
論 文 の 内 容 の 要 旨
Abstract

論文題目 Techniques for Enabling Highly Efficient Message Passing

 on Many-Core Architectures
（メニーコア型大規模並列計算機向けの高性能メッセージパッシング型通信技術）

 	 	 	 氏	 	 名 思	 敏

Since multicore processors have become the most common processor
architectures today, the next grade promotion for high-end processors is expected
to be achieved by improving both thread- and instruction-level parallelism. There
are two kinds of architectures dominating the high performance market today, the
GPU accelerators and the General Purpose (GP) many-core architectures. In this
dissertation, we focus on the latter. Many-core architecture, such as Intel Xeon
Phi and IBM Blue Gene/Q, provides us a massively parallel environment
containing dozens of cores and hundreds of hardware threads with powerful wide
SIMD units. More and more scientific application developers have begun
investigating ways to utilize such architecture for scaling application
performance. However, the performance may be restricted in various ways.
Unlike traditional CPUs, the performance capability of many-core architectures
comes from massive low- frequency cores for better performance-to-energy ratio;
thus sequential execution on such hardware could result in performance
degradation. Furthermore, the other on-chip re- sources (e.g., memory) are not
growing at the same rate as number of cores, potentially resulting in scalability
issue.

Not only hardware architectures, the scientific applications are also moving
toward complex hybrid and irregular models. In traditional regular applications
(e.g., Fast Fourier transform), more and more applications start focusing on
hybrid programming models comprising a mixture of processes and threads, that
allow resources on a node to be shared between the different threads of a process,
especially benefiting the execution on many-core architectures. The most
prominent of the hybrid models used in scientific computing today is

MPI+OpenMP, where multiple OpenMP threads parallelize the computation,
while one or more threads utilize MPI for their data communication. On the other
hand, despite the well studied regular applications, a number of applications are
becoming extremely dynamic and irregular especially in chemistry and
bioinformatics domains. MPI-2 and MPI-3 introduced one-sided communication
mode, which is more suitable for supporting the data movements in such
irregular model rather than the MPI two-sided or group communication modes.

With growing complexity in both computing hardware and scientific applications,
various critical communication issues raise up and resulting in severe
degradation in application performance. This dissertation focuses on exploiting
the capabilities of advanced many-core architectures on widely used message
passing model, in order to address the communication problems existing in the
popular hybrid programming model and the irregular one-sided mode and
consequently contribute efficient communication approaches for various kinds of
applications.

Firstly, in hybrid MPI+threads applications, a common mode of operation for
such applications involves using multiple threads to parallelize the computation,
while one of the threads issues MPI operations. Although such mode extremely
improves floating point performance for computation of applications by massive
parallelism, it also means that most of the threads are idle during MPI calls,
which translate to underutilized hardware cores. Furthermore, since only single
low-frequency core is contributing to communication, it may result in even
performance degradation. To address the core idleness issue and improve the
performance of communication, we propose an internally multithreaded MPI as
the first contribution of this dissertation, that transparently coordinates with the
threading runtime system to share idle threads with the application in order to
fully utilize the computing resources as well as parallelizing MPI internal
processing such as derived datatype communication, shared-memory
communication, and network I/O operations for better performance.

Secondly, with regard to the irregular one-sided communication, however, the
MPI standard does not guarantee that such communication is truly asynchronous.
Most MPI implementations still require the remote target to make MPI calls to
ensure progress on such operations, consequently the operation cannot complete
at the target without explicit processing in software and thus may cause

arbitrarily long delays if the target process is busy computing outside the MPI
stack. Traditional implementations to ensure asynchronous completion of
operations have relied on thread-based or interrupt-based models. Each of these
models has several drawbacks, however, such as the inefficient core deployment
in the thread model and the expensive overheads caused by multithreading safety
in the thread model and by frequent per-message interrupts in the interrupt model.
To address these drawbacks, we propose Casper, a process-based asynchronous
progress model for MPI one-sided communication on multicore and many-core
architectures as the second contribution of this dissertation. The central idea of
Casper is to keep aside a small, user-specified number of cores on a multicore or
many-core environment as “ghost processes,” which are dedicated to help
asynchronous progress for user processes through appropriate memory mapping
from those user processes. Whenever user application issues an RMA operation
to a user process Casper then transparently redirects such operation to the ghost
process thus ensuring asynchronous completion. This approach has successfully
resolved the communication bottleneck in the widely used NWChem quantum
chemistry application by achieving up to 30 % performance improvement in the
“gold standard” CCSD(T) simulation.

Although Casper provides simple but efficient asynchronous progress for
irregular one-sided communication, the performance might not be optimal in a
number of applications that always consist of multiple phases with varying
proportion of communication and computation. Inefficient usage of
asynchronous progress may even result in performance degradation. That is, the
computation-intensive phase heavily relies on asynchronous progress, however,
the communication-intensive phase does not have strong needs of asynchronous
progress but more focuses on the load balance for large amount of RMA
operations, which might not hold in Casper since the operations are consistently
redirected to a few ghost processes. As the third contribution of this dissertation,
we propose a dynamic adaptation mechanism embedded in Casper that
transparently adapt the configuration of asynchronous progress for multi-phases
applications.

Finally, apart from the lack of asynchronous progress, many irregular
applications also suffer from loss of performance in a number of ways. For
example, it is usual in imbalanced communication that an MPI process takes long
time to wait for a message to arrive, the core on which it is scheduled is idle and

underutilized. To comprehensively address these issues, we plan to investigate
the concept of user-level processes, a way to provide multiple co-scheduled “OS
processes” on a single core as the MPI processes, with exploiting the potential
optimization in MPI communication runtime, such as better load balancing and
light-weight checkpoint migration, as the future work of this doctoral research.

