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Problems

Many problems in bioinformatics can be classified as prediction or estimation
problems, such as sequence alignment[1], RNA or protein high-dimensional
structure estimation[2][3], gene coding region prediction[4], phylogenetic tree
estimation[5], RNA/protein - RNA/protein interaction prediction[6][7][8], or chro-
matin state estimation[9].

Most of these algorithms attempt to select one specific solution from the pool
of all possible candidates, a process called point estimation. However, all of
these point estimation strategies have latent problems, in common, including
unclear reliability, omission of information on thermal fluctuations, or omission
of significant sub-optimal solutions[10]. These problems rise from the near zero
probability of each solution because of the massive amount of candidates[11] and
are unavoidable irrespective of the estimator or algorithm chosen.

In this study, we propose an efficient method for calculating the probability
distributions of a feature value which is assigned to each candidate. If the feature
value belongs to the group of bounded integers, we can construct an algorithm
to obtain the exact distribution. In contrast, if the feature value belongs to the
bounded real numbers, an approximation must be introduced. Calculating the
distribution of feature values enables us to undertake biological interpretation
without identifying a specific uncertain solution.

The structure of this paper is as follows. First, we introduce some point
estimating problems with our previous studies. Second, we explain the proposed
method used to calculate the distributions of the integer, real number, and vector
features respectively, and give some applications to the feature values of RNA
secondary structure to concretely illustrate the procedure. Third, we examine the
performance of our algorithms and analyze RNA sequences using them. In this
section, a “credibility limit” is defined and used to evaluate the reliability of the
estimated structure. Finally, we give our conclusions and plan for future work.

Keywords: ambiguity of point estimation, feature value distribution
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Chapter 1

INTRODUCTION

In this section, we briefly introduce our proposed technique and set the back-
ground to the study.

First, we explain the basic concept and give the definition of point estima-
tion, illustrated by examples from our previous work. Second, we point out the
unavoidable uncertainty which attaches to traditional point estimating strategies
and summarize current techniques used to address these uncertainties. Finally,
the positioning of this study and the definition of the problem are described.

1.0.1 Point Estimation and Basic Assumptions

Point estimation is the main strategy for estimation problems used in bioinfor-
matics to identify a single solution from the ensemble of candidate solutions,
under some specific criteria. Two representative estimators are used as criteria:
the maximum likelihood estimator (ML estimator) and the maximum expected
gain estimator (MEG estimator)[13][14].

This study assumes that problems conform to two conditions, i.e., that the
number of candidate solutions is finite even if it is very large, and that there is
some (pseudo-)energy function E, which provides the distribution of candidate
ensemble p(θ), given by the following canonical distribution:

p(θ) =
1
Z

e
−E(θ)
kBT (1.1)

Z =
∑
θ∈Θ

e
−E(θ)
kBT , (1.2)

where Θ is a set of all solution candidates, kB is the Boltzmann constant, T is a
temperature constant, and Z is the partition function, which is a summation of
the Boltzmann factor e−E(θ)/kBT among all possible solutions.
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The ML estimator θ̂ML chooses a solution whose likelihood function is maxi-
mized by:

θ̂ML = arg max
θ∈Θ

p(θ|D), (1.3)

where D is a given data set. The ML estimator can be identified with the minimum
free energy estimator, since arg maxθ∈Θ p(θ|D) is equivalent to arg minθ∈Θ E(θ|D).

In contrast, the MEG estimator θ̂MEG chooses a solution by maximizing the
expectation of gain function G, as follows:

θ̂MEG = arg max
θ∈Θ

∑
θ′∈Θ

G(θ, θ′)p(θ′|D). (1.4)

If the gain function is an accuracy measure such as sensitivity, specificity, PPV, or
F-score, the MEG estimator is also called a maximum expected accuracy estimator
(MEA estimator). We can assume that the ML estimator is a special case of the
MEG estimator if the Kronecker delta is used as the gain function GML:

θ̂ML = arg max
θ∈Θ

p(θ|D) (1.5)

= arg max
θ∈Θ

∑
θ′∈Θ
δθθ′p(θ′|D) (1.6)

= arg max
θ∈Θ

∑
θ′∈Θ

GML(θ, θ′)p(θ′|D) (1.7)

δab =

1 (a = b)

0 (otherwise).
(1.8)

ML and MEG estimators are common criteria used for point estimation, though
a range of strategies are available for constructing estimators, such as consistency
with experimental data. The choice of estimator depends on the particular situ-
ation, and this is not further discussed. In the next three sections, we introduce
concrete bioinformatic point estimation problems from our previous work which
are relevant to point estimation.
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(1) Sequence Alignment

Sequence alignment is a problem that arises when aligning DNA, RNA, or protein
sequences based on similarity. Sequence similarity is closely linked to functional
relationships between sequences as well as to structural relationships, and is
therefore utilized in a range of biological applications such as gene function and
evolutionary predictions. Although there are many objectives and formulariza-
tions, from the point of the view of point estimation the sequence alignment
problem is a task which requires choosing one specific alignment between given
sequences from the space of all possible alignments.

We previously developed an alignment algorithm for bisulfite-converted DNA
sequences[15]. Bisulfite conversion is a treatment which identifies the position of
methylated cytosines in DNA fragments. Unmethylated cytosines in the bisulfite-
treated sequences are converted to thymines. Accordingly, we can find the methy-
lated positions by aligning bisulfite-treated reads with the reference genome; C-C
match positions are assumed to be methylated. We accommodated a traditional
alignment technique to the model which considers bisulfite conversion.

A scoring matrix Sxd (x is a nucleotide in the reference and d is a nucleotide in
a read) can be derived in the following way:

Sxd = λ ln(Rxd) (1.9)

Rxd =
P(x, d|A)
P(x)P(d)

(1.10)

=

∑
y∈{a,c,g,t} P(x, y|A)P(d|y)

P(x)P(d)
(1.11)

=
1

P(x)P(d)
·

∑
y∈{a,c,g,t}

P(x, y|A)P(y|d)P(d)
P(y)

(1.12)

=
∑

y∈{a,c,g,t}

P(x, y|A)P(y|d)P(d)
P(x)P(d)P(y)

(1.13)

=
∑

y∈{a,c,g,t}

P(x, y|A)P(y|d)
P(x)P(y)

(1.14)

=
∑

y∈{a,c,g,t}

{
RxyP(y|d)

}
, (1.15)

where P(x, y|A) is the probability of observing x aligned to y, P(x) and P(y) are the
probabilities of observing x and y respectively, and P(y|d) is the probability that
the observed d was y before sequencing and bisulfite-treatment as follows:

P(y|d) =
∑

b∈{a,c,g,t}
P(y|b)P(b|d). (1.16)
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Here, P(y|b) is the probability that a base is y before bisulfite treatment, given a
bisulfite-treated base b, and P(b|d) is the probability that a base is b under base
caller, calling it d.

P(y|b) and P(b|d) are constructed as follows:
First, P(y|b) is given by:

P(y|b) =
P(y)P(b|y)

P(b)
(1.17)

=
P(y)P(b|y)∑

y∈{a,c,g,t} P(b|y)P(y)
, (1.18)

where:

P(b|y) = Ayb (1.19)

A =



a c g t

a 1 0 0 0

c 0 α 0 1 − α
g 0 0 1 0

t 0 0 0 1


. (1.20)

From (1.18), (1.19), and (1.20),

P(y|b) =
P(y)Ayb∑

y∈{a,c,g,t}AybP(y)
(1.21)

= Bby (1.22)

B =



a c g t
a 1 0 0 0
c 0 1 0 0
g 0 0 1 0
t 0 (1−α)P(c)

(1−α)P(c)+P(t) 0 P(t)
(1−α)P(c)+P(t)

. (1.23)
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Next, P(b|d) is given by:

P(b|d) = Cdb (1.24)

C =



a c g t
a (1 − β) + βP(a)′ βP(c)′ βP(g)′ βP(t)′

c βP(a)′ (1 − β) + βP(c)′ βP(g)′ βP(t)′

g βP(a)′ βP(c)′ (1 − β) + βP(g)′ βP(t)′

t βP(a)′ βP(c)′ βP(g)′ (1 − β) + βP(t)′

.(1.25)

Here: 
P(a)′

P(c)′

P(g)′

P(t)′

 = AT


P(a)
P(c)
P(g)
P(t)


=


P(a)
αP(c)
P(g)

(1 − α)P(c) + P(t)

 . (1.26)

Therefore, P(y|d) is as follows:

P(y|d) =Mdy (1.27)

M = CB

=



a c g t
a βP(a) + (1 − β) βP(c) βP(g) βP(t)
c βP(a) βP(c) + (1 − β) βP(g) βP(t)
g βP(a) βP(c) βP(g) + (1 − β) βP(t)
t βP(a) βP(c) + (1−α)(1−β)P(c)

(1−α)P(c)+P(t) βP(g) βP(t) + (1−β)P(t)
(1−α)P(c)+P(t)

.
(1.28)

Parameters α and β can be obtained by:

α =
frequency of C in reads

frequency of C in reference
(1.29)

β = 10−q/10 (q : phred score). (1.30)

This is the basic scheme for adapting bisulfite conversion to the traditional model.
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However, the simplification made in (1.29) is too naive, because it is unreasonable
to assign the same methylation rate α to all cytosines in the genome. Accordingly,
we suggest identifying cytosines by the profile of the query sequence. For exam-
ple, in a mammalian genome, cytosine methylation occurs approximately three
times as often in CpG as CpH[16]. In contrast, plants have methylate cytosines in
CpG and those methylate cytosines are also in CpHpG[17]. If we adopt a range of
different values of α as α1, α2, and α3 to the Cs in CpGpN, CpHpG, and CpHpH
respectively, our model can estimate α̃ as follows:

α̃ = E
[
α|XpN1pN2,C→ X

]
(1.31)

=

3∑
i=1

αiP(mi|XpN1pN2,C→ X) (1.32)

=

3∑
i=1

αi
P(XpN1pN2|mi,C→ X)P(mi|C→ X)

P(XpN1pN2|C→ X)
(1.33)

=

3∑
i=1

αi
P(XpN1pN2|mi,C→ X)P(mi|C→ X)∑3

j=1 P(XpN1pN2|m j,C→ X)P(m j|C→ X)
. (1.34)

Here, E
[
α|XpN1pN2,C→ X

]
is the expected probability of methylation α at po-

sition X under the base caller calling N1 and N2 and given that X was C before
bisulfite treatment. For each i = 1 to 3, P(mi|XpN1pN2,C→ X) is the probability
that XpN1pN2 was converted to CpGpN, CpHpG, and CpHpH respectively by
bisulfite treatment under the same conditions. For each i = 1 to 3, P(mi|C→ X) is
the probability of the occurrence of sequence type CpGpN, CpHpG, and CpHpH
before bisulfite treatment. In other words, it represents the proportion of CpGpN,
CpHpG, and CpHpH in the genome sequence. P(mi|XpN1pN2,C→ X) can be
calculated by:

P(m1|XpN1pN2,C→ X) = M′
1N1G (1.35)

P(m2|XpN1pN2,C→ X) = M′
1N1H ·M′

2N2G (1.36)

P(m3|XpN1pN2,C→ X) = M′
1N1H ·M′

2N2H. (1.37)

From (1.28),

M′
i =


H G

H 1 − βiP(g) βiP(g)

G βiP(g) 1 − βiP(g)

 (1.38)

P(g) = 1 − P(g) (1.39)

βi = the corresponding β f or Ni. (1.40)
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Calculation of α̃ is required if and only if X = T (see (1.28)).
Detailed results and discussions are given in [15] but are secondary to the

themes of this study and are therefore omitted here.
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(2) RNA Secondary Structure Estimation

RNA secondary structure estimation is a problem which arises when estimating
internal hydrogen bonds in RNA without considering the steric effect[18].

RNA conformation is a significant issue in biological functions. Ideally, a
tertiary structure should be the best from analyzing the behavior of RNA. How-
ever, the analysis of tertiary structure for anything other than very short RNAs
has high costs and presents technical difficulties[19]. The secondary structure
is also an important feature when identifying the functions of RNA, and high-
throughput methods for determining the secondary structures are becoming more
widespread, which is also increasing the importance of computational analyses
of RNA sequences.

Estimation strategies can be classified into two categories: “in silico” and “com-
posite”. In silico strategies only require the use of a computer. More than 50 tools
are available to predict a structure[20], and most algorithms base the prediction
on the free energy of the structures. The composite strategy, in contrast, uses
both experimental data and computation. For example, in the SHAPE method,
experiments are used to extract flexible regions as a SHAPE profile, and the struc-
ture is predicted by reference to the profile[21][22]. Note that even if when using
experimental approaches, the secondary structure cannot be directly observed.

Regardless of the strategy used, from the point of the view of point estimation
the RNA secondary structure problem requires one specific secondary structure
of the given RNA sequence to be chosen from the space of all possible secondary
structures.

