

ABSTRACT

Since multicore processors have become the most common processor architectures

today, the next grade promotion for high end processors is expected to be achieved by

improving both thread- and instruction-level parallelism. There are two kinds of archi-

tectures dominating the high performance market today, the GPU accelerators and the

General Purpose (GP) many-core architectures. In this dissertation, we focuses on the

latter. Many-core architecture, such as Intel Xeon Phi and IBM Blue Gene/Q, provides

us a massively parallel environment containing dozens of cores and hundreds of hardware

threads with powerful wide SIMD units. More and more scienti�c application developers

have begun investigating ways to utilize such architecture for scaling application perfor-

mance. However, the performance may be restricted in various ways. Unlike traditional

CPUs, the performance capability of many-core architectures comes from massive low-

frequency cores for better performance-to-energy ratio; thus sequential execution on such

hardware could result in performance degradation. Furthermore, the other on-chip re-

sources (e.g., memory) are not growing at the same rate as number of cores, potentially

resulting in scalability issue.

Not only hardware architectures, the scienti�c applications are also moving toward

complex hybrid and irregular models. In traditional regular applications (e.g.,Fast Fourier

transform), more and more applications start focusing on hybrid programming models

comprising a mixture of processes and threads, that allow resources on a node to be

shared between the di�erent threads of a process, especially bene�ting the execution

on many-core architectures. The most prominent of the hybrid models used in scien-

ti�c computing today is MPI+OpenMP, where multiple OpenMP threads parallelize the

computation, while one or more threads utilize MPI for their data communication. On

the other hand, despite the well studied regular applications, a number of applications

are becoming extremely dynamic and irregular especially in chemistry and bioinformatics

domains. MPI-2 and MPI-3 introduced one-sided communication mode, which is more

suitable for supporting the data movements in such irregular model rather than the MPI

two-sided or group communication modes.

With growing complexity in both computing hardware and scienti�c applications, var-

ious critical communication issues raise up and resulting in severe degradation in appli-

cation performance. This dissertation focuses on exploiting the capabilities of advanced

many-core architectures on widely used message passing model, in order to address the

communication problems existing in the popular hybrid programming model and the ir-

regular one-sided mode and consequently contribute e�cient communication approaches

for various kinds of applications.

Firstly, in hybrid MPI+threads applications, a common mode of operation for such

applications involves using multiple threads to parallelize the computation, while one

of the threads issues MPI operations. Although such mode extremely improves
oat-

ing point performance for computation of applications by massive parallelism, it also

means that most of the threads are idle during MPI calls, which translate to underuti-

lized hardware cores. Furthermore, since only single low-frequency core is contributing

to communication, it may result in even performance degradation. To address the core

idleness issue and improve the performance of communication, we propose an internally

multithreaded MPI as the �rst contribution of this dissertation, that transparently coor-

dinates with the threading runtime system to share idle threads with the application in

order to fully utilize the computing resources as well as parallelizing MPI internal pro-

cessing such as derived datatype communication, shared-memory communication, and

network I/O operations for better performance.

Secondly, with regard to the irregular one-sided communication, however, the MPI

standard does not guarantee that such communication is truly asynchronous. Most MPI

implementations still require the remote target to make MPI calls to ensure progress

on such operations, consequently the operation cannot complete at the target without

explicit processing in software and thus may cause arbitrarily long delays if the target

process is busy computing outside the MPI stack. Traditional implementations to ensure

asynchronous completion of operations have relied on thread-based or interrupt-based

models. Each of these models has several drawbacks, however, such as the ine�cient core

deployment in the thread model and the expensive overheads caused by multithreading

safety in the thread model and by frequent per-message interrupts in the interrupt model.

To address these drawbacks, we propose Casper, a process-based asynchronous progress

model for MPI one-sided communication on multicore and many-core architectures as

the second contribution of this dissertation. The central idea of Casper is to keep aside a

small, user-speci�ed number of cores on a multicore or many-core environment as \ghost

processes," which are dedicated to help asynchronous progress for user processes through

appropriate memory mapping from those user processes. Whenever user application

issues an RMA operation to a user process Casper then transparently redirects such

operation to the ghost process thus ensuring asynchronous completion. This approach

has successfully resolved the communication bottleneck in the widely used NWChem

quantum chemistry application by achieving up to 30 % performance improvement in

the \gold standard" CCSD(T) simulation.

Although Casper provides simple but e�cient asynchronous progress for irregular

one-sided communication, the performance might not be optimal in a number of appli-

cations that always consist of multiple phases with varying proportion of communication

and computation. Ine�cient usage of asynchronous progress may even result in perfor-

mance degradation. That is, the computation-intensive phase heavily relies on asyn-

chronous progress, however, the communication-intensive phase does not have strong

needs of asynchronous progress but more focuses on the load balance for large amount of

RMA operations, which might not hold in Casper since the operations are consistently

redirected to a few ghost processes. As the third contribution of this dissertation, we

propose a dynamic adaptation mechanism embedded in Casper that transparently adapt

the con�guration of asynchronous progress for multi-phases applications.

Finally, apart from the lack of asynchronous progress, many irregular applications

also su�er from loss of performance in a number of ways. For example, it is usual in

imbalanced communication that an MPI process takes long time to wait for a message

to arrive, the core on which it is scheduled is idle and underutilized. To comprehensively

address these issues, we plan to investigate the concept of user-level processes, a way

to provide multiple co-scheduled \OS processes" on a single core as the MPI processes,

with exploiting the potential optimization in MPI communication runtime, such as better

load balancing and light-weight checkpoint migration, as the future work of this doctoral

research.

Acknowledgements

I would like to express my deepest gratitude to Prof. Yutaka Ishikawa, for

guiding me to the inspiring high performance computing domain, and for his

invaluable and continuous support and encouragement for my life, study and

research career over the past �ve years.

I express my sincere gratitude to Dr. Pavan Balaji and Dr. Antonio J. Pe~na

for the greatest guidance and mentoring leading me into the challenging MPI

communication world during my study at Argonne National Laboratory.

My sincere thanks goes to Prof. Reiji Suda, for his considerate and patient

guidance in the past year. It is impossible for me to �nish the doctoral research

remotely without Prof. Suda’s help and support.

I thank Dr. Atsushi Hori, Dr. Je� Hammond, Dr. Masamichi Takagi and

Akio Shimada for their support in the collaborative works.

I also thank all the members in Ishikawa lab and in the PMRS group at

Argonne for their friendly encouragement and help during my study.

Finally my warmest thanks goes to my dear husband and parents. Without

their endless support and encouragement, I would not be able to concentrate on

the research and �nish this dissertation.

The work in this dissertation has �nancially supported by (1) the CREST

project of the Japan Science and Technology Agency (JST) and the National

Project of MEXT called Feasibility Study on Advanced and E�cient Latency

Core Architecture and (2) the U.S. Department of Energy, O�ce of Science,

Advanced Scienti�c Computing Research, under Contract DE-AC02-06CH11357.

The experimental resources for this paper were provided by the Texas Ad-

vanced Supercomputing Center (TACC) on the Stampede supercomputer, by the

National Energy Research Scienti�c Computing Center (NERSC) on the Edison

Cray XC30 supercomputer and by the Laboratory Computing Resource Center

on the Fusion cluster at Argonne National Laboratory.

Contents

1 Introduction 1

1.1 Problem Statement . 3

1.2 Contributions . 4

1.3 Outline . 5

2 Background 7

2.1 Many-Core Architectures . 7

2.2 Hybrid MPI+Threads Programming 9

2.2.1 Programming Model . 9

2.2.2 Typical Applications . 11

2.3 MPI One-sided Communication . 12

2.3.1 Programming and Semantics 13

2.3.2 Irregular Applications . 16

3 Multithreaded MPI 19

3.1 Problem Statement . 20

3.2 Solution . 20

3.3 Design and Implementation . 21

3.3.1 OpenMP Runtime . 21

3.3.2 MPI Internal Parallelism 26

3.4 Evaluation and Analysis . 34

3.4.1 Derived Datatype Processing 35

3.4.2 Shared-Memory Communication 39

3.4.3 In�niBand Communication Operations 40

4 Process-based Asynchronous Progress 42

4.1 Problem Statement . 43

4.2 Traditional Approaches . 43

4.3 Solution . 44

4.4 Casper Design Overview . 46

4.4.1 Deployment of Ghost Processes 46

4.4.2 RMA Memory Allocation and Setup 47

4.4.3 RMA Operation Redirection 48

4.5 Ensuring Correctness and Performance 48

4.5.1 Lock Permission Management for Shared Ghost Processes . 49

4.5.2 Self Lock Consistency . 50

4.5.3 Managing Multiple Ghost Processes 51

4.5.4 Dealing with Multiple Simultaneous Epochs 55

v

4.5.5 Memory Ordering Consistency 57

4.6 Experimental Environment . 59

4.7 Microbenchmarks Evaluation . 60

4.7.1 Overhead Analysis . 60

4.7.2 Asynchronous Progress . 61

4.7.3 Performance Optimization 64

4.8 NWChem Quantum Chemistry Application 68

5 Dynamic Adaptable Asynchronous Progress 73

5.1 Limitation in Static Casper . 74

5.2 Solution . 76

5.3 Dynamic Adaptable Asynchronous Progress 76

5.3.1 User-Guided Adaptation . 77

5.3.2 Transparent Pro�ling based Adaptation 78

5.4 Experimental Environment . 82

5.5 Microbenchmarks . 83

5.5.1 Overhead Analysis . 83

5.5.2 Self-Pro�ling based Prediction 84

5.5.3 Limitation of Static Casper 87

5.5.4 Adaptation Improvement 88

5.6 NWChem Quantum Chemistry Application 92

5.6.1 Overview of Multiple Internal Phases 92

5.6.2 Static Asynchronous Progress 93

5.6.3 Dynamic Adaptation . 98

6 Related Work 104

6.1 MPI with Multithreading Environment 104

6.2 MPI One-sided Communication and Asynchronous Progress 105

7 Conclusion and Future Work 106

7.1 Summary . 106

7.2 Future Work . 107

7.2.1 Process Oversubscription and Dynamic Communication . . 107

7.2.2 Improvement in Asynchronous Progress 108

List of FiguresList of Tables

vi

Chapter 1

Introduction

Over the past few decades, high performance computing (HPC) has dramatically

revolutionized the process of scienti�c advancement. The power of supercomput-

ers has been heavily used in various scienti�c �elds including climate forecasting,

nuclear development, material innovation and so forth. HPC has been consid-

ered as the lever that accelerates scienti�c discovery and shortens the time for

technology to bene�t real-world.

Thanks to Moore’s Law, the speed of HPC performance was growing at ex-

ponential rate in the previous decade by improving the density of transistors

on single core, which marked the increase of computing power from Terascale

(ASCI Red supercomputer, installed at Sandia National Laboratories in 1996 [3])

to Petascale (Roadrunner supercomputer, deployed at Los Alamos in 2008 [4]).

This approach could provide most applications immediate bene�ts without signif-

icant change in software since it directly accelerated the speed of single threads.

However, such performance improvement has also brought in similar trend in the

power consumption [66]. And indeed, the arrival of peta
op supercomputers co-

incided with processors hitting the power wall whereby any additional increase in

the power usage of a processor would result in the processor’s components melting

or becoming extremely unreliable. Besides, such approach also su�ers from phys-

ical and economical limitations [7, 54]. Consequently, instead of instruction-level

parallelism, processor architects started to move to a higher level (i.e. threads)

for continuous performance advancement.

Accordingly, multi-core architectures have become the norm for high-end com-

puting systems now a days [2]. Even personal mobile devices started to use two

or more cores to get better performance (e.g., Quad-core Samsung Galaxy Note5,

Dual-core iPhone 6). The traditional multi-core processors, however, get hard to

increase more cores on chip due to the high risk of contention in shared resources

among cores such as bus, cache and memory. In fact, many researches have al-

ready looked into this problem on multiple-core systems and had to change their

software design for better performance [22, 74].

Parallel with the advancements of multi-core processors, manufacturers started

to explore microprocessor design in another direction where hundreds and thou-

sands simple cores are embedded into single chip to form a massive parallel com-

putational environment, called many-core. A broad vision of this kind of archi-

tectures can cover any designs that follow the form of massive simple core units,

including General-Purpose Graphics Processing Units (GPGPUs) [50] which con-

1

tribute to highly data parallelizable
oating-point computing, the Tilera proces-

sors [40] that more focus on commercial networking server farms which rely on

high throughput, and the Intel Many Integrated Core (MIC) architectures as the

intermediate path between traditional general purpose CPU and the
oating-

computing concentrated GPU architectures. This dissertation focuses on the

Intel MIC architectures.

Table 1.1: Node Con�guration in Multi-Core and Many-Core Supercomputers [2].

