
Classical Analysis of Quantum Computation

(古典的手法による量子計算の解析)

by

Kentaro Honda

本多健太郎

A Doctor Thesis

博士論文

Submitted to

the Graduate School of the University of Tokyo

on December 11, 2015

in Partial Fulfillment of the Requirements

for the Degree of Doctor of Information Science and

Technology

in Computer Science

Thesis Supervisor: Masami Hagiya 萩谷昌己

Professor of Computer Science



ABSTRACT

Quantum computation is based on quantum physics and different from classical com-
putation based on classical physics. It has non-classical characteristics such as quan-
tum superposition principle, uncertainty principle, and no-cloning theorem and has been
mainly studied by original methodology. However, it does not mean we cannot investigate
quantum computation using traditional methods that have been studied in non-quantum
area. We believe that quite a lot of methods are useful to investigate quantum computa-
tion and it is important to find such methods. When they are found, they will accelerate
the research of quantum computation using the knowledge about them. Moreover, due to
their classical nature, they will naturally help us to analyse quantum computation using
classical computers. In order to support the idea, we show two classical methodologies,
abstract interpretation and classical public-key cryptography, enhance analysis in two
topics of quantum computation, entanglement in quantum programming languages and
blind quantum computation protocols.

The behaviour of entangled quantum system is counterintuitive. Therefore, it is
important to know how entangled states are in quantum programs without executing
them. In order to statistically analyse the problem, it was proposed to apply the abstract
interpretation technique to the analysis. However, the proposed method does not store
information about entangled states and ignores the fact that an operator on multiple
qubits may undo entanglements, and hence the method only gives a rough approximation.
We combine the method with the stabiliser formalism. We show abstract interpretation
can be used to efficiently analyse the existence of entanglement in quantum programs
with higher precision.

Blind quantum computation protocols give users having no powerful quantum devices
a method to delegate their quantum computation to remote quantum servers without
leaking any crucial information about their computation. Some protocols enable users
to verify whether the quantum servers honestly do the delegated computation, but no
protocols give third parties ways to analyse the computation. We propose a new blind
quantum computation protocol using a classical public-key encryption scheme. Our
protocol is based on an existing protocol, but third parties, who have only classical com-
puters and check the classical message between users and quantum servers, can analyse
the computation and verify whether users obtain the correct outcomes or not.

These results show classical methodology, which achieves a development outside the
area of quantum computation, may be useful for investigation of quantum computation.



論文要旨

量子力学に基づく量子計算は，古典物理学に基づいた古典計算とは異なる新たなパラダ

イムをもたらした．重ね合わせの原理や不確定性原理，複製不可能性定理など古典計算の

持たない独特の特性を持ち，様々な独自の手法の考案・発展を通じて研究が進展してきた．

しかし，このことは量子計算とは無関係に発展してきた手法，特に量子計算の勃興以前か

ら存在し，研究されている手法が量子計算において全く通用しないことを意味するもので

はない．少なからぬ古典的な手法は量子計算の研究において役立つものであろう．このよう

な手法は，それに対する古典的な知見を量子計算へと活かすことができるのみならず，そ

の古典的という制約により，古典計算機による量子計算の解析を助けると考えらえる．本

論文では，この考えの例証として抽象解釈と古典公開鍵暗号という 2つの手法が量子計算

の解析に有用であることを示す．

量子もつれの存在は，我々の直感に反する効果をもたらす．したがって，量子プログラ

ムの中で何処に量子もつれが存在しているかを知ることは重要である．これを静的に解析

する手法として，抽象解釈を応用する手法が提案されていた．しかしながら，この手法で

はもつれた状態についての情報を保持せず，一度もつれた状態は測定以外では戻せないな

ど粗い近似に止まっていた．我々はスタビライザー形式を活用することでこの手法を改善

し，抽象解釈によって，古典計算機で可能な範囲にとどまりながらも，より精度の高い量

子もつれの存在解析が可能であることを示す．

ブラインド量子計算は，十分な量子デバイスを持たないユーザに対して，実行する計算

を完全に秘匿しながら，量子コンピュータを持つ他者に計算を委託する手法を提供する．

このプロトコルの中には，委託した計算が正しく実行されているかをユーザ自身が確かめ

られるようにするものがあるが，ユーザ以外の第三者に解析を許すものは存在しない．こ

れに対して，既存のプロトコルを古典公開鍵暗号を用いて改良した新たなプロトコルを提

案する．提案プロトコルでは，ユーザと量子コンピュータとの間で交換される古典情報の

みに基づき，ユーザが正しい計算を得られているかを古典計算機しか持たない第三者が検

証できるようになることを示す．



Acknowledgements

First of all, I would like to express my gratitude to my supervisor Masami
Hagiya for his constant advice and encouragement. I would like to thank Yoshi-
hiko Kakutani for his advice and many discussions. I was helped to study the
work in Chapter 4. Takahiro Kubota first pointed out me the possibility of evil
Alice. Joseph Fitzsimons pointed out a flow of my first security model. To-
moyuki Morimae helped me to refine my rough idea. I would like to appreciate
their help. I would like to thank François Le Gall, Naoki Kobayashi, Hiroshi
Imai, Ichiro Hasuo, and Takeshi Koshiba for their valuable comments. I also
thank Hasuo laboratory for giving me many opportunities to show my work. Fi-
nally, I thank all current and past members of Hagiya laboratory. The work was
supported by JSPS Grant-in-Aid for JSPS Fellows.



Contents

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Quantum programming language . . . . . . . . . . . . . . . 2
1.1.2 Blind quantum computation protocol . . . . . . . . . . . . 3

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.1 Stabiliser abstract semantics . . . . . . . . . . . . . . . . . 5
1.3.2 Publicly verifiable blind quantum computation . . . . . . . 6

1.4 Organisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Preliminaries 8
2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Quantum computation . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Rudiments of quantum computation . . . . . . . . . . . . . 9
2.2.2 Stabiliser formalism . . . . . . . . . . . . . . . . . . . . . . 12
2.2.3 Measurement-based quantum computation . . . . . . . . . 14

2.3 Abstract interpretation . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Encryption scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Stabiliser Abstract Semantics 20
3.1 Basis abstract semantics . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1.1 Quantum imperative language . . . . . . . . . . . . . . . . 20
3.1.2 Basis abstract semantics . . . . . . . . . . . . . . . . . . . . 23

3.2 Stabiliser abstract semantics . . . . . . . . . . . . . . . . . . . . . . 25
3.2.1 Motivation and idea . . . . . . . . . . . . . . . . . . . . . . 25
3.2.2 Stabiliser array . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.3 Stabiliser domain . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2.4 Stabiliser abstract semantics . . . . . . . . . . . . . . . . . 34
3.2.5 Comparison with the basis semantics . . . . . . . . . . . . . 41

3.3 Extended stabiliser abstract semantics . . . . . . . . . . . . . . . . 43
3.3.1 Motivation and idea . . . . . . . . . . . . . . . . . . . . . . 43
3.3.2 Extended stabiliser domain . . . . . . . . . . . . . . . . . . 45
3.3.3 Extended stabiliser abstract semantics . . . . . . . . . . . . 53

4 Publicly Verifiable Blind Quantum Computation 59
4.1 Verifiable blind quantum computation protocol . . . . . . . . . . . 59

4.1.1 Delegated quantum computation protocol . . . . . . . . . . 59
4.1.2 The Fitzsimons–Kashefi protocol . . . . . . . . . . . . . . . 61

4.2 Public Verifiability . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.3 Towards achievement of public verifiability . . . . . . . . . . . . . . 66
4.4 New verifiable blind quantum computation protocol . . . . . . . . 67
4.5 Publicly verifiable blind quantum computation protocol . . . . . . 74

v



4.6 Encryption scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.6.1 Inattentive evaluation of circuits . . . . . . . . . . . . . . . 80
4.6.2 Adjustment of inattentive evaluation of circuits . . . . . . . 82
4.6.3 Publicly verifiable BQC protocol exists . . . . . . . . . . . . 89

5 Conclusions 91
5.1 Stabiliser abstract semantics . . . . . . . . . . . . . . . . . . . . . . 91

5.1.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.2 Publicly verifiable blind quantum computation . . . . . . . . . . . 92

5.2.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

References 95

vi



Chapter 1

Introduction

1.1 Background

Quantum computation has attracted many researchers by its uniqueness. Though
models of quantum computation were first proposed as quantum versions of clas-
sical computation models such as Turing machines [26], logical circuits [27], and
cellular automata [55], quantum computation today has its own models. They
include adiabatic quantum computation [34, 35], topological quantum computa-
tion [40], teleportation-based quantum computation [53], and measurement-based
quantum computation [93, 94]. These models have no classical counterparts be-
cause they essentially use unique features of quantum physics such as the quan-
tum superposition principle, the existence of anyons and quantum entanglement,
and quantum measurement. The fact may indicate that quantum computation is
fundamentally different from classical computation. The uniqueness of quantum
computation also appears in quantum algorithms. Many algorithms show ad-
vantages of quantum computation over classical computation. Some algorithms
find answers with fewer queries than the classical lower bounds [6, 28, 56]. Some
algorithms give ways to solve problems in polynomial time that are believed to
be intractable for any classical computer [4, 40, 100].

One may think that the uniqueness and advantages of quantum computation
mean that classical computers are useless for studying quantum computation:
Classical computers are, so to speak, a restricted form of quantum computers,
which is slower than the non-restricted form and cannot capture features of quan-
tum computation. So, appropriate tools to study quantum computation are not
classical but quantum computers. However, we claim that it is important to in-
vestigate how we can use classical computers to analyse quantum computation.
One reason to use classical computers is that there is no certainly universal quan-
tum computer now. Therefore, we cannot use a quantum computer for research
of quantum computation. Another reason is difficulty in using a quantum com-
puter. Even if it appears, a quantum computer will be very expensive and most
people will not be able to buy it. Moreover, if we can use it, it will be difficult
to use a quantum computer for everyday tasks because of decoherence. Users
will have to carefully choose which parts of computation they will perform on
quantum computers, and they will use classical computers to perform the other
parts. Therefore, it is necessary to enable classical computers to analyse quantum
computation as far as possible.

In order to efficiently analyse quantum computation, we use classical tradi-
tional methods. Quantum computation has its own framework. It is described
using linear algebras and has own methodology. These facts make us tend to
regard classical methods useless to investigate quantum computation. Some are

1



indeed used, but many classical methods have not been used or studied well.
However, we believe that quite a lot of methods help us to study quantum com-
putation and that if we find useful classical methods, they will accelerate the re-
search of quantum computation using the knowledge about them. As evidences,
we show two classical methods are useful to investigate quantum computation.
Specifically, we use abstract interpretation and classical public-key encryption
schemes to analyse entanglement in quantum programming languages and blind
quantum computation protocols. The details of these topics are as follows.

1.1.1 Quantum programming language

It is reasonable to expect that quantum programming languages will be nec-
essary to operate quantum computers when they appear. As preparation for
the future, various quantum programming languages have been proposed and
studied until now [41, 104]. They include imperative languages [83, 96], func-
tional languages [97, 99, 106], languages for measurement-based quantum com-
putation [23, 24], and process calculi [37, 62], if we can call them programming
languages. One direction of the research of quantum programming languages is
to sophisticate languages. That makes it easy for programmers to write quantum
programs and implement quantum information systems.

Another direction is program analysis. Sophisticated classical programming
languages generally enable us to construct large and complicated systems. That
is also true for quantum programming languages. For example, a quantum circuit
composed of thirty trillion quantum gates was generated using Quipper [54]. It
is too difficult to check their correctness by hands, so it is necessary to perform
automatic verification and analysis. While verification and analysis are well-
studied in classical languages, those in quantum programming languages have
their own targets and difficulties. One is linearity. Quantum programming lan-
guages are required to be linear, which means that the same variable cannot be
used twice at the same time. Since any transformation of a quantum state is lin-
ear, quantum data cannot be cloned, but programmers will be able to duplicate
quantum data if they can freely use (quantum) variables. Therefore, quantum
programming languages are required to forbid them to do so. A well-established
method to achieve that is the use of linear type systems [5, 98]. Based on linear
logic, these systems guarantee that duplication of any variable does not occur.
Another and more interesting target of analysis is quantum entanglement. Al-
though there are linear classical languages, entanglement analysis is unique to
quantum languages because the existence of quantum entanglement is a unique
feature of quantum physics. Quantum entanglement is known to be a key resource
of quantum communication [12, 13] and computation [93, 94]. Unexpected lack
of entanglement dooms quantum protocols. Entanglement analysis will help us
to find it. Moreover, it will be useful for finding bugs [61]. Quantum algorithms
often use ancilla systems. These systems are temporarily used, and they are
discarded when they are no longer useful. In order not to disturb the state of
the other system, the state of the ancilla is expected not to be entangled with
that of the other system. The existence of entanglement suggests that the pro-
gram contains bugs. Several papers studied analysis of entanglement in quantum
programs [42, 43, 61, 87, 89, 92].

2



1.1.2 Blind quantum computation protocol

A blind quantum computation (BQC) protocol [16] is a communication protocol
between two parties, Alice and Bob, to solve the following problem. Suppose
Alice has a function f and an input x, and wants to learn f(x). Although the
evaluation needs quantum computation, she does not have a quantum computer.
Then, she delegates the evaluation to Bob’s quantum server. Difficulty is that
she does not trust him. While she wants to use his better computational ability,
she does not want to let him learn anything about x, f(x), or f . She tries to
keep them secret as far as possible. A similar problem was proposed in [36]. At
that time, no quantum resources were considered and f was not required to be
secure. In the paper, it was shown that some function such as discrete logarithms
can be securely delegated in the sense of information theory. Nevertheless, it was
shown in [2] that no NP-hard computation can be securely delegated unless the
polynomial hierarchy collapses at the third level. Around twenty years later,
the problem was tackled with quantum resources [7]. The first BQC protocol
was proposed in [18]. The protocol achieves universality in the sense that Alice
can securely delegate any quantum computation, but it requires Alice to have
quantum memory.

The protocol in [16] is a universal BQC protocol. Advantages of the protocol
are that she is required to have no quantum device except for a single qubit gen-
erator and that it guarantees the perfect security. Especially, Alice who does not
have quantum memory can execute the protocol. The main idea of the protocol
is use of the measurement-based quantum computation model. The model di-
vides quantum computation into classical parts and quantum parts. Encrypting
these parts by the one-time pad and random rotations, the protocol achieves the
perfect security.

Since then, much research has been focused on the topic. Some experimen-
tally demonstrated BQC protocols [9, 10]. Some discussed the security of BQC
protocols [31, 45]. Another direction of research has been to propose more prac-
tical protocols. Although the original protocol used the brickwork states, some
proposed BQC protocols using other quantum states such as the decorated RHG
lattice [78] and the AKLT state [77]. Furthermore, BQC protocols were proposed
in other models including the quantum circuit model [46], the DQC1 model [63],
the continuous-variable model [74], and the ancilla-driven model [102]. As there
is no efficient BQC protocol without interaction [108], Alice has to interact to
Bob in BQC protocols. Several papers proposed more efficient protocols in terms
of communication between them [46, 72, 90]. Moreover, many papers weakened
the requirements on Alice [16, 32, 68, 79, 80].

The other direction has been about verifiability. In BQC protocols, Bob
cannot learn anything about the computation. However, he can tamper with
the output, f(x). Because BQP, the complexity class of problems solved by
quantum computers in polynomial time, is believed not to be included by NP,
Alice may be unable to confirm the correctness of the given output. A property
of a BQC protocol named verifiability guarantees that she can refuse an incorrect
output with a high probability. Several papers proposed BQC protocols with the
property [3, 39, 58, 75, 76].

1.2 Contributions

The contributions of Chapter 3 are as follows.

• We propose a new abstract semantics of the quantum imperative language

3



using stabilisers, prove that the semantics is sound, and show the seman-
tics enables strictly finer analysis than an existing abstract semantics does
by establishing a Galois connexion between our domain and the existing
domain.

• We generalise stabilisers and propose another new abstract semantics using
these extended stabilisers. We also prove the soundness of this semantics
and show that the semantics is more concrete than the previous semantics
with stabilisers.

The contributions of Chapter 4 are as follows.

• We formulate a new property of BQC protocols named public verifiability.

• We propose a publicly verifiable BQC protocol under the assumption of the
existence of an appropriate encryption scheme.

• We show the existence of such an appropriate scheme and thus the existence
of a publicly verifiable BQC protocol.

We briefly describe the details.

• In Chapter 3, we propose an abstract semantics of a quantum program-
ming language, the quantum imperative language, using stabilisers. Al-
though abstract interpretation was used to analyse entanglement [89], the
existing abstract semantics uses bases of single qubit states and decides
whether separable states become entangled through a unitary operator on
multiple qubits. Hence, the semantics is naive and fails to exactly analyse
entanglement in simple examples. Then, we generalise bases from those
of single qubit states to those of multiple qubit states. We decide to use
stabilisers as expressions of bases of multiple qubit states and prove that
separability of states can be analysed through separability of stabilisers.
The result justifies our usage of stabilisers. Using stabilisers, we propose
a new abstract domain and new abstract semantics. We define a sound-
ness relation and prove that the semantics is sound. Although it is difficult
to exactly compute some part of the semantics, we show an approxima-
tion is easy to compute. Furthermore, we estimate the time complexity of
computing an approximation of the semantics and conclude that it is effi-
cient for constant-depth programs. Then, we illustrate how the semantics
works better. We construct a Galois connexion between our domain and
the existing domain, and prove that the existing semantics is a sound ab-
straction of our semantics. Next, we propose another abstract semantics.
The previous semantics has no tolerance to non-Clifford gates. Abstracting
non-Pauli matrices, we generalise stabilisers to extended stabilisers. These
extended stabilisers can be understood as abstractions of general bases, al-
though stabilisers are bases of stabiliser states. In spite of the existence of
abstracted non-Pauli matrices, extended stabilisers tell us separability of
the associated bases. Using the fact, we propose a new abstract domain
and a new abstract semantics. We also prove that the semantics is sound,
its approximation can be efficiently computed, and it is strictly better than
the previous semantics. These results show that abstract interpretation is
a valuable method for quantum computation.

• In Chapter 4, we propose a publicly verifiable BQC protocol. We illustrate
how verifiability is insufficient for some practical problem. In order to solve

4



the problem, we discuss what kind of property is necessary. We formu-
late public verifiability as an answer of the question. Then, we suggest a
classical public-key encryption scheme helps a verifiable BQC protocol to
achieve public verifiability. We concretise the idea and propose a new proto-
col with an encryption scheme. We impose several conditions to the scheme
and show the protocol is a verifiable BQC protocol under the conditions.
Because the conditions seem to be too strong, we relax them and show a
protocol is a verifiable BQC protocol under the weaker conditions. In order
to achieve public verifiability, a security condition is additionally imposed.
We propose a protocol and prove that it is a publicly verifiable BQC proto-
col under the several conditions and an assumption that the client cannot
create entanglement. Finally, we construct an encryption scheme satisfying
these conditions and thus show a publicly verifiable BQC protocol exists
under the assumption. Although classical public-key encryption schemes
usually have been described as rivals for quantum computing, our result
shows that they enhance quantum computation.

1.3 Related work

1.3.1 Stabiliser abstract semantics

In Chapter 3, we propose two abstract semantics of a quantum programming
language, the quantum imperative language (QIL), to analyse quantum entan-
glement. As mentioned in a previous section, analysis of quantum entanglement
in quantum programming languages has been studied in several papers [42, 43,
61, 87, 89, 92].

• Perdrix proposed an abstract semantics of QIL to analyse quantum entan-
glement [89]. As discussed in Chapter 3, our abstract semantics is based
on the semantics. It uses facts that a measured qubit is not entangled with
the other qubits, QIL has no unitary transformation creating entanglement
other than CX, and CX(|ψ⟩⊗ |ϕ⟩) is not entangled when either |ψ⟩ is |0⟩ or
|1⟩, or |ϕ⟩ is |+⟩ or |−⟩. Its abstract state records information about basis
where the state of each qubit belongs, and the abstract semantics uses the
information to decide whether qubits are entangled after applying CX. In
Chapter 3, we show that our semantics gives finer entanglement analysis
than the semantics in [89] does. This is because Perdrix’s semantics over-
looks facts that CX undoes some entanglement and that measurement may
destroy entanglements between unmeasured qubits.

• Prost and Zerrari used Hoare-like logic to analyse entanglement in a higher-
order quantum programming language [92]. The analysis is based on a
similar idea to [89]. The logic has an assertion ∥u that means u is in the
standard basis, but it has no assertion about X basis. It concludes that
CX(|ψ⟩ ⊗ |ϕ⟩) is not entangled only when |ψ⟩ is in the standard basis.
Therefore, we can say that their analysis is coarser than Perdrix’s analysis
and thus ours.

• Perdrix proposed a type system on a functional language to analyse en-
tanglement [87]. Its typing rules are based on a similar idea to the above
ideas. However, it does not use any information about basis. Therefore, it
always reasons that two qubits are possibly entangled pair after a unitary
transformation on two qubits is applied to them. Therefore, it gives worse
analysis than ours does.

5



• A compilation framework named ScaffCC was proposed in [61]. Entangle-
ment analysis is performed on the framework. Although we analyse en-
tanglement using information about an input state, ScaffCC does not use
it. In other words, its analysis is state-independent. It uses the fact that
the unitary operator CX is Hermitian. CX creates entanglement, but it is
cancelled when CX is applied to the same qubits again. Even if two CX’s
are not applied successively, entanglement is cancelled when the states of
the qubits do not essentially change. In [61], the condition that the state
does not essentially change is formulated as the condition that the qubits
are not used as target qubits of other operators. We admit an advantage of
the method in some cases. A program CX(j,k);CX(j,k) does not entangle
qubits. While our method reasons that the output state may be entan-
gled when the input abstract state contains ({ j } ,■) and ({ k } ,■), which
mean that the abstract state have no information about the states of the
qubits j, k, the above method always reasons correctly. However, because
the method is state-independent, it cannot reason separability depending
on the input state. For example, it cannot say that CX |00⟩ is separable.
Moreover, the method does not cover any universal set or the Clifford group.
We should emphasise that our method can be used to analyse entanglement
of any quantum program.

• In Chapter 3, we use the stabiliser formalism to define abstract semantics.
The stabiliser formalism was used to analyse entanglement in model check-
ing tools [42, 43]. A big difference between them and ours is that these tools
restrict operators to the Clifford operators. This is because they use pure
states to trace all possible runs. Moreover, they do not record a partition
about entangled qubits but compute the partition using the bipartite nor-
mal form [8] of a stabiliser when it is needed. It contrasts with our method.
We decompose stabiliser arrays when we can and the principle allows us to
use non-Clifford operators.