A previously developed algorithm allowed point-estimates to be made of an
RNA secondary structure based on nuclear magnetic resonance (NMR) spec-
troscopy (manuscript in preparation). NMR spectroscopy is a widely used tech-
nology for exploring the intermolecular interactions and structure of chemicals[23].
Two-dimensional NMR spectroscopy such as correlation spectroscopy (COSY)[24],
heteronuclear single-quantum correlation spectroscopy (HSQC)[25], or nuclear
Overhauser effect spectroscopy (NOESY)[26] is used to solve the three-dimensional
structure of molecules, including short RNAs. Even with two-dimensional NMR
spectroscopy however, calculating three-dimensional structure is challenging,
and the exact number of C-G, A-U, and G-U hydrogen bonds can be obtained
with comparative ease. Our algorithm point-estimates the most stable minimum
free energy RNA secondary structure in the set of structures which is consistent
with the number of hydrogen bonds derived by NMR spectroscopy. We modified
IPknot[27], which is a fast and accurate software for estimating RNA secondary
structure without excluding unusual hydrogen bonds called pseudo-knots. IP-
knot utilizes integer programming to narrow the candidate structure space. By
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adding the following restriction to the original IPknot model, we were able to
obtain the secondary structure which is consistent with the NMR spectroscopy:

N−1∑
i=1

N∑
j=i+1

Bi j = BNMR, (1.41)

where:

Bi j =


δxiCδx jG + δxiGδx jC

δxiAδx jU + δxiUδx jA

δxiGδx jU + δxiUδx jG

 (1.42)

BNMR =


the number of C-G base pairs estimated by NMR
the number of A-U base pairs estimated by NMR
the number of G-U base pairs estimated by NMR

 (1.43)

xi : i-th base of the RNA sequence (A, C, G, or U). (1.44)

(3) Other Problems

Many other estimation problems arise in bioinformatics, including gene coding
region estimation from an input genome sequence, phylogenetic tree estimation
from genomes of multiple species, estimation of RNA/protein - RNA/protein
interactions (presence/absence or contact position, and chromatin state estimation.
These have the common characteristic that they can be considered as problems of
point estimation from some discrete solution space.
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1.0.2 Unavoidable Uncertainty of Traditional Point Estimating
Strategies

The point estimation problems described above have unavoidable issues when
applied to biological investigation. The most serious problem is that the reliability
is unclear because of the enormous number of candidate solutions, which can be
approximated as follows[28]:

1. sequence alignment between length n DNAs:

(1 +
√

2)2n+1

√
n

(1.45)

2. length n RNA secondary structure:

√
15 + 7

√
5

8πn3

(
3 +
√

5
2

)n

(1.46)

The number of candidates typically increases exponentially or hyper-exponentially
as the problem size increases, and the probability that a predicted solution is ex-
actly true tends to be extremely low, despite this being the only indicator of
reliability for methods based on ML estimation. Even if the best solution in the
solution space is found, all other solutions might be concentrated far away from
the ML solution. This may cause misunderstanding of the biological interpreta-
tion if only a single unlikely solution is considered (Figure 1.1).

In contrast, an MEA solution is a centroid-like solution weighted by an ac-
curacy measure, so that a well-designed MEA estimator is effective when the
distribution of the solution is mono-modal and relatively dense. However, a
problem with the MEA-based approach is that we cannot assess the credibility
of the MEA solution. The probability assigned to an MEA solution is generally
lower than that assigned to an ML solution. We cannot directly observe the level
of concentration of probability around the MEA solution. In the extreme case,
there might be almost no probability density when the candidate ensemble has
a multi-modal distribution (Figure 1.2)[29]. Here the blue and purple points are
sampled points in the ensemble, and the red point may be returned by some pre-
diction algorithms as an MEA solution. Uncertainty is unavoidable when using
point estimation.
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Figure 1.1: A potential case in which the best solution is far from all other solutions
in the solution space.

Figure 1.2: A concrete case in which existing algorithms return solutions which
seem unsatisfactory.
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1.0.3 Current Techniques Which Treat the Whole Distribution
and Their Problems

To address the limitations of point estimation, we need alternative methods which
consider the whole distribution. The limitations would disappear if we were
able to calculate the existence probability for all candidate solutions and then
interpret the distribution, but this is unrealistic given the high dimensionality of
the discrete space and the computational complexity. For example, if we adopt the
Hamming distance of the base-pairing positions to define the distance between
the length n RNA secondary structures, the dimension of the structure space
becomes n(n − 1)/2.

Alternatively, probabilistic sampling techniques can be used to calculate sub-
optimal solutions. Those methods, however, require sample sizes that increase
hugely as the problem size increases. This makes it almost impossible to guarantee
that the output will properly reflect the true values when using probabilistic
sampling-based techniques.
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1.0.4 Positioning of This Study

In this study, we propose an alternative method for interpreting the deep features
of the solution by considering the whole distribution. Our method calculates the
distribution of some feature value or score S which is assigned to each solution.
This approach allows the feature to be addressed directly without fixing a single
uncertain solution. Here S has restrictions. S is a bounded integer or real variable
function which can be obtained by a DP algorithm and which includes a structure
of calculations for the partition function. A concrete example is given in Figure 1.3.
Here, we selected the Hamming distance from a specific RNA secondary structure
as S. S can be calculated by the same DP format with its partition function. The
distribution of S provides information on how much probability is concentrated
around the selected structure. The definition of the Hamming distance is given
in a later section.

Figure 1.3: An example of feature score S.

Our algorithm can be roughly classified into two categories: when S is re-
stricted to a bounded integer, and when it is not. If S is restricted to a bounded
integer, a fast and exact algorithm by adopting Discrete Fourier Transform (DFT).
Although a similar idea has been suggested for acceleration by distributed pro-
cessing in the field of sequence alignment [30], our approach offers order level
improvement as well as acceleration by distributed processing.

If S is not restricted to integer values, scores are allocated to finite bins, and the
probability is calculated for each bin. Our proposed score-distributing technique
achieves fast and accurate approximation.

The detailed algorithm and concrete applications to the distribution of the fea-
tures of RNA secondary structure are discussed in the methods section. Analyses
and performance by the above implementation are in the results section. These
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approaches provide deeper understandings about distributions of solution, and
profit our biological discussion based on bioinformatics analyses.
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Chapter 2

METHODS

In this section, we show the general procedure used to construct score-calculating
algorithms. First, basic definitions are introduced. Next, we describe two strate-
gies for obtaining an integer feature distribution: the polynomial and complex
number strategies. The polynomial strategy is a naive implementation for this
task, while the complex number strategy achieves time and space reduction.
Third, we describe a real feature value case, in which it is difficult to obtain an
exact distribution of the feature. Bins and a windows function which distributes
values to bins are used to calculate an approximate distribution. Finally, we extend
the approach to a higher dimensional distribution, the probability distribution of
a feature value vector.
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2.1 Definitions and Preliminaries

We first introduce some definitions. In this study, RNA secondary structure esti-
mation problems are used to exemplify concrete algorithms, and we therefore also
show here the basic assumptions used for estimating RNA secondary structure.

2.1.1 Definition of the Feature Score Probability Distribution

Let us assume that s represents a mapping from x ∈ U to an integer score s(x) ∈ Z:

s : U −→ Z

∈ ∈

x 7−→ s(x)
. (2.1)

The integer score distribution is defined as the probability distribution p(s) of s(x)
derived from the probability distribution p(x) of x:

p(s) =
∑
{x|s=s(x)}

p(x). (2.2)

On the other hand, if s represents a mapping from x ∈ U to a real score s(x) ∈ R,
then:

s : U −→ R

∈ ∈

x 7−→ s(x)
. (2.3)

The real score distribution is defined as the probability density distribution p(s).
We assume that x is a discrete element, and thus the probability p(sl ≤ s ≤ su) is

p(sl ≤ s ≤ su) =
∫ su

sl

p(s)ds (2.4)

=
∑

{x|sl≤s(x)≤su}
p(x). (2.5)
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In the case of RNA secondary structures, U is the space of all possible secondary
structures for a given RNA sequence, and an integer or real score s(x) represents
a feature or a property assigned to each structure x. In this study, we discuss the
efficient computation of integer and real feature value/score distributions both
in general and in the specific case of RNA secondary structures. Our proposed
method efficiently computes the exact distribution when p(s) and the partition
function of p(x) can be calculated by dynamic programming algorithms sharing
the same form.
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2.1.2 Dynamic Programming

Dynamic programming is a computing technique used to arrive at a total cal-
culation by dividing the problem up and using sequential calculations. Two
strategies can be used to implement dynamic programming: bottom up and top
down strategies.

We use algorithms for calculating the Fibonacci sequence to exemplify these
strategies. The Fibonacci sequence F[n] is defined by the following recursion:

F[1] = F[2] = 1 (2.6)

F[n] = F[n − 1] + F[n − 2] (3 ≤ n). (2.7)

(1) Naive Implementation for the Fibonacci Sequence

The simplest implantation for F[n] is Algorithm 1.

Algorithm 1 Naive Implementation for Fibonacci Sequence F[n]
1: if (n == 1||n == 2) then
2: return 1
3: else
4: return F[n] + F[n − 1]
5: end if

This pseudo-code looks intuitive; however, this procedure imposes a large
calculation burden. For example, F[10] is expanded into the following:

F[10] =F[9] + F[8] (2.8)

=(F[8] + F[7]) + (F[7] + F[6]) (2.9)

=((F[7] + F[6]) + (F[6] + F[5])) + ((F[6] + F[5]) + (F[5] + F[4])) (2.10)

=((F[6] + F[5]) + (F[5] + F[4])) + ((F[5] + F[4]) + (F[4] + F[3])) (2.11)

+ ((F[5] + F[4]) + (F[4] + F[3])) + ((F[4] + F[3]) + (F[3] + F[2])) (2.12)

:

:

:

=F[2] + F[1] + · · · · · · · · · + F[2] + F[1] + F[2] (2.13)

=55. (2.14)

It is known that this naive strategy requires O(1.619n) calculations, so that 30
billion calculations are needed for F[50]. This is clearly impractical.
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(2) Adopting Dynamic Programming Technique for the Fibonacci Sequence

In contrast, a dynamic programming technique reduces the number of calculations
required by reusing calculations. Algorithm 2 uses a bottom up strategy. In this
strategy, F[10] is calculated as follows:

F[1] =1 (2.15)

F[2] =1 (2.16)

F[3] =F[2] + F[1] = 2 (2.17)

F[4] =F[3] + F[2] = 3 (2.18)

:

F[10] =F[9] + F[8] = 55. (2.19)

Algorithm 2 Bottom up Implementation for Fibonacci Sequence F[n]
1: F[1] = F[2] = 1
2: for i = 3; i ≤ n;+ + i do
3: F[i] = F[i − 1] + F[i − 2]
4: end for
5: return F[n]

Algorithm 3 uses a top down, or memorization strategy, which obviates the
need to repeat the same calculations:

F[10] =F[9] + F[8] (2.20)

=((F[7] + F[6]) + F[7]) + F[8] (2.21)

=(((F[6] + F[5]) + F[6]) + F[7]) + F[8] (2.22)

:

=(((8 + 5) + 8) + F[7]) + F[8] (2.23)

=((13 + 8) + 13) + F[8] (2.24)

=(21 + 13) + 21 (2.25)

=55. (2.26)

Both strategies require only O(n) calculations. We adopt the bottom up strategy
in the algorithms presented in this paper.
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Algorithm 3 Top down Implementation for Fibonacci Sequence F[n]
1: (prepare memo[] = {0, 1, 1,−1,−1, · · · ,−1})
2: if memo[n]! = −1 then
3: memo[n] = F[n − 1] + F[n − 2]
4: end if
5: return memo[n]

2.1.3 Abstract Forms of Dynamic Programming Structure in Bioin-
formatics

For a certain class of problems in bioinformatics, including sequence alignment,
the partition function of the objective distribution can be calculated abstractly by
Algorithm 4. Here, Z is the partition function given in equation (1.2). Z[] is a
scalar array of length N representing the partition function of the problem size
N, whose components are aligned in the computing order required for dynamic
programming, while t(k|i) is a quantity proportional to the probability of the
transition from state i to state k, which is normally quite sparse in values.

Algorithm 4 An Abstract Form of Calculating the Partition Function
1: Z[0] = 1
2: for k = 1 to N do
3: Z[k] =

∑k−1
i=0 Z[i]t(k|i)

4: end for
5: Z = Z[N]

In the case of the partition function for the distribution of RNA secondary
structure, however, Algorithm 4 is not sufficient, and Algorithm 5 is used istead.
The difference between Algorithm 4 and Algorithm 5 is the addition of a term∑k−2

i=0
∑k−1

j=i+1 Z[i]Z[ j]t(k|i, j), where t(k|i, j) is proportional to the probability of a
transition from state (i, j) to k. This term represents the effect of combining Z[]s.
The concrete dynamic programming structure for the partition function of the
RNA secondary structure distribution is given in the next section.

Algorithm 5 An Abstract Form of Calculating the Partition Function (RNA sec-
ondary structure)

1: Z[0] = 1
2: for k = 1 to N do
3: Z[k] =

∑k−1
i=0 Z[i]t(k|i) +∑k−2

i=0
∑k−1

j=i+1 Z[i]Z[ j]t(k|i, j)
4: end for
5: Z = Z[N]
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2.1.4 Basic Policy for Estimating RNA Secondary Structures in
silico

To exemplify our theoretical approach we use the concrete calculation of RNA
secondary structure. We therefore first show some basic assumptions used for
estimating RNA secondary structure in silico. First, we introduce a distribution
in which folding RNA follows thermodynamic laws, and we show an effective
conventional algorithm for RNA folding as an archetype of our models.

(1) Canonical Distribution and Partition Function

The probability of each RNA secondary structure is calculated by the following
canonical distribution:

pi =
1
Z

e−Ei/(kBT) (2.27)

Z =
∑

i

e−Ei/(kBT), (2.28)

where pi is a probability that a certain structure i exists among the whole ensemble
of RNA structures, Ei is a free energy for the structure i, kB is the Boltzmann
constant, T is a temperature constant, and Z is the partition function which is a
summation of Boltzmann factor e−Ei/(kBT) among all possible structures. As can
be seen, the free energy of each structure corresponds to its probability, so the
probability can be calculated from the partition function and the free energy.
Although we cannot compute the probabilities of all structures as the candidates
are too numerous, we can obtain the partition function efficiently by applying a
dynamic programming algorithm.

