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Abstract

The advancement of experimental technologies have enabled remarkable progress in molec-

ular biology in recent years. However, the advancements in computational methods as well as

sequencing technologies are essential to the progress of molecular biology. Molecular biological

data frequently contains a mixture of multiple states and is hence heterogeneous, and computa-

tional methods are powerful tools to elucidate biological tasks from such heterogenous data. In this

research, we accomplish the following two tasks, which cannot be investigated easily from experi-

mental data, by developing computational methods. Firstly, we developed a computational method

to infer individual haplotypes from sequencing data. Next, we developed a computational method

to analyze single-cell expression dynamics during cellular differentiation.

Development of a probabilistic model for haplotype assembly

Haplotype information is useful for various genetic analyses, including genome-wide associa-

tion studies. Determining haplotypes experimentally is difficult and there are several computational

approaches that infer haplotypes from genomic data. Among such approaches, single individual

haplotyping or haplotype assembly, which infers two haplotypes of an individual from aligned se-

quence fragments, has been attracting considerable attention. To avoid incorrect results in down-

stream analyses, it is important not only to assemble haplotypes as long as possible but also to

provide means to extract highly reliable haplotype regions. Although there are several efficient

algorithms for solving haplotype assembly, there are no efficient method that allow for extracting

the regions assembled with high confidence. Therefore, we develop a probabilistic model, called

MixSIH, for solving the haplotype assembly problem. Based on the optimized model, a quality

score is defined, which we call the ‘minimum connectivity’ (MC) score, for each segment in the
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haplotype assembly. By using the MC scores, our algorithm can extract highly accurate haplo-

type segments. We also show evidence that an existing experimental dataset contains chimeric read

fragments derived from different haplotypes, which significantly degrade the quality of assembled

haplotypes. Therefore, we developed a method to detect chimeric fragments. The basis of our

method is that a chimeric fragment would correspond to an artificial recombinant haplotype and

would, therefore, differ from biological haplotypes in the population. We applied our method to

two dilution-based sequencing datasets and the accuracy of assembled haplotypes increased signif-

icantly after removing chimeric fragment candidates.

Development of a probabilistic model for differentiation analysis

The advancement of single-cell technologies will shed light on the elucidation of the mechanism

of differentiation. To fully analyze single-cell data, a novel computational method is necessary.

There are several methods which use dimension reduction approach and reconstruct differentiation

trajectory on the latent space to analyze single-cell expression data along differentiation. Although

these approach will be useful to extract the properties of differentiations, these methods have several

problems such as the absence of standard in the selection of the axis. In this research, we developed

a novel method SCOUP to analyze single-cell expression data along differentiation by representing

the expression dynamics with Ornstein-Uhlenbeck process. In our evaluation, SCOUP can infer the

degree of differentiation of a cell (pseudo-time) with high accuracy comparing to previous meth-

ods, especially for single-cell RNA-seq. We evaluated the cell lineage estimation and SCOUP can

estimate more accurately than previous method, especially for cells at an early stage of bifurcation.

To understand cell fate decision mechanisms, it is important to analyze cells immediately after bi-

furcation. We also developed a novel correlation calculation to analyze gene regulatory relationship

while removing the spurious correlation. Thus, SCOUP will be a promising approach to analyze

single-cell expression data during cellular differentiation and to elucidate regulatory mechanism of

differentiation.
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Chapter 1

General Indtroduction

1.1 Driving force of molecular biology in recent years

The advancement of experimental equipment such as sequencing instruments and the develop-

ment of experimental techniques such as ChIP-seq and RNA-seq have enabled remarkable progress

in molecular biology in recent years. For example, the ENCODE (Encyclopedia of DNA Ele-

ments) project, an international collaboration of research groups that investigates comprehensive

experiments using such technologies, has yielded many insights [1]. Such progress illustrates the

importance of advancements in experimental technologies for the future of molecular biology. How-

ever, advancements in computational methods as well as sequencing technologies are essential to

the progress of molecular biology. Without advancements in bioinformatics algorithms for genome

assembly and read mapping, biological analysis using a high volume of sequenced reads would be

impossible.

The development of computational methods is indispensable to the progress of molecular biol-

ogy. In this research, we accomplish the following two tasks, which cannot be investigated easily

from experimental data, by developing computational methods. Firstly, we developed a computa-

tional method to infer individual haplotypes from sequencing data. Next, we developed a computa-

tional method to analyze single-cell expression dynamics during cellular differentiation.
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1.2 Heterogeneity of biological data

Molecular biological data frequently contains a mixture of multiple states and is hence hetero-

geneous. For example, various subtypes exist in a tumor [2], and genome sequencing data of a

tumor sample therefore contains the individual reads from different subtypes. This heterogeneity

disrupts the accurate recognition of mutations in each subtype. Even if a sample is collected from

normal tissue, it may contain multiple cell types and the expression data from that sample is then

the average of the heterogeneous sample. Moreover, the human genome is diploid, containing two

homologous haplotypes. Therefore, genome sequencing data comprise a mixture of reads with dif-

ferent haplotype origins, which makes distinguishing the origin of a read and estimating haplotypes

a significant challenge. Because molecular biological data exhibit heterogeneity at various scales,

computational methods are necessary to infer the original states. The first theme of this research

is the development of a computational method to reconstruct haplotypes from sequencing data by

inferring the origin of individual reads.

However, there have been attempts to overcome the problem of heterogeneity through experi-

mental approaches. Single-cell sequencing technologies could solve some of these heterogeneity

problems. For example, single-cell qPCR and single-cell RNA-seq provide single-cell resolution

expression data and hence overcome the problem of averaged expression for bulk sample expres-

sion assays. Because of the novel properties of single-cell data, a novel computational method is

necessary to fully utilize these data. The second theme of this research is the development of a novel

computational approach to analyzing single-cell expression data for differentiation.

1.3 Probabilistic model and machine learning methods in bioin-

formatics

In bioinformatics, there are several computational methods for data analysis that are based on

probabilistic models and machine learning methods. Because of the flexibility of these approaches,

we can integrate several conditions into a single probabilistic model. Moreover, there are several

parameter optimization methods for probabilistic models within the framework of machine learning,

which makes it possible to analyze huge amounts of data. Therefore, methods that use probabilistic
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models and machine learning are efficient approaches for analyzing complicated biological data.

In particular, many efficient probabilistic models based on mixture models have been developed

to overcome heterogeneity. For example, RNA-seq data contain a mixture of reads of different

isoform origins and inferences of isoform abundance are complicated because an individual read

can be mapped to multiple isoforms. The Cufflinks [3] deals with this problem by considering a

mixture model that generate reads from one of the iodoform depending on the iso form abundance

and estimates expression level from optimized parameters.

In addition, a method based on probabilistic model can be applied to the analysis of differ-

ent source data. For example, inference of taxonomic composition from metagenomic data can

be considered the inference of isoform abundance from transcriptome data, and a mixture model

like Cufflinks has been developed for metagenomic analyses [4]. Thus, probabilistic model-based

methods will be progressively more important in bioinformatics.

In this research, we construct methods for haplotype assembly and for differentiation analysis

based on a probabilistic model and machine learning approach. In a probabilistic model, data are

usually regarded not as an input, but as an output. Accordingly, it is important to properly represent

the experimental process by which data are generated in developing a probabilistic model. It is

also important that parameters capture biological meaning in probabilistic models so that biological

results can be directly interpreted from optimized parameters. From this perspective, we developed

computational methods for the two aforementioned tasks.

1.4 A new paradigm in bioinformatics

Because of the advancement of experimental technologies, we can now obtain huge biological

datasets, such as nucleotide sequence datasets. "Big data" advances data-driven science (rather than

hypothesis-driven science) and increases the importance of bioinformatics. Although a large por-

tion of recent biological knowledge has been generated through the power of bioinformatics, current

bioinformatics research programs usually just analyze biological data as requested by an experimen-

tal researcher. However, biology is also advanced through progress in computational research, for

example, through the development of probabilistic models to elucidate biological problems and by

proposing optimum experimental designs for subsequent analyses. This approach is regarded as an
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integration of hypothesis-driven science and data-driven science, and will become a new paradigm

of bioinformatics. The second objective of this research is to delve into biological problems from

the perspective of the computational approach by fully utilizing single-cell data, and we hope this

will be a harbinger of a new paradigm in bioinformatics.
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Chapter 2

MixSIH: a mixture model for single

individual haplotyping

2.1 Introduction

Human somatic cells are diploid and contain two homologous copies of chromosomes, each

of which is derived from either paternal or maternal chromosomes. The two chromosomes differ

at a number of loci and the most abundant type of variation is single nucleotide polymorphism

(SNP). Most current research does not determine the chromosomal origin of the variations and

uses only genotype information for the analyses. However, haplotype information is valuable for

genome-wide association studies (GWAS) [5] and for analyzing genetic structures such as linkage

disequilibrium, recombination patterns [6], and correlations between variations and diseases [7].

Let us consider a simple example to demonstrate the importance of haplotype information. Sup-

pose that in a gene coding region, there are two SNP loci, each of which has an independent dele-

terious mutation in either one of the two homologous chromosomes. If both of the two deleterious

mutations are located on the same chromosome, the other chromosome can produce normal pro-

teins. On the other hand, if each chromosome contains either one of the two deleterious mutations,

the cells cannot produce normal proteins. It is not possible to distinguish these two cases with only

genotype information.

There is a group of algorithms for haplotype inference that statistically construct a set of haplo-

types from population genotypes [8–12] Review see [13]. These algorithms have been developed in
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response to technological advances such as SNP arrays that efficiently measure personal genotypes

at a genomic scale. The algorithms infer haplotype blocks based on the assumption that the vari-

ety of combinations of alleles is very limited. Therefore, these algorithms fail to identify correct

haplotypes in regions with low linkage disequilibrium (LD) where there are frequent recombination

events. These algorithms also cannot identify spontaneous mutations. These difficulties are par-

tially resolved by using genotypes of pedigrees. However, family data are not always available, and

furthermore, they cannot determine the haplotypes of the loci at which all the family members have

the same genotype.

Another group of algorithms is single individual haplotyping (SIH) or haplotype assembly.

These algorithms infer the two haplotypes of an individual from sequenced DNA fragments [14–21].

These algorithms take as input the read fragments that are aligned to the reference genome, and

output the two assembled haplotypes (Figure 2.1). The algorithms utilize the fact that each read

fragment is derived from either one of two chromosomes, though the observed data are a mixture

of fragment data from both the chromosomes. If a read fragment spans two or more heterozygous

loci, the haplotype can be determined for these sites from the co-occurrence of alleles in the frag-

ment. Two read fragments are determined to originate from the same chromosome if they overlap

at a region that has at least one heterozygous locus, and they have the same alleles at these loci.

In this case, we obtain a larger haplotype-resolved region by merging the two fragments. The SIH

problem is complicated because the fragment data contain many inconsistent fragments caused by

sequencing or mapping error.

SIH algorithms did not attract much attention until recently, since the read fragments of next-

generation sequencing experiments are not long enough to span multiple heterozygous loci, which

exist at only one in one kilo-base on average [22], and the Sanger sequencing that produces long

read fragments is too expensive to be conducted at a genomic scale. However, this situation is

changing rapidly with the advent of real-time single-molecule sequencing technologies, which are

able to sequence DNA fragments as long as 50 kilo-bases [23], and with the development of a novel

experimental technique called ‘fosmid pool-based next-generation sequencing’ [17, 24, 25], which

randomly assigns a bar-code to each read cluster that is derived from the same region in the same

chromosome. Because of these advances in experimental techniques, SIH has emerged as one of

the most promising approaches for analyzing the haplotype structures of diploid organisms.
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The haplotype information which contains errors is likely to lead to wrong results in down-

stream analyses. For example, in detecting the recombination events from the parent-offspring

haplotypes [26], the haplotyping errors are regarded as recombination events by mistake. Another

example is that haplotyping errors considerably decrease the detection power of amplified hap-

lotypes in cancer [27] and fetus haplotypes [28]. To use haplotype information in downstream

analyses while avoiding such harmful influence of haplotyping errors, it is important not only to as-

semble haplotypes as long as possible but also to provide means to extract highly reliable haplotype

regions. In the statistical haplotype phasing, reliable haplotype regions are determined by selecting

the blocks of limited haplotype diversity and level of LD [29–31]. Although there are many algo-

rithms for SIH, none of these algorithms can provide confidence scores to extract reliable haplotype

regions.

The algorithms for SIH are classified into two strategies; most of the previous algorithms use

deterministic strategies [14–17, 19, 21] but a few take a probabilistic modeling approach [18, 20].

The deterministic algorithms usually include solving the MAX-CUT problem of graph theory [32]

in their computational procedures in order to partition the set of the input fragments into two groups

representing the two haplotypes. Because these algorithms are designed to optimize only a certain

global score function that measures the number of inconsistent fragments and do not model the

fragments and haplotypes themselves, it is difficult to produce confidence scores for each region of

the assembled haplotypes.

On the other hand, the probabilistic approaches of Kim [18] and Li [20] assume that each ob-

served fragment is sampled from one of the two unobserved haplotypes. Unlike the deterministic

approaches, probabilistic models allow the computation of various expected values and confidence

values from the Bayesian posterior distributions. For example, Kim [18] and Li [20] defined a con-

fidence value for the haplotype reconstruction of each segment of SNP loci. Unfortunately, those

researchers chose a model structure for which the exact computation of the likelihood is extremely

computationally intensive. Because the complexity of this summation is exponential in the number

of SNP sites, only the posterior probabilities of the haplotypes for neighboring loci are considered.

The complete haplotypes are reconstructed by connecting plausible haplotypes of neighboring pairs

according to their posterior probabilities. Hence, their approach cannot take into account the full

information of fragments that span three or more SNP loci. Their confidence scores for haplotype
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Figure 2.1. An illustration of single individual haplotyping (SIH). The input data for SIH are the SNP frag-
ments (B) which are extracted from the heterozygous alleles in aligned DNA fragments (A). SIH algorithms
(C) reconstruct the original haplotypes (D) from the SNP fragments.

segments include a summation over all the possible haplotypes, and it is not possible to compute

their confidence scores for all the possible segments in the assembled haplotypes.

In this paper, we develop a novel probabilistic SIH model that is very different from the prob-

abilistic models of Kim [18] and Li [20] . Our model takes a ‘mixture model’ approach: each

fragment is emitted completely independently of the other fragments. In contrast, Kim [18] and

Li [20] took a ‘hidden variables’ approach: all the fragments are correlated through hidden haplo-

type variables (see the Additional file for further explanation). This difference allows us to compute

the likelihood with a computational time proportional to the total length of the input fragments.

We use the variational Bayes expectation maximization (VBEM) algorithm [33] to compute the

approximate posterior distribution of the haplotypes. By using the optimized distribution, we com-

pute the ‘minimum connectivity’ (MC) score for each segment in the reconstructed haplotypes; this

measures whether the segment is free from switch errors. We show that we can extract accurately

assembled regions by selecting regions with high MC scores. We also analyze a recent dataset

from fosmid pool-based next-generation sequencing and find evidence that the processed dataset

contains chimeric fragments derived from the erroneous merging of read clusters in different haplo-

types, which degrades the quality of assembled haplotypes significantly.
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2.2 Methods

2.2.1 Algorithms and implementation

2.2.1.1 Notation

Throughout the paper, we denote the number of elements of any set A by |A|, and the direct

product set A × · · · × A︸ ︷︷ ︸
n

by A⊗n. Let X = {1, 2, . . . , M} be the set of SNP loci, and H = {0, 1}

be the two haplotypes. It is convenient to introduce a phase vector Φ = ϕ1 · · ·ϕM . The pair

ϕj = (ϕj0,ϕj1) is referred to as phase, and represents the two alleles of haplotype 0 and 1 at

site j, respectively. Because the haplotype assembly problem is trivial for homozygous sites, and

because it is usually much easier to determine the genotype than to determine the haplotypes, it is

often convenient to restrict the SNP loci X to heterozygous sites. Furthermore, if sequence-specific

sequencing errors are not considered, it is convenient to use a simple binary representation of alleles;

we randomly assign 0 to one of the two alleles at each heterozygous site j, and 1 to the other allele.

In this case, the set of alleles is denoted by Σ = {0, 1}, and the set of possible phases is denoted by

∆ = {(0, 1), (1, 0)}. We assume this binary representation throughout the paper.

Let F = {fi|i = 1, . . . , N} be the set of input fragments which are supposed to be aligned to

the reference genome, and each fragment fi takes value fij ∈ Σ at locus j ∈ X if a nucleotide is

aligned and equal to one of two alleles, and fij = ∅ if fragment fi is unaligned, gapped, ambiguous,

or a base different from the two alleles, at site j. For any subset X ′ ⊆ X , we say fragment fi

spans the sites X ′ if fij ̸= ∅ for all j ∈ X ′. We refer to the subset of X spanned by fragment f as

X(f). We say fragment fi covers site j if there exists a pair of spanning two different (possible non

consecutive) SNP sites j1, j2 ∈ X(fi) such that j1 < j ≤ j2. The set of fragments that cover site

j is denoted by F c(j). Further, we refer to the set of all the possible haplotypes for sites X(fi) as

∆(fi) = ∆⊗|X(fi)|.

The SIH problem takes a set of aligned SNP fragments F as input and outputs a hidden phase

vector Φ (Figure 2.1). Because the SIH problem does not associate the inferred haplotypes H

with the real paternal and maternal chromosomes, the switched configuration Φ̄ = ϕ̄1 · · · ϕ̄M ,

ϕ̄j = (ϕj0̄,ϕj1̄) with 0̄ = 1 and 1̄ = 0, must be regarded as a completely equivalent prediction.

Therefore, SIH has no meaning if there is only one heterozygous site, and it is only meaningful if

one considers co-occurrences of alleles on the same haplotype for two or more heterozygous sites.
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2.2.1.2 Mixture model

We model the probabilistic distribution of the observed fragments F by

P (F |Θ) =
∑

H∈H⊗N

N∏

i=1

∑

Φ(i)∈∆(fi)
P (fi|hi, Φ(i))pm(hi)P (Φ(i)) ,

P (Φ(i)) =
∏

j∈X(fi)
pΦ

j (ϕ(i)
j ) ,

where Θ represents a set of parameters defined later, Φ(i) ∈ ∆(fi) represents a partial haplotype

reconstruction over the sites X(fi) spanned by fragment fi, H = h1 . . . hN where hi ∈ H repre-

sents the haplotype origin of fragment fi, pm(h) is the mixture probability of haplotype h ∈ H,

and pΦ
j (ν) is the probability that phase ν ∈ ∆ is instantiated at site j. We define the probability of

emitting fragment fi from haplotype hi given a fixed phase vector Φ(i) as follows.

P (fi|hi, Φ(i)) =
∏

j∈X(fi)
pe(fij |ϕ(i)

jhi
)

where,

pe(σ|σ′) =

⎧
⎪⎪⎨

⎪⎪⎩

(1 − α) for σ = σ′

α for σ ̸= σ′

is the probability that we observe σ ∈ Σ when the true allele is σ′ ∈ Σ and α represents the sequence

error rate which we assume is independent of fragments and positions.

We take α as a fixed constant because it is better estimated from other resources rather than from

only the bases at the SNP sites. For example, we may estimate α by using the all the read sequences

or by using information from other dedicated studies about sequencing and mapping errors. In the

following, we use α = 0.1 unless otherwise mentioned and the dependency of the α is described in

the Additional file. We further assume the mixture probabilities are equal, pm(0) = pm(1) = 0.5,

as they often converge to around 0.5. Therefore, the parameter set Θ that needs to be optimized

consists only of the set of phase probabilities: Θ = {θjν} = {pΦ
j (ν)}.
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Let Iihjν be the indicator function that is one if fragment fi is derived from haplotype h,

X(fi) includes j, and the haplotypes have phase ν at site j, and that is zero otherwise. Iihjν

is uniquely determined if the haplotype origins H = {hi|i = 1, . . . , N} and phase vectors

Ψ = {Φ(i)|i = 1, . . . , N} of fragments F are specified. Then the marginalized likelihood P (F |Θ)

is given by

P (F |Θ) =
∑

H,Ψ
P (F, H, Ψ|Θ) ,

log(P (F, H, Ψ|Θ)) = N log(0.5)+
N∑

i=1

∑

h∈H

∑

j∈X(fi)

∑

ν∈∆
Iihjν [µihjν + log θjν ] ,

µihjν = log(pe(fij |νh)) .

We explain the difference between our model and the models of Kim [18] and Li [20] in the Addi-

tional file.

2.2.1.3 The minimum connectivity score

As described above, the two haplotypes H in the SIH problem have no particular identity and

it is not possible to predict which of them converges to the actual paternal or maternal chromo-

some. In relation to this, the likelihood function P (F, H, Ψ|Θ) has a symmetry between the

switched configurations: P (F, H̄, Ψ̄|Θ̄) = P (F, H, Ψ|Θ), where H̄ = {h̄i|i = 1, . . . , N} and

Ψ̄ = {Φ̄(i)|i = 1, . . . , N} represent the configuration that all the haplotype origins of the frag-

ments are exchanged, and Θ̄ = {θ̄jν}, θ̄jν = θjν̄ are the switched phase probabilities. Therefore,

the marginal likelihood P (F |Θ) = ∑
H,Ψ P (F, H, Ψ|Θ) is symmetric for the two parameter sets:

P (F |Θ̄) = P (F |Θ).

Suppose that the probabilistic model is optimized for two segments of SNP sites between which

there are no connecting fragments, then the association of the haplotypes {0, 1} to the true paternal

and maternal chromosomes are selected at random for each segment. Even if there are several con-

necting fragments, the associations in each segment are determined almost randomly if the number

of connecting fragments is not sufficient or there are many conflicting fragments. Such sites of-

ten cause switch errors. We define the connectivity at site j0 as a log ratio of the marginal log
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likelihoods:

connectivity(j0) = log
(

P (F |Θ)
P (F |Θ′)

)
= log

(
P (F c(j0)|Θ)
P (F c(j0)|Θ′)

)

where Θ′ = {θ′
jν} with θ′

jν = θjν for j < j0 and θ′
jν = θ̄jν for j ≥ j0. The second equality

follows from the symmetry of P (F |Θ) described above, and shows that only the fragments covering

site j0 are necessary to compute the connectivity of site j0. The connectivity measures the resilience

of the assembly result against swapping the two haplotypes 0 and 1 in the right part j = j0, . . . , M

of the sites. We refer to this change of parameters Θ → Θ′ as twisting the parameters at site j0.

For each pair of sites (j1, j2) (j1 < j2), we define the minimum connectivity (MC) score as

MC(j1, j2) = min
j1<j≤j2

connectivity(j) .

We extract confidently assembled regions by selecting the pairs (j1, j2) with high MC values. From

the above definition, it is obvious that if the MC value is higher than a given threshold for some

pair (j1, j2), then all the pairs inside range [j1, j2] have MC values higher than the threshold. In this

sense, MC(j1, j2) can be considered as defined on the range [j1, j2].

2.2.1.4 Variational bayesian inference

We use the VBEM algorithm to optimize the parameters Θ [33]. We approxi-

mate the Bayesian posterior distribution P (H, Ψ, Θ|F ) with factorized variational func-

tions Q(H, Ψ, Θ) = QHΨ(H, Ψ) · QΘ(Θ) such that the Kullback-Leibler divergence

KLHΨΘ(Q(H, Ψ, Θ)||P (H, Ψ, Θ|F )) between the two distributions is minimized. The solution

to this optimization problem has the form

QHΨ(H, Ψ) = 1
ZHΨ exp

⎛

⎝
N∑

i=1

∑

h∈H

∑

j∈X(fi)

∑

ν∈∆
Iihjν log(βihjν)

⎞

⎠ ,

QΘ(Θ) =
M∏

j=1
Dir(θj |λj) ,
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where ZHΨ is a normalization constant, βihjν and λjν represent the hyperparameters that specify

the posterior distributions, and Dir(θj |λj) is the Dirichlet probability distribution of |∆| parameters.

Because QHΨ(H, Ψ) and QΘ(Θ) are connected through the dependencies among the hyperparam-

eters, they cannot be found simultaneously. Therefore, we optimize βihjν and λjν by an iterative

method.

In our model, the parameters often converge to sub-optimal solutions, because switch errors

existing in the sub-optimal configurations are not removed by gradual parameter changes. There-

fore, we apply a heuristic procedure that re-runs the VBEM several times with twisted parameter

configurations after every convergence:

1) Do VBEM and calculate the connectivities for all the sites.

2) Do another VBEM with a parameter set Λ that is twisted at a site with low connectivity.

3) Repeat until convergence.

Here, the twist of hyperparameters Λ = {λjν} is defined similarly to that of parameters Θ = {θjν}.

We describe the details of this procedure in the Additional file.

2.2.1.5 Inferring haplotypes

We set pΦ
j (ν) to the posterior mean estimate of θjν with respect to the converged posterior

distribution:

pΦ
j (ν) =

∫
dΘθjνQΘ(Θ) = λjν∑

ν′ λjν′
.

We select the phase ν at site j for which this pΦ
j (ν) is the highest. We limit the predicted haplotype

segments to the regions with high MC values.

2.2.1.6 Possible extensions of the model

In this paper, we consider only the binary representation of heterozygous sites. We also con-

strain the error rate to be constant throughout the sequence. However, some of these constraints

are easily removed. We can include homozygous sites and four nucleotide alleles by expand-

ing the phase set ∆. For example, the phase set of a multi-allelic variant is represented like
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∆ = {(A,C),(A,G),(C,A),(C,G),(G,A),(G,C)}. We can even include small structural variations

if they can be represented by additional allele symbols and the phase set of a structural variant is

represented such as ∆1 = {(A,-),(-,A)} for indel and ∆2 = {("AC","ACAC"),("ACAC","AC")} for

short tandem repeats. With these extensions, the accuracy of genotype calling of multi-allelic vari-

ants from sequencing data might be improved by considering haplotypes simultaneously [34] and

the accuracy and the recall of the haplotype region might be improved because all variant sites add

information to infer the derivation of the fragments. Furthermore, we can make the error probability

matrix pe(σ|σ′) dependent on the alleles of each fragment, which may be useful for incorporating

the quality scores of sequenced reads.

2.2.2 Datasets and data processing

2.2.2.1 Dataset generation

Simulation data were created through a strategy similar to the one reported by Geraci [35].

We first generated M binary heterozygous phase vectors and then we generated SNP fragments

by replicating each haplotype c times and randomly dividing them into subsequences of length

between l1 and l2. We then randomly flipped the binary values of the fragments from 0(1) to 1(0)

with probability e. In the following, we use M = 1000, c = 5, l1 = 3, l2 = 7 and e = 0.1 unless

otherwise mentioned.

For the real data, we used the dataset of Duitama’s work [17], who conducted fosmid pool-based

next-generation sequencing for HapMap trio child NA12878 from the CEU population. NA12878

had about 1.65 × 106 heterozygous sites on autosomal chromosome and the haplotypes of about

1.36×106 sites were determined by a trio-based statistical phasing method [22]. In the fosmid pool-

based next-generation sequencing, the diploid genomic DNA was fragmented into pieces of length

about 40 kilo-bases, and partitioned into 32 pools with low concentration, so that the fragments

were long enough to span several heterozygous sites and each pool rarely contained homologous

chromosomal regions of different haplotypes. Each pool was sequenced separately using a next-

generation sequencer and the read data were mapped onto the reference genome. Since a read

cluster in which the reads were close to each other and had the same pool origin were supposed to

originate from the same DNA fragment, the alleles observed in the same cluster were merged into
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a SNP fragment. Duitama [17] converted the fragment data to a binary representation by collecting

only the alleles of the heterozygous sites determined by the 1000 genomes project. The coverage of

the data was about 3.03. We used the trio-based data and the sequencing data in binary format for

our experiment.

The normalized linkage disequilibrium D′ for the CEU population was downloaded from the

HapMap Project [6].