1.3.2 Publicly verifiable blind quantum computation

• Verifiability is a property that enables Alice to judge whether she obtains
the correct outcome and there are several BQC protocols satisfying verifi-
ability [3, 39, 76, 58]. Our new property, public verifiability, is similar to
verifiability in the sense that both properties enable parties who have no
sufficient quantum devices to judge whether Alice obtains the correct out-
come. They are different in the parties who can do verification. Verifiability
helps only Alice, the client, but public verifiability guarantees that anyone
can correctly guess whether Alice obtains a correct outcome. Especially,
public verifiability enables a third party to verify that. There is no study
of BQC protocols that cares about a third party. That may be because,
in BQC protocols, Alice is always assumed to be honest. As discussed in
Chapter 4, public verifiability is useful to solve a conflict between possibly
evil Alice and possibly evil Bob. There is no reason to trust Alice, so public
verifiability is a meaningful property and our study shows a new direction
of the research of BQC protocols.

• We used a classical public-key encryption scheme to achieve public verifi-
ability. In the area of quantum computation and communication, it is not
so unusual to use classical cryptography. For instance, in quantum key dis-
tribution such as BB84 [11], quantum states are used to generate a shared

6



secret bit string and then they will be used as a private key of the one-time
pad. Many BQC protocols such as [16] use the one-time pad to achieve
perfect blindness. However, what is common is to use the one-time pad, a
classical private-key encryption scheme. It is not common to use a classical
public-key encryption scheme. As far as we know, this is the first time that
classical public-key encryption schemes collaborate with BQC protocols,
and perhaps with quantum computation.

• Our public verifiability is a new property of BQC protocols. However, in
the area of classical computation, a similar property has already been dis-
cussed [38, 49, 85, 86]. Parno et al. [86] defined “public verifiability” as
a property of outsourced computation. To avoid confusion, we use the
adjective “classical” for the “public verifiability”. The outsourced compu-
tation enables a computationally weak client to delegate computation to a
powerful server. Roughly speaking, classical public verifiability guarantees
that anyone can verify that the server returns the correct outcome. Slightly
more formally, classical public verifiability was defined as follows. First, the
client sends the server a function f and an input x where the client wants
to learn f(x). The client also computes a verification key from f and x, and
makes the key public. The server outputs f(x) with a “proof”. Verifiers
including third parties check the proof with the verification key and verify
the correctness of the outcome. Classical public verifiability is a property
that computationally guarantees that the server cannot deceive the veri-
fiers. We should note that classical public verifiability does not care about
the possibility of evil Alice. In classical public verifiability, third parties are
on the side of Alice. On the other hand, they behave neutrally in our pub-
lic verifiability. Papamanthou et al. [85] proposed a similar model named
signatures of correct computation, where verifiers can verify the outcome
without a verification key issued by the client. However, the model uses a
trusted party and verifiers use a key issued by the party instead. Note that
our public verifiability and our publicly verifiable protocol do not need such
a trusted party.

1.4 Organisation

The rest of this thesis is organised as follows. In the next chapter, we describe
basic notions necessary to read the thesis. In Chapter 3, we enter entanglement
analysis in quantum programming language. We introduce two abstract seman-
tics. In Chapter 4, we move to BQC protocols. We propose a publicly verifiable
BQC protocol. In the last chapter, we summarise our work. Then, we discuss
possible future work.

7



Chapter 2

Preliminaries

2.1 Notation

In this thesis, we use the following notation.

• N and C are the sets of natural numbers and complex numbers. B is the set
of bit values { 0, 1 }. B∗ is the set of bit strings. [<n] is the set of natural
numbers less than n.

• PX is the power set of a set X. X ⇒ Y is the function space from X to a
set Y . For any f ∈ X ⇒ Y , x ∈ X, and y ∈ Y , f [x 7→ y] is the new function
g ∈ X ⇒ Y defined by g(x) = y and g(z) = f(z) for any x ̸= z ∈ X.

• Zn is the ring of integers modulo n. Z∗
n is the multiplicative group of integers

modulo n. GL(n, F ) is the general linear group of n×n matrices over a field
F . ⟨g0, g1, . . . , gm−1⟩ is the abelian group generated by g0, g1, . . . , gm−1. It
is also denoted by ⟨gj⟩j<m. We always assume each gj is independent.

• {aj}j∈J and (aj)j∈J denote a family and a sequence, respectively. There
is not so big a difference between them. The elements of the latter are
ordered, but those of the former are not necessarily so.

• M{j,k} denotes the (j, k)th entry of a matrix M . M{j,} is the jth row of a
matrixM . s{j} denotes the jth entry of s. When s is a sequence (sk)k, s{j}
is sj . When s is a tensor product s =

⊗
k sk, s{j} is sj .

• ΠX is the set of partitions of a set X. An order ≤Π on ΠX is defined by
P ≤Π P ′ if and only if for any Q′ ∈ P ′, there exist Q0, . . . , Qm−1 ∈ P such
that Q′ =

∪
j Qj . (Π

X ,≤Π) is known to be a lattice.

• Let G be a graph. NG(v) is the set of neighbourhoods of a vertex v.

• x ← X means the event of taking x from a random variable X. When X
is a set, it is the event of sampling x uniformly randomly from a set X.

• I is the identity operator, which usually acts on C2. L† and trL are the
adjoint and the trace of a linear operator L.

• pr0 is the zeroth projection map. pr0(x, y) = x and pr0(X × Y ) = X.

• For U(j) and ρ[j], see the next section.

8



When we define a function f as follows, f(x) is y1 if and only if P0 does not
hold but P1 holds. In other words, the conditions in the definition are always
exclusive.

f(x) =


y0 (P0 holds)
y1 (P1 holds)
yo (otherwise)

(2.1)

2.2 Quantum computation

We briefly describe the basics of quantum computation. For the details, see a
textbook such as [82].

2.2.1 Rudiments of quantum computation

Quantum state A quantum system is a physical entity. It is equipped with a
Hilbert space H called the state space. We assume that any state space has the
finite dimension and therefore it is isomorphic to Cn with some n. We identify a
quantum system with its state space. A pure state of a quantum system is a ray
of the state space. As a representative of a ray, we use a unit length vector. A
qubit is a quantum system whose state space is C2. We take a basis of the space
and write it as |0⟩ and |1⟩. The basis is fixed through the thesis and used as the
standard basis of C2. Generally, a pure state of a qubit is α |0⟩ + β |1⟩ where α
and β are complex numbers such that |α|2 + |β|2 = 1.

Example 2.2.1. Let θ be a real number. The following vector is a state of a
qubit.

|+θ⟩ =
1√
2
|0⟩+ eiθ√

2
|1⟩ (2.2)

It is easy to see θ and θ+2π determine the same state. We write |+⟩ and |−⟩ to
denote |+0⟩ and |+π⟩.

The state space of a composite system is defined by the tensor product of
the state spaces of the subsystems. Therefore, the state space of n qubits is
C2⊗n ≃ C2n . From now on, we focus on multiple qubits. We assume that the
dimension of any state space is a power of two. When the pure state of each
subsystem is known, the pure state of the composite system is given by the
tensor product of them. For example, when pure states of quantum systems HA
and HB are |+⟩ and |0⟩, the whole pure state of the system HA⊗HB is |+⟩⊗ |0⟩.

Notation 2.2.2. We write |+⟩[A] to emphasise that |+⟩ is a state of HA.

Notation 2.2.3. We use Dirac’s bra-ket notation [30]. A ket notation |⟩ denotes
a pure state, or equivalently a linear function from C to the state space. A bra
notation ⟨| gives its dual. For a ket |ψ⟩, the dual ⟨ψ| is a linear function from
the state space to C. Given a ket |ϕ⟩, it outputs the inner product of |ψ⟩ and
|ϕ⟩, which is denoted by ⟨ψ|ϕ⟩. Concatenation of a ket and a bra represents
the composition of them as linear functions. The tensor product of two kets or
two bras are denoted by concatenation of their labels. For example, |+⟩ ⊗ |0⟩ is
written by |+0⟩. It gives a canonical embedding of a bit string s into a quantum
state |s⟩.

A density operator on a finite dimensional Hilbert space is a positive semidef-
inite operator on the space whose trace is less than or equal to one. Dn is the
set of density operators on n qubits. The Löwner order ⊑ is an order on the set:
ρ ⊑ σ if and only if σ − ρ is positive semidefinite.

9



Proposition 2.2.4 ([97]). The partially ordered set (Dn,⊑) is a complete par-
tially ordered set. Furthermore, the poset is not a lattice.

A mixed state of a quantum system is a density operator on the state space. A
composite mixed state is also given the tensor product of the mixed states of the
subsystems whenever they are known. We use a term quantum state to denote a
pure or mixed state of a quantum system.

A mixed state can be understood as an ensemble of pure states. For any
mixed state ρ, there exists an ensemble of pure states {|ψj⟩}j such that

ρ =
∑
j

pj |ψj⟩⟨ψj | (2.3)

where pj is the probability of taking |ψj⟩ and they satisfy
∑

j pj ≤ 1. A mixed
state |ψ⟩⟨ψ| is identified with the pure state |ψ⟩.

Another view of a mixed state is a state of a subsystem. When a state of
a composite system HA ⊗ HB is ρ, the state of HA is virtually understood as
trB (ρ), ignoring the state of HB. The partial trace trB is a linear function
defined by trB (ρ⊗ σ) = ρ⊗ tr (σ). The partial trace of a pure state is not always
a pure state. Any mixed state is a partial trace of a pure state of larger system.
For any mixed state ρ of HA, there exist a system HB and a pure state |ψ⟩ of
HA ⊗ HB such that trB (|ψ⟩⟨ψ|) = ρ. The former view shows a mixed state is
a generalisation of a pure state. However, the latter tells us that if we can use
any number of qubits, there is no essential difference between a pure state and a
mixed state.

Unitary transformation A deterministic transformation of a quantum state
is a unitary operator on the state space. When a pure state |ψ⟩ is transformed
by a unitary operator U , the state is changed into U |ψ⟩. Similarly, a mixed state
ρ is changed into UρU †. When a quantum state of a system HA is transformed
by U , the entire state of a composite system HA ⊗HB is transformed by U ⊗ I
where I is the identity operator acting on HB.

Notation 2.2.5. We use U(A) to denote the transformation U ⊗ I.

Example 2.2.6. The following operators are transformations on single qubit.

X = |0⟩⟨1|+ |1⟩⟨0| Y = −i |0⟩⟨1|+ i |1⟩⟨0|
H = |+⟩⟨0|+ |−⟩⟨1| Z(θ) = |0⟩⟨0|+ eiθ |1⟩⟨1|

(2.4)

Z, S, and T are defined to be Z(π), Z(π2 ), and Z(π4 ). They act on single qubit as
follows

H |0⟩ = |+⟩ Z(θ) |+ϕ⟩ = |+ϕ+θ⟩ X |+ϕ⟩ = |+−ϕ⟩ (2.5)

The following is transformations on two qubits.

CX = |0⟩⟨0| ⊗ I + |1⟩⟨1| ⊗X CZ = |0⟩⟨0| ⊗ I + |1⟩⟨1| ⊗ Z (2.6)

Any unitary operator can be written by the above unitary operators, their
tensor products, and their compositions. Specifically, a set {H,Z(θ),CX } is
sufficient to construct any unitary operator. Such a set is said to be universal.
{H,T,CX } is not universal because it is finite. However, by the Solovay-Kitaev
theorem, the set suffices to efficiently construct an approximation of any unitary
operator in arbitrary precision. Such a set is approximately universal, or simply
universal. We use the set later.

A well-known feature of quantum states is that they cannot be cloned. This
feature illustrates how quantum states differ from classical states.

10



Theorem 2.2.7 ([29, 107]). Let H be a Hilbert space. Assume the dimension
is larger than 1. There is no copying operator f : H → H ⊗ H, which satisfies
f(|ψ⟩) = |ψ⟩ ⊗ |ψ⟩ for any |ψ⟩ ∈ H. In particular, when there exists a unitary
operator U on H⊗H and f(|ψ⟩) = U(|ψ⟩⊗ |ϕ⟩) with some |ϕ⟩ ∈ H, any distinct
copyable vectors are orthogonal.

Quantum measurement Measurement extracts classical information from a
quantum state. In the thesis, measurement is a basis. When a quantum system
in the state |ψ⟩ is measured by a basis (ϕj)j of the quantum system, the measure-

ment result k is obtained by the probability | ⟨ϕk|ψ⟩ |2, and the state is changed
into |ϕk⟩. When a quantum state of a composite system HA⊗HB is |ψ⟩ and HA
is measured by (ϕj)j , we obtain k as the measurement result in the probability

∥ ⟨ϕk|ψ⟩ ∥2 and the post-measurement state is 1
∥⟨ϕk|ψ⟩∥(|ϕk⟩⟨ϕk| ⊗ I) |ψ⟩. If a pre-

measurement state is ρ, the post-measurement state is
∑

j |ϕj⟩⟨ϕj |(A)ρ|ϕj⟩⟨ϕj |(A)
where HA is the measured quantum system and (ϕk)k is the measurement. We
call measurement of a quantum system by a basis (|ϕk⟩)k by measurement in a
basis (|ϕk⟩)k. Moreover, measurement in an angle θ is measurement in the basis
(|+θ⟩ , |+θ+π⟩).

Quantum entanglement Let |ψ⟩ be a pure state of a composite system HA⊗
HB. The state is said to be separable if there exist pure states |ϕ⟩ and |φ⟩ on
HA and HB such that |ψ⟩ = |ϕ⟩ ⊗ |φ⟩. In that case, these quantum systems are
said to be separable. More generally, when P is a partition of the subsystems, a

state of a composite system is P -separable if there exists
{
|ϕ⟩[Q]

}
Q∈P

such that

|ψ⟩ =
⊗
Q∈P
|ϕ⟩[Q]. (2.7)

Example 2.2.8. The following pure states are both entangled.

|GHZ⟩ = 1√
2
|000⟩+ 1√

2
|111⟩ |GHZ4⟩ =

1√
2
|0000⟩+ 1√

2
|1111⟩ (2.8)

A mixed state ρ of the system is P -separable if there exists an ensemble of

families of mixed states
{{
ρj,[Q]

}
Q∈P

}
j
such that

ρ =
∑
j

pj
⊗
Q∈P

ρj,[Q] (2.9)

where pj is the probability of taking
{
ρj,[Q]

}
Q∈P . A non-separable state is en-

tangled. An ensemble of P -separable pure states is certainly a P -separable mixed
state. However, the converse is not necessarily true.

Example 2.2.9. The following pure states are both entangled.

|Bell0⟩ =
1√
2
|00⟩+ 1√

2
|11⟩ |Bell2⟩ =

1√
2
|00⟩ − 1√

2
|11⟩ (2.10)

However, the uniform ensemble of them is separable.

1

2
|Bell0⟩⟨Bell0|+

1

2
|Bell2⟩⟨Bell2| =

1

2
|00⟩⟨00|+ 1

2
|11⟩⟨11| (2.11)

11



Important features of quantum entanglement are that it is created by unitary
transformations on multiple qubits and it is destroyed by quantum measure-
ment. For any separable state |ψ⟩ = |ϕ⟩ ⊗ |φ⟩ of HA ⊗ HB and any unitary
transformation U on HA, U(A) |ψ⟩ = U |ϕ⟩ ⊗ |φ⟩ is definitely separable. Any lo-
cal unitary transformation cannot create quantum entanglement. However, |+0⟩
is transformed into |Bell0⟩ by CX. The former is separable, but the latter is
entangled. Contrary to unitary transformation, local quantum measurement suf-
fices to break an entanglement. When |ψ⟩ is a state of a composite system and
the jth qubit is measured in the standard basis, the post-measurement state is

1
∥⟨0|(j)|ψ⟩∥

(|0⟩[j]⊗ (⟨0|(j) |ψ⟩)) or
1

∥⟨1|(j)|ψ⟩∥
(|1⟩[j]⊗ (⟨1|(j) |ψ⟩)). The measured qubit

is always separable from the others.
Quantum entanglement plays a central role in quantum information science.

It separates quantum physics from classical physics via the violation of Bell’s
inequality; it allows a quantum state to teleport; and it forms a computational
model to quantum computation, which we will explain in a later subsection.

2.2.2 Stabiliser formalism

A quantum computer is believed to exceed a classical computer. However, a
restricted quantum computer is not necessarily so. For example, if it cannot use
any unitary operator other than CX, any computation from |0⟩ can be executed
using a classical computer because CX does not create quantum superposition.
That is a trivial example, but there exists an interesting restriction, which is the
stabiliser formalism.

Stabiliser state The unitary operators I, X, Y, and Z are called Pauli ma-
trices. Except for I, any Pauli matrix anticommutes with another Pauli matrix.
Moreover, XYZ = iI. Therefore, {±1,±i } × { I,X,Y,Z } is a group, which is
called the Pauli group. It can be generalised to multiple qubits. A Pauli ma-
trix (on n qubits) is a tensor product of n Pauli matrices. They form a group
with multiplcative factors ±1 and ±i, which is the Pauli group (on n qubits).
An element of the Pauli group either commutes or anticommutes with another
element.

Let V be a subspace of C2n , the state space of n qubits. A stabiliser of V is
a subgroup of the Pauli group on n qubits that stabilises any vector in V . More
explicitly, it is the set of Pauli matrices P such that for any |ψ⟩ ∈ V , P |ψ⟩ = |ψ⟩.
A subgroup is said to be a stabiliser if it is a stabiliser of a nontrivial subspace. A
subgroup of the Pauli group on n qubits is a stabiliser if and only if it is abelian
and it does not contain −I⊗n. A stabiliser generated by m independent Pauli
matrices stabilises a subspace of dimension 2n−m. In particular, ⟨P0, . . . , Pn−1⟩
stabilises a unique state, which is called the stabiliser state. While such a sta-
biliser has 2n elements, it is completely determined by n generators. A standard
description of a quantum state needs 2n complex numbers, so these generators
give us a compact way to express a quantum state.

Notation 2.2.10. We usually omit to write ⊗ in a tensor product of Pauli
matrices. I ⊗ X ⊗ Y is denoted by IXY. Although the notation seems to cause
confusion between a tensor product and a product, it is always easy to distinguish
them from the context.

Example 2.2.11. |0⟩ is the stabiliser state defined by ⟨Z⟩. |−⟩ is the stabiliser
state defined by ⟨−X⟩. The stabiliser state of ⟨XXX,ZZI, IZZ⟩ is nothing but
|GHZ⟩.

12



Clifford transformation Suppose a Pauli matrix P stabilises a state |ψ⟩,
which means P |ψ⟩ = |ψ⟩. Given a unitary transformation U , U |ψ⟩ is stabilised
by UPU †. Indeed, UPU †U |ψ⟩ = UP |ψ⟩ = U |ψ⟩. Therefore, when the stabiliser
state of a stabiliser S is |ψ⟩, U |ψ⟩ is the stabiliser state of USU † where S =
⟨P0, . . . , Pn−1⟩ and USU † = ⟨UP0U

†, . . . , UPn−1U
†⟩. Unfortunately, we cannot

use every unitary transformation within the stabiliser formalism because UPU † is
not always a Pauli matrix even when P is so. A subgroup of the group of unitary
operators on n qubits is the Clifford group if it is the normaliser of the Pauli group
on n qubits. A Clifford operator is an element of the Clifford group. It is known
that the Clifford group is generated by unitary operators H, S, CX. For example,
H(0) changes a stabiliser ⟨ZY,YX⟩ into ⟨XY,−YX⟩. The set {H,S,CX } is not
a universal set, although the set {H,T,CX } is universal. The unitary operator
T is not a Clifford operator. Indeed, TXT† = 1√

2
X + 1√

2
Y, which is not a Pauli

matrix.

Measurement in the stabiliser formalism The stabiliser formalism also
allows us to measure a quantum system having a stabiliser state. Suppose a pre-
measurement state is the stabiliser state defined by ⟨P0, . . . , Pn−1⟩. When the jth
qubit is measured in the standard basis, either no Pk{j} anticommutes with Z or
there is Pk{j} anticommuting with Z. In the former case, the result of the mea-
surement is deterministic. As Z commutes with any Pk{j}, Z(j) commutes with
any generator of the stabiliser. It means that either Z(j) or −Z(j) belongs to the
stabiliser. If not, Z(j) is independent from the generators and ⟨P0, . . . , Pn−1,Z(j)⟩
stabilises a subspace of the dimension 2−1. When Z(j) or −Z(j) belongs to the
stabiliser, the measurement result is 0 or 1, respectively. This measurement does
not change the stabiliser state. On the other hand, the measurement result is
probabilistically determined in the case that there is Pk{j} anticommuting with
Z. If both Pk{j} and Pl{j} anticommutes with Z, we can replace the lth generator
with PkPl, which does not change the stabiliser. Therefore, without loss of gen-
erality, we can assume there exists a unique k such that Pk{j} anticommutes with
Z. Then, the measurement result b is uniformly randomly chosen from B and the
post-measurement state is stabilised by ⟨P0, . . . , Pk−1, (−1)bZ(j), Pk+1, . . . , Pn−1⟩.

Gottesman–Knill theorem A stabiliser compactly expresses a quantum state.
A quantum state on n qubits is completely determined by n2 Pauli matrices and
n multiplicative factors. Both Clifford transformations and measurement in the
standard basis do not break the expression. Therefore, a classical computer can
efficiently simulate quantum computation within the stabiliser formalism. The
Gottesman–Knill theorem states the fact.

Theorem 2.2.12 ([52, 82]). A classical computer can efficiently perform any
quantum computation starting from a quantum state in the standard basis, ap-
plying H, S, and CX, and measuring qubits in the standard basis.

Since one non-Clifford operator T is sufficient to make the Clifford group
universal, the stabiliser formalism may be understood as a maximal classical
subset of quantum computation.

At the end of the subsection, we emphasise that a stabiliser state may be an
entangled state. Although the existence of quantum entanglement is a unique
feature of quantum computation, it does not suffice to exceed classical computa-
tion.

13



2.2.3 Measurement-based quantum computation

There are many computational models of quantum computation such as quantum
circuits and quantum Turing machine. Measurement-based quantum computa-
tion (MBQC) [93, 94] is one of them. This model has no corresponding classical
computational model because it fully uses quantum entanglement and quantum
measurement, which are features of quantum computation. In the model, an
entangled state is first created and then destroyed by quantum measurement.

Let G be an undirected simple graph (V,E). The graph state |G⟩ is a sta-
biliser state of |V | qubits. Each qubit is labelled a different vertex of the graph.

The state is stabilised by the stabiliser
⟨
X[v] ⊗

⊗
(v,u)∈E Z[u]

⟩
v∈V

. The stabiliser

formalism tells us how to construct the state. First, the state of any qubit is
set |+⟩. This is the stabiliser state of ⟨X⟩ and therefore the whole state is sta-
bilised by

⟨
X[v]

⟩
v∈V . Then, for any edge, a unitary operator CZ is applied to the

adjacent qubits. Since CZ(XI)CZ† = XZ and CZ(ZI)CZ† = ZI, it changes the

stabiliser of the entire state into
⟨
X[v] ⊗

⊗
(v,u)∈E Z[u]

⟩
v∈V

.