27



(2) McCaskill Model

The McCaskill model is a well-known application of dynamic programming to the
partition function based on energy parameters [31]. The McCaskill model includes
Inside and Outside algorithms for computing the base pairing probability, that the
i-th and j-th bases of the RNA sequence make a base pair, but we do not employ
these in our algorithm. In this model, the partition function is computed by a
recursive scheme of polynomial order:

Initialization (1 ≤ i ≤ n) :

Z(i, i) = 1.0 (2.29)

Z1(i, i) = Zb(i, i) = Zm(i, i) = Zm(i, i − 1) = Zm1(i, i) = 0 (2.30)

Recursion (1 ≤ i < j ≤ n) :

Z(i, j) = 1.0 +
j−1∑
k=i

Z(i, k)Z1(k + 1, j) (2.31)

Z1(i, j) =
j∑

k=i+1

Zb(i, k) (2.32)

Zb(i, j) = e−[ f1(i, j)/kBT] +
j−2∑

k=i+1

j−1∑
l=k+1

Zb(k, l)e−[ f2(i, j,k,l)/kBT]

+

j−1∑
k=i+2

Zm(i + 1, k − 1)Zm1(k, j − 1)e−[ f3(i, j)/kBT] (2.33)

Zm(i, j) =
j−1∑
k=i

(
e−[ f4(k−i)/kBT] + Zm(i, k − 1)

)
Zm1(k, j) (2.34)

Zm1(i, j) =
j∑

k=i+1

Zb(i, k)e−[ f4( j−k)/kBT], (2.35)

where fk(·) (k = 1 · · · 4) are functions corresponding to the energy contribution to
each state respectively, whose parameters are determined experimentally [32][33].
A more detailed explanation is given in Appendix B. The partition function Z is
finally obtained as Z(1,n). Although the second factor on the right side of equation
(2.33) shows the procedure requiring O(n4) time, we are able to reduce this to O(n3)
by taking a reasonable maximum value of the internal loop length as the threshold.
This model forms the basis of our concrete implementations.
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2.2 Calculating the Feature Distribution

In the next three sections, we describe the algorithms for calculating the objective
feature distributions of the integer, real, and vector features, respectively.

2.3 Calculation of the Integer Feature Distribution

2.3.1 General Theory

If the feature value is restricted to integer values, a fast and exact calculating
procedure is available. The basic idea is to adopt polynomials which include
information on the feature value gain when calculating the partition function.
We show that using complex numbers and Discrete Fourier Transform instead
of polynomials reduces the calculation cost. We call the former approach the
polynomial approach and the latter approach the complex number approach.

2.3.2 Polynomial Approach

In the field of sequence alignment, a method which calculates the distribution of
the arbitrary integer score given to each alignment has already been proposed [30],
but this scheme is also applicable to general dynamic programming applications.
We show the general form given in [30] as Algorithm 6, where Z is an array of
length N dynamic programming components aligned by computing order, t(k|i)
is proportional to the probability of a transition from state i to state k, s(k) is the
integer score or cost of a visit to k, and s(i, k) is the integer score or cost of a
transition from i to k.

Algorithm 6 General Polynomial Approach to Integer Score Distributions
1: Z[0] = 1
2: for k = 1 to N do
3: Z[k] = xs(k) ∑k−1

i=0 Z[i]t(k|i)xs(i,k)

4: end for

This is a natural expansion of Algorithm 4. In this algorithm, Z[N] represents
a polynomial in x whose factor of xi is proportional to the probability of obtaining
score i among all paths. We derive pk, the probability of obtaining score k, by the
following equation:

pk =
ak∑i=n
i=0 ai

, (2.36)
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where:

Z[N] ≡
n∑

i=0

aixi. (2.37)

Applied to the case of RNA secondary structure, Algorithm 5 is expanded in
the same manner (Algorithm 7), where s(i, j, k) is the integer score for a transition
from state (i, j) to k, and t(k|i, j) is proportional to the probability of a transition
from state (i, j) to k. Of course both t(k|i) and t(k|i, j) are exceedingly sparse arrays.

Algorithm 7 General Polynomial Approach to Integer Score Distributions (for
RNA secondary structure)

1: Z[0] = 1
2: for k = 1 to N do
3: Z[k] =

∑k−1
i=0 Z[i]t(k|i)xs(i,k) +

∑k−2
i=0

∑k−1
j=i+1 Z[i]Z[ j]t(k|i, j)xs(i, j,k)

4: end for

2.3.3 Complex Number Approach

Following [30], distributed processing is available for Algorithm 6 if we apply
DFT. Algorithm 7 can be given a reduced calculation order as well as decentral-
ized. Our polynomial formulation includes the product of the n-th order of two
polynomials, which requires O(n2). Applying DFT allows it to be calculated by
O(1) since we employ complex numbers on the unit circle instead of polynomials
as Z.

We now explain how DFT can be used for the calculation. In the following
discussion, feature value s is satisfied by 0 ≤ s ≤ Smax for brevity. The following
equations for pk, which give the probability of obtaining score k, are applicable
when s − k is an integer:

pk =
∑
θ∈Ck

p(θ|D) (2.38)

=
1
Z

Smax∑
s=0

Zsδsk (2.39)

=
1
Z

Smax∑
s=0

Zs

Smax∑
r=0

exp
[
2πi

r(s − k)
Smax + 1

]
/(Smax + 1) (2.40)

=
1
Z

Smax∑
r=0

Smax∑
s=0

Zs exp
[
2πi

rs
Smax + 1

]
exp

[
2πi

−rk
Smax + 1

]
/(Smax + 1), (2.41)
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where:

Ck : a set of candidate solutions whose feature values are k

D : input data

Z : partition function

Zs : subtotal of Boltzmann factors whose feature values are s

δ : Kronecker delta

i : imaginary unit

DFT is a Fourier transform on a discrete sampling interval and is employed to
improve the efficiency of a range of computational problems as well being used
in frequency analysis.

DFT F satisfies the following equation:

z = F (ζ), (2.42)

where:

z = (z0, z1, . . . , zSmax) (2.43)

ζ = (ζ0, ζ1, . . . , ζSmax) (2.44)

ζk =

Smax∑
r=0

zr

(
exp

[
2πi

−rk
Smax + 1

])
/(Smax + 1). (2.45)

Comparing equations (2.41) and (2.45), in the DFT approach we calculate:

zr =

Smax∑
s=0

Zs exp
[
2πi

r
Smax + 1

]s
(2.46)

for each r instead of
Smax∑
s=0

Zsxs. (2.47)

We show Algorithm 7 modified by DFT approach as Algorithm 8. In this
approach, we can reduce the calculation costs from O(n3S2

max) to O(n3Smax) for time
and from O(n2Smax) to O(n2) for memory. In addition, each zr can be calculated
individually so we can reduce the cost to O(n3) time and O(n2Smax) memory by
adopting maximum parallelization.
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Algorithm 8 General Complex Number Approach to Integer Score Distributions
(for RNA secondary structure)

1: for r = 0 to Smax do
2: x = exp

(
2πi r

Smax+1

)
3: Zr[0] = 1
4: for k = 1 to N do
5: Zr[k] =

∑k−1
i=0 Zr[i]t(k|i)xs(i,k) +

∑k−2
i=0

∑k−1
j=i+1 Zr[i]Zr[ j]t(k|i, j)xs(i, j,k)

6: end for
7: end for
8: for k = 0 to Smax do
9: p(score = k) =

{∑Smax
r=0 Zr[N] exp

(
2πi −rk

Smax+1

)}
/(Smax + 1) /*DFT*/

10: end for

2.3.4 Application to the Features of RNA Secondary Structure

We give two concrete applications of integer feature distribution. The first exam-
ple is the Hamming distance from a certain structure, and the second example is
the 5′ − 3′ distance.
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2.3.5 Hamming Distance from a Certain Structure

The distribution of the Hamming distance from a certain reference structure pro-
vides information on how much probability is concentrated around the reference.
If we choose a structure estimated by some point estimation algorithm as the
reference, the calculated distribution provides new criteria for representing the
credibility of the estimated structure.

(1) Definition of the Hamming Distance

We first introduce a vectorized representation of RNA secondary structure:

S[i][ j] =

1 (if i-th base and j-th base make a pair)

0 (otherwise)
. (2.48)

Let us call this a structure vector. The dimension of a structure vector is
(n

2

)
=

n(n − 1)/2 for RNA of length n.
We can then define the distance d between two structures by the Hamming

distance of their structure vectors S1 and S2:

d =
n−1∑
i=1

n∑
j=i+1

S1[i][ j] ⊕ S2[i][ j]. (2.49)

The Hamming distance d never exceeds its sequence length n in spite of its
extremely high dimensions (See Appendix A for the proof).
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(2) Application to the McCaskill Model

In this section, we show the concrete recursions, which are easily written down
from equations (2.29) - (2.35) and Algorithm 7:

Initialization (1 ≤ i ≤ n) :

Z(i, i) = 1.0 (2.50)

Z1(i, i) = Zb(i, i) = Zm(i, i) = Zm(i, i − 1) = Zm1(i, i) = 0 (2.51)

Recursion (1 ≤ i < j ≤ n) :

Z(i, j) = xg1(i, j,S) +

j−1∑
k=i

Z(i, k)Z1(k + 1, j)xg2(i, j,k,S) (2.52)

Z1(i, j) =
j∑

k=i+1

Zb(i, k)xg3(i, j,k,S) (2.53)

Zb(i, j) = e−[ f1(i, j)/kBT]xg4(i, j,S) +

j−2∑
k=i+1

j−1∑
l=k+1

Zb(k, l)e−[ f2(i, j,k,l)/kBT]xg5(i, j,k,l,S)

+

j−1∑
k=i+2

Zm(i + 1, k − 1)Zm1(k, j − 1)e−[ f3(i, j)/kBT]xg6(i, j,k,S) (2.54)

Zm(i, j) =
j−1∑
k=i

(
e−[ f4(k−i)/kBT]xg7(i, j,k,S) + Zm(i, k − 1)xg8(i, j,k,S)

)
Zm1(k, j) (2.55)

Zm1(i, j) =
j∑

k=i+1

Zb(i, k)e−[ f4( j−k)/kBT]xg3(i, j,k,S), (2.56)

where S is the reference structure vector defined by equation (2.48), and each
function gk(·) (k = 1 · · · 8) returns an integer value as the Hamming distance
from the reference structure, which accumulates with each transition. The full
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description of gk(·) is as follows:

g1(i, j,S) =
j−1∑
p=i

j∑
q=p+1

S[p][q] (2.57)

g2(i, j, k,S) =
k∑

p=i

j∑
q=k+1

S[p][q] (2.58)

g3(i, j, k,S) =
j∑

q=k+1

q−1∑
p=i

S[p][q] (2.59)

g4(i, j,S) =
j−1∑
p=i

j∑
q=p+1

S[p][q] + 1 − 2S[i][ j] (2.60)

g5(i, j, k, l,S) =
k−1∑
p=i

j∑
q=p+1

S[p][q] +
l∑

p=k

j∑
q=l+1

S[p][q]

+

j−1∑
p=l+1

j∑
q=p+1

S[p][q] + 1 − 2S[i][ j] (2.61)

g6(i, j, k,S) =
j−1∑
p=k

S[p][ j] +
j∑

q=i+1

S[i][q]

+

k−1∑
p=i+1

j∑
q=k

S[p][q] + 1 − 2S[i][ j] (2.62)

g7(i, j, k,S) =
k∑

p=i

j∑
q=p+1

S[p][q] (2.63)

g8(i, j, k,S) =
k−1∑
p=i

j∑
q=k

S[p][q]. (2.64)

Calculation by this implementation requires O(n5) time and O(n3) memory.
The following contrivances accelerate and decentralize the calculation, allowing
them to be calculated with O(n3) time and O(n2dmax) memory under maximum
decentralization.
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(3) Pre-calculating for Comparing Distance between Structures

Equations (2.57) - (2.64) show that O(n2) calculations are needed for gk(·), which de-
rives the Hamming distance between two structures. This is one of the bottlenecks
since these functions are embedded in recursive processes. If we pre-calculate a
vector C before the recursive process, we obtain gk(·) by O(1) calculations. The
definition of vector CS corresponds to structure vector S as follows:

CS[i][ j] =
j−1∑
k=i

j∑
l=k+1

S[k][l]. (2.65)

Let us call this a cumulative structure vector.
C can be computed efficiently by the following dynamic programming tech-

nique:

Initialization:

CS[i][i] = 0 (1 ≤ i ≤ n) (2.66)

CS[i][i + 1] = S[i][i + 1] (1 ≤ i ≤ n − 1) (2.67)

Recursion (1 ≤ i ≤ n − 1, i + 1 < j ≤ n) :

CS[i][ j] = S[i][ j] + CS[i + 1][ j] + CS[i][ j − 1] − CS[i + 1][ j − 1] (2.68)

This pre-calculation requires O(n2) time.
We write down the O(1) procedure of gk(·) for reference.

g1(i, j,S) = CS[i][ j] (2.69)

g2(i, j, k,S) = CS[i][ j] − CS[i][k] − CS[k + 1][ j] (2.70)

g3(i, j, k,S) = CS[i][ j] − CS[i][k] (2.71)

g4(i, j,S) = CS[i][ j] + 1 − 2S[i][ j] (2.72)

g5(i, j, k, l,S) = CS[i][ j] − CS[k][l] + 1 − 2S[i][ j] (2.73)

g6(i, j, k,S) = CS[i][ j] − CS[i + 1][k − 1] − CS[k][ j − 1] + 1 − 2S[i][ j] (2.74)

g7(i, j, k,S) = CS[i][ j] − CS[k][ j] (2.75)

g8(i, j, k,S) = CS[i][ j] − CS[i][k − 1] − CS[k][ j] (2.76)
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(4) Pre-calculating the Maximum of Distance

Equation (A.2) guarantees that the Hamming distance never exceeds the sequence
length n. However, we can find the exact maximum value of the Hamming
distance dmax as follows:

dmax = max
Sc∈S

 n−1∑
i=1

n∑
j=i+1

Sr[i][ j] ⊕ Sc[i][ j]

 (2.77)

where S is a set of all possible candidate structure vectors and Sr is a reference
structure vector.