Year Name Cores/Threads Clock Speed Memory

2009 Jaguar (Cray XT5) 6/6 2.3GHz 16GB

2011 K (Fujitsu SPARC64) 8/8 2GHz 16GB

2012 Mira (IBM BG/Q) 16/64 1.6GHz 16GB

2012 Stampede (Intel KNC) 61/244 1.1GHz 8GB

2013 Tianhe-2 (Intel KNC) 57/228 1.1GHz 8GB

2016 Cori (Intel KNL) 60+/240+ - 16GB

The many-cores architectures (i.e., Intel Xeon Phi) have entered the HPC

market in 2012 [1, 6], providing users a higher degree of massive parallelism with

dozens of cores and hundreds of hardware threads with relatively easy-to-start

programming environment since all the applications written for traditional CPU

systems can be easily executed on this new platform without signi�cant modi�-

cation in code. Unlike traditional multi-core processors, the on-chip bus inter-

connection and cache coherency are carefully designed for better sharing among

large amount of cores, thus minimizing the contention issues existing in multi-

core systems. However, such architecture does not do magic. The many-core

parallel environment does not bring us equal improvement in performance and

scalability as the increase of cores if we just run our applications as the ways on

traditional processors. Application developers have to investigate the appropri-

ate way to fully utilize such hardware in HPC programming. By comparing the

hardware con�guration in the top-ranked multi-/many-core supercomputers from

2009, Table 1.1 clearly indicates two special trends in the renovation of high-end

processors that need to be taken into account.

� Each single core is designed to be simple and low frequency for a better

performance-to-watt ratio; thus, execution on a single core could result in

extreme performance degradation comparing to that on traditional CPU.

� The number of computing cores is growing at a much faster rate than

the other on-chip resources (e.g., memory), thus potentially resulting in

scalability limitation.

Not only the restrictions in hardware architectures, the increasing variety of

applications also aggravates the complexity in parallel programming. The mes-

sage passing programming model de�nes a mechanism that coordinates multiple

processes for resolving large computational problems by passing messages be-

tween each other. The Message Passing Interface (MPI) [48] standardizes this

2

model, MPI-1 standard introduced the classical two-sided message passing (e.g.,

MPI Send/MPI Recv) and the collective communication (e.g., MPI Bcast), MPI-2

and MPI-3 introduced the one-sided communication, as known as the Remote

Memory Access (RMA) model. MPI has been the \de facto" industry standard

for parallel programming on distributed memory clusters and supercomputers for

more than two decades.

The solution of many mathematical problems in scienti�c applications can

always be decomposed into regular meshes and parallelized across all processes

(e.g., Fast Fourier transform, LU decomposition). The classical MPI-1 commu-

nication functions have perfectly supported the regular data movement in those

parallel algorithms for years. Within advanced computing systems, researchers

are eagerly looking into larger scale and more complex scienti�c problems, many

of them requiring larger and larger memory capacity [41]. However, as we have

compared in Table 1.1, this does not match the trend we have seen in hardwares.

To ease the memory crisis among large amount of cores on the many-core sys-

tems, application developers are increasingly looking at the hybrid \MPI+X"

programming model, comprising a mixture of processes and threads, that allows

resources on a node to be shared between the di�erent threads of an MPI pro-

cess. Such a model, however, also increases the complexity in MPI and results in

ine�cient communication due to limitations in software and hardware especially

on the many-core systems.

Besides these traditional regular applications, a number of applications start

to drive more dynamic and irregular data movements, especially in chemistry and

bioinformatics domains [17, 47, 76]. Most of these applications always involve ex-

treme big data with enormous irregular communication (e.g, using MPI one-sided

operations). However, current HPC systems are not yet ready to e�ciently han-

dle these computations, severe performance degradation has been observed in

many of those applications. One example is in the quantum chemistry applica-

tion NWChem [76], the communication overhead can even dominate the entire

execution cost by more than 50%. Such communication challenge cannot be re-

solved by only improving the speed of network interconnection, more importantly,

it is limited by the traditional hardware design of network devices. That is, the

network devices are connected as PCI-e device, which does not have the control of

CPUs for handling incoming message on chip, resulting in arbitrary delay if CPU

cores are being used by user applications or other system tasks. Unfortunately,

there will be still years to completely bring up the asynchronous capability in

network hardware.

This dissertation aims to exploit the capabilities of many-core architectures

on widely used message passing model, in order to address these issues existing

in di�erent programming models and consequently contribute e�cient communi-

cation approaches for various kinds of applications.

1.1 Problem Statement

To better utilize the hardware resources on modern multi- and many-core archi-

tectures, application developers have studied several approaches for regular and

irregular scienti�c applications in order to achieve better parallelism and resource

3

sharing. Many of those approaches, however, still face communication problems

that result in performance degradation. Here we summarize two critical issues

existing in the most popular programming models used in modern applications.

Ine�cient communication and core idleness in hybrid MPI+threads

model. The hybrid \MPI+threads" programming model has become popular

in a rang of applications in recent years. Unlike traditional MPI programming

model, it allows resources to be shared between di�erent cores on the node which

is especially suitable for parallel programming on many-core environment since

the memory capacity per single core is reducing. A common mode of operation

in such hybrid models involves using multiple threads to parallelize computa-

tion within the node, but using only one thread to issue MPI communication.

Although such a mode achieves signi�cant improvement in
oating-point comput-

ing by massive parallelism without involving heavy thread overhead or complex

semantics in MPI, it also means that most of the threads are idle during MPI

calls, a situation that can be translated to underutilized hardware cores. Further-

more, since MPI communication performs only on a single low frequency core,

this mode may even result in performance degradation.

Lack of asynchronous progress in MPI one-sided communication. An

increasing number of applications are looking at the MPI one-sided communi-

cation model which provides natural dynamic and irregular semantics of data

movements. It is especially important for many-core programming, because many

large memory applications rely on a global shared address model that supports the

ability to share memory resource across nodes by employing the MPI one-sided

model for internal data movements [24]. The MPI-2 and MPI-3 standards [5]

introduced the one-sided communication, which allows one process to specify all

communication parameters for both sender and receiver. Thus a process can

access the memory regions on other processes without the remote process explic-

itly needing to receive or process the message. Although such communication

semantics is able to asynchronously handle communication progress and hence

hide communication cost from computation, it is not truly asynchronous in most

MPI implementations. For example, although contiguous PUT/GET operations

can be implemented in hardware on RDMA-supported networks(e.g., In�niBand,

Fujitsu Tofu, Cray Aries) thus allowing the hardware to asynchronously handle

its progress semantics, complex RMA communication such as the heavily used

non-contiguous accumulate operation (e.g, an accumulate on a three-dimension

double subarray) must still be done in software within the MPI implementation.

Consequently, the operation cannot complete at the remote process without ex-

plicitly making MPI progress and thus may cause arbitrarily long delays if the

remote process is busy computing outside MPI.

1.2 Contributions

This dissertation focuses on the communication optimization in various program-

ming models executed on many-core architectures. We propose e�cient solutions

to resolve the two critical challenges we have listed in the above section. The

contributions of this dissertation can be summarized as follows.

4

Multithreaded MPI communication. To resolve the problems in the MPI

communication of hybrid \MPI+Threads" model, we present MT-MPI [59], an

internally multithreaded MPI that transparently coordinates with the threading

runtime system to share idle threads with the user application in order to par-

allelize MPI internal processing such as derived datatype communication, data

transfer in shared-memory communication, and network I/O operations.

Process-based asynchronous progress model. To resolve the problem of

asynchronous progress in irregular applications, we propose Casper [61], a process-

based asynchronous progress model for MPI one-sided communication on multi-

core and many-core architectures, that dedicates a small user-speci�ed number

of cores as background \ghost processes" to help asynchronous progress. The

philosophy of Casper is centered on the notion that since the number of available

cores in modern many-core systems is increasing rapidly, some of the cores might

not always be busy with user computation and can be dedicated to helping with

asynchronous progress.

Dynamic adaptable asynchronous progress. Many of complex scienti�c

problems always require integration of multiple fundamental solvers and algo-

rithms into application execution, each of the phases always performs very dif-

ferent characteristics of communication and computation. Thus it is hard to

statically determine whether the asynchronous progress is needed or not in these

applications. To achieve the optimal performance for the multi-phases applica-

tions, we propose a dynamic adaptation mechanism integrated in the Casper li-

brary, providing the capability to dynamically predict the needs of asynchronous

progress for di�erent execution phases and transparently adapt asynchronous

progress.

1.3 Outline

The rest of this dissertation is organized as follows.

In Chapter 2, we �rst give an overview of the many-core architecture and

introduce the semantics of the popular hybrid programming model and the irreg-

ular RMA model with several real applications as the background of this doctoral

research.

In the following three main chapters, we then discuss each contribution of

this dissertation with detailed description around the motivation, the design chal-

lenges and the implementation, and the evaluation from micro- and macro-kernels

to real applications. Speci�cally, Chapter 3 discusses the ine�cient communica-

tion and the core idleness issue in the hybrid MPI+threads programming model,

and presents the multithreaded MPI approah that aims to transparently share

user idle threads inside MPI communication. Chapter 4 focuses on the asyn-

chronous progress issue existing in irregular MPI one-sided communication model,

and presents the process-based asynchronous progress model, named \Casper".

Then Chapter 5 looks into the usability of Casper in complex multi-phases ap-

plications, and we present a dynamic adaptation technique that automatically

adjust the asynchronous progress for multiple phases of application which in-

volve varying communication characteristics.

5

Chapter 6 summarizes related works focusing on the hybrid programming

models, the MPI one-sided communication or the asynchronous progress models.

Finally, we conclude this dissertation in Chapter 7 with discussion for the fu-

ture works we plan to address for the communication optimization on many-core

architectures.

6

Chapter 2

Background

2.1 Many-Core Architectures

Till the beginning of this century, rapid growing rate of CPU frequency has suc-

cessfully pushed forward the high performance computing into petascale. How-

ever, such improvement is not free, we had to pay for increasing cost of per core

power consumption that even raised up the power wall ceasing any frequency

growth. Consequently, single processors can no longer become faster, the only

way to improve performance for high-end processors is to add more cores and

hardware threads.

Many-core architectures provides applications such massively parallel environ-

ment and have already being successfully used in several most powerful super-

computers in the world. For example, both the world’s No.1 system, Tianhe-2

developed by China’s National University of Defense Technology [6], and the

No.10 system, Stampede located at Texas Advanced Computing Center [1] use

the Intel Xeon Phi coprocessors to accelerate their computation; Mira at Argonne

National Laboratory, an IBM BlueGene/Q supercomputer ranked at No.5 in the

world, also forms as many-core embedded platform [9]. In this section, we intro-

duce the basic structure and programming environment of a typical many-core

product, the Intel Many Integrated Core (MIC) architecture.

The Intel MIC architecture features a large amount of CPU cores inside sin-

gle chip with Linux-based operating system. It provides applications a similar

programming and execution environment as the normal CPU systems, with sup-

porting massive parallelism and vector capability to achieve high
oating-point

performance. Di�erent from the GPU accelerators, the many-core chip can be

run as both
oating-point accelerator, and a standalone system.

Intel published the �rst commercial release of MIC architecture, codenamed

Knights Corner (KNC) in 2012 [19, 35]. It provides a minimum of 60 light-weight

cores and separate GDDR5 memory embedded on single chip, with each core ca-

pable of supporting four hardware threads and a 512-bit SIMD vector processing

unit (VPU). As shown in Figure 2.1, all of the cores have fully private and coher-

ent cache: 32 KB instruction + 32 KB data L1, and 512 KB L2 (uni�ed), with

high bandwidth bidirectional ring interconnection. Eight dual-channel GDDR5

memory controllers (MC) are symmetrically distributed on the ring to provide

high bandwidth access to the 8 GB or more GDDR5 memory from any cores.

The KNC coprocessors is usually connected with host CPU cores and inter-

node communication device (e.g., In�niBand) via PCI-express on each computing

7

GDDR	MC GDDR	MC

GDDR	M
C

GDDR	M
C

PCIe		
Client	Logic

Core

L1	I

L2

L1	D
VPU

Core

L1	I

L2

L1	D
VPU

Core

L1	I

L2

L1	D
VPU

Core

L1	I

L2

L1	D
VPU

Core

L1	I

L2

L1	D
VPU

Core

L1	I

L2

L1	D
VPU

Core

L1	I

L2

L1	D
VPU

Core

L1	I

L2

L1	D
VPU

Figure 2.1: Knight Corner Chip Constriction.

node of Xeon Phi based supercomputers as demonstrated in Figure 2.2. For exam-

ple, the Stampede supercomputer [1] employs one KNC chip (SE10P) connected

to two Intel E5 8-core (Sandy Bridge) processors on each node; the Tianhe-2

supercomputer is constructed as three Xeon Phi chips with two Intel Ive Bridge

processors per computing node [6].

The KNC provides three programming models for application development:

native, o�oad or symmetric. In the native mode, KNC’s own micro-Linux op-

erating system manages the on-chip resources and exposes comprehensive system

calls to support user programs running with both MPI and threads parallelism.