We compared our MixSIH software with ReFHap [17], FastHare [21], DGS [19], which were

implemented by Duitama [17], and HapCUT [15]. We selected these algorithms because they have

been shown to be superior to other algorithms [17].

For the comparison of the runtimes, we generated simulation data with

M = 100, 200, 500, 1000. We repeated the measurement 10 times for each M and the aver-

age runtimes are reported here. The computations were performed on a cluster of Linux machines

equipped with dual Xeon X5550 processors and 24 GB RAM.

As described in the introduction, our algorithm is focusing on extracting the reliable haplotype

regions. To examine whether we have succeeded in extracting the reliable haplotype regions, an ac-

curacy measure which evaluates the quality of the piecewise haplotype regions is needed. However,

existing accuracy measures are designed to compare the efficiency between the algorithms and are

not suitable for evaluating the quality of the piecewise haplotype regions.

Let Φ(t) be the true haplotypes, and Φ be inferred haplotypes. Because the inferred haplotypes

Φ are sets of partially assembled haplotype segments Φ = (Φ1, Φ2, . . . , ΦB) where each of Φb is

independently predicted, the accuracy measures have to be applicable for such predictions.

Many previous papers used the Hamming distance to measure the quality of assembled haplo-

types [35]:

R(Φ0) = 1 − 1
2M

min
[
D(Φ0, Φ(t)), D(Φ0, Φ̄(t))

]
,

D(Φ, Φ′) =
M∑

j=1

∑

h∈H
I(ϕjh = ϕ′

jh) ,

where Φ0 represents a fully assembled haplotype prediction and I(a = b) represents the indicator

function which assumes 1 if a = b and 0 otherwise. A simple modification of the above formula to
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the partially assembled haplotype segments might be

R′(Φ) = 1 − 1
2M

B∑

b=1
min

[
D(Φb, Φ(t)

b ), D(Φb, Φ̄(t)
b )
]

.

However, this definition is inconvenient because the minimization is applied for each segment and

this accuracy measure can always be improved just by breaking a segment into smaller pieces at

random positions.

The switch error rate [17] is another measure used for comparing SIH algorithms. A switch

error is defined by the inconsistency between Φ and Φ(t) at neighboring heterozygous sites:

(ϕj ,ϕj+1) = (ϕ(t)
j , ϕ̄(t)

j+1) or (ϕ̄(t)
j ,ϕ(t)

j+1). The switch error rate is defined by the total number

of switch errors divided by the total number of neighboring pairs of heterozygous sites in all the

segments. Although the switch error rate is useful for comparing different algorithms, it does not

reflect the global influence of switch errors. Figure 2.2(B) shows the example of the case that the

switch error rate is not suitable to evaluate the quality of the segments. A single switch error in

the middle of a reconstructed haplotype segment has a greater influence on downstream analyses

such as detecting amplified haplotypes [27] than a switch error located at an end of the segment

(top and middle of Figure 2.2(B)). Two contiguous switch errors, which are likely to be caused by

sequencing error or genotyping error, do not disrupt the consistency between front and back parts

of the haplotype segments. However, such two contiguous switch error disrupt twice in terms of

switch error rate (bottom of Figure 2.2(B)).

Here, we propose another simple accuracy measure based on the pairwise consistency of the

prediction with the true haplotypes. This pairwise consistency score is inspired by the D′-measure

of linkage disequilibrium where the statistical correlations among population genomes are measured

for pair sites. Similarly to the switch error, a pair of heterozygous sites j and j′ (j < j′) is defined

as consistent if (ϕj ,ϕj′) = (ϕ(t)
j ,ϕ(t)

j′ ) or (ϕ̄(t)
j , ϕ̄(t)

j′ ), and inconsistent otherwise. A pair (j, j′) in

a haplotype segment is consistent if there is no switch error in range [j, j′] and inconsistent if there

is one switch error in the segment. If there are uncontrolled number of switch errors in range [j, j′],

the probabilities that pair (j, j′) is consistent or inconsistent are both 0.5, which is equivalent to

selecting a random phase at each site (Figure 2.2(A)). For each haplotype segment, we count the

consistent and inconsistent pairs. The total numbers of consistent and inconsistent pairs over all the
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Figure 2.2. Consistency of pair sites. A. a. We assume that the two true haplotypes are the sequences of
all 0 and all 1. b. Inferred haplotypes contain switch errors indicated by the arrows: (i) a consistent pair,
(ii) an inconsistent pair, and (iii) if there are an uncontrolled number of switch errors between a pair, the
probabilities of being consistent or inconsistent are both 0.5. B. The example of the case that switch error
rate is not suitable to evaluate the quality of the segment. The consistency of a reconstructed haplotype which
has single switch error in the middle (top) is high than a reconstructed haplotype which has single switch error
located at an end of the segment, but switch error rate cannot distinguish these situations. Two contiguous
switch errors, which are caused by sequencing error or genotyping error and do not disrupt the consistency
between front and back parts, are regarded as twice of a single switch error in switch error rate (bottom).

haplotype segments are denoted by CP and IP, respectively. We define precision by CP/(CP + IP).

This is used as the measure of accuracy in the later sections. Unlike the switch error rate, this

precision accounts for the global influence of switch errors because a switch error in the middle of

a haplotype segment leads to a much smaller CP than switch errors at an end of the segment.

We define the total prediction space as follows. We consider a graph whose nodes are the set of

all the heterozygous sites. We connect two nodes by an edge if there is a fragment spanning both

the sites. We collect all the connected components with at least two nodes and consider each of the

corresponding clusters of heterozygous sites as an independent segment. The total number of pairs

is the sum of the numbers of all the pair sites over the segments. Although it is rare, there are cases

in which some segments consist of noncontiguous heterozygous sites. For example, segment sets

such as {(1, 4, 5), (2, 3)} and {(1, 3), (2, 4, 5)} may occur for the consecutive heterozygous sites

(1, 2, 3, 4, 5). We define recall as the ratio of the predicted pairs divided by the total number of

pairs. Because the previous algorithms provide no score to limit the prediction to highly confident

regions, recall is always nearly equal to one for these algorithms. On the other hand, our algorithm

is able to make predictions with high precision at the expense of reduced recall.

A more detailed discussions of other accuracy measures is given in the Additional file.
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2.2.2.2 Potential chimeric fragments

The processed sequence data derived from fosmid pool-based next-generation sequencing might

contain chimeric fragments if a pool contains DNA fragments derived from the same region of

different chromosomes and reads with different chromosomal origins are merged into a single SNP

fragment. By using the trio-based haplotypes, we compute the ‘chimerity’ of each SNP fragment f

by measuring the change of its likelihood after breaking it into two pieces:

chimerity(f) = − log
(

maxh∈H P0(f |h)
maxj∈X(f),h∈H P0(f≤j |h)P0(f>j |h̄)

)

,

P0(f |h) = (1 − α0)n(f,h)α|X(f)|−n(f,h)
0 ,

where n(f, h) is the number of sites at which the fragment f matches with the true haplotype h,

f≤j and f>j represent the left and right parts of fragment f divided at site j, and α0 = 0.028 is

the empirical sequence error rate computed by comparing the true haplotypes and all the SNP frag-

ments. We removed potential chimeric fragments with chimerity higher than a given threshold. We

recomputed the accuracies for this removed dataset and compared them with those for the original

dataset.

2.3 Results and discussion

2.3.1 Comparison of pairwise accuracies

We examined whether MixSIH can extract the accurate haplotypes regions by using MC. Fig-

ure 2.3 shows the accuracies derived from counting the consistent pairs. The x-axis is the number

of predicted pairs (CP+IP) and the y-axis is the precision (CP/(CP+IP)). We have also shown the

accuracy for the prediction without the haplotype assembly where the phase of each pair is deter-

mined by majority voting of spanning fragments. Figure 2.3A shows that the precisions of all the

algorithms are around 0.5-0.6 at recall ∼ 1.0, indicating that there are many switch errors in the

predictions and the quality of assembled haplotypes are not much different from picking phases

randomly. By increasing the MC threshold, the precision of MixSIH improves rapidly and becomes
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Figure 2.3. Precision curves based on the consistent pair counts. The x-axis represents the number of
predicted pairs in log scale. The arrows indicate the MC thresholds. The accuracies are computed for the
simulation dataset (A), and the real dataset (B): ! no assembly; ◦ MixSIH; △ ReFHap; + FastHare; × DGS.
In the simulation, we set M = 2000 and repeated the experiment 10 times for each algorithm; average values
are plotted.

close to one around MC = 4 at recall 0.07. The recall of unassembled haplotypes is about 0.005

with precision 0.93, which is 20 times smaller than the recall 0.1 of MixSIH at the same precision.

For the real dataset, the precision of the algorithms is around 0.85 at recall ∼ 1.0, which is much

higher than the precision for the simulation dataset. This is because there are many small fragment

clusters for which the correct haplotypes are easily predicted. The accuracy of MixSIH can still be

improved with precision up to 0.95 at the expense of deleting about 3/5 of weakly supported pairs

from the prediction. However, it does not reach the precision of unassembled haplotype prediction.

We discuss this issue in the next subsection.

2.3.2 Effects of potential chimeric fragments

Inspecting the switch errors in the prediction for the real dataset, we found that there are po-

tential chimeric fragments that have a considerable effect on the pairwise accuracies. A chimeric

fragment is defined as a fragment whose left and right parts match different chromosomes very

well. Such fragments can occur in fosmid pool-based next-generation sequencing data. We show

the chimerity distribution in the Additional file. We computed the accuracy of MixSIH for a frag-

ment dataset in which the fragments with chimerity higher than a given threshold are removed. We
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Figure 2.4. The precisions of the algorithms for the dataset in which fragments with chimerity greater
than 10 are removed. For comparison, the precisions of MixSIH for the original dataset are also shown as
diamonds.

experimented with several chimerity thresholds and we found that the accuracy improves with de-

creasing chimerity thresholds and saturated at about chimerity threshold 10, which corresponded

to the case that only 1.65% (4,482/271,184) of the fragments were removed. We show the accura-

cies for different chimerity thresholds in the Additional file. We also show that the fragments whose

chimerity is over 10 are indeed chimeric in the Additional file. Figure 2.4 shows the precision curves

for the dataset of removed fragments. The accuracies are considerably higher for this dataset, and

the precision now reaches that of the unassembled prediction at recall 0.5 with MC threshold 6.0.

We also show the effects of chimeric fragments on simulation data in the Additional file.

These results suggest that more careful data processing to avoid spurious chimeric fragments is

necessary to obtain high-quality haplotype assembly.

2.3.3 Incorporation of the trio-based data

Although the trio-based statistical phasing method can determine most of the phases of the

sites, there still exist SNP sites whose phases cannot be determined by this method. SIH is capable

of determining the phases which are not determined by the trio-based data, and we can obtain more
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complete haplotypes data by combining both of the SIH-based data and the trio-based data. To

examine how many phases of the sites can be determined anew by combining both of the SIH-based

data and the trio-based data, we devise a method that combines both information to determine the

phases (see the Additional file). By using this method, about 82% (237,950/291,466) of the phases

of the sites which are undetermined by trio-based data could be determined anew and totally about

97% (1,601,381/1,654,897) of the phases could be determined by both the methods. This result

suggests that almost all of the phases of the sites can be determined by using both of the SIH-based

data and the trio-based data.

2.3.4 Spatial distribution of MC values

Figure 2.5A shows an example of the spatial distribution of the MC values for the real dataset.

The regions that are densely covered tend to have large MC values. On the other hand, the MC values

are low in chromosomal regions with sparse heterozygous sites because few fragments span two or

more sites. Figure 2.5B shows the density plot of MC values which are converted to the correspond-

ing precisions using the graph of Figure 2.5B, and the absolute normalized linkage disequilibrium

|D′|. SIH can accurately infer the haplotypes in many regions with low linkage disequilibrium, but

there are also regions with reduced precision and high |D′| values. This suggests that the accuracy

of predictions might be improved by using both pieces of information.

2.3.5 Dependency of MC values on the fragment parameters

Figure 2.6 shows the dependency of MC values on the quality of the input dataset. In these fig-

ures, the minimal MC threshold that achieves precision ≥ 0.95 (y-axis) is plotted for different frag-

ment length ranges [l1, l2] (three panels), coverages c (three lines), and error rates e (x-axis). They

show that the MC threshold must be increased to obtain high-quality assembly for low-coverage,

highly erroneous data, while it has a minor dependence on the typical fragment length. However, the

overall scale of the MC threshold changes relatively moderately and it is bounded above at MC = 6

for the tested cases. We also calculated the dependency of MC values on the input dataset which

include chimeric fragments and the results were almost the same (see the Additional file). Hence

we set the default MC threshold to 6.0 in our software.



22

Figure 2.5. Spatial distribution of MC and LD. A. A colored density plot of the MC values and the number
of fragments. The x-axis represents the coordinates of heterozygous sites. The actual locations of the sites
in genome coordinates are shown by thin black diagonal lines and the black horizontal line represents a 10-
11 megabase region of chromosome 20. The upper densities represent the connectivity values. The lower
densities represent the number of fragments spanning the pair sites. B. A colored density plot of the precisions
(upper) and the absolute normalized linkage disequilibrium |D′| (lower) for the same region.
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Figure 2.6. Dependency of the lowest MC value with precision ≥ 0.95 for coverage c, fragment length
[l1, l2], and error rate e. The experiments were repeated 10 times, and the average values are plotted.

2.3.6 Optimality of inferred parameters

We use a heuristic method for parameter optimization to avoid sub-optimal solutions. To test

whether the optimized parameters actually reach the global optimum, we compared the log like-

lihood of the optimized parameters with the approximate maximal log likelihood obtained by op-

timizing the parameters with an initial condition in which the optimal solution falls into the set

of true haplotypes; we add one to the Dirichlet parameters for the true phase probability: that is,

λjν = λ(0)
jν +1 if ν = ϕ(t)

j and λjν = λ(0)
jν otherwise, where λ(0)

jν is hyperparameters of the Dirichlet

distribution and ϕ(t)
j is the true phase at site j. Figure 2.7 shows the changes of the log likelihood

for each twist operation. It also shows the connectivity values at the sites where the parameters

Λ are twisted. The log likelihood increases monotonically and reaches the approximate maximal

likelihood after 50 twist iterations. The connectivity values also increase monotonically in most

cases. The figure implies that the parameters converge to the global optimum upon repeating the

twist operation.

2.3.7 Comparison of running times

Figure 2.8 shows the runtimes of the test programs. Bansal released the faster version of Hap-

CUT recently, so we calculated the runtimes of both latest and previous version of HapCUT. Our
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Figure 2.7. Increase of log likelihood values for each iteration. The dotted line represents the approximate
maximal log likelihood; the solid line, the changes of the optimized log likelihood for each twist operation;
the broken line, the connectivity values at the positions that the optimizing parameters are twisted.

method applies the VBEM algorithm repeatedly and hence is rather slow. It is comparative to Hap-

CUT(previous versoin) and about 10-fold slower than both ReFHap and HapCUT(latest versoin),

and from 50-fold to 500-fold slower than both FastHare and DGS. Considering that NA12878 has

about 1.23 × 105 heterozygous sites on chromosome 1, it is roughly estimated that MixSIH takes

about 15 days to finish haplotyping for the data whose connected component includes all heterozy-

gous sites, and MixSIH is still manageable for such chromosome-wide data.

2.4 Conclusions

With advances in sequencing technologies and experimental techniques, single individual haplo-

typing (SIH) has become increasingly appealing for haplotype determination in recent years. In this

paper, we have developed a probabilistic model for SIH (MixSIH) and defined the minimal connec-

tivity (MC) score that can be used for extracting accurately assembled haplotype segments. We have

introduced a new accuracy measure, based on the pairwise consistency of the inferred haplotypes,

which is intuitive and easy to calculate but nevertheless avoids some of the problems of existing

accuracy measures. By using the MC scores our algorithm can extract highly accurate haplotype

segments. We have also found evidence that there are a small number of chimeric fragments in an
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Figure 2.8. The running times of the tested algorithms. The x-axis is the number of sites. The y-axis is the
running time in seconds. Both are displayed on a logarithmic scale.

existing dataset from fosmid pool-based next-generation sequencing, and these fragments consider-

ably reduce the quality of the assembled haplotypes. Therefore, a better data processing method is

necessary to avoid creating chimeric fragments.

Our program uses only read fragment data derived from an individual. However, it is expected

that more powerful analyses could be made by combining SIH algorithms with statistical haplotype

phasing methods that use population genotype data. An interesting possibility would be to construct

a unified probabilistic model that infers the haplotypes on the basis of both kinds of data.
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2.5 Supplementary text

2.5.1 Difference Between Our Model and Existing Models

There are a number of differences between our model and those of [18] and [20]. Our model

takes a ‘mixture model’ approach: each fragment is emitted independently of the other fragments

and a partial phase vector Φ(i) ∈ ∆(fi) is independently drawn for each fragment fi:

P (F |Θ) =
∑

H∈H⊗N

N∏

i=1

∑

Φ(i)∈∆(fi)
P (fi|hi, Φ(i))pm(hi)P (Φ(i))

On the other hand, [18] and [20] take a ‘hidden variables’ approach: the model first draws a full-

length phase vector Φ, then all the fragments are emitted from this common phase vector Φ:

P (F |Θ) =
∑

Φ∈∆⊗M

P (Φ)
∑

H∈H⊗N

N∏

i=1
P (fi|hi, Φ)pm(hi)

Although their model might look somewhat more natural, since the fragments are actually derived

from the fixed true chromosomes, the computation of the likelihood function is quite costly; we

need either to traverse all the |∆|M -phase patterns (where |∆| is the number of possible phases at

each site), or to traverse all the 2|F c(j)|-patterns for assigning haplotype origins hi ∈ H to covering

fragments fi ∈ F c(j) for each site j. Therefore, it is impractical to use their model to compute a

likelihood for genome-scale data. On the other hand, our model considers only one fragment at a

time and the complexity of the likelihood computation is only |∆| ×
∑N

i=1 |X(fi)|. Although our

model loses some complicated correlations among fragments, it still takes into account the allele

co-occurrences within each fragment.

2.5.2 Variational Bayes Expectation Maximization Algorithm

We set the prior probabilities for parameters Θ to be those of the Dirichlet distribution with

hyperparameters Λ(0) = {λ(0)
jν }:

P (Θ) =
M∏

j=1
Dir

(
θj |λ(0)

j

)

Dir(θj |λ(0)
j ) = Z

(
λ(0)

j

)−1∏

ν

(θjν)λ
(0)
jν ,
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Z
(
λ(0)

j

)
=
[∏

ν Γ
(
λ(0)

jν

)]
/Γ
(∑

ν λ
(0)
jν

)
,

where Γ(x) is the gamma function, and we set λ(0)
jν = 0.5 for all j and ν.

The solutions for QHΨ(H, Ψ) and QΘ(Θ) have the form

QHΨ(H, Ψ) = 1
ZHΨ exp

⎛

⎝
N∑

i=1

∑

h∈H

∑

j∈X(fi)

∑

ν∈∆
Iihjν log(βihjν)

⎞

⎠ ,

QΘ(Θ) =
M∏

j=1
Dir(θj |λjν) ,

where ZHΨ represents a normalization constant and βihjν and λjν are the hyperparameters that

specify the posterior distributions. Because QHΨ(H, Ψ) and QΘ(Θ) are dependent on each other

through the dependencies among the hyperparameters, they cannot be found simultaneously. There-

fore, we optimize βihjν and λjν by repeating two computational procedures, called VBE and VBM.

In the VBE step, we calculate the expectations

γihjν =
∑

HΨ
IihjνQHΨ(H, Ψ) = γ(1)

ih γ
(2)
ihjν ,

γ(1)
ih =

∏
j∈X(fi)(

∑
ν∈∆ βihjν)

∑
h′
∏

j∈X(fi)(
∑

ν∈∆ βih′jν) ,

γ(2)
ihjν = βihjν∑

ν′∈∆ βihjν′
.

In the VBM step, we update the Dirichlet parameters λjν and then compute expectation wjν as

well as βihjν :

λjν = λ(0)
jν +

N∑

i=1

∑

h∈H
γihjν ,

wjν =
∫

dΘ log(θjν)QΘ(Θ) = ψ(λjν) − ψ (∑ν λjν) ,

βihjν = pe(fij |νh) exp(wjν) .

2.5.3 Iterative Twist Operations to Avoid Sub-optimal Solutions

We optimize the parameters as follows.
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Figure 2.9. Increase of log likelihood values for each iteration. The dotted line represents the approximate
maximal log likelihood; the solid line, the changes of the optimized log likelihood for each twist operation;
the broken line, the connectivity values at the positions that the optimizing parameters are twisted.

1) Set λ(0)
kν = 0.5 for all k and ν and initialize Λ with λkν = λ(0)

kν + rkν . Here, rkν are random

numbers sampled from the uniform distribution in the range [0.0, 0.1]. They are necessary

to avoid the symmetric point of the likelihood function. Let S be the empty set, and set

score = −∞ and Λ1 = Λ.

2) Do variational Bayes expectation maximization [33] with initial parameter Λ1 until the pa-

rameters converge or the number of iterations exceeds a given limit (100). Let score′ and Λ′

denote the converged likelihood and converged parameter set, respectively.

3) If score < score′ then set score = score′, Λ = Λ′.

4) Select the site j out of sites X \ S that has the smallest connectivity cj with respect to the

model Λ.

5) Add j to S if j has already been selected once in the previous iterations.

6) Set Λ1 = Λ and twist Λ1 at site j. (The concept of ‘twisting’ is described in ‘The Minimum

Connectivity Score’ subsection in the main paper.)

7) If cj > 7.0 or X = S, then terminate, otherwise go to step 2.

2.5.3.1 Optimality of Inferred Parameters

We use a heuristic method for parameter optimization to avoid sub-optimal solutions. To test

whether the optimized parameters actually reach the global optimum, we compared the log like-
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lihood of the optimized parameters with the approximate maximal log likelihood obtained by op-

timizing the parameters with an initial condition in which the optimal solution falls into the set

of true haplotypes; we add one to the Dirichlet parameters for the true phase probability: that is,

λjν = λ(0)
jν +1 if ν = ϕ(t)

j and λjν = λ(0)
jν otherwise, where ϕ(t)

j is the true phase at site j. Figure 2.9

shows the changes of the log likelihood for each twist operation. It also shows the connectivity val-

ues at the sites where the parameters Λ are twisted. The log likelihood increases monotonically and

reaches the approximate maximal likelihood after 50 twist iterations. The connectivity values also

increase monotonically in most cases. The figure implies that the parameters converge to the global

optimum upon repeating the twist operation.

2.5.4 Comparison of Accuracy Measures

Because of the equivalence of predictions between the switched haplotypes as explained above,

measuring the difference between Φ(t) and Φ is nontrivial. Many previous papers used the Hamming

distance to measure the quality of assembled haplotypes [35]:

R(Φ) = 1 − 1
2M

min
[
D(Φ, Φ(t)), D(Φ, Φ̄(t))

]
,

D(Φ, Φ′) =
M∑

j=1

∑

h∈H
I(ϕjh = ϕ′

jh) ,

where I(a = b) represents the indicator function which assumes 1 if a = b and 0 otherwise. This

definition is not appropriate when we consider the accuracy of multiple, partially resolved haplo-

type segments. For example, there is no way for the SIH algorithms to relate the haplotypes of

chromosome 1 to those of chromosome 2 because there is no fragment that overlaps with both the

chromosomes. It is also impossible for any SIH algorithm to relate the haplotypes of two con-

secutive regions if there is no fragment that overlaps with both regions. Furthermore, we wish to

extract confidently assembled sub-regions using the minimum connectivity thresholds. Therefore,

it is desirable for the accuracy measures to allow comparisons on the set of partially assembled

haplotype segments. We now consider a simple extension of the Hamming distance measure. Let

Φ = (Φ1, Φ2, . . . , ΦB) be the set of partially assembled haplotype segments with M total sites,



30

then a simple modification of the above formula might be

R′(Φ) = 1 − 1
2M

B∑

b=1
min

[
D(Φb, Φ(t)

b ), D(Φb, Φ̄(t)
b )
]

.

However, this definition is inconvenient because the minimization is applied for each segment and

this accuracy measure can always be improved just by breaking a segment into smaller pieces at

random positions.

The switch error rate [17] is another measure used for comparing SIH algorithms. A switch

error is defined by the inconsistency between Φ and Φ(t) at neighboring heterozygous sites:

(ϕj ,ϕj+1) = (ϕ(t)
j , ϕ̄(t)

j+1) or (ϕ̄(t)
j ,ϕ(t)

j+1). The switch error rate is defined by the total number

of switch errors divided by the total number of neighboring pairs of heterozygous sites in all the

segments. Although the switch error rate is useful for comparing different algorithms, it does not

reflect the global influence of switch errors. For example, a single switch error in the middle of a

reconstructed haplotype segment has a greater influence on downstream analyses, through incorrect

prediction of allele co-occurrences, than a switch error located at an end of the segment.

There are other measures, such as the minimum number of entries to correct (MEC) [36], the

adjusted N50 (AN50) and its variants S50, N50 [37], and the quality adjusted N50 (QAN50). Apart

from QAN50, these measures do not use the true haplotypes and there is no guarantee that the

correct haplotypes have a higher score than incorrect ones. The procedure to compute the QAN50

score is complex and can be roughly described as follows. First the prediction is broken into smaller

segments that do not contain any switch errors. For each segment an adjusted length score, which

is the segment length in the reference genome multiplied by the proportion of heterozygous sites

inside of the segment, is assigned. The segments are sorted in order of decreasing adjusted length

scores and AN50 is defined as the threshold score such that half of heterozygous sites are covered

by segments with scores greater than the threshold. Although this measure accounts for both the

quality and segment sizes of the reconstruction, the complex interactions between inhomogeneity of

the SNP density and fragment coverage seem to make it difficult to understand the practical utility

of SIH algorithms by using their QAN50 scores.

In comparison to the switch error rate, which cannot account for genotyping errors in homozy-

gous sites, the pairwise consistency score works without modification in the cases where homozy-
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Figure 2.10. Chimerity distribution of the real dataset.
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Figure 2.11. The precisions for the original dataset (◦) and the datasets in which the fragments with
chimerity greater than 5 (△), 10 (+), and 30 (×) are removed.

gous sites are included in the prediction space. Furthermore, although the notion of pairwise con-

sistency is applicable to haplotype segments that are not made up of simple contiguous sites, the

definition of a switch error for such segments is somewhat ambiguous.

2.5.5 Potential Chimeric Fragments

Figure 2.10 shows the chimerity distribution of real data [17], which indicates that only a small

proportion of the data has high chimerity. Figure 2.11 shows the accuracies for different chimerity

thresholds, which suggests that the improvement of the accuracies saturates at around chimerity

threshold 10.
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Chapter 3

Integrating dilution-based sequencing

and population genotypes for single

individual haplotyping

3.1 Background

Advances in experimental techniques for DNA sequencing and genotyping have made it possi-

ble to determine many individual human genomes and detect variations, such as single nucleotide

polymorphisms (SNPs) [22, 38]. This has brought about great progress in genome analyses, such

as genome-wide association studies (GWAS) [39], inference of population structure [40], and ex-

pression phenotypes [41]. However, most technologies give only genotype information and most

current research does not determine the haplotype origin of the variations. Haplotypes contain more

detailed information than genotypes and are valuable for GWAS [5], and for analyzing genetic

structures such as linkage disequilibrium, recombination patterns [38], and correlations between

variations and diseases [7].

Determining haplotypes experimentally is difficult, and there are three main computational ap-

proaches for haplotype inference. The first approach is the statistical phasing method, which infers

population haplotypes from population genotypes using statistical computation [8–11, 13]. Algo-

rithms for statistical phasing have been developed in response to technological advances for geno-

typing, and its basis is that the diversity of haplotypes is limited, and there are conserved haplo-



33

types [42]. Because of the strategy, statistical phasing does not work well in chromosomal regions

which exhibit several different haplotypes, particularly regions of low linkage disequilibrium. This

approach is also weak in inferring long haplotypes because the complexity of population haplotypes

increases exponentially according to the number of SNPs.