The following O(n3) dynamic programming procedure is used to obtain dmax:

Initialization (1 ≤ i ≤ n) :

D(i, i) = D1(i, i) = Db(i, i) = Dm(i, i) = Dm(i, i − 1) = 0 (2.78)

Recursion (1 ≤ i ≤ n − 1, i + 1 < j ≤ n) :

D(i, j) = max
k

{
0

D(i, k) +D1(k + 1, j) − CSr[i][k] − CSr[k + 1][ j]

}
+ CSr[i][ j] (2.79)

D1(i, j) = max
k

{
Db

(i,k) − CSr[i][k]
}
+ CSr[i][ j] (2.80)

Db(i, j) = max
k,l


0

Db(k, l) − CSr[k][l]
Dm(i + 1, k − 1) +D1(k, j − 1) − CSr[i + 1][k − 1] − CSr[k][ j − 1]


+ CSr[i][ j] − 2Sr[i][ j] + 1 (2.81)

Dm(i, j) = max
k

{
Dm(i, k − 1) +D1(k, j) − CSr[i][k − 1] − CSr[k][ j]

D1(k, j) − CSr[k][ j]

}
+ CSr[i][ j](2.82)

Which finally gives dmax as D(1,n).
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2.3.6 5′ − 3′ Distance of RNA Secondary Structure

Yoffe et al. reported that the distance between the 5′ and 3′ ends tends to be short
and is largely independent of molecule length or sequence pattern [34]. They
pointed out the relevance of these observations to biological interpretation, in
particular of viral RNA evolution. A method for calculating the exact distribution
of the 5′-3′ distances was proposed by Han et al. [35]. However, their method
does not consider the existence probability of each structure nor the base pairing
restrictions based on canonical base pairs. Instead, they assume that all structures
occur at the same probability and that every base can make pairs with an arbitrary
base, with the exception of pseudoknots. Although Clote et al. proposed a method
for calculating an expected distance while considering the existence probability
of each structure and the base pairing restrictions [36], no method is available
for obtaining an exact distribution. Here we give an alternative algorithm for
calculating this distribution.

38



(1) Definition of the 5′ − 3′ Distance

We follow the work of Yoffe and colleagues in defining the 5′ − 3′ distance d5′−3′ :

d5′−3′ = cext + hext, (2.83)

where cext is the number of covalent bonds in the exterior loop and hext is the
number of hydrogen bridges in the exterior loop. For example, in the secondary
structure represented as Figure 2.1, counting the base pairs in the exterior loop
(red arch), gives cext = 9, hext = 2, and accordingly d5′−3′ = 9 + 2 = 11.

Figure 2.1: An example for introducing the definition of d5′−3′ .

(2) A Proposed Method for Calculating a d5′−3′ Exact Distribution

We show a O(n4) time procedure for calculating a d5′−3′ exact distribution.

Algorithm 9 Exact Calculation of a d5′−3′ Distribution by DFT approach
1: O(n3) pre-calculation for Zb(i, j), (1 ≤ i < j ≤ n) by McCaskill model (equations

(2.29) - (2.35))
2: for k = 1 to n − 1 do
3: x = exp

(
2πi k−1

n−1

)
4: O(n3) recursions for Zk(1,n) described on equations (2.84) - (2.87)
5: end for
6: for k = 1 to n − 1 do
7: p(d5′−3′ = k) =

{∑n−1
r=1 Zr(1,n)

(
cos

(
2πk(r−1)

n−1

)
− i sin

(
2πk(r−1)

n−1

))}
/(n − 1) /*DFT*/

8: end for

The recursions implied above are as follows:
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Initialization (1 ≤ i ≤ n) :

Zk(i, i) = 1.0 (2.84)

Z1
k(i, i) = 0 (2.85)

Recursion (1 ≤ i < j ≤ n) :

Zk(i, j) = x j−i +

j−1∑
k=i

Zk(i, k)Z1
k(k + 1, j)x (2.86)

Z1
k(i, j) =

j∑
k=i+1

Zb(i, k)x j−k+1 (2.87)

Finally, we derive the probability p(d5′−3′ = k).
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2.4 Calculation of the Real Feature Distribution

If the feature score is not an integer but a real value, we cannot describe exact
distributions; the probability distribution of the score is generally discrete and has
almost unenumerable variations since the ensemble of solutions is also assumed
to be discrete and very large. Therefore, we introduce an alternative method for
calculating the objective feature distribution.

2.4.1 General Theory

First, we divide the feature value into bins and define a window function to
distribute each probability to these bins. Next, we show the conditions required
for a fine window function. Third, we introduce the window function adopted in
this study. Finally, we construct an algorithm to calculate the objective distribution
using this window.

2.4.2 Definition of Bins and Window Function

As described above, we cannot enumerate all instances if the feature value is
a bounded real value. Instead, of calculating the distribution of proper value
directly, therefore, we define equal interval bins which divide the feature value
and allocate each probability to a bin according to the feature value. A windows
function is an allocator which distributes the probabilities to the bins. In the
following discussion, for brevity we assume that the minimum feature value is 0,
that each bin size is 1, and that the number of bins is N (Figure 2.2).

Figure 2.2: The definition of bins and a window function to distribute each prob-
ability into the bins.
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Once the window function has been defined, we calculate the probability in
the v-th bin by the following equation:

pv =
∑
θ∈C

zθ f (sθ, v)/Z, (2.88)

where:

C : a set of candidate solutions

zθ : Boltzmann factor of θ

sθ : feature value of θ

f (sθ, v) : window function

The goal is to find a fine window function which enables pv to be precisely and
efficiently obtained.

2.4.3 Necessary Conditions for a Window Function

Three conditions are required for a good window function f .

First, the sum of the probabilities allocated to the bins must be equal to the
original probability. This condition is equivalent to the following equation:

∀θ,
N−1∑
v=0

f (sθ, v) = 1 (2.89)

Second, it is necessary that some efficient algorithm exists for calculating
equation (2.88).

Finally, the approximate distribution derived by applying the window func-
tion must be as precise as possible.

The most natural candidate for the window function might be the rectangular
function (Figure 2.3) which allocates probability into the nearest bin:

f (sθ, v) =

1 (v − 1/2 ≤ sθ < v + 1/2)

0 (otherwise)
. (2.90)

However, while the first and third conditions are satisfied, this function is unlikely
to satisfy the second condition.

We briefly review some well-known window and bell-shaped functions. Win-
dow functions, including the rectangular, triangular, Parzen, Hann, Hamming,
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Figure 2.3: The illustration of adopting the rectangular function as the window
function.

and Blackman windows, are often described in the following form:

f (sθ, v) =

some function (|sθ − v| ≤ α)

0 (otherwise)
. (2.91)

Some of these windows satisfy the first and the third conditions, but it is probably
impossible for them to satisfy the second condition, as dividing the case according
to |sθ − v| complicates the calculation. Thus, being globally smooth is considered
a necessary condition for a window function.

The following functions are well-known smooth bell-shaped window func-
tions:

f (sθ, v) = exp
[
− (sθ − v)2

σ2

]
(2.92)

f (sθ, v) =
α

1 + (sθ − v)2 (2.93)

f (sθ, v) =α
sin2(sθ − v)

(sθ − v)2 (2.94)

f (sθ, v) =
α exp [−|sθ − v|]

(1 + exp [−|sθ − v|])2 . (2.95)

However, these conventional functions only approximately satisfy the first con-
dition and probably cannot satisfy the second condition, though some of the
functions satisfy it approximately. The second condition is satisfied if f (sθ, v) is
polynomial. Therefore, a Taylor expansion of the above f (sθ, v) seems applicable if
its convergence radius is infinite. However, this is not realistic in practice because
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it requires superhigh-order terms.

As described above, the selection of the proper window function is an inflexible
process.

2.4.4 The Window Function We Adopted

In this study, we propose the following original window function:

f (sθ, v) =
1
N

∫ v+ 1
2

v− 1
2

cos
[
π

(sθ − t)(N − 1)
N

]
sin [π(sθ − t)]

sin
[
π sθ−t

N

] dt. (2.96)

The three conditions given above are satisfied by function (2.96).

(1) A Proof that Equation (2.89) is Satisfied

We now show a proof of the following equation:

∀θ,
N−1∑
v=0

1
N

∫ v+ 1
2

v− 1
2

cos
[
π

(sθ − t)(N − 1)
N

]
sin [π(sθ − t)]

sin
[
π sθ−t

N

] dt = 1. (2.97)

First, the left side can be modified as follows:

N−1∑
v=0

1
N

∫ 1
2

− 1
2

cos
[
π

((sθ − t) − v)(N − 1)
N

]
sin [π((sθ − t) − v)]

sin
[
π (sθ−t)−v

N

] dt. (2.98)

Thus, (2.97) is satisfied if the following equation is satisfied:

−1
2
≤∀ x ≤ N − 1

2
,

N−1∑
v=0

1
N

cos
[
π

(x − v)(N − 1)
N

]
sin [π(x − v)]

sin
[
π x−v

N

] = 1. (2.99)
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The left side of equation (2.99) can be modified as follows:

N−1∑
v=0

1
N

cos
[
π

(x − v)(N − 1)
N

]
sin [π(x − v)]

sin
[
π x−v

N

] (2.100)

=

N−1∑
v=0

1
N

cos
[
πx − πx − v

N
− πv

] sin [πx − πv]

sin
[
π x−v

N

] (2.101)

=

N−1∑
v=0

1
N

cos
[
πx − πx − v

N

] sin [πx]

sin
[
π x−v

N

] (2.102)

=

N−1∑
v=0

1
N

(
sin [πx] sin

[
π

x − v
N

]
+ cos [πx] cos

[
π

x − v
N

]) sin [πx]

sin
[
πx−v

N

] (2.103)

=

N−1∑
v=0

1
N

sin2 [πx] +
sin [πx] cos [πx]

tan
[
πx−v

N

]  (2.104)

= sin2 [πx] +
1
N

N−1∑
v=0

sin [πx] cos [πx]

tan
[
π x−v

N

] . (2.105)

If cos [πx] = 0, expression (2.105) becomes 1 since sin2 [πx] = 1.

If sin [πx] = 0, that is x ∈ Z∧[−1/2,N−1/2], the above expression also becomes
1 because:

lim
x−v→0

1
N

cos
[
πx − πx − v

N
− πv

] sin [πx − πv]

sin
[
πx−v

N

] (2.106)

= lim
x−v→0

1
N

cos
[
πx − πx − v

N
− πv

] sin [πx − πv]
πx − πv

πx−v
N

sin
[
πx−v

N

] πx − πv
π x−v

N
(2.107)

= lim
x−v→0

1
N

N (2.108)

=1 (2.109)

and

1
N

cos
[
πx − πx − v

N
− πv

] sin [πx − πv]

sin
[
π x−v

N

] = 0 (|x − v| ∈ Z ∧ [1,N − 1]). (2.110)

In the following discussion we assume that cos [πx] , 0 and sin [πx] , 0.
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Expression (2.105) becomes 1 if the following equation is satisfied:

N−1∑
v=0

sin [πx] cos [πx]

tan
[
πx−v

N

] = N cos2 [πx] (2.111)

⇔
N−1∑
v=0

cot
[
π

x − v
N

]
= N cot [πx] . (2.112)

We prove equation (2.112) by the following description.