More generally, an open graph state is defined. An open graph consists of an
undirected simple graph (V,E) with two sets of vertices I,O having the same
size. These sets are called input vertices and output vertices. An open graph
state is created in the same manner as a graph state except that the state of any
input vertex is not set |+⟩. A flow [17, 22] on an open graph (G, I,O) is a pair of
a function f : (V \O)→ (V \ I) and an order ≤ on V that satisfies the following
three conditions for any non-output vertex v:

1. v is adjacent to the vertex f(v),

2. v ≤ f(v), and

3. for any vertex u adjacent to f(v), v ≤ u.

For any open graph, a flow is unique if it exists [25].
Measurement-based quantum computation is specified by an open graph with

a flow and an angle for each non-output vertex, and it implements a unitary trans-
formation from the input qubits to the output qubits. Here, input and output
qubits mean qubits labelled input and output vertices, respectively. Each angle
determines measurement of each qubit, and hence the set of them determines the
unitary transformation. The computation is performed as follows. Suppose there
are qubits having possibly unknown states. Using the qubits as the input qubits,
the open graph is first created with auxiliary qubits whose states are all |+⟩.
Then, non-output qubits are measured. An order of the measurement respects
the order in the flow: if v ≤ u, v is measured earlier than u is. Each non-output
qubit v is measured in the associated angle with a modification. Let ϕ be the
associated angle. The actual angle ϕ′ is determined by the measurement results
of the previously measured qubits:

ϕ′ = (−1)
∑

u∈f−1(v) buϕ+ π
∑

v∈NG(f(u))

bu (2.12)

where bu is the measurement result of u. Note that the conditions of a flow
guarantees that all qubits where ϕ′ depends are previously measured, and hence
ϕ′ is well-defined. After measuring all non-output qubits, only the output qubits
remain unmeasured. Finally, the state of each output qubit v is transformed by

X
∑

u∈f−1(v) buZ
∑

v∈NG(f(u)) bu . The state of the output qubits are the output state
of the computation.

14



Example 2.2.13 ([94]). Let us take the straight line graph of five vertices.
Explicitly, V = [<5] and E = { (n, n+ 1) | n ∈ [<4] }. The vertex 0 and 4 are
the input and output vertices. The order is the usual order and therefore the
function of the flow assigns the next vertex n + 1 to a vertex n. Suppose each
vertex n corresponds to an angle θn where all θn = 0 except for θ2 = π

4 . Then,
the output state is T |ψ⟩ where |ψ⟩ is the state of the input qubit. Generally, if
θ0 = 0, the output state is HZ(θ3)HZ(θ2)HZ(θ1)H |ψ⟩. Any unitary operator on
single qubit can be decomposed into such operators.

The above example shows any single qubit unitary operator is implemented
on a sufficiently long straight line graph. In general, not all open graphs allow
us to implement any unitary operator. However, there are universal open graph
states such as brickwork states [16], where the term universal means that any
unitary operator can be efficiently implemented on the state.

2.3 Abstract interpretation

Abstract interpretation [19, 20, 21] is a method for sound approximations. It
answers a question about a program without running it. In other words, it helps
us to statistically analyse a property of a program. The analysis is sound but not
generally complete. It can be understood through a simple example.

Example 2.3.1 ([20, 101]). Suppose we want to know the sign of the following.

−13490673× (5718927 + 5317859)− 8123756 (2.13)

One way is computing the result value. However, we can deduce that it is negative
by abstracting each number to its sign.

(−)× ((+) + (+))− (+) (2.14)

The abstraction fails when we replace 5317859 with −68794123. The sign of
(+) + (−) is not determined. Then, we prepare (±) for upper approximation
of (+) and (−). With the symbol, we can perform sound analysis of signs of
numbers.

Abstract interpretation describes a relationship between two domains: a con-
crete (semantic) domain and an abstract (semantic) domain. On each domain,
a semantics of programs is defined: a concrete semantics and an abstract se-
mantics. In the above example, Z and { (+), (−), (±) } are a concrete and an
abstract domains and semantics such as 5718927 + 5317859 = 11036786 and
(+) + (+) = (+) are concrete and abstract semantics. A relationship between
two domains is formulated as a soundness relation.

Definition 2.3.2. Let L be a concrete domain and M be an abstract domain.
A soundness relation is a subset of L×M . Let J·KL and J·KM be a concrete and
an abstract semantics. J·KM is a sound abstraction of J·KL if there exists a sound
relation σ such that for any program C, (x, y) ∈ σ implies (JCKL(x), JCKM (y)) ∈
σ.

Concrete and abstract domains may form a Galois connexion. In this case, a
soundness relation is naturally induced.

Definition 2.3.3. Let (L,≤L) and (M,≤M ) be posets. A pair of functions
α : L → M and γ : M → L is a Galois connexion if for any x ∈ L and y ∈ L,
α(x) ≤M y if and only if x ≤L γ(y).

15



Proposition 2.3.4. α and γ are monotone.

Proposition 2.3.5. The definition of a Galois connexion is equivalent to the
following definition: for any x ∈ L and y ∈ L, x ≤L γ(α(x)) and α(γ(y)) ≤M y.

Let L be a concrete domain and M be an abstract domain. Their orders
show which one has more information: smaller one has more information. When
α : L → M and γ : M → L form a Galois connexion, α and γ are called an
abstraction function and a concretisation function. The inequality x ≤L γ(α(x))
shows the abstraction loses some information.

Proposition 2.3.6. Let α : L → M and γ : M → L and assume they form
a Galois connexion. Moreover, assume J·KM is monotone. Let σ be the set
{ (x, y) | α(x) ≤M y }. Assume for any program C and x ∈ L, α(JCKL(x)) ≤MJCKM (α(x)). Then, J·KM is a sound abstraction of J·KL.
2.4 Encryption scheme

An encryption scheme describes how to protect messages from non-authorised
parties. In the thesis, we use public-key encryption schemes. These schemes are
specified by determining how to generate keys; how to encrypt messages; and
how to decrypt encrypted messages.

Definition 2.4.1. A (public-key) encryption scheme E is a triplet (G,E,D)
consisting of

• a probabilistic algorithmG that computes a pair of an encryption key e ∈ B∗

and a decryption key d ∈ B∗ from 1n where n is a natural number and it is
called the security parameter,

• a probabilistic algorithm E that, given bit strings e and m, computes a
ciphertext α ∈ B∗ of m, or outputs an error, and

• a deterministic algorithm D that, given bit strings e, d, and α, computes
the plaintext m ∈ B∗ of α, or outputs an error.

We call G, E, and D the key-generator, the encryption, and the decryption of the
encryption scheme, respectively. We define, for any n ∈ N, the key space KSn
as the support of the distribution of G(1n), the encryption key space EKSn as
pr0KSn, and the decryption key space DKSn as pr1KSn. Each encryption key
e ∈ EKSn is assumed to have an associated set of bit strings PSn,e, which is
called the plaintext space. The ciphertext space CSn,e,m is the support of the
distribution of E(e,m) where m ∈ PSn,e. CSn,e is the union of these spaces∪
m∈PSn,e

CSn,e,m. We assume the following holds for any n ∈ N.

Pr

[
m′ = m

∣∣∣∣ (e, d)← G(1n),m← PSn,e
α← E(e,m),m′ ← D(e, d, α)

]
= 1 (2.15)

Therefore, without any confusion, we can call an element of any PSn,e by a plain-
text. We assume that all elements of any plaintext space have the same lengths.
We say an encryption scheme is classical if the decryption is a polynomial-time al-
gorithm, the key-generator and the encryption are probabilistic polynomial-time
algorithms, and the lengths of plaintexts in PSn,e are polynomially-bounded with
respect to n.

16



The equation (2.15) claims that we always obtain the original plaintext when
we generate a pair of keys, encrypt a plaintext by the encryption key, and decrypt
the ciphertext by the decryption key. However, the equation does not tell us what
happens when we encrypt a bit string not in the plaintext space; when we encrypt
a plaintext by a bit string not in the encryption key space; when we decrypt a
ciphertext by a decryption key not generated with the encryption key, and so on.
A bit string in an appropriate set is said to be valid. For example, a bit string
in EKSn is a valid encryption key, and a bit string is an invalid encryption key
when it does not belong to EKSn but is used to encryption a plaintext.

Example 2.4.2. The trivial encryption scheme is a classical public-key encryp-
tion scheme such that the key-generator is G(1n) = (1n, 1n), the encryption is
ET(e,m) = m, and the decryption is DT(e, d, α) = α.

Example 2.4.3. The ElGamal encryption scheme ElGamal [33] is a classical
public-key encryption scheme (GEG, EEG, DEG) defined as follows. A safe prime
is a prime 2p + 1 such that p is also a prime. Given 1n, the key-generator GEG

generates a safe prime 2p+1 and a generator g of the subgroup Gp of order p of the
cyclic group Z∗

2p+1 where the bit length of p is n, chooses uniformly randomly x
from Zp, and outputs ((p, g, gx), x). The plaintext space PSn,(p,g,gx) is the group
Gp. For each plaintext gm ∈ Gp, EEG((p, g, gx), gm) is (gmg

xr, gr) where r is ran-
domly chosen from Zp. The decryption DEG, given ((p, g, gx), x, (gc, gr)), outputs
gc(g

x
r )

−1. It is easy to check that the scheme satisfies (2.15): gmg
xr(gxr )

−1 = gm.

Example 2.4.4. The Goldwasser-Micali encryption scheme GM [50] is a clas-
sical public-key encryption scheme (GGM, EGM, DGM) defined as follows. The
plaintext space PS is B, which is independent of the security parameter. Let
n =

∏
j pj be the product of primes {pj}. x ∈ Z∗

n is said to be a quadratic

residue mod n if there exists y ∈ Z∗
n such that x = y2 (mod n). If no such

element exists, x is a quadratic non-residue mod n. The Jacobi symbol
(
x
n

)
is∏

j

(
x
pj

)
where

(
x
pj

)
is 0 if x = 0 (mod pj), −1 if it is a quadratic non-residue

mod pj , and otherwise 1. Given 1n, the key-generator GEG generates two primes
p, q, randomly chooses a quadratic non-residue x mod n = pq such that the
Jacobi symbol

(
x
n

)
= 1, and outputs ((n, x), (p, q)). For each bit value b ∈ B,

EGM((n, x), b) is xbr2 (mod n) where r is a randomly chosen element of Z∗
n.

Given ((n, x), (p, q), α), DGM computes whether α is a quadratic residue mod n
from the knowledge (p, q).

When a public-key encryption scheme is used, an encryption key is public,
although the decryption key is kept secret. Therefore, anyone can create a ci-
phertext. Suppose Alice receives a ciphertext. She sends either the ciphertext or
a ciphertext of her own plaintext. Even if an enemy does not have the decryption
key, s/he is able to guess what she does by observing her and comparing the sent
ciphertext with the received ciphertext. If she can reencrypt the plaintext of the
received ciphertext, that is impossible. The rerandomisation forbids anyone to
trace flows of ciphertexts.

Definition 2.4.5. An encryption scheme E = (G,E,D) is (perfectly) rerandomis-
able if it has a probabilistic algorithm R that computes a bit string from two bit
strings. The algorithm R is assumed to satisfy the following.

• For any n ∈ N, any encryption key e ∈ EKSn, any plaintextm ∈ PSn,e, and
any ciphertext α ∈ CSn,e,m, R(e, α) is uniformly distributed on CSn,e,m.

17



We call R the rerandomisation. When E is classical, we always assume R is a
probabilistic polynomial-time algorithm.

Example 2.4.6. The trivial encryption scheme is trivially rerandomisable. Both
the ElGamal and Goldwasser-Micali encryption schemes are rerandomisable. Given
(p, g, gx) and (gc, gr), one can compute (gcg

xs, grg
s) with a randomly chosen

s ∈ Zp. When (gc, gr) = (gmg
xr, gr), (gcg

xs, grg
s) is (gmg

x(r+s), gr+s), which
is a ciphertext of gm. For GM, xbr2 is rerandomised to xbr2s2 = xb(rs)2 with
a uniformly randomly chosen s ∈ Z∗

n. This is uniformly random because Z∗
n is a

multiplicative group.

The rerandomisation changes ciphertexts but does not change their plaintexts.
Another operation on ciphertexts changes plaintexts. A homomorphic encryption
scheme allows anyone to perform computation on encrypted data.

Definition 2.4.7. Let E = (G,E,D) be an encryption scheme and F be a set.
Any element f of the set F is assumed to be equipped with its arity l ∈ N and
functions fe : PSln,e → PSn,e for any n ∈ N and e ∈ EKSn. An encryption
scheme is homomorphic with respect to F if it has a family of probabilistic algo-
rithms Cf each of whom computes β from l + 1 bit strings e, α0, . . . , αl−1 where
l is the arity of f and satisfies the following for any n ∈ N.

Pr

m = m′

∣∣∣∣∣∣∣∣
(e, d)← G(1n),m0, . . . ,ml−1 ← PSn,e
α0 ← E(e,m0), . . . , αl−1 ← E(e,ml−1)
β ← Cf (e, α0, . . . , αl−1)
m← D(e, d, β),m′ ← fe(m0, . . . ,ml−1)

 = 1 (2.16)

When E is classical, we always assume all Cf are probabilistic polynomial-time
algorithms. Moreover, when E is rerandomisable, we assume that for any n ∈ N,
any e ∈ EKSn, and any m0, . . . ,ml−1 ∈ PSn,e, Cf (e,E(e,m0), . . . , E(e,ml−1))
is the uniform distribution on the set CSn,e,fe(m0,...,ml−1).

Example 2.4.8. The trivial encryption scheme is trivially homomorphic with
respect to any set. The ElGamal encryption scheme is known to be multiplica-
tively homomorphic. Given an encryption key (p, g, gx), ciphertexts (gmg

xr, gr)
and (glg

xs, gs), anyone can obtain a new ciphertext (gmglg
x(r+s), gr+s) by mul-

tiplying the ciphertexts. The plaintext is gmgl, which is the product of two
plaintexts gm and gl. The Goldwasser-Micali encryption scheme is homomorphic
with respect to the bit addition. Multiplying two ciphertexts xbr2 and xcs2,
xb+c(rs)2 is obtained. The plaintext of the ciphertext is a bit value b+ c.

Finally, we give the definitions of security of encryption schemes. The first
definition states that a ciphertext gives anyone no meaningful information, even
if one has partial information about the plaintext and one does not need to learn
the entire plaintext. On the other hand, the second states that anyone cannot
guess distinguish ciphertexts of a known plaintext from ciphertexts of another
known plaintext. These two definitions are known to be equal.

Definition 2.4.9. Let E = (G,E,D) be a classical encryption scheme such that
for any n ∈ N, there exists PSn such that PSn,e = PSn for any e ∈ EKSn.
E is semantically secure if for any probabilistic polynomial-time algorithm A,
there exists a probabilistic polynomial-time algorithm B such that for any family
{Xn}n∈N of random variables Xn such that PSn includes the support of the

18



distribution of Xn, and any polynomially-bounded function f, h : PSn → B∗,∣∣∣∣∣∣∣∣∣∣∣∣
Pr

v = w

∣∣∣∣∣∣∣∣∣∣∣∣

m← Xn

(e, d)← G(1n)
α← E(e,m)
a← h(1n,m)
v ← A(1n, e, α, ln, a)
w ← f(1n,m)

− Pr

v = w

∣∣∣∣∣∣∣∣
m← Xn

a← h(1n,m)
v ← B(1n, ln, a)
w ← f(1n,m)


∣∣∣∣∣∣∣∣∣∣∣∣

(2.17)
is negligible with respect to n where ln is the length of plaintexts in PSn.

Definition 2.4.10. Let E = (G,E,D) be a classical encryption scheme such
that the plaintext space is independent of encryption keys, that is PSn,e = PSn
for any e ∈ EKSn. E has indistinguishable encryptions if for any probabilistic
polynomial-time algorithm A, any {xn}n∈N, {yn}n∈N such that xn, yn ∈ PSn, and
any family of polynomially-bounded bit strings {zn}n∈N,∣∣∣∣∣∣Pr

v = 1

∣∣∣∣∣∣
(e, d)← G(1n)
c← E(e, xn)
v ← A(e, c, zn)

− Pr

v = 1

∣∣∣∣∣∣
(e, d)← G(1n)
c← E(e, yn)
v ← A(e, c, zn)

∣∣∣∣∣∣ (2.18)

is negligible with respect to n.

Theorem 2.4.11 ([48]). Let E = (G,E,D) be a classical encryption scheme
such that the plaintext space is independent of encryption keys. E is semantically
secure if and only if it has indistinguishable encryptions.

The following security is stronger than the above. In the above, the plaintexts
are chosen independently of the encryption key. On the other hand, an attacker
can choose plaintexts after learning the encryption key in the following security
model.

Definition 2.4.12. A classical encryption scheme (G,E,D) has indistinguishable
encryptions under chosen plaintext attacks if for any probabilistic polynomial-
time Turing machine A,B and any family of polynomially-bounded bit strings
{zn}n∈N, ∣∣∣∣Pr [v = 1

∣∣∣∣ (e, d)← G(1n), ((x, y), σ)← A(e, zn)
c← E(e, x), v ← B(σ, c)

]
−Pr

[
v = 1

∣∣∣∣ (e, d)← G(1n), ((x, y), σ)← A(e, zn)
c← E(e, y), v ← B(σ, c)

]∣∣∣∣ (2.19)

is negligible where x, y ∈ PSn,e. A classical encryption scheme is IND-CPA
secure if it has indistinguishable encryptions under chosen plaintext attacks.

Proposition 2.4.13 ([48]). Let E = (G,E,D) be a classical encryption scheme
such that the plaintext space is independent of encryption keys. If E has indis-
tinguishable encryptions under chosen plaintext attacks, it has indistinguishable
encryptions.

Example 2.4.14. The trivial encryption scheme is not semantically secure. Both
the ElGamal and Goldwasser-Micali encryption schemes are IND-CPA secure un-
der the decisional Diffie-Hellman (DDH) assumption and the quadratic residuos-
ity assumption [50, 103].

19



Chapter 3

Stabiliser Abstract Semantics

Abstract interpretation is a novel way to analyse programs. In [89], it was in-
troduced to quantum programming languages for entanglement analysis. An
abstract semantics was defined and showed to be a sound approximation of a
concrete semantics. However, it does not work well in some simple examples. In
the chapter, we propose two abstract domains and two abstract semantics with
the stabiliser formalism. Both semantics are proved to be sound approximations.
Interestingly, the existing abstract domains and these two domains are connected
via Galois connexions. We can understand the existing and two abstract seman-
tics are in the relationship of approximations.

The chapter is organised as follows. In Section 3.1, we describe the existing
abstract semantics. In the next section (Section 3.2), we propose our first abstract
semantics using the stabiliser formalism. In Section 3.3, we propose the second
abstract semantics by abstracting non-Pauli matrices. In each section, we show
the soundness of the semantics and compare another semantics.

This chapter is based on our paper [59].

3.1 Basis abstract semantics

3.1.1 Quantum imperative language

First of all, we explain a programming language we analyse through the whole
chapter. The language is called the quantum imperative language [88, 89].

Definition 3.1.1. LetN ∈ N. The setQN of variables of the quantum imperative
language is a set { q0, . . . , qN−1 }. The quantum imperative language (QIL) is the
set QILN of (QIL) programs (ranged over by C,C ′) defined by the following BNF
notation.

C,C ′ ::= skip | C;C ′ | X(j) | Y(j) | Z(j) | H(j) | S(j) | T(j) | CX(j,k)
| if j then C else C ′ fi | while j do C od

(3.1)

where j, k ∈ QN and j ̸= k.

Notation 3.1.2. We usually identify QN with [<N ]. During the chapter, we
use N to denote the number of variables and we omit to write the subscripts of
QN and QILN .

The quantum imperative language is a quantum programming language. The
intuitive meaning of the language is as follows. There are N qubits and each
variable denotes a qubit: qj denotes the jth qubit. We identify a variable with
the associated qubit. QIL programs perform operations on the qubits. skip

does noting. C;C ′ is the sequential composition of C and C ′. C ′ runs after

20



C finish being executed. The remaining programs in the first line of (3.1) de-
note unitary operations. For example, CX(j,k) is application of CX to the jth
and kth qubits. The other two programs involve quantum measurement. In
if j then C else C ′ fi, the jth qubit is measured in the standard basis, and
then either C or C ′ runs depending on the measurement result. When it is zero,
C is executed. The program while j do C od repeats measurement of jth qubit
in the standard basis and executions of C, until the measurement result is one.
If the first measurement result is one, while j do C od does not execute C.

Each QIL program C has two natural numbers sz (C) , dp (C) as its size and
depth. Roughly speaking, the size and depth of a QIL program are the numbers
of constructors and nested while loops in the program, respectively. Note that
we do not count if to calculate the depth of a program.

Definition 3.1.3. Functions sz, dp: QIL → N are inductively defined as follows.

sz (skip) = sz (U(j)) = sz (CX(j,k)) = 1

sz
(
C;C ′) = sz (C) + sz

(
C ′)

sz
(
if j then C else C ′ fi

)
= sz (C) + sz

(
C ′)+ 1

sz (while j do C od) = sz (C) + 1

(3.2)

dp (skip) = dp (U(j)) = dp (CX(j,k)) = 0

dp
(
if j then C else C ′ fi

)
= dp

(
C;C ′) = max

{
dp (C) , dp

(
C ′)}

dp (while j do C od) = dp (C) + 1

(3.3)

where U ∈ { X, Y, Z, H, S, T }. sz (C) and dp (C) are the size and depth of a program
C.

By definition, we immediately obtain a relation between these two numbers:
dp (C) < sz (C). dp (C) is equal to sz (C)− 1 when C contains neither ; nor if.

The quantum imperative language has no explicit quantum measurement and
initialisation of variables. However, the classical structures of the language such
as if suffice to implement them.

MEASUREj ≡ if j then skip else skip fi (3.4)

INITj ≡ if j then skip else X(j) fi (3.5)

INIT ≡ INIT0;INIT1;· · ·;INITN−1 (3.6)

The program MEASUREj just measures the jth qubit in the standard basis. The
next program sets the state of the jth qubit |0⟩. Therefore, the last program
initialises the states of all qubits.

Another example is quantum teleportation [12]. It needs conditional applica-
tion of unitary operators, which can be implemented using if.

teleportation ≡ CX(0,1);

H(0);

if 0
then if 1 then skip else X(2) fi

else if 1 then Z(2) else X(2);Z(2) fi

fi

(3.7)

The intuitive meaning of QIL programs is justified by a concrete semantics
of the language. The semantics is defined as a function on the set of density
matrices.

