other, and a different function with the other npr genes in behavioral level.

I hypothesized that the behavioral similarity between npr-1 and npr-3 was caused by
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Fig. 3.5 The distribution of JSDD for each strain. The x-axis and the y-axis

represent the JSDD and the frequency, respectively.

the sequence similarity of these two sequences, and thus I conducted pairwise alignment

analysis using MAFFT version 7.271 with default option (Fig. 3.6A) [77]. This alignment

result suggested that the relationship between npr-1 gene and npr-3 gene is paralogous.

On the other hand, npr-1 gene and npr-2 gene alignment results show these two genes are

also paralogous genes altough these two gene mutants did not show behavioral similarity

(Fig. 3.6B). Therefore, I concluded that the sequence similarity between npr-1 and npr-3

cannot explain the behavioral similarity between npr-1 mutant and npr-3 mutant. There

have been many researches about behavior of npr-1 mutants, and several npr-1 functions

such as social behavior and feeding have been revealed [78, 79]. In addition, it has been

known that the locomotion of npr-1 mutants is more active than that of N2 strain[80, 81].

On the other hand, few researches focused npr-3 mutants [82].

Both egl-30 gene and eat-16 gene are components of G protein Gαq signaling path-

way, and EAT-16 negatively regulates EGL-30 directly [83, 84]. In addition, previous

researches reported mutants with loss of egl-30 function decreased the activity. The mu-

tant alleles of egl-30 and eat-16 mutant used in this research were ep271 and sa609, and

it is known that these alleles are activation and reduction of function alleles, respectively

[85, 84]. Therefore, egl-30 and eat-16 mutants in this research should show similar behav-

ioral phenotypes of active locomotion. Actually, JSD of posture occurrence probabilities

and posture transition probabilities between egl-30 and eat-16 mutants were both small

values (0.0201 and 0.0356).

LON-2 is a glypican family of heparan sulfate proteoglycans, and the mutant shows

longer body length than N2 [86]. Previous reseaches mentioned that this postures of

mutant could not be very captured by N2-derived eigenworms because of the abnormal
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Table 3.3 The list of JSDD of npr mutants.

strain JSDD

npr-1 0.1106

npr-3 0.0915

npr-20 0.0208

npr-9 0.0195

npr-10 0.0175

npr-12 0.0110

npr-11 0.0098

npr-5 0.0062

npr-8 0.0055

npr-7 0.0045

npr-4 0.0035

npr-2 0.0028

npr-13 0.0018

body length [39]. The cause of this large JSDD may be derived from not biological reason

but the less eigenworm fit, and thus I did not analyzed lon-2 strain in the following

analysis.
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Fig. 3.6 The pairwise alignment results between (A) npr-1 and npr-3, and (B)

npr-1 and npr-2
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Fig. 3.7 The distribution of postural change speed (A) for N2, npr-1, npr-3, egl-30,

and eat-16. (B) for simulated N2. The x-axes and the y-axes represent postural

change speed and relative frequency, respectively.

3.3.3 Postural change speed analysis of N2 and mutant strains

In this section, I analyzed the reason why npr-1, npr-3, egl-30, and eat-16 mutants

showed large JSDDs. I classified the possible reasons into three behavioral patterns: the

frequency change of the quiescence state, the change of behavioral speed, and taking the

novel postural change patterns. I explain these behavioral phenotypes in detail below.

As an example, we think that N2 takes only five postures “A”, “B”, “C” , “D”, and

“E”, and a postural change pattern “ABCDEABC...”. Here, the occurrence probability

of each posture is all 0.2. In addition, the posture transition probabilities of A → B, B

→ C, C → D, D → E, E → A are all 0.2, and those of the other transition patterns

are all 0.0. In first case, if the frequencies of quiescence behavior increase, the postural

change pattern is changed as follows. “ABBCCDEEAABCDDE...”. In this case, the

posture occurrence probabilities are same as N2 strain but change the posture transition

probabilities. In second case, if the behavioral speed is twice faster than N2, the transition

pattern is changed as follows. “A(B)C(D)E(A)B(C)D(E)...”. In this case, the postural

change pattern is not changed actually, but the postures are observed alternately and the

posture change patterns is recognized as “ACEBDACE..”. Third case is a most simple

case that worm takes a novel postural change patterns. For example, if worm shows

postural change pattern “ADBCEADBCE...”, the posture transition probabilities are

completely different from N2. I investigated which behavioral phenotypes could explain

large JSDD of npr-1, npr-3, egl-30, and eat-16.

Firstly, in order to investigate whether the cause of JSDD were “the frequency change

of quiescence behavior” and ”the change of behavioral speed” for these mutant strains, I

calculated postural change speed for N2 and mutant strains. The postural change speed

is defined as the Euclidean distance of four eigenvalues between continuous time points.
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Fig. 3.8 The ratio of change of each principal component to total postural change

speed . The x-axis represents the postural change speed.

Table 3.4 JSDoc sim, JSDtr sim, and JSDDsim between simulated N2 and mutant strains.

strain JSDoc sim JSDtr sim JSDDsim

npr-1 0.0135 0.0314 0.0179

npr-3 0.0158 0.0398 0.0240

egl-30 0.0235 0.0494 0.0259

eat-16 0.0150 0.0339 0.0189

Fig. 3.7A shows the distribution of postural change speed for N2, npr-1, npr-3, egl-30,

and eat-16. The distribution for N2 was unimodal, and the quiescence state and behavior

state could not be explicitly classified. In addition, the mode of distribution was slightly

greater than 0.0, and the duration of complete quiescence was short (Fig. 3.7B). To reveal

the cause of this subtle postural change, I investigated which principal components mainly

changed when worm posture changes. As a result, the ratio of PC4, which means the

movement of worm head and tail, was large when worms change their postures slowly

(Fig. 3.8) [71]. For the other mutant strains, each strain accelerated their postural change

speed. In addition, npr-1 and npr-3 mutants did not show low speed state, and egl-30

and eat-16 took low speed state but the ratios were considerably smaller than that for

N2. Therefore, each strain shows both “the frequency change of quiescence behavior”

and “the change of behavioral speed” patterns, and these behaviors should influence large

JSDD.

Finally, I analyzed whether “taking the novel postural change patterns” was occurred

at these mutant strains. In order to exclude the effect of “the frequency change of
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quiescence behavior” and “the change of behavioral speed”, I generated simulated N2

dataset, and compared the simulated N2 dataset with the mutant strain. Namely, the

postural changes speed and the frequency of low speed state of simulated N2 dataset is

almost same as mutant strain, but the postural change pattern of simulated N2 does not

change from original N2. The simulated N2 dataset was generated as follows. Firstly,

I excluded the frame that the postural change speed between previous frame and the

frame is smaller than 0.9. Next, to double the postural change speed, I alternately

discarded the frame of remained N2 dataset. Fig. 3.7B shows the distribution of postural

change speed for simulated N2 dataset. The distribution was similar to those of the

mutant strains. Then, I calculated the posture occurrence probabilities and posture

transition probabilities for simulated N2 dataset. I calculated JSD of posture occurrence

probabilities and posture transition probabilities between simulated N2 and the other

strain, respectively. I termed these scores as JSDoc sim, JSDtr sim. In addition, the

difference between JSDoc sim and JSDtr sim is termed as JSDDsim. Table 3.4 shows

these scores for each mutant strain. Surprisingly, for each mutant strain, JSDD sim was

not a very large value. This result suggested that the contribution of “taking the novel

postural change patterns” to large JSDD was limited.

3.4 Discussion

In this study, I firstly obtained template posture set by Gaussian mixture model,

and transformed worm postural change patterns into probabilistic sequences of template

postures. Next, by comparing with posture occurrence probabilities of N2 and those

of the other strains, I investigated whether the reason why mutants show abnormal

postural change patterns is “the usage of different postural set” or not. Then, I revealed

several strains (npr-1, npr-3, egl-30, eat-16) that shows the similar posture occurrence

probabilities to N2 as but different posture transition probabilities from N2. Finally,

by comparing postural change speeds of these mutants with that of N2, I revealed that

these strains show both “the frequency change of quiescence behavior” and ”the change

of behavioral speed”, but do not very take “the novel postural change patterns”.

I revealed intra-strain consistency performance of K-means algorithm is lower than

that of GMM algorithm. The reason may be that GMM probabilistically assigns each

postural data to each cluster while the assignment of K-means algorithm is determinis-

tic. As postural dataset consists of postural change trajectory of each worm and these

trajectories are continuous in four-dimensional postural space, postural dataset do not

perfectly divided in multiple clusters and there should be many postural data in the

middle point of several clusters. In order to appropriately handle these data whose be-
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Fig. 3.9 The distribution of postural change speed for N2 and (A) unc-43, (B)

C52B9.11, and (C) unc-43.The x-axes and the y-axes represent postural change

speed and relative frequency, respectively.

longing is ambiguous, probabilistic assignment should be more suitable than deterministic

assignment.