First, if we define z = e2iθ, cotθ can be described by:

cotθ = i
z + 1
z − 1

. (2.113)

Thus,

cot Nθ = i
zN + 1
zN − 1

. (2.114)

If we define u = e2πi/N, uv (v = 0, . . . ,N − 1) are solutions for zN − 1 = 0.
Therefore,

zN − 1 =
N−1∏
v=0

(z − uv). (2.115)

Thus,

cot Nθ = i
zN + 1∏N−1

v=0 (z − uv)
. (2.116)

By partial fraction decomposition, the above equation can be modified as:

i
zN + 1∏N−1

v=0 (z − uv)
=i

zN − 1 + 2∏N−1
v=0 (z − uv)

(2.117)

=i

1 + N−1∑
v=0

2av

z − uv

 . (2.118)

From the following identical equation,

f (z) =
N−1∑
v=0

N−1∏
v=0

(z − uv)

 av

z − uv = 1. (2.119)
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By substituting f (z) = f (uv) (v = 0, . . . ,N − 1), we obtain:

av =

 ∏
j=0,1,...,v−1,v+1,...,N−1

(uv − u j)


−1

. (2.120)

From equation (2.115),

a0 =

N−1∏
j=1

(1 − u j)


−1

(2.121)

= lim
z→1

z − 1
zN − 1

(2.122)

= lim
z→1

z − 1

(z − 1)
∑N−1

j=0 z j
(2.123)

=
1
N
. (2.124)

In addition, because uN = e2πi = 1,

av =
av

uN (2.125)

=
1
u

 ∏
j=0,1,...,v−1,v+1,...,N−1

u(uv − u j)


−1

(2.126)

=
1
u

 ∏
j=0,1,...,v−1,v+1,...,N−1

(uv+1 − u j+1)


−1

(2.127)

=
1
u

 ∏
j=1,2,...,v,v+2,...,N

(uv+1 − u j)


−1

(2.128)

=
1
u

 ∏
j=0,1,...,v,v+2,...,N−1

(uv+1 − u j)


−1

(2.129)

=
1
u

av+1 (2.130)

⇔ av+1 = uav. (2.131)

From equation (2.124) and equation (2.131):

av =
uv

N
. (2.132)
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Thus,

cot Nθ =i

1 + N−1∑
v=0

2av

z − uv

 (2.133)

=i

1 + 1
N

N−1∑
v=0

2uv

z − uv

 (2.134)

=i

1 + 1
N

N−1∑
v=0

z + uv − (z − uv)
z − uv

 (2.135)

=i

1 + 1
N

N−1∑
v=0

(z + uv

z − uv − 1
) (2.136)

=
i

N

N−1∑
v=0

z + uv

z − uv (2.137)

=
i

N

N−1∑
v=0

zu−v + 1
zu−v − 1

(2.138)

=
i

N

N−1∑
v=0

ze−2i πv
N + 1

ze−2i πv
N − 1

(2.139)

=
1
N

N−1∑
v=0

cot
[
θ − πv

N

]
. (2.140)

By substituting θ = πx/N into equation (2.140), we obtain:

cot [πx] =
1
N

N−1∑
v=0

cot
[
πx
N
− πv

N

]
(2.141)

⇔
N−1∑
v=0

cot
[
π

x − v
N

]
= N cot [πx] . (2.142)

This proves equation (2.112). As described above, this confirms that the first
condition of the window function is satisfied.
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(2) How to Calculate Equation (2.88) Efficiently

Next, we confirm that the second condition is also satisfied. Equation (2.88) can
be expanded as follows:

pv =
∑
θ∈C

zθ f (sθ, v)/Z (2.143)

=
∑
θ∈C

zθ
1
N

∫ v+ 1
2

v− 1
2

cos
[
π

(sθ − t)(N − 1)
N

]
sin [π(sθ − t)]

sin
[
π sθ−t

N

] dt/Z (2.144)

=
∑
θ∈C

zθ
1
N

∫ v+ 1
2

v− 1
2

Re

exp
[
πi

(sθ − t)(N − 1)
N

]
sin [π(sθ − t)]

sin
[
π sθ−t

N

]  dt/Z (2.145)

=
∑
θ∈C

zθ
1
N

∫ v+ 1
2

v− 1
2

Re

exp [2πi(sθ − t)] − 1

exp
[
2πi (sθ−t)

N

]
− 1

 dt/Z (2.146)

=
∑
θ∈C

zθ
1
N

∫ v+ 1
2

v− 1
2

Re

N−1∑
p=0

exp
[
2πi

p(sθ − t)
N

] dt/Z (2.147)

=
1

NZ

∫ v+ 1
2

v− 1
2

Re

∑
θ∈C

zθ
N−1∑
p=0

exp
[
2πi

p(sθ − t)
N

] dt (2.148)

=
1

NZ

∫ v+ 1
2

v− 1
2

Re

∑
θ∈C

zθ
N−1∑
p=0

exp
[
2πi

psθ
N

]
exp

[
2πi
−pt
N

] dt (2.149)

=
1

NZ

∫ v+ 1
2

v− 1
2

Re

N−1∑
p=0

∑
θ∈C

zθ exp
[
2πi

psθ
N

]
exp

[
2πi
−pt
N

] dt (2.150)

≈ 1
NZM

Re

M−1∑
q=0

N−1∑
p=0

∑
θ∈C

zθ exp
[
2πi

psθ
N

]
exp

2πi
−p

(
v − 1

2 +
q
M

)
N


 . (2.151)

Thus, to obtain pv, we calculate the following part first:∑
θ∈C

zθ exp
[
2πi

psθ
N

]
, (2.152)

which is a similar procedure to that in the integer version. We then execute
MN2-time continuous calculations. MN-time calculations are distributed into
(N +M)-time calculations. Therefore, the real feature value distribution can be
calculated by the same order with integer feature algorithm.
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(3) Precision as an Allocator

We show the shape of the proposed window function in Figure 2.4. We can
observe that the shape converges to N = ∞ as the region is divided into smaller
pieces, and that N = 100 and N = ∞ are approximately identical.

Figure 2.4: The shapes of the window functions in three cases: N = 20, 100, and
∞ (x-axis represents sθ − v).

When N = ∞, the window function can be written as below (applying sectional
mensuration):

lim
N→∞

f (sθ, v) = lim
N→∞

1
N

∫ v+ 1
2

v− 1
2

cos
[
π

(sθ − t)(N − 1)
N

]
sin [π(sθ − t)]

sin
[
π sθ−t

N

] dt (2.153)

=

∫ π−2π(sθ−v)

0

sin t
πt

dt +
∫ π+2π(sθ−v)

0

sin t
πt

dt. (2.154)

2.4.5 Canceling the Side Lobe Effect

We define the side lobe effect as the probability leak to distant bins by the window
function (see Figure 2.5). The most naive correction method is to assume a uniform
constant bias. This is then corrected by the following estimator:

p̂v =
pv − α
1 − α . (2.155)

Actually, this assumption is optimistic, as the level of a probability leak de-
pends on the positional relationship to the nearest bin. However, this positional
dependency decreases as more distant bins are added to the summation (see Fig-
ure 2.6). The Y-axis in Figure 2.6 represents the total weight of the probability
allocated to each range of bins. Thus, we calculate the probability at a finer reso-
lution than required, then combine the bins to avoid the positional dependency.
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Figure 2.5: The definition of the side lobe (the red-colored part).

Figure 2.6: Positional dependency canceled by considering the summation of
farther bins.
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2.4.6 Application to the Features of RNA Secondary Structure

2.4.7 Free Energy of the RNA Secondary Structure

In this section we show a concrete algorithm. If we define the free energy as a real
feature score, the procedure for calculating the distribution is given by Algorithm
10:

Algorithm 10 Calculating the distribution of free energy of RNA secondary struc-
ture

1: for n = 0 to N − 1 do
2: x = exp

(
2πi n

N

)
3: Zn(0) = 1
4: for k = 1 to S do
5: Zn(k) =

∑k−1
i=0 Zn(i)× (Boltzmann factor gain by i to k)×xFree energy gain by i to k

6: end for
7: end for
8: for m = 0 to M − 1 do
9: l = m

M − 1
2

10: for v = 0 to N − 1 do
11: pmv = Re

[∑N−1
n=0 Zn(S)

(
cos

(
2πv(n+l)

N

)
− i sin

(
2πv(n+l)

N

))]
/N

12: end for
13: end for
14: for v = 0 to N − 1 do
15: pv =

∑M−1
m=0 pmv/M

16: end for
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2.5 Calculation of the Feature Vector Distribution

2.5.1 General Theory and the 2D Expansion of the Integer Dis-
tribution

We next expand the above integer and real feature distribution to an integer and
real vector feature distribution. In this study, we use the case of a 2D expansion
of the algorithm for the Hamming distance from a certain structure.

Algorithm 11 gives the 2D expansion of Algorithm 7. Information on the
distance from two reference structures is accumulated as exponents of x and y
separately. Functions s(k), s(i, k), and s(i, j, k) have captions x and y because their
given score depends on the structure even when the transition is the same.

Algorithm 11 2D Expansion of Algorithm 7
1: Z(0) = 1
2: for k = 1 to N do
3: Z(k) =

∑k−1
i=0 Z(i)t(k|i)xsx(i,k)ysy(i,k) +

∑k−2
i=0

∑k−1
j=i+1 Z(i)Z( j)t(k|i, j)xsx(i, j,k)ysy(i, j,k)

4: end for

Each polynomial factor of xkyl is proportional to the existence probability of
structure k from reference structure 1 and l from reference structure 2. The actual
probability is obtained by the following equation:

pkl =
akl∑i=n

i=0
∑ j=n

j=0 ai j

(2.156)

Z(N) ≡
n∑

i=0

n∑
j=0

ai jxiy j. (2.157)

We describe the concrete recursions after giving the definition of distance.
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(1) Naive Implementation of 2D Algorithm

Next, we expand the 1D algorithm into two dimensions. This expansion enables
us to compare two structures using O(n7) time and O(n4) memory. We employ
polynomials in x and y instead of polynomials in x so as to accumulate the infor-
mation on the Hamming distance from the two reference secondary structures.

Initialization (1 ≤ i ≤ n) :

Z(i, i) = 1.0 (2.158)

Z1(i, i) = Zb(i, i) = Zm(i, i) = Zm(i, i − 1) = Zm1(i, i) = 0 (2.159)

Recursion (1 ≤ i < j ≤ n) :

Z(i, j) = xg1(i, j,S1)yg1(i, j,S2) +

j−1∑
k=i

Z(i, k)Z1(k + 1, j)xg2(i, j,k,S1)yg2(i, j,k,S2) (2.160)

Z1(i, j) =
j∑

k=i+1

Zb(i, k)xg3(i, j,k,S1)yg3(i, j,k,S2) (2.161)

Zb(i, j) = e−[ f1(i, j)/kBT]xg4(i, j,S1)yg4(i, j,S2) +

j−2∑
k=i+1

j−1∑
l=k+1

Zb(k, l)e−[ f2(i, j,k,l)/kBT]xg5(i, j,k,l,S1)yg5(i, j,k,l,S2)

+

j−1∑
k=i+2

Zm(i + 1, k − 1)Zm1(k, j − 1)e−[ f3(i, j)/kBT]xg6(i, j,k,S1)yg6(i, j,k,S2) (2.162)

Zm(i, j) =
j−1∑
k=i

(
e−[ f4(k−i)/kBT]xg7(i, j,k,S1)yg7(i, j,k,S2)

+ Zm(i, k − 1)xg8(i, j,k,S1)yg8(i, j,k,S2)

)
Zm1(k, j) (2.163)

Zm1(i, j) =
j∑

k=i+1

Zb(i, k)e−[ f4( j−k)/kBT]xg3(i, j,k,S1)yg3(i, j,k,S2) (2.164)

where S1 and S2 are the two arbitrary reference structure vectors.
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Figure 2.7: An example of structure distribution ob-
tained by our 1D Algorithm.

The significance of
the 2D expansion emerges
when we observe the
plural peaks from the 1D
distribution. For exam-
ple, let us assume a case
in which we obtain a dis-
tribution like that in Fig-
ure 2.7 by the 1D Algo-
rithm. This figure seems
to suggest two structure
clusters, but several dif-
ferent scenarios are pos-
sible. The leftmost image
in Figure 2.8 shows the case in which the two structure clusters are clearly sepa-
rate, while the central image shows the case in which the two structure clusters
intercommunicate. The rightmost image in Figure 2.8 suggests the possibility of
other structure clusters because large-scale structures are present, apart from the
reference structure. Figure 2.7 cannot guarantee the existence of another signif-
icant cluster since the probability might be dispersed broadly among structures
that are a similar distance from the reference structure.

Figure 2.8: Examples of possible patterns of two structure clusters.
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Algorithm 12 Naive 2D algorithm using the DFT approach
1: for d1 = 0 to d1max do
2: for d2 = 0 to d2max do
3: x = exp

(
2πi d1

d1max+1

)
4: y = exp

(
2πi d2

d2max+1

)
5: Z(d1,d2)(0) = 1
6: for k = 1 to N do
7: Z(d1,d2)(k) =

∑k−2
i=0

∑k−1
j=i+1 Z(d1,d2)(i)Z(d1,d2)( j)t(k|i, j)xsx(i, j,k)ysy(i, j,k)

+
∑k−1

i=0 Z(d1,d2)(i)t(k|i)xsx(i,k)ysy(i,k)

8: end for
9: end for

10: end for
11: for d1 = 0 to d1max do
12: for d2 = 0 to d2max do
13: Z′(d1,d2) =

{∑d2max
r=0 Z(d1,r)(N)

(
cos

(
2πr

d2max+1

)
− i sin

(
2πr

d2max+1

))}
/(1 + d2max) /*DFT*/

14: end for
15: end for
16: for d2 = 0 to d2max do
17: for d1 = 0 to d1max do
18: p(d1, d2) =

{∑d1max
r=0 Z′(r,d2)

(
cos

(
2πr

d1max+1

)
− i sin

(
2πr

d1max+1

))}
/(1 + d1max) /*DFT*/

19: /*where p(d1, d2) is the probability that distance from structure 1 is d1 and
structure 2 is d2*/

20: end for
21: end for
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(2) Modifying Recursions for 2D Algorithm

Actually, distributions computed by the 2D Algorithm are quite sparse. From
constraints such as triangle inequality, the following expressions must be satisfied:

∀S ∈ S , |d(SR1 ,S) − d(SR2 ,S)| ≤ d(SR1 ,SR2) ≤ d(SR1 ,S) + d(SR2 ,S) (2.165)

∀S ∈ S , d(SR1 ,S) ≤ d1max (2.166)

∀S ∈ S , d(SR2 ,S) ≤ d2max (2.167)

∀S ∈ S , ∃m ∈ N, d(SR1 ,S) + d(SR2 ,S) + d(SR1 ,SR2) = 2m (2.168)

where N is a set of natural numbers, S is a set of all possible secondary structure
vectors, SRi(i = 1, 2) is a structure vector of the i-th reference, and d(S1, S2) is the
Hamming distance between S1 and S2. Equation (2.165) is derived from triangle
inequality, and equation (2.166) and (2.167) originate in definitions of d1max and
d2max. The logic behind equation (2.168) is complex, but can be simplified as
follows: a 1 bit transition of the structure vector of S invariably causes a change
of 1 Hamming distance from any other structures, and every structure vector can
visit every other one by repetition of 1 bit transitions.

