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Since multicore processors have become the most common processor 
architectures today, the next grade promotion for high-end processors is expected 
to be achieved by improving both thread- and instruction-level parallelism. There 
are two kinds of architectures dominating the high performance market today, the 
GPU accelerators and the General Purpose (GP) many-core architectures. In this 
dissertation, we focus on the latter. Many-core architecture, such as Intel Xeon 
Phi and IBM Blue Gene/Q, provides us a massively parallel environment 
containing dozens of cores and hundreds of hardware threads with powerful wide 
SIMD units. More and more scientific application developers have begun 
investigating ways to utilize such architecture for scaling application 
performance. However, the performance may be restricted in various ways. 
Unlike traditional CPUs, the performance capability of many-core architectures 
comes from massive low- frequency cores for better performance-to-energy ratio; 
thus sequential execution on such hardware could result in performance 
degradation. Furthermore, the other on-chip re- sources (e.g., memory) are not 
growing at the same rate as number of cores, potentially resulting in scalability 
issue. 

Not only hardware architectures, the scientific applications are also moving 
toward complex hybrid and irregular models. In traditional regular applications 
(e.g., Fast Fourier transform), more and more applications start focusing on 
hybrid programming models comprising a mixture of processes and threads, that 
allow resources on a node to be shared between the different threads of a process, 
especially benefiting the execution on many-core architectures. The most 
prominent of the hybrid models used in scientific computing today is 



MPI+OpenMP, where multiple OpenMP threads parallelize the computation, 
while one or more threads utilize MPI for their data communication. On the other 
hand, despite the well studied regular applications, a number of applications are 
becoming extremely dynamic and irregular especially in chemistry and 
bioinformatics domains. MPI-2 and MPI-3 introduced one-sided communication 
mode, which is more suitable for supporting the data movements in such 
irregular model rather than the MPI two-sided or group communication modes. 

With growing complexity in both computing hardware and scientific applications, 
various critical communication issues raise up and resulting in severe 
degradation in application performance. This dissertation focuses on exploiting 
the capabilities of advanced many-core architectures on widely used message 
passing model, in order to address the communication problems existing in the 
popular hybrid programming model and the irregular one-sided mode and 
consequently contribute efficient communication approaches for various kinds of 
applications. 

Firstly, in hybrid MPI+threads applications, a common mode of operation for 
such applications involves using multiple threads to parallelize the computation, 
while one of the threads issues MPI operations. Although such mode extremely 
improves floating point performance for computation of applications by massive 
parallelism, it also means that most of the threads are idle during MPI calls, 
which translate to underutilized hardware cores. Furthermore, since only single 
low-frequency core is contributing to communication, it may result in even 
performance degradation. To address the core idleness issue and improve the 
performance of communication, we propose an internally multithreaded MPI as 
the first contribution of this dissertation, that transparently coordinates with the 
threading runtime system to share idle threads with the application in order to 
fully utilize the computing resources as well as parallelizing MPI internal 
processing such as derived datatype communication, shared-memory 
communication, and network I/O operations for better performance. 

Secondly, with regard to the irregular one-sided communication, however, the 
MPI standard does not guarantee that such communication is truly asynchronous. 
Most MPI implementations still require the remote target to make MPI calls to 
ensure progress on such operations, consequently the operation cannot complete 
at the target without explicit processing in software and thus may cause 



arbitrarily long delays if the target process is busy computing outside the MPI 
stack. Traditional implementations to ensure asynchronous completion of 
operations have relied on thread-based or interrupt-based models. Each of these 
models has several drawbacks, however, such as the inefficient core deployment 
in the thread model and the expensive overheads caused by multithreading safety 
in the thread model and by frequent per-message interrupts in the interrupt model. 
To address these drawbacks, we propose Casper, a process-based asynchronous 
progress model for MPI one-sided communication on multicore and many-core 
architectures as the second contribution of this dissertation. The central idea of 
Casper is to keep aside a small, user-specified number of cores on a multicore or 
many-core environment as “ghost processes,” which are dedicated to help 
asynchronous progress for user processes through appropriate memory mapping 
from those user processes. Whenever user application issues an RMA operation 
to a user process Casper then transparently redirects such operation to the ghost 
process thus ensuring asynchronous completion. This approach has successfully 
resolved the communication bottleneck in the widely used NWChem quantum 
chemistry application by achieving up to 30 % performance improvement in the 
“gold standard” CCSD(T) simulation. 

Although Casper provides simple but efficient asynchronous progress for 
irregular one-sided communication, the performance might not be optimal in a 
number of applications that always consist of multiple phases with varying 
proportion of communication and computation. Inefficient usage of 
asynchronous progress may even result in performance degradation. That is, the 
computation-intensive phase heavily relies on asynchronous progress, however, 
the communication-intensive phase does not have strong needs of asynchronous 
progress but more focuses on the load balance for large amount of RMA 
operations, which might not hold in Casper since the operations are consistently 
redirected to a few ghost processes. As the third contribution of this dissertation, 
we propose a dynamic adaptation mechanism embedded in Casper that 
transparently adapt the configuration of asynchronous progress for multi-phases 
applications. 

Finally, apart from the lack of asynchronous progress, many irregular 
applications also suffer from loss of performance in a number of ways. For 
example, it is usual in imbalanced communication that an MPI process takes long 
time to wait for a message to arrive, the core on which it is scheduled is idle and 



underutilized. To comprehensively address these issues, we plan to investigate 
the concept of user-level processes, a way to provide multiple co-scheduled “OS 
processes” on a single core as the MPI processes, with exploiting the potential 
optimization in MPI communication runtime, such as better load balancing and 
light-weight checkpoint migration, as the future work of this doctoral research. 

 

 