Based on movement trajectory analysis, Gallagher et al. discovered that worms take

three basic behavior corresponding to roaming, dwelling, and quiescence but there are

many intermediate states in worm behavior [87]. In this research, I revealed that the

distribution of postural change speed is unimodal, and quiescence state and behavior

state cannot be explicitly divided in N2 strain. This result partially supports Gallagher’s

discussion. On the other hand, I discovered that worm takes subtle movement behavior

than complete quiescence behavior, and N2 moves their heads and tails in this state. Head

and tail movements do not largely change the location of worm centroid, and thus this

movements should be regarded as quiescence behavior in Gallagher’s research. However,

this movement is important behavior when worm conducts navigation behavior [88], and

thus this subtle movement should be discriminated from complete quiescence behavior

[89, 90].

All npr-1, npr-3, egl-30, and eat-16 mutants have caused two strange behavioral pat-

terns that are “the frequency change of quiescence behavior” and “the change of be-

havioral speed”. To investigate whether these two behavioral changes can be caused

independently, I checked the distribution of postural change speed for the other mutants,

and discovered some characteristic mutants. For example, unc-43 and C52B9.11 showed

low-speed state like N2 but the behavioral speed was faster than N2 (Fig. 3.9A and

B). In contrast, for unc-9, the behavioral speed is similar to N2 strain but decreases

the duration of low-speed state (Fig. 3.9C). These examples suggest that “the frequency

change of quiescence behavior” and “the change of behavioral speed” are independent

phenomena.
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Recent advances in sequencing technologies have discovered many new genes from ge-

nomic data, but these gene functions are unknown in most cases. Therefore, the function

prediction of these genes is one of the most important research topic in bioinformat-

ics. Large scale phenotypic analysis was the one of the solution, and many functions

of unknown function genes were revealed by this method [91, 92]. As example of worm

genes, Yu et al. revealed novel gene components in G-protein Gαq signaling pathway by

analyzing behavior of 4,400 animals of 239 strains [93]. In this research, I revealed npr-1

gene and npr-3 gene have a similar function with each other and a different function

with the other npr genes at behavioral level. Interestingly, while there has been many

researches about behavior of npr-1 mutants and several npr-1-related neural mechanisms

have been revealed, few researches focused npr-3 mutants and thus npr-3-related neural

mechanisms were almost unknown [78, 79]. My analysis may suggest that the some of

the known npr-1-related neural mechanisms are also related to npr-3 gene. This case

also demonstrates that large-scale phenotypic analysis may be useful to infer experimen-

tally unverified neural mechanisms. The functions of many C. elegans genes were still

unknown, and C. elegans behavioral database includes many behavioral data of these

gene mutants [70]. To reveal functions of genes with unknown function, the development

of analytic method of phenotypic information is an essential task.

3.5 Appendix

In this section, I prove that JSD of posture occurrence probabilities between two

strains is equal to smaller than JSD of posture transition probabilities between same two

strains. I may prove that Kullback-Leibler divergence of posture occurrence probabilities

between two strains is equal to smaller than that of posture transition probabilities

between same two strains.

I defined posture occurrence probabilities of strain a and b, and posture transition

probabilities of strain a and b as poc, qoc, ptr, and qtr, respectively. poc(i) and qoc(i)

represents probability that strain a and b takes a posture i, respectively. In addition,

ptr(i, j) and qtr(i, j) represents probability that strain a and b change postures from

posture i and posture j, respectively. Here,
∑

i poc(i) = 1,
∑

i qoc(i) = 1,
∑

j ptr(i, j) =

p(i),
∑

j qtr(i, j) = q(i) is satisfied.

The proof is as follows:

∑
i

∑
j

ptr(i, j) log
qtr(i, j)

ptr(i, j)
−
∑
i

poc(i) log
qoc(i)

poc(i)
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=
∑
i

∑
j

ptr(i, j) log
qtr(i, j)

ptr(i, j)

qoc(i)

qoc(i)

≤ log
∑
i

∑
j

qtr(i, j)
qoc(i)

qoc(i)

= log
∑
i

p(i)

= 0
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Chapter 4

CapR: revealing structural specifici-
ties of RNA-binding protein target
recognition using CLIP-seq data

4.1 Introduction

In this section, I discuss analysis of genetic basis for animal behavior based on large-

scale sequence data. Specifically, I focus on RNA-binding proteins (RBPs) target recog-

nition because RBPs deeply relate to neurodegenerative disorders causing abnormal

behavior[94, 95]. RBPs play integral roles in various post-transcriptional regulatory

processes, including the splicing, processing, localization, degradation and translation of

RNA molecules [96]. RBPs typically contain a limited set of RNA-binding domains, such

as the RNA recognition motif and K homology domain, and they must bind to specific

RNA molecules to function. RBP–RNA interactions and their specificities are important

for understanding the complex gene regulatory networks and the mechanisms of diseases.

Recent advances in ‘ribonomic’ technologies, such as cross-linking immuno-

precipitation high-throughput sequencing (CLIP-seq, also referred to as HITS-CLIP)

[97], individual-nucleotide resolution CLIP (iCLIP) [98], and photoactivatable-

ribonucleoside-enhanced CLIP (PAR-CLIP) [99], have enabled the study of RBP–RNA

interactions, both on a genomic scale and at high resolution.The use of microarrays in

the classical RNA-binding protein immunoprecipitation microarray (RIP-chip) method

[100] prevented the precise identification of binding sites.In contrast, CLIP-seq methods

bond an RBP and RNAs covalently by ultraviolet cross-linking, collect them by im-

munoprecipitation and directly sequence the RBP-bound sites of the RNAs. Using these

technologies, researchers can identify sequential RNA motifs that are over-represented

around the binding sites of each RBP using bioinformatics methods similar to those used

for analyzing transcription-factor binding DNA motifs [101]. Such sequential motifs are

often very short (up to ten bases), and there are many unbound sites that have the

same motif. Thus, sequential motifs alone cannot explain the specificity of RBP–RNA

interactions.
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Fig. 4.1 Visual representation of the six structural contexts. The six structural

contexts are represented by six colors: stems (red), exterior loops (light green),

hairpin loops (purple), bulge loops (pink), internal loops (blue) and multibranch

loops (green). The unstructured context is the union of the exterior and multibranch

loops. These colors are used throughout the paper.

RBPs bind to their target RNA molecules by recognizing specific RNA sequences and

their structures. Several studies have addressed this issue by calculating the accessibility

of RNA regions around the RBP-binding sites [102]. Here, the accessibility of an RNA

region is defined by the probability that the region exhibits a single-stranded confor-

mation. Theoretically, the accessibility can be efficiently and exactly calculated using

an energy model of RNA secondary structures [103, 104]. Double-helical RNAs usually

form the A-form helical structure, whose major grooves are too narrow to be accessed

by RBPs [105], and Li et al. showed that the accessibilities tend to be high around the

RBP-bound motif sites by analyzing RIP-chip data [102]. However, it is not sufficient

to consider accessibility alone in analyzing the structure-specific target recognition by

RBPs. For example, Vts1p, which is a yeast RBP regulating mRNA stability, binds to

its target CNGG sequential motif when it is located within hairpin loops but not when

it is located in single-stranded regions or other structures [106, 107]. The human FET

family of proteins, whose mutations are associated with amyotrophic lateral sclerosis,

bind to its target sequential UANnY motif within hairpin loops [108]. Computational

methods for calculating the secondary structural contexts of RNA molecules, such as

bulge loops, hairpin loops and stems, are required to uncover the characteristics of the

RNA structures that are recognized by the RBPs in vivo.

In the present study, I developed an efficient algorithm that calculates the probabilities

that each RNA base position is located within each secondary structural context. Six
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contexts of RNA secondary structures were taken into account, according to the well-

established Turner energy model of RNAs [109]. These structures included stems (S),

hairpin loops (H), bulge loops (B), internal loops (I), multibranch loops (M) and exterior

loops (E) (see Fig. 4.1). I defined a structural profile of an RNA base as a set of six

probabilities that the base belongs to each context. At present, Sfold [110] is the only

software that can calculate a structural profile. Sfold cannot be readily applied to tens

of thousands RNA fragments because it uses a statistical sampling method that requires

huge sample sizes and computational costs, particularly when analyzing long RNAs or

mRNAs. I implemented my efficient algorithm as software named ‘CapR’, which can

compute the structural profiles for tens of thousands of long RNAs within a reasonable

time by enumerating all the possible secondary structures of the RNAs.

4.2 Results

4.2.1 Methods overview

I have developed a new algorithm that calculates the structural profiles of any RNA

sequence based on the Turner energy model with time complexity O(NW 2) [109]. Here,

N is the input sequence length and W is the maximal span, which is a given parameter

of the maximal length between the bases that form base pairs. The parameter W was

introduced because considering very long interactions does not improve the accuracy of

the secondary structure predictions but does increase the computational costs [111].