21



JskipK(ρ) = ρq
C;C ′y(ρ) = q

C ′y(JCK(ρ))JU(j)K(ρ) = U(j)ρU
†
(j)JCX(j,k)K(ρ) = CX(j,k)ρCX

†
(j,k)q

if j then C else C ′ fi
y
(ρ) = JCK(|0⟩⟨0|(j)ρ|0⟩⟨0|(j)) + q

C ′y(|1⟩⟨1|(j)ρ|1⟩⟨1|(j))Jwhile j do C odK(ρ) =∑
n∈N
|1⟩⟨1|(j)measnC,j(ρ)|1⟩⟨1|(j)

where j, k ∈ Q, U ∈ { X, Y, Z, H, S, T } and measC,j(ρ) = JCK(|0⟩⟨0|(j)ρ|0⟩⟨0|(j)).
Figure 3.1: Concrete semantics of quantum imperative language

Definition 3.1.4. The concrete semantics of QIL is the function J·K : QIL →
DN ⇒ DN defined in Figure 3.1.

The infinite sum
∑

n∈N |1⟩⟨1|(j)measnC,j(ρ)|1⟩⟨1|(j) converges because the set of
density matrices DN is a complete partially ordered set. It is worth noting that
the trace of Jwhile j do C odK(ρ) may be less than that of ρ. It reflects the fact
that while may cause an infinite loop. This is the reason why we use density
matrices whose traces are less than one.

Notation 3.1.5. Let ρ, ρ′, ρ′′, ρ′′′ ∈ DN , j ∈ Q, and C,C ′ ∈ QIL. We write

ρ
JCK
−−→ ρ′ when JCK(ρ) = ρ′. When no confusion arises, we write ρ

C−→ ρ′ to

denote ρ
JCK
−−→ ρ′. ρ

C−→ ρ′
C′
−→ ρ′′ denotes JCK(ρ) = ρ′ and JC ′K(ρ′) = ρ′′, soJC;C ′K(ρ) = ρ′′. For if j then C else C ′ fi, we use the following notation.

ρ→ |0⟩⟨0|(j)ρ|0⟩⟨0|(j)
C−→ ρ′ → ρ′′′

↘ |1⟩⟨1|(j)ρ|1⟩⟨1|(j)
C′
−→ ρ′′ ↗

(3.8)

where ρ′ = JCK(|0⟩⟨0|(j)ρ|0⟩⟨0|(j)), ρ′′ = JC ′K(|1⟩⟨1|(j)ρ|1⟩⟨1|(j)), and ρ′′′ = ρ′ + ρ′′.

Therefore, ρ′′′ = Jif j then C else C ′ fiK(ρ).
Example 3.1.6. Let ρ ∈ DN .

ρ→ |0⟩⟨0|(j)ρ|0⟩⟨0|(j)
skip−−−→ |0⟩⟨0|(j)ρ|0⟩⟨0|(j) → σ

↘ |1⟩⟨1|(j)ρ|1⟩⟨1|(j)
skip−−−→ |1⟩⟨1|(j)ρ|1⟩⟨1|(j) ↗

(3.9)

ρ→ |0⟩⟨0|(j)ρ|0⟩⟨0|(j)
skip−−−→ |0⟩⟨0|(j)ρ|0⟩⟨0|(j) → trjρ⊗ |0⟩⟨0|[j]

↘ |1⟩⟨1|(j)ρ|1⟩⟨1|(j)
X(j)−−−→ |0⟩⟨1|(j)ρ|1⟩⟨0|(j) ↗

(3.10)

ρ
INIT0−−−→ tr0ρ⊗ |0⟩⟨0|[0]

INIT1−−−→ · · · INITN−1−−−−−→ trρ|00 · · · 0⟩⟨00 · · · 0| (3.11)

where σ = |0⟩⟨0|(j)ρ|0⟩⟨0|(j) + |1⟩⟨1|(j)ρ|1⟩⟨1|(j). Therefore, JMEASUREjK(ρ) is σ,JINITjK(ρ) is trjρ⊗ |0⟩⟨0|(j), and JINITK(ρ) = trρ|00 · · · 0⟩⟨00 · · · 0|.

Example 3.1.7. For simplicity, we assume N = 3 in the example. Let σ ∈ D1.

JteleportationK(σ ⊗ |Bell0⟩⟨Bell0|) = 1

4
I⊗2 ⊗ σ (3.12)

22



3.1.2 Basis abstract semantics

Suppose we have a QIL program C. If we run the program C on an input quantum
state ρ, we will obtain a quantum state JCK(ρ). A question is how entanglements
between these qubits change through the program C; how the program C evolves
entanglements. That can be viewed differently. Given a quantum state σ, it is
difficult to determine whether it is separable [57, 60]. When we have a program
C and a state ρ such that JCK(ρ) = σ, what can we say about entanglements in
the state? If we know how C changes entanglements and how entangled qubits
in ρ are, then we can learn something about σ. This is why we want to analyse
entanglement in quantum programs.

For example, in Example 3.1.7, we can see that the first and second qubits
of the qubits in the input state are entangled. However, they are separable
after running teleportation. That means the program teleportation destroys
the entanglement between them. In a paper [89], abstract interpretation was
used to analyse entanglement. Its domain is based on the following observation:
Quantum entanglement results from application of a unitary operator on multiple
qubits. Since QIL has no multiple qubits operator other than CX, CX(j,k) is the
place where qubits become entangled. An important fact is that CX does not
always entangle given qubits. If either the state of the jth qubit is in the standard
basis or that of the kth qubit is in the X basis, these qubits are separable even
after applying CX:

CX(|d⟩ ⊗ |ψ⟩) = |d⟩ ⊗ (Zd |ψ⟩) (3.13)

CX(|ψ⟩ ⊗ |+dπ⟩) = (Xd |ψ⟩)⊗ |+dπ⟩ (3.14)

where d ∈ B, |ψ⟩ is a pure state. Therefore, we can guess evolution of entangle-
ments from information about basis where the state of each qubit belongs. In the
domain, a quantum state is abstracted into a pair of a partition and a function.
The former records how entangled the state is and the latter records bases.

Definition 3.1.8. Let B = {Z,X,⊤,⊥}. An order ≤B on the set is defined by
⊥ ≤B Z ≤B ⊤ and ⊥ ≤B X ≤B ⊤. AQ is defined as ΠQ × (Q ⇒ B). An order
≤A on the domain is the product order. That is, for any (P, b), (P ′, b′) ∈ AQ ,
(P, b) ≤A (P ′, b′) if and only if P ≤Π P ′ and b(j) ≤B b′(j) for any j ∈ Q.

Since the domain uses the information about bases, we call AQ the basis
domain. The order of the domain tells us which one has more information.

Proposition 3.1.9 ([89]). AQ is a complete lattice.

Note that DN is not a lattice. The domain AQ gives an approximation of
entanglement in a state: Let (P, b) be an abstract state and ρ be a concrete
state. If there is no Q ∈ P such that { j, k } ⊂ Q, the jth and kth qubits of
the quantum variables in ρ are separable. However, even if { j, k } ⊂ Q ∈ P for
some Q, it does not mean these qubits are entangled. Which abstract state is a
sound approximation of a concrete state is formalised as the following soundness
relation.

Definition 3.1.10. Let ρ ∈ DN and (P, b) ∈ AQ . We write (P, b) ⊨A ρ if ρ is
P -separable and the following holds for any j ∈ Q.

• If b(j) = Z, ⟨0|(j)ρ|1⟩(j) = 0.

• If b(j) = X, ⟨+|(j)ρ|−⟩(j) = 0.

23



JskipKA(P, b) = (P, b)q
C;C ′y

A
(P, b) =

q
C ′y

A
(JCKA(P, b))Jσ(j)KA(P, b) = (P, b)

JH(j)KA(P, b) =


(P, b[j 7→ X]) (b(j) = Z)
(P, b[j 7→ Z]) (b(j) = X)
(P, b) (otherwise)

JU(j)KA(P, b) =


(P, b[j 7→ ⊤]) (b(j) = X)
(P, b[j 7→ Z]) (b(j) = ⊥)
(P, b) (otherwise)

JCX(j,k)KA(P, b) =



(P, b[j 7→ Z, k 7→ X]) (b(j) = b(k) = ⊥)
(P, b[j 7→ Z]) (b(j) = ⊥ and b(k) >A ⊥)
(P, b[k 7→ X]) (b(j) >A ⊥ and b(k) = ⊥)
(P, b) (b(j) = Z or b(k) = X)
(P ∨ Pj,k,

b[j 7→ ⊤, k 7→ ⊤]) (otherwise)uwwv
if j
then C
else C ′

fi

}��~
A

(P, b) = JCKA(measA,j(P, b)) ∨
q
C ′y

A
(measA,j(P, b))

Jwhile j do C odKA(P, b) =
∨
n∈N

(measA,j ◦ (JCKA ◦measA,j)
n)(P, b)

where j, k ∈ Q, σ ∈ { X, Y, Z }, U ∈ { S, T }, Pj,k = {{ l }| l ̸= j, k }∪{{ j, k }}, and
measA,j(P, b) = ({{ j }} ∪ {Q \ { j } | Q ∈ P } , b[j 7→ Z]).

Figure 3.2: Basis abstract semantics of quantum imperative language

• If b(j) = ⊥, ⟨0|(j)ρ|1⟩(j) = ⟨+|(j)ρ|−⟩(j) = 0.

The first condition states that ρ can be decomposed into |0⟩⟨0|(j) ⊗ σ0 +
|1⟩⟨1|(j) ⊗ σ1. Similarly, the second condition means that ρ is |+⟩⟨+|(j) ⊗ σ0 +
|−⟩⟨−|(j) ⊗ σ1 with some σ0 and σ1. Therefore, the third condition means that

ρ = 1
2 I(j) ⊗ σ with some σ.
On the abstraction of states, an abstract semantics was given to QIL pro-

grams. We call the semantics the basis abstract semantics.

Definition 3.1.11. The basis abstract semantics of QIL programs is a functionJ·KA : QIL → AQ → AQ defined in Figure 3.2.

Although the Pauli operators do not change the basis, the operator H ex-
changes a state in the standard basis with a state in the X basis. Both T and S
commute with Z, so if a state belongs to the standard basis, the applied state still
belongs to the basis. The semantics of CX follows from the observation described
before. measA,j is measurement of the jth qubit. After measuring the jth qubit,
the state of the qubit definitely belongs to the standard basis and the qubit is
separable from the other qubits.

Notation 3.1.12. We sometimes write (aj)j<N to denote a function b such that
b(j) = aj .

24



Example 3.1.13. Let (P, b) ∈ AQ .JMEASUREjK(P, b) = ({{ j }} ∪ {Q \ { j } | Q ∈ P } , b[j 7→ Z]) (3.15)JINITjK(P, b) = ({{ j }} ∪ {Q \ { j } | Q ∈ P } , b[j 7→ Z]) (3.16)JINITK(ρ) = ({ { j } | j ∈ Q } ,Z) (3.17)

where the last Z is the constant function to Z. Assume (P, b) ⊨A ρ. In particular,
ρ is P -separable. Then, trjρ ⊗ |0⟩⟨0|[j] is P ′-separable where P ′ = {{ j }} ∪
{Q \ { j } | Q ∈ P }. ⟨0|(j)trjρ⊗ |0⟩⟨0|[j]|1⟩(j) = trjρ⊗ ⟨0|0⟩ ⟨0|1⟩ = 0. Therefore,
({{ j }} ∪ {Q \ { j } | Q ∈ P } , b[j 7→ Z]) ⊨A trjρ⊗ |0⟩⟨0|[j].
Example 3.1.14. Assume N = 3.JteleportationKA(({{ 0 } , { 1, 2 }} , (⊤,⊤,⊤)))

= Jif 1 then skip else X(2) fiKA(({{ 0 } , { 1, 2 }} , (Z,⊤,⊤)))
∨ Jif 1 then Z(2) else X(2);Z(2) fiKA(({{ 0 } , { 1, 2 }} , (Z,⊤,⊤)))
= ({{ 0 } , { 1 } , { 2 }} , (Z,Z,⊤))

(3.18)

It is easy to see that ({{ 0 } , { 1, 2 }} , (⊤,⊤,⊤)) ⊨A σ ⊗ |Bell0⟩⟨Bell0|. Since
⟨0|I|1⟩ = 0, ({{ 0 } , { 1 } , { 2 }} , (Z,Z,⊤)) ⊨A

1
4 I

⊗2 ⊗ σ.
These examples suggest that the basis abstract semantics correctly works.

Indeed, the semantics is sound. If a sound approximation of an input state is
given, the semantics gives a sound approximation of an output state. Moreover,
the semantics respects the order of the basis domain.

Lemma 3.1.15 ([89]). Let C ∈ QIL and (P, b), (P ′, b′) ∈ AQ such that (P, b) ≤A

(P ′, b′). JCKA((P, b)) ≤A JCKA((P ′, b′)).

Theorem 3.1.16 ([89]). For any C ∈ QIL, any (P, b) ∈ AQ, and any state ρ,
(P, b) ⊨A ρ implies JCKA(P, b) ⊨A JCK(ρ).
3.2 Stabiliser abstract semantics

3.2.1 Motivation and idea

As explained in the previous section, the basis abstract semantics J·KA gives a
good approximation of how quantum entanglement evolves through a QIL pro-
gram. However, it can be found in very simple examples that the semantics fails
to precisely trace the evolution.

Example 3.2.1. Let us define the following programs.

GHZ ≡ INIT;H(0);CX(0,1);CX(1,2) (3.19)

INVERTGHZ ≡ GHZ;CX(1,2);CX(0,1);H(0) (3.20)

BREAKGHZ ≡ GHZ;MEASURE0 (3.21)

In the concrete semantics, the output states are as follows. For the sake of
simplicity, we assume N = 3.

ρ
INIT−−−→ trρ |000⟩⟨000| H(0)−−−→ trρ |+00⟩⟨+00|
CX(0,1)−−−−−→ trρ |Bell0⟩⟨Bell0| ⊗ |0⟩⟨0|

CX(1,2)−−−−−→ trρ |GHZ⟩⟨GHZ|
(3.22)

ρ
GHZ−−→ trρ |GHZ⟩⟨GHZ| CX(1,2)−−−−−→ trρ |Bell0⟩⟨Bell0| ⊗ |0⟩⟨0|
CX(0,1)−−−−−→ trρ |+00⟩⟨+00| H(0)−−−→ trρ |000⟩⟨000|

(3.23)

ρ
GHZ−−→ trρ |GHZ⟩⟨GHZ|

MEASURE(0)−−−−−−→ 1

2
trρ(|000⟩⟨000|+ |111⟩⟨111|). (3.24)

25



Therefore, we can find that all qubits in JGHZK(ρ) are entangled but those inJINVERTGHZK(ρ) or JBREAKGHZK(ρ) are all separable. The transitions of the basis
abstract semantics are as follows.

(P, b)
INIT−−−→ ({{ 0 } , { 1 } , { 2 }} , (Z,Z,Z))
H(0)−−−→ ({{ 0 } , { 1 } , { 2 }} , (X,Z,Z))
CX(0,1)−−−−−→ ({{ 0, 1 } , { 2 }} , (⊤,⊤,Z))
CX(1,2)−−−−−→ ({{ 0, 1, 2 }} , (⊤,⊤,⊤))

(3.25)

(P, b)
GHZ−−→ ({{ 0, 1, 2 }} , (⊤,⊤,⊤)) CX(0,2)−−−−−→ ({{ 0, 1, 2 }} , (⊤,⊤,⊤))
CX(0,1)−−−−−→ ({{ 0, 1, 2 }} , (⊤,⊤,⊤)) H(0)−−−→ ({{ 0, 1, 2 }} , (⊤,⊤,⊤))

(3.26)

(P, b)
GHZ−−→ ({{ 0, 1, 2 }} , (⊤,⊤,⊤))

MEASURE(0)−−−−−−→ ({{ 0 } , { 1, 2 }} , (Z,⊤,⊤)) (3.27)

The basis abstract semantics succeeds in reasoning entanglement in JGHZK(ρ).
However, it claims that all qubits in JINVERTGHZK(ρ) are entangled and that the
first and second qubits of the three qubits in JBREAKGHZK(ρ) are entangled.

Of course, the purpose of the abstract semantics is to give an approximation.
Therefore, these examples are not counterexamples of the soundness of the se-
mantics. However, needless to say, more precise approximations are better as
long as they are efficiently computable. Why does the basis semantics fail in the
above examples? Tracing transitions, we can find that the causes of the failures

are ({{ 0, 1, 2 }} , (⊤,⊤,⊤)) CX(0,2)−−−−−→ ({{ 0, 1, 2 }} , (⊤,⊤,⊤)) in INVERTGHZ and,

in BREAKGHZ, ({{ 0, 1, 2 }} , (⊤,⊤,⊤))
MEASURE(0)−−−−−−→ ({{ 0 } , { 1, 2 }} , (Z,⊤,⊤)). In

the basis abstract semantics, the unitary operator on multiple qubits, CX(j,k),
just entangles quantum variables and only measurement destroys entanglements.
However, the unitary operator also undoes an entanglement:

CX

(
1√
2
(|00⟩+ |11⟩)

)
=

1√
2
(|00⟩+ |10⟩) = |+0⟩ (3.28)

Moreover, in the basis semantics, measurement destroys only entanglements with
the measured qubit. In the concrete semantics, measurement may make non-
measured qubits separable as shown in (3.24).

How can we obtain a better semantics? The above observations do not mean
that the operator on multiple qubits always undoes an entanglement or measure-
ment destroys any entanglements between qubits. Indeed,

CX

(
1√
2
(|0−⟩+ |1+⟩)

)
=

1√
2
(|0−⟩+ |1+⟩) (3.29)

|0⟩⟨0|(0)ρ|0⟩⟨0|(0) + |1⟩⟨1|(0)ρ|1⟩⟨1|(0)

=
1

2
|0⟩⟨0| ⊗ |Bell0⟩⟨Bell0|+

1

2
|1⟩⟨1| ⊗ |Bell2⟩⟨Bell2|

(3.30)

where ρ = H(0)|GHZ⟩⟨GHZ|H†
(0). It means that we have to record some infor-

mation about the entangled state and decide, for example, whether CX undoes
an entanglement or not. The basis abstract semantics does not do that. After
a variable is entangled with other variables, a function in a basis abstract state
gives no meaningful information about the variable. How can we record informa-
tion about entangled qubits? In order to make our semantics useful, it should be
easy to compute. These restrictions lead us to the stabiliser formalism.

26



3.2.2 Stabiliser array

We follow an idea of the basis domain: bases are good abstractions of states. As
explained in the previous chapter, a stabiliser uniquely determines its stabiliser
states. Here, we regard a stabiliser as an expression of a basis.

Definition 3.2.2. Let S = ⟨M0, . . . ,Mn−1⟩ be a stabiliser on n qubits. The S
basis is the set of simultaneous eigenstates of S, which is the set of all |ψ⟩ such
that for any M ∈ S, M |ψ⟩ = ± |ψ⟩.

Example 3.2.3. The basis defined by the stabiliser ⟨Z⟩ is the standard basis.
The ⟨XX,ZZ⟩ basis is nothing but the Bell basis, which contains |Bell0⟩ and
|Bell2⟩.

The set of stabilisers is isomorphic to the set of stabiliser states. Hence, a
stabiliser basis does not uniquely determine a stabiliser. However, it is uniquely
determined up to signs.

Proposition 3.2.4. Let S = ⟨M0, . . . ,Mn−1⟩ and S′ be stabilisers on n qubits.
The S basis is the S′ basis if and only if S′ = ⟨(−1)s0M0, . . . , (−1)sn−1Mn−1⟩
with some s0, . . . , sn−1 ∈ B.

Proof. Assume S′ = ⟨(−1)s0M0, . . . , (−1)sn−1Mn−1⟩. |ψ⟩ is an eigenstate of Mj

if and only if |ψ⟩ is an eigenstate of −Mj . Conversely, assume that the S basis
is the S′ basis. Take Mj ∈ S. It commutes with any element of S′. Therefore,
Mj ∈ S′ or −Mj ∈ S′.

The proposition tells us that the signs of Pauli matrices in a stabiliser are no
longer meaningful in our interpretation. In the chapter, we omit to care about
the signs. Furthermore, we ignore any global phase. For example, we say that Y
is the product of X and Z, write (X ⊗X)(Z ⊗ Z) = Y ⊗Y, and so on. However,
we should emphasise that we exactly keep the meaning of the term “commute”.
X does not commute with Z, although we write XZ = Y = ZX. Any element of
a stabiliser commutes with another element.

Now, let us explain an expression of stabilisers. In the stabiliser formalism,
a generator determines a stabiliser. We employ a variant of tableaus [1, 8, 82]
consisting of Pauli matrices as an expression of generators. Note that we do not
use destabiliser generators [1].

Definition 3.2.5. Let n be a natural number. A syntactic stabiliser array on n

qubits is an n×nmatrix S of Pauli matrices such that
⟨⊗

j S{0,j}, . . . ,
⊗

j S{n−1,j}

⟩
is a stabiliser on n qubits. The syntactic stabiliser space on n qubits SSSn is the
set of syntactic stabiliser arrays on n qubits. We usually identify a row S{j,} of a
syntactic stabiliser array with a Pauli matrix

⊗
k S{j,k}. Multiplication of the jth

row and the kth row is an operation that replaces the jth row with the product
of the jth row and the kth row. Note that the product has no sign.

Roughly speaking, a syntactic stabiliser array is an ordered generator. It is
an expression of a stabiliser array.

Definition 3.2.6. Let S, T be syntactic stabiliser arrays. We write S ≃ T if any
row of S is a product of rows of T , and vice versa. The stabiliser space on n
qubits SSn is the quotient set SSSn/≃. A stabiliser array is an element of the
space.

27



A stabiliser array represents a sign-less stabiliser. It is a mathematical object.
What we operate is a syntactic stabiliser array. Each algorithm is performed on
a syntactic one.

Notation 3.2.7. A stabiliser array is usually denoted by its representative.

Example 3.2.8. The following matrices are stabiliser arrays.

[
Z
]
,

[
X X
Z Z

]
=

[
Y Y
Z Z

]
=

[
Z Z
Y Y

]
,

 X X X
Z Z I
I Z Z

 (3.31)

None of the following matrices is a stabiliser array.[
X Z
Z Z

]
,

 X X X
Z Z Y
I Z Z

 ,
 I I I

Z Z I
I Z Z

 (3.32)

Notation 3.2.9. We also use the generator notation. For example,

[
X Z
Z X

]
is

written as ⟨XZ,ZX⟩. Note that it is a stabiliser array. When the above matrix
is a syntactic stabiliser array, we use (XZ,ZX) to denote it because it has the
order.

Definition 3.2.10. Let S be a stabiliser on n qubits and S′ be the associated
stabiliser array. The S′ basis is the S basis.

Proposition 3.2.11. Any stabiliser basis is uniquely determined by its stabiliser
array.

Proof. By Proposition 3.2.4.

In order to use stabiliser arrays to analyse entanglement, we have to confirm
that stabiliser arrays are equipped with enough operations. Can we check whether
given two stabiliser arrays are the same or not? The equality check of syntactic
stabiliser arrays is obvious, and that is still easy for stabiliser arrays: Check
whether each row of an array commutes with all rows of the other array.