To remove unnecessary calculations, we modified our 2D algorithm by con-
verting the axes. The improved algorithm is shown as Algorithm 13.
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Algorithm 13 Improved 2D algorithm by DFT approach
1: δ = d(SR1 ,SR2)

2: d′1max = δ

3: d′2max =
d1max+d2max−δ

2

4: for d1 = 0 to d′1max do

5: for d2 = 0 to d′2max do

6: x = exp
(
2πi d1

d′1max+1

)
7: y = exp

(
2πi d2

d′2max+1

)
8: Z(d1,d2)(0) = 1

9: for k = 1 to N do

10: Z(d1,d2)(k) =
∑k−2

i=0
∑k−1

j=i+1 Z(d1,d2)(i)Z(d1,d2)( j)t(k|i, j)xsx(i, j,k)ysy(i, j,k)

+
∑k−1

i=0 Z(d1,d2)(i)t(k|i)xsx(i,k)ysy(i,k)

11: end for

12: end for

13: end for

14: for d1 = 0 to d′1max do

15: for d2 = 0 to d′2max do

16: Z′(d1,d2) =
{∑d′2max

r=0 Z(d1,r)(N)
(
cos

(
2πr

d′2max+1

)
− i sin

(
2πr

d′2max+1

))}
/(1 + d′2max) /*DFT*/

17: end for

18: end for

19: for d2 = 0 to d′2max do

20: for d1 = 0 to d′1max do

21: Z′′(d1,d2) =
{∑d′1max

r=0 Z′(r,d2)

(
cos

(
2πr

d′1max+1

)
− i sin

(
2πr

d′1max+1

))}
/(1 + d′1max) /*DFT*/

22: end for

23: end for

24: for d1 = 0 to d1max do

25: for d2 = 0 to d2max do

26: if (|d1 − d2| ≤ δ ≤ d1 + d2) and (d1 + d2 + δ is even) then

27: p(d1, d2) = Z′′
(

d1−d2+δ
2 ,

d1+d2−δ
2 )

28: else

29: p(d1, d2) = 0

30: /*where p(d1, d2) is the probability that distance from structure 1 is d1

and structure 2 is d2*/

31: end if

32: end for

33: end for
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In this case, we need a minor modification to recursion (2.160) - (2.164) as
follows:

Z(i, j) = x
g1(i, j,S1)−g1(i, j,S2)+∆δ1(i, j)

2 y
g1(i, j,S1)+g1(i, j,S2)−∆δ1(i, j)

2

+

j−1∑
k=i

Z(i, k)Z1(k + 1, j)x
g2(i, j,k,S1)−g2(i, j,k,S2)+∆δ2(i, j,k)

2 y
g2(i, j,k,S1)+g2(i, j,k,S2)−∆δ2(i, j,k)

2 (2.169)

Z1(i, j) =
j∑

k=i+1

Zb(i, k)x
g3(i, j,k,S1)−g3(i, j,k,S2)+∆δ3(i, j,k)

2 y
g3(i, j,k,S1)+g3(i, j,k,S2)−∆δ3(i, j,k)

2 (2.170)

Zb(i, j) =
j−1∑

k=i+2

Zm(i + 1, k − 1)Zm1(k, j − 1)e−[ f3(i, j)/kBT]x
g6(i, j,k,S1)−g6(i, j,k,S2)+∆δ5(i, j,k)

2 y
g6(i, j,k,S1)+g6(i, j,k,S2)−∆δ5(i, j,k)

2

+

j−2∑
k=i+1

j−1∑
l=k+1

Zb(k, l)e−[ f2(i, j,k,l)/kBT]x
g5(i, j,k,l,S1)−g5(i, j,k,l,S2)+∆δ4(i, j,k,l)

2 y
g5(i, j,k,l,S1)+g5(i, j,k,l,S2)−∆δ4(i, j,k,l)

2

+ e−[ f1(i, j)/kBT]x
g4(i, j,S1)−g4(i, j,S2)+∆δ1(i, j)

2 y
g4(i, j,S1)+g4(i, j,S2)−∆δ1(i, j)

2 (2.171)

Zm(i, j) =
j−1∑
k=i

{
e−[ f4(k−i)/kBT]x

g7(i, j,k,S1)−g7(i, j,k,S2)+∆δ6(i, j,k)
2 y

g7(i, j,k,S1)+g7(i, j,k,S2)−∆δ6(i, j,k)
2

+ Zm(i, k − 1)x
g8(i, j,k,S1)−g8(i, j,k,S2)+∆δ7(i, j,k)

2 y
g8(i, j,k,S1)+g8(i, j,k,S2)−∆δ7(i, j,k)

2

}
Zm1(k, j) (2.172)

Zm1(i, j) =
j∑

k=i+1

Zb(i, k)e−[ f4( j−k)/kBT]x
g3(i, j,k,S1)−g3(i, j,k,S2)+∆δ3(i, j,k)

2 y
g3(i, j,k,S1)+g3(i, j,k,S2)−∆δ3(i, j,k)

2 (2.173)

where ∆δk(·) are:

∆δ1(i, j) = ESR1 ,SR2
[i][ j] (2.174)

∆δ2(i, j, k) = ESR1 ,SR2
[i][ j] − ESR1 ,SR2

[i][k] − ESR1 ,SR2
[k + 1][ j] (2.175)

∆δ3(i, j, k) = ESR1 ,SR2
[i][ j] − ESR1 ,SR2

[i][k] (2.176)

∆δ4(i, j, k, l) = ESR1 ,SR2
[i][ j] − ESR1 ,SR2

[k][l] (2.177)

∆δ5(i, j, k) = ESR1 ,SR2
[i][ j] − ESR1 ,SR2

[i + 1][k − 1] − ESR1 ,SR2
[k][ j − 1] (2.178)

∆δ6(i, j, k) = ESR1 ,SR2
[i][ j] − ESR1 ,SR2

[k][ j] (2.179)

∆δ7(i, j, k) = ESR1 ,SR2
[i][ j] − ESR1 ,SR2

[i][k − 1] − ESR1 ,SR2
[k][ j] (2.180)
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ESR1 ,SR2
[i][ j] is defined by the Hamming distance of the partial structure vector:

ESR1 ,SR2
[i][ j] =

j−1∑
p=i

j∑
q=p+1

SR1[p][q] ⊕ SR2[p][q] (2.181)

This is derived effectively by the following recursions:

Initialization:

ESR1 ,SR2
[i][i] = 0 (1 ≤ i ≤ n) (2.182)

ESR1 ,SR2
[i][i + 1] = SR1[i][i + 1] ⊕ SR2[i][i + 1] (1 ≤ i ≤ n − 1) (2.183)

Recursion (1 ≤ i ≤ n − 1, i + 1 < j ≤ n) :

ESR1 ,SR2
[i][ j] = SR1[i][ j] ⊕ SR2[i][ j] + ESR1 ,SR2

[i + 1][ j]

+ESR1 ,SR2
[i][ j − 1] − ESR1 ,SR2

[i + 1][ j − 1] (2.184)

∆δk(·) is the newly accumulated Hamming distance between two reference
structures at each transition, and indicates the lower limit of gk(·,S1) + gk(·,S2).

This formulation empirically increases the speed of calculation several times,
depending on the RNA sequence and reference structures. It is always at least
twice as fast as the original algorithm (see Appendix A for the proof).
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Chapter 3

RESULTS

In this chapter, we present the results of analyzing the RNA secondary structure
mainly using algorithms for the distribution of the Hamming distance from a spec-
ified structure. First, we review the performance of the implemented algorithms.
Then, further analyses are used to demonstrate the utility of our technique.

3.1 Performance Evaluation

3.1.1 Comparison of Calculation Cost

We summarize the calculation cost for the Hamming distance distributions of the
1D and 2D algorithms. Non-DFT indicates that the algorithm applied all speedup
techniques except DFT. The DFT-based algorithm is shown as a DFT approach.
Since we can apply distributed processing to the DFT-based algorithm, we also
describe the cost of multi-unit applications. Simultaneously, we show RNAbor
and RNA2Dfold as examples of conventional objective software.

Table 3.1: Calculation cost of 1D algorithm.

RNAbor non DFT
DFT approach

single core k units† ∞ units

Time O(n3d2
max) O(n3d2

max) O(n3dmax) O(n3dmax
k ) O(n3)

Memory O(n3) O(n3) O(n2) O(n2k) O(n2dmax)

† k should be around a divisor of dmax
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Table 3.2: Calculation cost of 2D algorithm.

RNA2Dfold non DFT
DFT approach

single core k units† ∞ units

Time O(n7) O(n3d2
1maxd2

2max) O(n3d1maxd2max) O(n3d1maxd2max
k ) O(n3)

Memory O(n4) O(n2d1maxd2max) O(n2) O(n2k) O(n2d1maxd2max)

† k should be around a divisor of d1maxd2max

3.1.2 Runtime Evaluation

We implemented a distributed processing application with OpenMP and eval-
uated the runtime of the calculations for the 1D and 2D Algorithms on a dual
quad-core Intel R© Xeon R© E5540 @2.53GHz CPU with 17.6 GB RAM. The runtime
was calculated from the mean of 10 random sequences, and we adopted a mini-
mum free energy (MFE) structure as the reference structure. The second reference
structure for the 2D algorithm was the open chain, which is a structure with no
base pairing. We measured the runtime in this case with a single core, 8 cores
and 8 threads, and 8 cores and 16 threads, though theoretically the process could
be distributed to a maximum of dmax (1D) or d1maxd2max (2D). We also compared
our algorithm with conventional software. RNA2Dfold in Vienna RNA version
2.0 supports OpenMP and was executed using 8 cores and 16 threads. RNAbor
is available only on a web server, and the runtime of the non-DFT algorithm is
therefore shown as a computationally equivalent algorithm.

Figure 3.1: Run time of the 1D Algorithm.

62



Figure 3.1 suggests that our proposed 1D algorithm improved the calculation
cost significantly compared with the non-DFT application. We achieved an ap-
proximately eightfold acceleration of the computing speed when using 8 cores,
though hyper threading contributed little. Since it is rare to treat RNAs longer
than 400nt when discussing secondary structures, our algorithm should be suffi-
ciently fast for use in comprehensive analyses. The 2D algorithm also improved
the runtime compared with the conventional method. However RNA2Dfold
reduces the processing by utilizing the property of matrix sparseness, and our
2D algorithm might not be significantly different to RNA2Dfold when analyzing
short RNA sequences. In fact, it may even be slightly worse (Figure 3.3), as the
RNA2Dfold may be too time-consuming to be fully usable with longer RNAs. Be-
cause our methods can distribute the processing with almost no overhead, their
speed increases as the computational resources increase.

Figure 3.2: Runtime of 2D algorithm.
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Figure 3.3: Semilog plot of Figure 3.2.

3.2 Applying the Algorithms to RNA sequences

We applied our algorithms to a range of RNA sequences. Sequences for the evalu-
ation of ambiguity of conventional structure estimation methods were randomly
chosen from Rfam for different RNA families. Rfam is one of the largest open
access databases on RNA families and is hosted at the Wellcome Trust Sanger
Institute [37]. For structure estimation, we used RNAfold [38] to calculate the
minimum free energy structures (MFE structures) and CentroidFold [39] to cal-
culate γ-centroid structures. According to the canonical distribution, the MFE
structure is considered to be the most frequent among the whole ensemble(2.27).
CentroidFold contains an arbitrary parameter γ, which regulates the weight of
base pairs so that they are optimized for accuracy measures. In this study, we
employed the default parameter γ = 1 if no previous notice was given. The
γ-centroid structures with γ = 1 are also called centroid structures.

3.3 Unavoidable Ambiguity

In this section, we show the unavoidable ambiguity of RNA secondary structure
estimation. First, we discuss the credibility limits of point estimated structures
obtained by conventional methods. The credibility limit is an index of estimation
uncertainty, where an α% credibility limit is defined as the minimum Hamming
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distance radius of a hyper-sphere containing α% of the distribution [40]:

α% Credibility limit = min[d] (3.1)

s.t.
d∑

d′=0

p(distance = d′) ≥ α
100
. (3.2)

Since we can calculate this index using the results from our 1D algorithm, we eval-
uated the uncertainty of the two conventional estimation methods; the minimum
free energy (MFE) and γ-centroid estimations.

Tables 3.3 and 3.4 list the credibility limits of the predicted structures for the
different RNA families. Although MFE structures tend to have much higher
probabilities than γ-centroid structures in proportion to the sequence length,
the credibility limits suggest that MFE structures are not always more certain.
For example, the MFE structure of RNaseP nuc had an existence probability
approximately 109 times larger than as that of the γ-centroid structures, but the
50% credibility limit of the MFE structure was much larger than the 95% credibility
limit of the γ-centroid structure. Even when using the same estimation method,
the credibility limits varied widely. Although the existence probabilities of the
reference structures of Leu leader were not as high, their credibility limits were
very small even at the 95% credibility limit.