Let x be an RNA sequence of length N and σ be a possible secondary structure on x

without pseudoknots. I refer to a base in x as stem if it forms a base pair with another

base, and represent it using the character S. Single-stranded bases are categorized into

five structural contexts, namely, bulge loop (represented by B), exterior loop (E), hairpin

loop (H), internal loop (I) and multibranch loop (M), which are defined as follows. In

a secondary structure representation, RNA bases are vertices of polygons whose edges

are the RNA backbone or hydrogen bonds, which are shown as solid or dotted lines,

respectively, in Fig. 4.1. The exterior loop context is given to single-stranded bases if

they do not form polygons. The hairpin loop context is given to single-stranded bases

if they form a polygon that has a single hydrogen bond. The bulge and internal loop

contexts are given to single-stranded bases if they form a polygon that has two hydrogen

bonds, which are connected by a single backbone edge for bulge loops and which are

not connected by a single backbone edge for internal loops. Finally, the multibranch

loop context is given to single-stranded bases if they form a polygon that has more

than two hydrogen bonds. Note that for a given secondary structure σ, any base of x

is unambiguously classified as one of the six structural contexts. Additionally, I define
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unstructured (U) to represent collectively the exterior and multibranch loop contexts.

I assume that the probability distribution of the secondary structures follows the

Boltzmann distribution with respect to the Turner energy model [109]. The probability

p(i, δ) that a base at position i has the structural context δ ∈ {B,E,H, I,M, S} is given

by

p(i, δ) =
1

Z(x)

∑
σ∈Ω(i,δ)

exp (−∆G(σ, x)/RT )

Z(x) =
∑
σ∈Ω0

exp (−∆G(σ, x)/RT )

where ∆G(σ, x) is the difference of the Gibbs energies of the given structure σ and the

structure σ0 that contains no base pairs, R is the gas constant and T is the temperature

(I used T = 310.15 K in this study). Ω0 is the set of all the possible secondary structures

of x, and Ω(i, δ) is the set of all the possible secondary structures in which the base at

position i is in the structural context δ. Then, the structural profile of i is defined as the

probabilities of the structural contexts {p(i, δ)|δ ∈ {B,E,H, I,M, S}}. Note that the

structural profile satisfies the probability condition
∑

δ p(i, δ) = 1.

My algorithm efficiently calculates structural profiles by referring to the Rfold model,

which is a variant of the stochastic context-free grammar (SCFG) that calculates all

the RNA secondary structures without redundancy [112]. In formal language theory,

the RNA secondary structures without pseudoknots are modeled by SCFG [113]. While

the state transition rules of the Rfold model contain seven non-terminal symbols, my

algorithm associated them with the six structural contexts. The details of the algorithm,

which is a variant of the inside-outside algorithm of SCFG, are given in the Materials

and methods section.

4.2.2 Influence of the maximal span and the GC content on the structural profile calculations

Before I investigated the structure-specific target recognition by RBPs, I evaluated the

performance of CapR. Because I introduced the maximal span W , I needed to investigate

an appropriate range for this parameter. Because GC content is known to affect the RNA

secondary structures, its effect was also analyzed.

To investigate the dependence on the maximal span W , I applied CapR to 1,000 ran-

dom RNA sequences of 2,000 nucleotides with a fixed GC content (GC = 0.5). Fig. 4.2A

shows how the proportions of the calculated structural profiles depend on W . As ex-

pected, if W is small, the predictions are dominated by exterior loops because few bases

form base pairs under this condition. Whereas the probabilities for bulge loops, hair-

pin loops, internal loops and stems are relatively stable for W ≥ 100, the exterior loop

probabilities monotonically decrease and the multibranch loop probabilities monotoni-
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A	 B	

Fig. 4.2 (A) Dependence of the structural profiles on the maximal span W . The x-

axis represents the maximal span W . The y-axis represents the averaged p(i, δ) over

all the nucleotides. (B) Dependence of the structural profiles on the GC content.

The x-axis represents the GC content. The y-axis represents the averaged pδ(i) over

all the nucleotides. The unstructured context is represented by light blue. B, bulge

loop; E, exterior loop; H, hairpin loop; I, internal loop; M, multibranch loop; S,

stem; U, unstructured.

Fig. 4.3 Dependence of the exterior loop, multibranch loop, and unstructured con-

text on the maximal span W . The x-axis represents the maximal span W . The

y-axis represents the averaged p(i, δ) over all the nucleotides.

cally increase with increasing W . This is because at large W new base pairs form in

exterior loops and exterior loops turn into multibranch loops. On the other hand, the

probabilities of the unstructured context, which collectively represents the exterior and

multibranch loop contexts, are insensitive to W (Figure 4.3). Therefore, the unstruc-

tured context can be adopted instead of the external and multibranch loop contexts to

avoid the influence of the parameter W , if a discrimination of the two contexts is not

critical.
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Table 4.1 The AUC score of each structural context.

Software Bulge Exterior Hairpin Internal Multibranch Stem

CapR 0.847 0.866 0.890 0.765 0.852 0.805

Sfold 0.842 0.817 0.890 0.769 0.853 0.804

Although Kiryu et al. revealed the dependence of the accessibilities on the GC content

[104], the dependence of structural profiles on the GC content has not been investigated. I

investigated the dependence on the GC content by applying CapR to 1,000 random RNA

sequences of 2,000 nucleotides with a fixed maximal span (W = 100). Fig. 4.2B shows

how the proportions of the computed structural profiles depend on the GC content. The

stem probability is high and the unstructured probability is low with a high GC content,

probably because the energy of the G-C pairs is larger than that of the A-U pairs and

palindromic sequences are more likely to occur in the high-GC background. This result

suggests that users should carefully interpret the results when analyzing RNAs with

biased GC content.

4.2.3 Performance of CapR

I evaluated the speed of CapR by comparing its computational run-time with that of

Sfold. The input sequences were generated randomly with equal probabilities of A, C, G

and U. For Sfold, the number of sampled structures was set to its default value (1,000).

The computation was performed on an AMD Opteron 6276 2.3 GHz with 1 GB memory.

Fig. 4.4A shows the computational run-times, which depended on the maximal span W

and sequence lengths. In all cases, CapR was much faster than Sfold. Sfold could not

run for N ≥ 4000 while CapR did for N = 10000. These results show that CapR can

compute structural profiles for long RNAs within a reasonable time.

Next, I evaluated the accuracy of the structural profiles computed by CapR using

8,775 RNA genes that have experimentally validated secondary structure annotations in

the Rfam database [114]. I set W = 800 to allow for stem-forming of the base pairs

with the longest distance observed in the Rfam dataset. To estimate the accuracy of the

structural profiles, I calculated the area under the receiver operating characteristic curve

(AUROC) for each structural context. Briefly, the AUROC is high if the probability

p(i, δ) for the structural context δ annotated in Rfam is high.

Table 4.1 and Fig. 4.4B show the AUROC values and the receiver operating charac-

teristic curves, respectively. The AUROC value for each structural context was larger

than 0.75, indicating that the computed structural profiles were very consistent with the

Rfam annotation. For example, the structural profile of transfer RNAs (tRNAs), whose

secondary structures are well characterized, is shown in Fig. 4.4C. Each line represents
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A B

C D

Figure 3 Performance of CapR. (A) Computational run-times for different values of maximal spanW and sequence length N. The x-axis represents
the sequence length N. The y-axis represents the computational run-time. (B) The receiver operating characteristic curve for each loop context. The
x-axis represents 1-specificity and the y-axis represents the sensitivity. The specificity and sensitivity are defined as true positive/(true positive + false
negative) and true negative/(true negative + false positive), respectively. (C) The structural profiles of tRNAs. The x-axis represents the nucleotide
positions from 5′ to 3′. The y-axis represents averaged probabilities that each base belongs to each structural context across all tRNA genes in the
Rfam dataset [22]. The black boxes represent the nucleotides annotated as stem in Rfam. (D) tRNA cloverleaf structure annotated in Rfam. B, bulge
loop; E, exterior loop; H, hairpin loop; I, internal loop; M, multibranch loop; S, stem.

into − log10 P, which we designated the P score. Third, if a
P score was calculated under the hypothesis that each con-
text probability of the positive dataset was smaller than
that of the negative dataset, we changed the sign of the P
score. For example, a large positive P score indicates that
the probability of that structural context is significantly
larger in the positive dataset. Finally, the two P scores cal-
culated for the two negative datasets were compared for
each position, and the smaller P score was taken (if one
P score was positive and the other was negative, we used
0 instead of the two P scores). Note that the Bonferroni

Table 1 AUC score of each structural context

Software Bulge Exterior Hairpin Internal Multibranch Stem

CapR 0.847 0.866 0.890 0.765 0.852 0.805

Sfold 0.842 0.817 0.890 0.769 0.853 0.804

correction was used for multiple testing. To avoid the
effects of the artificial value selection for the parameterW,
we used the unstructured context instead of the exterior
and multibranch loop contexts in the following analysis.
We confirmed that the choice ofW actually did not affect
the results (Additional file 1: Figure S2).