How about separability? As explained before, we want to know whether a
state is separable or not after applying CX to the state. How can we check
whether a stabiliser basis state is separable or not? If it is separable, how can we
decompose the state? Although they are not obvious, we can do that via stabiliser
arrays and a variant of the row-reduced echelon form (RREF) algorithm [8]. First
of all, we define separability on stabiliser arrays.

Definition 3.2.12. Let S and T be syntactic stabiliser arrays on n andm qubits.
The tensor product S ⊗ T of S and T is the matrix defined by

(S ⊗ T ){j,k} =


S{j,k} (j, k < n)

T{j−n,k−n} (j, k ≥ n)
I (otherwise)

. (3.33)

More generally, if P = {Q0, Q1 } is a partition of [<(n+m)] such that |Q0| = n,

(S ⊗P T ){j,k} =


S{j,l} (j < n and k = kl ∈ Q0)

T{j−n,l} (j ≥ n and k = kl ∈ Q1)

I (otherwise)

. (3.34)

We usually omit to write the subscript P .

28



Proposition 3.2.13. The tensor product of syntactic stabiliser arrays is a syn-
tactic stabiliser array. The tensor product of stabiliser arrays is well-defined.

Definition 3.2.14. Let S be a syntactic stabiliser array on n qubits and P be a
partition of [<n]. S is P -separable if there exists

{
S[Q]

}
Q∈P such that each S[Q]

is a syntactic stabiliser array on |Q| qubits and S ≃
⊗

Q∈P S[Q]. NSSn is defined
to be the set of stabiliser arrays on n qubits that are not P -separable unless P is
a singleton. NSS is the union of them.

The following proposition justifies that we use stabiliser arrays to analyse
separability of stabiliser basis states.

Proposition 3.2.15. Let S be a stabiliser array on n qubits and P be a partition
of [<n]. S is P -separable if and only if all S basis states are P -separable.

Proof. It is enough to prove the proposition when P = {Q0, Q1 }. Assume S =
S[Q0] ⊗ S[Q1]. Let {|ψj⟩}j , {|σj⟩}j , and {|ϕj⟩}j be the S, S[Q0], and S[Q1] bases.
Take |ψj⟩. |ψj⟩ =

∑
k,l αk,l |σk⟩ ⊗ |ϕl⟩ with some {αk,l}k,l. For any M ∈ S[Q0],

the eigenvalue of M ⊗ I corresponding to |ψj⟩ is either 1 or −1. There exists
a unique |σk⟩ that has the same eigenvalues. Similarly, we can obtain |ϕl⟩, and
|ψj⟩ = αk,l |σk⟩ ⊗ |ϕl⟩.

Assume all S basis states are P -separable. Let {|ψj⟩}j be the S basis. By the
assumption, each |ψj⟩ can be written as |σj⟩⊗ |ϕj⟩. Take a row S{k,} =Mk⊗Nk.
If (Mk ⊗Nk) |ψj⟩ = ± |ψj⟩, |σj⟩ = (I ⊗ ⟨ϕj |) |ψj⟩ = ±(I ⊗ ⟨ϕj |)(Mk ⊗Nk)(|σj⟩ ⊗
|ϕj⟩) = ±⟨ϕj |Nk|ϕj⟩Mk |σj⟩. Therefore, |σj⟩ is an eigenstate of Mk. It is true
for any j and k. Since {|σj⟩}j is a basis, all {Mk}k commute.

Note that the above proof shows that if the S⊗ T basis is the tensor product
of two bases, these two bases are the S basis and the T basis. Therefore, we
try to decompose stabiliser arrays. The decomposition is essentially unique. The
following proposition and corollary shows there exists the finest decomposition.

Proposition 3.2.16. Let S be a syntactic stabiliser array and P, P ′ be a partition
of [<n]. If S is both P -separable and P ′-separable, S is P ∧ P ′-separable.

Proof. Take
{
SP,[Q]

}
Q∈P and

{
SP ′,[Q]

}
Q∈P ′ such that S ≃

⊗
Q∈P SP,[Q] and S ≃⊗

Q∈P ′ SP ′,[Q]. Take A ∈ P∧P ′. Let Q ∈ P and Q′ ∈ P ′ be such that A = Q∩Q′.
Let T = SP,[Q] and T

′ = SP ′,[Q′]. Take a row T{i,} such that T{i,j} ̸= I for some
j ∈ A. Define M by M{j} is T{i,j} if j ∈ A and otherwise I. Since T{i,} commutes
with all rows of T ′,M also commutes with all of them. It means thatM commutes
with all rows of T and there exists T ′′ such that T ≃ T ′′ and T ′′

{k,} = M for
some k. Repeating the operation, we can finally obtain R such that T ≃ R and
for any row R{i,}, R{i,j} ̸= I with some j ∈ A if and only if R{i,j} = I for all
j /∈ A. The number N(A) of rows R{i,} such that R{i,j} ̸= I with some j ∈ A is
at most |A| because these rows are independent. That is true for any A′ ∈ P ∧P ′

such that A′ ⊂ Q. The sum of these numbers should be equal to the number
of all rows, |Q|.

∑
A⊂QN(A) ≤

∑
A⊂Q |A| = |Q|, so N(A) = |A| for any A.

Therefore, the rows form a syntactic stabiliser array SP∧P ′,[A]. By construction,
SP,[Q] ≃

⊗
Q⊃A∈P∧P ′ SP∧P ′,[A].

Corollary 3.2.17. For any syntactic stabiliser array, there exists the finest par-
tition P such that the array is P -separable.

Finally, we show an algorithm to decompose a syntactic stabiliser array.

29



Proposition 3.2.18. Let S be a syntactic stabiliser array on n qubits and P
be a partition of [<n]. Let S′ be an output of Algorithm 1. Then, S ≃ S′.

Furthermore, S is P -separable if and only if there exists
{
S′
[Q]

}
Q∈P

such that

S′ =
⊗

Q∈P S
′
[Q].

Algorithm 1 Decomposition of a syntactic stabiliser array S on n qubits
1: r = 0.
2: for c = 0 to n− 1 do
3: if There exists r0 such that r ≤ r0 and Sr0,c ̸= I then
4: Take the smallest r0.
5: Swap the rth row and the r0th row.
6: if There exists r1 such that r < r1 and Sr,c ̸= Sr1,c ̸= I then
7: Take the smallest r1.
8: Swap the r + 1th row and the r1th row.
9: For any r′th row such that Sr′,c is either Sr,c or Sr,cSr+1,c, multiply

the row and the rth row.
10: For any r′th row such that Sr′,c is Sr+1,c, multiply the row and the

r + 1th row.
11: r = r + 2.
12: else
13: For any r′th row such that r′ > r and Sr′,c = Sr,c, multiply the

row and the rth row.
14: if There exists r2 such that r > r2 and the Pauli matrix Sr2,c is

neither I nor Sr,c then
15: Take the smallest r2.
16: For any r′th row such that r′ < r and Sr′,c is either Sr,c or

Sr,cSr2,c, multiply the row and the rth row.
17: else
18: For any r′th row such that r′ < r and Sr′,c is Sr,c, multiply the

row and the rth row.
19: end if
20: r = r + 1.
21: end if
22: end if
23: end for

Proof. We first observe an output of the algorithm has a row echelon-like form
such as

T =



T0,0 I I T0,3 T0,4 · · · T0,n−2 T0,n−1

I T1,1 I T1,3 T1,4 · · · T1,n−2 T1,n−1

I T2,1 I T2,3 T2,4 · · · T2,n−2 T2,n−1

I I T3,2 T3,3 T3,4 · · · T3,n−2 T3,n−1

I I T4,2 T4,3 T4,4 · · · T4,n−2 T4,n−1

I I I T5,3 T5,4 · · · T5,n−2 T5,n−1

I I I I T6,4 · · · T6,n−2 T6,n−1
...

...
...

...
...

. . .
...

...
I I I I I · · · Tn−1,n−2 Tn−1,n−1


. (3.35)

A pair such as T1,1 and T2,1 does not commute with each other and any en-
try above the upper line such as T1,3 anticommutes with an entry within the

30



lines, T5,3. We note the upper entries such as T1,3 are either I or some ele-
ment that is fixed for each column. Let M be a product of rows. That is,
M = T s0{0,}T

s1
{1,} · · ·T

sn−1

{n−1,} with some (sj)j . Checking each entry, we can induc-

tively determine (sj)j . For example, if M{0} ̸= I, s0 = 1.
Now, we prove the proposition. Since the algorithm performs no operation

except exchanges of rows and multiplication, S ≃ S′. If S′ =
⊗

Q∈P S
′
[Q], S is

P -separable by definition.
Suppose S is P -separable. That is, there exists

{
S[Q]

}
Q∈P such that S ≃⊗

Q∈P S[Q]. We claim that each row S′
{i,} has a unique Q ∈ P such that S′

{i,j} ̸=
I for some j ∈ Q. If that holds, the number of such rows are at most |Q| for
any Q. Since the sum of such numbers should be n, the number is indeed |Q|
and the statement holds. Take S′

{i,} and Q ∈ P such that S′
{i,j} ̸= I for some

j ∈ Q. If no Q exists, S′
{i,j} = I for any j, but it contradicts the independence

unless n = 1. Define T as follows: T{j} is S′
{i,j} if j ∈ Q and otherwise I. Since

T commutes with any row of S[Q], T is a product of rows of S′. By the first
observation, T = S′

i,.

3.2.3 Stabiliser domain

Now, it is time to extend the basis domain. Instead of an assignment to individual
variables, we assign a stabiliser array to each block of a partition. It tells us
a basis where the state of a block belongs unless the state is not a stabiliser
state. Naturally, we have to care about non-stabiliser states. Indeed, QIL is
universal and has a non-Clifford operator T. It means even if we start to run
a QIL program from a stabiliser state, the state may grow to a non-stabiliser
state, which we cannot express by any stabiliser array. We prepare a symbol ■
to denote such a non-stabiliser basis state. Precisely speaking, ■ does not mean
that the state belongs to a non-stabiliser basis. It just claims that we do not have
any information about the basis. We assume that ■ is an absorbing element with
respect to unitary transformation and tensor products. That is, U■U † = ■ for
any unitary U and for any stabiliser arrays S, ■ ⊗ S = ■ and S ⊗ ■ = ■.
Therefore, we say ■ commutes with anything.

Definition 3.2.19. Let k ≥ 1. Define SS∗
k as SS ∪ {■ } if k > 1 and as

SS ∪ { I,■ } if k = 1. We define NSS∗
k in the same manner. SS∗ and NSS∗

are the unions of SS∗
k and NSS∗

k, respectively. Let A ⊂ Q. α ⊂ PA × SS∗ is a
stabiliser preassignment on A if pr0(α) is a partition of A and for any (Q,S) ∈ α,
S ∈ SS∗

|Q|. A stabiliser preassignment on A is said to be a stabiliser assignment
on A if it is a subset of PA ×NSS∗. A subset of a stabiliser preassignment on
A is a stabiliser subpreassignment and a subset of a stabiliser assignment on A
is a stabiliser subassignment. The stabiliser domain SQ is the set of stabiliser
assignments on Q. We omit to refer to A if it is clear from the context, especially,
when A = Q. We usually call a stabiliser assignment by an assignment.

Proposition 3.2.20. A subpreassignment is a preassignment. A subassignment
is an assignment.

Notation 3.2.21. Let α be a preassignment on A. We frequently identify a
preassignment α with a function from A to PA×SS∗. Specifically, α(i) = (Q,S)
such that i ∈ Q and (Q,S) ∈ α. Furthermore, we define α0 : A → PA and
α1 : A → SS∗ by α0(i) = Q and α1(i) = S where (Q,S) = α(i). We sometimes
use α0 and α1 to denote {Q | (Q,S) ∈ α } and {S | (Q,S) ∈ α }, respectively.
However, what α0 means is always clear from the context.

31



We use the update notation. α[i 7→ (Q′, S′)] is (α \ {α(i) }) ∪ { (Q′, S′) }.
When we use the notation, we always assume (α \ {α(i) }) ∪ { (Q′, S′) } is a pre-
assignment. That is, Q′ is equal to α0(i) and S

′ belongs to NSS∗
|Q′|. Since Q

′ is

obvious, we often omit it. α[i 7→ S′] is (α\{α(i) })∪{ (α0(i), S
′) }. We repeatedly

emphasise S′ is assumed to belong to NSS∗
|α0(i)|. The notation can be extended.

α[i 7→ (Q0, S0), . . . , (Qn−1, Sn−1)] is (α \ {α(i) })∪{ (Q0, S0), . . . , (Qn−1, Sn−1) }.
α[i0, . . . , im−1 7→ (Q′, S′)] is defined as (α \ {α(i0), . . . , α(im−1) }) ∪ { (Q′, S′) }.
α[i0 7→ (Q0, S0), . . . , il−1 7→ (Ql−1, Sl−1)] is the union of α \ {α(i0), . . . , α(il−1) }
and { (Q0, S0), . . . , (Ql−1, Sl−1) }. We also omit to write blocks Q. A preas-
signment α[i0, . . . , im−1 7→ S′] is α[i0, . . . , im−1 7→ (

∪
m α0(im), S

′)]. α[i0 7→
S0, . . . , il−1 7→ Sl−1] is α[i0 7→ (α0(i0), S0), . . . , il−1 7→ (α0(il−1), Sl−1)].

We sometimes use a direct sum of matrices to denote a stabiliser preassign-
ment. It has a header row to denote the associated block with each stabiliser
array. For example, { ({ 0, 2 } , ⟨ZZ,XX⟩) , ({ 1 } , ⟨Y⟩) } is written as

0 2 1

Z Z
X X

Y

 . (3.36)

The stabiliser domain has an order. Intuitively speaking, α is smaller than β
means α has more information. If they exist, the top has no information and the
bottom is well-informed.

Definition 3.2.22. Let S, T ∈ SS∗. A relation ≤SS∗ is defined by S ≤SS∗ T if
and only if either S = I, S = T , or T = ■. ≤NSS∗ is the restriction of ≤SS∗

on NSS∗. Let A ⊂ Q. Let α and β be stabiliser preassignments on A. A
relation ≤S is defined by α ≤S β if and only if α0 ≤Π β0 and for any i ∈ A,⊙

j∈β0(i) α(j) ≤SS∗ β1(i) where
⊙

j∈β0(i) α(j) is defined by the following.

⊙
j∈Q

(Qj , Sj) =


Sj (all Qj are the same)
I (all Sj are I)
■ (otherwise)

(3.37)

We also use ≤S to denote the restriction of the relation on SQ .

Note that Qj = Qk implies Sj = Sk. Therefore,
⊙

is well-defined.

Proposition 3.2.23. ≤SS∗, ≤NSS∗, and ≤S are orders.

Proof. We only prove transitivity of ≤S. The others are obvious. Let α, β, and
γ be stabiliser preassigment on A such that α ≤S β ≤S γ. By transitivity of ≤Π ,
α0 ≤Π γ0. Take i ∈ A. Let S =

⊙
j∈γ0(i) α(j). If S ̸= I,■, α0(i) is equal to γ0(i)

and thus to β0(i). By transitivity of ≤SS∗ , α1(i) ≤SS∗ γ1(i). Assume S = ■. If
there exists j ∈ γ0(i) such that α1(j) = ■, then β1(j) = γ1(j) = ■. Otherwise,
there exist j, k ∈ γ0(i) such that α0(j) ̸= α0(k) and α1(j) ̸= I. If k ∈ β0(j),
β1(j) = γ1(j) = ■. If k /∈ β0(j), γ1(i) = ■.

Proposition 3.2.24. Let α and β be preassignments. α ≤S β if and only if for
any (R, T ) ∈ β, there exists a subpreassignment α′ such that α′ ≤S { (R, T ) }.

The order gives a lattice structure to the stabiliser domain SQ , which is needed
to use the domain for giving an abstract semantics.

Proposition 3.2.25. (SQ ,≤S) is a complete lattice.

32



Proof. We first note a finite lattice is automatically complete and NSS∗ is triv-
ially a lattice. The top and the bottom are { (Q,■) } and { ({ i } , I) | i ∈ Q },
respectively. Let α, β be assignments. Since the set of partitions is a lattice,
we can obtain the join and meet of α0 and β0. Let J and M be the join and
the meet. Take Q ∈ J . Define S as the join of

⊙
j∈Q α(j) and

⊙
j∈Q β(j). By

construction, the set of (Q,S) is the join of α and β. Let γ be ∅. Take Q ∈ M .
Let (A, T ) ∈ α and (B,R) ∈ β be such that Q ⊂ A ∩B. If (A, T ) = (B,R), add
(A, T ) to γ. If Q = A and R = ■, add (A, T ) to γ. If Q = B and T = ■, add
(B,R) to γ. If T = R = ■, add (Q,■) to γ. If none holds, add ({ i } , I) to γ for
any i ∈ Q. Repeating the process for each Q ∈M , γ finally becomes the meet of
α and β.

We gave an intuitive explanation of the stabiliser domain: how an abstract
state approximates a concrete state. Now, we give a formal definition. We follow
the definition of the basis domain but impose a more strict restriction.

Definition 3.2.26. Let A ⊂ Q and α be a preassignment on A. α is sound for
{ρQ,S}(Q,S)∈α if it satisfies the following: ρQ,S is a quantum state on Q; ρQ,S is
1
2 I when S = I and if S ∈ SS, ρQ,S = |ψ⟩⟨ψ| where |ψ⟩ is an S basis state.

α is said to be a sound approximation of a quantum state ρ, denoted by

α ⊨S ρ, if there exist
{
(pj , {ρj,Q,S}(Q,S)∈α)

}
j
such that 0 ≤ pj ≤ 1,

∑
j pj ≤ 1, α

is sound for each {ρj,Q,S}(Q,S)∈α, and

ρ =
∑
j

pj
⊗

(Q,S)∈α

ρj,Q,S . (3.38)

We say such
{
(pj , {ρj,Q,S}(Q,S)∈α)

}
j
is a sound decomposition of ρ for α.

Example 3.2.27.
0 2 1

Z Z
X X

Z

 ⊨S
1

2
|000⟩⟨000|+ 1

2
|101⟩⟨101|+ 1

2
|000⟩⟨101|+ 1

2
|101⟩⟨000| (3.39)

By definition, the following propositions obviously hold.

Proposition 3.2.28. Let α be a preassignment. α is sound for {ρQ,S}(Q,S)∈α if

and only if for any (Q,S) ∈ α, (Q,S) is sound for ρQ,S.

Proposition 3.2.29. Let α be a preassignment and ρ, σ be quantum states such
that the sum is a quantum state. If α is a sound approximation of both ρ and σ,
it is also a sound approximation of ρ+ σ.

An intuition about the order of the domain is justified by the following propo-
sition. Indeed, the order ≤S was defined so that the proposition holds.

Proposition 3.2.30. Let ρ be a state and α and β be preassignments. Assume
α ≤S β. If α is a sound approximation of ρ, so is β.

Proof. Let
{
(pj , {ρj,Q,S})

}
be a sound decomposition of ρ for α. Take (R, T ) ∈ β.

Since α ≤S β, there exist (Q0, S0), . . . , (Qn−1, Sn−1) ∈ α such that
∪
kQk = R

and
⊙

k(Qk, Sk) ≤S T . If T is either I or ■, (R, T ) is sound for
⊗

k ρj,Qk,Sk
. If

T ∈ SS, either n = 1 or all Sks are I. In the latter case, 1
2n I

⊗n can be decomposed
to a sum of the T basis states.

33



Proposition 3.2.31. Let α and β be assignments. Assume that for any state ρ,
if α is a sound approximation of ρ, so is β. Then, α ≤S β.

Proof. For each n, fix a non-stabiliser entangled state |ψn⟩ of n qubits. Moreover,
for each stabiliser array S, fix a stabiliser state |ψS⟩. Define ρ as follows

ρ =
⊗
Q∈α0

σ[Q] (3.40)

where

σ[Q] =


1
2 I ((Q, I) ∈ α)
|ψS⟩⟨ψS | ((Q,S) ∈ α)
|ψn⟩⟨ψn| (otherwise)

. (3.41)

α is trivially a sound approximation of ρ. By assumption, β is a sound approxi-
mation of ρ. ρ is not P -separable unless α0 ≤Π P . Hence, α0 ≤Π β0. Moreover,
since α is an assignment, any σ[Q] is entangled. Therefore, α ≤S β.

3.2.4 Stabiliser abstract semantics

In the previous subsection, we investigated the stabiliser domain. Now, we have
no obstacle to an abstract semantics.

Definition 3.2.32. The stabiliser abstract semantics of QIL programs is a func-
tion J·KS : QIL → SQ → SQ defined in Figure 3.3. upS is a function that decom-
poses stabiliser arrays so that an output is an assignment. upS(Q,■) = { (Q,■) }
and upS(Q,S) = { (Q0, S0), . . . , (Qm−1, Sm−1) } such that {Qi}i is a partition of
Q, Si ∈ NSS|Qi|, and

⊗
i Si = S. measS,i performs measurement and is defined

as follows.

measS,i(α) =


α[i 7→ ⟨Z⟩] (|α0(i)| = 1)
α[i 7→ ({ i } , ⟨Z⟩), (α0 \ { i } ,■)] (α1(i) = ■)
α[i 7→ upS(α0(i),meassf,i(α1(i)))] (otherwise)

(3.42)

where meassf,i is the measurement of the ith qubit in the stabiliser formalism.

Proposition 3.2.33. J·KS is well-defined.

Proof. We only prove that S = CX(i,j)(α1(i)⊗ α1(j))CX
†
(i,j) belongs to NSS∗.

Assume S is separable: S = T ⊗ U . If T contains neither i nor j, any row of T
is unchanged through CX(i,j) and therefore T is an evidence of either or both of
α1(i) and α1(j) are separable. Assume T and U contains i and j, respectively.
By the definition of J·KS, the ith column of α0(i) contains X or Y. Therefore, S
has a row whose ith and jth columns are (X,X) or (Y,X). Because α1(j) ̸= ⟨X⟩,
S has no row whose ith and jth columns are (I,X). It contradicts S = T ⊗U .

The stabiliser semantics is not so different from the basis semantics. A dif-
ferent point is that the stabiliser semantics of CX(i,j) has an extra condition:
α0(i) = α0(j). This condition means that i and j are entangled before being
applied CX(i,j). For this case, while the basis semantics cannot do anything, the
stabiliser semantics is able to undo the entanglement via upS. It is worth noting
that we use not a preassignment but an assignment. This is because the behaviour
of JT(i)KS. It discards the stabiliser array on the associated block. Therefore,
if a block is meaninglessly large, JT(i)KS removes too much information. Using
upS, we reduce the damage from a non-Clifford operator.

Now, we show the first main theorem of the section: the stabiliser semantics
is sound.