For some of the system calls that cannot be handled directly on the KNC card

are transparently forwarded to the host CPU and returned with the result re-

ceived from host after the execution. Thus the applications can directly run on

the KNC environment similar as that on traditional CPU systems. With regard

to the internal communication between MPI processes, processes located on the

same card communicate with each other through shared memory; processes on

the same computing node but located on two KNC cards communicate using

the PCIe peer-to-peer capabilities; for the communication outside the node, the

capability of direct data transfer without host intervention has been provided on

some networks such as In�niBand. On the other hand, the offload mode o�ers

the possibility of running as an accelerator like GPUs, and the symmetric mode

can be used in MPI applications where processes are distributed on both KNC

and host CPUs. We only focus on the native mode in this thesis.

Furthermore, Intel has recently also announced the details of its next genera-

tion of the Xeon Phi product family, codenamed Knights Landing (KNL). KNL

is a fully self-hosted architecture that can o�er applications the standalone ex-

ecution environment similar but more comprehensive compared to the native

mode on KNC card. Greater than 60 cores with four hardware threads and two

powerful VPUs each are embedded on single chip with more complex but high

8

Xeon	Phi	Chip

Host	
CPU

Memory

Memory

Xeon	Phi	Chip

Memory

PCI	Express

InfiniBand
Inter-connec<on

Figure 2.2: Computing Node Structure on Xeon Phi supercomputers.

bandwidth mesh interconnection. This design allows 3x single thread perfor-

mance compared to KNC and achieve more than 3 TeraFlops peak performance

per singe socket node. At least two of the upcoming supercomputers, Cori at

the National Energy Research Scienti�c Computing Center (NERSC) [18], and

Theta at Argonne National Laboratory [26], have decided to be constructed using

the KNL processors. More detailed information of the KNL architecture can be

found at [37].

2.2 Hybrid MPI+Threads Programming

Although the number of cores is rapidly increasing on modern multi- and many-

core architectures, the other system resources (e.g., memory, network endpoints)

are not growing at the same rate. To e�ciently utilize such large amount of

threads with better resource sharing, application programmers are increasingly

looking at the hybrid MPI + Thread model, where multiple threads are used to

parallelize the computation on each computing node and MPI is used for the inter-

node data communication. The most prominent of the threading models used in

modern scienti�c computing is OpenMP [21], where applications add annotations

in the code with necessary information of the parallelism (e.g., the number of

threads, the parallel patterns and the property of variables), then the compiler

can translate these annotations into appropriate commands and cooperate with

the runtime system for task scheduling. In the rest of this section, we focus on

the MPI+OpenMP programming.

Since MPI processes and threads are managed by two separate runtime sys-

tems, additional rules have to be made to ensure the thread safety inside MPI

without resulting in unnecessary overhead. For example, a message may be con-

currently matched by the receive calls from two threads on the same process if

the appropriate thread safety is not provided; conversely, we should also avoid

over-de�nition of the thread safety since it can result in signi�cant overhead from

heavy usage of memory barriers and lock acquiring/releasing in most MPI imple-

mentations even the program does not involve any threads [30].

2.2.1 Programming Model

In this section we introduce the di�erent threading modes de�ned by MPI for

multithreaded environments. The MPI standard provides four levels of thread

safety.

9

#pragma omp parallel

{

/* user computation */

}

MPI_Function ();

(a) Outside a parallel region

#pragma omp parallel

{

/* user computation */

#pragma omp master

{

MPI_Function ();

}

}

(b) Inside omp master region

#pragma omp parallel

{

/* user computation */

#pragma omp critical

{

MPI_Function ();

}

}

(c) Inside omp critical region

#pragma omp parallel

{

/* user computation */

#pragma omp single

{

MPI_Function ();

}

}

(d) Inside omp single region

Figure 2.3: Di�erent use cases in hybrid MPI+OpenMP.

MPI THREAD SINGLE

In this mode, only a single thread exists in every MPI process. This model is

commonly referred to as the MPI-only model, where multiple MPI processes

communicate with each other and no threads are involved.

MPI THREAD FUNNELED

In this mode, multiple threads can be created for parallelizing the compu-

tation phases on every MPI process, but only the master thread is allowed

to access MPI stack. In an OpenMP program, this can be implemented

as either making MPI calls outside the OpenMP parallel region or protect-

ing the MPI calls with OpenMP master regions. Figure 2.3(a) and 2.3(b)

demonstrate those implementation respectively.

MPI THREAD SERIALIZED

Similar as the funneled mode, multiple threads can be used to parallelize the

computation in the serialized mode. For the MPI communication phases,

however, any single thread can issue MPI calls at a time. That is, dif-

ferent threads can concurrently perform the computation, but all of them

need to be synchronized in order to serialize the MPI calls. In a typical

OpenMP program, this can be implemented by making MPI calls within

OpenMP critical regions or single regions as shown in Figure 2.3(c) and

2.3(d) respectively.

MPI THREAD MULTIPLE

10

The multiple mode is di�erent from the above levels, multiple threads can

concurrently perform both user computation and MPI communication. The

MPI implementation is required to provide appropriate synchronization

among threads (i.e., lock protection and memory barriers) to protect ac-

cesses to shared internal data structures.

2.2.2 Typical Applications

After a brief overview of the hybrid programming model, we then introduce two

scienti�c applications that utilize this model.

2.2.2.1 Quantum Monte Carlo Simulation

Quantum Monte Carlo (QMC) method is one of the most accurate solution to

provide accurate and reliable approximation for quantum many-body systems. It

helps scientists study the complex electronic structure of realistic world on large-

scale computing systems. The algorithm of QMC method is mainly designed

around two data objects: enormous \walkers" to represent the dynamic status

of each particle, and a large but read-only ensemble data that shared among all

walkers. The traditional implementation of QMC method utilizes MPI to dis-

tribute the walkers among multiple processes and simply replicate the ensemble

data on each MPI process. However, such design extremely limits researchers to

study larger physical systems or achieve more accurate simulations since the en-

semble data is so large that always takes Gigabytes memory per core. Especially

on modern mulit- and many-core systems, whose memory capacity per core is

actually reducing, a more e�cient design is required.

QMCPACK is an open-source QMC package implemented using hybrid MPI+

threads programming model for massively parallel computing system [41]. It

utilizes threads to parallelize the walkers inside every physical node thus the

essential memory restriction can be addressed since the large ensemble data

can be shared among threads on every node, and employs MPI for inter-node

communication as demonstrated in Figure 2.4. This design also bene�ts from

reduced collective communication among MPI processes that is used for global

reduction calculation among walkers, and from less number of large point-to-point

communication between paired MPI processes for exchanging walker objects in

the load balance step.

2.2.2.2 Computational Fluid Dynamics

Nek5000 is an open-source code that widely used in a broad range of applications

such as nuclear reactor cores, ocean modeling and combustion simulation [27].

It provides high order, incompressible Navier-Stokes solver based on the spectral

element method. The implementation of Nek5000 is mainly composed of conju-

gate gradient (CG) solver with e�cient preconditioners, which is captured in the

Nekbone mini-application with the basic structure and user interface.

The main computational kernel of Nekbone consists of multi-grid matrix-

matrix multiplications. Several researches have looked into the optimization for

such computation pattern on advanced heterogeneous HPC architectures. For

11

MPI	Process

Replicated	Ensemble	Data

W W

W W

Thread

W W

W W

Thread

W W

W W

Thread

W W

W W

Thread

MPI	Process

Replicated	Ensemble	Data

W W

W W

Thread

W W

W W

Thread

W W

W W

Thread

W W

W W

Thread

Exchange	Walkers

MPI	Process	

Replicated	Ensemble	Data

W W

W W

Thread

W W

W W

Thread

W W

W W

Thread

W W

W W

Thread

MPI	Process

Replicated	Ensemble	Data

W W

W W

Thread

W W

W W

Thread

W W

W W

Thread

W W

W W

Thread

Exchange	Walkers

Global	Reduc>on

Figure 2.4: Hybrid Implementation of Quantum Monte Carlo Simulation.

Process	1	
(receiver)	

Process	0	
(sender)	

Send

Receive

(a) Two-Sided Mode.

Process	1	
(target)	

Process	0	
(origin)	

Put

Window
Get

Accumulate
+=

(b) One-Sided Mode.

Figure 2.5: MPI Communication Modes

example, Markidis et al. [46] presented an MPI+OpenACC version of Nek5000

code to highly parallelize the most time-consuming ax3D and gs op subroutines

on GPU-accelerated systems. Hart and Ivanov et al.’s papers [38, 32] have

also contributed the MPI+OpenMP version of the Nekbone mini-application for

accelerating the local computation on Cray supercomputers.

2.3 MPI One-sided Communication

MPI-2 and MPI-3 introduced the MPI one-sided communication model (also

known as remote memory access or RMA). Unlike the well-known two-sided

communication (e.g., MPI Send/MPI Receive), the one-sided mode allows appli-

cations to de�ne more dynamic and data-driven communication patterns where

a process can directly access memory in another process (i.e., window) through

RMA operations such as put, get or update. Furthermore, all the operations are

only issued from the origin process, thus the program running on the remote pro-

cess does not need to call any MPI routines to match the operations. Figure 2.5

demonstrates the di�erence between the two-sided mode and the one-sided mode.

12

2.3.1 Programming and Semantics

Because the second contribution of this thesis is a process-based asynchronous

progress model that comprehensively supports the strict MPI one-sided commu-

nication semantics which is also the most challenging part in this work, we then

introduce the primary semantics of this communication mode in the rest of this

section. The semantics of the RMA communication can be divided into following

three primary steps: window creation, RMA synchronization and issuing RMA

operations.

2.3.1.1 Window Creation

A memory area on a process that is exposed to all other processes in a speci�ed

group|allowing direct access to these processes|is called a window. MPI-3

provides the following four window initialization functions:

MPI Win create

This routine exposes an RMA window for the memory region which is

allocated by user application in advance. The corresponding MPI Win free

call only releases the RMA window, thus user is responsible for releasing

the memory region after window is freed.

MPI Win allocate

This routine allows MPI to internally allocate a memory region and expose

it to the other processes as a remotely accessible window. The correspond-

ing MPI Win free call releases both the window structure and the memory

bu�er.

MPI Win allocate shared

This routine allows MPI to initialize a shared window among processes

located in the same shared memory system (e.g., the same NUMA node)

through external system support such as mmap or XPMEM on Cray sys-

tems [78]. This shared memory region can be accessed by CPU load/store

instructions instead of MPI RMA operations, however, additional synchro-

nization is required to ensure the correctness with other concurrent RMA

operations. The start address of a remote window region mapped on the

local process can be got from the MPI Win shared query call.

MPI Win create dynamic

This routine allows programs to expose an empty remote accessible window,

and then attach/detach one or multiple memory regions in later execution.

The above routines give user di�erent levels of
exibility of window creation.

However, the routines with more
exibility also limit the possible internal op-

timization can be provided from MPI implementations. For instance, the most

exible MPI Win create dynamic can rarely get any optimization.

2.3.1.2 RMA Operations

After the remote accessible window is identi�ed, a process can issue put, get, or

accumulate operations to access this window. Figure 2.5(b) gives an image to

13

demonstrate data movement associated to those operations.

MPI Put

This operation copies the data in the origin process’s bu�er to the speci�ed

memory location in the window on the target process.

MPI Get

This operation copies data from the speci�ed memory location of remote

window to the bu�er located in the origin process’s local memory.

MPI Accumulate

This operation �rst transfers data from the origin process’s bu�er to the

target process, and then performs a update on the target side following the

user speci�ed operation (e.g., MPI SUM) and stores the result into the win-

dow. We note that, unlike the put/get operations, the accumulate operation

is guaranteed to be ordered and atomic per basic data element.

Beside above three basic RMA operations, there are three other operations

also de�ned in MPI standard: MPI Get accumulate, MPI Fetch and op and MPI-

Compare and swap. The detailed semantics of those operation can be found

in [5].

2.3.1.3 RMA Synchronization

All the RMA operations are non-blocking MPI calls, which means the completion

of those data movement is not guaranteed at return. In addition, since processes

may concurrently access the same RMA window, we also need synchronization

among the involved processes in order to avoid any con
icts. MPI de�nes two

kinds of synchronization modes to handle those responsibilities in RMA commu-

nication, they are the active mode and the passive mode. We introduce each

of them separately in this section.

Active Mode: This mode provides a similar synchronization as that in two-

sided mode, both the origin process and the target process need to explicitly call

the synchronization. Two sets of synchronization calls are de�ned in MPI: fence

and post-start-complete-wait.

� In fence synchronization, all the processes in the window must collectively

call MPI Win Fence routine to synchronize with each other (Figure 2.6(a))

similar as barrier in the two-sided communication mode. The return from

the fence call guarantees: (1) all the processes have arrived at the fence call;

(2) all the outstanding RMA operations and local load/store instructions

issued on this window have been completed.