Specific RNA structural contexts recognized by
RNA-binding proteins
We investigated the preferred RNA structural contexts
for each RBP and revealed that most RBPs prefer a spe-
cific structural context (Figure 4 and Additional file 1:
Figure S3). Our method was robust regarding the selec-
tion of the negative datasets, because selecting the larger
P scores did not affect the results overall (Additional file 1:
Figures S4 and S5). Among the 14 cases analyzed, six cases
showed a preference for the unstructured context (GLD-1,

Fig. 4.4 (A) Computational run-times for different values of maximal span W and

sequence length N . The x-axis represents the sequence length N . The y-axis repre-

sents the computational run-time. (B) The receiver operating characteristic curve

for each loop context. The x-axis represents 1-specificity and the y-axis represents

the sensitivity. The specificity and sensitivity are defined as TP/(TP + FN) and

TN/(TN + FP), respectively. (C) The structural profiles of tRNAs. The x-axis

represents the nucleotide positions from 5′ to 3′. The y-axis represents averaged

probabilities that each base belongs to each structural context across all tRNA genes

in the Rfam dataset [114]. The black boxes represent the nucleotides annotated as

stem in Rfam. (D) tRNA cloverleaf structure annotated in Rfam. B, bulge loop; E,

exterior loop; H, hairpin loop; I, internal loop; M, multibranch loop; S, stem.

averaged probabilities that each base belongs to each structural context across all tRNA

genes in the Rfam dataset. Probabilities of the stem, hairpin loop, multibranch loop

and exterior loop contexts were high at the corresponding parts of the tRNA cloverleaf

structure (Fig. 4.4D). Calculated structural profiles are interpreted by considering that

stem probabilities tend to be overestimated by the Turner energy model. In the tRNA

example, the calculated stem probabilities were slightly higher than the multibranch

loop probabilities at positions 25, 43 and 44, which are annotated as multibranch loops

in Rfam.

Finally, the same analysis was conducted using Sfold, and the accuracies of the struc-

tural profiles predicted by CapR and Sfold were compared. The accuracies of CapR were
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comparable to those of Sfold (Table 4.1).

4.2.4 Datasets and methods used in the CLIP-seq data analysis

Because it was shown that CapR is accurate in calculating structural profiles of RNA

molecules, I applied it to several CLIP-seq datasets to reveal the structural specificities

of RBP–RNA interactions. For the subsequent analyses, I downloaded CLIP-seq data

of RBP-bound RNAs from the doRina database [115], and selected ten RBPs: GLD-

1 (nematode), QKI (human), Pum2 (human), SRSF1 (human), Nova (mouse), Lin28A

(mouse), FXR1 (human), FXR2 (human), FMR1 7 (human) and FMR1 1 (human) [116,

99, 117, 118, 119, 120] (refer to Materials and methods for the criteria for the data

selection). FMR1 7 and FMR1 1 are two splicing isoforms of FMR1. RBPs with two

known sequential motifs (FXR1, FXR2, FMR1 7 and FMR1 1) were analyzed separately

for each of the motifs. Hereafter, these cases are represented by the protein names with

their sequential motifs: FXR1(ACUK), FXR1(WGGA), FXR2(ACUK), FXR2(WGGA),

FMR1 7(ACUK), FMR1 7(WGGA), FMR1 1(ACUK) and FMR1 1(WGGA).

I created one positive dataset and two negative datasets for each of these 14 cases. The

positive dataset was a collection of transcribed sequences of ±2000 nucleotides around

each RBP-bound site. The RBP-bound sites were defined as sites of sequential motifs

within the CLIP-seq peak regions. The two negative datasets are referred to as the

unbound and shuffled datasets. The unbound dataset was a collection of transcribed

sequences of ±2000 nucleotides around a sequential motif site that was in the same

transcriptional unit and within ±1000 nucleotides of any RBP-bound site, but was not

an RBP-bound site. In short, this dataset represents the sequential motif sites that are

transcribed but unbound by the RBP. The shuffled dataset was generated by randomly

shuffling each of the upstream and downstream sequences of each RBP-bound site by

preserving nucleotide di-nucleotide frequencies for every sequence in the positive dataset.

Thus it represents the sequential motif sites flanked by sequences with preserved sequence

compositions. The details of the datasets are described in the Materials and methods

section.

I calculated the structural profiles of the positive, unbound and shuffled datasets

for each of the RBPs (W = 200). Then, to evaluate the structural contexts that are

significant in the positive dataset statistically, I defined a P score as follows. First, I

calculated a P value using the one-sided Wilcoxon–Mann–Whitney test for each side

for each position. Second, I selected the smaller P value of the two hypotheses and

transformed it into − log10 P , which I designated the P score. Third, if a P score was

calculated under the hypothesis that each context probability of the positive dataset

was smaller than that of the negative dataset, I changed the sign of the P score. For
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example, a large positive P score indicates that the probability of that structural context

is significantly larger in the positive dataset. Finally, the two P scores calculated for

the two negative datasets were compared for each position, and the smaller P score was

taken (if one P score was positive and the other was negative, I used 0 instead of the two

P scores). Note that the Bonferroni correction was used for multiple testing. To avoid

the effects of the artificial value selection for the parameter W , I used the unstructured

context instead of the exterior and multibranch loop contexts in the following analysis.

QKI	  GLD-‐1	

PUM2	 SRSF1	

A	 B	

D	C	

Lin28A	  Nova	E	 F	

FXR1(ACUK)	 FXR1(WGGA)	G	 H	
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FXR2(WGGA)	  FXR2(ACUK)	

FMR1_7(ACUK)	 FMR1_7(WGGA)	

I	 J	

K	 L	

FMR1_1(WGGA)	FMR1_1(ACUK)	M	 N	

Fig. 4.5 The distribution of the P-scores for each RBP. The x-axis represents nu-

cleotide positions, and the y-axis represents P-score of ±20 bases around the se-

quential motif site. The black box represents the sequential motif site. The dotted

lines are the corrected significance level of Bonferroni correction (α = 0.05).
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4.2.5 Specific RNA structural contexts recognized by RNA-binding proteins

I investigated the preferred RNA structural contexts for each RBP and revealed that most

RBPs prefer a specific structural context (Figure 4.5). My method was robust regarding

the selection of the negative datasets, because selecting the larger P scores did not affect

the results overall. Among the 14 cases analyzed, six cases showed a preference for the

unstructured context (GLD-1, QKI, SRSF1, Nova, FXR1(ACUK) and FXR2(ACUK)).

Except for Nova, the RBP-bound sites tended to form the unstructured context, but did

not show preferences for the bulge, internal or hairpin loop contexts (Fig. 4.5A, B, D,

E, G, I). It should be noted that these results could not be obtained by analyzing the

accessibility alone, which does not discriminate between these non-stem contexts.

Pum2 showed a preference for the hairpin loop context (Fig. 4.5C). To my knowledge,

this is the first report of the structural preference for the hairpin loop context by Pum2,

which is known to be involved in germ cell development [121]. Lin28A showed preferences

for the hairpin and internal loop contexts (Fig. 4.5F). Lin28A is known to inhibit the

maturation of let-7 miRNAs and the translation of mRNAs that are destined for the

endoplasmic reticulum [119]. The specificity of Lin28A to the hairpin loop context is

consistent with the previous study [119]. In addition, my result is the first to suggest

that Lin28A prefers the internal loop context in mRNA binding, and Lin28A has been

reported to bind to the internal loop of let-7 miRNAs [119].

FXR1(WGGA), FXR2(WGGA) and FMR1 7(WGGA) showed preferences for the

stem context (Fig. 4.5H, J, L), although RBPs were considered to be unlikely to be

bound to the stem regions of RNAs as already mentioned. These three RBPs (and

FMR1 1) are members of the FMRP family and are known to be responsible for the

fragile X syndrome. Darnell et al. showed that FMRP-bound WGGA sites tend to form

a G-quadruplex, which is composed of guanine-rich sequences forming a four-stranded

RNA structure [122]. I suppose that the preference for the stem contexts could reflect the

tendency that these family members recognize the G-quadruplex; however, this should

be investigated further as currently my energy model and grammar cannot deal with

G-quadruplexes.