In the second approach, haplotypes are inferred from genotypes of pedigrees. For example, a

child’s haplotypes are determined from the genotypes of child and its parents (trio-based haplotyp-

ing). The origin of child’s alleles can be determined if only one of the parents has the same alleles.

However, the haplotypes of sites at which all family members have the same genotype cannot be

determined and, furthermore, family genotype data are not always available. In addition, neither the

statistical phasing method nor this approach can identify spontaneous mutations.

The third approach uses DNA sequencing data and is called single individual haplotyping (SIH)

or haplotype assembly [14–21, 43]. SIH utilizes the fact that each sequenced read is derived from

only one of the haplotypes. If a read spans two or more heterozygous sites, the haplotype can be

determined from the co-occurrence of alleles in the read. Two reads are determined to originate

from the same chromosome if they overlap at a region that has at least one heterozygous site, and

they have the same alleles at these sites.

SIH did not attract much attention until recently, since it needed long DNA sequencing reads that

spanned multiple heterozygous sites, and obtaining such reads quickly and economically was dif-

ficult. However, this situation is changing rapidly with the advent of new experimental techniques,

such as fosmid pool-based next-generation sequencing [17, 24, 25], long read fragment technol-

ogy [44], and dilution-amplification-based sequencing [45] that can produce virtual long reads. In

these methods, long DNA fragments are separated into distinct low-concentration aliquots which

each contain less than one fragment per chromosomal region. After sequencing an aliquot with a

next-generation sequencer and mapping short reads, clusters are formed in which the reads are close

to each other. A cluster corresponds to a long DNA fragment and is supposed to be derived from a

single haplotype. Thus, virtual long reads can be obtained by merging the short reads in a cluster

(see Figure 3.1).

Although such experimental techniques are sophisticated, they have the problem of producing

chimeric fragments whose left and right parts match different chromosomes very well. Because long

DNA fragments are separated into aliquots randomly, there are cases where an aliquot has some long
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DNA fragments derived from the same region of different chromosomes and, consequently, reads

with different chromosomal origins are regarded as one cluster and merged into a single fragment

(see Figure 3.1). In the process of developing MixSIH [43], which is the first SIH algorithm that

can evaluate the reliability of a haplotype region, we have shown that such chimeric fragments

significantly decrease the accuracy of SIH. This is because the chimeric fragments can lead to

opposite haplotypes between right and left of haplotype regions.

In our previous study we detected chimeric fragments under the condition that parents genotypes

were given. However, independence from pedigree data is one of the advantages of SIH and, there-

fore, it is common to assume that pedigree genotypes are not available. Even if pedigree genotypes

are available, there are regions whose haplotypes are not determined from pedigree genotypes and

the chimeric fragments in such regions cannot be detected with the previous method. The length

of a reads cluster and heterozygous calls in a reads cluster were also used for detecting chimeric

fragments [17]. The length of a reads cluster which correspond to a chimeric fragment will be

larger than that of most reads clusters because reads with different long DNA fragment origins are

regarded as one cluster and merged into one fragment. In addition, if there are some heterozygous

SNPs in an overlapped region where reads with different haplotype origins coexist, these SNPs will

show heterozygous calls in a reads cluster. Although some chimeric fragments will be detected

with cluster length and heterozygous calls, considerable number of chimeric fragments will be left

behind because of the dispersion of the cluster lengths, and non-detection of the heterozygous calls

in the overlapped regions due to the lack of coverage and absence of heterozygous SNPs. For these

reasons, chimeric fragment detection method which does not depend on pedigree genotypes and can

detect chimeric fragments which are overlooked by the cluster length and the heterozygous calls is

necessary to obtain high quality assembled haplotypes.

In this paper, we propose a general method to detect chimeric fragments without using pedigree

genotypes. Our method is based on the assumption that chimeric fragments are derived artificially

and differ from the biological conserved haplotypes in the population. Under this assumption, we

use population genotypes to evaluate inconsistency between virtual long read and inferred haplo-

types.

Previous researches showed that the quality of haplotype inference will increase by integra-

tion of SIH and statistical phasing [46–48]. These approach basically consider the SNP fragments
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Figure 3.1. An illustration of dilution-based sequencing. (i) The DNA fragments are separated into multiple
low-concentration dilutions. (ii) After sequencing and mapping an aliquot, mapped reads form clusters which
correspond to DNA fragments. (iii) Clusters are merged into read fragments and result in natural fragments
(a), (b) and a chimeric fragment (c). Chimeric fragments are produced when short reads derived from multiple
DNA fragments are regarded as one cluster.

as reliable information sources and use population haplotypes to supplement inferred individual

haplotypes. Therefore, these approaches will not be suitable for preventing the effect of chimeric

fragments, which are unreliable and can lead to incorrect haplotypes. Our research presents the

importance of considering chimeric fragments in SIH and proposes a novel strategy for integration

by focusing on the process of dilution-based sequencing.

We applied our method to two real datasets and showed that the chimeric fragments could be

detected with high accuracy. Moreover, we compared the accuracy of multiple SIH algorithm for be-

fore and after removing chimeric fragments candidates. We found that accuracy of assembled hap-

lotypes improved considerably after chimeric fragment candidates were removed using our method.

In addition, we found that SIH algorithm successfully inferred long haplotypes and showed the

usefulness of SIH.

3.2 Methods

3.2.1 Notation

Throughout the paper, we denote chimeric fragment as CF, and natural fragment as NF.
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Because SIH is trivial for homozygous sites and because it is usually much easier to deter-

mine the genotype than to determine the haplotypes, we focus on heterozygous sites and rep-

resent heterozygous alleles by a simple binary representation. Fragments from which the ho-

mozygous sites have been removed are called SNP fragments. SNP fragments are represented by

F = {fi|i = 1, . . . , N}, and fragment fi takes value fij ∈ {0, 1} at site j if fi covers the site. We

denote the set of sites which fi covers by X(fi).

3.2.2 Statistical phasing method

In this paper, we describe a method to detect CFs by using statistical phasing. The statistical

phasing method estimates haplotypes from population genotype data based on the fact that the

diversity of local haplotypes is low.

Here, we use the software PHASE (version 2.1.1) with default settings for statistical phas-

ing [10, 11]. PHASE infers haplotypes of the specified set of SNPs S using the Gibbs sampling

method which samples each individual in a random order, updates the individual haplotypes under

the assumption that all the other haplotypes are given, and repeats this process. PHASE outputs

several candidate haplotypes and their probabilities for each individual. In detecting CFs, we are

interested in the individual haplotypes of the individual who is the target of SIH and denote the set

of candidate haplotypes for the individual by H(p) = {H(p)
i |i = 1, ..., M}, where M is the number

of candidates and H(p)
i is composed of the haplotype pair H(p)

i0 and H(p)
i1 . H(p)

ij is composed of the

set of H(p)
ijk (k ∈ S) which represent the binary allele of the haplotype H(p)

ij at site k. We denote the

probability of H(p)
i for the individual by P (H(p)

i ).

3.2.3 Chimeric fragment detection model

We model probabilities that a fragment fi is NF (P n(fi)) and CF (P c(fi)), and develop an indi-

cator for detecting CF with these probabilities. Upon the calculation of the NF and CF probabilities

of a fragment, we obtain H(p) and P (H(p)
i ) by running PHASE for S = X(fi).

The NF probability of fragment fi is composed of the probability of the individual haplotypes

and the probability of the SNP fragment given the haplotypes:

P n(fi) =
M∑

j=1
P (H(p)

j )P n(fi|H(p)
j ) ,
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P n(fi|H(p)
j ) = 1

2
(
P n(fi|H(p)

j0 ) + P n(fi|H(p)
j1 )

)
,

P n(fi|H(p)
jk ) =

∏

l∈X(fi)
P (fil|H

(p)
jkl) ,

P (fil|H
(p)
jkl) =

⎧
⎪⎪⎨

⎪⎪⎩

(1 − α) for fil = H(p)
jkl

α for fil ̸= H(p)
jkl ,

where α is a error term to deal with sequencing and PHASE errors. In this paper, we use α = 0.01

(the effect of changing α is described in the Additional file).

The CF probability is similar to the NF probability, but the probability of SNP fragments given

haplotypes is slightly different. P c(fi|H(p)
jk ) is calculated by assuming that left and right parts of fi

are derived from different haplotypes in a haplotype pair:

P c(fi) =
M∑

j=1

(

P (H(p)
j )1

2

1∑

k=0
P c(f |H(p)

jk )
)

,

P c(fi|H(p)
jk ) =

∑

l∈X(fi)

⎛

⎝
∏

m≤l

P (fim|H(p)
jkm)

∏

m>l

P (fim|H(p)
jk̄m

)

⎞

⎠ ,

where 0̄ = 1 and 1̄ = 0. Although we assume that the CF changes the origin of haplotype only

once, it is possible that a CF changes the derivation many times over. However, such a CF would be

rare and the CF probability given above would, in such a situation, approximate the result obtained

by marginalizing over the switched sites.

Using these probabilities, we would like to define an indicator that evaluates the degree of

artificiality of a recombinant SNP fragment which we will call the ‘chimerity based on statistical

phasing’ (CSP). In principle, we would like to use

CSP(fi) = ln P c(fi) − ln P n(fi) .

However, because the number of possible haplotypes and their combinations increase expo-

nentially and the running time of PHASE increases according to SNP fragment size, we use a

sliding-window approach to calculate CSP if the size of a SNP fragment is over sliding window



38

width:

CSP(fi) = max
β∈X′(fi)

(
ln P c(f (β,β+W −1)

i ) − ln P n(f (β,β+W )−1
i )

)
,

where f (β,β+W −1)
i is the partial fragment of fi which starts from the βth site and whose size is

W . X ′(fi) is X(fi) in which X(f (γ,γ+W −1)
i ) is removed, where f (γ,γ+W −1)

i is the rightmost

partial fragment. W is the sliding window width and we use W = 5 for the default setting (see the

Additional file for the effect of changing W ). In the process of sliding window calculation, H(p)

and P (H(p)
i ) are obtained by running PHASE for S = X(f (β,β+W −1)

i ).

We detect the CF candidates in a set of SNP fragments by selecting the SNP fragments whose

CSP are larger than a threshold.

3.2.4 Cluster length and heterozygous calls for detecting chimeric fragment

In the previous research, the length of a reads cluster and heterozygous calls in a reads cluster

were used for filtering CFs [17]. Because a CF is produced when two long DNA fragments are

regarded as one reads cluster, the length of reads cluster (cluster length) which corresponds to s

CF tends to be larger than that of reads clusters which corresponds to NFs. Therefore, CFs can be

detected by selecting the SNP fragments whose cluster length are over than a threshold. Moreover,

if there are some heterozygous SNPs in a overlapped region and there are enough coverage, reads

in a reads cluster will show heterozygosity. Because there are several evaluation for heterozygous

calls in a reads cluster, we used three measure, the total number of reads which cover minority allele

(total heterozygosity), maximum of the rate of the minority allele (maximum heterozygosity), and

average of the rate of the minority allele (average heterozygosity) (see the Additional file for the

detailed definition). We compare the performance of CSP with that of methods based on cluster

length and heterozygosity.

3.2.5 Recovering SNP fragments from CF candidates

The CSP method might regard NFs as CF candidates when the NFs differ from population hap-

lotypes due to rare variants or spontaneous recombination. To recover such NFs from CF candidates,

we use coverage data. Because CFs are produced when an aliquot happens to contain some DNA
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fragments which cover the same regions, CFs would be distributed randomly. Therefore, if there

are many CF candidates that cover the same regions, they would be NFs. We, therefore, recover

the CF candidates which fulfill a coverage threshold condition. However, CFs might be accidentally

located in a high coverage region and, therefore, we run SIH for recovered SNP fragments, calculate

the chimerity based on inferred haplotypes, and remove SNP fragments whose chimerity is larger

than a threshold. The detailed process and results are shown in the Additional file.

3.2.6 Mixture model for SIH

We have previously developed a mixture model for SIH (MixSIH) [43]. Our model provides a

confidence score for haplotype regions, and we could extract reliable haplotype blocks using this

confidence score.

Here, we give a brief explanation of MixSIH. The probability distribution of the observed SNP

fragments F were modeled by parameter Θ, which represents the phase of each site. P (F |Θ) can be

represented by the indicator function that represents the haplotype origin of fragments. We used the

VBEM algorithm to optimize Θ with the indicator function, and inferred haplotypes from optimized

Θ.

In SIH, the associations in each segment are almost random if the number of connecting frag-

ments is not sufficient or there are many conflicting fragments. Such sites often cause switch errors

and, therefore, we need a method to evaluate the reliability of the connection of the haplotypes.

With the optimized parameters, we defined the connectivity at site j0 as a ratio of the marginal log

likelihoods:

connectivity(j0) = P (F |Θ)
P (F |Θ′) ,

where Θ′ correspond to a recombinant of Θ at site j0. The connectivity measures the resilience of

the assembly result against swapping the two haplotypes at site j0.

We extended the idea of connectivity to give a confidence score for a region. For the region

[j1, j2](j1 < j2), we defined the minimum connectivity (MC) sore as

MC(j1, j2) = min
j1<j≤j2

connectivity(j) .
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We can extract reliable assembled blocks by selecting regions with high MC values.

3.2.7 CF detection based on trio-based haplotypes

We defined the chimerity used to detect CF by using trio-based haplotypes in our previous

research and use this indicator to define the true dataset.

chimerity(fi) = − ln

⎛

⎜⎜⎝
maxj=0,1 P t(fi|H(t)

j )
max j=0,1

k∈X(fi)
P t(fi,≤k|H(t)

j )P t(fi,>k|H(t)
j̄

)

⎞

⎟⎟⎠

P t(fi|H(t)
j ) =

∏

k∈X(fi)
P0(fik|H(t)

jk ) ,

P0(fik|H(t)
jk ) =

⎧
⎪⎪⎨

⎪⎪⎩

(1 − α0) for fik = H(t)
jk

α0 for fik ̸= H(t)
jk ,

where H(t) = (H(t)
0 , H(t)

1 ) is the pair of true haplotypes which are determined by trio-based haplo-

typing, fi,≤k and fi,>k represent the left and right parts of fragment fi divided at site k, and α0 is

the sequence error rate term. We define a CF as being an SNP fragment whose chimerity is over a

threshold.

3.2.8 Dataset and data processing

For the sequencing data, we used the data from Kaper et al. [45] and Duitama et al. [17]. Kaper

and coworkers diluted and distributed long DNA fragments into physically distinct aliquots, while

Duitama and coworkers partitioned long DNA fragments into distinct low-concentration aliquots

using fosmid clones. The aliquots were sequenced using next-generation sequencers. After mapping

the short reads onto the reference genome, short reads formed clusters in which the reads were close

to each other. Each cluster corresponded to a long DNA fragment and was supposed to originate

from the same haplotypes and, therefore, the alleles observed in a cluster could be merged into a

SNP fragment. In the above procedure, CFs would be produced because an aliquot might contain

some long DNA fragments derived from the same region of a different chromosome, and reads with

different chromosomal origins might be merged into a single SNP fragment (Figure 3.1).

Both groups conducted analyses of the HapMap trio child NA12878 from the CEU population
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[38]. NA12878 had about 1.65 × 106 heterozygous sites on an autosomal chromosome and the

haplotypes of about 1.36 × 106 sites were determined by a trio-based phasing method [22].

We aligned Kaper’s data and Duitama’s data to a human reference genome (hg18) using bowtie

(version 1.0.0) and bfast (version 0.7.0), respectively. We identified read clusters that corresponded

to long DNA fragments by using the targetcut function of SAMtools (version 0.1.19), and converted

the clusters into SNP fragments by majority decision at the alleles of the heterozygous sites deter-

mined by the 1000 genomes project [22]. SNP fragments whose sizes were below 1 were discarded.

Accordingly, 323,734 and 212,351 of SNP fragments were found for Kaper’s data and Duitama’s

data, respectively. The average SNP fragment size in Kaper’s (Duitama’s) data was about 8.8 (22.6),

and the average coverage of SNP fragments was 1.7 (2.9).

Next, we implemented filtering step for the reads cluster data to filter CFs by using the cluster

length and heterozygous calls. This step is based on the preprocessing method proposed by previ-

ous research [17]. The reads cluster were divided into multiple reads clusters at the SNPs which

show heterozygous calls. The heterozygous call was defined so that either one of the following

two conditions were satisfied: (1) the number of reads which contain minority allele is larger than

half the average coverage of the aliquot; (2) the number of reads which contain minority allele is

larger than half of the number of reads which contain majority allele. The reads cluster which is

significantly large (>30kb for Kaper’s data and >45kb for Duitama’s data) are divided into multiple

reads cluster so that each cluster length is below threshold (30kb and 45kb, respectively). Accord-

ingly, 346,417 and 436,543 of SNP fragments were found for Kaper’s data and Duitama’s data,

respectively. The average SNP fragment size in Kaper’s (Duitama’s) data was about 8.0 (10.2), and

the average coverage of SNP fragments was 1.7 (2.7). Hereafter, we designate this procedure as

filtering.

In addition, we also used the original SNP fragments data of Duitama’s data which was down-

loaded from http://owww.molgen.mpg.de/~genetic-variation/SIH/data/. We designate this

dataset as Duitama’s SNP fragments.

For statistical phasing, we used CEU population genotypes downloaded from the 1000 genomes

project. To exclude the bias of related genotypes, the parents genotypes were removed. In total,

61 genotypes including NA12878 itself were used for PHASE. The influence of the number of

individuals is discussed in the Additional file.
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For SIH, we used ReFHap [17], FastHare [21], and DGS [19], which were implemented by

Duitama [17] in addition to MixSIH.

3.2.9 Accuracy measure for CF detection

To evaluate the detection of CFs by CSP, we defined true NFs and CFs by using chimerity. A true

CF was defined to be an SNP fragment which satisfies chimerity ≥ 2 ln(α0/(1 − α0)), and a true

NF was an SNP fragment which satisfies chimerity < 2 ln(α0/(1 − α0)). However, the chimerity

of fragments for which haplotypes of the region could not be determined by trio-based haplotyping

could not be calculated. For this reason, we removed such fragments from the evaluation. We

defined sensitivity and specificity as the proportion of CFs which are detected and the proportion of

the NFs which are detected by mistake, respectively.

Based on the chimerity threshold, the number of NFs and CFs in Kaper’s data (before filtering)

are 283,270 and 6,864, respectively, while the number of NFs and CFs in Duitama’s data (before

filtering) are 188,928 and 13,063, respectively. After filtering with cluster length and heterozygous

calls, the number of NFs and CFs in Kaper’s data are 304,423 and 3,830, respectively, while the

number of NFs and CFs in Duitama’s data are 384,857 and 6,381 respectively. The results of

Duitama’s SNP fragments are shown in the Additional file.

The CF rate of Duitama’s data (before filtering) (6.5%) is larger than that of Kaper’s data (be-

fore filtering) (2.4%) because Duitama’s experimental approach tends to contain long DNA frag-

ments from the same regions in a single aliquot, which results in CFs. Kaper separated long DNA

fragments into 196 aliquots so that each aliquot would have a low concentration while Duitama

separated fragments into 32 aliquots. Moreover, the DNA fragments in Duitama’s data are longer

than those of Kaper’s data and the longer the DNA fragments are, the higher the probability that the

DNA fragments overlap.

Although it is better for SIH to have fewer CFs, one cannot say unconditionally that Kaper’s

data is better than Duitama’s data. This is because longer DNA fragments result in longer SNP

fragments which are useful for assembling haplotypes. Moreover, from the perspective of efficiency

and cost, separating long DNA fragments in more aliquots is difficult. For these reasons, each of

the experimental approaches has merits and demerits.
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3.2.10 Accuracy measure for SIH

To evaluate the accuracy of the partially assembled haplotype, we defined a pairwise accuracy

measure in previous research [43]. Let H(t) be the true haplotypes, and Ĥ = (Ĥ1, Ĥ2, . . . , ĤB)

be the inferred haplotypes blocks. A pair of heterozygous sites j and j′ (j < j′) was defined as

consistent if (Ĥi,j , Ĥi,j′) = (H(t)
0,j , H(t)

0,j′) or (H(t)
1,j , H(t)

1,j′), and inconsistent otherwise, where Ĥi,j

represents the allele of the jth locus belonging to the ith haplotype segment. For each haplotype

block, we count the consistent and inconsistent pairs. The total numbers of consistent and inconsis-

tent pairs over all the haplotype blocks are denoted by CP and IP, respectively. We defined precision

by CP/(CP + IP). The detailed explanation is shown in previous research [43].

We also used other two accuracy measures, switch error rate and QAN50 [17]. The switch

error rate is defined as the frequency of switch errors which are inconsistency between inferred

haplotypes and true haplotypes. The QAN50 is remodeled from N50 so that it takes consistency

between inferred haplotypes and true haplotypes into account. In short, prediction is divided into

smaller haplotype blocks that do not contain any switch errors, and QAN50 is N50 of divided

inferred haplotypes with some adjustments.

3.3 Results and discussion

3.3.1 Detection of chimeric fragments

We compared the CSP density distributions for NFs and CFs of the data before filtering (Fig-

ure 3.2). The CSP of CFs shows a tendency to be larger than that of NFs. This result suggests

that the CFs are regarded as artificial recombinant haplotypes and hence differ from the biological

haplotypes which exist in the population. There are peaks in the CSP density distributions at 4.6

and 9.2. These peaks correspond to SNP fragments which are inconsistent with statistically phased

haplotypes and are consistent when the SNP fragment changes the derivation to another haplotype.

The CSP is around 4.6 (≈ − ln(α/(1 − α)) when a SNP fragment changes the haplotype origin at

the first site from the end, and the CSP is around 9.2 (≈ −2 ln(α/(1 − α)) when a SNP fragment

changes the haplotype origin at the second site from the end. For W=5, the CSP of CFs which are

inconsistent with statistically phased haplotypes is expected to be around 9.2 because in that case

the SNP fragment is recombinant at the second site from the end in the sliding window calculation.
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Figure 3.2. Comparison of CSP density distributions for NFs and CFs. (A) and (B) are the distributions of
Kaper’s data and Duitama’s data, respectively.

Actually, 74.1% (71.9%) of CFs in Kaper’s (Duitama’s) data are between CSP=7 and CSP=12, and

1.5% (9.7%) of NF are within the same bounds. The peak at 4.6 is likely to be caused by sequencing

and statistical phasing errors.

Figure 3.3 shows the ROC curves of CSP, cluster length, and total heterozygosity for each

dataset before filtering. The ROC curves of maximum heterozygosity and average heterozygosity

are inferior to that of total heterozygosity, and are shown in the Additional file. The area under the

curve (AUC) of CSP for Kaper’s data is 0.97 and the AUC for Duitama’s data is 0.88. These values

are higher than those of cluster length (0.71 for Kaper’s data and 0.85 for Duitama’s data) and total

heterozygosity (0.80 for Kaper’s data and 0.82 for Duitama’s data). The AUC values of cluster

length are lower than that of CSP, especially in the case of Kaper’s data, and this is because the

cluster length of NFs and CFs overlap significantly (see the Additional File for the distribution of

cluster length of NFs and CFs). The AUC values of total heterozygosity are lower than that of CSP

and this is because there are considerable CFs which do not show heterozygosity due to the lack of

coverage and absence of heterozygous SNPs in overlapped regions. Moreover, sequencing error will

disturb to distinguish NFs and CFs because sequencing errors in NFs will bring heterozygous calls

and such NFs might be regarded as CFs by mistake. These results show the high performance of the
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Figure 3.3. The ROC curves of CSP, cluster length, and total heterozygosity for classification of CFs and
NFs. The ROC curves are obtained by changing the threshold of CSP, cluster length, total heterozygosity,
respectively. There is a region that the data point of the ROC curve of total heterogeneity for Kaper’s data is
absent, and hence, the ROC curve is supplemented (shown as gray line). (A) and (B) correspond to Kaper’s
data and Duitama’s data, respectively.

detection of CFs using CSP, regardless of the experimental conditions. The difference between the

AUC values of CSP for each dataset might be caused by the error rate in SNP fragments; The SNP

fragment error rate of Duitama’ data is 4.0% and that of Kaper’s data is 1.2% (see the Additional

file for the SNP fragment error rate calculation).

Figure 3.4 shows the Venn diagrams of CFs detected by CSP, cluster length, and total heterozy-

gosity for each dataset. The threshold of each measure was set so that (1-specificity) was under 0.1.

In Kaper’s data, the number of CFs which were detected with CSP was largest, and about 94% of

CFs which were detected with either cluster length or total heterozygosity were also detected with

CSP. In Duitama’ data the number of CFs which were detected with CSP was slightly lower than

that of CFs detected with cluster length, but about 14% of CFs detected with CSP were detected

with neither cluster length nor total heterozygosity. These results also show that CSP is an effective

indicator for detecting CFs which are detected with neither cluster length nor heterozygosity. Since

there are significant number of CFs which are detected only with cluster length and heterozygosity

calls, we compare the SIH accuracies of the SNP fragments that are filtered with cluster length and

heterozygous calls with those of the SNP fragments that are further filtered with CSP, and examined
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Figure 3.4. The Venn diagrams of CFs detected by CSP, length, and total heterozygosity. The number in
each cell is the number of CFs in the corresponding category. The threshold for CF detection of each measure
was set so that the 1-specificity was under 0.1. (A) and (B) correspond to Kaper’s data and Duitama’s data,
respectively.

the usefulness of CSP in SIH in the following section.

3.3.2 SIH accuracy after removing suspicious CFs by using CSP

We defined a CF candidate as a SNP fragment whose CSP was larger than 7, and removed these

from SNP fragments. We hereafter represent the SNP fragments filtered with cluster length and

heterozygous calls as “filtered", and the SNP fragments further filtered with CSP as “filtered+CSP".

The CSP threshold was determined so that many CFs were removed while avoiding a high false-

positive rate; many CFs had a CSP of around 9.2 and there were many NFs with around CSP = 4.6

(Figure 3.2). With this procedure, 1.6% (5,375/346,417) of Kaper’s data and 3.8% (16,715/436,543)

of Duitama’s data were removed. The removed fragment rate for Duitama’s data was higher than

that for Kaper’s data because Duitama’s data would contain more CFs because of the experimental

approach (see Section 2.8 for a detailed explanation).

Figure 3.11 shows the accuracies of MixSIH, ReFHap, FastHare, and DGS for each dataset: fil-

tered with cluster length and heterozygous calls (filtered); further filtering with CSP (filtered+CSP).

The precision of MixSIH increased from about 0.972 to 0.985 at (CP+IP) = 1.5 × 107 for Kaper’s

data, and increased from about 0.950 to 0.966 at (CP+IP) = 5.0 × 107 for Duitama’s data. The

precision of other algorithm increased likewise. In addition, the precision for Duitama’s SNP frag-

ments also increased after removing CFs candidates with CSP (shown in the Additional file). Thus,
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CSP increases SIH accuracy by removing CF candidates which would have a serious influence.

In addition, (CP+IP) for Duitama’s data is larger than that for Kaper’s data because the SNP

fragment size and coverage are larger. The precision of Kaper’s data is higher because it contains

fewer CFs and the SNP error rate is lower; the decrease of (CP+IP) is lower for the same reason.

Table 3.1 and Table 3.2 show the switch error rate and the QAN50 of each algorithm for each

dataset, respectively. In these analyses, MC of MixSIH were set to 10. The switch error rate

improved after removing suspicious CFs in all conditions. This result is consistent with the result

based on pairwise accuracy measure and shows the usefulness of removing CFs with CSP. Switch

error rates of MixSIH were lowest in all conditions and this suggests that MixSIH succeeds to

extract reliable haplotype regions with MC values.