� The post-start-complete-wait synchronization can be considered as a

subset of fence (Figure 2.6(b)). At the beginning of the RMA commu-

nication, the target process (P1) calls MPI Win post to expose its win-

dow to one or several processes and the origin process (P0 or P2) per-

forms MPI Win start to match the post call and then starts the remote

access; at the end of the communication, the origin process needs to call

14

P1	P0	

Fence	(win)

Fence	(win)

Fence	(win)

Fence	(win)

P2	

PUT PUT
PUT

(a) Fence.

P1	P0	

Start	(P1,win)

Complete		
(P1,win)

Start	(P1,win)

Complete		
(P1,	win)

P2	

PUT PUT

Post	(P0&P2,win)

Wait	(win)

(b) Post-Start-Complete-Wait.

P1	P0	

Lockall	(win)

Unlock	(win)

P2	

PUT

PUT

(c) Lock all-Unlock all.

P1	P0	

Lock	(P1,win)

Unlock		
(P1,win)

P2	

PUT
Lock	(P1,win)

Unlock	
(P1,win)

PUT

(d) Lock-Unlock.

Figure 2.6: RMA Synchronization Modes

MPI Win complete to complete its operations and the target process needs

to call MPI Win wait to ensure all the operations issued on its window have

been �nished.

Passive Mode: Apart from the semi-dynamic active mode, MPI also o�ers the

passive mode which performs completely dynamic pattern. That is, only the pro-

cess issuing operations (origin process) is required to explicitly call the synchro-

nization. Two sets of synchronization calls are de�ned: lock all-unlock all

and lock-unlock.

� The lock all serial provides global synchronization similar as the fence,

however, only the origin process (e.g., P0 in Figure 2.6(c)) issues the MPI Win-

lock all and MPI Win unlock all calls. The return from lock all en-

sures the origin process have acquired the shared lock on all the other

processes, and the return from unlock all ensures: (1) the locks have

been released, and (2) all the operations issued from this process have been

completed remotely.

� The lock serial can be also considered as a subset of lock all which pro-

vides per-target exclusive/shared lock (MPI LOCK EXCLUSIVE or MPI LOCK SH-

ARED lock type). We note that two origin processes can concurrently acquire

a shared lock on the same target window, however, any other lock requests

must be serialized with the exclusive lock. Figure 2.6(d) shows an exam-

ple. Simultaneous lock all and lock follow the same rule.

� Besides the lock calls, the passive mode also o�ers two flush synchroniza-

tion routines that only complete the outstanding RMA operations, and a

sync routine (MPI Win sync) that synchronizes the data of its local window

15

updated by remote RMA operations and the one updated by load/store in-

structions. MPI Win flush completes the operations issued from the origin

process to a single target process, and MPI Win flush all completes oper-

ations issued from the origin process to any target processes in the window.

2.3.2 Irregular Applications

In this section, we introduce three scienti�c applications in chemistry, bioinfor-

matics and nuclear physics �elds, all of them involve extremely dynamic and

irregular computation and data movement, which can bene�t from the one-side

communication model.

2.3.2.1 NWChem Quantum Chemistry Application

NWChem is a widely used quantum chemistry application suite that provides

a large set of simulation capabilities [76]. Due to the large memory needs in

NWChem that often require memory sharing across multiple nodes, it is devel-

oped based on the Global Arrays toolkit [51] which provides users with distributed

dense arrays that can be accessed through one-sided operations. Figure 2.7(b)

demonstrates the typical get-compute-update pattern used in NWChem.

Current NWChem has been looking at small-to-medium molecules (e.g., (H2O)21

as shown in Figure 2.7(a)) consisting of 20-100 atoms. Since the coulomb interac-

tion among such small amount of atoms is reasonably large, the computation and

communication can be successful scaled on modern supercomputers. However,

scientists aim to study more complex molecules that are composed of thousands

atoms or even larger thus not only the short-range interactions but also the long-

range interactions have to be covered. This means, the diversity of the amount

of computation per process can be considerably increased, thus resulting in ex-

tremely irregular computation with data movement.

(a) Interaction in (H2O)21 molecule.

GET GET UPDATE

Compute	in	Local	memory

Global	Array	A Global	Array	B Global	Array	C

(b) Get-Compute-Update pattern.

Figure 2.7: Communication in NWChem Application.

2.3.2.2 SWAP-Assembly Bionformatics Application

In bioinformatics, since it is still hard to read the whole genomes in modern

DNA sequencing technology, researchers often break down long DNA samples

16

AGT

TTC

GTT TCC

CCG
GAG

(a) Graph Reduction.

Process	0

ACGCGA	

Process	1

CGATTC	

CGAATT	 Process	2

Process	3

Step	4.	R
eturn	merged	

sequenc
e

Step	1.	S
end	loca

l	read

CATGAT	

GTCGAT	 ACGCGA	
CGCGAT	

ACGCGAT	

Step	2.	Hash	search
Step	3.	Merge

CGCGAT	

(b) Communication Pattern.

Figure 2.8: Irregular Communication in SWAP-Assembly.

into large amount of small fragments, called \reads", and then read those reads

into digital data as the �rst step. The next step is called assembly, which merges

overlapping reads back to one or several contiguous DNA sequences. The se-

quence assembly technology helps biology scientists analyze DNA sequence, and

is especially important for understanding complex environments containing many

di�erent microbiomes (e.g., soil and seawater).

The SWAP-Assembler software provides highly scalable assembler that pro-

cesses the sequence assembly on thousands of cores in parallel [47]. The initial

reads are represented as a distributed De Bruijn graph (e.g., Figure 2.8(a)), and

�nal contiguous DNA chains are assembled by executing multiple rounds of graph

reduction and error removal over MPI communication. The communication pat-

tern follows the send-merge-return mode as shown in Figure 2.8(b). Every

process issues each of its local DNA read to a remote process to �nd the overlap-

ping reads. On the remote process, it �rst searches the overlapping read for every

received message, then merges the reads and �nally returns the merged result. If

there is no matching read on the remote side, the sending process will try another

remote process following the same patter. This processing always involves enor-

mous irregular data movement over Petabytes of data and requires several days

or even months of computation. For instance, the largest simulation done to date

was at the University of Chicago, where a 2.3-Terabyte sample was assembled on

a supercomputer with 18,000 coresthis simulation took 4 days to complete and

spent 99.9% of its time idling, because of imbalance between processing units.

2.3.2.3 Greens Function Monte Carlo

Greens Function Monte Carlo (GFMC) is an application in theoretical nuclear

physics that provides ab initio calculations for few-nucleon systems [17]. It de-

scribes the nuclear structures and reactions by solving the Schr�odinger equation

and is recognized as the most reliable method for nuclei with 12 or fewer nucle-

ons. The implementation of GFMC utilizes OpenMP to parallelize heavy sparse

matrix-vector multiplications and uses MPI to communicate among distributed

computing nodes.

The Asynchronous Dynamic Load Balancing (ADLB) library [45] is essentially

designed for addressing the load balancing among MPI processes in GFMC on

large scale systems that contain more than one hundred thousand computing

cores. It provides a general-purpose worker-server model with one-sided Put/Get

17

operations that helps application codes dynamical share work tasks with assorted

work types and priorities. A few server processes are initialized to maintain a

distributed shared work queue. Application processes can then submit arbitrary

work tasks to the queue with necessary data, and retrieve the results after any

task is �nished.

18

Chapter 3

Multithreaded MPI

Publication

This chapter includes the contents that have been published in conference pa-

per [59]. Full article can be found at http://dl:acm:org/citation:cfm?doid=

2597652:2597658.

The hybrid MPI+Threads programming model has become one of the most

popular programming model on many-core systems. The common mode of this

hybrid model often uses multiple threads to parallelize the computation on every

computing node, and utilizes one of the threads to transfer data across nodes

by using MPI. This mode is de�ned as MPI FUNNELED or SERIALIZED thread-

safety mode as introduced in Section 2.2.1. The most prominent of the threading

models used in scienti�c computing today is OpenMP [21]. In the MPI+OpenMP

programming, the application developer can simply add parallel annotations (i.e.,

pragma) on the computation that need to be parallelized by the compiler and the

thread runtime system. The compiler, in turn, translates these annotations into

semantic information that the runtime system can use to divide and schedule the

computing tasks on multiple threads. The MPI communication does not need

any code modi�cation, developer can just put it outside the OpenMP parallel

region or protects it by using master, critical or singe sections as demonstrated

in Figure 2.3.

This mode allows applications to bene�t from massive parallelism without

large modi�cation in code, it also helps applications scale to larger problem since

it allows memory to be shared among large amount of cores on every node. How-

ever, the MPI communication in this mode still faces several critical challenges

that degrade the performance. This chapter focuses on these challenges and pro-

pose e�cient solution. In Section 3.1 we �rst describe the communication issues

in the hybrid model. Then in Section 3.2 we present the concept of our solution|

an internally multithreaded MPI|, and then list the practical challenges we have

to address in implementation. In Section 3.3 we introduce the detailed design

and implementation in both OpenMP and MPI libraries, and Section 3.4 provides

evaluation results by using several micro and macro-benchmarks.

19

http://dl.acm.org/citation.cfm?doid=2597652.2597658
http://dl.acm.org/citation.cfm?doid=2597652.2597658

3.1 Problem Statement

In the common MPI+OpenMP mode, hundreds threads are created in the parallel

region for user computation, however, only single thread is used to issue the MPI

communication. Such a mode also means that most OpenMP threads are idle

during MPI calls, resulting in wasted computational resources. Moreover, since

the clock rate of single core on the many-core architecture is always much lower

than traditional CPUs, such single thread execution can also result in severe

performance degradation in communication.

3.2 Solution

Parallelism is the essential key to reach high performance on many-core systems,

MPI communication is no exception. We present MT-MPI, an internally mul-

tithreaded MPI implementation that transparently coordinates with the thread-

ing runtime system to share idle threads with the application. In this disser-

tation, we designed MT-MPI in the context of OpenMP, which serves as the

most widely used threading runtime system for the applications. MT-MPI trans-

parently employs application idle threads to accelerate MPI communication and

data-processing, also achieving better resource utilization. We use the \native

mode" of Intel KNC as the architectural testbed where applications are executed

directly on the coprocessor. This approach should also be suitable for the next

generation of Xeon Phi product (KNL) since it will be built as self-hosting chips

in upcoming supercomputers [11, 18].

To demonstrate the performance bene�ts of the proposed approach, we mod-

i�ed the Intel OpenMP runtime library [34] and the MPICH implementation of

MPI [10]. Speci�cally, we modi�ed the MPI implementation to parallelize its

internal processing using OpenMP parallel regions. Figure 3.2 shows the pseudo

code of an example following this approach, where MPI routine is called outside

the user parallel regions as the MPI FUNNELED mode. We also studied new algo-

rithms for various internal processing steps within MPI that are more \parallelism

friendly" for OpenMP to use.

#pragma omp parallel

{ /* user computation */ }

MPI_Function ()

{

#pragma omp parallel

{ /* internal processing */ }

}

#pragma omp parallel

{ /* user computation */ }

Figure 3.1: Pseudo Code of MPI+OpenMP in MT-MPI

20

In theory, this model would allow both the application and the MPI implemen-

tation to expose their parallelism requirements to the OpenMP runtime, which

in turn can schedule them on the available computational resources. In practice,

however, several challenges exist:

� Parallel algorithms with insu�cient threads.

We modify the algorithms used in MPI internal processing for better par-

allelism (e.g., remove data dependency in for loop). While the modi�ed

algorithms are e�cient for OpenMP parallelism, they may not as e�cient

if the number of available OpenMP threads is not su�cient. Consequently,

the parallel version can improve performance only when su�cient OpenMP

threads is available, we need appropriate trade o� according to the num-

ber of available threads However, the actual number of available threads at

runtime is unknown. Depending on the application’s code structure, this

can vary from zero to all threads being available for MPI processing. Thus,

if not designed carefully, the algorithms can perform even worse than the

traditional sequential implementation of MPI.

� Core oversubscription risk in nested parallel region.

The current implementation of the Intel OpenMP runtime does not sched-

ule work units from nested OpenMP parallel regions e�ciently. It simply

creates new pthreads for each nested parallel region and o�oad the threads

scheduling to the operating system. This can results in core oversubscrip-

tion since more threads can be created than the available cores, and conse-

quently degrading performance.

To work around these challenges, we modi�ed the Intel OpenMP runtime to

understand the status change of threads at runtime and expose the information

about the idle threads to the MPI implementation. The MPI implementation

then can use this information to choose appropriate algorithms that trade o�

between parallelism and sequential execution in order to achieve optimal perfor-

mance, Such information also allows MPI to schedule its internal parallelization

only when enough idle threads are available.

3.3 Design and Implementation

In this section we describe the design of MT-MPI, including modi�cations to the

OpenMP runtime system and the MPI implementation. We use MPICH library

(v3.0.4) and the Intel OpenMP runtime (version 20130412) as the base code of

our implementation.