FMR1 7(ACUK) showed preferences for the internal and bulge loop contexts

(Fig. 4.5K). To my knowledge, this is the first report of the structural specificities of

FMR1. In contrast, FXR2(ACUK), where FXR2 is a homolog of FMR1, preferred

neither the internal nor bulge loop context (Fig. 4.5I). FMR1 7 has an exon insertion in

its K homology domain that recognizes the ACUK sequential motifs [120]. This insertion

appears to underlie the differences in the structural specificity between FMR1 7(ACUK)

and FXR2(ACUK).
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A B

Figure 5 The nucleotide compositions around the RBP-bound sites. The nucleotide compositions of ±20 bases around the RBP-bound sites for
(A) QKI and (B) Nova. The x-axis represents the nucleotide position and the y-axis is the probability of each nucleotide. The black box represents the
sequential motif site.

preferences in their structural recognition. These findings
could provide insights into the mechanisms of diseases
involving RBPs. FMR1_7, where FMR1 is a causative gene
of the fragile X syndrome, was revealed to bind specifically
to internal and bulge loops. The observed structural speci-
ficity raises the possibility that disruption of the internal
or bulge loop structures within the target sites of FMR1_7
may cause this disease. On the other hand, the structural
specificities of Nova were revealed to be affected by the
sequences of distant regions. This means that a muta-
tion of a nucleotide distant from the RBP-bound sites
can cause changes to the secondary structures around
the RBP-bound sites. Because some disease-associated
single nucleotide polymorphisms in non-coding regions

are reported to affect RNA secondary structures [31,32],
CapR could also contribute to exploring disease mecha-
nisms behind such polymorphisms.
It has been shown that the secondary structures around

the target sites of small interfering RNAs (siRNAs) and
miRNAs influence their activities [33,34]. Kiryu et al.
showed that the activity of an siRNA depends on the
accessibility of the 3′ end of the siRNA target site, and
Marin et al. showed that the 3′ end of anmiRNA target site
is more accessible than the other positions [12,35]. As sup-
ported by the X-ray crystal structure of the guide-strand-
containing Argonaute [36], these positional tendencies
in the accessibility can reflect the kinetic aspects of the
siRNA and miRNA binding mechanisms. We hypothesize

A B

Figure 6 Comparison of P scores of the positive datasets with P scores of the shuffled and partially shuffled datasets. In the legend of this
figure, ‘0’, ‘5’ and ‘10’ represents the shuffled, the partially shuffled (±5) and the partially shuffled (±10) datasets, respectively. The x-axis represents
the nucleotide position and the y-axis is the P score of (A) QKI and (B) Nova. The black boxes are the RBP-bound sites, and the horizontal dotted
lines the corrected significance levels of the Bonferroni correction. The vertical dotted lines indicate the±5 or 10 nucleotides of RBP-bound sites.
RBP, RNA-binding protein.

Fig. 4.6 The nucleotide compositions of ±20 bases around the RBP-bound sites

for (A) QKI and (B) Nova. The x-axis represents the nucleotide position and the

y-axis is the proportion of each nucleotide. The black box represents the sequential

motif site.

4.2.6 Positional preferences in the RNA structure recognition by RNA-binding proteins

The present understanding of the structural specificities of RBP–RNA interactions over-

looks structures of the flanking sequences of RBP-bound sites. Therefore, I investigated

the secondary structures not only of the RBP-bound sites but also of their flanking se-

quences. In fact, the positions with the highest P scores were not within the RBP-bound

sites in some RBPs. QKI (Fig. 4.5B), SRSF1 (Fig. 4.5D) and Nova (Fig. 4.5E) preferred

the unstructured context. High P scores were observed within the RBP-bound sites for

SF2ASF, whereas they were observed in the flanking and upstream sequences for QKI

and Nova, respectively. These results suggest that RBPs also recognize specific struc-

tures existing outside of sequential motif sites, and CapR can uncover these positional

preferences from ribonomic datasets.

Fig. 4.6A,B shows the nucleotide compositions around the RBP-bound sites of QKI

and Nova. The flanking sequences of QKI-bound sites were guanine poor, whereas those

of Nova-bound sites were uracil rich. Because sequences with low GC content tend to

form an unstructured context, the aforementioned positional preferences could be gener-

ated by the biased nucleotide compositions. To address this possibility, I investigated the

relations between the nucleotide compositions and structural specificities in the flanking

sequences. I generated partially shuffled datasets by randomly shuffling sequences out-

side of the ±5 or 10 nucleotides of the RBP-bound sites with preserving di-nucleotide

frequencies, and compared their structural profiles with those of the positive datasets us-

ing the Wilcoxon–Mann–Whitney test. Then, the P scores for the shuffled and partially
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A B

Figure 5 The nucleotide compositions around the RBP-bound sites. The nucleotide compositions of ±20 bases around the RBP-bound sites for
(A) QKI and (B) Nova. The x-axis represents the nucleotide position and the y-axis is the probability of each nucleotide. The black box represents the
sequential motif site.

preferences in their structural recognition. These findings
could provide insights into the mechanisms of diseases
involving RBPs. FMR1_7, where FMR1 is a causative gene
of the fragile X syndrome, was revealed to bind specifically
to internal and bulge loops. The observed structural speci-
ficity raises the possibility that disruption of the internal
or bulge loop structures within the target sites of FMR1_7
may cause this disease. On the other hand, the structural
specificities of Nova were revealed to be affected by the
sequences of distant regions. This means that a muta-
tion of a nucleotide distant from the RBP-bound sites
can cause changes to the secondary structures around
the RBP-bound sites. Because some disease-associated
single nucleotide polymorphisms in non-coding regions

are reported to affect RNA secondary structures [31,32],
CapR could also contribute to exploring disease mecha-
nisms behind such polymorphisms.
It has been shown that the secondary structures around

the target sites of small interfering RNAs (siRNAs) and
miRNAs influence their activities [33,34]. Kiryu et al.
showed that the activity of an siRNA depends on the
accessibility of the 3′ end of the siRNA target site, and
Marin et al. showed that the 3′ end of anmiRNA target site
is more accessible than the other positions [12,35]. As sup-
ported by the X-ray crystal structure of the guide-strand-
containing Argonaute [36], these positional tendencies
in the accessibility can reflect the kinetic aspects of the
siRNA and miRNA binding mechanisms. We hypothesize

A B

Figure 6 Comparison of P scores of the positive datasets with P scores of the shuffled and partially shuffled datasets. In the legend of this
figure, ‘0’, ‘5’ and ‘10’ represents the shuffled, the partially shuffled (±5) and the partially shuffled (±10) datasets, respectively. The x-axis represents
the nucleotide position and the y-axis is the P score of (A) QKI and (B) Nova. The black boxes are the RBP-bound sites, and the horizontal dotted
lines the corrected significance levels of the Bonferroni correction. The vertical dotted lines indicate the±5 or 10 nucleotides of RBP-bound sites.
RBP, RNA-binding protein.

Fig. 4.7 The shuffled, the partially shuffled (±5) and the partially shuffled (±10)

datasets are represented by 0, 5 and 10, respectively. The x-axis represents the

nucleotide position and the y-axis is the P score of (A) QKI and (B) Nova. The

black boxes are the RBP-bound sites, and the horizontal dotted lines the corrected

significance levels of the Bonferroni correction. The vertical dotted lines indicate

the ±5 or 10 nucleotides of RBP-bound sites.

shuffled datasets were compared (Fig. 4.7A,B). For QKI, whereas the shuffled dataset

had positional preferences in the flanking sequences, the partially shuffled datasets had

no significant preferences. This means that the structural specificities of QKI could be

generated by the biased nucleotide compositions in the flanking sequences. For Nova,

the partially shuffled datasets still had significant P scores upstream of the RBP-bound

sites. Therefore, the nucleotide compositions in the flanking sequences alone cannot gen-

erate the positional specificities of Nova, that is, sequences in distant regions could also

contribute to the position-specific RNA binding of Nova.

4.3 Discussion

In this study, I developed an efficient algorithm that calculates the structural profiles of

RNAs, and implemented it as CapR. It is the fastest software that can be applied to tens

of thousands of long RNAs.

Using CapR, I investigated structural specificities of RBP target recognition using

several CLIP-seq datasets. My analysis revealed that most RBPs prefer specific struc-

tural contexts and some RBPs show positional preferences in their structural recognition.

These findings could provide insights into the mechanisms of diseases involving RBPs.

FMR1 7, where FMR1 is a causative gene of the fragile X syndrome, was revealed to

bind specifically to internal and bulge loops. The observed structural specificity raises
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Fig. 4.8 This figure was generated using Pymol. The ten amino acids of the C-

terminal tail are shown in red. RNA is represented by green sticks. The positions

and the nucleotides are shown in yellow. Position 1 is the start position of the

sequential motif.

the possibility that disruption of the internal or bulge loop structures within the target

sites of FMR1 7 may cause this disease. On the other hand, the structural specificities of

Nova were revealed to be affected by the sequences of distant regions. This means that a

mutation of a nucleotide distant from the RBP-bound sites can cause changes to the sec-

ondary structures around the RBP-bound sites. Because some disease-associated single

nucleotide polymorphisms in non-coding regions are reported to affect RNA secondary

structures [123, 124], CapR could also contribute to exploring disease mechanisms behind

such polymorphisms.