The QAN50 also improved after removing suspicious CFs in all conditions excluding the

QAN50 of MixSIH at MC=10. The QAN50 of MixSIH at MC=10 were lowest in those of other

algorithm and did not improve after removing CF candidates. This is because QAN50 does not

contain the penalty of connecting wrong haplotypes and will improve just by connecting two hap-

lotypes blocks randomly with probability 0.5, and is inappropriate to evaluate extracting reliable

haplotypes.

From these results, we concluded that CSP is an efficient indicator to improve SIH accuracy by

removing suspicious CFs.

Table 3.1. The switch error rate (%) of each SIH algorithm for data (filtered) and data (filtered+CSP). MC of
MixSIH is set to10. (A) and (B) correspond to Kaper’s data and Duitama’s data, respectively.

MixSIH ReFHap FastHare DGS

(A)
filtered 0.67 1.54 1.59 1.73

filtered+CSP 0.52 1.22 1.28 1.38

(B)
filtered 2.75 3.22 3.28 3.47

filtered+CSP 2.13 2.77 2.84 3.03

3.3.3 Assembled haplotype block size

We examined the size distribution of assembled haplotype blocks. The haplotypes were inferred

from each dataset in which the fragments with CSP larger than 7 were removed. Table 3.3 shows the

number of haplotype blocks that contain the certain range of the number of phased SNPs for each
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A B

Figure 3.5. Precision curves based on consistent pair counts. The x-axis represents the number of predicted
pairs on a log scale. MC of MixSIH was changed from 0 to 10. The accuracies of the data filtered with
cluster length and heterozygous calls (filtered) (filled point symbols) and the further filtered data, in which
fragments with CSP > 7 are removed (filtered+CSP) (empty point symbols), are shown for Kaper’s data (A)
and Duitama’s data (B): ◦ MixSIH; △ ReFHap; ! FastHare; ⋄ DGS.
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Table 3.2. QAN50 (kb) of each SIH algorithm data (filtered) and data (filtered+CSP), in which fragment with
CSP > 7 are removed. MC of MixSIH is set to10. (A) and (B) correspond to Kaper’s data and Duitama’s
data, respectively.

MixSIH ReFHap FastHare DGS

(A)
filtered 16.6 27.3 27.1 26.8

filtered+CSP 16.6 27.5 27.4 27.2

(B)
filtered 32.7 69.2 68.4 67.7

filtered+CSP 32.5 70.4 70.0 68.6

dataset. For comparison, the number of SNP fragments that cover the certain range of the number

of SNPs are also shown.

The averages of haplotype block size are about 19.2 and 42.6 for Kaper’s data and Duitama’s

data, and they are larger than the averages of SNP fragment size (8.0 and 10.2, respectively). More-

over, the number of haplotype blocks that contain more than 100 SNPs are larger than the number

of SNP fragments for both dataset. These results suggest that MixSIH succeeds to assemble hap-

lotypes from SNP fragments. 1.8% and 12.9% of haplotype blocks in Kaper’s data and Duitama’s

data contain more than 100 phased SNPs, and the ratio of phased SNPs in such long haplotype

blocks to total SNPs are about 13.1% and 53.8%, respectively. This result suggests that SIH is able

to determine long haplotypes which are not determined by statistical phasing.

In addition, the haplotype blocks in Duitama’s data tend to be longer than those of Kaper’s data

because the SNP fragment size and coverage are larger. This result shows that SIH will be able to

infer longer haplotypes in accordance with improvements of sequencing technologies.

Table 3.3. The number of the SNP fragments which cover the certain range of the numbered of SNPs (before
SIH) and the number of haplotype blocks which contain the certain range of the number of phased SNPs
(after SIH) for Kaper’s data (A) and Duitama’s data (B) (Note that a SNP can be contained in multiple SNP
fragments and the halotype blocks do not overlap each other). The first row defines the range of the number
of SNPs.

–10 11–20 21–50 51–100 101–200 201–

(A)
before SIH 261,537 65,429 18,894 540 16 1
after SIH 28,631 10,503 11,186 3,998 923 72

(B)
before SIH 291,495 92,104 49,092 3,652 192 8
after SIH 15,273 4,037 6,039 4,882 3,267 1,202
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3.3.4 Comparison of MixSIH and PHASE

The strong and weak points of SIH and statistical phasing will differ because they use differ-

ent information for inferring haplotypes. For example, SIH cannot infer haplotype regions which

lack SNP fragments because of sequencing and mapping difficulties. Statistical phasing is weak in

determining haplotype regions where linkage disequilibrium values are high and there are multiple

haplotypes in population. To investigate these differences, we compared the reliabilities of MixSIH

and PHASE.

We selected 10,000 regions in chromosome 1 randomly so that each region had five SNP sites

and the haplotypes of the regions were determined by trio-based haplotyping. We used Kaper’s data

(filtered) and Duitama’s data (filtered) for SIH in this section. Figure 3.6 shows the MC value and

the maximum probability of the PHASE for each region. The x-axis is ln(1.001 − max P ), where

max P is the maximum haplotypes probability of PHASE for the region. We used 1.001 to deal

with the case that max P = 1.0. The vertical dotted line corresponds to the maximum probability

above which the precision of PHASE is over 0.9, and the horizontal dotted line corresponds to the

MC value above which precision of MixSIH is over 0.9 (see the Additional file for the calculation

of precision).

Table 3.4 shows the number of regions for each division created by the previously noted dotted

lines. In Duitama’s data, the rates in upper left division and lower right division are 8.4% and 22.2%,

respectively. This result suggests that there are chromosomal regions for which SIH successfully

infers the haplotypes and statistical phasing fails, and vice versa. The rate in the lower right division

of Duitama’s data decreases from 22.2% to 14.1% when we remove the regions which contain sites

that lack SNP fragments. This result suggests that many regions where SIH does not work are the

result of a lack of SNP fragments.

Moreover, the rate in the upper divisions for Kaper’s data and Duitama’s data are 39.3% and

70.9%, respectively. The rate for Duitama’s data is larger than that for Kaper’s data because SNP

fragment size and coverage are larger. This result suggests that SIH results will be improved just by

getting larger and more SNP fragments.

In summary, there are regions where either SIH or statistical phasing can infer the haplotypes for

these data. In the case of SIH, a shortage of data is likely to be the main reason for inference failure.

For this reason, the performance of SIH will increase with advances in sequencing techniques.
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A B

Figure 3.6. Comparison of MC scores and maximum PHASE probabilities (A) and (B) correspond to Kaper’s
data and Duitama’s data, respectively. The x-axis represents ln(1.001 − max P ), where max P is the maxi-
mum PHASE probability and we use 1.001 to deal with max P = 1.0. The y-axis represents the MC score of
MixSIH. Data are randomly selected 1000 times from chromosome 1. The vertical dotted line corresponds to
the maximum PHASE probability above which the precision of PHASE is over 0.9, and the horizontal dotted
line corresponds to the MC value above which precision of MixSIH is over 0.9.
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Table 3.4. The numbers of regions for each of the areas which are defined by the precision of MixSIH and
PHASE: (A) Kaper’s data and (B) Duitama’s data. The rows and columns represent the accuracy of MixSIH
and PHASE, respectively. The numbers in parentheses are the numbers of regions remaining after regions
which contain sites that lack SNP fragments have been removed.

A

PHASE < 0.9 PHASE ≥ 0.9

MixSIH ≥ 0.9 433 (366) 3,499 (2,792)

MixSIH < 0.9 1,096 (251) 4,972 (988)

B

PHASE < 0.9 PHASE ≥ 0.9

MixSIH ≥ 0.9 842 (749) 6,250 (5,337)

MixSIH < 0.9 687 (390) 2,221 (1,061)

3.4 Conclusions

In this paper, we have developed a general method to detect chimeric fragments (CFs) on the

assumption that CFs correspond to an artificially recombinant haplotype and differ from the biolog-

ical haplotypes in the population. Based on this assumption, we developed natural fragment (NF)

and CF probabilities of a fragment which use the result of statistical phasing. The NF probability

calculates the consistency between a fragment and statistically inferred haplotypes. The CF prob-

ability also calculates the consistency, but it assumes that left and right parts of the fragment are

derived from different haplotypes in a haplotype pair. With these probabilities, we developed an

indicator CSP which evaluates the degree of chimerity by calculating the logarithmic difference.

We applied CSP to two sequencing datasets, Kaper’s data and Duitama’s data [17, 45]. The

CSP of CFs tends to be lower than that of NFs Moreover, there are a lot of CFs at around possible

largest value. These results support the propriety of our model. The high AUC values of CSP (0.97

for Kaper’s data and 0.88 for Duitama’s data) also shows that CSP is a highly efficient measure to

detect CFs. The AUC values of CSP are higher than that of measures based on cluster length and

heterozygosity. Moreover, there are significant number of CFs which are only detected with CSP.

These results suggests the usefulness of CSP for detecting CFs.

We then compared the accuracies of MixSIH before and after removing the chimeric fragment

candidates detected using CSP. The accuracies of MixSIH increased significantly after removing



53

CFs. From these results, we conclude that CSP is a useful method for detecting CFs and improving

SIH accuracy, regardless of the type of dilution-based sequencing.

In addition, we analyzed the results of MixSIH. The assembled haplotype blocks contain a lot

of long haplotype blocks and this supports the capability of SIH that SIH can determine long hap-

lotypes. We also compared the performance of MixSIH and statistical phasing method (PHASE).

At the moment, the number of correctly inferred regions of PHASE is larger than that of MixSIH.

However, lack of SNP fragments is the main reason for failure of SIH and, therefore, the importance

of SIH and our method will increase in accordance with the advance of sequencing technologies.

In the future the amount of dilution-based sequencing data will increase, and our approach will

be an important strategy not only for SIH but also for many other types of analysis, such as the

detection of novel recombinant events.
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3.5 Supplementary text

3.5.1 Cluster length and heterozygous calls

3.5.1.1 Evaluation of heterozygous calls in a reads cluster

To detect CF by using the heterozygous calls in a reads cluster, we defined three measurements

to evaluate the heterozygosity of SNP fragment fi.

Firstly, we defined the total number of reads which cover minority allele (total heterozygosity)

as follows:

∑

j∈X(fi)
min(n(ri,j = 0), n(ri,j = 1)) ,

where n(ri,j = 0) and n(ri,j = 1) are the number of reads, which are contained in a reads cluster

which corresponds to a SNP fragment fi and whose base at j-th locus are major allele and minor

allele, respectively.

Secondary, we defined maximum of the rate of the minority allele (maximum heterozogosity)

as follows:

max
j∈X(fi)

min(n(ri,j = 0), n(ri,j = 1))
n(ri,j = 0) + n(ri,j = 1) .

Thirdly, we defined average of the rate of the minority allele (average heterozygosity) as follows:

1
|X(fi)|

∑

j∈X(fi)

min(n(ri,j = 0), n(ri,j = 1))
n(ri,j = 0) + n(ri,j = 1) .

With these measurements, we detected CFs candidates by selection the fragments whose values

are larger than a threshold.

3.5.1.2 ROC curves of heterozygosity evaluation

Figure 3.7 shows the ROC curves of total heterozygosity, maximum heterozygosity, and average

heterozygosity. In Kaper’s data, ROC curves stops at sensitivity is around 0.7. This is because

there are many CFs which do not show heterozygous, and this could be caused when the coverage
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Figure 3.7. The ROC curves of total heterozygosity, average heterozygosity, and maximum heterozygosity
for classification of CFs and NFs. A and B correspond to Kaper’s data and Duitama’s data, respectively.

is low and only one origin of reads which derived from the same haplotype exist. In Duitama’s

data, the ROC curve of maximum heterozygosity and averaged heterozygosity are below that of

total heterozygosity. This is because maximum and average heterozygosity overestimate the effect

of sequencing error. Therefore, we concluded that total heterozygosity is appropriate to evaluate

heterozygosity in a reads cluster.

3.5.1.3 Distribution of length of reads clusters

Figure 3.8 shows the distribution of the length of reads clusters for each dataset. The length

of reads cluster which correspond to CFs tend to be larger because reads with different long DNA

fragments origins are merged into one reads cluster. Although the cluster length of CFs tend to be

larger than that of NFs, there are considerable overlapping between NFs and CFs, especially in the

Kaper’s data.

3.5.2 Effects of changing various parameters

3.5.2.1 Impact of changing sliding window width on accuracy and running time

PHASE takes time to deal with a long SNP fragment because the number of possible haplotypes

and their combinations increases exponentially. We defined a sliding window calculation to reduce

the running time for long fragments. Because the sliding window width would affect the result, we

examined the impact of sliding window width (W ) on accuracy and running time. We used SNP
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Figure 3.8. The distribution of cluster length. The x-axis represents the length of reads cluster and the y-axis
represents the number of SNP fragments which are correspond to the each reads cluster.
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Figure 3.9. AUC values and running times for various values of W .

fragments of chromosome 1 from Kaper’s data for the AUC calculation, and used 100 randomly

generated SNP fragments of size 30 for the running time calculation.

Figure 3.9 shows the AUC values and running times for W =3, 5, 7, 9. AUC increases roughly

in line with the increase of W . This is because the difference between haplotypes becomes clearer

when we consider more SNPs. However, difference between AUC values for W =3 and W =5 is

larger than that for W =5 and W =7, which suggests that AUC would roughly saturate for low W .

Running time also increases with increasing W . This is because the possible haplotypes and combi-

nations of haplotypes increase exponentially as W increases. In view of these accuracy and running

time results, we use W =5 as the default setting.
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3.5.2.2 Effect of error rate α

We included an error term in CSP to represent sequencing and PHASE errors. To examine the

effect of the error rate parameter α, we calculated AUC values for various values of α. We used

chromosome 1 from Kaper’s data and Duitama’s data for the AUC calculation. Table 3.5 shows the

AUC values for each α. The AUC for α = 0.0 is lowest because CSP with α = 0.0 cannot deal with

the inconsistency between inferred haplotypes and the context of a fragment which is caused by the

sequencing and PHASE errors. The AUC values for 0.001 ≤ α ≤ 0.1 are almost equal. These

results suggest that including α in CSP is important but the absolute value of α is unimportant.

Based on these results, we use α=0.01 as the default value.

Table 3.5. AUC values for each α

Kaper’s data Duitama’s data

α=0.0 0.724 0.683

α=0.001 0.970 0.879

α=0.01 0.970 0.878

α=0.1 0.969 0.882

3.5.2.3 Effect of the number of individual genotypes

The accuracy of PHASE should increase with the number of individual genotypes. To examine

the effect of changing the number of individual genotypes, we calculated the AUC of CF detection

using chromosome 1 from Kaper’s data and selecting N=5, 10, 20, 40, 60 individuals randomly

from 60 unrelated individuals in the CEU population. We ran PHASE for randomly selected geno-

types and the NA12878 genotype, and calculated AUC using the result of PHASE (Figure 3.10).

AUC increases with the number of individuals. However, the rate of increase slows when the number

of individuals increases. This suggests that detecting CFs which are located in multiple haplotype

regions or contain sequencing errors, is difficult regardless of the number of individuals.

3.5.3 Recovering SNP fragments from CF candidates

CSP might regard NFs as CF candidates when NFs differ from population haplotypes because of

rare variants or spontaneous recombination. As CFs are generated because an aliquot occasionally
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Figure 3.10. AUC values for various numbers of individuals.

contains multiple DNA fragments which cover the same region, CFs would be distributed randomly.

Therefore, if there are many CF candidates which cover the same region, they would be misidenti-

fied NFs. Because some CFs remain with only the threshold coverage, we removed fragments using

a SIH-based measure. The detailed process is as follows:

1) Calculate the coverage of CF candidates for each heterozygous site.

2) Exclude sites whose coverage is lower than 3 and recover the SNP fragments which corre-

spond to the remaining sites (P1).

3) Run MixSIH for recovered SNP fragments.

4) Calculate the chimerity-like measure ‘SIH-chimerity’

SIH-chimerity(f) = − ln
(

maxi=0,1 P t(f |Ĥi)
maxi=0,1,j∈X(f) P t(f≤j |Ĥi)P t(f>j |Ĥī)

)

,

where Ĥ = (Ĥ0, Ĥ1) is the pair of haplotypes which are inferred by MixSIH.

5) Remove the fragments which satisfy SIH-chimerity ≥ 2 ln(α0/(1 − α0)) (P2).

Table 3.6 shows the numbers of all fragments, NF, and CF before and after recovery. The

numbers of all fragments are larger than sums of NFs and CFs because trio-based haplotyping is

partial and the chimerity of fragments which cover unphased regions cannot be calculated. The

rates of CF for Kaper’s data are 61.2%, 2.5%, and 2.1%, and the rates of NF for Duitama’s data
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Table 3.6. The numbers of all fragments, NFs, and CFs after performing each process on Kaper’s data (A)
and Duitama’s data (B).

A B

Before P1 P2

All 5,375 290 288

NF 1,924 236 235

CF 3,030 6 5

Before P1 P2

All 16,715 4,151 4,045

NF 10,699 2,759 2,692

CF 4,875 897 858

are 31.3%, 24.5%, and 24.2%. For both of datasets, the rates of CF decrease and we successfully

recover NFs from CF candidates with high precision. The recovered fragments rates are 4.4%

(235/5,375) and 16.1% (2,692/16,715) for Kaper’s data and Duitama’s data, respectively. The rate

of recovered fragments for Duitama’s data is larger than that for Kaper’s data because the coverage

of Duitama’s data is higher than that of Kaper’s data. High coverage might result in a larger CF rate

in recovered fragments for Duitama’s data.

In summary, NFs could be recovered from the CFs candidates by using the coverage information

and SIH based chimerity. The coverage threshold should be determined according to the purpose of

the analysis because there is a tradeoff between sensitivity and specificity.

3.5.4 Calculation of SNP fragment error rate

The SNP fragment error rate was calculated by comparison with the results of trio-based haplo-

typing. Because we were interested in the SNP fragment errors which were caused by sequencing

and mapping errors, and CFs might disrupt the error rate calculation, we used only SNP fragments

whose chimerity was under 2 ln(α0/(1 − α0)) for the calculation. The SNP fragment error rate is

∑N
i=1 minj=0,1

(∑
k∈X′(fi) I(fik ̸= H(t)

jk )
)

∑N
i=1 |X ′(fi)|

,

where X ′(fi) is the set of sites which are covered by fi and whose phases are determined by trio-

based haplotyping, |X ′(fi)| is the number of sites in X ′(fi), and I(fik ̸= H(t)
jk ) is 1 when fik is

inconsistent with reference haplotype H(t)
jk and 0 otherwise.
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Table 3.7. The number of NFs and CFs of Duitama’s SNP fragments (A) and our processed Duitama’s data
(B).

NF CF

(A) 245,772 8,247

(B) 384,857 6,381

3.5.5 Comparison for Duitama’s SNP fragments

3.5.5.1 The number of NFs and CFs of Duitama’s SNP fragments

The number of NFs and CFs of Duitama’s SNP fragments are 245,772 and 8,247, respectively,

while the number of NFs and CFs of our processed Duitama’s data are 384,857 and 6,381, respec-

tively (Table 3.7). The number of NFs of Duitama’s SNP fragments is lower than that of our data.

This difference could be caused by the mapping tools, the reads cluster detection algorithm, and

the filtering step. We used bfast for mapping SOLiD reads instead of BioScope which was used

by Duitama et al. because the original bfast paper suggested that bfast has robustness against the

sequence variants, and BioScope was not easily available. We used the targetcut function of the

SAMtools which was used by Kaper et al. for reads cluster detection because the source code of

cluster detection used by Duitama et al. was not open.

Concerning that the number of CFs of our data is lower than that of Duitama’s SNP fragments,

our processing method turns out to be more strict processing method. Some reads clusters will be

divided into smaller reads clusters with the strict processing method, and this results in the increase

of the number of NFs.

The SIH accuracy was shown to decrease with the presence of CFs. Therefore, our processing

method which generates less CFs will be better than Duitama’s processing method in terms of SIH

accuracy.

3.5.5.2 SIH accuracy of Duitama’s SNP fragments after removing suspicious CFs by

using CSP

The SNP fragments data, in which long reads cluster and heterozygous calls are already filtered,

is open by Duitama’s group and we examined the pairwise accuracies of original Duitama’s SNP

fragments and processed Duitama’s SNP fragments, in which fragments with CSP > 7 are removed
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Figure 3.11. Precision curves based on consistent pair counts for Duitama’s SNP fragments (A) and our
processed Duitama’s data (B). The x-axis represents the number of predicted pairs on a log scale. MC
of MixSIH was changed from 0 to 10. The accuracies of the original data (filled point symbols) and the
processed data (empty point symbols), in which fragments with CSP > 7 are removed, are shown: ◦ MixSIH;
△ ReFHap; ! FastHare; ⋄ DGS.

(Figure 3.11 (A)). For comparison, the pairwise accuracies our processed Duitama’s data that are

already shown in the main text are shown again (Figure 3.11 (B)). With the CSP filtering procedure,

4.6% (12,364/271,184) of Duitama’s SNP fragments were removed. The precision of MixSIH in-

creased from 0.875 to 0.925 at (CP+IP) = 1.4 × 108. The precision of other algorithm increased

likewise. Thus, CSP is an efficient measure to detect the CFs which are undetected with cluster

length and heterozygous calls, and useful for improving SIH accuracy.

In addition, (CP+IP) for Duitama’s SNP fragments is larger than that for our processed

Duitama’s data, while the precision of each algorithm for Duitama’s SNP fragments are lower than

those for our data. These differences are caused by the difference of the processing methods (as

discussed in the above section). With the strict processing method, the length of SNP fragments

become smaller owing to the division of the reads cluster, and hence the length of assembled haplo-

types is smaller. On the other hand, the strict processing method generates less CFs and the precision

of assembled haplotypes increase.

3.5.6 Precision of MixSIH and PHASE

The precision of MixSIH was calculated as follows.
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1) Select 10,000 regions in chromosome 1 randomly such that each region has five SNP sites

and the haplotypes of the regions are determined by trio-based haplotyping.

2) Calculate MC values for each region.

3) Calculate the precision for MC value, which is defined by

CPmc/(CPmc + IPmc) ,

where mc is the target MC value, and CPmc and IPmc are the number of consistent pairs and

inconsistent pairs in the regions for which MC value satisfy mc ≤ MC < mc + 0.5.

Figure 3.12(A) shows the precision for each dataset. In our evaluation, MixSIH precisions are over

0.90 for MC ≥ 1.5.

The precision for each ln(1.001 − max P ), where max P is the maximum PHASE probability,

was calculated as follows.

1) Run PHASE for the 10,000 selected regions.

2) Examine the best haplotypes and its probability (max P ) for each region.

3) Calculate the precision for ln(1.001 − max P ), which is defined by

CPp/(CPp + IPp) ,

where p is the target ln(1.001 − max P ), and CPp and IPp are the number

of consistent pairs and inconsistent pairs in the regions for which max P satisfy

p − 0.5 < ln(1.001 − max P ) ≤ p.

In our evaluation, PHASE precision is more than 0.90 for ln(1.001 − max P ) ≤ −2.5.
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Chapter 4

SCOUP: a probabilistic model based

on the Ornstein–Uhlenbeck process

to analyze single-cell expression data

during differentiation

4.1 Introduction

Conventional analyses of bulk cells, such as bulk transcriptome analyses, are based on the av-

eraged data of an ensemble of cells and cannot reveal the states of individual cells. Therefore, such

analyses cannot distinguish cell types due to the effect of averaging across all cells in a sample,

unless each cell lineage is divided in advance by using prior knowledge, such as marker genes. Ad-

ditionally, bulk transcriptome during differentiation is usually the ensemble of the cells of different

degrees of differentiation and information regarding changes in cellular state is smeared. Accord-

ingly, the accurate investigation for gene expression dynamics and regulatory relationships among

genes during differentiation are difficult.

With the advent of single-cell technologies, such as single-cell RNA-seq, quantification of the

comprehensive states of individual cells is possible [49]. Using single-cell technologies, investiga-

tions of cellular states and its transition processes, such as the classification and identification of cell
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types [50–52], reconstruction of cell lineages [53, 54], and embryonic development [55, 56], have

made remarkable progress. Single-cell data is also useful for elucidating cell fate decision mecha-

nisms of multi-lineage differentiation from a single progenitor cell type [57, 58]. Thus, single-cell

technologies have the power to shed light on differentiation in particular [59, 60].

To fully analyze the single-cell expression data during differentiation, novel computational

methods are necessary [59, 61]. First, ordering of the cells based on expression data so that the

order represents the trajectory of differentiation is necessary to investigate gene expression dynam-

ics and regulatory mechanisms. Although experimental time can be used for ordering cells, even

cells derived from the same time-point can exhibit different degrees of differentiation [62]. More-

over, computational ordering method is often useful to reconstruct the differentiation process from

in vivo snap-shot data, which contains cells at distinct stages of differentiation [53]. Second, esti-

mating the lineage of the cells is necessary to investigate multi-lineage differentiation. Although the

expression of marker genes will be useful to classify cell lineages, the prior knowledge of marker

genes is limited. Therefore, a lineage estimation method without prior knowledge is necessary to

fully analyze the mechanisms of cell fate decisions.

To order cells without prior knowledge, several methods have been developed [62–64]. These

methods use dimension reduction techniques, such as principal component analysis (PCA), and

reconstruct the differentiation path in reduced space using several approaches, such as minimum

spanning tree (MST) and principal curves. Each cell is projected onto the reconstructed path and

the degree of differentiation of a cell (in pseudo-time) is defined by the projected position on the

path. To estimate cell lineage from expression data, a few methods, which use the same framework,

have been developed. Monocle [62], a dimension reduction-based approach, estimates the lineage

of each cell by estimating multiple paths in reduced space and assigning each cell to one of the

paths. These approaches are powerful tools to reconstruct the differentiation process without prior

knowledge, and the development of such computational methods will help reveal the mechanisms

of differentiation in conjunction with the advancement of single-cell technologies.

However, pseudo-time estimation and cell lineage estimation based on dimension reduction have

several problems. For example, interpreting the biological meaning of the path in reduced space

is difficult. Additionally, the position in reduced space is affected by noise and gene expression

that is irrelevant to differentiation, and the results can therefore change significantly in a subsequent
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analysis. Moreover, deterministic approaches, such as applications of MST in reduced space, cannot

quantify the subtle differences among cells and are inadequate to estimate the lineages of cells at

an early stage of bifurcation, which are important for analyzing cell fate decisions. Hence, we

developed another approach based on stochastic processes.

In this research, we developed a novel method SCOUP (a probabilistic model to analyze Single-

Cell expression data during differentiation with Ornstein–Uhlenbeck Process). SCOUP describes

the dynamics of gene expression throughout differentiation directly, including pseudo-time and cell

fate of individual cells. SCOUP is based on the Ornstein–Uhlenbeck (OU) process, which repre-

sents a variable moving toward an attractor with Brownian motion. In the case of differentiation,

an attractor is regarded as a stable expression pattern of a gene after differentiation, and hence, an

OU process is appropriate to describe expression dynamics throughout differentiation. Because OU

processes suppose only a single attractor and cannot represent multi-lineage differentiation, we ex-

pand the typical OU process into a mixture OU process by representing the cell fate of each cell

and lineage-specific expression patterns with latent values and different attractors, respectively. We

compared the accuracy of pseudo-time estimates from SCOUP with those of previous methods us-

ing time-series scqPCR and scRNA-seq, and SCOUP was superior to previous methods in almost

all conditions. We also evaluated the cell lineage estimation using scqPCR data in which cells

exhibit multi-lineage differentiation. SCOUP successfully estimated cell lineage more accurately

than Monocle, especially for cells at an early stage of bifurcation. In addition, SCOUP represents

each gene expression dynamic directly and can be applied to various downstream analyses. As an

example, we developed a novel correlation calculation method for elucidating regulatory relation-

ships among genes. We normalized data based on the optimized parameters in our model, which

assumes the conditional independency among genes, and calculated correlations within normal-

ized data, and this method detected covariance that cannot be explained by the model alone. We

applied this method to scRNA-seq data and detected a candidate of key regulator for differentia-

tion and clusters in a correlation network which were not detected with conventional correlation

analysis. Thus, SCOUP is a promising approach for further single-cell analysis and available at

https://github.com/hmatsu1226/SCOUP.
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Figure 4.1. The conceptual diagrams of the OU process (A) and SCOUP for multi-lineage differentiation
(B). (A) The OU process represents a variable (i.e., expression of a gene g in a cell c) moving toward attractor
(θg) with Brownian motion. The value at time t satisfies the normal distribution (see “Methods"). (B) Each
lineage has distinct attractor (θg1 and θg2), and the lineage of a cell c is represented with latent value Zc. The
expression of gene g in cell c is described with the mixture OU process.