In contrast, some RNAs, such as tRNA or IRES hcv, had quite large credibility
limits compared with other RNAs of similar length, which suggest that they have
several discrete structure clusters or lack significant stable structures. Although
credibility limits have high-potency for filtering structure reliability, the complete
distributions provided by our 1D algorithm enabled us to analyze in detail the
whole structure distributions. Tables 3.5 and 3.6 show the results from our 1D
algorithm, where the starting point on the left is the existence probability of a
reference structure, and the end point on the right is the sum of the existence
probabilities of the maximum Hamming distance structures. The scale of the
x-axis is shown at the top. It can be seen that the γ-centroid structures tended to
plot mono phasic distributions compared with the MFE structures. The principal
reason is that the γ-centroid estimator chooses structures of similar distance from
each structure cluster because many likely structures are widely spread, or several
large clusters have approximately the same probabilities. If a point estimated
structure is to be identified, the γ-centroid structure is more suitable since it tends
to be a center of thermodynamic fluctuation. However, a potential danger is that
locally stable functional structures may be overlooked. The distributions show
that γ-centroid estimation may miss interesting structures for RNAs such as let-
7, snoR1, or RatA. This suggests that MFE structures are more appropriate for
seeking structure clusters.
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Structures whose greatest probability concentrates around the origin are quite
reliable, and we can expect there to be a relationship between the structure and
its biological functions. However, RNAs which appear to have several discrete
clusters (like MINT1 1) or no significant peaks (like IRES HCV) suggest other
analyses, for example that all or some of the clusters are related to their functions,
the folding shapes are not important for their functions, they are so unstable that
they are disassembled immediately, or that three dimensional folding contributes
stability. In a later section, we discuss structure of some RNA families in detail.
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Table 3.3: Credibility limit of various RNA families 1.

family length reference Prob. of reference 50% CL 90% CL 95% CL

HIV FS2 45
MFE 0.108002 3 7 10

γ-centroid 0.108002 3 7 10

ROSE 2 73
MFE 0.000939968 9 20 21

γ-centroid 9.30E-08 11 14 15

Xist exon1 77
MFE 0.113858 3 9 22

γ-centroid 0.0941742 3 9 22

let-7 82
MFE 0.00679927 7 11 13

γ-centroid 1.01E-06 8 10 11

tRNA 85
MFE 0.000153493 39 41 41

γ-centroid 0.00126515 29 30 30

snoR1 87
MFE 0.0138394 16 35 40

γ-centroid 2.86E-11 20 25 27

RatA 92
MFE 0.000153156 24 27 28

γ-centroid 5.69E-05 12 16 17

tRNA-Sec 92
MFE 0.041937 26 30 31

γ-centroid 2.72E-09 21 23 24

sraA 94
MFE 0.00821323 17 33 39

γ-centroid 5.74E-15 20 29 32

MINT1 1 97
MFE 8.59E-05 34 56 57

γ-centroid 1.34E-13 25 46 47

5S rRNA 121
MFE 0.0316842 11 22 27

γ-centroid 0.000149788 8 18 29

NEAT1 1 121
MFE 0.00535367 11 24 27

γ-centroid 9.66E-10 15 29 32

Hammerhead HH10 126
MFE 0.0103061 7 33 43

γ-centroid 1.28E-09 11 25 34

Leu leader 148
MFE 0.0678398 3 7 10

γ-centroid 0.000167593 3 7 9
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Table 3.4: Credibility limit of various RNA families 2.

family length reference Prob. of reference 50% CL 90% CL 95% CL

snoR134 150
MFE 7.09E-05 14 24 33

γ-centroid 6.64E-16 44 46 47

AdoCbl riboswitch 150
MFE 8.83E-05 27 34 36

γ-centroid 5.62E-07 12 28 31

Pinc 154
MFE 0.00110353 18 30 32

γ-centroid 1.47E-16 37 43 44

NrrF 157
MFE 0.00269495 27 40 41

γ-centroid 3.62E-10 20 28 29

U1 161
MFE 0.0120026 9 26 28

γ-centroid 3.58E-05 10 25 26

Collinsella-1 193
MFE 8.55E-06 59 63 65

γ-centroid 3.19E-16 64 67 69

IRES HCV 231
MFE 1.46E-08 106 126 128

γ-centroid ≈0 64 76 78

PCA3 1 258
MFE 1.72E-11 101 116 120

γ-centroid ≈0 59 64 66

RUF1 264
MFE 1.69E-08 55 77 82

γ-centroid 1.24E-16 33 51 55

STnc150 267
MFE 3.06E-08 94 110 113

γ-centroid ≈0 49 62 65

SCARNA13 273
MFE 0.000672026 19 83 98

γ-centroid ≈0 65 71 80

RNaseP nuc 341
MFE 3.57E-07 119 149 151

γ-centroid 1.03E-16 70 80 83

Intron gpI 342
MFE 1.15E-10 66 94 97

γ-centroid ≈0 73 83 86
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Table 3.5: 1D distributions of various RNA families 1.

family length

reference

MFE γ-centroid

!""""""""""""""""""""#!"""""""""""""""""$!!"""""""""""""""""$## !""""""""""""""""""""#!"""""""""""""""""$!!"""""""""""""""""$##

HIV FS2 45

ROSE 2 73

Xist exon1 77

let-7 82

tRNA 85

snoR1 87

RatA 92

tRNA-Sec 92

sraA 94

MINT1 1 97

5S rRNA 121

NEAT1 1 121

Hammerhead HH10 126

Leu leader 148
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Table 3.6: 1D distributions of various RNA families 2.

family length

reference

MFE γ-centroid

!""""""""""""""""""""#!"""""""""""""""""$!!"""""""""""""""""$## !""""""""""""""""""""#!"""""""""""""""""$!!"""""""""""""""""$##

snoR134 150

AdoCbl riboswitch 150

Pinc 154

NrrF 157

U1 161

Collinsella-1 193

IRES HCV 231

PCA3 1 258

RUF1 264

STnc150 267

SCARNA13 273

RNaseP nuc 341

Intron gpI 342
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3.4 Model Selection Based on Credibility Limits

Those observations suggest that existence probabilities themselves do not guar-
antee reliability, and that credibility limits should be taken into account when a
point estimated structure is required. Table 3.7 shows the credibility limits of
various γ-centroid structures of SCARNA13, since CentroidFold can regulate the
weight of the base pairs by the parameter γ. Indeed, the existence probability or
free energy of a structure cannot be an index of its reliability, but credibility limits
might provide a novel basis for parameter selection. In this case, the structure
γ = 0.25 should provide the most reliable point estimation.

Table 3.7: Credibility limits of SCARNA13 γ-centroid structures.

γ Prob. of reference 50% CL 90% CL 95% CL

0.03125 6.65863E-17 72 76 78

0.0625 9.5081E-17 67 72 73

0.125 ≈0 63 69 71

0.25 1.48952E-16 62 68 70

0.5 ≈0 66 71 75

1 ≈0 65 71 80

2 ≈0 68 76 86

4 1.83374E-8 72 83 94

6 2.3773E-8 74 85 96

8 1.12075E-12 75 87 98

16 1.81707E-11 80 93 104

32 7.23459E-15 85 97 109

64 ≈0 87 99 111

128 ≈0 89 101 113

512 1.41107E-18 91 103 115

MFE 6.72026E-4 19 83 98

We compared different γ γ-centroid structures (γ = 2k : k = −5,−4, · · · , 10)
and determined the optimal γ for various RNAs based on the credibility limits.
Table 3.8 shows the optimal γ and 50 or 95% credibility limits of the RNAs. The
95% credibility limits indicate that more credible structures are attained using
the γ-centroid estimation, as MFE estimation is prone to bias from the point of
view of the whole distribution. However, the γ-centroid estimator sometimes
returns worse predictions at 50% credibility limits. Interestingly, the 50 and 95%
credibility limits have similar values in such cases (see snoR134, Pinc, SCARNA13,
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or Intron gpI for examples). These observations suggest the possibility that there
are several discrete structure clusters and that the γ-centroid estimator incorrectly
selects a structure on the potential barrier.

Table 3.8: Optimal γ based on credibility limits.

family length
50% Credibility Limit 95% Credibility Limit

γ γ-centroid MFE γ γ-centroid MFE

HIV FS2 45 1 3 3 0.5 9 10

ROSE 2 73 4 10 9 1 15 21

Xist exon1 77 1 3 3 0.25 21 22

let-7 82 1 8 7 1 11 13

tRNA 85 0.0625 25 39 0.0625 27 41

snoR1 87 2 19 16 2 26 40

RatA 92 1 12 24 1 17 28

tRNA-Sec 92 0.5 19 26 0.25 21 31

sraA 94 2 15 17 2 30 39

MINT1 1 97 0.5 19 34 0.0625 31 57

5S rRNA 121 1 8 11 0.25 21 27

NEAT1 1 121 1 15 11 0.5 31 27

Hammerhead HH10 126 16 8 7 0.5 25 43

Leu leader 148 1 3 3 1 9 10

snoR134 150 1 44 14 1 47 33

AdoCbl riboswitch 150 4 11 27 0.5 29 36

Pinc 154 0.25 36 18 0.25 40 32

NrrF 157 1 20 27 0.5 25 41

U1 161 2 9 9 0.5 23 28

Collinsella-1 193 0.0625 47 59 0.0625 51 65

IRES HCV 231 1 64 106 0.25 72 128

PCA3 1 258 2 58 101 1 66 120

RUF1 264 1 33 55 1 55 82

STnc150 267 1 49 94 0.5 66 113

SCARNA13 273 0.25 62 19 0.25 70 98

RNaseP nuc 341 2 67 119 0.5 83 151

Intron gpI 342 1 73 66 0.125 85 97
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3.5 Structure Validation Based on Credibility Limits

The credibility limits can be used for structure validation as well as for estimation
model selection. We plotted the RNA sequences of various species annotated as
hammerhead ribozyme HH9 from Rfam. These are shown in Figure 3.4, where
the x and y axes are the 50 and 95% credibility limits from the reference structure
defined in Rfam. It is reasonable that almost all the sequences have comparatively
small credibility limits since the structure of Hammerhead ribozyme is closely re-
lated to its activity. However, the sequence of Taeniopygia guttata seems to lose its
structural identity (the red arrowed point), which suggests that automatically an-
notated HH9 of Taeniopygia guttata might be not accurate, because of its structural
instability.

Figure 3.4: Credibility limits of the RNA sequences of various species annotated
as hammerhead ribozyme.
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However, it is difficult to distinguish the above sequence from the viewpoint
of the sequence-based phylogenetic tree (Figure 3.5). The sequence of Taeniopygia
guttata is indicated by the red arrow in Figure 3.5. This shows that sequence
homology is insufficient for estimating the function, and that the use of credibility
limits will increase the reliability of the annotation.

Figure 3.5: A part of the phylogenetic tree of the sequences in Figure 3.4, drawn
by PHYLIP[12].
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3.6 Validation of Our Real Feature Value Model

In this section we briefly validate our real feature value model. The previous sec-
tion showed the implementation of the algorithm for the free energy distribution
of the RNA secondary structure ensemble. Figure 3.6 gives the energy distri-
butions of the H/ACA snoRNA sequence, where the blue, red, and green lines
represent the histogram based on the sampling technique, our proposed algorithm
assuming the constant side lobe effect, and our proposed algorithm averaging the
10x higher resolution, respectively. Sampling was executed 500 times utilizing
RNAsubopt[41][42] with the probabilistic traceback option. We can see that our
models produced distributions that approximately coincided with the sampling
technique. A negative probability was observed around -44.5kcal/mol in the red-
colored distribution. This is considered to be bias introduced by the existence of
the neighboring bin, whose probability is highly concentrated. The green-colored
distribution indicates clearly that such bias vanishes when averaging the bins at
a higher-resolution distribution.

Figure 3.6: Free energy distribution of H/ACA snoRNA structure ensemble.
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3.7 Application to RNA Families

In this section, we provide a more detailed analysis to confirm the significance
of our distributions. First, a 1D distribution of H/ACA snoRNA demonstrated
that the 1D distribution indicates the reliability or uncertainty of point estimated
structures. Next, we demonstrated the potential of our method to find biologically
meaningful structures which were missed by conventional methods by exempli-
fying the tRNA cloverleaf structure. Finally, we showed the 2D distributions of
riboswitches when comparing two structure clusters.
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3.7.1 H/ACA snoRNA

Figure 3.7: The γ-centroid structure of
H/ACA snoRNA.

H/ACA snoRNA forms snoRNP by com-
bining its specific sequence, called a box
sequence, with proteins and guides pseu-
douridine modification of rRNAs [43].
Because its internal loop sequence is com-
plementary to the target rRNAs, its struc-
ture is closely related to its activity as
well as the sequence itself. Figure 3.7
shows the γ-centroid structure of H/ACA
snoRNA.

As noted above, we cannot understand the structural behavior of RNA by
one estimated structure. Let us observe the probability distribution around the
γ-centroid structure in our 1D algorithm. Figure 3.8 shows the structure existence
probability distribution whose x-axis represents the Hamming distance from the
γ-centroid structure, and Figure 3.9 gives the cumulative probability distribution.

Figure 3.8: H/ACA snoRNA structure existence probability landscape from the
γ-centroid structure.

We can observe that the probability that the RNA folds within 10 Hamming
distances from the estimated structure is approximately 95% though the proba-
bility that this RNA folds into estimated γ-centroid structure itself is less than
1%. We might conclude that the γ-centroid structure represents the structural
feature accurately enough. This representation can provide a novel estimator for
the reliability of the estimated structure and the thermodynamic stability.
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Figure 3.9: Cumulative probability distribution of Figure 3.8.
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3.7.2 tRNA

Figure 3.10: Cloverleaf structure.
Figure 3.11: Centroid structure predicted
by CentroidFold.

The secondary structure of tRNA is one of the best-known structures and is
called the cloverleaf structure (Figure 3.10). However, even CentroidFold, which
according to CompaRNA is one of the most accurate software products, does not
always identify the cloverleaf structure (Figure 3.11). This biologically important
structure would be missed if we did not have prior information on the structure.

Figure 3.12: tRNA structure existence probability landscape from the γ-centroid
structure.

We next show a probability distribution from our 1D algorithm whose ref-
erence structure is the above γ-centroid structure (Figure 3.12). The probability
landscape suggests that this RNA might have sub-optimal structures around 25
nucleotides from the γ-centroid structure.

Confirmation is needed that there exists a sub-optimal structure cluster, be-
cause massive structures are included which are far from the origin. Figure 3.13
shows the number of structures at each distance. These are easily counted by
applying our 1D algorithm (see Appendix C).
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Figure 3.13: The number of possible structures.