34



JskipKS(α) = αq
C;C ′y

S
(α) =

q
C ′y

S
(JCKS(α))JU(i)KS(α) = α[i 7→ U(i)α1(i)U

†
(i)]

JT(i)KS(α) = { α (α1(i) and Z(i) commute)

α[i 7→ ■] (otherwise)

JCX(i,j)KS(α) =



α[i 7→ upS(α0(i),CX(i,j)α1(i)CX
†
(i,j))] (α0(i) = α0(j))

α
(α1(i) = I and

α1(j) = I)
α[i 7→ ⟨Z⟩] (α1(i) = I)
α[j 7→ ⟨X⟩] (α1(j) = I)

α
(α1(i) = ⟨Z⟩ or
α1(j) = ⟨X⟩)

α[i, j 7→ CX(i,j)(α1(i)⊗ α1(j))CX
†
(i,j)] (otherwise)uwwv

if i
then C
else C ′

fi

}��~
S

(α) = JCKS(measS,i(α)) ∨
q
C ′y

S
(measS,i(α))

uwwv
while i
do

C
od

}��~
S

(α) =
∨
n∈N

measS,i((JCKS ◦measS,i)
n(α))

where U ∈ { X, Y, Z, H, S }.

Figure 3.3: Stabiliser abstract semantics of quantum imperative language

Lemma 3.2.34. Let ρ be a concrete state and α be an assignment such that α ⊨S

ρ. For any i ∈ Q, d ∈ B, measS,i(α) is a sound approximation of |d⟩⟨d|(i)ρ|d⟩⟨d|(i).

Proof. Let
{
(pj , {ρj,Q,S})

}
be a sound decomposition of ρ for α. Let (Q,S) be

α(i). If |Q| = 1, |d⟩⟨d|(i)ρj,Q,S |d⟩⟨d|(i) = |d⟩⟨d| and therefore (Q, ⟨Z⟩) is sound for
it. If S = ■, (Q,S) is changed into { ({ i } , ⟨Z⟩), (Q \ { i } ,■) } and the latter
element is sound for ⟨d|(i)ρj,Q,S |d⟩(i). Assume S is a stabiliser array. ρj,Q,S =
|ψ⟩⟨ψ| with some S basis state |ψ⟩. The stabiliser formalism ensures meassf,i(S)
stabilises |0⟩⟨0|(i) |ψ⟩.

Theorem 3.2.35. For any concrete state ρ ∈ DN , any assignment α ∈ SQ, and
any QIL program C ∈ QIL, α ⊨S ρ implies JCKS(α) ⊨S JCK(ρ).
Proof. We prove the statement by the induction on the structure of C. By
Proposition 3.2.28, we ignore the unchanged blocks. For skip and C;C ′, the
statement trivially holds. Take α and ρ such that α ⊨S ρ. Let

{
(pk, {ρk,Q,S})

}
be a sound decomposition of ρ for α.

(U) Take U ∈ { X, Y, Z, H, S }. Let (Q,S) be α(i). (Q,U(i)SU
†
(i)) is sound for

U(i)ρk,Q,SU
†
(i). If U(i)SU

†
(i) is I, so is S and hence ρk,Q,S = U(i)ρk,Q,SU

†
(i) =

1
2 I. Moreover, if |ψ⟩ is an S basis state, U |ψ⟩ is a U(i)SU

†
(i) basis state.

(T) By the same argument as the above, JT(i)KS(α) ⊨S JT(i)K(ρ). Note that ■
is sound for anything.

35



(CX) We will show JCX(i,j)KS(α) ⊨S JCX(i,j)K(ρ) by case analysis.

– Assume α0(i) = α0(j). Let (Q,S) be α(i). If S = ■, (Q,S) is trivially

sound for CX(i,j)ρk,Q,SCX
†
(i,j). Assume S ̸= ■. CX(i,j)SCX

†
(i,j) is

sound for CX(i,j)ρk,Q,SCX
†
(i,j). Since |Q| > 1, S ∈ NSS, and ρk,Q,S is

an S basis state. CX(i,j)ρk,Q,SCX
†
(i,j) is a CX(i,j)SCX

†
(i,j) basis state

and it can be decomposed into appropriate stabiliser basis states by
Proposition 3.2.15.

– Assume α0(i) ̸= α0(j). Let (Q,S) and (R, T ) be α(i) and α(j), re-
spectively.

∗ Assume S = T = I. ρk,Q,S = ρk,R,T = 1
2 I. CX(14 I

⊗2)CX† = 1
4 I

⊗2.

∗ Assume S = I but T ̸= I. Then, ρk,Q,S = 1
2 I and

CX(i,j)

(
1

2
I ⊗ ρk,R,T

)
CX†

(i,j)

=
1

2
|0⟩⟨0|[i] ⊗ ρk,R,T +

1

2
|1⟩⟨1|[i] ⊗X(j)ρk,R,TX

†
(j).

(3.43)

Since any stabiliser basis is invariant under the transformation by
X(j), (R, T ) is sound for both ρk,R,T and X(j)ρk,R,TX

†
(j).

∗ Assume S = ⟨Z⟩ and T ̸= I. We can write ρk,Q,S = |d⟩⟨d| where
d ∈ B.

CX(i,j)(|d⟩⟨d| ⊗ ρk,R,T )CX
†
(i,j) = |d⟩⟨d|[i] ⊗X(j)

dρk,R,TX(j)
d†.

(3.44)
It is the same as the above.

∗ Finally, assume S ̸= I, ⟨Z⟩ and T ̸= I, ⟨X⟩. (Q ∪ R,S ⊗ T ) is

trivially sound for CX(i,j)ρk,Q,S ⊗ ρk,R,TCX
†
(i,j).

(if) Let C,C ′ be QIL programs. By Lemma 3.2.34 and the induction hypoth-
esis, JCKS(measS,i(α)) and JC ′KS(measS,i(α)) are sound approximations
for JCK(|0⟩⟨0|(i)ρ|0⟩⟨0|(i)) and JC ′K(|1⟩⟨1|(i)ρ|1⟩⟨1|(i)), respectively. Then,Jif i then C else C ′ fiKS ⊨S Jif i then C else C ′ fiK is a consequence
of Propositions 3.2.29 and 3.2.30.

(while) Let i ∈ Q and C ∈ QIL. By Lemma 3.2.34 and the induction hypothesis,
for any n ∈ N, measS,i((JCKS ◦measS,i)

n(α)) is a sound approximation of
|1⟩⟨1|(i)measnC,i(ρ)|1⟩⟨1|(i). Therefore, for any n ∈ N, Jwhile i do C odKS(α)
is a sound approximation of |1⟩⟨1|(i)measnC,i(ρ)|1⟩⟨1|(i). By Proposition 3.2.29,
for any N ∈ N, this stabiliser abstract state is also a sound approximation
of
∑

n≤N |1⟩⟨1|(i)measnC,i(ρ)|1⟩⟨1|(i). Therefore, the sum can be written as∑
j pj,N

⊗
ρj,Q,S⊗σj,N . Here, (Q,S) ∈ Jwhile i do C odKS(α) is sound for

ρj,Q,S ,
⊗
ρj,Q,S and

⊗
ρk,Q,S are assumed to be orthogonal unless j = k,

and σj,N is {Q | (Q,■) ∈ β }-separable. Since the state converges and pro-
jections are continuous, pj,N and σj,N converges when N → ∞. The set
of separable states is closed, so the limit of σj,N is separable. Therefore,Jwhile i do C odKS(α) is a sound approximation of Jwhile i do C odK(ρ).

The soundness theorem states that we can use the stabiliser semantics to
analyse entanglement in QIL programs. The theorem guarantees nothing but

36



that the semantics never gives wrong analysis, which the basis semantics is also
guaranteed by Theorem 3.1.16. We show that the stabiliser semantics has an
advantage over the basis semantics by computing the stabiliser semantics of our
motivating examples.

Example 3.2.36. JGHZKS(α) is { ({ 0, 1, 2 } , ⟨XXX,ZZI, IZZ⟩) }. Both abstract
states JINVERTGHZKS(α), JBREAKGHZKS(α) are { ({ 0 } , ⟨Z⟩), ({ 1 } , ⟨Z⟩), ({ 2 } , ⟨Z⟩) }.
Indeed,

α
INIT−−−→


0 1 2

Z

Z

Z

 H(0)−−−→


0 1 2

X

Z

Z

 CX(0,1)−−−−−→


0 1 2

X X
Z Z

Z


CX(1,2)−−−−−→


0 1 2

X X X
Z Z I
I Z Z

 CX(1,2)−−−−−→


0 1 2

X X
Z Z

Z


CX(0,1)−−−−−→


0 1 2

X

Z

Z

 H(0)−−−→


0 1 2

Z

Z

Z



(3.45)

α
GHZ−−→


0 1 2

X X X
Z Z I
I Z Z

 MEASURE0−−−−−→


0 1 2

Z I I
I Z I
I I Z

→


0 1 2

Z

Z

Z

 (3.46)

In the last arrow, we explicitly write how upS works.

The semantics shows all variables are separable after running INVERTGHZ or
BREAKGHZ, which we learned from the concrete semantics. The traces in the
examples show how the stabiliser semantics nicely works. Then, a question arises.
The above example tells us that the stabiliser semantics is better than the basis
semantics in some cases. Is that true for any case? We will make a comparison
in the next subsection.

Before proceeding the next subsection, we must confess a drawback of the
stabiliser semantics: It is not monotone, although that the basis abstract seman-
tics is monotone as stated in Lemma 3.1.15. Worse than that, we have a specific
program that inverts the order of some specific inputs.

Proposition 3.2.37. J·KS is not monotone. Furthermore, there exist assign-
ments α, β and a QIL program C such that α <S β and JCKS(α) >S JCKS(β).
Proof. Let α = { ({ 0 } , I), ({ 1 } , ⟨Z⟩) }, β = { ({ 0 } , ⟨X⟩), ({ 1 } , ⟨Z⟩) }, and C =

37



CX(0,1);S(0);H(0);CX(0,1);T(1). Then, 0 1

I

Z

 CX(0,1)−−−−−→

 0 1

Z

Z

 S(0)−−−→

 0 1

Z

Z

 H(0)−−−→

 0 1

X

Z


CX(0,1)−−−−−→

 0 1

X X
Z Z

 T(1)−−−→

 0 1

■ ■
■ ■


(3.47)

 0 1

X

Z

 CX(0,1)−−−−−→

 0 1

X X
Z Z

 S(0)−−−→

 0 1

Y X
Z Z

 H(0)−−−→

 0 1

Y X
X Z


CX(0,1)−−−−−→

 0 1

Y

Y

 T(1)−−−→

 0 1

Y

■

 .
(3.48)

This is very troublesome. Until now, we have not referred to while i do C od.
The stabiliser semantics of the program needs to compute the least upper bound
of finite approximations. As the stabiliser domain SQ is finite, the computa-
tion necessarily terminates. However, it may take superpolynomial time be-
cause SQ has the superpolynomial number of elements. If the semantics is
monotone, we could compute an upper approximation, the least fixed point of
λβ.(measS,i(JCKS(β)) ∨measS,i(α)). Starting from the bottom, the function as-
cends the stabiliser domain. The height of the domain grows linearly with respect
to N , so we could compute it in polynomial time.

Let us investigate the program in the above proposition more precisely. Com-

paring (3.47) to (3.48), we can find the first
CX(0,1)−−−−−→ breaks monotonicity. Before

passing the operator, the former says the state of the zeroth qubit is 1
2 I, but the

latter says it is a ⟨X⟩ stabiliser state. Then, the former remains separable but
the latter becomes entangled. This situation causes the trouble. Indeed, we can
find that no other situation destroys the monotonicity.

Lemma 3.2.38. Let α be an assignment and C be a QIL program. For any
i ∈ Q, if (JCKS(α))1(i) = I, then α1(i) = I.

Proof. By the induction on the structure of C. Any program does not produce
I. Note that USU † = I if and only if S = I.

Corollary 3.2.39. Let I(α) be | {Q | (Q, I) ∈ α } |. For any α ∈ SQ and C ∈
QIL, I(α) ≥ I(JCKS(α)).
Lemma 3.2.40. upS is monotone.

Proof. Let α and { (R, T ) } be preassignments such that α ≤S { (R, T ) }. We
claim

∪
(Q,S)∈α upS(Q,S) ≤S upS(R, T ). If T = ■, then upS(R, T ) = (R,■). If⊙

upS(Qi, Si) is I, then upS(Qi, Si) is { (Qi, I) }. Otherwise, α = { (R, T ) }.

Lemma 3.2.41. measS,i is monotone.

Proof. Let α, β be assignments such that α ≤S β. We first note that both
measS,i(α) and measS,i(β) definitely contain ({ i } , ⟨Z⟩). If β1(i) = ■, then
(measS,i(β))1(j) = ■ for any j ∈ β0(i) \ { i }. Moreover, when

⊙
j∈β0(i) α(j) = I,⊙

j∈β0(i)\{ i } α(j) remains I.

38



Proposition 3.2.42. Let α, β be assignments such that α ≤S β. Let C be a
QIL program. Assume for any i ∈ Q, α1(i) = I implies β1(i) = ■. Then,JCKS(α) ≤S JCKS(β).
Proof. Note that JCKS(α) and JCKS(β) satisfy the assumption because ■ is pre-
served unless measS,i is applied. When it is applied, both α1(i) and β1(i) change
to ⟨Z⟩.

We prove the statement by the induction on the structure of C. By Lemma 3.2.38,
it is easy to see skip and C;C ′ satisfies the statement. Let α, β be assignments
such that α ≤S β.

• Let U ∈ { X, Y, Z, H, S }. JU(i)KS(α) ≤S JU(i)KS(β) from the fact that U
preserves I and ■. We can apply a similar argument to T(i).

• By monotonicity of measS,i and the induction hypothesis, the statement
holds for if i then C else C ′ fi and while i do C od.

• Finally, we examine CX(i,j). If α0(i) = α0(j), so is β. By monotonicity of
upS, JCX(i,j)KS(α) ≤S JCX(i,j)KS(β). Assume α0(i) ̸= α0(j). If neither
α1(i) nor α1(j) is I, then either (α1(i), α1(j)) = (β1(i), β1(j)) or at least one
of {β1(i), β1(j) } is ■. If both of α1(i) and α1(j) is I, then

⊙
k∈β0(i) α(i) is I

or■. The proposition trivially holds. Finally, assume α1(i) = I and α1(j) ̸=
I. By the assumption, β1(i) = ■. If β1(j) ̸= ⟨X⟩, (JCX(i,j)KS(β))1(j) = ■.
Otherwise, α1(j) = ⟨X⟩.

In the above proof, we used the assumption “for any i ∈ Q, α1(i) = I implies
β1(i) = ■” only when C = CX(i,j) and exactly one of α1(i) and α1(j) is I.
Indeed, (3.47) is such a situation. Therefore, we can say the stabiliser semantics
is monotone when it does not happen.

Corollary 3.2.43. Let α, β be assignments such that α ≤S β. Let C be a QIL
program. Assume I(α) = I(JCKS(α)). Then, JCKS(α) ≤S JCKS(β).

By the structural induction, we can find that I(α) = I(JCKS(α)) if and only
if for any i such that α1(i) = I, neither i is measured nor C contains CX(i,j)
with j such that α1(j) ̸= I. Therefore, if we run the program again, the number
of I is preserved.

Proposition 3.2.44. Let α be an assignment and C be a QIL program. As-
sume that if C contains CX(i,j), either α1(i) = α1(j) = I or α1(i) ̸= I and
α1(j) ̸= I. Moreover, assume that if C contains if i then C ′ else C ′′ fi or
while i do C ′ od, α1(i) ̸= I. Then, I(α) = I(JCKS(α)).
Corollary 3.2.45. Let α, β be assignments such that α1(i) = I if and only if
β1(i) = I for any i ∈ Q. Let C be a QIL program. Assume I(JCKS(α)) is I(α).
Then, I(JCKS(β)) is I(β).
Corollary 3.2.46. Let α be an assignment and C be a QIL program. If I(JCKS(α))
is I(α), so is I(JCKS(JCKS(α))).

How to approximate Jwhile j do C odKS(α) is summarised in Algorithm 2.
By Corollary 3.2.39, (I((measS,i ◦ JCKS)n(measS,i(α))))n∈N is a decreasing se-
quence and it reaches the fixed point for some n. Then, (xm)m∈N is an increas-
ing sequence where x0 = (measS,i ◦ JCKS)n(measS,i(α)) and xm+1 = (measS,i ◦JCKS)(xm) ∨ xm. Note that xm and xm+1 has the same I’s.

39



Algorithm 2 Approximation of Jwhile j do C odKS(α)
1: β = measS,j(α).
2: ϵ = β.
3: repeat
4: α = β.
5: ϵ = α ∨ ϵ.
6: β = measS,j(JCKS(α)).
7: until α and β have the same number of I’s
8: β = α ∨ β.
9: while α ̸= β do

10: α = β.
11: β = measS,j(JCKS(α)) ∨ α.
12: end while
13: return ϵ ∨ α.

The definition of the stabiliser semantics in Figure 3.3 can be understood
as an algorithm to compute the semantics. Except for Jwhile j do C odKS, the
semantics can be evaluated in polynomial time with respect to N provided that
its components can be efficiently evaluated. For example, if JCKS and JC ′KS can
be efficiently evaluated, we can compute Jif j then C else C ′ fiKsubSTAB(α)
in polynomial time because both measS,j and ∨ can be efficiently evaluated.
Since we have an approximation algorithm for Jwhile j do C odKS, we have an
approximation algorithm for the stabiliser semantics. The algorithm can compute
one step of the semantics in polynomial time in the above sense. Moreover, it
works in polynomial time for constant-depth programs. We estimate its time
complexity. Here, we assume that we can obtain and rewrite any element of any
stabiliser in any assignment in unit time.

Theorem 3.2.47. Let α be an assignment, C be a QIL program, s be its size,
and d be its depth. JCKS(α) is approximately computed in O(3dNd+3s) time.

Proof. Let t(C) be an upper bound of the time complexity of computing an ap-
proximation of JCKS(α) for any α. We use t(s, d) to denote an upper bound of
t(C) for any QIL program C whose size is at most s and depth is at most d. Al-
gorithm 1 shows that we can compute upS(Q,S) in O(N3) time and thus we can
compute measS,j(α) in O(N3) time. Therefore, if we ignore while j do C od,
t(s, d) = max0≤l<s {O(N3) + t(j, d) + t(s− 1− j, d)}. Let us investigate Algo-
rithm 2. In the first loop in Algorithm 2, measS,j(JCKS(α)) is computed at most
N times because the number of I’s in α is never greater than N . In the second
loop, measS,j(JCKS(α)) is computed at most 2N times. This is because α forms an
increasing sequence, all I’s are preserved in the sequence, and each block in α cor-
responds to either a stabiliser array or ■. Therefore, t(d, s) ≥ 3Nt(d−1, s−1) and
thus t(d, s) = max {3Nt(d− 1, s− 1), max

0≤l<s
{O(N3) + t(j, d) + t(s− 1− j, d)}}.

The size s of a program is independent of the number of variables N of QIL.
However, we can estimate s is not too small with respect to N . Take a program
C and assume 2s is less than N where s = sz (C). Since any size-one program
contains at most two variables, 2s is the maximum number of variables occurring
in C. The assumption means that C does not touch all variables and hence it
can be regarded as a program of QIL having fewer variables such as QILN−1.
Therefore, it is reasonable to assume that N ≤ 2s holds.

40



Corollary 3.2.48. Let α be an assignment, C be a QIL program, s be its size,
and d be its depth. Assume N ≤ 2s. JCKS(α) is approximately computed in
O(3dsd+4) time. When d is constant, an approximation of JCKS(α) is computed
in polynomial time with respect to s.

Corollary 3.2.49. Let α be an assignment, C be a constant-depth QIL program
whose size is polynomial with respect to N . Then, an approximation of JCKS(α)
is computed in polynomial time with respect to N .

3.2.5 Comparison with the basis semantics

We saw the stabiliser semantics is not monotone (Proposition 3.2.37), although
the basis semantics is (Lemma 3.1.15). Nevertheless, the stabiliser semantics is
better than the basis semantics in some sense. In the subsection, we compare the
stabiliser semantics with the basis semantics. We show that their domains are
connected by a Galois connexion and prove that the basis semantics is a sound
approximation of the stabiliser semantics.

First of all, we define translations concSA, abstSA between the basis domain
and the stabiliser domain.

Definition 3.2.50. In the definition, we identify ⊥, Z, and X with I, ⟨Z⟩, and
⟨X⟩, respectively. Functions concSA : AQ → SQ and abstSA : SQ → AQ are
defined as follows.

concSA((P, b)) =
∪
Q∈P

{ (Q \ s(Q, b),■) } ∪
∪

i∈s(Q,b)

{ (i, b(i)) }

 (3.49)

abstSA(α) = (α0, c) (3.50)

where

s(Q, b) = { i | i ∈ Q, b(i) ̸= ⊤} (3.51)

c(j) =

{
α1(j) (α1(j) = I, ⟨Z⟩, ⟨X⟩)
⊤ (otherwise)

. (3.52)

Proposition 3.2.51. Both concSA and abstSA are monotone.

Proposition 3.2.52. concSA and abstSA form a Galois connexion.

Proof. Take α ∈ SQ and (P, b) ∈ AQ . Assume abstSA(α) ≤A (P, b). Then,
α0 ≤Π P and for any j ∈ Q, at least one of the following is true: α1(j) = b(j),
α1(j) = I, or b(j) = ⊤. Let β = concSA((P, b)). Take j ∈ Q such that β(j) ̸= ■.
By definition, b(j) ̸= ⊤ and thus ■ ̸= α1(j) = b(j) or α1(j) = I. In both cases,
the size of α0(j) is one. Therefore, α ≤S β. The converse is easy.

The translation concSA may divide a partition in a basis abstract state to
several parts. This is because a basis domain permits its state to waste the infor-
mation about the basis. For example, ({{ 0, 1 }} , (Z,Z)) is a basis abstract state.
The definition of ⊨A says it is a sound approximation of separable concrete states
such as 1

2 |00⟩⟨00|+
1
2 |11⟩⟨11|. Indeed, the division does not cause any trouble, or

rather preservation causes a trouble: If we preserve the partition, the above state
is translated into { ({ 0, 1 } ,■) } because we require any stabiliser array in a sta-
biliser abstract state not to be separable. The translation loses the information.
For example, measA,0 changes the above state into ({{ 0 } , { 1 }} , (Z,Z)), but we

41



cannot deduce from { ({ 0, 1 } ,■) } that the first qubit is the ⟨Z⟩ basis state after
measurement.

Then, we define a soundness relation, which is induced by the Galois connex-
ion.

Definition 3.2.53. Let α ∈ SQ and (P, b) ∈ AQ . We write α ◁SA (P, b) if
α ≤S concSA((P, b))

The relation has another characterisation. A sound approximation of a sta-
biliser array approximating a quantum state is a sound approximation of the
quantum state.