4.2 Methods

4.2.1 Ornstein-Uhlenbeck process

Let Xt be an OU process. Xt satisfies the following stochastic differentiation equation:

dXt = −α(Xt − θ)dt + σdWt,

where α, θ, σ, and Wt denote the strength of relaxation toward the attractor, the value of the attractor,

the strength of noise, and “white noise," respectively. If the initial value is given by X0, the value

at time t (Xt) satisfies the following normal distribution:

P (Xt|X0,α,σ2, θ, t)

= N
(

Xt|e−αtX0 + (1 − e−αt)θ, σ
2(1 − e−2αt)

2αt

)

.

This OU process represents a variable moving toward attractor θ with Brownian motion (Fig-

ure 4.1A) and has been used to describe adaptive evolution of a quantitative trait along phylogenetic

tree [65], for example. This OU process suits the modeling of gene expression dynamics throughout

differentiation by considering that θ, α, and σ represent specific expression patterns after differenti-

ation, the speed of expression change, and level of noise, respectively. In this research, we extended
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the OU process for single-cell expression data and developed a parameter optimization method.

4.2.2 OU process for single lineage differentiation

We developed a probabilistic model for single lineage differentiation. Hereinafter, we denote

the number of cells, the number of genes, the cell index, and the gene index as C, G, c, and g,

respectively. We assume that expression in each cell is independent and that the total probability

P (E|Φ, T ), where E is the expression data of all cells and genes and Φ is the set of parameters,

is the product of cell probabilities. Each cell has a degree of differentiation progression parameter

(i.e., pseudo-time) tc. We also assume that each gene follows its OU process independently and has

parameters αg, σ2
g , and θg. Therefore, a cell probability is the product of gene expression probability

P (Ecg|Φg, tc), where Ecg is the expression data of gene g in cell c. Thus, the probability of single

lineage differentiation is given by

P (E|Φ, T ) =
C∏

c=1

G∏

g=1
P (Ecg|Φg, tc)

=
C∏

c=1

G∏

g=1

∫
dScgPou(Ecg|Scg, Φg, tc)P (Scg),

where Φg = (αg,σ2
g , θg), Φ = {Φg|g = 1, ..., G}, T = {tc|c = 1, ..., C}, Scg is the expression of

gene g in cell c at t = 0, and Pou is a probability distribution based on an OU process and described

by the following normal distribution:

Pou(Ecg|Scg, Φg, tc)

= N
(

Ecg|e−αgtcScg + (1 − e−αgtc)θg,
σ2

g(1 − e−2αgtc)
2αg

)

.

P (Scg) is the initial distribution of a gene and is given by a normal distribution as follows:

P (Scg) = N (Scg|µ0g,σ2
0g).

In this research, we assume that µ0g and σ2
0g are known because the expression data of progenitor

cells are generally obtained.
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4.2.3 Sufficient statistic for OU processes

Like a continuous Markov model for nucleotide evolution [66], the continuous OU process can

be regarded as the limit of a discrete time OU process. Pou(Ecg|Scg, Φg, tc) can be described as

follows:

Pou(Ecg|Scg, Φg, tc) = lim
N→∞

PN (XcgN |Xcg0, Φg, tc)

PN (XcgN |Xcg0, Φg, tc) =
∫

dXcg

N∏

s=1
Pou(Xcgs|Xcgs−1, Φg, tc/N)

P (Xcg|Φg, tc) =
N∏

s=1
Pou(Xcgs|Xcgs−1, Φg, tc/N)P (Xcg0),

where Xcg = {Xcgs|s = 0, ..., N} represents a path such that Xcg0 and XcgN satifsy Scg and Ecg,

respectively. In this model, we assume Scg0 is fixed and consider Xcg as Xcg ∈ {Xcgs|s = 1, ..., N}

for simplicity (see supplementary text for the calculations related to Scg0). Accordingly, we consider

the likelihood of Xcg as follows:

P (Xcg|Scg, Φg, tc) =
N∏

s=1
Pou(Xcgs|Xcgs−1, Φg, tc/N).

According to the expansion of the above likelihood, the log-likelihood of Xcg is described as

follows (see supplementary text for detailed calculation). Here, we abbreviate the indexes c and g

and represent Xcg and Xcgs as X and Xs for simplicity.

l(X) =
N∑

s=1
ln Pou(Xs|Xs−1, Φg, tc/N)

= − N

2 ln α

πσ2(1 − e−2αt)

− N

2tσ2

(

2
(

N−1∑

s=1
X2

s −
N−1∑

s=0
XsXs+1

)

+ X2
0 + X2

N

)

+ α

2σ2

(
X2

0 − X2
N − 2θX0 + 2θXN

)

+ α2t

2Nσ2

(

−2
N−1∑

s=1
X2

s +
N−1∑

s=0
XsXs+1 + 2θ

N−1∑

s=1
Xs − Nθ2

)

+ O(1/N).
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Accordingly, we can calculate the log-likelihood by using the following statistics
∑N−1

s=1 X2
s ,

∑N−1
s=0 XsXs+1, and

∑N−1
s=1 Xs.

The expected values of the above statistics are sufficient for parameter optimization. The pos-

terior probability P (X1...XN−1|XN , X0) is regarded as the multivariate normal distribution, and

the expectation of Xs and X2
s can be calculated from the mean and variance–covariance matrix of

the multivariate normal distribution. However, the expansion of the posterior probability gives only

the (N − 1) × (N − 1) precision matrix, and we must therefore calculate the inverse of the ma-

trix to obtain the variance–covariance matrix. Although we cannot use numerical methods to solve

the inverse of the precision matrix because we consider N as the limit for infinite, we can solve

for the inverse matrix analytically by using the tridiagonal property of the precision matrix [67].

By hand calculation, we showed that the expected values of these statistics were able to be solved

analytically. For example, the expected value of one of the statistics is as follows:

N−1∑

s=1
< Xs > = X0 + XN − 2θ

sinhαt

N−1∑

s=1
sinh

(
s
αt

N

)
+ (N − 1)θ + O(1/N).

The detailed calculation is described in the supplementary text.

4.2.4 EM algorithm

We employed a parameter optimization using an expectation–maximization (EM) algorithm.

When the likelihood function contains unobserved variables, an EM algorithm can be used for

parameter optimization. The EM algorithm runs E step and M step iteratively and finds parameters

that satisfy the local maximum of the marginal likelihood function. In the E step, we calculate the

expectation of a specific statistic with current parameters. In the M step, we calculate the expected

log-likelihood function (Q function) and optimize parameters so that they maximize the Q function.

In our model, the path Xcg1...XcgN−1 is unobserved, and the Q function is as follows:

Q((Φ, T ), (Φold, T old)) =
∏

c

∏

g

∫
dXcg1:N−1P (Xcg1:N−1|XcgN , Xcg0, Φold

g , told
c )l(Xcg),

where Xcg1:N−1 = (Xcg1, Xcg2, ..., XcgN−1).

The Q function can be expanded analytically with an expected value of the

statistic described in the previous section. Thus, we can optimize Φg by solving
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dQ/dθg = 0, dQ/dαg = 0, dQ/dσ2
g = 0, which results in the following equations:

θ∗
g = θg + 1

∑
tc

∑

c

2
(
XcgN − e−αgtcXcg0 − (1 − e−αgtc)θg

)

αg(1 + e−2αgtc)

α∗
g =

∑
c

(
−tcσ2

g − (Xcg0 − θg)2 + (XcgN − θg)2
)

∑
c Z

αg
c

σ∗2
g = 1

C

∑

c

2αg

1 − e−2αgtc

(
XcgN − e−αgtcXcg0 − (1 − e−αgtc)θg

)2
,

where Zα is explained in the supplementary text. The pseudo-time variable tc cannot be optimized

analytically, and we therefore solve tc to satisfy dQ/dtc = 0 by Newton’s method.

In cases, Xcg0 is also unobserved, so we must calculate the expected value of Xcg0. As such,

we calculate the expected values, including the expected value of Xcg0 and X2
cg0, in the E step and

optimize parameters with the above equation in the M step. The detailed optimization process and

calculation are described in the supplementary text.

We validated our parameter optimization method with simulation data and confirmed that

SCOUP succeeded to optimize parameters so that the marginal likelihood was maximized (see sup-

plementary text).

4.2.5 Mixture OU process for multi-lineage differentiation

We also extended the single lineage model to a mixture model in order to consider multi-lineage

differentiation, such as bifurcation (Figure 4.1B). We assume that the number of lineages is known

and given by K and that each lineage has a different attractor θgk. The fate of a cell c is unknown

and is represented with the latent value Zc, which is 1 of K representations. With this latent value,

the mixture OU process is given by

P (Ec, Sc) =
K∑

k=1
πk

G∏

g=1
Pou(Ecg|Scgαg,σg, θgk, tc)P (Scg)

P (Ec, Sc, Zc) =
K∏

k=1
πZck

k

G∏

g=1
(Pou(Ecg|αg,σg, θgk, tc)P (Scg))Zck ,

where πk is the probability of lineage k.

Here, Zc is an unobserved value, and we maximize the marginal likelihood with the EM algo-

rithm. As described in the previous section, we must calculate the expectation of the unobserved
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value to calculate the Q function. The posterior probability of Zc and the expectation of Zc (γck)

are described as follows:

P (Zc|Ecg, Scg, ) ∝
K∏

k=1

⎛

⎝πZck
k

G∏

g=1
Pou(Ecg|Scg, θgk, tc)Zck

⎞

⎠

γck = E[Zck] =
πk
∏G

g=1 Pou(Ecg|Scg, θgk, tc)
∑

k′ πk′
∏G

g=1 Pou(Ecg|Scg, θgk′ , tc)
.

By using the above equation and previous description, we can calculate the Q function analyti-

cally. We optimize

πk =
∑

c γck∑
c
∑

k′ γck”

by solving dQ/dπk = 0. Other parameters are optimized likewise using the single lineage model.

Accordingly, we calculate the expected values of variables, such as γck and Scg0, in the E step and

update parameters in the M step.

The lineage of a cell is estimated from the expectation of the latent value of a cell (γc). SCOUP

can quantify the certainty of the estimated lineage of a cell from the the value of γc.

4.2.6 Initialization of time parameter

Our method might converge to undesirable local optima if T is initialized randomly. For ex-

ample, estimated pseudo-time might be inferred in the reverse order of differentiation. To avoid

undesirable local optima, rough initialization of T is effective. Although experimental time will be

useful for initialization, such data are not always available. For example, experimental time does

not exist for expression data of an in vivo snap-shot sample [53]. Therefore, an initialization method

that does not depend on experimental time is necessary. Here, we explain our initialization method

based on a dimension reduction approach.

we developed dimension reduction approach for pseudo-time initialization, called SP (pseudo-

time calculation based on Shortest Path from the root cell in the MST). Firstly, we added the mean

of the initial distribution (µ ∈ {µg0|g = 1...G}) to expression data and regarded it as an initial point

for the pseudo-time calculation. Next, we performed PCA, constructed MSTs in the reduced space,

searched for the shortest path from an initial point using Prim’s algorithm, and regarded the weight
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of the shortest path as the pseudo-time. In this paper, we set the dimensionality of the PCA to two

and used this pseudo-time for the initialization of our method.

4.2.7 Dimension reduction approach

In this section, we explain the previous pseudo-time estimation methods based on a dimension

reduction approach.

Monocle [62] constructs a MST in reduced space, searches for the longest path in the MST, and

estimates pseudo-time along the longest path. We added the mean of the initial distribution data

and regarded it as an initial point for the pseudo-time calculation. We used all genes in a dataset

as marker genes and the other parameters of Monocle were set to default values, unless otherwise

specified.

TSCAN [64] performs model-based clustering in reduced space, connects clusters, and esti-

mates pseudo-time by projecting cells onto the connected path. Although TSCAN can infer an

order of clusters, it cannot regard a point as an initial point. Therefore, we compared the accuracy

of outputted pseudo-time with reversed pseudo-time and defined the pseudo-time of TSCAN as the

superior one. Because TSCAN failed to output pseudo-time of partial cells when we set a high

number of clusters, we set the number of clusters to three in this research.

In this paper, we compared the performance of SCOUP with those of above dimension

reduction-based methods in addition to SP.

4.2.8 Correlation between genes

We also proposed a novel correlation function between two genes. Although we assume the

conditional independence among genes to represent gene dynamics, we can detect the regulatory

relationship between genes by calculating the covariance. Our correlation function quantifies the

covariance between genes that is not explained by our model.

For time-series data, a ordinal correlation coefficient will be high even if two variables only have

similar time-trend. For example, any two independent genes that are upregulated in accordance with

differentiation exhibit a high correlation. In the case of the detection of interactions between genes,

it is most appropriate to remove the influence of time-trend. To remove this trend effect, the expres-

sion data at a specific experimental time point is often used to calculate the correlation. However,



74

this approach is insufficient to remove the time effect resulting from the difference between the ex-

periment time and the progression of cells. Accordingly, the trend effect is best removed by using

cells within a specific pseudo-time span for calculation. Although this analysis will remove the

trend effect, the number of cells that are used for the calculation decreases owing to the limit of the

span of pseudo-time and precise calculation will therefore be difficult.

To overcome this problem, we developed a novel correlation function based on our probabilistic

model. As described in the section on “OU process for single lineage differetiatiation" and the

supplementary text, the probabilistic distribution of the expression of a gene g at time t (Xtg) is

described as follows:

P (Xtg|Φg, tc) =
∫

dSgPou(Xtg|Sg, Φg, t)P (Sg) = N (Xtg|µtg,σ2
tg),

where

µtg = e−αgtµ0g + (1 − e−αgt)θg

σ2
tg =

σ2
g(1 − e−2αgt)

2αg
+ e−2αgtσ2

0g.

As such, we can remove the time dependency by standardizing the time-dependent mean and vari-

ance as follows:

Zcg = Ecg − µtcg

σ2
tcg

.

We calculated the correlation coefficient for the above standardized values. This correlation function

can detect gene pairs that exhibit interactions that are unexplained by the model, which assume the

conditional independence among genes.

The above standardization assumes a single normal distribution and is not suitable for multi-

lineage model. However, maxk γck of most cells, which we analyzed, were about 1.0, and hence,

most cells would be assigned to one of the lineage. Therefore, the standardization will be effective

by assigning a cell to a relevant lineage. In addition, correlation of each lineage will be calculated

by dividing cells into each lineage in advance.
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4.2.9 Dataset

4.2.9.1 single-cell qPCR for single-lineage differentiation

We used the time-series single-cell qPCR dataset produced by Kouno’s group [68] from THP-1

human myeloid monocytic leukemia cells differentiating into macrophages. They investigated the

expression of 45 transcription factors by 120 single cells at each eight time point (0, 1, 6, 12, 24,

48, 72, and 96 h) after phorbol myristate acetate stimulation.

To evaluate the estimated pseudo-time in many conditions, we constructed a dataset, (Kouno’s

data (1)) follows. We added noise to raw expression data as described below to investigate the

effect of noise in pseudo-time estimation. We added noise to raw expression data Ecg by adding

Ēg × UR[0, ϵ], where Ēg is the mean expression of a gene and UR[0, ϵ] is a uniform random number

from 0 to ϵ. We produced 20 replicates for each ϵ (noise level), and validated the pseudo-time of

each method for each noise level.

We also constructed another dataset, (Kouno’s data (2)), to validate lineage estimation by adding

45 pseudogenes that exhibit various expression patterns among lineages. We initially selected 60

cells randomly from 120 cells at a given time point. The expression Ecg′ of a pseudogene g′ by

the selected cells is equal to raw expression (Ecg′ = Ecg). For the remaining cells, we inverted

the raw expression in relation to the initial mean (Ecg′ = −2Ecg + µ0g). We also added noise as

mentioned above in regard to Kouno’s data (1). Because Monocle cannot accept negative values,

we incremented the values by a minimum of 1 to make the expression positive.

The initial distribution (µ0g and σ2
0g) was calculated from 0-h cells.

4.2.9.2 single cell qPCR for bifurcation

To validate the lineage estimation in real data, we used a dataset produced by Moignard’s

group [69]. They investigated the single-cell qPCR results for 46 transcription factors through-

out hematopoietic development from embryonic day (E) 7.0 to E8.5 in mouse embryos. These data

include a lineage bifurcation between E7.75 and E8.25; at this time, head fold (HF) cells differen-

tiate into putative blood and endothelial populations, which are distinguished as either GFP+ cells

(4SG) or Flk1+GFP− cells (4SFG−). We used the expression profiles of HF, 4SG, and 4SFG− and

investigated whether SCOUP and Monocle can classify 4SG and 4SFG− using only their expres-
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sion profiles. We regarded any cell in which the expression of more than half of the genes was not

detected as an outlier, and these outliers were removed. In addition, we randomly selected 1,000

cells because Monocle did not seem to work correctly for a large number of cells. These screening

procedures left 398 HF cells, 342 4SG cells, and 260 4SFG− cells. The initial distribution was

calculated from HF cells.

4.2.9.3 Single-cell RNA-seq for single-lineage differentiation

We also investigated the stimulation time-series single-cell RNA-seq dataset (at 0, 1, 4, and 6 h)

for primary mouse bone-marrow-derived dendritic cells that was produced by Shalek’s group [70].

This dataset contains data for three different time series corresponding to each of the different stim-

ulation methods: lipopolysaccharide (LPS), viral-like double-stranded RNA (PIC), and synthetic

mimic of a bacterial lipopeptides (PAM). First, we converted transcripts per million (TPM) to

log(TPM + 1) and defined this value as gene expression. Next, we removed outlier cells so that

each cell in the dataset contained more than 4,000 genes with detectable levels of expression; this

left 281 LPS cells, 224 PAM cells, and 159 PIC cells. Third, we calculated the absolute difference

in mean gene expression between the 1-h cells and 6-h cells for each stimulation. We extracted the

top 1,000 genes in descending order of this difference for each stimulation and used these genes for

pseudo-time estimation. We also added unstimulated cells (outlier cells were removed through a

procedure like that described above, leaving 85 cells) to the LPS, PAM, and PIC data and regarded

these cells as 0-h data. The initial distribution was calculated from unstimulated cells.

4.2.10 Accuracy measure

4.2.10.1 Pseudo-time evaluation

To evaluate the accuracy of pseudo-time estimated from each method, we regarded experimental

time as genuine time and calculated the rate of inconsistency between pseudo-time and experimental

time. By using the accuracy measure of TSCAN as a reference, we evaluated the inconsistency by

calculating the rate of cell pairs whose pseudo-time ordering was inconsistent with experimental-
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time ordering, and we defined the pseudo-time inconsistency score (PIS) as follows:

PIS =
∑

(i,j)∈(t(e)
i <t(e)

j ) I(ti > tj)
∑

(i,j)∈(t(e)
i <t(e)

j ) (I(ti < tj) + I(ti > tj)) ,

where t(e)
c and tc are respectively the experimental time and pseudo-time of cell c. I(ti < tj) is an

indicator function that takes the value 1 if the conditional expression is true.

4.2.10.2 Lineage evaluation

We evaluated the performance of lineage estimation by SCOUP and Monocle by comparing

the cell lineage annotation of each cell. The annotation of a cell from simulation data is obvious

and that of Moignard’s data is given by 4SG or 4SFG− in accordance with GFP+ or Flk1+GFP−.

SCOUP estimates a cell lineage based on the expectation of the posterior probability of cell fate

(γck). We classified cells into one of two lineages on the basis of whether γck exceeded a threshold.

We calculated the precision and recall for each threshold and calculated the area under the curve

(AUC) value. Monocle also can estimate cell lineage by setting the parameter num_paths to 2,

thereby outputting the state of a cell as either state1 (pre-bifurcation), state2 (one lineage), or state3

(another lineage). Monocle is a deterministic method and cannot distinguish subtle differences.

Therefore, we regard that state1, state2, and state3 belong to one lineage with probabilities 0.5, 1.0,

and 0.0, respectively. We calculated the AUC value for Monocle in the same way.

4.3 Results and discussion

4.3.1 Validation of parameter optimization

We validated our parameter optimization method with simulation data. We generated simulation

data from the normal distribution based on the OU process by varying the parameters. The number

of genes and cells are set to 500 and 100, respectively.

Firstly, we compared the values of estimated parameters with those of true parameters (Fig-

ure 4.2A,B). The values of estimated time and estimated θg are highly correlated with those of true

values (r2 are 0.94 and 0.96, respectively). The values of estimated mean and variance of the OU

process are also highly correlated with those of true mean and variance (0.99 and 0.94, respec-
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Figure 4.2. Validation of parameter estimation of SCOUP for simulation data. (A) and (B) is the comparison
between the estimated values and true values for pseudo-time (t) and θg , respectively. The outlier whose
estimated value exceeds the boundary of drawing area is visualized in the border with a red circle for vi-
sualization. (C) is the log-likelihood curve with respect to tc of a cell. The optimized tc is indicated with
x-max.

tively), and hence, SCOUP succeeded to reconstruct the original probabilistic distribution with high

accuracy (the details are described in the supplementary text).

Next, we investigated that the log-likelihood of optimized parameters was higher than those of

varied parameters. Figure 4.2C is the example of the log-likelihood curve with respect to time pa-

rameter of a cell (tc), and the value of optimized tc is drawn with x-mark. The log-likelihood of

the optimized tc was located in the top of the log-likelihood curve. We also verified that the opti-

mized parameters were located in the top of the log-likelihood surface in regards to other parameters

(the details are described in the supplementary text). Thus, SCOUP can optimize the parameters

correctly.

4.3.2 Validation of pseudo-time estimation

In this section, we compared the accuracy of the pseudo-time of each method: SCOUP, our

method; SP, pseudo-time estimation based on shortest path in the MST in reduced space; Monocle,

dimension reduction-based method that reconstruct differentiation path by the longest path in the

MST; TSCAN, dimension reduction-based method that reconstruct differentiation path by running

model-based clustering and connecting clusters. For pseudo-time evaluation, we used Kouno’s data

(1) and the Shalek’s data.

Figure 4.3 shows the histograms of pseudo-time inferred by each method for Kouno’s data (1)

without additional noise (ϵ = 0). The histograms are drawn for each experimental time point. Al-
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Figure 4.3. The histograms of pseudo-time estimates produced by each method for Kouno’s data (1) without
additional noise. The histograms are drawn for each experimental time point with different colors. The
pseudo-time values inferred by SCOUP over 1.0 are integrated into 1.0 for visualization. The pseudo-time
values inferred by Monocle and TSCAN are normalized so that maximum = 1.0.

though the pseudo-time trends of each method are roughly consistent with experimental time order,

each method shows distinctive characteristics. In most cases, the orders of pseudo-time produced

by TSCAN for 0-h cells and 1-h cells are reversed. The orders might be reversed in the process

of assigning cells to clusters or ordering clusters. In SP, the pseudo-time of the portion of cells is

large and that of the remaining cells is relatively small. This is because a portion of the cells must

be outliers and are therefore located far from other cells in reduced space. The outliers cause long

paths in the MSTs and affect other pseudo-time estimates through normalization. Monocle seems

to successfully order cells. In SCOUP, the pseudo-times of 0-h cells are relatively concentrated

at t = 0.0 as compared to the other methods. The pseudo-time of 0-h cells based on dimension

reduction approaches is dispersed because 0-h cells tend to scatter in reduced space owing to the

dispersion of expression and noise. In contrast, SCOUP contains a noise term in the model and es-

timates pseudo-time from the trend of total gene expression, which removes the influence of noise.

Because 0-h cells are progenitor cells and belong to a steady state before differentiation, it is ap-

propriate to consider the pseudo-time of 0-h cells as approximately 0. Thus, SCOUP successfully

identified the initial steady state.

Next, we quantitatively evaluated the accuracy of pseudo-time estimated by each method for

Kouno’s data (1) based on the pseudo-time inconsistency score (PIS) (Figure 4.4). The PISs of

SCOUP were superior to those of other methods under most conditions. This demonstrates that

SCOUP can estimate pseudo-time well, even from noisy data. Under one condition, the PIS of

Monocle was superior to that of SCOUP, and SCOUP was the second best. This can be because



80

SCOUP does not describe the differentiation process completely. For example, SCOUP cannot

represent variable attractors, such as transient patterns, and dimension reduction-based methods

might be able to accommodate such expression patterns. In future work, we will extend SCOUP to

represent such dynamics.

We also investigated the effect of the number of dimensions of reduced space for pseudo-time

estimation in Monocle. We set the argument of Monocle max_components, which corresponds

to the number of dimensions, to 2 and 3 and denote Monocle analyses with each configuration

as Monocle(2) and Monocle(3), respectively. Across all conditions, Monocle(3) was inferior to

Monocle(2). This is because the third dimension of reduced space represents something unrelated

to differentiation. Without prior knowledge, it is difficult to set a proper number of dimensions, and

pseudo-time can be erroneous under an improper number of dimensions. Although SCOUP is based

on a dimension reduction approach in the process of pseudo-time initialization, we verified that the

pseudo-time estimated from different numbers of dimensions (i.e., 2 and 3) converged to almost

same value in this dataset (r2 = 0.94 for ϵ = 0.0). Even if the estimated pseudo-times of SCOUP

differ, we can infer appropriate pseudo-times by selecting the model with the highest likelihood.

Next, we evaluated the pseudo-time of each method as inferred from Shalek’s data. The PIS

of each method is shown in Table 4.1. Across all conditions, the PISs of SCOUP were superior to

those of other methods. Unlike qPCR, RNA-seq provides comprehensive gene expression profiles

and contains the expression of genes that are largely unrelated to differentiation. SCOUP can omit

the effect of such genes by reducing the weight of their influence automatically in pseudo-time

optimization. In contrast, the positions of cells in reduced space will be affected and the pseudo-

time will vary with the presence of such genes. Moreover, the dispersion of RNA-seq is higher than

that of qPCR, which influences the analyses.

The PISs of PIC and PAM were higher than those of LPS. This will be because the numbers

of PIC and PAM cells were lower than that of LPS. It is difficult to reconstruct differentiation

trajectories from a small number of samples. In particular, it is important to obtain cells distributed

evenly throughout the differentiation process in order to reconstruct trajectories with high accuracy.

In summary, SCOUP estimated pseudo-time with high accuracy, especially for RNA-seq data.

Moreover, SCOUP successfully identified the initial state which was difficult to be detected with

dimension reduction-based approaches. In addition, SCOUP is based on a probabilistic model, and
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Figure 4.4. PIS of each method applied to Kouno’s data (1). The x-axis represents the noise level (ϵ) (see
“Methods") and the y-axis represents the degree of inconsistency between the pseudo-time and experimental
time (PIS). Each method is distinguished by color: red, SCOUP; yellow, SP; green, Monocle; and blue,
TSCAN. We compared the PIS of Monocle for different parameters max_components, which correspond
to dimensions. The solid and dotted lines correspond to max_components = 2 and 3, respectively.

Table 4.1. PIS for each method applied to Shalek’s data. Each row represents the method, and each column
represents the kind of stimulation for differentiation. NA means that Monocle did not work well.

LPS PIC PAM

SCOUP 0.03 0.12 0.12

SP 0.14 0.32 0.17

Monocle(2) NA 0.38 NA

Monocle(3) 0.18 0.45 0.32

TSCAN 0.17 0.27 0.24

hence can evaluate proper pseudo-time by using likelihood. Thus, SCOUP has advantages over

dimension reduction-based methods in pseudo-time estimation.