It has been shown that the secondary structures around the target sites of small

interfering RNAs (siRNAs) and miRNAs influence their activities [125, 126]. Kiryu et

al. showed that the activity of an siRNA depends on the accessibility of the 3′ end of

the siRNA target site, and Marin et al. showed that the 3′ end of an miRNA target site

is more accessible than the other positions [104, 127]. As supported by the X-ray crystal

structure of the guide-strand-containing Argonaute [128], these positional tendencies

in the accessibility can reflect the kinetic aspects of the siRNA and miRNA binding
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mechanisms. I hypothesize that the positional preferences of RBPs discovered in this

study also reflect the kinetic aspects of the RBP–RNA interactions. For example, Nova

had a positional preference for upstream of the sequential motif site in the unstructured

context recognition. In fact, the co-crystal structure of human Nova with the target RNA

(PDBID: 1EC6) [129] showed that the area upstream of the sequential motif site interacts

with the C-terminal amino acids of Nova [130] (see Fig. 4.8; note that the CLIP-seq data

were for a highly similar ortholog, mouse Nova). In addition, the deletion of these C-

terminal amino acids inhibits the RNA binding function of Nova [131]. Therefore, the

positional preference does likely reflect the kinetic aspects of the RNA binding function of

Nova. I argue that this example demonstrates the potential power of ribonomic analysis.

Three future perspectives are envisioned based on the present study. The first perspec-

tive is to estimate the sequential and structural specificities simultaneously. Through-

out this study, I focused on the RBPs with known and well-defined sequential motifs.

Nonetheless, for several RBPs, no such sequential motifs have been identified (for ex-

ample, FET binds to a highly flexible UANnY motif within the hairpin context [108]).

To examine the binding specificities of these RBPs, CapR needs to be extended. The

second perspective is prediction of RBP-bound sites. Li et al. showed that prediction

of RBP-bound RNAs in vivo was improved by a motif-finding algorithm that considers

accessibility [102]. Thus, consideration of structural profiles may also improve the predic-

tion of RBP-bound sites in vivo, although I did not directly show this in the present study.

Further investigation is necessary for evaluating whether discrimination of RBP-binding

sites from a background sequence would be improved using the structural specificities of

RBP target recognition. Other factors or subcellular localizations also need to be con-

sidered. The third perspective is application of CapR to functional RNAs. For example,

the kissing hairpin, which is a hairpin–hairpin interaction that stabilizes RNA structures

[132], may be predicted accurately using CapR because CapR enables the calculation of

the hairpin loop probabilities. Another target would be small nucleolar RNAs (snoR-

NAs), where the detection algorithms still have room for improvement [133]. Because

snoRNAs are characterized by specific internal loops, they may also be predicted accu-

rately by taking advantage of the accurate calculation of internal loop probabilities by

CapR.

4.4 Materials and methods

4.4.1 Rfold model

The state transition rules of the Rfold model are given by

Outer −→ ϵ|Outer · a|Outer · Stem
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Stem −→ b< · Stem · b>|b< · StemEnd · b>
StemEnd −→ sn|sm · Stem · sn(m+ n > 0)|Multi

Multi −→ a ·Multi|MultiBif

MultiBif −→ Multi1 ·Multi2

Multi1 −→ MultiBif|Multi2

Multi2 −→ Multi2 · a|Stem

where ϵ represents the null terminal symbol, a is an unpaired nucleotide character, sk is

an unpaired base string of length k and (b<, b>) is a base pair. There are seven non-

terminal symbols: Outer, Stem, StemEnd, Multi, MultiBif, Multi1 and Multi2. Outer

emits exterior bases. Stem emits all the base pairs. StemEnd represents the end of

each stem from which a hairpin loop (StemEnd −→ sn), and internal and bulge loop

(StemEnd −→ sm · Stem · sn(m + n > 0)), or a multibranch loop (StemEnd −→ Multi)

is emitted. Multi represents a complete multibranch loop. Multi1, Multi2 and MultiBif

represent parts of a multibranch loop structure that contains one or more, exactly one,

and two or more base pairs in the loop, respectively. Based on this grammar, the struc-

tural profiles are calculated by using a variant of the inside and outside algorithm for

SCFG. First, I give an illustrative example to show how to calculate the internal loop

probabilities from the inside and outside variables αs(i, j) and βs(i, j) (i, j = 0, . . . , N ,

s ∈ {Outer,Stem,StemEnd,Multi,MultiBif,Multi1,Multi2}). In the subsequent section, I

completely describe how to calculate structural profiles.

4.4.2 Algorithm for calculating internal loop probabilities

When a base at position i has an internal loop context, the base i is caught in two base

pairs, (j, k) and (p, q) where j ≤ p ≤ q ≤ k (Fig 4.9). Then, the outside structure of base

pair (j, k) and the inside structure of base pair (p, q) may take arbitrary structures. The

sums of Boltzmann weights of all patterns of the outside structure of base pair (j, k) and

the inside structure of base pair (p, q) are represented by outside variable βStemEnd(j, k−
1) and inside variable αStem(p − 1, q), respectively. Therefore, Boltzmann weights that

the base i is caught in two base pairs (j, k) and (p, q) are obtained by the multiplication

of βStemEnd(j, k − 1), the score for transition StemEnd(j, k − 1) → Stem(p− 1, q), and

αStem(p, q). Here, I sum these Boltzmann weights for all combinations of base pairs (j,

k) and (p, q). Finally, I obtain p(i, I) by dividing the sum by the partition function.

The calculation formulas are given by:

w(i, I) = wInternalLeft(i, I) + wInternalRight(i, I)

wInternalLeft(i, I) =
i∑

j=max(1,i−W )

min(n,j+W )∑
k=i+1

min(j+C+1,k−1)∑
p=i+1

k∑
q=max(p+4,k−C−p+j−1)

βStemEnd(j, k − 1) · αStem(p− 1, q) · t(StemEnd → (Interior) → Stem)
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of thousands of RNA fragments. The algorithm was
implemented as software named CapR and was applied
to the CLIP-seq data of various RBPs. Our algorithm
demonstrated that several RBPs bind to their target RNA
molecules under specific structural contexts. For exam-
ple, FMR1, which is an RBP responsible for the fragile
X syndrome, was found to bind specifically to the inter-
nal and bulge loops of RNA. Another example is Nova,
a neuron-specific RBP related to a paraneoplastic neuro-
logic disorder, which showed positional preference in the
structural contexts of binding targets.
Secondary structures are known to be essential for

the molecular functions of RNA. As large-scale, high-
throughput approaches are becoming more popular in
studying RNAs and RBPs, our algorithm will contribute
to the systematic understanding of RNA functions and
structure-specific RBP–RNA interactions.

Materials andmethods
Rfold model
The state transition rules of the Rfold model are given by

Outer −→ ε|Outer · a|Outer · Stem
Stem −→ b< · Stem · b>|b< · StemEnd · b>

StemEnd −→ sn|sm · Stem · sn(m + n > 0)|Multi
Multi −→ a · Multi|MultiBif

MultiBif −→ Multi1 · Multi2
Multi1 −→ MultiBif|Multi2
Multi2 −→ Multi2 · a|Stem

where ε represents the null terminal symbol, a is an
unpaired nucleotide character, sk is an unpaired base
string of length k and (b<, b>) is a base pair. There
are seven non-terminal symbols: Outer, Stem, StemEnd,
Multi, MultiBif, Multi1 and Multi2. Outer emits exte-
rior bases. Stem emits all the base pairs. StemEnd rep-
resents the end of each stem from which a hairpin
loop (StemEnd −→ sn), and internal and bulge loop
(StemEnd −→ sm · Stem · sn(m + n > 0)), or a multi-
branch loop (StemEnd −→ Multi) is emitted. Multi
represents a complete multibranch loop. Multi1, Multi2
and MultiBif represent parts of a multibranch loop struc-
ture that contains one or more, exactly one, and two or
more base pairs in the loop, respectively. Based on this
grammar, the structural profiles are calculated by using
a variant of the inside-outside algorithm for SCFG. First,
we give an illustrative example to show how to calcu-
late the internal loop probabilities from the inside and
outside variables αs(i, j) and βs(i, j) (i, j = 0, . . . ,N , s ∈
{Outer,Stem,StemEnd,Multi,MultiBif,Multi1,Multi2}). In
the subsequent section, we completely describe how to
calculate structural profiles.

Algorithm for calculating internal loop probabilities
When a base at position i has an internal loop con-
text, the base i is caught in two base pairs, (j, k) and
(p, q) where j ≤ p ≤ q ≤ k (Figure 8). Then, the out-
side structure of base pair (j, k) and the inside structure
of base pair (p, q) may take arbitrary structures. The sums
of Boltzmann weights of all patterns of the outside struc-
ture of base pair (j, k) and the inside structure of base pair
(p, q) are represented by outside variable βStemEnd(j, k−1)
and inside variable αStem(p − 1, q), respectively. There-
fore, Boltzmann weights that the base i is caught in two
base pairs (j, k) and (p, q) are obtained by the multiplica-
tion of βStemEnd(j, k − 1), the score for transition StemEnd
(j, k − 1) → Stem(p− 1, q), and αStem(p− 1, q). Here, we
sum these Boltzmann weights for all combinations of base
pairs (j, k) and (p, q). Finally, we obtain p(i, I) by dividing
the sum by the partition function.

Figure 8 Schematic illustration of calculation of internal loop
probability. This figure shows the transition patterns that emit an
internal loop. This figure was generated by modifying the output of
VARNA [42].