3.3.1 OpenMP Runtime

understand the status change of threads at runtime and expose the information

about the idle threads to the MPI implementation

As described in Section 3.2, we need modify the OpenMP runtime system to

expose the number of idle threads to the MPI implementation in order to address

the challenges for MPI internal parallelism. To understand how many threads

21

are idle at current time, the idea is to track how many threads are being used by

the application vs. how many threads are idle (e.g., because they are waiting in

an OpenMP barrier). Then, the OpenMP runtime can expose this information

through a new runtime function. Then the MPI implementation could query

for the number of idle threads by calling this runtime function, and use this

information to (1) choose the most e�cient internal parallelization algorithms

and (2) use only as many threads in the nested OpenMP region as there are

idle cores, by explicitly guiding the number of threads in OpenMP (using the

num threads clause in OpenMP).

We note that the second challenge described above (additional pthreads cre-

ated in nested OpenMP regions) is an issue only with the current implementation

of the Intel OpenMP runtime. An alternative OpenMP runtime implementation

(e.g., internally uses user-level threads [52]) may not have this problem. However,

since most OpenMP implementations today use pthreads internally, we consider

this to be a real issue that needs to be addressed in this research.

3.3.1.1 Threads Idleness

Since we need to track the status change for every internal threads in the OpenMP

runtime, we need to �rst understand the status of threads in the following cases.

� MPI call made outside the OpenMP parallel regions.

As shown in Figure 2.3(a), all threads except the main thread are idle (often

equal to OMP NUM THREADS). Thus, we expect MPI to be able to utilize

OMP NUM THREADS threads in this case.

� MPI call made in an OpenMP single region.

Figure 2.3(d) shows an example for this case. We know that OpenMP single

regions provide an implicit barrier on exit. Thus, we can expect that

all threads waiting in the barrier can be idle if the current thread in the

single section queries the information, since all the other threads have to

synchronize with the current thread at the implicit barrier. In practice,

however, it should be careful that not all threads might have arrived the

barrier, for example, some threads might still be working in the previous

user computation. Consequently, the number of idle threads in this case

can vary between zero and the maximum number of threads. We modi�ed

the OpenMP runtime to track the status for each thread in order to get

the actual number of idle threads when it is queried. In this case, the

amount of parallelism available to MPI is not a �xed number. However, for

most OpenMP parallel regions where the workload distribution is mostly

balanced among threads, we expect the number of idle threads is close to

the maximum number of threads (typically equal to OMP NUM THREADS).

� MPI call made in an OpenMP master region or single region with

a nowait clause.

Figure 2.3(b) shows an example for this case. It is similar to the previous

single region, the only di�erence is that there is no implied barrier at the

end of such regions. In other words, there is no natural synchronization

22

for the threads during these regions. Nevertheless, depending on how the

application is written, it is possible that to user can de�ne an external

synchronization point (e.g., OpenMP barrier) that would cause idle threads

to be available. Consequently, we follows the strategy we used for the

previous case, tracking the number of idle threads. However, we do not

expect too many idle threads in this case in practice.

� MPI call made in an OpenMP critical region.

Figure 2.3(c) shows an example of this case. We know that OpenMP critical

section involves synchronization among threads in order to ensure only one

thread can enter the critical region at a time. While this is not quite an

implicit barrier at the entry of critical section, its impact on the availability

of threads can be considered as similar to that of the OpenMP single region.

To be speci�c, when the �rst thread enters the OpenMP critical region, all

the remaining threads can be expected to be idle once they have arrived

at the entry of critical region; when the second thread enters the critical

region, the �rst thread is no longer available for our use because it has

already �nished its execution in the critical region and left this section,

thus we do not know whether it could be idle or not; when the last thread

enters the critical region, none of the remaining threads are expected to be

idle because all of them have already left the critical section. Following the

same strategy as in the previous cases, we track the number of idle threads

inside the OpenMP runtime. We expect that the number of idle threads

would be close to maximal number of threads for the �rst few threads

entering the critical section and gradually becomes lower and eventually

zero for the last few threads.

As we have discussed in each case, it can be risky to utilize the idle threads in

some situations because the status of those threads can change at any time. For

example, as shown in Figure 3.2, if we consider the current querying thread is

active in the single nowait section (thread 4), threads 2 and 3 can be considered

as available threads since they are waiting at the entry of the next critical section,

however, their status can change once the thread 1 �nished its execution in the

critical section. Such status change is unrelated to the current single section, thus

it is unknown when those threads become active, and consequently degrading

performance if we use them for our parallelism in the single section (suppose the

MPI function is called in the single section). Therefore, we distinguish two kinds

of thread idleness as follows:

� Guaranteed idle threads.

Any threads that are guaranteed idle until the current thread exist from

MPI call. Speci�cally speaking, if a threads is at one of the following status,

we consider it is guaranteed idle: (1) waiting at the barrier for other threads

in the team to arrive (i.e., explicit OpenMP barrier or the implicit barrier

at the end of single section); (2) waiting to enter a critical section.

� Temporarily idle threads.

Any threads who are currently idle but their status change is not controlled

23

#pragma omp parallel
{

 …
#pragma omp single nowait
{
}
#pragma omp critical
{
}

 …
}

0 1 2 3 4 5

ac#ve	in	cri#cal	sec#on

wait	to	enter	cri#cal	sec#on

ac#ve	in	single	sec#on

Figure 3.2: An Example of Temporary Idle Threads.

#pragma omp parallel

{

#pragma omp single

{

num_idle_threads = omp_get_num_idle_threads ();

i f (num_idle_threads < N){

/* sequential algorithm */

} e l se {

#pragma omp parallel num_threads (num_idle_threads)

{ /* parallel algorithm */ }

}

}

}

Figure 3.3: Thread Scheduling in OpenMP barrier Routine.

by the current thread in the MPI call. For example, for the threads waiting

in an critical section that is unrelated to the current thread (e.g., thread 2

and 3 in Figure 3.2), we call them temporarily idle threads.

To avoid the risky of performance degradation, we only expose the number

of guaranteed idle threads to MPI implementation. We de�ne an OpenMP

runtime extension omp get num idle threads to return the number of guaran-

teed idle threads at the querying time. Thus the user thread in an MPI call

can easily query such information during through this routine, and safely use the

returned value to do trade o� between algorithms and also provide guidance for

the internal nested parallel region. Figure 3.3 shows an example. We note that

our implementation treats a thread as idle only when it is not engaged in any

OpenMP activity, including both OpenMP parallel loops and OpenMP tasks.

We also note that in our implementation the performance overhead associated

with tracking whether a thread is actively being used by the OpenMP runtime

is too small to be observed and thus we do not discuss it in this paper.

24

while(time < KMP_BLOCKTIME)

{

i f (done)

break;

/* spin loop */

}

sched_yield ();

pthread_cond_wait (...);

(a) Wait Progress in OpenMP barrier.

#pragma omp parallel

{

#pragma omp single

{

set_fast_yield (1);

#pragma omp parallel

{ ... }

}

}

(b) Fast Yield.

Figure 3.4: Thread Scheduling in OpenMP barrier Routine.

3.3.1.2 Thread Scheduling in Nested Parallelism

As we have discussed about the thread idleness, the threads waiting in an explicit/

implicit barrier should be idle and are available for reuse in MPI. However, this

is not exactly as we expected in the OpenMP implementation because of special

optimization strategies. We have noticed that, the Intel OpenMP runtime does

not put the threads directly into the passive wait status (i.e., being yield or

sleep) in the internal wait progress for barriers. Instead, the threads are actively

waiting in a spin loop for other threads to arrive for a con�gurable amount of

time KMP BLOCKTIME. Figure 3.4(a) demonstrates this implementation. This is

because, for most well-balanced OpenMP parallel loops, thread synchronizations

such as barriers are often short-lived since threads tend to arrive at the barrier

at approximately the same time. Thus, when a thread arrives at a barrier, if it

is immediately go into sleep status while waiting for the other threads to arrive,

and is woken up in a short amount of time, performance can be degraded because

of the overhead of waking up threads from a sleep state.

Unfortunately, such optimization strategy might not be suitable within the

environment of MT-MPI. Especially when a large value is set for KMP BLOCKTIME,

it would mean that threads do not become \truly idle" for a long time. While

this is not a concern for regular OpenMP parallel loops, it can break our theory of

thread idleness in MT-MPI, and thus resulting in degrade performance for nested

OpenMP parallel regions since more threads would be active than our estimation

and consequently cause core oversubscription for the KMP BLOCKTIME amount of

time.

When MPI calls are outside the application OpenMP parallel region (such as

in Figure 2.3(d)), this is not a concern since MPI would use the same threads as

the application in its parallel region. When MPI calls are inside the application

parallel region, however, this would require MPI to use a nested OpenMP par-

allel region. And since the threads that arrived at the barrier would not yield

the available cores immediately, this would either require MPI to utilize lesser

parallelism by only using the idle cores or cause thread thrashing on the available

cores for KMP BLOCKTIME amount of time. Neither solution is ideal.

In MT-MPI, to be able to employ these resources as soon as possible, we

25

investigated two possible solutions in the OpenMP runtime: fast-sleep and

fast-yield.

� Fast-Sleep.

We expose a new function set fast sleep to the MPI implementation,

thus MPI could notify OpenMP runtime to force all the threads in the cur-

rent team to skip the active wait process during the barrier routine and

immediately go into sleep status (e.g., call pthread cond wait function).

These sleeping threads can be automatically awaken by receiving a sig-

nal through the synchronization from current active thread similar as the

original implementation.

� Fast-Yield.

The second approach is to focus the waiting threads immediately yield

the core (e.g., through sched yield system call) instead of spin loop, and

then go into sleep after waiting KMP BLOCKTIME amount of time. Similarly,

we expose a new function set fast yield to allow MPI to enable this

optimization. Figure 3.4(b) shows an example of its usage.

We note that both the fast-sleep and the fast-yield approaches follow

three rules: (1) they change the thread scheduling in the wait progress only for

those threads who are guaranteed to be idle (e.g., threads waiting in an OpenMP

barrier); (2) the set fast sleep and set fast yield setting is performed inter-

nally inside the MPI call and such change is automatically reset once the internal

parallelism in MPI is complete, so future OpenMP explicit/implicit barriers are

not a�ected by it; and (3) the proposed thread scheduling optimization is en-

abled only when MPI uses nested OpenMP parallelism (e.g., for single or critical

section) and is not used in the case that the MPI function is called outside the

OpenMP parallel region.

Both approaches allow us to eliminate the core oversubscription risk in the

waiting progress, however, the overhead of such approaches show di�erence. Fig-

ure 3.5(a) and 3.5(b) compare the overhead of each approach in a single section

similar as the code shown in Figure 3.4(b). Obviously, fast-yield allows us to

manage the cores with a consistent low overhead that only takes 30 �s even with

240 threads, while the fast-sleep approach takes much more overhead with in-

creasing number of threads, resulting in more than 200 �s cost at 240 threads.

Therefore, we utilize the fast-yield approach in MT-MPI.

3.3.2 MPI Internal Parallelism

After we expose the information about the idle threads through our extended

OpenMP runtime system, the MPI implementation can then e�ciently schedule

its internal parallelism to achieve performance improvements. In this section, we

look into the MPI internal processing, and demonstrate the bene�t of parallelism

in various aspects of the MPI processing. We note that we only utilize the idle

threads that are guaranteed to be available (guaranteed idle threads) in our

implementation. When all threads are available (e.g., when the MPI routine

is called outside the OpenMP parallel region), we do not explicitly specify the

26

-50

0

50

100

150

200

250

300

350

0 50 100 150 200 250 300

O
ve

rh
ea

d
(u

s)
	

KMP_BLOCKTIME	

1 Thread 4 Threads 16 Threads
64 Threads 240 Threads

(a) Fast-Sleep.

-50

0

50

100

150

200

250

300

350

0 50 100 150 200 250 300

O
ve

rh
ea

d
(u

s)
	

KMP_BLOCKTIME	

1 Thread 4 Threads 16 Threads
64 Threads 240 Threads

(b) Fast-Yield.

Figure 3.5: Overhead of thread scheduling optimization in OpenMP Wait

Progress.

number of threads to be utilized by our internal OpenMP parallel regions but

simply let OpenMP manage it; if fewer than the maximum number of threads is

idle (e.g., MPI is called in single region), we specify the amount of threads used

in the internal parallel regions by using the num threads OpenMP clause.

In the rest of this section, we describe the parallelism we achieved in three

aspects of MPI internal processing as the showcase. They are derived datatype

communication, shared-memory communication, and network I/O operations.

3.3.2.1 Derived Datatype Processing

MPI de�nes several kinds of derived datatype, such as vector, indexed and

struct, to help applications describe noncontiguous regions of memory. Derived

datatypes are used to describe complex noncontiguous data layouts and can be

directly used in the packing/unpacking processing (i.e., MPI Pack, MPI Unpack

functions) to pack data from noncontiguous memory locations to contiguous

bu�er, or unpack data from a contiguous bu�er to noncontiguous memory lo-

cations. Usually the packing/unpacking processing is not directly used in user

code, but embedded in MPI data transfer. For example, the well-known halo

exchange [77] algorithm can be implemented by using derived datatypes with the

MPI send/receive communication. The internal processing of such communica-

tion can be divided into three steps: (1) packing noncontiguous user data elements

into a internal bu�er on the sender side; (2) transfer the packed contiguous data

to receive side; (3) unpack the received contiguous data to the noncontiguous

memory locations on the receiver side. Figure 3.6 demonstrates such processing

for transferring the right edge of a two-dimension matrix which can be de�ned

as the vector datatype.