4.3.3 Validation of cell lineage estimate

In this section, we evaluate the accuracy of cell lineage estimation from single-cell expression

data containing lineage bifurcation.

First, we validated SCOUP and Monocle with simulation data (Kouno’s data (2)). Table 4.2

shows the mean AUC values of each method for each condition. The AUC values for SCOUP were
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Table 4.2. Mean AUC values for cell lineage estimates using each method for Kouno’s data (2).

ϵ = 0.0 ϵ = 0.5 ϵ = 1.0
SCOUP 0.99 0.99 0.99

Monocle 0.98 0.97 0.95

higher than those for Monocle in every condition. Figure 4.5 summarizes cells in the space of the

first two PCs for expression data with ϵ = 1.0. The color of each cell represents its genuine cell

lineage (left), lineage estimated with SCOUP (middle), and lineage estimated with Monocle (right).

Both methods estimated cell lineage with high accuracy for cells that were sufficiently separated

in PCA space. This result suggests that estimating the lineage of a cell whose expression pattern

has changed sufficiently after bifurcation is not difficult using these methods. However, Monocle

was not able to estimate cell lineage correctly for cells whose expression pattern did not change

sufficiently after bifurcation. In contrast, SCOUP successfully quantified the certainty of lineage

of such cells and estimated their lineages with fairly high accuracy (Table 4.2). To understand cell

fate decision mechanisms, it is important to analyze cells immediately after bifurcation. There-

fore, SCOUP, which can quantify the certainty of estimated cell lineage and accurately estimate the

lineage of cells that have just undergone bifurcation, will be useful for investigations of cell fate

decision mechanisms.

Next, we investigated cell lineage estimation using Moignard’s data. The Moignard’s data in-

cludes the lineage bifurcation as follows; head fold (HF) cells differentiate into putative blood and

endothelial populations, which are distinguished as either GFP+ cells (4SG) or Flk1+GFP− cells

(4SFG−). SCOUP was able to distinguish cells of 4SFG− and 4SG almost completely correctly

(AUC value = 1.0). The AUC value for Monocle was 0.81. Figure 4.6 shows cells in the space of

the first two PCs and the colors of cells indicate the genuine cell lineage (left), the lineage estimated

using our method (middle), and the lineage using Monocle (right). The lineage estimation using

SCOUP were highly consistent with cell annotations, while Monocle incorrectly regarded a non-

negligible number of 4SFG− cells as 4SG cells. This tendency of Monocle did not change when we

changed the dimension number parameter (max_components). In contrast with simulation data,

which were produced based on symmetric bifurcation, real data likely show complicated bifurcation

patterns, and hence, a deterministic approach, such as MST in reduced space, might be inadequate
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Figure 4.5. PCA of cells of Kouno’s data based on gene expression. The cell colors indicate the genuine
lineage (left), lineage estimated with SCOUP (middle), and lineage estimated with Monocle (right). The
color for SCOUP is defined by γc0; black, 0.5; red, 0.0; and blue, 1.0. The color for Monocle is defined by
estimated states: black, state 1 (pre-bifurcation); red, state 2; and blue, state 3. The color of each state is
defined so that they are consistent among each plots.

Figure 4.6. PCA of cells of Moignard’s data based on gene expression. The cell colors represent the genuine
lineage (left), lineage estimated with SCOUP (middle), and lineage estimated with Monocle (right). The
color for the genuine lineage is defined by the annotation of the cell; yellow, HF; red, 4SG; and purple,
4SFG−. The color for the SCOUP analysis is defined by γc0; black, 0.5; red, 0.0; and blue, 1.0. The color
for the Monocle analysis is defined by estimated states; black, state 1 (pre-bifurcation); red, state 2; and blue,
state 3. We determined the color of each state so that they are consistent among each plot.

to capture bifurcation.

The results described above show that SCOUP is superior to Monocle with respect to cell lin-

eage estimation for both simulated and real data. SCOUP can capture subtle differences in cells

immediately after bifurcation and will be a powerful method for investigations of cell fate decision

mechanisms.

We also investigated cell lineage estimation with Gaussian mixture model (GMM) implemented

in mclust package [71]. The AUC values for mclust were inferior to those of SCOUP, and mclust

was not able to estimate cell lineage correctly for cells at an early stage of bifurcation (see supple-

mentary text for AUC values and PCA plots of mclust). This is because mclust does not have time
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parameters in the model and will work well only for cells whose expression pattern has sufficiently

changed after bifurcation. Moreover, GMM fitted to the position in which large number of cells

exist for Moignard’s data. Therefore, GMM is inadequate to estimate the path of bifurcation in

the condition that cells are unevenly distributed. Thus, it is important to take time parameters into

account to estimate the path of differentiation and cell lineage.

4.3.4 Clustering genes

We grouped genes for Shalek’s data based on expression patterns along pseudo-time estimated

with SCOUP. Hereafter, we used the data for LPS stimulation because the number of LPS cells

is largest in Shalek’s data. In this analysis, we investigated the top 5,000 genes by the clustering

method implemented in Monocle. Monocle regards the expression pattern as a function of pseudo-

time and calculates a smooth response curve based on generalized additive models. Then, Monocle

defines the distance between two genes as 1 − ρxy/2, where ρ is the Pearson correlation coefficient

of standardized response curves, and groups genes with K-medoids clustering. In this analysis, we

set the number of clusters as 6 and the overall trend in expression pattern for each cluster and the

number of genes in each cluster are shown in Figure 4.7 and Table 4.3.

We performed gene ontology (GO) enrichment analyses for genes in each group with DAVID

[72, 73], and the top three GO terms (ordered by p-value) for each cluster are shown in Table 4.4.

The cells of Shalek’s data are differentiated into dendritic cells, and immune response genes were

upregulated (groups 1 and 2). Genes in groups 4 and 5 were downregulated and were enriched for

the cell cycle GO term, consistent with previous research [74]. In this previous study, increased

energy usage was also detected. In our analysis, genes related to energy usage were enriched in

groups 3 and 6, which show a transient upregulation. Thus, we can classify gene function based on

expression patterns along pseudo-time and the landscape of gene regulation can be characterized by

investigating differences in these patterns. For example, although both groups 1 and 2 exhibited an

upregulation, its timing was later for group 2 than group 1. The GO term related to “antigen" was

enriched only in group 2, and this might reflect a different regulatory cascade during differentiation.

We also calculated KEGG pathway enrichment for genes of group 1 and group 2, respectively.

Group 2 did not include the term of KEGG pathway whose Benjamin-adjusted p-value was less than

10−5, wheres the term “Toll-like receptor signaling pathway" was the most significantly enriched
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Figure 4.7. Overall trend in standardized expression patterns along pseudo-time for each group. This plot is
drawn with the plot_clusters function in the Monocle package.

Table 4.3. The number of top 5,000 genes, top 1,000 genes in each group. The total number are not equal to
5000 and 1000 because the response curves for a few genes could not be calculated.

group
1 2 3 4 5 6

total 867 403 958 1354 778 599

top-1000 gene 260 81 177 291 76 111

in group 1 and Benjamin-adjusted p-value was 6.5 × 10−7. This data is the RNA-Seq of LPS

stimulated bone-marrow derived dendritic cells and LPS is known to activate “Toll-like receptor

signaling pathway" at first which cause the up-regulation of “antigen processing and presentation"

a little late [75]. Our result is consistent with such mechanisms. Thus, investigations of expression

patterns along pseudo-time can elucidate the regulatory machinery involved in differentiation.

4.3.5 Correlation analysis

In this research, we propose a novel correlation analysis by using standardization based on

SCOUP to detect covariance that cannot explained by the model that assumes the conditional in-

dependence among genes alone, and investigated the regulatory relationships among genes using

correlations within raw expression data or standardized expression data. Hereafter, we refer to the

correlations within raw data and standardized data as CRaw and CStd, respectively. We first investi-
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Table 4.4. The top three GO terms for each group. The third column shows the negative logarithm of the
Bonferroni-adjusted p-value.

group GO term − log10(p)
immune response 22.9

1 defense response 11.4
response to wounding 7.0

antigen processing and presentation 5.5
2 immune response 3.8

antigen processing and presentation of exogenous antigen 3.3

generation of precursor metabolites and energy 5.1
3 protein localization 4.8

establishment of protein localization 3.2

cell cycle 9.6
4 cell division 7.9

ribonucleoprotein complex biogenesis 7.7

translation 6.7
5 M phase of mitotic cell cycle 3.2

cell cycle 2.9

generation of precursor metabolites and energy 11.5
6 protein transport 5.6

establishment of protein localization 5.5

Table 4.5. The top three transcription factors and their related genes for group 1. The left and right tables
correspond to CRaw(i, 1) and CStd(i, 1), respectively. The first column of each table contains the rank of the
absolute difference of expression between 1-h cells and 6-h cells, and the second column lists the gene names.
The third column contains the CRaw(i, 1) or (CStd(i, 1)) of the candidate genes.

rank Gene Symbol CRaw rank Gene Symbol CStd

5 Ifit1 0.46 313 Sqstm1 0.076
6 Ifi205 0.44 45 Ifih1 0.071
17 Ifi204 0.43 5 Ifit1 0.071

gated whether the target genes of a transcription factor (TF) can be predicted under the assumption

that the expression of a TF and its target genes are highly correlated. The list of TFs and their target

genes was downloaded from the Integrated Transcription Factor Platform (ITFP) [76], a database

containing 71 TFs and 648 pairs of TFs and target genes in the top 1,000 genes. We calculated

the CRaw and CStd values between 71 TFs and the remaining 929 genes and extracted from the top

1,000 positively correlated pairs of TFs and genes according to each correlation method. The top

1,000 CRaw and CStd values contained correlations of 24 and 27 annotated pairs, respectively (see

supplementary text for the list of detected annotated pairs), and the probabilities of capturing these

annotated pairs by random sampling are p < 6.2 × 10−5 and p < 2.8 × 10−6, respectively. This
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suggests that target genes of a specific TF can be predicted from a correlation analysis of single-cell

expression data.

Only three annotated pairs were common between the 24 CRaw correlation values and the 27

CStd correlation values, which indicates that different regulatory relationships were detected when

analyzing raw and standardized expression data. Analysis of standardized expression data revealed

correlations that were not explained by the model that assumes the conditional independence among

genes, whereas raw expression data analysis revealed correlations produced from similar expression

patterns during differentiation. Thus, our novel correlation analysis method can deliver new insights

that are not detected by conventional correlation methods.

Next, we aimed to detect a key regulator of each group by using the two correlation methods.

We downloaded the candidates of key regulator TFs and their related genes from the Riken Tran-

scription Factor Database (TFdb) [77] and FANTOM5 SSTAR [78] as well as TF data from ITFP.

In this analysis, 117 genes of the annotated TFs and their related genes were contained in top 1,000

gene and were considered as key regulator candidates. We calculated the CRaw (and CStd) values

between each candidate and genes in a group, and calculated the average CRaw (CStd) value of the

candidate for the group. We denote these values as CRaw(i, j) and CStd(i, j), where i is the index

of a candidate and j is the index of a group. We assumed the key regulator of the group is highly

correlated with genes in the group and investigated to detect the key regulators by extracting the

candidates of high CRaw(i, j) or CStd(i, j). There were few differences between CRaw(i, j) and

CStd(i, j) for groups 3 and 6 because our standardization was inadequate to deal with the transient

patterns found in these groups. The difference between CRaw(i, 1) and CStd(i, 1) was largest among

all groups, and therefore we focused on group 1 hereafter.

Table 4.5 shows the top three candidates according to CRaw(i, 1) and CStd(i, 1), respectively.

The CRaw(i, 1) candidates are basically the genes which have large absolute expression differences

between 1-h cells and 6-h cells. The large absolute expression difference can bring about high

spurious correlation due to the similar expression trends during differentiation. Thus, CRaw is likely

to be influenced by spurious correlation and therefore is inadequate to detect the key regulator. As

for CStd(i, 1), Sqstm1 is the top rank. The absolute expression difference rank of Sqstm1 is 313 of

1,000 genes and the CRaw(i, 1) rank of Sqstm1 is 29 of 117 candidates. Sqstm1, which is also called

p62, has been suggested to be a key intracellular target of innate defense regulator peptides [79] and
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Figure 4.8. The correlation network based on CRaw (A) and CStd (B) for genes in group 1. There are a total
of 93 and 107 genes in the CRaw and CStd network, respectively. The width of each edge represents the
magnitude of an expression correlation between the two genes, and color represents the sign, green for a
positive correlation and red for a negative correlation. To improve clarity, correlations with an absolute value
lower than 0.55 (0.25) are not shown for CRaw (CStd) network.

is therefore an important key factor for the immune response. Thus, our correlation method was

able to detect a key factor that was difficult to detect by conventional correlation method and is a

powerful tool for elucidating gene regulatory networks.

Next, we investigated the correlation network for all genes in group 1 based on both the corre-

lation methods. We omitted the genes with maximum of CRaw (CStd) values lower than 0.6 (0.3) to

improve visibility. Figure 4.8 show the correlation networks based on CRaw (Figure 4.8A) and CStd

(Figure 4.8B). In the CRaw network, the correlations of most of the gene pairs are positive because of

spurious correlations over time, and most of the genes are therefore positively connected with each

other. In contrast, the CStd network mainly consists of two clusters, and there are a considerable

number of negative correlations between the genes of different clusters. We assumed that each clus-

ter is regulated by distinct regulatory mechanisms and investigated the differences of genes between

two clusters. Hereafter, we focus on the chemokine genes (CXCL2, CXCL3, CXCL10, CXCL16,

and CCL5), which are a family of small cytokines or proteins secreted by cells and are known to

be involved in immune response [80]. In the CStd network, CXCL2, CXCL3, and CXCL10 belong

to one cluster, while CXCL16 and CCL5 belong to another cluster. Although CXCL16 belongs to
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the same CXC gene family, as CXCL2, CXCL3, and CXCL10, it has properties that distinguish it

from other CXC chemokine genes. For example, CXCL2, CXCL3, and CXCL10 are located in the

proximal chromosomal region (5qE2, 5qE2, and 5qE3, respectively), while CXCL16 is located on

another chromosome (11qB4) [81]. Further, although CCL5 belongs to a different gene family (the

CC gene family), CCL5 is located proximal to CXCL16 (11qB5). The up-regulation of chemokine

genes located in the proximal region has been suggested in breast cancer [82], and our correlation

analysis also suggests that chemokine genes in located in the proximal region (CXCL2, CXCL3, and

CXCL10) are regulated by different mechanisms than are CXCL16 and CCL5. Thus, each clusters

in the CStd network is likely to be regulated by region-dependent mechanisms, and examining cor-

relations among standardized gene expression profiles is a useful approach to elucidate regulatory

networks that works by controlling for the effect of trends over time.

4.4 Conclusions

The advancement of single-cell technologies will enable the elucidation of many biological pro-

cesses, such as differentiation. The development of a novel computational method is necessary to

fully analyze single-cell data. We developed a novel method, SCOUP, to analyze single-cell expres-

sion data for differentiation. Unlike previous methods, which use dimension reduction approaches

and reconstruct differentiation trajectories in reduced space, SCOUP describes gene expression dy-

namics during differentiation directly, including pseudo-time and cell fate. We evaluated pseudo-

time using SCOUP and previous methods based on the consistency between pseudo-time and ex-

perimental time and showed that the SCOUP results were superior to those of other methods for

almost all conditions. We also compared the accuracy of cell lineage estimation using SCOUP and

Monocle, and showed that SCOUP can estimate cell lineages with high accuracy, even for the cells

at an early stage of bifurcation. SCOUP is based on a probabilistic model and can be extended to

many applications. In this research, we developed a novel correlation analysis method based on

SCOUP. It calculates the covariance that cannot be explained by a model, which assumes the con-

ditional independence among genes, alone. We applied this method to scRNA-seq, and detected the

candidate of key regulator of differentiation and the clusters in the correlation network which were

not detected with conventional correlation analysis. In future work, we plan to extend our model
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to consider transient expression patterns and to estimate complicated cell lineages. In addition, we

will develop a multivariate OU process to estimate gene regulatory networks more directly.
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4.5 Supplementary text

4.5.1 Limit of a discrete time OU process

In this section, we consider limit of a discrete time OU process. Because both of genes and

cells are supposed to be independent in SCOUP, we forget the index of gene and cell, and consider

a general OU process in this section. We represent observed value as E and initial value as S, and

X = {Xs|s = 0, ..., N} is a path such that XN = E and X0 = S. As mentioned in the main text,

a OU process can be regarded as limit of a discrete time OU process:

Pou(E|S,α,σ2, t) = lim
N→∞

PN (XN |X0,α,σ2, t)

PN (XN |X0,α,σ2, t) =
∫

dX
N∏

s=1
Pou(Xs|Xs−1,α,σ2, t/N)

P (X|α,σ2, t) =
N∏

s=1
Pou(Xs|Xs−1,α,σ2, t/N)P (X0),

where the interval of integration is the all paths which satisfies X0 = S and XN = E.

Hereafter, we assume X0 is given and re-define X as X ∈ {Xs|s = 1, ..., N} for simplification.

The calculation of the case that X0 is unobserved is given in the after section. In this case, the

complete likelihood is given by

P (X|S,α,σ, t) =
N∏

s=1
Pou(Xs|Xs−1,α,σ2, t/N).

4.5.1.1 Transformation into the multivariate normal distribution

In this section, we transform the product of the transition probability Pou(Xs|Xs−1,α,σ2, t/N)

as the multivariate normal distribution. In the case of OU process, the transition probability is

calculated with the normal distribution as follows:

Pou(Xs|Xs−1,α,σ2, t/N) =
√

1
2πV

exp
(

− 1
2V

(Xs − BXs−1 − (1 − B)θ)2
)

,

where

V = σ2(1 − e−2αt/N )
2α , B = e−αt/N .
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The complete likelihood P (X|S,α,σ2, t) is equal to the following multivariate normal distri-

bution:

P (X|S,α,σ2, t) =
N∏

s=1
Pou(Xs|Xs−1,α,σ, t/N)

=
√

|Λ|
(√

2π
)N−1 exp

(
−1

2(X−N − µ)TΛ(X−N − µ)
)

= N (X−N |µ, Λ−1),

where X−N ∈ {Xs|s = 1, ..., N −1} and Λ is (N −1)×(N −1) matrix and µ is (N −1) dimension

vector and satisfy following equations.

Λi,j =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1+B2
V (i = j)

−B
V (j = i + 1 or j = i − 1)

0 (otherwise)

N−1∑

j=1
Λi,jµj =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

B
V X0 + (1−B)2

V θ (i = 1)

(1−B)2

V θ (1 < i < N − 1)

B
V XN + (1−B)2

V θ (i = N − 1)

From above equation, µj can be calculated as follows:

µj = B

V
X0Λ−1

1,j + (1 − B)2

V
θ

N−1∑

i=1
Λ−1

i,j + B

V
XN Λ−1

N−1,j .

4.5.1.2 Derivation of mean vector and variance-covariance matrix

As mentioned in the next section, the expectation of Xs, XsXs+1, and X2
s are necessary to

optimize parameters. These expectations can be calculated from the mean vector and variance-

covariance matrix of the multivariate normal distribution. Because we consider a limit of a discrete

time OU process, we cannot use numerical calculation and have to solve analytically. In this section,

we derivate the mean vector and the variance-covariance matrix.

Firstly, we derivate the variance-covariance matrix. To simplify this, we define Λ′ so that
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Λ = −V −1BΛ′. We also define following variable:

−B−1 − B = −(eαt/N + e−αt/N ) = −2 cosh(λ)

λ = αt/N,

and Λ′ is represented as follows:

Λ′
i,j =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

−2 coshλ (i = j)

1 (j = i + 1 or j = i − 1)

0 (otherwise)

It is shown that the inversion of symmetric tridiagonal matrix can be calculated analytically [67].

By using this, we can derive the inversion of Λ′ and Λ as follows:

[Λ′]−1
i,j = −cosh(N − |j − i|)λ− cosh(N − i − j)λ

2 sinhλ sinh Nλ

[Λ]−1
i,j = V

B

cosh(N − |j − i|)λ− cosh(N − i − j)λ
2 sinhλ sinh Nλ

.

Next, we substitute Λ−1 and derive the mean µj .

µj = V −1BX0Λ−1
1,j + V −1(1 − B)2θ

N−1∑

i=1
Λ−1

i,j + V −1BXN Λ−1
N−1,j

Firstly, we solve the first member V −1BX0Λ−1
1,j .

V −1BX0Λ−1
1,j = cosh(N − j + 1)λ− cosh(N − j − 1)λ

2 sinhλ sinh Nλ
X0

= sinh(N − j)λ
sinh Nλ

X0

Secondly, we solve third member V −1BXN Λ−1
N−1,j .

V −1BXN Λ−1
1,N−1 = cosh(j + 1)λ− cosh(−j + 1)λ

2 sinhλ sinh Nλ
XN

= sinh jλ

sinh Nλ
XN
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Lastly, we solve
∑N−1

i=1 Λ−1
i,j .

N−1∑

i=1
Λ−1

i,j

= V

2B sinhλ sinh Nλ

N−1∑

i=1
(cosh(N − |j − i|)λ− cosh(N − i − j)λ)

= V

2B sinhλ sinh Nλ

( j∑

i=1
(cosh(N − j + i)λ− cosh(N − i − j)λ)

+
N−1∑

i=j+1
(cosh(N + j − i)λ− cosh(N − i − j)λ)

)

Here, we use following equation to calculate above formula.

j∑

i=1
(cosh(N − j + i)λ− cosh(N − i − j)λ)

= 2
(1 − eλ)(1 − e−λ)(sinh(N − j)λ sinh jλ+ sinh(N − j)λ sinh(j + 1)λ+ sinh(N − j)λ sinhλ)

N−1∑

i=j+1
(cosh(N + j − i)λ− cosh(N − i − j)λ)

= 2
(1 − eλ)(1 − e−λ)(sinh jλ sinh(N − j − 1)λ− sinh jλ sinh(N − j)λ+ sinh jλ sinhλ)

The sum of the above equations becomes

2
(1 − eλ)(1 − e−λ)(sinhλ(sinh(N − j)λ+ sinh jλ) + sinh jλ sinh(N − j − 1)λ− sinh(j + 1)λ sinh(N − j)λ).

By using following equation,

sinh jλ sinh(N − j − 1)λ− sinh(j + 1)λ sinh(N − j)λ = − sinhλ sinh Nλ,

the sum can be described as follows:

2 sinh λ
(1 − eλ)(1 − e−λ)(sinh(N − j)λ+ sinh jλ− sinh Nλ).



95

Therefore, second member V −1(1 − B)2 V
2B sinh λ sinh Nλθ

∑Λ becomes

(1 − B)2

2B sinh Nλ

( 2 sinh λ
(1 − eλ)(1 − e−λ)(sinh(N − j)λ+ sinh jλ− sinh Nλ)

)
θ

= 1
sinh Nλ

(− sinh(N − j)λ− sinh jλ+ sinh Nλ) θ.

Thus, the mean becomes

µj = sinh(N − j)λ
sinh Nλ

X0 + sinh jλ

sinh Nλ
XN + θ

sinh Nλ
(− sinh(N − j)λ− sinh jλ+ sinh Nλ)

= (X0 − θ) sinh(N − j)λ+ (XN − θ) sinh jλ

sinh Nλ
+ θ.

4.5.1.3 The complete log-likelihood

The complete log-likelihood of X given X0 is given by

l(X) = − N

2 ln V

π
− V −1(1 + B2)

2

N−1∑

s=1
X2

s + V −1B
N−1∑

s=0
XsXs+1 + V −1(1 − B)2θ

N−1∑

s=1
Xs

− V −1B2

2 X2
0 − V −1B(1 − B)θX0 − V −1

2 X2
N + V −1(1 − B)θXN − 1

2

N∑

s=1
V −1(1 − B)2θ2

= − N

2 ln α

πσ2(1 − e−2αt) − N

2tσ2

(

2
(

N−1∑

s=1
X2

s −
N−1∑

s=0
XsXs+1

)

+ X2
0 + X2

N

)

+ α

2σ2

(

X2
0 − X2

N − 2θX0 + 2θXN + αt

N

(

−2
N−1∑

s=1
X2

s +
N−1∑

s=0
XsXs+1 + 2θ

N−1∑

s=1
Xs − Nθ2

))

+ O(1/N),

and Q function is given by

Q = − N

2 ln V

π
− V −1(1 + B2)

2

N−1∑

s=1
< X2

s > +V −1B
N−1∑

s=0
< XsXs+1 > +V −1(1 − B)2θ

N−1∑

s=1
< Xs >

− V −1B2

2 X2
0 − V −1B(1 − B)θX0 − V −1

2 X2
N + V −1(1 − B)θXN − 1

2NV −1(1 − B)2θ2

= − N

2 ln α∗

πσ∗2(1 − e−2α∗t) − N

2t∗σ∗2 (2Fss − 2Fss+1 + X2
0 + X2

N )

+ α∗

2σ∗2

(
X2

0 − X2
N − 2θ∗X0 + 2θ∗XN + α∗t∗

N

(
−2Fss + Fss+1 + 2Fs − Nθ∗2

))

+ O(1/N),
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where Fss, Fss+1, Fs is
∑N−1

s=1 < X2
s >,

∑N−1
s=0 < XsXs+1 >,

∑N−1
s=1 < Xs >, respectively.

4.5.1.4 Derivation of the sufficient statistic

The likelihood function depends on X only through X2
s , XsXs+1, and Xs, these are the suffi-

cient statistic for the model. In this section, we derive the these statistic analytically.

4.5.1.5 Derivation of Fss

Firstly, we solve the expectation of X2
s .

N−1∑

s=1
< X2

s > =
N−1∑

s=1
Λ−1

ss +
N−1∑

s=1
µ2

s

The first member is

N−1∑

s=1
Λ−1

ss = V

2B sinhλ sinh Nλ

∑
(cosh Nλ− cosh(N − 2s)λ)

≃ σ2

2α sinh Nλ

(
N cosh Nλ− 1

λ
sinh Nλ− λ sinh Nλ

)

The second member is

N−1∑

s=1
µ2

s =
∑((X0 − θ) sinh(N − s)λ+ (XN − θ) sinh sλ

sinh Nλ
+ θ

)2

=(X0 − θ)2 + (XN − θ)2

sinh2 Nλ

∑
sinh2 sλ+ 2(X0 − θ)(XN − θ)

sinh2 Nλ

∑
sinh s sinh(N − s)λ

+ 2θ(X0 + XN − 2θ)
sinh Nλ

∑
sinh sλ+ (N − 1)θ2

4.5.1.6 Derivation of Fss+1

Secondly, we calculate the following equation:

N−1∑

s=0
< XsXs+1 > =

N−2∑

s=1
Λ−1

ss+1 +
N−2∑

s=1
µsµs+1 + µ1X0 + µN−1XN .



97

The first member is

N−2∑

s=1
Λ−1

ss+1 = V

2B sinhλ sinh Nλ

∑
(cosh(N − 1)λ− cosh(N − 2s − 1)λ)

≃ σ2

2α sinh Nλ

(

N cosh Nλ− 1
λ

sinh Nλ− Nλ sinh Nλ− 1
2λ sinh Nλ+ Nλ2

2 cosh Nλ

)

.

The remainder is

N−2∑

s=1
µsµs+1 + µ1X0 + µN−1XN

=
N−1∑

s=0

((X0 − θ) sinh(N − s)λ+ (XN − θ) sinh sλ

sinh Nλ
+ θ

)

×
((X0 − θ) sinh(N − s − 1)λ+ (XN − θ) sinh(s + 1)λ

sinh Nλ
+ θ

)

=(X0 − θ)2 + (XN − θ)2

sinh2 Nλ

(

coshλ
N−1∑

s=1
sinh2 sλ+ sinhλ

2

N−1∑

s=1
sinh 2λ

)

+ (X0 − θ)(XN − θ)
sinh2 Nλ

(

2 coshλ
N−1∑

s=1
sinh sλ sinh(N − s)λ+ sinh Nλ sinhλ

)

+ θ(X0 + XN − 2θ)
sinh Nλ

(

2
N−1∑

s=1
sinh sλ+ sinh Nλ

)

+ Nθ2.