Fig. 4.9 This figure shows the transition patterns that emit an internal loop. This

figure was generated by modifying the output of VARNA [134]

wInternalRight(i, I) =
i∑

j=max(1,i−W )

min(n,j+W )∑
k=i+1

min(j+C+1,i−1)∑
p=j+1

i∑
q=max(p+4,k−C−p+j−1)

βStemEnd(j, k − 1) · αStem(p− 1, q) · t(StemEnd → (Interior) → Stem)

p(i, I) = w(i, I)/Z(x)

where t(s → s′) is the score for transition s → s′ and C is the maximal length of the

internal and bulge loops. Many software programs, including RNAfold[135], adopt this

parameter. In this study, following the default setting of RNAfold, I set C = 30.

4.4.3 Algorithms for calculating the structural profile

To calculate the inside and outside variables, a variant of the inside-outside algorithm

corresponding to the Rfold model was developed. The inside algorithm is described as

follows:

αStem(i, j) =
∑{

αStem(i+ 1, j − 1) · t(Stem → Stem)
αStem(i+ 1, j − 1) · t(Stem → StemEnd)

αMultibif(i, j) =
∑{

αMulti1(i, k) · αMulti2(k, j) · t(MultiBif → Multi1 ·Multi2)
for i < k < j
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αMulti2(i, j) =
∑{

αStem(i, j) · t(Multi2 → Stem)
αMulti2(i, j − 1) · t(Multi2 → Multi2)

αMulti1(i, j) =
∑{

αMulti2(i, j) · t(Multi1 → Multi2)
αMultiBif(i, j) · t(Multi1 → MultiBif)

αMulti(i, j) =
∑{

αMulti(i+ 1, j) · t(Multi → Multi)
αMultiBif(i, j) · t(Multi → MultiBif)

αStemEnd(i, j) =
∑

t(StemEnd → (Hairpin))
αStem(i

′, j′) · t(StemEnd → (Interior) → Stem)
for i ≤ i′ ≤ j′ ≤ j, 0 < (j − j′) + (i′ − i) ≤ C
αMulti(i, j) · t(StemEnd → Multi)

αOuter(i) =
∑

1 if j = 0
αOuter(i− 1) · t(Outer → Outer)
αOuter(k) · αStem(k, i) · t(Outer → Outer · Stem)
for (i−W ) < k < i

The outside algorithm is described as follows:

βOuter(i) =
∑

1 if i = N
βOuter(i+ 1) · t(Outer → Outer)
αStem(i, k) · βOuter(k) · t(Outer → Outer · Stem)
for i < k < i+W

βStemEnd(i, j) = βStem(i− 1, j + 1) · t(Stem → StemEnd)

βMulti(i, j) =
∑{

βStemEnd(i, j) · t(StemEnd → Multi)
βMulti(i− 1, j) · t(Multi → Multi)

βMulti1(i, j) =
∑{

βMultiBif(i, k) · αMulti2(j, k) · t(MultiBif → Multi1 ·Multi2)
for j < k < (i+W )

βMulti2(i, j) =
∑

βMulti2(i, j + 1) · t(Multi2 → Multi2)
βMulti1(i, j) · t(Multi1 → Multi2)
βMultiBif(k, j) · αMulti1(k, i) · t(MultiBif → Multi1 ·Multi2)
for (j −W ) < k < i

βMultiBif(i, j) =
∑{

βMulti1(i, j) · t(Multi1 → MultiBif)
βMulti(i, j) · t(Multi → MultiBif)

βStem(i, j) =
∑


αOuter(i) · βOuter(j) · t(Outer → Outer · Stem)
βStemEnd(i

′, j′) · t(StemEnd → (Interior) → Stem)
for i′ ≤ i < j ≤ j′, 0 < (i− i′) + (j − j′) ≤ C
βMulti2(i, j) · t(Multi2 → Stem)
βStem(i− 1, j + 1) · t(Stem → Stem)

The original computational complexity of both algorithms is O(NW 3); because I

adopted the parameter C, it becomes O(NW 2) as described below.

I calculate the structural profiles from the inside and outside variables computed by

the inside-outside algorithm. The calculation formula is described as follows:

Z = αO(N)

p(i, B) =
1

Z

(
i∑

j=max(1,i−W )

min(n,j+W )∑
k=i+1

min(j+C+1,k−1)∑
p=i+1
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βSE(j, k − 1) · αS(p− 1, k − 1) · t(SE → (Interior) → S)

+

i∑
j=max(1,i−W )

min(n,j+W )∑
k=i+1

i∑
q=max(j+4,k−C−1)

βSE(j, k − 1) · αS(j, q) · t(SE → (Interior) → S)

)

p(i, E) =
1

Z

(
αO(i− 1) · βO(i) · t(O → O)

)

p(i,H) =
1

Z

i−1∑
j=max(1,i−W )

k=min(n,i+W )∑
k=i+1

βSE(j, k − 1) · t(SE → (Hairpin))

p(i, I) =
1

Z

(
i∑

j=max(1,i−W )

min(n,j+W )∑
k=i+1

min(j+C+1,k−1)∑
p=i+1

k∑
q=max(p+4,k−C−p+j−1)

βSE(j, k − 1) · αS(p− 1, q) · t(SE → (Interior) → S)

+
i∑

j=max(1,i−W )

min(n,j+W )∑
k=i+1

min(j+C+1,i−1)∑
p=j+1

i∑
q=max(p+4,k−C−p+j−1)

βSE(j, k − 1) · αS(p− 1, q) · t(SE → (Interior) → S)

)

p(i,M) =
1

Z

{ ∑min(i+W,n)
k=i βM(i− 1, k) · αM(i, k) · t(M → M)∑i
k=max(0,i−W ) βM2(i, k) · αM2(k, i− 1) · t(M2 → M2)

p(i, S) =
1

Z

min(n,i+W )∑
j=max(0,i−W )

{
βS(i− 1, j) · αSE(i, j − 1) · t(S → SE)
βS(i− 1, j) · αS(i, j − 1) · t(S → S)

Here, O is the outer state, S is the stem state, SE is the stem-end state, M is the multi

state and M2 is the multi2 state in the Rfold model.

4.4.4 Implementation

I implemented the algorithms in C++ as a program named CapR. CapR exhaustively

computes the structural profile {p(i, δ)} for a given RNA sequence with O(NW 2) time

and O(NW ) memory. I used a portion of the source code from the Vienna RNA package

[135].

4.4.5 Data preparation and analysis

To evaluate the accuracy of the structural profiles calculated by CapR, I used 188 struc-

tural RNA families in the Rfam 10.0 seed dataset [114]. They are provided as 188

structural alignments with experimentally validated pseudoknot-free structures. By ex-
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Fig. 4.10 (A) The dependence of structural profiles on the truncated length. The

x-axis represents the truncated length. The y-axis represents the Pearson correlation

coefficient between the structural profiles of the original sequence and those of the

truncated sequences. (B) The W-sensitivities of exterior loop, multibranch loop,

and unstructured contexts for CLIP-seq datasets. The y-axis represents the W-

sensitivity. The low W-sensitivity means that the highest P-score at W = 30 is

larger than that at W = 400, and vice versa. When W-sensitivity (δ) equals zero,

the structural context δ is completely insensitive to the maximal span.

cluding alignment columns with a gap proportion of ≥0.5, I obtained 8,775 sequences

and 1,039,537 nucleotides.

In the present study, I focused on RBP target recognition. In this application, it

should be ineffective to consider transcribed sequences that are too long because regions

that are too distant are unlikely to affect the secondary structures around the RBP-

bound sites, although my algorithm itself can be applied to long RNAs. Therefore, I

investigated how much distance I should take into account. I prepared 100 random RNA

sequences 10,100 nucleotides long and truncated them so that the lengths of the flanking

sequences of the central 100 bases became l = 250, 500, ..., 2500. Then, I calculated

the structural profiles of the central 100 bases for each l, and calculated the Pearson

correlation coefficient between the structural profiles of the original sequence and those

of the truncated sequences. Figure 4.10A shows that the Pearson correlation coefficients

were more than 0.99 for l ≥ 2000. Therefore, I considered 2,000 nucleotides upstream

and downstream of the RBP-bound sites in this study.