The pack and unpack internal processing consists of a set of local memory

copies. A typical implementation often traverses the derived datatype tree and

copies each noncontiguous data chunk separately. A well-know optimization that

has been utilized in some MPI implementations is representing the datatype tree

as a stack structure so that it can be iteratively traversed rather than using

27

0 5 10 15 20
0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24 0 5 10 15 20

User	Send	Buffer User	Receive	Buffer
Packing

Unpacking

MPI	internal	processing

Data	Transfer

Figure 3.6: Internal Processing for Data Transfer with Derived Datatype.

a recursive traversal [55]. Since each noncontiguous data chunk is copied to a

di�erent location and no dependencies exist among the di�erent data elements,

such copy processing is a good candidate for OpenMP parallelization. Moreover,

thanks to the relatively large private L1/L2 caches per core on the Xeon Phi

chips, we expect e�cient performance can be obtained in our approach, where

di�erent threads concurrently access to separate memory locations. Therefore,

we modi�ed the MPI implementation to parallelize internal loop of data copy in

the datatype processing using OpenMP. We note that for nested datatypes (e.g.,

a vector of vectors) only the lowest level is parallelized in our implementation.

for (i=0; i< count ; i++){

*dest ++ = *src;

src += stride ;

}

(a) Sequential implementation.

#pragma omp parallel for

for (i=0; i< count ; i++){

dest[i] = src[i* stride];

}

(b) Parallel implementation.

Figure 3.7: Sequential and parallel data packing.

The concept of this optimization is straightforward, however, we observed

unexpected performance degradation in this parallelism because of an unin-

tended consequence of the compiler vectorization. Figure 3.7(a) shows the origi-

nal datatype copy code used in MPICH. While this code works correctly in the

sequential copy, it cannot be parallelized by using OpenMP because of data de-

pendency on variable dest and src that makes compiler cannot understand the

constant stride of accesses used through all iterations. Thus we modi�ed the code

as shown in Figure 3.7(b). While this new implementation eliminates data depen-

dency and thus the compiler can understand the computation and parallelize it,

the implementation also enables the vectorization provided by compiler. This

automatic optimization itself is not a concern. However, we have observed more

than performance degradation in the vectorized loops when the stride value is

large and the amount of data copied in each loop is small. Speci�cally, the com-

piler also automatically enables prefetching in the vectorized version, however,

it also causes additional cache misses in such strided loops. Consequently, our

modi�cation might perform worse than the sequential version when the bene�t

from parallelism is small (e.g., when very few threads are available). To work

28

around this issue, we choose the parallel approach only when su�ciently large

amount of threads are available while still keep the vectorization since it is still

bene�cial in some cases (e.g., small stride or large copy data).

concern. However, the Intel compiler is ine�cient in vectorizing strided loops

with large stride values when the amount of data copied in each loop is small.

Speci�cally, the compiler does incorrect prefetching in this case, causing addi-

tional cache misses and thus losing performance. Consequently, our modi�cation

to the code is not always bene�cial and can perform worse than the sequential

implementation when very few threads are available. To work around this issue,

we could either disable vectorization in the parallel implementation or explicitly

choose only the parallel approach when a su�ciently large number of threads are

available. We chose the latter approach because vectorization is still bene�cial in

some cases (e.g., when the stride is small or the copy size is large). [add graph.]

3.3.2.2 Shared-Memory Communication

The second MPI internal processing we parallelized in MT-MPI is the data trans-

fer in shared memory communication. When multiple MPI processes are located

on the same node, the data transfer between these processes can be implemented

based on special shared memory region among processes by utilizing some exter-

nal techniques such as mmap. Since each process has a di�erent virtual address

space, most MPI implementations use a pipelined double-copy algorithm for intra-

node communication [15]. This algorithm relies on a shared-memory ring bu�er

allocated between the sender and the receiver processes, and is implemented as

the classical producer-consumer problem. As shown in Figure 3.8(a), the ring

bu�er is divided into multiple cells, then the sender process tries to get an empty

cell and copies part of data from the send bu�er into that cell, while the receiver

process tries to �nd a full cell and then copies data from that cell to its receive

bu�er. The copies on the sender and the receiver processes are pipelined.

Shared buffers	

Buffer[0]!

Buffer[1]	

Buffer[2]	

Buffer[3]	

User
Buffer	

User
Buffer	

Sender	 Receiver	

(a) Sequential pipelining.

Shared buffers	Sender	 Receiver	

Buffer[0]!

Buffer[1]	

Buffer[2]	

Buffer[3]	

User
Buffer	

User
Buffer	

(b) Parallel pipelining.

Figure 3.8: Data movement of parallelization and pipelining.

In MT-MPI, we parallelize this copies on both the sender and the receiver

processing using the available idle threads. However, the original algorithm al-

ways copies data per cell size (32 KB in the MPICH implementation) which is too

small for OpenMP parallelism compared to the overhead of threads synchroniza-

29

Time	
5T	
4T	
3T	
2T	
1T	
0T	

Receiving process	

Sending process	

(a) Sequential pipelining.

Receiving process	

Sending process	

Time	
5T	
4T	
3T	
2T	
1T	
0T	

(b) Poor parallelism.

Time	
5T	
4T	
3T	
2T	
1T	
0T	

Sending process	

(c) Strong parallelism.

Figure 3.9: Sequential pipelining vs. parallel data copy.

tion. Thus we extended the pipelined double-copy algorithm to ensure su�cient

data to be parallelized in every single copy. As shown in Figure 3.8(b), we reserve

multiple contiguous available cells as a \large cell", and concurrently copy data

from the user bu�er to that large cell on the sender side and from the cell to the

user bu�er on the receiver side. For messages that are larger than the size of

the large cell, additional pipelining is still used similar to the sequential version.

Consequently, every single copy can have enough work to be parallelized by mul-

tiple threads. Compared with the sequential pipelining algorithm, however, this

modi�cation may su�er from worse performance in the following cases.

Small messages. As the motivation for our algorithm change, there is not su�-

cient work can be parallelized by OpenMP in small message transfer. Moreover,

the overhead caused by thread management and synchronization with OpenMP

can be more expensive than the sequential copy. Thus, we do not expect any

performance bene�t from parallelization in this case.

Large messages but few available threads. In our parallel algorithm, we

reserve as many available shared-memory cells as possible as a large cell and

parallelize the copy on that large cell using all of the available idle threads.

Although this approach can increase the work for parallelism, it also potentially

increases the pipeline unit to a much larger size. That is, if we have enough

threads to parallelize each pipeline unit we could obtain very low cost for each

unit and thus achieve good performance; conversely, if we only have a few threads

available, the cost of every pipeline unit obviously becomes more expensive than

the small unit in the sequential version, thus resulting in performance degradation

due to reduced pipelining. This trend is illustrated in Figure 3.9. Speci�cally,

compared with the sequential pipelining (Figure 3.9(a)), when the number of

threads available to MPI is small, the parallel copy does not improve performance

much but delays the receiver process from getting started with its copy due to

30

increased cost for every single pipeline unit (Figure 3.9(b)). On the other hand,

when su�ciently large number of threads are available to MPI, the parallel copy

of each unit is much more e�cient, thus balancing the loss of performance in

pipelining (Figure 3.9(c)). We note that the issue can not be simply worked

around by reducing the size of each shared-memory cell or the number of reserved

cells in every single copy, because that would also reduce the amount of work

distributed to each thread, thus causing similar issue as in the case of small

messages.

Few shared-memory cells. Not only small messages but also insu�cient

shared-memory cells can result in too few work in parallelism. In other words,

if the total size of the shared ring bu�er is not large enough, it can happen that

most cells are still being used for transferring previous message or previous part

of the same message (e.g., being copied on the receiver side) and thus cause the

work unit of the next copy (e.g., the next chunk copied on the sender side) to be

so small that can not show bene�t from parallelism compared to the overhead in

threads management.

In summary, the parallel approach can improve performance only when (1)

the message size is not too small (� 64 Kbytes); (2) the number of threads

is not too few (� 8); and (3) the total size of free cells is not too small (�
64 Kbytes). In our implementation, we choose the parallel algorithm for shared-

memory communication only when all three conditions are met; otherwise we fall

back to the original sequential pipelining. We note that the above thresholds

mentioned for each condition are empirically evaluated on our test platform and

must be tuned for di�erent platforms.

3.3.2.3 Optimizations for the In�niBand Network

Several MPI implementations are optimized for a variety of networks through a

layered software architecture where one of the layers provides network-speci�c

functionality [10, 71]. In MPICH, the code construction is de�ned as in Fig-

ure 3.10(a), the network-speci�c layer is called netmod. There are several netmod

implementations existing for MPI over In�niBand network (IB), with more-or-

less similar functionality and performance. In this dissertation, we utilize the

implementation described in [67].

To implement the IB communication, we need to create and manage a number

of IB objects, including contexts, protection domains (PDs), queue pairs (QPs),

and completion queues (CQs). As shown in Figure 3.10(b), a process can create

one or more IB contexts, each of which contains one ore more PDs to de�ne the

protection semantics of memory and associated connections. Within a PD, the

process can also create one or multiple QPs, each QP consists of a send queue

and a receive queue, and is used to communicate between a pair of processes. A

PD can also have one or more CQs, each CQ is used to check the completion of

data transferring operations on one or more QPs. IB also provides shared queues

for better memory management, but for simplicity we do not describe them here.

In the typical MPI IB netmod implementations, every MPI process often ini-

tializes one IB context and one PD shared for the connections on all the other

processes. Multiple QPs are created on every process, each of which is corre-

31

TCP	 IB	SCIF	

ADI3

CH3

Nemesis

SHM	 Netmod

(a) Code Construction in MPICH.

QP	QP	CQ	
PD	

HCA

IB	Context	

(b) Components in IB Communication.

Figure 3.10: In�niBand Netmod in MPICH implementation.

sponding to the connection to a single remote process. A single CQ is created on

each process and shared by all the QPs.

3.3.2.3.1 Parallelism in IB Stack The IB software stack is thread-safe [53].

Speci�cally, when multiple threads access the same QP or CQ object, it inter-

nally uses mutexes to maintain state consistency between threads. Such state

consistency is expensive and result in performance degradation. Therefore, to

e�ciently parallelize the data transfer through IB network, we always use di�er-

ent threads to handle the operations issued on di�erent QPs in order to avoid

any thread contention. Even with this approach, however, some shared data

structures still need to be protected inside IB stack. Before we parallelize the

MPI netmod, we �rst want to see how much performance improvement we can

gain by parallelizing the operation posting processing. We �rst studied several

parallel approaches in IB programs and compared the multithreaded point-to-

point IB RDMA write bandwidth by using the ib write bw benchmark from the

OpenFabrics Enterprise Distribution (OFED) package [53] with modi�cation for

OpenMP parallelism. Speci�cally, we compare the following three parallelism

levels:

� IB contexts.

Each process has 64 IB contexts, and each context has one QP and one CQ.

Each thread handles operations on a di�erent context, CQ and QP.

� QPs and CQs.

Each process has a single IB context with 64 QPs and 64 CQs. Each CQ

is dedicated to a di�erent QP. Each thread handles operations on di�erent

QPs and CQs, but they all share the same context.

� QPs only.

Each process has a single IB context with 64 QPs and one shared CQ. Each

thread handles operations on di�erent QPs, but they all share the same

context and CQ.

Figure 3.11 shows the IB RDMA write bandwidth with small messages (64 Bytes)

between two Intel Xeon phi coprocessors on di�erent nodes with comparison be-

32

1.0

2.0

2.7 2.9
3.3

3.6 3.6

1.0

1.6

2.2
2.7

3.1 3.3 3.1

1

2

4

1 2 4 8 16 32 64

B
W

 Im
pr

ov
em

en
t	

Number of Threads	

IB contexts QPs and CQs QPs only

Figure 3.11: Small (64-byte) IB RDMA write bandwidth.

tween above parallelism levels. We conclude two primary observations from the

�gure.

1. The performance improvement with increasing threads is higher when the

number of shared resources is less. For example, when each thread has

a separate IB context (IB contexts level), with increasing threads, the

parallel performance is 3.6-fold higher than the sequential performance. But

when the context and the CQ are shared by all threads (QPs only), the

parallel performance is only 3.1-fold higher than the sequential performance.

This is because more sharing usually translates more critical sections and

hence resulting in more serialization.

2. The maximum parallelism that the IB-stack can provide is 3.6-fold when all

resources are distributed to di�erent threads, and 3.1-fold when the IB con-

text and CQ are shared between all the threads but only QPs are separately

accessed by di�erent threads. Most MPI implementations are increasingly

utilizing more shared resources (i.e., similar to QPs only level) in order to

manage the per-process resource usage. Thus, in our MPI implementation,

3.1-fold improvement is the maximum bene�t from parallelism that we can

expect as the ideal case.