Proposition 3.2.54. Let α ∈ SQ and (P, b) ∈ AQ. α ◁SA (P, b) if and only if
for any ρ ∈ DN , α ⊨S ρ implies (P, b) ⊨A ρ.

Lemma 3.2.55. For any α ∈ SQ and any ρ ∈ DN such that α ⊨S ρ, abstSA(α) ⊨A

ρ.

Lemma 3.2.56. Let ρ ∈ DN and (P, b) ∈ AQ such that (P, b) ⊨A ρ. Then,
concSA((P, b)) ⊨S ρ.

Proof. Assume (P, b) ⊨A ρ. First, we show that if b(i) ̸= ⊤, then ρ is {Q \ { i } | Q ∈ P }∪
{ i }-separable. Without loss of generality, we can assume b(i) = Z. Since ρ
is P -separable, ρ =

∑
j pj

⊗
Q∈P ρj,Q. Take R ∈ P such that i ∈ R. Let

R′ = R \ { i }. ρj,R =
∑

k,l∈B αj,k,lσj,k,l,R′ ⊗ |k⟩⟨l|[i] with some αj,k,l, σj,R′ .
0 = ⟨0|(i)ρ|1⟩(i) =

∑
j αj,0,1pj

⊗
Q̸=R ρj,Q ⊗ σj,k,l,R′ . Therefore,

ρ =
∑
k,l

∑
j

αj,k,lpj
⊗
Q̸=R

ρj,Q ⊗ σj,k,l,R′ ⊗ |k⟩⟨l|[i]

=
∑
k

∑
j

αj,kpj
⊗
Q̸=R

ρj,Q ⊗ σj,k,R′ ⊗ |k⟩⟨k|[i]
(3.53)

Because ρj,R is semi-definite, αj,k is non-negative. The above equation also shows
that ρj,R can be decomposed to some state and the ⟨Z⟩ basis state.

Proof of Proposition 3.2.54. Assume α ◁SA (P, b). Take ρ ∈ DN and assume
α ⊨S ρ. By Proposition 3.2.30, concSA((P, b)) ⊨S ρ. Then, by Lemma 3.2.55,
(P, b) ≥A abstSA(concSA((P, b))) ⊨A ρ.

Conversely, assume that for any ρ ∈ DN , α ⊨S ρ implies (P, b) ⊨A ρ. By
Lemma 3.2.55, for any ρ ∈ DN , α ⊨S ρ implies concSA((P, b)) ⊨S ρ. By Proposi-
tion 3.2.31, α ≤S concSA((P, b)).

Finally, we show the second main theorem of the section. The stabiliser
semantics is a concretisation of the basis semantics.

Theorem 3.2.57. For any C ∈ QIL, any α ∈ SQ, and any (P, b) ∈ AQ, if
α ◁SA (P, b), then JCKS(α) ◁SA JCKA((P, b)).

Proof. By the induction on the structure of C. Take α ∈ SQ and (P, b) ∈ AQ

such that α ≤S concSA((P, b)). Let β = concSA((P, b)).

• JskipKS(α) = α ≤S concSA((P, b)) = concSA(JskipKS((P, b))).
• By the induction hypothesis, JCKS(α) ≤S concSA(JCKA((P, b))). By the in-

duction hypothesis again, JC ′KS(JCKS(α)) ≤S concSA(JC ′KA(JCKA((P, b)))).
Therefore, JC;C ′KS(α) ≤S concSA(JC;C ′KA((P, b))).

42



• Take i ∈ Q. Assume { i } /∈ P . Any single qubit unitary operator U
does not change a partition, so JU(i)KS(α) ≤S concSA(JU(i)KA((P, b))).
Assume α0(i) = { i } and { i } ∈ P . If α1(i) = I, JU(i)KS(α) = I. If not,
(concSA((P, b)))1(i) is α1(i) or ■.

• If { i, j } ⊂ Q ∈ P for some Q, P is invariant under JCX(i,j)KA and
(concSA((P, b)))1(i) = ■. Assume not. Since conditions are almost equal,JCX(i,j)KS(α) ≤S concSA(JCX(i,j)KA((P, b))). The exceptions are b(i) =
b(j) = ⊥ and the else condition, but it makes ≤S easier to hold.

• First, we show JmeasS,iKS(α) ≤S concSA(JmeasA,iKA((P, b))). Let (Q,S) =
α(i) and (R, T ) = β(i). There exist (Q0, S0), . . . , (Qm−1, Sm−1) such that
Q ∪

∪
kQk = R and (Q,S) ⊙

⊙
k(Qk, Sk) ≤S T . (Q \ { i }) ∪

∪
kQk =

R \ { i }. T ̸= ■ only if R = { i }. Hence, the claim holds. By the prop-
erty of ∨ and the induction hypothesis, Jif i then C else C ′ fiKS(α) ≤S

concSA(Jif i then C else C ′ fiKA((P, b))).

• Similarly, while i do C od satisfies the statement.

From INVERTGHZ and BREAKGHZ, we conclude the stabiliser semantics is strictly
better than the basis semantics.

3.3 Extended stabiliser abstract semantics

3.3.1 Motivation and idea

In the previous section, we proposed the stabiliser semantics, which is a strictly
better semantics than the basis semantics. Can we improve the semantics? The
stabiliser semantics gives us exact entanglement analysis provided that programs
are within the framework of the stabiliser formalism. In order to obtain a better
semantics, we have to investigate the black hole ■.

Recall the symbol ■ states that the abstract state does not have any infor-
mation about the state of the associated block. We change a stabiliser array into
the symbol when the non-Clifford operator T is applied to a non-standard basis
state. Let us see the following example.

TMEASURE ≡ GHZ;T(0);MEASURE1 (3.54)

The stabiliser semantics tells us that the first qubit is separable from the others
but they may be entangled.

α
GHZ−−→


0 1 2

X X X
Z Z I
I Z Z

 T(0)−−−→


0 1 2

■ ■ ■
■ ■ ■
■ ■ ■

 MEASURE1−−−−−→


0 2 1

■ ■
■ ■

Z

 (3.55)

This is not an exact analysis. Indeed, a concrete state is changed as follows.

ρ
GHZ−−→ |GHZ⟩⟨GHZ|

T(0)−−−→ 1

2
|000⟩⟨000|+ ei

π
4

2
|111⟩⟨000|+ e−i

π
4

2
|000⟩⟨111|+ 1

2
|111⟩⟨111|

MEASURE1−−−−−→ 1

2
|000⟩⟨000|+ 1

2
|111⟩⟨111|

(3.56)

43



The last state shows all variables are separable. Furthermore, we can find it is
a stabiliser basis state. Although the non-Clifford operator changes a state into
a non-stabiliser basis state, measurement completely removes the effect of the
operator. The example suggests us that the stabiliser semantics is too timid and
that we may obtain some useful information if we refrain from using the symbol
■. Let us try to do that. Recall that if a state |ψ⟩ is stabilised by a stabiliser S,
USU † “stabilises” U |ψ⟩, even when USU † is not a stabiliser.

α
GHZ−−→


0 1 2

X X X
Z Z I
I Z Z

 T(0)−−−→


0 1 2

TXT† X X
Z Z I
I Z Z


MEASURE1−−−−−→


0 1 2

I Z I
Z Z I
I Z Z

→


0 1 2

Z

Z

Z

 .
(3.57)

We also try to do that in another example.

TINIT ≡ INIT;H(0);CX(0,1) (3.58)

TUNDO ≡ TINIT;T(0);CX(1,2);H(1);H(2);S(1);CX(1,2) (3.59)

While

α
TINIT−−−→


0 1 2

X X
Z Z

Z

 T(0)−−−→


0 1 2

■ ■
■ ■

Z

 CX(0,1)−−−−−→


0 1 2

■ ■ ■
■ ■ ■
■ ■ ■

 (3.60)

and the last assignment is unchanged until the end of TUNDO, we can see that the
zeroth qubit changes its entanglement partner from the first qubit to the second
qubit as follows.

0 1 2

X X
Z Z

Z

 T(0)−−−→


0 1 2

TXT† X
Z Z

Z

 CX(1,2)−−−−−→


0 1 2

TXT† X X
Z Z I
I Z Z


H(1)−−−→


0 1 2

TXT† Z X
Z X I
I X Z

 H(2)−−−→


0 1 2

TXT† Z Z
Z X I
I X X

 S(1)−−−→


0 1 2

TXT† Z Z
Z Y I
I Y X

 CX(1,2)−−−−−→


0 1 2

TXT† I Z
Z Y X
I Y I

→


0 2 1

TXT† Z
Z X

Y



(3.61)

These examples indicate that it is not impossible to tame non-stabiliser basis
states. Even if the non-Clifford operator is applied, its effect may be localised
and may be finally removed as shown in (3.57). We should point out that both
programs do not touch the non-Pauli matrix TXT†. After passing T(0), all
programs are performed on the first and second qubits. All transitions do not
depend on the non-Pauli matrix. Indeed, if we add CX(1,0) at the end of TUNDO,

44



we would obtain the following.
0 2 1

CX(1,0)(TXT† ⊗ Z)CX†
(1,0)

Y Y

Y

 (3.62)

The effect of the non-Clifford operator spreads, although the spread never hap-
pens when we stay away from it.

Those examples show that even after being applied T(i) and some elements
are turned to non-Pauli matrices, the other elements still have useful information.
We use those elements to improve an abstract semantics. Naturally, we cannot
record non-Pauli matrices, so we abstract them. We introduce a new symbol ♡
to denote non-Pauli matrices. Using the symbol, the matrices at the end of (3.61)
and at (3.62) are written as follows.

0 2 1

♡ Z
Z X

Y




0 2 1

♡ ♡
Y Y

Y

 (3.63)

Here, ♡♡ denotes a non-Pauli matrix. The number of ♡ signifies the matrix
operates two qubits. It does not mean the matrix can be decomposed into the
tensor product of two matrices.

Precisely speaking, the symbol ♡ does not mean the matrix is not a Pauli
matrix as the symbol ■ does not mean a non-stabiliser. It may denote a Pauli
matrix: while TTXT†T† = SXS† = Y, we must deduce T♡T† = ♡ because
we have no information what ♡ denotes. The symbol ♡ states that we cannot
guarantee the matrix is a Pauli matrix. In the next subsection, we will discuss
what ♡ means.

3.3.2 Extended stabiliser domain

In the previous subsection, we introduced the symbol ♡. Before defining a new
domain, we investigate the symbol. A question is what ♡ denotes. What is an
instance of ♡? It is not an abstraction of any matrix. In the previous subsection,
we wrote that the symbol ♡ is used when some unitary operator is applied.
It is natural to define ♡ as an abstraction of any matrix that we can obtain
as the result of application of unitary matrices to a Pauli matrix, e.g., UXU †.
Now, we want to axiomatise the meaning by examining such matrices. Let P
be a Pauli matrix. First, we can find UPU † is a Hermitian unitary matrix:

(UPU †)
†
= (U †)

†
PU † = UPU †. Moreover, the matrix UPU † is traceless, i.e., the

trace is zero, unless P = I⊗n. Since the trace is cyclic, tr
(
UPU †) = tr

(
PU †U

)
=

trP = 0 provided P ̸= I⊗n. Therefore, an instance of ♡ should be either a
traceless Hermitian unitary matrix or I⊗n. Next, we move our attention from a
row to an entire stabiliser array. Let P and Q be rows of a stabiliser array. As
they are independent, PQ is a Pauli matrix and hence tr (PQ) = 0. The relation
is preserved under unitary transformation. tr

(
UPU †UQU †) = tr

(
UPQU †) =

tr
(
PQU †U

)
= tr (PQ) = 0. In other words, the rows UPU † are orthonormal

with respect to the Hilbert-Schmidt inner product. The above traceless condition
is a special case when Q = I⊗n.

Now, we have all we need. In the stabiliser semantics, we used the relation
between some bases and stabiliser arrays: a stabiliser array uniquely determines

45



a basis. We employed a stabiliser array S as an expression of a basis. Recall that
USU † “stabilises” U |ψ⟩ when U stabilises |ψ⟩. In other words, USU † uniquely
determines a basis. That is also true for orthonormal abelian groups of Hermitian
unitary matrices. Therefore, we can use such a group as an expression of a basis.

Proposition 3.3.1. Let ⟨S0, . . . , Sn−1⟩ be an orthonormal abelian group of Her-
mitian unitary matrices on n qubits. The states stabilised by ⟨(−1)s0S0, . . . ,
(−1)sn−1Sn−1⟩ forms a unique orthonormal basis.

Lemma 3.3.2. Let S = ⟨S0, . . . , Sm−1⟩ be an abelian group of Hermitian uni-
tary matrices on n qubits. Assume that S is orthonormal with respect to Hilbert-

Schmidt inner product. For any 0 ≤ l < m−1, tr
(
S0 · · ·Sm−1−lP

σm−l

Sm−l
· · ·P σm−1

Sm−1

)
=

0 where σj ∈ {+,−} and P±
T = 1

2(I ± T ).

Proof. We prove it by the induction on m.

• By assumption, tr (S0) = 0.

• First, tr (S0 · · ·Sm−1) = 0 by assumption. Assume for any S such that

|S| = m, tr
(
S0 · · ·Sm−l−1P

σm−l

Sm−l
· · ·P σm−1

Sm−1

)
= 0 for any l. Take S whose

size is m+ 1 and l. Assume that the statement holds for S and l.

tr
(
S0 · · ·Sm−l−1P

σm−l

Sm−l
P
σm−l+1

Sm−l+1
· · ·P σmSm

)
=

1

2
tr
(
S0 · · ·Sm−l−1(Iσm−lSm−l)P

σm−l+1

Sm−l+1
· · ·P σmSm

)
=

1

2
tr
(
S0 · · ·Sm−1−lP

σm−l+1

Sm−l+1
· · ·P σmSm

)
σm−l

1

2
tr
(
S0 · · ·Sm−l−1Sm−lP

σm−l+1

Sm−l+1
· · ·P σmSm

)
= 0σm−l0 = 0.

(3.64)

Corollary 3.3.3. Let S = ⟨S0, . . . , Sm−1⟩ be an orthonormal abelian group of
Hermitian unitary matrices on n qubits. For any σj ∈ {+,−}, tr

(
P+
0 P

σ1
1 · · ·P

σm−1

m−1

)
=

tr
(
P−
0 P

σ1
1 · · ·P

σm−1

m−1

)
.

Proof. 0 = tr
(
S0P

σ1
1 · · ·P

σm−1

m−1

)
= tr

(
(P+

0 − P
−
0 )P σ11 · · ·P

σm−1

m−1

)
.

Lemma 3.3.4. Let S = ⟨S0, . . . , Sm−1⟩ be an orthonormal abelian group of
Hermitian unitary matrices on n qubits. For any k such that 0 ≤ k < m,
tr
(
P+
0 · · ·P

+
m−1

)
= tr

(
P−
0 · · ·P

−
k P

+
k+1 · · ·P

+
m−1

)
.

Proof. • By the above corollary, tr
(
P+
0 · · ·P

+
m−1

)
= tr

(
P−
0 P

+
1 · · ·P

−
k

)
.

• Assume the statement holds for k.

tr
(
P+
0 · · ·P

+
m−1

)
= tr

(
P−
0 · · ·P

−
k P

+
k+1 · · ·P

+
m−1

)
= tr

(
P+
k+1 · · ·P

+
m−1P

−
0 · · ·P

−
k

)
= tr

(
P−
k+1 · · ·P

+
m−1P

−
0 · · ·P

−
k

)
= tr

(
P−
0 · · ·P

−
k+1P

+
k+2 · · ·P

+
m−1

)
.

(3.65)

Corollary 3.3.5. Let S = ⟨S0, . . . , Sm−1⟩ be an orthonormal abelian group of
Hermitian unitary matrices on n qubits. A vector space stabilised by S has the
dimension 2n−m.

46



Proof of Proposition 3.3.1. Let {|ψj⟩}j . Given {si}i, ⟨(−1)
s0S0, . . . , (−1)sn−1Sn−1⟩

stabilises a unique state |ψj⟩. For any i ̸= j, there exists Sk such that the eigen-
values corresponding to |ψi⟩ and |ψj⟩ are different. Then, ⟨ψi|ψj⟩ = ⟨ψi|Sk|ψj⟩ =
−⟨ψi|ψj⟩.

Definition 3.3.6. Let S = ⟨S0, . . . , Sn−1⟩ be an orthonormal abelian group of
Hermitian unitary matrices on n qubits. The S basis is the basis defined in
Proposition 3.3.1.

Example 3.3.7.
{

1√
2
(|00⟩ ± ei

π
4 |11⟩), 1√

2
(|01⟩ ± ei

π
4 |10⟩)

}
is the ⟨TXT†⊗X,ZZ⟩

basis.

Proposition 3.3.8. Any orthonormal basis is the S basis with some S.

Proof. Let {|ψi⟩}i be an orthonormal basis. Define U =
∑

i |ψi⟩⟨i| where {|i⟩}i is
the standard basis. U is a unitary matrix and satisfies |ψi⟩ = U |i⟩. Let S be the
stabiliser ⟨ZI · · · I, IZI · · · I, . . . , I · · · IZ⟩. S stabilises the standard basis, so USU †

stabilises {|ψi⟩}i.

We showed that an orthonormal abelian group of Hermitian unitary matrices
uniquely determines an orthonormal basis. Although a stabiliser basis is stabilised
by a unique stabiliser array, a basis can be stabilised by multiple abelian groups.

Example 3.3.9. Let U = I⊗3−|011⟩⟨011|−|100⟩⟨100|+|011⟩⟨100|+|100⟩⟨011|. U is
a unitary matrix and the standard basis is invariant under the matrix. Therefore,
both ⟨ZII, IZI, IIZ⟩ and ⟨U(ZII)U †, U(IZI)U †, U(IIZ)U †⟩ stabilises the standard
basis. However, these two groups are not the same.

We concluded from the observation of unitary transformation that a matrix
having ♡ should be an abstraction of some orthonormal abelian group. Next, let
us examine transformation via classical branches, if i then C else C ′ fi. Both
the basis semantics and the stabiliser semantics are defined through join opera-
tors. The concrete semantics is defined by addition. That is, the summation is
abstracted to the join. This is justified by the properties of abstract states: If α is
a sound approximation of both ρ and σ, it is also a sound approximation of ρ+σ;
If α is a sound approximation of ρ and β is larger than α, β is also a sound ap-
proximation of ρ. In the stabiliser semantics, Propositions 3.2.29 and 3.2.30 state

the facts. How about a semantics with ♡? Suppose we have

[
Z ♡
♡ Z

]
. As dis-

cussed before, this is an abstraction of matrices such as

[
Z I
I Z

]
and

[
Z X
X Z

]
.

The former and the latter are, for example, approximations of 1
2 |00⟩⟨00| and

1
4 |00⟩⟨00|+

1
4 |00⟩⟨11|+

1
4 |11⟩⟨00|+

1
4 |11⟩⟨11|. Both are approximated by

[
Z ♡
♡ Z

]
.

However, the sum is not so. 3
4 |00⟩⟨00| +

1
4 |00⟩⟨11| +

1
4 |11⟩⟨00| +

1
4 |11⟩⟨11| is not

stabilised by any Hermitian unitary matrix of form

[
Z ♡
♡ Z

]
.

Obviously, the trouble results from the existence of ♡. Both properties
are satisfied, if no ♡ exists. The properties are used only in the semantics of
if i then C else C ′ fi and while i do C od, that is when a concrete state is
defined by the summation. One solution is to change a matrix to the symbol ■
when the join is needed. However, rows with no ♡ are too meaningful to discard.

Any state approximated by an instance of

[
Z ♡
X Z

]
is necessarily stabilised by

47



XZ. We cannot use Z♡ to abstract the summation but can use XZ. For the
reason, we remove only rows having ♡. We allow a stabiliser array to be a non-
square matrix, e.g.,

[
X Z

]
. Now, we have the definition of generalisation of

stabiliser arrays.

Definition 3.3.10. Let n be a natural number. An extended Pauli matrix on
n qubits is an n-product of elements of { I,X,Y,Z,♡}. Let P be an extended
Pauli matrix and S = { i | P{i} = ♡}. S is said to be the hole of P . Let W be
a Hermitian unitary matrix on the hole S. A Hermitian unitary matrix R is an
instance of P with W if

R =W ⊗
⊗
i/∈S

P{i}. (3.66)

A Hermitian unitary matrix R is an instance of P if there exists a Hermitian
unitary matrix W such that R is an instance of P with W . We call this W the
caulk of R for P . We assume that P is an instance of P with I when P does not
contain ♡.

Definition 3.3.11. The set { I,X,Y,Z,♡} is a monoid with zero, where the
zero object is ♡ and the other products are inherited from the group of Pauli
matrices. We say ♡ commutes with any element Q of the set. Let P and Q be
extended Pauli matrices on n qubits. The product of P and Q is the elementwise
product: its ith element is P{i}Q{i}.

Proposition 3.3.12. Let P and Q be extended Pauli matrices on n qubits. Let
R and S be instances of P and Q, respectively. Then, RS is an instance of PQ.

Proof. Let W and X be the caulks of R and S for P and Q, respectively. Let A
and B be the holes of P and Q. Note that the hole of PQ is A∪B because ♡ is
an absorbing element.

RS = (W ⊗
⊗
i/∈A

P{i})(X ⊗
⊗
i/∈B

Q{i})

= ((W ⊗
⊗
i∈B\A

P{i})⊗
⊗
i/∈A∪B

P{i})((X ⊗
⊗
i∈A\B

Q{i})⊗
⊗
i/∈A∪B

Q{i})

= ((W ⊗
⊗
i∈B\A

P{i})(X ⊗
⊗
i∈A\B

Q{i}))⊗
⊗
i/∈A∪B

PQ{i}.

(3.67)

Definition 3.3.13. Let n and k be natural numbers such that k ≤ n. A k-
syntactic extended stabiliser array on n qubits is a k × n matrix whose rows are
extended Pauli matrices such that there are instances (Ri)i<k of them that form
an independent generator of an orthonormal abelian group. If k = n, an array
is said to be full. The 0-syntactic extended stabiliser array is denoted by ■. We
call (Ri)i<k an instance of the syntactic extended stabiliser array. The group
generated by an instance is also called by an instance. The rows having ♡ are
said to be rough rows and the other rows are flat rows. The k-syntactic extended
stabiliser space on n qubits SESk,n is the set of k-syntactic extended stabiliser
arrays on n qubits. The k-syntactic reduced stabiliser space on n qubits SRSk,n
is the set of k-syntactic extended stabiliser arrays on n qubits where no ♡ occurs.
SESn and SRSn are the unions of SESk,n and SRSk,n, respectively.

48



Definition 3.3.14. Let n and k be natural numbers such that k ≤ n. Let
M ∈ GL(k,B) and E ∈ SESk,n. A k × n matrix M • E is defined by

(M • E){i,} =
∏
j

E{j,}
M{i,j} (3.68)

-

Proposition 3.3.15. LetM ∈ GL(k,B) and E ∈ SESk,n. M •E is a k-syntactic
extended stabiliser array.