4.5.1.7 Derivation of Fs

Lastly, we calculate Fs.

N−1∑

s=1
< Xs > =

∑((X0 − θ) sinh(N − s)λ+ (XN − θ) sinh sλ

sinh Nλ
+ θ

)

= X0 + XN − 2θ
sinh Nλ

N−1∑

s=1
sinh sλ+ (N − 1)θ

4.5.2 Derivation of Q function

As mentioned in the above section, Q function is

Q = − N

2 ln α∗

πσ∗2(1 − e−2α∗t) − N

2t∗σ∗2 (2Fss − 2Fss+1 + X2
0 + X2

N )

+ α∗

2σ∗2

(
X2

0 − X2
N − 2θ∗X0 + 2θ∗XN + α∗t∗

N

(
−2Fss + Fss+1 + 2Fs − Nθ∗2

))
+ O(1/N).
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In the following section, we calculate the Q function.

4.5.2.1 Derivation of 2Fss − 2Fss+1 + X2
0 + X2

N

Firstly, we calculate the member which is related to
∑Λss −

∑Λss+1.

2
∑

Λss − 2
∑

Λss+1 ≃ σ2

2α sinh Nλ
(2Nλ sinh Nλ− λ sinh Nλ− Nλ2 cosh Nλ)

= tσ2 − λ

(
σ2

2α + tσ2 cosh Nλ

2 sinh Nλ

)

Secondary, we calculate the member which is related to (X0 − θ)2 + (XN − θ)2.

1
sinh2 Nλ

(2
∑

sinh2 sλ− 2 coshλ
∑

sinh2 sλ− sinhλ
∑

sinh 2λ)

≃ −1 + λ
( cosh Nλ

2 sinh Nλ
+ Nλ

2 sinh2 Nλ

)

Thirdly, we calculate the member which is related to (X0 − θ)(XN − θ).

1
sinh2 Nλ

(
4
∑

sinh sλ sinh(N − s)λ− 4 coshλ
∑

sinh sλ sinh(N − s)λ+ 2 sinh Nλ sinhλ
)

≃ − λ

sinh2 Nλ
(sinh Nλ+ Nλ cosh Nλ)

Fourthly, we calculate the member which is related to θ(X0 + XN − 2θ).

1
sinh Nλ

(
4
∑

sinh sλ− 4
∑

sinh sλ− 2 sinh Nλ
)

= −2

Lastly, we calculate the member which is related to θ2.

2(N − 1) − 2N = −2

With above calculation results, 2Fii − 2Fii+1 + X2
0 + X2

N can be derived as follows:

tσ2 − λ

(
σ2

2α + Nλσ2 cosh Nλ

2α sinh Nλ

)

− (X0 − θ)2 − (XN − θ)2 − 2θ(X0 + XN − 2θ) − 2θ2 + X2
0 + X2

N

+ λ
( cosh Nλ

2 sinh Nλ
+ Nλ

2 sinh2 Nλ

)
((X0 − θ)2 + (XN − θ)2)
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− λ

sinh2 Nλ
(sinh Nλ+ Nλ cosh Nλ) (X0 − θ)(XN − θ)

=tσ2 − λ

(
σ2

2α − Nλσ2 cosh Nλ

2α sinh Nλ

)

+ λ
( cosh Nλ

2 sinh Nλ
+ Nλ

2 sinh2 Nλ

)
((X0 − θ)2 + (XN − θ)2)

− λ

sinh2 Nλ
(sinh Nλ+ Nλ cosh Nλ) (X0 − θ)(XN − θ).

4.5.2.2 Derivation of X2
0 − X2

N − 2θ∗X0 + 2θ∗XN + λ∗(−2Fss + Fss+1 + 2θ∗Fs − Nθ∗2)

In this section, we calculate the coefficient of α∗

2σ∗2 which is

X2
0 − X2

N − 2θ∗X0 + 2θ∗XN + λ∗(−2Fss + Fss+1 + 2θ∗Fs − Nθ∗2). In this calculation,

we disregard the 1/N order terms.

At first, we calculate the member related to Fss and Fss+1. The member related to Λ is calcu-

lated as follows:

−2λ∗∑Λss + λ∗∑Λss+1 ≃ − λ∗σ2

2α sinh Nλ

(
N cosh Nλ− 1

λ
sinh Nλ

)

= λ∗

λ

(
σ2

2α − tσ2 cosh Nλ

2 sinh Nλ

)

.

The member related to (X0 − θ)2 + (XN − θ)2 is

− λ∗

sinh2 Nλ

(
2
∑

sinh2 sλ− coshλ
∑

sinh2 sλ− sinhλ
2

∑
sinh 2λ

)

≃ λ∗

λ

(
− cosh Nλ

2 sinh Nλ
+ Nλ

2 sinh2 Nλ

)
.

The member related to (X0 − θ)(XN − θ) is

− λ∗

sinh2 Nλ

(
4
∑

sinh iλ sinh(N − s)λ− 2 coshλ
∑

sinh sλ sinh(N − s)λ− sinh Nλ sinhλ
)

≃ λ∗

λ

1
λ sinh2 Nλ

(sinh Nλ− Nλ cosh Nλ) .

The member related to θ(X0 + XN − 2θ) is

− λ∗

sinh Nλ

(
4
∑

sinh sλ− 2
∑

sinh sλ− sinh Nλ
)

≃ −2λ
∗

λ

cosh Nλ− 1
λ sinh Nλ

.
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The member related to θ∗(X0 + XN − 2θ) is

λ∗ 2
sinh Nλ

∑
sinh sλ ≃ 2λ

∗

λ

cosh Nλ− 1
sinh Nλ

.

And the member related to θ2, θ∗θ, θ∗2 is

λ∗
(
(−2(N − 1) + N)θ∗2 + 2(N − 1)θθ∗ − Nθ2

)
≃ −Nλ∗(θ∗ − θ)2.

Therefore, X2
0 − X2

N − 2θ∗X0 + 2θ∗XN + λ∗(−2Fss + Fss+1 + 2θ∗Fs − Nθ∗2) becomes as

follows:

(X0 − θ∗)2 − (XN − θ∗)2 + λ∗

λ

(
− cosh Nλ

2 sinh Nλ
+ Nλ

2 sinh2 Nλ

)
((X0 − θ)2 + (XN − θ)2)

+ λ∗

λ

1
sinh2 Nλ

(sinh Nλ− Nλ cosh Nλ) (X0 − θ)(XN − θ) + 2λ
∗

λ

cosh Nλ− 1
sinh Nλ

(θ∗ − θ)(X0 + XN − 2θ)

− Nλ∗(θ∗ − θ)2 + λ∗

λ

(
σ2

2α − tσ2 cosh Nλ

2α sinh Nλ

)

,

4.5.2.3 Q function

The standardization term is approximated as follows:

2α∗

1 − e−2α∗t/N
≃ N

t

1
1 − α∗t

N

≃ N

t
+ α∗.

By using the calculation results so far, the Q function is described as follows:

Q =N

2 ln
(

N

t∗ + α∗
)

− N

2 ln σ∗2 − Ntσ2

2t∗σ∗2 + α∗

2σ∗2

(
αt

α∗t∗ + α∗t∗

αt

)
σ2

2α + α∗

2σ∗2

(
αt

α∗t∗ − α∗t∗

αt

)
tσ2 cosh Nλ

2 sinh Nλ

+ α∗

2σ∗2

(
αt

α∗t∗ + α∗t∗

αt

)(
− cosh Nλ

2 sinh Nλ
((X0 − θ)2 + (XN − θ)2) + 1

sinh Nλ
(X0 − θ)(XN − θ)

)

+ α∗

2σ∗2

(
αt

α∗t∗ − α∗t∗

αt

)(
− Nλ

2 sinh2 Nλ
((X0 − θ)2 + (XN − θ)2) + Nλ cosh Nλ

sinh2 Nλ
(X0 − θ)(XN − θ)

)

+ α∗

2σ∗2
α∗t∗

αt
(θ∗ − θ)

(
2cosh Nλ− 1

sinh Nλ
(X0 + XN − 2θ)

)
− α∗2t∗

2σ∗2 (θ∗ − θ)2

+ α∗

2σ∗2 ((X0 − θ∗)2 − (XN − θ∗)2) + O(1/N).
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4.5.3 Parameter optimization

We optimize parameters by solving dQ/dθ∗ = 0, dQ/dα∗ = 0, dQ/dσ∗2 = 0, and dQ/dt∗ = 0.

In this research, we optimize all parameters independently.

4.5.3.1 Optimization of θ

We solve dQ/dθ∗ = 0.

dQ/dθ∗ = α

2σ2

(
2coshαt − 1

sinhαt
(X0 + XN − 2θ) − 2α(θ∗ − θ) − 2(X0 − XN )

)

So, θ∗ which satisfies dQ/dθ∗ = 0 is

θ∗ = θ + 1
αt

(coshαt − 1
sinhαt

(X0 + XN − 2θ) − (X0 − XN )
)

= θ + 2
αt(1 + e−2αt)

(
XN − e−αtX0 − (1 − e−αt)θ

)
.

4.5.3.2 Optimization of α

α∗ which satisfies dQ/dα∗ = 0 is

α∗ = −σ2t + (XN − θ)2 − (X0 − θ)2

Zα
,

where

Zα =σ2

α

( 1
α

− t coshαt

sinhαt

)
+ 2
α

(
αt

2 sinh2 αt
− coshαt

2 sinhαt

)
((X0 − θ)2 + (XN − θ)2)

+ 2
α

( 1
sinhαt

− αt coshαt

sinh2 αt

)
(X0 − θ)(XN − θ).

4.5.3.3 Optimization of σ2

We solve dQ/dσ∗2 = 0.

σ∗2 =σ2 − 1
N

(
σ2 + 2α

(
− coshαt

2 sinhαt
((X0 − θ)2 + (XN − θ)2) + 1

sinhαt
(X0 − θ)(XN − θ)

)

+ α((X0 − θ)2 − (XN − θ)2)
)
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The highest order term results in σ∗2 = σ2 which means σ2 will not change. Therefore, we

optimize in regards to second highest term.

σ2 = 2α
1 − e−2αt

(
XN − e−αtX0 − (1 − e−αt)θ

)2

When we regard above σ2 as σ∗2, dQ/dσ∗2 will be zero up to second highest order if σ2 is

converged sufficiently.

4.5.3.4 Optimization of t

We solve dQ/dt∗ = 0. Because t∗ is related to α and σ, we consider α′∗ = t∗α,σ
′∗2 = t∗σ2.

dQ
dα′∗ = 1

2 + 1
2αt

− 1
2

sinhαt

coshαt
+ 1

tσ2
g

(D(1) − D(2)) + 1
2t∗σ2 ((X0 − θ)2 − (XN − θ)2)

dα
′∗

dt∗
dQ
dα′∗ = α

2 + 1
2t

− α

2
sinhαt

coshαt
+ α

tσ2 (D(1) − D(2)) + α

2t∗σ2 ((X0 − θ)2 − (XN − θ)2),

and

dσ
′∗2

dt∗
dQ

dσ′∗2 =N

2
1

t∗2 (t − t∗) − 1
4t∗2

(
t + αt2 sinhαt

coshαt
+ 2αt

σ2 (D(1) + D(2))
)

− α

2t∗σ2 ((X0 − θ)2 − (XN − θ)2)

− 1
4t2

(
t − αt2 sinhαt

coshαt
+ 2αt

σ2 (D(1) − D(2))
)

,

where

D(1) = − cosh Nλ

2 sinh Nλ
((X0 − θ)2 + (XN − θ)2) + 1

sinh Nλ
(X0 − θ)(XN − θ)

D(2) = − Nλ

2 sinh2 Nλ
((X0 − θ)2 + (XN − θ)2) + Nλ cosh Nλ

sinh2 Nλ
(X0 − θ)(XN − θ)

So, dQ/dt∗ is described as follows:

dQ
dt∗ =dα

′∗

dt∗
dQ

dα′∗ + dσ
′∗2

dt∗
dQ

dσ′∗2

=N

2
1

t∗2 (t − t∗)

− 1
4t∗2

(
t + αt2 sinhαt

coshαt
+ 2αt

σ2 (D(1) + D(2))
)

− 1
4t2

(
−t + αt2

(
−2 + sinhαt

coshαt

)
+ 2αt

σ2 (−D(1) + D(2))
)

.
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The highest order term results in t∗ = t and we consider second highest term. In the case that

dQ/dt∗ = 0 for second highest order, the following equation consists.

t + αt2 sinhαt

coshαt
+ 2αt

σ2 (D(1) + D(2)) = t − αt2
(

−2 + sinhαt

coshαt

)
+ 2αt

σ2 (D(1) − D(2))

Above equation becomes as follows:

αt
(

1 − coshαt

sinhαt

)
− 2 α

σ2 E = 0.

Unfortunately, t cannot be solved analytically and we use Newton’s method.

f(t) =αt
(

1 − coshαt

sinhαt

)
− 2 α

σ2 D(2)

df(t)
dt

=α
(

1 − coshαt

sinhαt

)
+ α2t

sinh2 αt
− 2α

2

σ2
1

sinh3 αt

(
− 1

2(sinhαt − 2αt coshαt)((X0 − θ)2 + (XN − θ)2)

+ (coshαt sinhαt − αt(1 + cosh2 αt))(X0 − θ)(XN − θ)
)

tn+1 = tn − f(tn)
f ′(tn)

We optimize t iteratively by using above equation.

4.5.4 Mixture OU process for multi-lineage differentiation

We denote the number of cell, gene, and lineage by C, G, and K, respectively. We also denote

the index of cell, gene, and lineage by c, g, and k, respectively. We assume each lineage has different

attractor θgk and the likelihood is given by

P (E|S, Θ, T ) =
C∏

c=1

G∏

g=1
P (Egc|Sgc, θg, tc)

=
C∏

c=1

⎛

⎝
K∑

k=1
πk

G∏

g=1
P (Egc|Sgc, θgk, tc)

⎞

⎠

=
C∏

c=1

⎛

⎝
K∑

k=1
πk

G∏

g=1

∑

Xgc∈(Egc,Sgc)

N∏

s=1
P (Xgcs|Xgcs−1, θgk, tc/N)

⎞

⎠ ,

where πk is the probability of lineage k.

With the latent value Zc which is 1 of K representation and indicates the cell fate,
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P (X, Z|E, S, Θ, T ) and P (Z|E, S, Θ, T ) are given by

P (X, Z|E, S, Θ, T ) ∝
C∏

c=1

K∏

k=1

⎛

⎝πZck
k

G∏

g=1

N∏

s=1
P (Xgcs|Xgcs−1, θgk, tc/N)Zck

⎞

⎠

P (Z|E, S, Θ, T ) ∝
C∏

c=1

K∏

k=1

⎛

⎝πZck
k

G∏

g=1
P (Egc|Sgc, θgk, tc)Zck

⎞

⎠ .

So, γck, which is the expectation of posterior probability of Zck is represented as follows:

γck = E[Zck] =
πk
∏G

g=1 P (Egc|Sgc, θgk, tc)
∑

k′ π′
k

∏G
g=1 P (Egc|Sgc, θgk′ , tc)

.

To avoid overfitting, we added pseudo-count and re-defined γck as follows:

γck := γck + 0.01
∑

k′(γck′ + 0.01) = γck + 0.01
1 + 0.01 × K

.

Hereafter, we denote ln P (Xcg|Scg, Zck = 1) by lgck, and lgck is described as follows:

lgck = ln
(

N∏

i=1
P (Xgcs|Xgcs−1, θgk, tc/N)

)

= − N

2 ln Vg

π
−

V −1
g (1 + B2

g)
2

N−1∑

s=1
X2

gcs + V −1
g Bg

N−2∑

s=1
XgcsXgcs+1 + V −1

g (1 − Bg)2θgk

N−1∑

s=1
Xgcs

+ V −1
g BgXgc0Xgc1 + V −1

g BgXgcN XgcN−1 −
V −1

g B2
g

2 X2
gc0 − V −1

g Bg(1 − Bg)θgkXgc0

−
V −1

g

2 X2
gcN + V −1

g (1 − Bg)θgkXgcN − 1
2

N∑

i=1
V −1

g (1 − Bg)2θ2
gk.

And the Q function of lgck (Qgck) is

Qgck =N

2 ln
(

N

t∗
c

+ α∗
g

)
− N

2 ln σ∗2
g −

Ntσ2
g

2t∗
cσ

∗2
g

+
α∗

g

2σ∗2
g

(
αgtc

α∗
gt∗

c
+
α∗

gt∗
c

αgtc

)
σ2

g

2αg
+

α∗
g

2σ∗2
g

(
αgtc

α∗
gt∗

c
−
α∗

gt∗
c

αgtc

)
tcσ2

g cosh Nλg

2 sinh Nλg

+
α∗

g

2σ∗2
g

(
αgtc

α∗
gt∗

c
+
α∗

gt∗
c

αgtc

)

D(1)
gck +

α∗
g

2σ∗2
g

(
αgtc

α∗
gt∗

c
−
α∗

gt∗
c

αgtc

)

D(2)
gck

+
α∗

g

2σ∗2
g

α∗
gt∗

c

αgtc

(
θ∗

gk − θgk

)(

2cosh Nλgc − 1
sinh Nλgc

(Xgc0 + XgcN − 2θgk)
)



105

−
α∗2

g t∗
c

2σ∗2
g

(θ∗
gk − θgk)2 +

α∗
g

2σ∗2
g

((Xgc0 − θ∗
gk)2 − (XgcN − θ∗

gk)2) + O(1/N),

where

D(1)
gck = − cosh Nλgc

2 sinh Nλgc
((Xgc0 − θgk)2 + (XgcN − θgk)2) + 1

sinh Nλgc
(Xgc0 − θgk)(XgcN − θgk)

D(2)
gck = − Nλgc

2 sinh2 Nλgc
((Xgc0 − θgk)2 + (XgcN − θgk)2) + Nλgc cosh Nλgc

sinh2 Nλgc
(Xgc0 − θgk)(XgcN − θgk).

Thus, the complete Q function is

Q = EZ,X [ln P (X, Z, E|S, Θ, T )] =
∑

c

∑

k

(

γck ln πk +
∑

g

γckQgck

)

+ O(1/N).

4.5.4.1 Parameter optimization

The optimization equation is derived by solving the differentiation of the Q function likewise

the parameter optimization of single gene, cell, and lineage model.

4.5.4.2 Optimization of θgk

θ∗
gk = θgk +

∑
c γck

2
αg(1+e−αgtc )

(
XgkN − e−αgtcXgk0 − (1 − e−αgtc)θgk

)

∑
c γcktc

4.5.4.3 Optimization of αg

α∗
g =

∑
c
∑

k γck

(
−tcσ2

g − (Xgc0 − θgk)2 + (XgcN − θgk)2
)

(∑c
∑

k γckZα
cgk)

4.5.4.4 Optimization of σ2
g

σ∗2
g = 1

C

∑

c

∑

k

γgck
2αg

1 − e−2αgtc

(
XgkN − e−αgtcXgk0 − (1 − e−αgtc)θgk

)2
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4.5.4.5 Optimization of tc

We optimize tc so that it satisfies following equation.

∑

k

∑

g

γck

(

αgtc

(

1 − coshαgtc

sinhαgtc

)

− 2αg

σ2
g

D(2)
gck

)

= 0

We used Newton’s method as follows:

f(tc) =
∑

k

∑

g

γck

(

αgtc

(

1 − coshαgtc

sinhαgtc

)

− 2αg

σ2
g

D(2)
gck

)

df(tc)
dtc

=
∑

k

∑

g

γck

(
αg

(

1 − coshαgtc

sinhαgtc

)

+
α2

gtc

sinh2 αgtc

− 2
α2

g

σ2
g

1
sinh3 αgtc

(
− 1

2(sinhαgtc − 2αgtc coshαgtc)((Xcg0 − θgk)2 + (XcgN − θgk)2)

+ (coshαgtc sinhαgtc − αgtc(1 + cosh2 αgtc))(Xcg0 − θgk)(XcgN − θgk)
))

tcn+1 = tcn − f(tcn)
f ′(tcn) .

4.5.4.6 Optimization of πk

πk =
∑

c γck∑
c
∑

k′ γck′

4.5.5 Expected value of Scg

Thus far, we assume Scg (Xcg0) is given. However, it is unobserved practically and we have to

calculate expected value of Sgc.

P (Scg|Ecg) = P (Ecg|Scg)P (Scg)
P (Ecg)

∝ N
(
Ecg|e−αtScg + (1 − e−αgtc)θgk, Vgc

)
N (Scg|µ0g,σ2

0g)

∝ N
(

Scg

∣∣∣∣∣
V ′−1µ′ + σ−2

0g µ0g

V ′−1 + σ−2
0g

,
1

V ′−1 + σ−2
0g

)

,
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where

µ′ = eαgtcEcg + (1 − eαgtc)θgk

V ′ = e2αgtcVgc

Vgc =
σ2

g(1 − e−2αgtc)
2αg

.

Therefore, the expected values related to Xcg0 are given by

E[X2
cg0] =

(
V ′−1µ′ + σ−2

0g µ0g

V ′−1 + σ−2
0g

)2

+ 1
V ′−1 + σ−2

0g

E[Xcg0] =
V ′−1µ′ + σ−2

0g µ0g

V ′−1 + σ−2
0g

,

and we just substitute the above E[Xcg0] and E[X2
cg0] into Xcg0 and X2

cg0, respectively, for parameter

optimization.

4.5.6 The marginal log-likelihood

Sgc is not observed and we have to marginalize over Sgc to calculate the marginal log-likelihood,

and it is described as follows:

∫
dSgcN(Egc|e−αtSgc + (1 − e−αt)θgk, Vg)N(Sgc|µ0g,σ2

0g)

= N(Egc|e−αtµ0g + (1 − e−αt)θgk, V + e−2αtσ2
0g).

Therefore, the log-likelihood of E is

l(E) =
∑

c

log
(
∑

k

πk

∏

g

N
(
Ecg|e−αtµ0g + (1 − e−αgtc)θgk, Vg + e−2αgtcσ2

0g

))

.

4.5.7 A procedure of parameter optimization

In this research, we used following parameter optimization procedure to avoid sub-optimal so-

lutions.

Firstly, we initialized pseudo-time tc based on dimension reduction approach and αg,σ2
g , θg by
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using the model of K = 1.

1) Add the mean of initial distribution (µ0 = {µ0g|g = 0, ..., G}) as a root to single-cell expres-

sion data, and perform principal component analysis.

2) Calculate minimum spanning tree with Prim’s algorithm on D dimensional latent space and

calculate the shortest path from root (µ0) to a cell c and define the standardized of the total

weight of the shortest path as the initial value of tc (In this research, we set D = 2 unless we

refer).

3) Set the initial value of θg to the mean of the expression (θg = 1
C

∑C
c=1 Egc).

4) Initialize αg,σ2
g (In this research, we set αg = 5.0,σ2

g = 1.0).

5) Optimize αg,σ2
g , θg with SCOUP of K = 1 by EM algorithm with 10 iterations.

Secondary, we optimize parameter of mixture model. Because parameters fell into a sub-optimal

solution which shows wrong order of cells when we optimized all parameter simultaneously, we

optimized parameters except tc at first.

1) Initialize θgk with θg calculated by above procedure.

2) Initialize the expectation of a latent value of a cell (γck) randomly and calculate other statistic,

and optimize αg, σ2
g , and θgk with M-step.

3) Run E-step to calculate γck and other statistic.

4) Run M-step to optimize αg, σ2
g , and θgk.

5) Return to step 3 until the number of iterations reach m1 (In this research, we set

m1 = 1, 000.).

Lastly, we optimize all parameters.

1) Run E-step

2) Run M-step. We optimize tc at first, and optimized other parameters after that.
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3) Stop the parameter optimization if |e−α∗
gtmaxθ∗

gk − e−αgtmaxθgk|,

|σ∗2
g (1−e−2α∗

gtmax )
2α∗

g
− σ2

g(1−e−2αgtmax )
2αg

|, and |t∗
c − tc| are under ϵ (In this research, we set

ϵ = 0.01). We used these values to check convergence because these are meaningful values

and αg and σ2
g can change together so that the likelihood does not change (see next section).

4) Stop the parameter optimization if the number of iterations reach m2 (In this research, we

set m2 = 10, 000 and verified that parameters are converged before m2 iterations under most

conditions).

5) Return to step 1.

αg can be very large and small which is meaningless to estimate accurately and we set lower

and upper bounds to αmin = 0.1,αmax = 100 and set αg = αmin (αmax) if α∗
g is under (over) αmin

(αmax). σ2
g can be significantly small and we set the lower bound similar way (σ2

min = 0.1). We

also set the bounds of pseudo-time so that the lower bound is tmin = 0.001 and the upper bound

is tmax = 2.0. For pseudo-time (tc) optimization, we stop the Newton’s method if |tcn+1 − tcn|

is lower than ϵ or the number of iteration reach 100. The solution of Newton’s method tc can be

incorrect value and we set the new parameter of tc to the time whose likelihoods are highest in the

three case: tc is old time; tc is the solution of Newton’s method; tc = tmin; and tc = tmax.

4.5.8 Validation of parameter optimization method

In this section, we validated the parameter optimization method with simulation data. We gener-

ated simulation data with C = 100, G = 500, and K = 1, and each parameter was sampled so that

tc = UR[0, 1], αg = UR[0.1, 10], σ2
g = UR[0.1, 100], and θg = UR[−5, 5], where UR[a, b] is a uni-

form random number from a to b. All of the initial distributions of the gene were N(Xcg0|0, 1.0) and

Xcg0 was sampled from the distribution. To complete the scale of the parameters, we set tmax = 1.0.

With above conditions, we sampled the expression data from the normal distribution based on OU

process, and applied this simulation data for SCOUP.

Firstly, we compared the values of estimated parameters with those of true parameters (Fig-

ure 4.9(A,B,C,D)). The values of estimated time is highly correlated with true values (r2 = 0.94).

The difference between estimated time and true time becomes large for large tc. This is because

the distribution of OU-process becomes stationary distribution for t sufficiently large, and the fluc-
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tuation of the value of optimized tc will be large for such condition. The values of estimated θg is

also highly correlated with true values (r2 = 0.96). But estimated θg of a few genes are different

from true values significantly. This will be because the influence of θg on the distribution is signif-

icantly small when αg ≃ 0, and hence, the value of θg is unstable in such condition. The values of

estimated αg and σ2
g are highly correlated with true values (r2 is 0.79 and 0.77, respectively), but

estimated αg and σ2
g of some genes are significantly larger than true values. This is because that

the distribution of different αg and σ2
g will be almost equal for the gene of θg ≃ µ0g as long as the

balance between αg and σ2
g are kept, and the estimated absolute values will be unstable. Then, we

investigated the value of mean (e−αgtθg) and variance (σ2
g(1 − e−2αgt)/2αg) of OU process at time

t = 1 (Figure 4.9(E,F)). The values of estimated mean and variance are highly correlated with those

of true mean and variance (0.99 and 0.94, respectively), and hence, SCOUP succeed to reconstruct

the original probabilistic distribution with high accuracy.

Next, we investigated that the log-likelihood of optimized parameters is higher than those of

varied parameters. Figure 4.10 is the example of the log-likelihood curve with respect to time

parameter of a cell (tc), and the value of optimized tc is drawn with x-mark. The log-likelihood

of the optimized tc is located in the top of the log-likelihood curve. As shown in Figure 4.10(C),

the log-likelihood are almost equal 0.5 < tc because the distribution will almost be equal to the

stationary distribution for large tc. Figure 4.11 is the example of the log-likelihood surface with

respect to αg and θg of a gene. The log-likelihood of the optimized αg and θg are located in the

top of the log-likelihood surface. Figure 4.12 is also the example of the log-likelihood surface with

respect to σ2
g and θg of a gene. The log-likelihood of the optimized σ2

g and θg are located in the

top of the log-likelihood surface. Figure 4.13 is also the example of the log-likelihood surface with

respect to θg and σ2
g of a gene. Although the log-likelihood of the optimized αg and σ2

g are located in

the top of the log-likelihood surface, the log-likelihood are almost equal for σ2
g ≃ 20×αg regarding

a gene (Figure 4.13(C)). This is because that the distribution of different αg and σ2
g will be almost

equal in some conditions as mentioned in the above paragraph.