3.3.2.3.2 Parallelism in MPI Netmod After studied the maximal bene�t

we can get from parallelism in IB communication, then we look into the par-

allelism strategies in MPI netmod. In our MPI implementation, the internal

progress on every MPI process can be divided into two parts: one for sending

and other for receiving. In the sending progress, small messages are always �rstly

copied in to an internal preregister sending buffer to avoid heavy overhead

for IB memory registration; then an RDMA operation is posted into the corre-

sponding QP to transfer user data from the preregister bu�er to a remote pro-

cess. In the receiving progress, the process �rstly polls its internal preregister

receiving buffer and then copies data from a cell in the receiving bu�er to

33

the corresponding user bu�er. Both the copy and the operation posing in the

sending progress, the polling and the copy in the receiving progress are separate

per connection, thus make them possible be parallelized by OpenMP. Following

this notion, we designed our strategies as follows:

� Posting Operations in Parallel. As we have mentioned, most netmod

implements the IB communication using multiple per-connection QPs and

a global shared CQ. To minimize the mutexes required in the IB stack, we

only assign each QP to a single thread. That is, multiple QPs might be

managed by a single thread, however, a single QP is never managed by

multiple threads. We are also carefully ensure that the number of threads

used for parallelism is never more than the number of QPs (i.e., by setting

num threads clause in OpenMP parallel region), in order to avoid necessary

thread synchronization overheads.

� Copies from/to Preregistered bu�er in Parallel. In small-message

communication, user data always needs to be copied into the internal send-

ing bu�er on the sender side, and received into the internal receiving bu�er

and copied out to user receiving bu�er on the receiver side. Since each

connection uses a separate QP and preregistered bu�ers, so the data copies

on the send and receive side are also part of the parallelism and can be

executed concurrently by multiple threads.

Although several places of the IB communication are suitable for parallelism,

there are still some factors exist in MPI and limit the parallelism achievable in

practice. One factor is that, the number of operations that can be issued to a

QP or to the shared CQ is often limited. While the QP or CQ can be con�gured

to allow for a large number of operations, such con�guration causes performance

degradation due to the internal bookkeeping associated with the data structures

required in IB stack (e.g., the send queue in QP). Consequently, the MPICH IB

netmod con�gures this limit to 1,024 for QPs and 32,768 for CQs, thus limiting

the maximum number of network operations each thread can post to 1,024, and

the maximum number of network operations posted across all threads to 32,768,

before thread synchronization is needed. A similar parallelism-limiting factor is

the number of preregistered bu�ers available at the sender and receiver side.

Except the MPI internal design, the application characteristics also constrain

the possibility of parallelism. Speci�cally, since MT-MPI exploits OpenMP par-

allelism at the granularity of QPs, each of which is corresponding to a di�erent

remote process, for ideal parallelism we need the same amount of communica-

tion per peer process. In practice, however, this assumption can rarely hold. In

most applications the amount of communication can vary dramatically between

di�erent processes, thus limiting the available parallelism.

3.4 Evaluation and Analysis

In this section, we evaluate the various techniques designed within MT-MPI.

All our experiments are executed on the Stampede supercomputer at the Texas

Advanced Computing Center [1]. Stampede consists of 6400 Dell Zeus C8220z

34

compute nodes, each with two Xeon E5-2680 processors and 32 GB RAM, and

an Intel Xeon Phi SE10P coprocessor with 8 GB of on-board RAM connected

by an x16 PCIe 2.0 interconnect. The nodes are interconnected by a Mellanox

FDR In�niBand network. All our experiments are executed on the Xeon Phi

coprocessor, with every MPI process running on a separate coprocessor following

the native mode.

3.4.1 Derived Datatype Processing

In this section, we describe three types of experiments that stress derived datatype

processing to various degrees: (1) derived datatype packing performance, (2) halo

data exchange with derived datatypes, and (3) the NAS multigrid benchmark.

It is noted that we use a similar for loop for the sequential and parallel version

in our comparison. It allows us to have a fair comparison where both modes are

vectorizable, and both modes have the same issue with prefetching as described in

Section 3.3.2.1. Thus, the improvement shown will be solely due to parallelization.

3.4.1.1 Derived Datatype Packing

In our experiments with derived datatype packing (using MPI PACK), we utilized

a 3D matrix of doubles, with the X dimension as the leading dimension. The

matrix volume was �xed at 1 GB, so increasing one dimension would reduce

another. Our experiments involved packing di�erent 2D planes of the 3D matrix.

Figure 3.12(b) shows the performance improvement while packing the top

surface (X-Z plane). A vector datatype is utilized in this case, with a block

length equal to the length of the X dimension and stride equal to the area of the

X-Y plane; the Z dimension indicates the vector count. In our experiment, the Y

dimension was �xed to 2 doubles, and the Z dimension varied as indicated on the

graph legend (X dimension was varied to maintain the matrix volume). As can

be seen in the �gure, MT-MPI gets a reasonably good speedup with increasing

number of threads, achieving a 96-fold improvement compared with the original

sequential version when all 240 threads are used. A larger Z dimension provides

better speedup because that leads to a larger iteration count for the contiguous

copies and hence more parallelism that can be exploited by MT-MPI.

Figure 3.12(c) shows the performance improvement while packing the left sur-

face (Y-Z plane). A two-level datatype comprising a vector of vectors is utilized

in this experiment. The X dimension was �xed to 2 doubles, and the Y dimension

varied as indicated on the graph legend (the Z dimension was varied to maintain

the matrix volume). As shown in the �gure, MT-MPI still achieves a relatively

good speedup compared with the sequential version (42-fold), although less than

what it achieved while packing the top surface. This reduction in performance is

because the lowest-level vector datatype always has a block length of one double

and a count equal to the Y dimension. This restricts the amount of work that

is done within each iteration of the contiguous data copy operation and con-

sequently limits the work done by each thread, especially when the number of

iterations (i.e., the Y dimension) is small.

35

Z	

Y	

X	

(a) Derived Datatypes in Three-dimension Ma-

trix.

1

2

4

8

16

32

64

128

256

1 2 4 8 16 32 64 128 240

S
pe

ed
up

	

Number of Threads	

256 1K 4K 16K
64K 256K Ideal

(b) Top surface with varying Z dimension.

0.125
0.25

0.5
1
2
4
8

16
32
64

128
256

1 2 4 8 16 32 64 128 240

S
pe

ed
up

Number of Threads

256 1K 4K 16K
64K 256K Ideal

(c) Left surface with varying Y dimension.

1

2

4

8

16

32

64

128

256

1 2 4 8 16 32 64 128 240

S
pe

ed
up

	

Number of Threads	

256 1K 4K 16K
64K 256K ideal

(d) Front surface with varying Y dimension.

Figure 3.12: Performance of parallel 3D packing.

3.4.1.2 Halo Exchange of Data

In our second set of experiments, we measured the performance of 3D halo ex-

changes of data as used in stencil computations. Both the data and the processes

are partitioned into a 3D space. Each process communicates with its neighbor-

ing processes with which it shares a plane. For our experiments we de�ne the

following four dimension shapes for the local data on each process: (1) Cube,

with dimensions 512 � 512 � 512 (doubles); (2) Large X, with dimensions 16K

� 128 � 64; (3) Large Y, with dimensions 64 � 16K � 128; and (4) Large Z,

with dimensions 64 � 128 � 16K. The MPI processes are evenly distributed in

all dimensions.

Figure 3.13 shows the performance improvement achieved by MT-MPI com-

pared with the sequential version when using 64 MPI processes. Large Y per-

forms much better than the others, delivering a 23-fold speedup with 240 threads.

To understand this behavior, we pro�led the communication time for the di�erent

dimensions. The halo benchmark sends data in all dimensions simultaneously, so

it is hard to pro�le how much time each dimension takes. Therefore, for pro�ling

purposes, we modi�ed it to serialize communication in one dimension at a time,

36

0.5

1

2

4

8

16

32

1 2 4 8 16 32 64 128 240

S
pe

ed
up

	

Number of Threads	

Cube Large X Large Y Large Z

Figure 3.13: 3D internode halo exchange using 64 MPI processes.

0

1

2

3

4

5

6

1 2 4 8 16 32 64 128 240

S
pe

ed
up

Number of Threads

Communication Time Speedup Execution Time Speedup

Figure 3.14: Hybrid MPI+OpenMP NAS MG Class E using 64 MPI processes.

and we observed that communication along the Y-Z dimension takes 85% of the

time. While this is obviously not entirely indicative of the true halo benchmark

that sends data in all dimensions simultaneously, it does give us some idea of the

communication cost.

As demonstrated in Figure 3.12(c), a large Y dimension helps improve the

performance of packing in the Y-Z dimension by providing better parallelism.

This results in a large Y impacting the performance of the halo benchmark to

the largest extent. With Cube, the Y-dimension is reduced to 512 doubles, thus

reducing the speedup to around 5.8-fold as well. With Large X and Large Z, the

Y-dimension further reduces to 128 doubles, which in turn reduces the overall

speedup to around 1.6-fold and 1.8-fold, respectively.

37

0.125

0.25

0.5

1

2

4

8

16

1 2 4 8 16 32 64 120

S
pe

ed
up

	

Number of Threads	

64K 256K 1M 4MB 16MB

(a) Latency.

0.125

0.25

0.5

1

2

4

8

16

1 2 4 8 16 32 64 120

S
pe

ed
up

	

Number of Threads	

64K 256K 1M 4MB 16MB

(b) Bandwidth.

0.125

0.25

0.5

1

2

4

8

16

1 2 4 8 16 32 64 120

S
pe

ed
up

	

Number of Threads	

64K 256K 1M 4MB 16MB

(c) Message rate.

1

2

4

8

16

32

64

128

1 2 4 8 16 32 64 120

La
te

nc
y

(m
s)

Number of Threads

512KB 1MB 2MB

(d) Varying shared bu�er size (16MB mes-

sage).

Figure 3.15: Shared-memory communication performance with varying message

size between 2 MPI processes

3.4.1.3 NAS Multigrid Benchmark

We also evaluated a hybrid MPI+OpenMP version of the NAS Multigrid (MG)

kernel [12] . The original MG kernel distributed as a part of the NAS parallel

benchmarks does not contain a hybrid MPI+OpenMP version, so we modi�ed

the MPI version to (1) parallelize the local computation using OpenMP and (2)

employ derived datatype communication instead of manual packing. The MG

kernel implements a V-cycle multigrid algorithm to solve a 3D discrete Poisson

equation. In every iteration of the V-cycle routine, halo exchanges are performed

with various dimension sizes (count of double), from 2 to 514 in class E with 64

MPI processes, and so forth. The communication in all dimensions except the

X-Y plane is noncontiguous.

Figure 3.14 presents the speedup achieved by MT-MPI compared with the

original MPICH in class E (X, Y, Z dimension sizes are each 2K) when employing

64 processes. As shown in the �gure, MT-MPI helps improve the communication

of MG by 4.7-fold, and the overall execution time by 2.2-fold. The speedup in the

communication time is still slightly lower than that of the 3D halo exchanges with

the Cube shape shown in Figure 3.13. The reason is that the MG also contains

38

some halo exchanges with very small dimension size whose packing process cannot

be parallelized e�ciently.

3.4.2 Shared-Memory Communication

To measure the impact of MT-MPI on intranode shared-memory communication,

we evaluated the point-to-point communication benchmarks in the OSU MPI

microbenchmark suite version 4.1 (http://mvapich.cse.ohio-state.edu/benchm-

arks/). In particular, we used the latency, bandwidth, and message rate bench-

marks. Both the original MPICH and MT-MPI use an internal shared-memory

region of 2 MB, with each cell containing 32 KB.

Figure 3.15 illustrates the performance of all three benchmarks; the legends

in the graph represent di�erent message sizes. We notice that the performance

trends of all three benchmarks are similar, with MT-MPI delivering up to a 5-fold

performance bene�t for message sizes � 1 MB, given enough parallelism. When

the number of idle threads is � 4, however, MT-MPI’s performance is worse than

that of the original MPICH. As discussed in Section 3.3.2.2, the reason is that

MT-MPI loses some of the pipelining capabilities in the original MPICH code in

return for thread parallelism. But with a small number of threads, this tradeo�

is not bene�cial.

Another observation we make in Figure 3.15 is that the speedup of MT-MPI

for message sizes 64 KB and 256 KB is much better than that of other message

sizes. This, however, is not because of MT-MPI’s superior architecture. Rather,

it is because the communication protocol thresholds (i.e., eager vs. rendezvous

communication thresholds) in MPICH are tuned for regular Xeon systems, by

default, and are too large for the Xeon Phi architecture. We did not change the

default con�guration of MPICH in order to avoid introducing yet another dimen-

sion of variance in the paper. Thus, for 64 KB and 256 KB message sizes, the

original MPICH ends up using a suboptimal communication protocol, resulting in

MT-MPI’s performance falsely appearing to be signi�cantly better as compared

to other message sizes.