It was confirmed that the estimated structure and its surroundings can explain
only a limited proportion of the whole ensemble. In this case, we could identify
the well-known cloverleaf structure around the secondary peak (shown by the red
arrow). Using this cloverleaf structure as the reference, the existence probability
could be drawn around the cloverleaf (Figure 3.14).

Figure 3.14: tRNA structure existence probability landscape from the cloverleaf
structure.

Comparing the sum of probabilities around the secondary peak of Figure 3.12
and the origin of Figure 3.14, it can be seen that the observed peak is one structure
cluster around the cloverleaf structure.

Figure 3.15 compares the γ-centroid structure and the cloverleaf structure.
There appears to be a high potential barrier between the γ-centroid and the
cloverleaf structure. Because the number of structures near the x and y axis
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is relatively small, we can guess the existence of two clusters and their relations
more clearly than from the one dimensional analysis. Although the biological
function of such a large structure cluster remains unclear, we might consider its
relevance to tRNA base modification, which is known to contribute to structural
stability [44][45].

Figure 3.15: 2D extraction of tRNA structure existence probability landscape.
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Figure 3.16 shows the distribution of the 5′−3′ distance for the tRNA sequence.
It can be seen that more than 99.7% of the structures have the same 5′−3′ distance,
although the 2D analysis suggested the presence of various structures in the
ensemble. This tRNA is therefore expected to fold into a compact structure near
the 5′ − 3′ ends.

Figure 3.16: The 5′ − 3′ distance distribution of the tRNA.
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3.7.3 Riboswitch

(1) SMK box translational riboswitch

Figure 3.17 shows the distribution of the SMK box translational riboswitch around
its two important structures. This riboswitch is known to change its conforma-
tion dynamically in the presence of SAM [46], and the SAM+ and SAM− structures
correspond to these discrete peaks. The two clusters appear to be clearly sepa-
rated, but there might exist a channel which associates the peaks, contrary to the
distribution of tRNA.

Figure 3.17: 2D distribution of SMK box translational riboswitch structure land-
scape around the SAM+ and SAM− structures.

(2) TPP riboswitch

This example demonstrates the significance of our 2D extraction. Figure 3.18
shows the distribution derived by our 1D algorithm whose reference structure is
its MFE structure. We can observe two overlapping peaks. We then chose another
structure which has minimum free energy at the secondary peak, and drew a 2D
distribution using the MFE and the chosen structure. In Figure 3.19, structure1
and structure2 correspond to the MFE and chosen structures, respectively. This
figure indicates that at least not a little structures are apart from the primary
structure cluster.
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Figure 3.18: 1D distribution of TPP riboswitch structure landscape around the
MFE structure.

Figure 3.19: 2D distribution of TPP riboswitch structure landscape around MFE
and local MFE structures.
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Chapter 4

CONCLUSIONS AND
DISCUSSION

4.1 Usefulness of Our Proposing Methods

As we have demonstrated, our proposed methods are sufficiently fast to be ap-
plied to practical RNA sequences and yield profound insights into RNA secondary
structures. Our 1D algorithm can be used to evaluate the reliability and stability
of a specific secondary structure, and credibility limits provide a suitable index
for quantitative analysis. This index successfully revealed the unavoidable ambi-
guity of point estimated structures. We therefore evaluated the reliability by our
method when estimating a secondary structure. The 1D algorithm also proved
useful in finding biologically important structures which were not detected by
conventional point estimation methods. If a second peak is found in the 1D dis-
tribution, its properties can be specified by the following procedure. First, we
apply a stochastic sampling technique like RNAsubopt to the object, and extract
the structures which belong to the secondary peak by counting the Hamming
distance from the reference. Then, we use each structure as a reference and recal-
culate the 1D distribution. The constitution of the secondary peak is unmasked
by combining the Hamming distance between each structure and the level of
concentration around the structures.

Our 2D algorithm allows comparison of several structures of interest. 2D dis-
tributions imply communicability of structures and the possibility that another
structure cluster exists. By applying these algorithms, we can construct an eval-
uation method for sub-optimal structures by combining sampling and clustering
techniques.

We can also extend the range of analysis, as well as estimating the RNA
folding pattern itself. For example, the expression level might be required to
correct the bias according to its distribution of structures because biologically
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functional structures might represent only a part of the whole distribution. We
can also observe the structure distribution dynamics in response to temperature
change by altering the temperature parameter. A similar method to our 1D
algorithm was recently published[47], but we believe there remains great scope
for the application of our method to biological analysis. We are now applying
our method to a large human ncRNA dataset from GENCODE v.13 and Rfam to
categorize RNAs from the viewpoint of thermal fluctuation or the existence of
sub-optimal structures.

4.2 Applying Our Strategies to Other Fields

As the work of Newberg et al. has already suggested, the general theory behind
our algorithm on Algorithm 7 has the potential to be applied to a range of problems
in bioinformatics [30]. It can be used for calculating any distribution with feature
values accompanying the transition and emission probabilities of general dynamic
programming problems, including Hidden Markov Models, which are frequently
used in the field of bioinformatics. We have shown here the solution of a problem
related to RNA secondary structure as an example of the applications of our
general theory, and to exemplify the construction of a concrete algorithm.

Our proposed real feature expansion is also expected to have useful applica-
tions. An example would be the evaluation of the credibility of chromHMM[48]
output by defining a distance matrix, as the distance between chromosome states
is naturally defined by a real number. We also intend to implement more prag-
matic applications than the free energy of RNA secondary structures.
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Appendix A

Proofs

A.1 Maximum Hamming Distance between Structure
Vectors

We prove here that the Hamming distance d (equation (2.49)) never exceeds its
sequence length n. First, structure vectors have upper limit of non-zero elements:

0 ≤ ||S1||1 ≤
⌊n

2

⌋
, 0 ≤ ||S2||1 ≤

⌊n
2

⌋
(A.1)

Thus:

d =

n−1∑
i=1

n∑
j=i+1

S1[i][ j] ⊕ S2[i][ j]

= ||S1 − S2||1 ≤ ||S1||1 + | − 1|||S2||1 ≤ 2
⌊n

2

⌋
≤ n (A.2)
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A.2 Lower Limit of Acceleration Rate by (2)

Our original and modified 2D algorithm requires d1maxd2max and δ(d1max+d2max−δ)
2 -

time continuous calculations respectively. Thus, our modification contributes the
following acceleration rate r:

r =
d1maxd2max
δ(d1max+d2max−δ)

2

=
2d1maxd2max

δ(d1max + d2max − δ)
(A.3)

r is a monotonic decrease function of δ from δ = 0 to δ = d1max+d2max
2 :

∂r
∂δ
=

2δ − d1max − d2max

(δ(d1max + d2max − δ))2 ≤ 0 (0 < δ ≤ d1max+d2max
2 ) (A.4)

On the other hand, we have the following inequality from equations (2.166) -
(2.167) and the property of arithmetic mean:

δ ≤ min(d1max, d2max) ≤ d1max + d2max

2
(A.5)

Accordingly, we obtain the lower limit of r as follows:

r =
2d1maxd2max

δ(d1max + d2max − δ)

≥ 2d1maxd2max

min(d1max, d2max)(d1max + d2max −min(d1max, d2max))
= 2 (A.6)
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Appendix B

A Detailed Explanation of the
McCaskill Model

The origin of the McCaskill model is a simple classical dynamic programming
algorithm by Nussinov and colleagues [49], which maximizes the number of base
pairs. The McCaskill model calculates the whole energy contribution instead of
counting base pairs. Here we provide a detailed explanation since this model is
closely related to the foundation of our algorithms. First, we describe interpreta-
tions of Z(i, j) and Z•(i, j).

1. Z(i, j) is the summation of energy contribution of all possible structures from
i to j. Our ultimate goal is to obtain Z(1,n) as partition function Z.

2. Zb(i, j) is the summation of energy contribution of all the possible structures
from i to j under the condition of S[i][ j] = 1.

Figure B.1: Z(i, j). Figure B.2: Zb(i, j).
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3. Z1(i, j) is the summation of energy contribution of all the possible structures
from i to j under the condition that the i-th base makes a base pair with the
k-th base and no pairs from k + 1 to j.

Figure B.3: Z1(i, j).

4. Zm(i, j) is the summation of energy contribution of all the possible structures
from i to j under the condition that they are in a multi-loop and include at
least one base pair.

5. Zm1(i, j) is the same with Z1(i, j) except that they are in a multi-loop.

Figure B.4: Zm(i, j). Figure B.5: Zm1(i, j).
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Now we can understand the meaning of each recursion.

1. Z(i, j) = 1.0 +
∑ j−1

k=i Z(i, k)Z1(k + 1, j)

The first term corresponds to the open chain. The other term means the case
that they have at least one base pair whose the most right side loop begins
with the (k + 1)-th base.

Figure B.6: 1.0. Figure B.7: Z(i, k)Z1(k + 1, j).

2. Zb(i, j) = e−[ f1(i, j)/kBT] +
∑ j−2

k=i+1

∑ j−1
l=k+1 Zb(k, l)e−[ f2(i, j,k,l)/kBT]

+
∑ j−1

k=i+2 Zm(i + 1, k − 1)Zm1(k, j − 1)e−[ f3(i, j)/kBT]

These three terms correspond to the states of hairpin loop, internal or
bulge loop, and multi-loop respectively. Here, e−[ f1(i, j)/kBT] is the hairpin
loop energy contribution and e−[ f2(i, j,k,l)/kBT] is the internal or bulge loop en-
ergy contribution. The energy contribution of multi-loop is included in
Zm(i + 1, k − 1)Zm1(k, j − 1) for the most part, but e−[ f3(i, j)/kBT] represents the
multi-loop energy around i, j.

Figure B.8: e−[ f1(i, j)/kBT]. Figure B.9: Zb(k, l)e−[ f2(i, j,k,l)/kBT].
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Figure B.10: Zm(i + 1, k − 1)Zm1(k, j − 1)e−[ f3(i, j)/kBT].

3. Z1(i, j) =
∑ j

k=i+1 Zb(i, k)

4. Zm1(i, j) =
∑ j

k=i+1 Zb(i, k)e−[ f4( j−k)/kBT]

They can be easily derived from their definitions. The only difference be-
tween these equations is e−[ f4( j−k)/kBT], which is a part of multi-loop energy
contribution from k + 1 to j (see Figure B.5).

5. Zm(i, j) =
∑ j−1

k=i

(
e−[ f4(k−i)/kBT] + Zm(i, k − 1)

)
Zm1(k, j)

=
∑ j−1

k=i e−[ f4(k−i)/kBT]Zm1(k, j) +
∑ j−1

k=i Zm(i, k − 1)Zm1(k, j)

These terms correspond to the case of including only one loop or at least two
loops from i to j, respectively. Here, e−[ f4(k−i)/kBT] is the energy contribution
of open chain in a multi-loop from i to k − 1. This recursive representation
enables to contain any number of loops in Zm(i, j).

Figure B.11: e−[ f4(k−i)/kBT]Zm1(k, j). Figure B.12: Zm(i, k − 1)Zm1(k, j).
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Appendix C

Counting the Number of Structures

We can count the number of structures included in each Hamming distance by
remodeling our developed algorithms. We show here only the 1D algorithm, but
of course, we can extend this to the 2D algorithm.

Initialization (1 ≤ i ≤ n) :

N(i, i) = 1 (C.1)

N1(i, i) = Nb(i, i) = Nm(i, i) = Nm(i, i − 1) = 0 (C.2)

Recursion (1 ≤ i < j ≤ n) :

N(i, j) = xg1(i, j,S) +

j−1∑
k=i

N(i, k)N1(k + 1, j)xg2(i, j,k,S) (C.3)

N1(i, j) =
j∑

k=i+1

Nb(i, k)xg3(i, j,k,S) (C.4)

Nb(i, j) = xg4(i, j,S) +

j−2∑
k=i+1

j−1∑
l=k+1

Nb(k, l)xg5(i, j,k,l,S)

+

j−1∑
k=i+2

Nm(i + 1, k − 1)N1(k, j − 1)xg6(i, j,k,S) (C.5)

Nm(i, j) =
j−1∑
k=i

(
xg7(i, j,k,S) +Nm(i, k − 1)xg8(i, j,k,S)

)
N1(k, j) (C.6)

Finally, N(1,n) represents a polynomial whose factor of xi corresponds to the
number of structures which is at i Hamming distance from a reference structure.
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Nomenclature

n : length of RNA sequence

dmax : maximum Humming distance between the reference and all candidates (1D)

dimax : maximum Humming distance between the i-th reference and all candidates (2D)

Ei : free energy for the structure i

kb : Boltzmann constant

T : temperature constant

Z : partition function

fi(·) : functions corresponding to energy contributions

s(i) : arbitrary integer score for an emission of i

s(i, j) : arbitrary integer score for a transition from i to j

s(i, j, k) : arbitrary integer score for a transition from (i,j) to k

t( j|i) : proportional to the probability of a transition from i to j

t(k|i, j) : proportional to the probability of a transition from (i,j) to k

N : length of DP array

ck : arbitrary constant

S : structure vector

· ⊕ · : exclusive disjunction

b·c : floor function

|| · ||1 : 1-norm

gi(·) : Hamming distance gain by a transition

C : cumulative structure vector for O(1) calculation of gi(·)
N : a set of natural numbers

S : a set of all possible secondary structures

d(S1,S2) : Hamming distance between S1 and S2

∆δi(·) : hamming distance gain between two reference structures by a transition

ESi,S j : vector for O(1) calculation of ∆δi(·)
d5′−3′ : 5′ − 3′ distance

cext : the number of covalent bonds in the exterior loop

hext : the number of hydrogen bridges in the exterior loop
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