To investigate the structural characteristics of RNAs around the RBP-binding sites,

I downloaded CLIP-seq datasets from the doRina database [115]. I excluded from the

analysis CLIP-seq datasets that met one of the following three criteria: (1) well-defined

sequential motifs not presented in the original paper of the dataset, (2) datasets for

mutant RBPs and (3) the average number of RBP-bound sites (that is the sequential

motif-matched sites within the CLIP-seq peak regions defined in doRina) is less than
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Table 4.2 Basic statistics of the CLIP-seq datasets

RBP motif species(assembly) number of motif average number

GLD-1 AYUAAY C.elegans(ce6) 385 1.17

QKI AYUAAY H.sapiens(hg18) 3054 1.26

Pum2 UGUANAUA H.sapiens(hg18) 1327 1.054

SF2ASF GAAGAA H.sapiens(hg18) 2721 1.2521

Nova YCAY M.musclus(mm9) 24019 1.345

Lin28A AAGNNG M.musclus(mm9)) 28642 1.1164

FXR1 ACUK or WGGA H.sapiens(hg18) 2634 1.15

FXR2 ACUK or WGGA H.sapiens(hg18) 12886 1.2112

FMR1 7 ACUK or WGGA H.sapiens(hg18) 46826 1.43478

FMR1 1 ACUK or WGGA H.sapiens(hg18) 93678 1.616

Table 4.3 The numbers of two known sequential motifs for the CLIP-seq data set

of the FMRP family

RBP ACUK WGGA Total

FXR1 2435 199 2634

FXR2 9829 3057 12886

FMR1 7 19159 27667 46826

FMR1 1 46364 47314 93678

two. The third criterion was adopted because many RBP-bound sites include false pos-

itives. As a result, I selected ten RBPs: GLD-1 (nematode), QKI (human), Pum2

(human), SRSF1 (human), Nova (mouse), Lin28A (mouse), FXR1 (human), FXR2 (hu-

man), FMR1 7 (human) and FMR1 1 (human) [116, 99, 117, 118, 119, 120]. When

the peak regions spanned just one or two bases, I sought sequential motif-matched sites

within ±10 nucleotides around the peak regions. If no motif-matched sites were found,

such peak regions were excluded from the analysis. Then, I extracted ±2, 000 nucleotide

sequences around the RBP-bound sites to create the positive datasets. If there existed

multiple RBP-bound sites in the same peak region, I averaged the structural profiles

around those sites and used them as a single observation. For each gene in RefSeq [136],

the transcribed sequence was defined by the genomic region between the most upstream

5′ position and the most downstream 3′ position of its mRNA isoforms. To generate

the shuffled and partially shuffled datasets, I used the uShuffle software to preserve the

di-nucleotide frequencies of the original sequences [137]. The data sizes and other basic

statistics of the CLIP-seq datasets are summarized in Table 4.2 and 4.3. In the present

study, because the distributions of the structural profiles did not follow a normal distri-
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bution, I used the non-parametric Wilcoxon–Mann–Whitney test.

I also examined how the choice of the maximal span W influences the results. I

compared the highest P scores of the exterior and multibranch loops with different W

because these two loops are sensitive to W . I calculated the ratios of the W sensitivity

(δ) of the highest P scores among all positions for each loop δ calculated at W = 400

and 30:

W − sensitivity(δ) =
Highest P score for δ at W = 400

Highest P score for δ at W = 30

Figure 4.10B is a box plot of the W sensitivity of the exterior loop, multibranch loop

and unstructured contexts for all the RBP datasets. The highest P scores of the exterior

and multibranch loops were sensitive to W , whereas the highest P score of unstructured

context was insensitive to W .
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Chapter 5

Conclusion

In conclusion of this thesis, I describe summaries of the researches presented in this

thesis and discuss the future works on the basis of these researches. In this thesis,

I documented three bioinformatics researches for understanding animal behavior: 1)

Development of tracking software for solving occlusion problem; 2) Novel analytic method

of worm posture for interpreting relationship between posture and gene; 3) Analysis of

secondary structure around target sites of RNA binding proteins.

In chapter 2, I presented GroupTracker, a multiple animal tracking system that accu-

rately tracks individuals even under severe occlusion. As maximum likelihood estimation

of Gaussian mixture model whose components can severely overlap is theoretically an

ill-posed problem, I devised an Expectation-Maximization scheme with additional con-

straints on the eigenvalues of the covariance matrix of the mixture components. My

system was shown to accurately track multiple medaka (Oryzias latipes) which freely

swim around in three dimensions and frequently overlap each other. As an accurate

multiple animal tracking system, GroupTracker will contribute to revealing unexplored

structures and patterns behind animal interactions.

In chapter 3, I showed bioinformatics analysis of postural change patterns of C.elegans

mutants. I firstly obtained template posture set by Gaussian mixture model, and trans-

formed worm postural change patterns into probabilistic sequences of template postures.

Next, by comparing with posture occurrence probabilities of N2 and those of the other

strains, I investigated whether the reason why mutants show abnormal postural change

patterns is “the usage of different postural set” or not. Then, I revealed several strains

(npr-1, npr-3, egl-30, eat-16) that shows the similar posture occurrence probabilities

to N2 as but different posture transition probabilities from N2. Finally, by comparing

postural change speeds of these mutants with that of N2, I revealed that these strains

show both “the frequency change of quiescence behavior” and ”the change of behavioral

speed”, but do not very take “the novel postural change patterns”.

In chapter 4, I developed a highly efficient algorithm that calculates the probabilities

that each RNA base position is located within each secondary structural context for tens

of thousands of RNA fragments. The algorithm was implemented as software named

67



CapR and was applied to the CLIP-seq data of various RBPs. My algorithm demon-

strated that several RBPs bind to their target RNA molecules under specific structural

contexts. For example, FMR1, which is an RBP responsible for the fragile X syndrome,

was found to bind specifically to the internal and bulge loops of RNA. Another example

is Nova, a neuron-specific RBP related to a paraneoplastic neurologic disorder, which

showed positional preference in the structural contexts of binding targets. Secondary

structures are known to be essential for the molecular functions of RNA. As large-scale,

high-throughput approaches are becoming more popular in studying RNAs and RBPs,

our algorithm will contribute to the systematic understanding of RNA functions and

structure-specific RBP-RNA interactions.

Several bioinformatics methods for understanding animal behavior have been devel-

oped, but the availability of software for computational ethology is not yet sufficient.

Although many tracking systems have been developed, the target species are still lim-

ited to model organisms in most cases. In addition, because almost all tracking systems

require well-arranged video recording conditions, these systems cannot be applied to an-

imals in outdoor environments. Furthermore, there is insufficient research on methods

for the analysis of tracking data. In order to quantify and analyze the diverse behavior

of various animals computationally, the development of appropriate software is highly

necessary. The field of computational ethology is therefore only beginning to emerge.

It is expected that the integration of computational ethology and advanced tech-

nologies in genetics and neuroscience will provide novel insights into the molecular and

neural mechanisms of animal behavior. Examples of such measuring and engineering

technologies include high-throughput sequencing, genome editing, whole-brain imaging,

and optogenetics [138, 139, 140, 141, 142]. In a pioneering study, Vogelstein et al. de-

scribed the relationship between behavior and neurons in Drosophila larvae on a large

scale by combining optogenetics with large-scale movie data analysis [40]. In addition,

applications of computational ethology in biomedical researches are emerging. For exam-

ple, behavioral analysis of model organism with neurological disorder and drug screening

based on automatically quantified behavior are being performed [143, 144].

The 21st century has witnessed the generation and accumulation of large-scale omics

data shared in open databases, enabling researchers to make novel discoveries using new

techniques and analytical methods. In other words, the sharing and disclosure of scien-

tific data not only prevent the dead storage of data but also promote the development of

novel analytical methods. At present, there is an abundance of well-curated databases

for biological molecular data, but open databases for the storage of information on an-

imal behavior are few in number [129, 136]. In order to facilitate the study of bioin-

formatics methods for understanding animal behavior, development and maintenance of
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well-curated behavioral databases are urgently needed. I expect that the development

of these bioinformatic researches will be key to understanding the fascinating world of

animal behavior.
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[39] André EX Brown, Eviatar I Yemini, Laura J Grundy, Tadas Jucikas, and William R

Schafer. A dictionary of behavioral motifs reveals clusters of genes affecting

Caenorhabditis elegans locomotion. Proceedings of the National Academy of Sci-

ences, 110:791–796, 2013.

[40] Joshua T Vogelstein, Youngser Park, Tomoko Ohyama, Rex A Kerr, James W Tru-

man, Carey E Priebe, and Marta Zlatic. Discovery of brainwide neural-behavioral

maps via multiscale unsupervised structure learning. Science, 344:386–392, 2014.

[41] Gordon J Berman, Daniel M Choi, William Bialek, and Joshua W Shaevitz. Map-

ping the stereotyped behaviour of freely moving fruit flies. Journal of The Royal

Society Interface, 11:20140672, 2014.

[42] Balázs Szigeti, Ajinkya Deogade, and Barbara Webb. Searching for motifs in the

behaviour of larval Drosophila melanogaster and Caenorhabditis elegans reveals

continuity between behavioural states. Journal of The Royal Society Interface,

12:20150899, 2015.

[43] Darren P Croft, Jens Krause, and Richard James. Social networks in the guppy

(Poecilia reticulata). Proceedings of the Royal Society of London B: Biological

Sciences, 271:S516–S519, 2004.

[44] David Lusseau. The emergent properties of a dolphin social network. Proceedings

of the Royal Society of London B: Biological Sciences, 270:S186–S188, 2003.

[45] Danielle P Mersch, Alessandro Crespi, and Laurent Keller. Tracking individuals

shows spatial fidelity is a key regulator of ant social organization. Science, 340:1090–

1093, 2013.
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