We next study the behavior of our parallel implementation when employing

di�erent shared bu�er sizes. Our results for the latency benchmark when trans-

ferring 16 MB messages are shown in Figure 3.15(d). Other benchmarks expose

similar behaviors, whereas this message size ensures we are showing the sustained

performance of the pipeline, as several pipeline units are involved. As can be seen

in the �gure, when only a few of threads are available, smaller shared bu�ers pro-

vide slightly lower latency. We already discussed this issue in Section 3.3.2.2,

this is because the parallel implementation reserves many available cells as a

large contiguous cell, thus such a larger cell could result in a larger pipelining

unit, but such less threads cannot copy them out more e�ciently comparing with

smaller pipelining units. We avoid this ine�ciency by checking the number of

idle threads to adjust the maximum combinable bu�er size. On the other hand, a

large enough number of threads bene�ts from larger pipeline units, which reduces

the proportion of thread synchronization overhead.

39

0

5

10

15

20

25

30

35

1 2 4 8 16 32 64

E
xe

cu
tio

n
Ti

m
e

R
ed

uc
tio

n
(%

)

Number of Threads

1000 2000 4000 8000 16000

(a) Overall Speedup

0

20

40

60

80

100

1 2 4 8 16 32 64

E
xe

cu
tio

n
Ti

m
e

R
ed

uc
tio

n
(%

)

Number of Threads

1000 2000 4000 8000 16000

(b) Send Processing Speedup

Figure 3.16: One-sided communication benchmark with IB using 65 MPI pro-

cesses.

3.4.3 In�niBand Communication Operations

In this section we evaluate the performance bene�ts achieved by MT-MPI with

our modi�cations to the MPICH IB netmod. We performed two types of experi-

ments: (1) a one-sided communication microbenchmark designed to demonstrate

the ideal parallelism that can be obtained within MT-MPI and (2) the one-sided

version of Graph500 benchmark [49].

3.4.3.1 One-Sided Microbenchmark

We designed a microbenchmark in which one MPI process issues many MPI PUT

operations to all other processes. Each MPI PUT operation is for 64 bytes. We

measured the execution time of the benchmark using 65 MPI processes; thus

each process communicates with 64 other processes and internally maintains 64

IB QPs. Figure 3.16(a) shows the speedup in execution time with MT-MPI

compared with the original MPICH. As we increase the number of operations

issued from 1,000 to 16,000, MT-MPI delivers an increasing performance bene�t,

reaching a 1.44-fold speedup when using 64 threads.

This performance bene�t, however, is less than the ideal speedup of 3.1-fold

that we can get by parallelizing IB communication, as discussed in Section 3.3.2.3.

To understand the reason for this less-than-ideal speedup, we measured the exe-

cution time of the netmod send-side communication processing at the root process

(SP), which consists only of the copy from the user bu�er to a preregistered chunk

and the posting of the operations to the IB network. Figure 3.16(b) shows that

the execution time of SP delivers around 8-fold speedup when using 64 threads,

which is as expected|we expect around a 3.1-fold speedup due to the paralleliza-

tion in the posting of network operations, and some additional improvement due

to the parallelized memory copy. Table 3.1 shows the relationship between the

time spent in SP and the total execution time when issuing 16,000 operations.

Although SP shows the expected performance improvement with MT-MPI, the

percentage of time spent in SP is less than 10% when using more than 16 threads.

This results in a reduction in the overall performance boost that we achieve.

40

Table 3.1: Pro�le of the one-sided communication benchmark.

Nthreads
Execution Time Speedup

Total (s) SP (s) SP / Total (%) Total SP

1 5.8 2.2 38 1 1

4 4.7 1.3 27 1.2 1.7

16 4.0 0.4 10 1.4 5.0

64 4.0 0.3 8 1.4 6.9

3.4.3.2 Graph500 Benchmark

1.0

1.1

1.2

1.3

1.4

1.0E+06
1.1E+06
1.2E+06
1.3E+06
1.4E+06
1.5E+06
1.6E+06
1.7E+06

1 2 4 8 16 32 64

Im
pr

ov
em

en
t

H
ar

m
on

ic
 M

ea
n

TE
P

S

Number of Threads

Improvement Harmonic Mean TEPS

Figure 3.17: Performance of the Graph500 benchmark using 64 MPI processes.

The second benchmark we studied was the Graph500 benchmark [49], which

performs a breadth-�rst vertex-visit operation on large graphs. In particular,

we used a scale of 222 and an edge factor of 16 on 64 MPI processes running

on di�erent Intel Xeon Phi coprocessors at di�erent nodes. In the one-sided

version of the Graph500 benchmark, every process issues many MPI Accumulate

operations to the other processes in every breadth-�rst search iteration.

Figure 3.17 shows the performance improvement of MT-MPI compared with

the original MPICH. MT-MPI delivers a 1.3-fold improvement in the harmonic

mean of the traversed edges per second (TEPS) when using 64 threads. As ex-

pected, this improvement is on par with the performance improvement we see

in the one-sided communication benchmark that we discussed in Section 3.4.3.1.

The slightly smaller speedup compared with the one-sided communication bench-

mark (which achieves a 1.44-fold speedup) is because the Graph500 benchmark

does not uniformly communicate with all peer processes, thus causing some un-

evenness in MT-MPI’s parallelization.

41

Chapter 4

Process-based Asynchronous Progress

Publication

This chapter includes the contents that have been published in conference pa-

pers [61][60]. In reference to IEEE copyrighted material which is used with

permission in this thesis, the IEEE does not endorse any of the university of

Tokyo’s products or services. Internal or personal use of this material is permit-

ted. If interested in reprinting/republishing IEEE copyrighted material for ad-

vertising or promotional purposes or for creating new collective works for resale

or redistribution, please go to http://www:ieee:org/publications standards/

publications/rights/rights link:html to learn how to obtain a License from

RightsLink.

An increasing trend has been shown in scienti�c applications that the compu-

tation and communication are moving toward dynamic and data driven. Applica-

tion developers are investigating the ways to better implement such communica-

tion rather than using the traditional send-receive patterns, since it becomes hard

to specify matching pair of send/receive calls as in regular applications. MPI one-

sided communication, as known as RMA, has been introduced from MPI-2 [5].

Its semantics could allow programmers to specify the communication in a more

dynamic way that only the local process (origin) speci�es the parameters for a

data movement, without requiring a matching \receive" on the remote process

(target). Unlike message passing, the data movement in RMA is more close to

irregular memory access pattern, in which a process can read from/write to any

location in the memory region on the other processes after acquired appropriate

permission.

Not only the communication semantics, the RMA model could also provide

asynchronous completion of data transfer (i.e., RMA operations in MPI) in order

to hide the overhead of communication with computation on the target process.

However, such asynchronous completion is not practically achieved in most MPI

implementations and consequently limiting the performance of application exe-

cution. In this chapter, we will study the critical issue existing in MPI RMA

communication. In Section 4.1 we �rst describe the essential problem in the im-

plementation of RMA data movement, and summarize the status of traditional

solutions in Section 4.2 with discussion around their limitations. In section 4.3,

42

http://www.ieee.org/publications_standards/publications/rights/rights_link.html
http://www.ieee.org/publications_standards/publications/rights/rights_link.html

!"#$"%&&
'(%")*&

+%,-"..&/&
0,%12134&

+%,-"..&5&
0')%2"'4&

67& 89:+;&<880*)')4&

-,=$#"'"&

(a) Thread-based Approach.

!"#$%&&'('
)#"*+*,-'

!"#$%&&'.'
)/0"+%/-'

12'

3%45%"''
/6"%07'

89:!;'<88)70/0-'

$#=54%/%'

>,/%""?5/

(b) Interrupt-based Approach.

Figure 4.1: Tradition asynchronous progress approaches.

we give an overview of our solution proposed in this dissertation, and describe

the detailed design and the practical challenges we resolved in section 4.4 and 4.5

respectively. In Section 4.7, we utilize both mirobenchmarks and a real chem-

istry application suite to evaluate our solution with comparison to the traditional

approaches.

4.1 Problem Statement

While the RMA model is useful for dynamic and irregular communication pat-

terns, the MPI standard does not guarantee that such data movement is truly

asynchronous. In reality, most MPI implementations still require the MPI process

to make MPI calls in order to ensure communication progress to complete any

RMA operations issued on it as a target. Although RDMA (remote direct mem-

ory access) supported networks such as In�niBand, Fujitsu Tofu or Cray Aries,

could provide the capability of contiguous PUT/GET operations in hardware thus

allowing MPI to o�oad the corresponding operations and achieve asynchronous

communication, more complex operations (e.g., noncontiguous ACCUMULATE

operation on 3D subarray) still have to be done in software within the MPI

implementation. Consequently, arbitrarily long delay can happen in those opera-

tions if the target process is busy computing outside MPI stack and cannot make

software progress.

4.2 Traditional Approaches

Several existing researches have looked into this problem and proposed two kinds

of approaches|a thread-based mode and an interrupt-based mode |to provide

asynchronous progress in MPI thus ensure asynchronous completion of RMA

operations. However, none of them have been really used in applications due

to several limitations. In this section, we brie
y introduce each approach and

discuss their limitation as follows.

� Thread-based approach. In this approach, each MPI process utilizes a

background thread in order to handle incoming messages from other pro-

cesses (Figure 4.1(a)). This model is the most widely used approach and has

been implemented in many MPI implementations, including MPICH [10],

MVAPICH [70] and Intel MPI [36]. While being a generic approach for var-

ious MPI communication models, it raises performance concerns. One is

43

http://www.top500.org
http://www.top500.org/system/168753
http://www.top500.org/featured/top-systems/roadrunner-los-alamos-national-laboratory/
http://www.top500.org/featured/top-systems/roadrunner-los-alamos-national-laboratory/
http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf
http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf
http://www.top500.org/system/177999
https://www.alcf.anl.gov/mira
https://www.alcf.anl.gov/mira
http://www.mpich.org
http://aurora.alcf.anl.gov
http://aurora.alcf.anl.gov

https://www.nersc.gov/users/computational-systems/cori/
http://aurora.alcf.anl.gov/
http://aurora.alcf.anl.gov/

http://www.openmprtl.org
http://www.openmprtl.org
http://www.intel.com/content/www/us/en/architecture-and-technology/many-integrated-core/intel-many-integrated-core-architecture.html
http://www.intel.com/content/www/us/en/architecture-and-technology/many-integrated-core/intel-many-integrated-core-architecture.html
http://www.intel.com/content/www/us/en/architecture-and-technology/many-integrated-core/intel-many-integrated-core-architecture.html
http://software.intel.com/en-us/intel-mpi-library
http://software.intel.com/en-us/intel-mpi-library
https://software.intel.com/en-us/articles/what-disclosures-has-intel-made-about-knights-landing
https://software.intel.com/en-us/articles/what-disclosures-has-intel-made-about-knights-landing
https://software.intel.com/en-us/articles/what-disclosures-has-intel-made-about-knights-landing

http://www.openfabrics.org

http://mvapich.cse.ohio-state.edu
http://www.open-mpi.org

	Introduction
	Problem Statement
	Contributions
	Outline

	Background
	Many-Core Architectures
	Hybrid MPI+Threads Programming
	Programming Model
	Typical Applications

	MPI One-sided Communication
	Programming and Semantics
	Irregular Applications

	Multithreaded MPI
	Problem Statement
	Solution
	Design and Implementation
	OpenMP Runtime
	MPI Internal Parallelism

	Evaluation and Analysis
	Derived Datatype Processing
	Shared-Memory Communication
	InfiniBand Communication Operations

	Process-based Asynchronous Progress
	Problem Statement
	Traditional Approaches
	Solution
	Casper Design Overview
	Deployment of Ghost Processes
	RMA Memory Allocation and Setup
	RMA Operation Redirection

	Ensuring Correctness and Performance
	Lock Permission Management for Shared Ghost Processes
	Self Lock Consistency
	Managing Multiple Ghost Processes
	Dealing with Multiple Simultaneous Epochs
	Memory Ordering Consistency

	Experimental Environment
	Microbenchmarks Evaluation
	Overhead Analysis
	Asynchronous Progress
	Performance Optimization

	NWChem Quantum Chemistry Application

	Dynamic Adaptable Asynchronous Progress
	Limitation in Static Casper
	Solution
	Dynamic Adaptable Asynchronous Progress
	User-Guided Adaptation
	Transparent Profiling based Adaptation

	Experimental Environment
	Microbenchmarks
	Overhead Analysis
	Self-Profiling based Prediction
	Limitation of Static Casper
	Adaptation Improvement

	NWChem Quantum Chemistry Application
	Overview of Multiple Internal Phases
	Static Asynchronous Progress
	Dynamic Adaptation

	Related Work
	MPI with Multithreading Environment
	MPI One-sided Communication and Asynchronous Progress

	Conclusion and Future Work
	Summary
	Future Work
	Process Oversubscription and Dynamic Communication
	Improvement in Asynchronous Progress