Although the values of optimized parameters have potential to be unstable in some conditions,

the mean and variance of OU process are stable and the log-likelihood of optimized parameters are

highest. Therefore, we conclude that SCOUP succeed to optimize parameters.
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Figure 4.9. Comparison between the estimated values and true values: (A) for pseudo-time (t), (B) for θg ,
(C) for αg, (D) for σ2

g , (E) for mean, (F) for variance. The outlier whose estimated value exceeds the boundary
of drawing area is visualized in the border with a red circle for visualization.

Figure 4.10. The log-likelihood curve with respect to tc of a cell. The optimized tc is indicated with x-max.
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Figure 4.11. The log-likelihood surface with respect to αg and θg of a gene. The color of a pixel represents
the log-likelihood and black represents the highest log-likelihood. The optimized (αg, θg) is indicated with
x-max.

Figure 4.12. The log-likelihood surface with respect to σ2
g and θg of a gene. The color of a pixel represents

the log-likelihood and black represents the highest log-likelihood. The optimized (σ2
g , θg) is indicated with

x-max.

Figure 4.13. The log-likelihood surface with respect to αg and σ2
g of a gene. The color of a pixel represents

the log-likelihood and black represents the highest log-likelihood. The optimized (αg, σ2
g) is indicated with

x-max.
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4.5.9 Cell lineage estimation with Gaussian mixture model

We estimated cell lineage with Gaussian mixture model (GMM) implemented in mclust package

[71]. The AUC values of mclust for Kouno’s data(2) (ϵ = 0.0) and Moignard’s data are 0.86 and

0.96, respectively, and both of them are inferior to those of SCOUP (0.99 and 1.0). Figure 4.14 and

4.15 show cells of Kouno’s data and Moignard’s data in the space of first two PCs and the colors of

cells indicate the genuine cell lineage (left), the lineage estimated using SCOUP (middle), and the

lineage using mclust (right). GMM cannot estimate cell lineage correctly for cells at an early stage

of bifurcation because GMM does not count the time axis and will work well only for cells whose

expression pattern changes sufficiently after bifurcation. Moreover, mclust seems to overfit the 4SG

cells around (-6, 0) in the PCA space, and failed to distinguish a portion of 4SG cells for Moignard’s

data (Figure 4.15). This is because GMM will fit to the position in which large number of cells exist,

and GMM cannot estimate the path of bifurcation in the condition that cells are unevenly distributed

. Therefore, it is important to count time axis to analyze expression for cells during bifurcation.

Figure 4.14. PCA of cells of Kouno’s data based on gene expression. The cell colors indicate the genuine
lineage (left), lineage estimated with SCOUP (middle), and lineage estimated with mclust (right). The color
for SCOUP is defined by γc0; black, 0.5; red, 0.0; and blue, 1.0. The color for mclust is defined by expectation
of latent values; black, 0.5; red, 0.0; and blue, 1.0. The color of each state is consistent among plots.
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Figure 4.15. PCA of cells of Moignard’s data based on gene expression. The cell colors represent the genuine
lineage (left), lineage estimated with SCOUP (middle), and lineage estimated with mclust (right). The color
for the genuine lineage is defined by the annotation of the cell; yellow, HF; red, 4SG; and purple, 4SFG−.
The color for the SCOUP analysis is defined by γc0; black, 0.5; red, 0.0; and blue, 1.0. The color for the
mclust analysis is defined by expectation of latent values; black, 0.5; red, 0.0; and blue, 1.0. We determined
the color of each state so that they are consistent among each plot.

4.5.10 Annotated pairs in the top 1,000 CRaw and CStd values

As described in the main manuscript, we investigated whether the target genes of a transcription

factor (TF) can be predicted under the assumption that the expression of a TF and its target genes

are highly correlated. The top 1,000 CRaw and CStd values contained correlations of There are 24

and 27 annotated pairs in the top 1,000 CRaw and CStd values, respectively (Table 4.6). Only three

annotated pairs (UHRF1, RRM2), (MCM5, RRM2), and (MCM4, RRM2), were common between

the 24 CRaw correlation values and the 27 CStd correlation values.
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Table 4.6. The annotated pairs in the top 1,000 CRaw and CStd values. The left and right tables correspond
to CRaw and CStd, respectively. The first column of each table contains the TF names and the second column
lists the target gene names. The third column contains the CRaw or CStd of the pairs.

TF target gene CRaw

IFIT1 RTP4 0.761

IFIT1 IFI47 0.760

IFIT1 OASL2 0.746

IFI205 IFI47 0.702

IRF7 IFI47 0.699

IRF7 OASL2 0.694

UHRF1 RRM2 0.681

IFI205 RTP4 0.681

IFIT3 MPA2L 0.681

IFIT1 USP18 0.680

IFI205 PYHIN1 0.658

IFI203 RTP4 0.655

MCM5 RRM2 0.653

IRF7 USP18 0.651

PARP14 IFI47 0.649

IFIH1 IFI47 0.645

IFIH1 RTP4 0.641

IFIH1 OASL2 0.637

IFIT1 IGTP 0.619

IFI205 MPA2L 0.605

IRF7 RTP4 0.593

IFI205 GBP2 0.592

PARP9 USP18 0.587

MCM4 RRM2 0.584

TF target gene CStd

UHRF1 RRM2 0.666

MCM5 RRM2 0.644

MCM4 RRM2 0.557

MCM5 CDCA8 0.489

ATAD2 RRM2 0.486

MCM3 RRM2 0.482

UHRF1 CDCA8 0.480

CENPA TOP2A 0.476

MCM5 TOP2A 0.470

MCM3 2810417H13RIK 0.464

HMGB2 TOP2A 0.447

MCM3 TOP2A 0.447

PLD4 FCGR2B 0.445

MCM5 MAD2L1 0.437

H2AFZ 2810417H13RIK 0.434

MCM4 TOP2A 0.432

ATAD2 2810417H13RIK 0.422

MCM4 CDCA8 0.421

MCM5 DNAJC9 0.421

ATAD2 TOP2A 0.413

MCM5 DTYMK 0.408

MCM4 DTYMK 0.408

H2AFZ TOP2A 0.404

MCM4 ANP32E 0.402

MCM4 LBR 0.402

UHRF1 CKS1B 0.387

MCM3 ANP32E 0.383



116

Bibliography

[1] The ENCODE Project Consortium: An integrated encyclopedia of DNA elements in the hu-

man genome. Nature 489(7414), 57–74 (2012)

[2] Marusyk, A., Almendro, V., Polyak, K.: Intra-tumour heterogeneity: a looking glass for can-

cer? Nat. Rev. Cancer 12(5), 323–334 (2012)

[3] Trapnell, C., Williams, B.A., Pertea, G., Mortazavi, A., Kwan, G., van Baren, M.J., Salzberg,

S.L., Wold, B.J., Pachter, L.: Transcript assembly and quantification by RNA-Seq reveals

unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol.

28(5), 511–515 (2010)

[4] Meinicke, P., Asshauer, K.P., Lingner, T.: Mixture models for analysis of the taxonomic com-

position of metagenomes. Bioinformatics 27(12), 1618–1624 (2011)

[5] Schaid, D.J.: Evaluating associations of haplotypes with traits. Genet. Epidemiol. 27, 348–364

(2004)

[6] The International HapMap Consortium: A second generation human haplotype map of over

3.1 million SNPs. Nature 449, 851–861 (2007)

[7] Tewhey, R., Bansal, V., Torkamani, A., Topol, E.J., Schork, N.J.: The importance of phase

information for human genomics. Nat. Rev. Genet. 12, 215–223 (2011)

[8] Clark, A.G.: Inference of haplotypes from PCR-amplified samples of diploid populations.

Mol. Biol. Evol. 7, 111–122 (1990)

[9] Excoffier, L., Slatkin, M.: Maximum-likelihood estimation of molecular haplotype frequen-

cies in a diploid population. Mol. Biol. Evol. 12, 921–927 (1995)



117

[10] Stephens, M., Smith, N.J., Donnelly, P.: A new statistical method for haplotype reconstruction

from population data. Am. J. Hum. Genet. 68, 978–989 (2001)

[11] Stephens, M., Donnelly, P.: A comparison of bayesian methods for haplotype reconstruction

from population genotype data. Am. J. Hum. Genet. 73, 1162–1169 (2003)

[12] Li, Y., Willer, C.J., Ding, J., Scheet, P., Abecasis, G.R.: MaCH: using sequence and genotype

data to estimate haplotypes and unobserved genotypes. Genet. Epidemiol. 34(8), 816–834

(2010)

[13] Browning, S.R., Browning, B.L.: Haplotype phasing: existing methods and new develop-

ments. Nat. Rev. Genet. 12, 703–714 (2011)

[14] Bansal, V., Halpern, A.L., Axelrod, N., Bafna, V.: An MCMC algorithm for haplotype assem-

bly from whole-genome sequence data. Genome Res. 18, 1336–1346 (2008)

[15] Bansal, V., Bafna, V.: HapCUT: an efficient and accurate algorithm for the haplotype assembly

problem. Bioinformatics 24, 153–159 (2008)

[16] Chen, Z., Fu, B., Schweller, R., Yang, B., Zhao, Z., Zhu, B.: Linear time probabilistic al-

gorithms for the singular haplotype reconstruction problem from SNP fragments. J. Comput.

Biol. 15, 535–546 (2008)

[17] Duitama, J., McEwen, G.K., Huebsch, T., Palczewski, S., Schulz, S., Verstrepen, K., Suk,

E.K., Hoehe, M.R.: Fosmid-based whole genome haplotyping of a HapMap trio child: evalu-

ation of Single Individual Haplotyping techniques. Nucleic Acids Res. 40, 2041–2053 (2012)

[18] Kim, J.H., Waterman, M.S., Li, L.M.: Diploid genome reconstruction of Ciona intestinalis and

comparative analysis with Ciona savignyi. Genome Res. 17, 1101–1110 (2007)

[19] Levy, S., et al.: The diploid genome sequence of an individual human. PLoS Biol. 5, 254

(2007)

[20] Li, L.M., Kim, J.H., Waterman, M.S.: Haplotype reconstruction from SNP alignment. J. Com-

put. Biol. 11, 505–516 (2004)



118

[21] Panconesi, A., Sozio, M.: Fast Hare: a fast heuristic for single individual SNP haplotype

reconstruction. In: WABI’04, pp. 266–277 (2004)

[22] The 1000 Genomes Project Consortium: An integrated map of genetic variation from 1,092

human genomes. Nature 491(7422), 56–65 (2012)

[23] Eid, J., et al.: Real-time DNA sequencing from single polymerase molecules. Science 323,

133–138 (2009)

[24] Kitzman, J.O., Mackenzie, A.P., Adey, A., Hiatt, J.B., Patwardhan, R.P., Sudmant, P.H., Ng,

S.B., Alkan, C., Qiu, R., Eichler, E.E., Shendure, J.: Haplotype-resolved genome sequencing

of a Gujarati Indian individual. Nat. Biotechnol. 29, 59–63 (2011)

[25] Suk, E.K., McEwen, G.K., Duitama, J., Nowick, K., Schulz, S., Palczewski, S., Schreiber,

S., Holloway, D.T., McLaughlin, S., Peckham, H., Lee, C., Huebsch, T., Hoehe, M.R.: A

comprehensively molecular haplotype-resolved genome of a European individual. Genome

Res. 21, 1672–1685 (2011)

[26] Coop, G., Wen, X., Ober, C., Pritchard, J.K., Przeworski, M.: High-resolution mapping of

crossovers reveals extensive variation in fine-scale recombination patterns among humans.

Science 319(5868), 1395–1398 (2008)

[27] Dewal, N., Hu, Y., Freedman, M.L., Laframboise, T., Pe’er, I.: Calling amplified haplotypes

in next generation tumor sequence data. Genome Res. 22(2), 362–374 (2012)

[28] Kitzman, J.O., Snyder, M.W., Ventura, M., Lewis, A.P., Qiu, R., Simmons, L.E., Gammill,

H.S., Rubens, C.E., Santillan, D.A., Murray, J.C., Tabor, H.K., Bamshad, M.J., Eichler,

E.E., Shendure, J.: Noninvasive whole-genome sequencing of a human fetus. Sci Transl Med

4(137), 137–76 (2012)

[29] Gabriel, S.B., Schaffner, S.F., Nguyen, H., Moore, J.M., Roy, J., Blumenstiel, B., Higgins, J.,

DeFelice, M., Lochner, A., Faggart, M., Liu-Cordero, S.N., Rotimi, C., Adeyemo, A., Cooper,

R., Ward, R., Lander, E.S., Daly, M.J., Altshuler, D.: The structure of haplotype blocks in the

human genome. Science 296(5576), 2225–2229 (2002)



119

[30] Zhang, K., Deng, M., Chen, T., Waterman, M.S., Sun, F.: A dynamic programming algorithm

for haplotype block partitioning. Proc. Natl. Acad. Sci. U.S.A. 99(11), 7335–7339 (2002)

[31] Anderson, E.C., Novembre, J.: Finding haplotype block boundaries by using the minimum-

description-length principle. Am. J. Hum. Genet. 73(2), 336–354 (2003)

[32] Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of Computer Com-

putation, pp. 85–103 (1972)

[33] Attias, H.: Inferring parameters and structure of latent variable models by variational Bayes.

In: UAI’99, pp. 21–30 (1999)

[34] Zhi, D., Wu, J., Liu, N., Zhang, K.: Genotype calling from next-generation sequencing data

using haplotype information of reads. Bioinformatics 28(7), 938–946 (2012)

[35] Geraci, F.: A comparison of several algorithms for the single individual SNP haplotyping

reconstruction problem. Bioinformatics 26, 2217–2225 (2010)

[36] He, D., Choi, A., Pipatsrisawat, K., Darwiche, A., Eskin, E.: Optimal algorithms for haplotype

assembly from whole-genome sequence data. Bioinformatics 26, 183–190 (2010)

[37] Lo, C., Bashir, A., Bansal, V., Bafna, V.: Strobe sequence design for haplotype assembly.

BMC Bioinformatics 12 Suppl 1, 24 (2011)

[38] The International HapMap 3 Consortium: Integrating common and rare genetic variation in

diverse human populations. Nature 467(7311), 52–58 (2010)

[39] Ozaki, K., Ohnishi, Y., Iida, A., Sekine, A., Yamada, R., Tsunoda, T., Sato, H., Sato, H.,

Hori, M., Nakamura, Y., Tanaka, T.: Functional SNPs in the lymphotoxin-alpha gene that are

associated with susceptibility to myocardial infarction. Nat. Genet. 32(4), 650–654 (2002)

[40] Pritchard, J.K., Stephens, M., Donnelly, P.: Inference of population structure using multilocus

genotype data. Genetics 155(2), 945–959 (2000)

[41] Stranger, B.E., Forrest, M.S., Dunning, M., Ingle, C.E., Beazley, C., Thorne, N., Redon, R.,

Bird, C.P., de Grassi, A., Lee, C., Tyler-Smith, C., Carter, N., Scherer, S.W., Tavare, S., De-



120

loukas, P., Hurles, M.E., Dermitzakis, E.T.: Relative impact of nucleotide and copy number

variation on gene expression phenotypes. Science 315(5813), 848–853 (2007)

[42] Daly, M.J., Rioux, J.D., Schaffner, S.F., Hudson, T.J., Lander, E.S.: High-resolution haplotype

structure in the human genome. Nat. Genet. 29(2), 229–232 (2001)

[43] Matsumoto, H., Kiryu, H.: MixSIH: a mixture model for single individual haplotyping. BMC

Genomics 14 Suppl 2, 5 (2013)

[44] Peters, B.A., Kermani, B.G., Sparks, A.B., Alferov, O., Hong, P., Alexeev, A., Jiang, Y.,

Dahl, F., Tang, Y.T., Haas, J., Robasky, K., Zaranek, A.W., Lee, J.H., Ball, M.P., Peterson,

J.E., Perazich, H., Yeung, G., Liu, J., Chen, L., Kennemer, M.I., Pothuraju, K., Konvicka,

K., Tsoupko-Sitnikov, M., Pant, K.P., Ebert, J.C., Nilsen, G.B., Baccash, J., Halpern, A.L.,

Church, G.M., Drmanac, R.: Accurate whole-genome sequencing and haplotyping from 10 to

20 human cells. Nature 487(7406), 190–195 (2012)

[45] Kaper, F., Swamy, S., Klotzle, B., Munchel, S., Cottrell, J., Bibikova, M., Chuang, H.Y.,

Kruglyak, S., Ronaghi, M., Eberle, M.A., Fan, J.B.: Whole-genome haplotyping by dilution,

amplification, and sequencing. Proc. Natl. Acad. Sci. U.S.A. 110(14), 5552–5557 (2013)

[46] He, D., Han, B., Eskin, E.: Hap-seq: an optimal algorithm for haplotype phasing with impu-

tation using sequencing data. J. Comput. Biol. 20(2), 80–92 (2013)

[47] He, D., Eskin, E.: Hap-seqX: expedite algorithm for haplotype phasing with imputation using

sequence data. Gene 518(1), 2–6 (2013)

[48] Yang, W.Y., Hormozdiari, F., Wang, Z., He, D., Pasaniuc, B., Eskin, E.: Leveraging reads that

span multiple single nucleotide polymorphisms for haplotype inference from sequencing data.

Bioinformatics 29(18), 2245–2252 (2013)

[49] Kolodziejczyk, A.A., Kim, J.K., Svensson, V., Marioni, J.C., Teichmann, S.A.: The technol-

ogy and biology of single-cell RNA sequencing. Mol. Cell 58(4), 610–620 (2015)

[50] Buettner, F., Natarajan, K.N., Casale, F.P., Proserpio, V., Scialdone, A., Theis, F.J., Teichmann,

S.A., Marioni, J.C., Stegle, O.: Computational analysis of cell-to-cell heterogeneity in single-



121

cell RNA-sequencing data reveals hidden subpopulations of cells. Nat. Biotechnol. 33(2), 155–

160 (2015)

[51] Grun, D., Lyubimova, A., Kester, L., Wiebrands, K., Basak, O., Sasaki, N., Clevers, H., van

Oudenaarden, A.: Single-cell messenger RNA sequencing reveals rare intestinal cell types.

Nature 525(7568), 251–255 (2015)

[52] Zeisel, A., Munoz-Manchado, A.B., Codeluppi, S., Lonnerberg, P., La Manno, G., Jureus, A.,

Marques, S., Munguba, H., He, L., Betsholtz, C., Rolny, C., Castelo-Branco, G., Hjerling-

Leffler, J., Linnarsson, S.: Brain structure. Cell types in the mouse cortex and hippocampus

revealed by single-cell RNA-seq. Science 347(6226), 1138–1142 (2015)

[53] Treutlein, B., Brownfield, D.G., Wu, A.R., Neff, N.F., Mantalas, G.L., Espinoza, F.H., De-

sai, T.J., Krasnow, M.A., Quake, S.R.: Reconstructing lineage hierarchies of the distal lung

epithelium using single-cell RNA-seq. Nature 509(7500), 371–375 (2014)

[54] Burns, J.C., Kelly, M.C., Hoa, M., Morell, R.J., Kelley, M.W.: Single-cell RNA-Seq re-

solves cellular complexity in sensory organs from the neonatal inner ear. Nat Commun 6,

8557 (2015)

[55] Xue, Z., Huang, K., Cai, C., Cai, L., Jiang, C.Y., Feng, Y., Liu, Z., Zeng, Q., Cheng, L., Sun,

Y.E., Liu, J.Y., Horvath, S., Fan, G.: Genetic programs in human and mouse early embryos

revealed by single-cell RNA sequencing. Nature 500(7464), 593–597 (2013)

[56] Yan, L., Yang, M., Guo, H., Yang, L., Wu, J., Li, R., Liu, P., Lian, Y., Zheng, X., Yan, J.,

Huang, J., Li, M., Wu, X., Wen, L., Lao, K., Li, R., Qiao, J., Tang, F.: Single-cell RNA-Seq

profiling of human preimplantation embryos and embryonic stem cells. Nat. Struct. Mol. Biol.

20(9), 1131–1139 (2013)

[57] Guo, G., Huss, M., Tong, G.Q., Wang, C., Li Sun, L., Clarke, N.D., Robson, P.: Resolution of

cell fate decisions revealed by single-cell gene expression analysis from zygote to blastocyst.

Dev. Cell 18(4), 675–685 (2010)

[58] Moignard, V., Gottgens, B.: Transcriptional mechanisms of cell fate decisions revealed by

single cell expression profiling. Bioessays 36(4), 419–426 (2014)



122

[59] Trapnell, C.: Defining cell types and states with single-cell genomics. Genome Res. 25(10),

1491–1498 (2015)

[60] Semrau, S., van Oudenaarden, A.: Studying Lineage Decision-Making In Vitro: Emerging

Concepts and Novel Tools. Annu. Rev. Cell Dev. Biol. 31, 317–345 (2015)

[61] Stegle, O., Teichmann, S.A., Marioni, J.C.: Computational and analytical challenges in single-

cell transcriptomics. Nat. Rev. Genet. 16(3), 133–145 (2015)

[62] Trapnell, C., Cacchiarelli, D., Grimsby, J., Pokharel, P., Li, S., Morse, M., Lennon, N.J.,

Livak, K.J., Mikkelsen, T.S., Rinn, J.L.: The dynamics and regulators of cell fate decisions are

revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32(4), 381–386 (2014)

[63] Marco, E., Karp, R.L., Guo, G., Robson, P., Hart, A.H., Trippa, L., Yuan, G.C.: Bifurcation

analysis of single-cell gene expression data reveals epigenetic landscape. Proc. Natl. Acad.

Sci. U.S.A. 111(52), 5643–5650 (2014)

[64] Ji, Z., Ji, H.: TSCAN: Tools for Single-Cell ANalysis (2015). R package version 1.8.0

[65] Cressler, C.E., Butler, M.A., King, A.A.: Detecting Adaptive Evolution in Phylogenetic Com-

parative Analysis Using the Ornstein-Uhlenbeck Model. Syst. Biol. 64(6), 953–968 (2015)

[66] Kiryu, H.: Sufficient statistics and expectation maximization algorithms in phylogenetic tree

models. Bioinformatics 27(17), 2346–2353 (2011)

[67] Hu, G.Y., O’Connell, R.F.: Analytical inversion of symmetric tridiagonal matrices. J.Phys.A

29(7), 1511–1513 (1996)

[68] Kouno, T., de Hoon, M., Mar, J.C., Tomaru, Y., Kawano, M., Carninci, P., Suzuki, H.,

Hayashizaki, Y., Shin, J.W.: Temporal dynamics and transcriptional control using single-cell

gene expression analysis. Genome Biol. 14(10), 118 (2013)

[69] Moignard, V., Woodhouse, S., Haghverdi, L., Lilly, A.J., Tanaka, Y., Wilkinson, A.C., Buet-

tner, F., Macaulay, I.C., Jawaid, W., Diamanti, E., Nishikawa, S., Piterman, N., Kouskoff,

V., Theis, F.J., Fisher, J., Gottgens, B.: Decoding the regulatory network of early blood de-

velopment from single-cell gene expression measurements. Nat. Biotechnol. 33(3), 269–276

(2015)



123

[70] Shalek, A.K., Satija, R., Shuga, J., Trombetta, J.J., Gennert, D., Lu, D., Chen, P., Gertner, R.S.,

Gaublomme, J.T., Yosef, N., Schwartz, S., Fowler, B., Weaver, S., Wang, J., Wang, X., Ding,

R., Raychowdhury, R., Friedman, N., Hacohen, N., Park, H., May, A.P., Regev, A.: Single-cell

RNA-seq reveals dynamic paracrine control of cellular variation. Nature 510(7505), 363–369

(2014)

[71] Fraley, C., Raftery, A.E., Murphy, T.B., Scrucca, L.: mclust Version 4 for R: Normal Mix-

ture Modeling for Model-Based Clustering, Classification, and Density Estimation. Technical

Report 597 (2012)

[72] Huang, d.a.W., Sherman, B.T., Lempicki, R.A.: Systematic and integrative analysis of large

gene lists using DAVID bioinformatics resources. Nat Protoc 4(1), 44–57 (2009)

[73] Huang, d.a.W., Sherman, B.T., Lempicki, R.A.: Bioinformatics enrichment tools: paths to-

ward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 37(1),

1–13 (2009)

[74] Finak, G., McDavid, A., Yajima, M., Deng, J., Gersuk, V., Shalek, A.K., Slichter, C.K.,

Miller, H.W., McElrath, M.J., Prlic, M., Linsley, P.S., Gottardo, R.: MAST: a flexible sta-

tistical framework for assessing transcriptional changes and characterizing heterogeneity in

single-cell RNA sequencing data. Genome Biol. 16, 278 (2015)

[75] Watts, C., West, M.A., Zaru, R.: TLR signalling regulated antigen presentation in dendritic

cells. Curr. Opin. Immunol. 22(1), 124–130 (2010)

[76] Zheng, G., Tu, K., Yang, Q., Xiong, Y., Wei, C., Xie, L., Zhu, Y., Li, Y.: ITFP: an integrated

platform of mammalian transcription factors. Bioinformatics 24(20), 2416–2417 (2008)

[77] Kanamori, M., Konno, H., Osato, N., Kawai, J., Hayashizaki, Y., Suzuki, H.: A genome-

wide and nonredundant mouse transcription factor database. Biochem. Biophys. Res. Com-

mun. 322(3), 787–793 (2004)

[78] Lizio, M., Harshbarger, J., Shimoji, H., Severin, J., Kasukawa, T., Sahin, S., Abugessaisa,

I., Fukuda, S., Hori, F., Ishikawa-Kato, S., Mungall, C.J., Arner, E., Baillie, J.K., Bertin,

N., Bono, H., de Hoon, M., Diehl, A.D., Dimont, E., Freeman, T.C., Fujieda, K., Hide, W.,



124

Kaliyaperumal, R., Katayama, T., Lassmann, T., Meehan, T.F., Nishikata, K., Ono, H., Rehli,

M., Sandelin, A., Schultes, E.A., ’t Hoen, P.A., Tatum, Z., Thompson, M., Toyoda, T., Wright,

D.W., Daub, C.O., Itoh, M., Carninci, P., Hayashizaki, Y., Forrest, A.R., Kawaji, H.: Gateways

to the FANTOM5 promoter level mammalian expression atlas. Genome Biol. 16, 22 (2015)

[79] Yu, H.B., Kielczewska, A., Rozek, A., Takenaka, S., Li, Y., Thorson, L., Hancock, R.E.,

Guarna, M.M., North, J.R., Foster, L.J., Donini, O., Finlay, B.B.: Sequestosome-1/p62 is the

key intracellular target of innate defense regulator peptide. J. Biol. Chem. 284(52), 36007–

36011 (2009)

[80] Esche, C., Stellato, C., Beck, L.A.: Chemokines: key players in innate and adaptive immunity.

J. Invest. Dermatol. 125(4), 615–628 (2005)

[81] Zlotnik, A., Yoshie, O., Nomiyama, H.: The chemokine and chemokine receptor superfamilies

and their molecular evolution. Genome Biol. 7(12), 243 (2006)

[82] Bieche, I., Chavey, C., Andrieu, C., Busson, M., Vacher, S., Le Corre, L., Guinebretiere, J.M.,

Burlinchon, S., Lidereau, R., Lazennec, G.: CXC chemokines located in the 4q21 region are

up-regulated in breast cancer. Endocr. Relat. Cancer 14(4), 1039–1052 (2007)