Proof. Let (Ri)i be an instance of E. An instance of (M • E){i,} is given by∏
j Rj

M{i,j} . For M • E ∈ SESk,n, it is enough to show they are independent.

Assume
∏
j Rj

M{i,j} is a product of
∏
j Rj

M{k,j} and
∏
j Rj

M{l,j} . The product

(
∏
j Rj

M{k,j})(
∏
j Rj

M{l,j}) is
∏
j Rj

M{k,j}+M{l,j} . Since ⟨Rj⟩j are independent, it
means M{k,} +M{l,} =M{i,} but it contradicts M is invertible.

Definition 3.3.16. Let E and F be k-syntactic extended stabiliser arrays on n
qubits. We write E ≃ F if there exists M ∈ GL(k,B) such that F =M • E and
E =M−1 • F .

Proposition 3.3.17. ≃ is an equivalence relation.

Proof. We prove ≃ is transitive. Let E,F,G be k-syntactic extended stabiliser
arrays on n qubits. Assume E ≃ F and F ≃ G. Let M and N be the associated
matrices.

G{i,j} =
∏
k

F{k,j}
N{i,k} =

∏
k

∏
l

E{l,j}
N{i,k}M{k,l} (3.69)

Let P =
∏
lE{l,j}

∑
k N{i,k}M{k,l} . If neither P nor G{i,j} is ♡, they are equal. If

G{i,j} is not ♡, there is no k, l, j such that E{l,j} = ♡ and N{i,k} = M{k,l} = 1.
Hence, P ̸= ♡. Conversely, assume P ̸= ♡.

P =
∏
l

∏
m

F{m,j}
∑

k N{i,k}M{k,l}M
−1

{l,m} (3.70)

By the same argument,
∏
m F{m,j}

∑
l

∑
k N{i,k}M{k,l}M

−1
{l,m} ̸= ♡. It is nothing

but G{i,j}.

Definition 3.3.18. The k-extended stabiliser space on n qubits ESk,n is the
quotient set SESk,n/≃ and the extended stabiliser space on n qubits ESn is their
union. An extended stabiliser array is an element of the space. RSk,n and RSn
are defined similarly.

Proposition 3.3.19. If E ≃ F , an instance of E is of F .

Proof. By the proof of Proposition 3.3.15.

Proposition 3.3.20. If E ≃ F , the numbers of ♡ in E and F are the same.

Proof. Let M be the associated matrix. Since E{i,} =
∏
j F{j,}

M{i,j} and ♡ is an
absorbing element, the number of ♡ does not decrease. If so, it contradicts the
fact that M is invertible.

Corollary 3.3.21. SRSk,n is closed under ≃.

Notation 3.3.22. We use the same notation as for stabiliser arrays.

49



Example 3.3.23. The following matrices are extended stabiliser arrays.

[
♡ ♡

] [
Z ♡
♡ Z

] [
Z X Y
Y I X

]  ♡ ♡ Z
♡ ♡ ♡
X Y Z

 (3.71)

The rightmost array has instances such as I I Z
I Y I
X Y Z

  Z X Z
Z Y Y
X Y Z

  I I Z
1
2(ZZI + YXI + ZZZ −YXZ)

X Y Z

 . (3.72)

The following matrix is not an extended stabiliser array. ♡ Z Y
I X I
♡ ♡ X

 (3.73)

Whatever instance is chosen, the top and the middle rows do not commute.

An instance of an extended stabiliser array decide what state the array ap-
proximates. An array may not be full and hence its instance may not determine
a basis. Hence, we use projections to define sound approximations as the basis
domain does.

Definition 3.3.24. Let A ⊂ Q, B ⊂ A, ρ be a quantum state on A, and E be an
extended stabiliser array on |B| qubits. We say an instance ⟨Ri⟩i of E is sound
for ρ on B if (P+

Ri
)
[B]
ρ(P−

Ri
)
[B]

= 0 for any Ri.

Proposition 3.3.25. Let ρ be a quantum state. Let W and V be commuting
Hermitian unitary matrices. If P+

WρP
−
W = P+

V ρP
−
V = 0, P+

WV ρP
−
WV = 0.

Corollary 3.3.26. The soundness is well-defined.

Next, we define separability. The tensor product of syntactic extended sta-
biliser arrays is defined in the same manner as that of syntactic stabiliser arrays.
However, we impose an extra condition on separability of syntactic extended
stabiliser arrays.

Definition 3.3.27. Let E be a syntactic extended stabiliser array on n qubits
and P be a partition of [<n]. S is P -separable if there exists

{
S[Q]

}
Q∈P such

that S ≃
⊗

Q∈P S[Q] where each S[Q] is a syntactic extended stabiliser array on
|Q| qubits and at most one S[R] is not full. NESn is the set of extended stabiliser
arrays on n qubits that are not P -separable unless P is a singleton. The union
is NES. NRSn and NRS are defined similarly.

Separability imposes the condition of being full on any component except for
one component. It leads a rather strange consequence. E ⊗ F is not necessarily
separable. However, the condition is important. If it is not satisfied, we cannot
decompose an approximated state.

Example 3.3.28.
[
Z Z

]
⊗
[
Z Z

]
=

[
Z Z I I
I I Z Z

]
is not separable. In-

deed, the extended stabiliser array is sound for an entangled state |GHZ4⟩⟨GHZ4|.

50



Proposition 3.3.29. Let A ⊂ Q, P be a partition of A, Q be a block of P , ρ be a
quantum state on A, and E be an extended stabiliser array on |Q| qubits. Assume
ρ is P -separable and E has a sound instance for ρ on Q. Moreover, assume there
exists a partition O of Q such that E is O-separable, that is E =

⊗
X∈O E[X].

Then, ρ is (P \ {Q }) ∪O-separable and each E[X] has a sound instance for ρ.

Proof. Without loss of generality, we can assume X = {B,C }, E = F ⊗ G,
and F is full. Let ⟨Ri⟩i be a sound instance of E. As E = F ⊗ G, there exist
instances ⟨Vi⟩i and ⟨Wi⟩i of F and G such that (Vi ⊗ I)i and (I ⊗Wi)i generate
⟨Ri⟩i. These instances are sound. Let ρ =

∑
k pk

⊗
D∈P ρk,D. Let {|ψi⟩}i be the

⟨Vi⟩i basis. We can write ρk,Q as
∑

i,j |ψi⟩⟨ψj | ⊗ σk,i,j,C .

ρ =
∑
k

⊗
D∈P\{Q }

ρk,D ⊗
∑
i,j

|ψi⟩⟨ψj | ⊗ σk,i,j,C

=
∑
k,i

⊗
D∈P\{Q }

ρk,D ⊗ |ψi⟩⟨ψi| ⊗ σk,i,i,C .
(3.74)

The second equation is a consequence of P+
Vi
ρP−

Vi
= 0 for any i. σk,i,i,C is a state

because ⟨ϕ|σk,i,i,C |ϕ⟩ = ⟨ψiϕ| ρk,Q |ψiϕ⟩ ≥ 0.

Notation 3.3.30. We use
⊕

Q∈P S[Q] to denote
⊗

Q∈P S[Q] such that at most
one S[Q] is not full.

In spite of the existence of ♡, we can also use Algorithm 1 to decompose a
syntactic extended stabiliser array with a little modification.

Proposition 3.3.31. Let E be a syntactic extended stabiliser array on n qubits
and P be a partition of [<n]. Let S′ be an output of Algorithm 3. Then, S ≃ S′.

Furthermore, S is P -separable if and only if there exist
{
S′
[Q]

}
Q∈P

such that

S′ =
⊕

Q∈P S
′
[Q].

Algorithm 3 Decomposition of a syntactic extended stabiliser array S on n
qubits

1: Swap rows so that all rough and flat rows are on upper and lower sides,
respectively. Let t be the threshold.

2: r = t.
3: Start Algorithm 1 from Step 2.

Proof. A proof is almost the same as that of Proposition 3.2.18. After running
the algorithm, we obtain an output, which has a similar form to (3.35). The
difference is that the upper rows are rough rows. We note that no flat row is
a product of rows containing a rough rows because ♡ is an absorbing element.
Assume S is P -separable. By the proof of Proposition 3.2.18, any flat row is
within some block of P . Take Q ∈ P and a rough row S′

{i,} such that S′
{i,j} = ♡

for some j ∈ Q. We claim that whenever S′
{i,k} ̸= I, k ∈ Q. Let k be the smallest

one such that S′
{i,k} ̸= I and k /∈ Q. First, assume S′

{i,k} = ♡. Since ≃ does not
change the number of ♡, k should belong to Q. Then, S′

{i,k} is a Pauli matrix.
If there is no flat row S′

{j,} such that S′
{j,} ̸= I, we cannot remove S′

{i,k} from
the row. It contradicts that S′ is P -separable. There are two possibilities: there
exists a flat row S′

{j,} such that S′
{j,k} ̸= I and for any l < k, S′

{j,l} = I; or any
flat row such that S′

{j,k} ̸= I has some column l such that S′
{j,l} ̸= I. In the

former case, since S′
{i,k} ̸= I, such row is unique. By the form of the output,

51



S′
{i,k} anticommutes with S′

{j,k}. Therefore, S′ is not P -separable. The latter
case contradicts that k is the smallest one.

Corollary 3.3.32. Any syntactic extended stabiliser array has the finest partition
P such that it is P -separable.

We investigated extended stabiliser arrays. Using the arrays, we define a new
domain called the extended stabiliser domain. The construction is essentially the
same as the stabiliser domain. The only difference is that extended stabiliser
arrays are used instead of stabiliser arrays.

Definition 3.3.33. ES∗
k is defined to be ESk if k > 1 and ES1 ∪ { I } if k = 1.

ES∗ is the union of them. RS∗
k, NES∗

k, NRS∗
k, RS∗, NES∗, and NRS∗ are

defined in the same manner. Let A ⊂ Q. γ ⊂ PA×ES∗ (resp. γ ⊂ PA×RS∗)
is an extended (resp. reduced) preassignment on A if pr0(γ) is a partition of A and
for any (Q,E) ∈ γ, E ∈ ES∗

|Q| (resp. E ∈ RS∗
|Q|). An extended (resp. reduced)

preassignment on A is said to be an extended (resp. reduced) assignment on A if
it is a subset of PA×NES∗ (resp. of PA×NRS∗). The extended (resp. reduced)
stabiliser domain EQ (resp. RQ) is the set of extended (resp. reduced) stabiliser
assignments on Q.

Definition 3.3.34. upE is defined by upE(Q,E) = { (Q0, E0), . . . , (Qm−1, Em−1) }
such that {Qi}i is a partition of Q, Ei ∈ NSS|Qi|, and

⊕
iEi = E. The normal-

isation nml: EQ → RQ is a function defined as follows.

nml({(Qi, Ei)}i) =
∪
i

upE(Qi, Ei,nl) (3.75)

where Ei,nl is the reduced stabiliser array obtained by removing all rough rows
of Ei.

As written before, a “join operator” on the extended stabiliser domain is
defined through the normalisation function and the join on the reduced stabiliser
domain. First, let us define an order on the extended and reduced stabiliser
domains.

Definition 3.3.35. Let E,F ∈ ES∗. E ≤ES∗ F if and only if either E = I,
E = F , or F = ■. ≤RS∗ , ≤NES∗ , and ≤NRS∗ are the restrictions of ≤RS∗ on
the associated spaces. Let A ⊂ Q. Let γ and δ be extended preassignments on
A. γ ≤E δ if and only if γ0 ≤Π δ0 and for any i ∈ A,

⊙
j∈δ0(i) γ(j) ≤ES∗ δ1(i).⊙

j∈δ0(i) γ(j) is defined as follows.

⊙
j∈Q

(Qj , Ej) =


Ej (all Qj are the same)
I (all Ej are I)
■ (otherwise)

(3.76)

Proposition 3.3.36. EQ and RQ are lattices.

Definition 3.3.37. Let γ and δ be extended preassignments on A. The approx-
imate join of them is nml(γ) ∨ nml(δ), which is denoted by γ ⊎ δ.

In order to obtain the approximate join, we need to compute whether given
two reduced stabiliser arrays are equal or not. We can do that by checking
independence of generators composed of all rows of two arrays [8].

52



Definition 3.3.38. Let ρ be a quantum state and γ be an extended preassign-
ment. γ is a sound approximation of ρ, denoted by γ ⊨E ρ, if it is pr0(γ)-separable
and for any (Q,E), the following holds:

• if E = I, there exists some σ such that ρ = 1
2 I[Q] ⊗ σ and

• if E ∈ ES, a sound instance exists.

We list useful propositions about this soundness relation.

Proposition 3.3.39. Let ρ be a quantum state and γ be an extended preassign-
ment such that γ ⊨E ρ. Then, γ[i 7→ upE(γ0(i), γ1(i))] ⊨E ρ.

Proof. By Proposition 3.3.29.

Proposition 3.3.40. For any quantum state ρ and extended preassignment γ, if
γ ⊨E ρ, then nml(γ) ⊨E ρ.

Proposition 3.3.41. For any quantum state ρ and extended preassignment γ, δ
such that γ ≤E δ, if γ ⊨E ρ, then δ ⊨E ρ.

Proof. Take (R,F ) ∈ δ. There exist (Q0, E0), . . . , (Ql−1, El−1) ∈ γ such that
{Qi}i is a partition of R and

⊙
j(Qj , Ej) ≤ES∗ F .

• Assume F = I. Then, l = 1 and (Q0, E0) = (R,F ).

• Assume
⊙

j(Qj , Ej) = I. Then, there exists σ such that ρ = 1
2|R| I

⊗|R| ⊗ σ.
P+
V ρP

−
V = 0 is satisfied whenever V acts on R.

• Otherwise, l = 1 and (Q0, E0) = (R,F ).

Although an extended assignment does not necessarily approximate the sum
of approximated states, a reduced assignment does. Hence, the approximate
join of extended assignments is an approximation of the summation of quantum
states.

Proposition 3.3.42. For any quantum state ρ, σ and reduced preassignment γ,
if γ ⊨E ρ and γ ⊨E σ, then γ ⊨E ρ+ σ.

Corollary 3.3.43. For any quantum state ρ, σ and extended preassignment γ, δ,
if γ ⊨E ρ and δ ⊨E σ, then γ ⊎ δ ⊨E ρ+ σ.

3.3.3 Extended stabiliser abstract semantics

We proposed the extended stabiliser domain and the approximate join operator
on it. The operator gives a sound approximation of the summation of states. We
use the domain and operator to define the extended stabiliser semantics. Before
showing the definition, we define auxiliary functions: pnml, measE,i, and add♡.

Definition 3.3.44. Let γ ∈ EQ , i ∈ Q, (Q,E) = γ(i), and A = {X,Y }. pnml
is defined in a similar way to nml. The difference is that pnml removes only rows
having ♡ in the ith column.

pnml(i, (Q,E)) = upE(Q,Enl,i) (3.77)

53



where Enl,i is the extended stabiliser array obtained by removing all rows whose
ith columns are ♡. measE,i(γ) is δ defined below.

δ =



γ[i 7→ ⟨Z⟩] (|γ0(i)| = 1)
γ[i 7→ upS(γ0(i),meassf,i(γ1(i)))] (γ1(i) ∈ SS)

γ[i 7→
({ i } , ⟨Z⟩), upE(γ0(i) \ { i } , F )]

((γ1(i)){j,i} ̸= ♡ for any j

and a unique k exists
s.t. (γ1(i)){k,i} ∈ A)

γ[i 7→ ({ i } , ⟨Z⟩), (γ0 \ { i } ,■)] (otherwise)

(3.78)

where F is obtained by removing the kth row and the ith column from γ1(i).
Finally, add♡ is defined as follows.

add♡(i, E) =


E (no j s.t. E{j,i} ∈ A)
F (unique j exists s.t. E{j,} is flat and E{j,i} ∈ A)
G (otherwise)

(3.79)

where F is obtained by changing E{j,i} to ♡, and G is obtained by the following
process. Take a syntactic extended stabiliser array of E that satisfies the follow-
ing: For any j such that E{j,i} ∈ A, no k exists such that E{k,i} ∈ A and the hole
of E{k,} includes the hole of E{j,}. G is obtained by changing all E{j,i} in A to ♡.

Proposition 3.3.45. pnml, measE,i, and add♡ are well-defined.

Proof. Let E ≃ E′ and M be the associated matrix. pnml(i, (Q,E)) is well-
defined because the numbers of ♡ in E and E′ are the same. The conditions in
measE,i are exclusive. We care about only the third case. Assume E and E′ has
their unique row k and k′ satisfying the condition. Since E′

{j,i} anti-commutes
with E{k,i}, M{j,k} = 0 for any j ̸= k′. If it is 1, E′

{j,i} ∈ A. It contradicts the
uniqueness. Therefore, the same M makes the outputs of measE,i equal. Finally,
we show well-definedness of add♡. Note that the conditions are exclusive. The
second and third conditions are almost the same as the third condition of measE,i.
If E′

{j,i} /∈ A ∪ {♡}, M{j,k} = 0. When E′
{j,i} = ♡, the change of E{k,i} can be

ignored.

measE,i means the measurement of the ith qubit. The difference between
measE,i and measS,i is the third condition. The condition shows the case where
♡ does not affect the measurement. Since γ1(i) is not a stabiliser array, it has
a rough row. However, ♡ is not in the ith column. This is the case in one of
our motivating examples. pnml and add♡ are removals and insertion of ♡. The
conditions of add♡ is a bit complicated because we want to insert ♡ as few as
possible.

Definition 3.3.46. The extended stabiliser abstract semantics of QIL programs
is a function J·KE : QIL → EQ → EQ defined in Figure 3.4. Here, U♡U † = ♡,
CX(♡⊗ P )CX† = ♡♡, and CX(P ⊗♡)CX† = ♡♡ for any U and P .

The semantics seems to be almost the same as the stabiliser semantics. One
of the differences is the use of pnml. The reason is that a Hermitian unitary
matrix does not necessarily commute or anticommute with X. For example,

|ψ⟩ = 1√
2
|0⟩+ ei

π
4√
2
|1⟩ is a ⟨TXT†⟩ basis state. However, X |ψ⟩ = 1√

2
|0⟩+ e−i π4√

2
|1⟩

is no longer a ⟨TXT†⟩ basis state. Indeed, ⟨ψ|X |ψ⟩ = 1+i
2 . Therefore, we cannot

specify which basis the concrete state belongs. WE did not use pnml in the
stabiliser semantics because any Pauli matrix satisfies the above condition. X
changes a stabiliser state within the same basis.

Next, we proceed to the soundness theorem.

54



JskipKE(γ) = γq
C;C ′y

E
(γ) =

q
C ′y

E
(JCKE(γ))JU(i)KE(γ) = γ[i 7→ U(i)γ1(i)U

†
(i)]

JT(i)KE(γ) = { γ (γ1(i) and Z(i) commute)

γ[i 7→ add♡(i, γ1(i))] (otherwise)

JCX(i,j)KE(γ) =



γ[i 7→ upE(γ0(i),CX(i,j)γ1(i)CX
†
(i,j))] (γ0(i) = γ0(j))

γ
(γ1(i) = I and

γ1(j) = I)
γ[i 7→ ⟨Z⟩][j 7→ pnml(j, γ(j))] (γ1(i) = I)
γ[j 7→ ⟨X⟩][i 7→ pnml(i, γ(i))] (γ1(j) = I)
γ[j 7→ pnml(j, γ(j))] (γ1(i) = ⟨Z⟩)
γ[i 7→ pnml(i, γ(i))] (γ1(j) = ⟨X⟩)
γ[i, j 7→ CX(i,j)(γ1(i)⊗ γ1(j))CX

†
(i,j)] (otherwise)uwwv

if i
then C
else C ′

fi

}��~
E

(γ) = JCKE(measE,i(γ)) ⊎
q
C ′y

E
(measE,i(γ))

uwwv
while i
do

C
od

}��~
E

(γ) =
⊎
n∈N

measE,i((JCKE ◦measE,i)
n(γ))

where U ∈ { X, Y, Z, H, S }.

Figure 3.4: Extended stabiliser abstract semantics of quantum imperative lan-
guage

Lemma 3.3.47. Let ρ be a quantum state and γ be an assignment such that γ ⊨E

ρ. For any i ∈ Q, d ∈ B, measE,i(γ) is a sound approximation of |d⟩⟨d|(i)ρ|d⟩⟨d|(i).

Proof. Let (Q,E) be γ(i).

• Assume |Q| = 1. Whatever E is, |0⟩⟨0|(i)|0⟩⟨0|(i)ρ|0⟩⟨0|(i)|1⟩⟨1|(i) = 0.

• Assume |A| ̸= 1 and E is a stabiliser. Thanks to the stabiliser formalism,
measE,i(γ) ⊨E |d⟩⟨d|(i)ρ|d⟩⟨d|(i).

• Assume |A| ̸= 1 and exactly one row of E has X or Y in the ith column.
Let r be the row and ⟨Ri⟩i be a sound instance of E. By assumption, if
q ̸= r, any Rq can be written as Z[i] ⊗ Vq. We claim Vq is a sound instance
of ⟨0|(i)ρ|0⟩(i).

0 = |0⟩⟨0|(i)P
+
Rq
ρP−

Rq
|0⟩⟨0|(i) = |0⟩⟨0|[i] ⊗ (P+

Vq
⟨0|(i)ρ|0⟩(i)P

−
Vq
) (3.80)

• In the last case, the statement trivially holds.

Theorem 3.3.48. For any concrete state ρ ∈ DN , any extended assignment
γ ∈ EQ, and any QIL program C ∈ QIL, γ ⊨E ρ implies JCKE(γ) ⊨E JCK(ρ).

55



Proof. We prove the theorem by the structural induction on C. For skip and
C;C ′, the statement trivially holds. Take γ and ρ such that γ ⊨E ρ.

(U) Take i ∈ Q and U ∈ {X,Y,Z,H, S }. Let (Q,E) = γ(i). If U(i)EU
†
(i) = I,

then E = I and ρ = 1
2 I ⊗ σ with some σ. ρ is unchanged through U(i).

Assume U(i)EU
†
(i) ̸= I. Then, E ̸= I. Let ⟨Ri⟩i be a sound instance of E.⟨

U(i)RiU
†
(i)

⟩
i
is a sound instance of U(i)EU

†
(i). Indeed,

P+

U(i)RiU
†
(i)

U(i)ρU
†
(i)P

−
U(i)RiU

†
(i)

= U(i)P
+
Ri
U †
(i)U(i)ρU

†
(i)U(i)P

−
Ri
U †
(i) = 0. (3.81)

(T) Take i ∈ Q. When E commutes with Z(i), the above argument can be
applied. Assume not. Let ⟨Rj⟩j be a sound instance of E. Take k such
that E{k,i} anticommutes with Z. Define ⟨Sj⟩j as Sj = Rj for any j ̸= k and

Sk = T(i)RkT
†
(i). ⟨Sj⟩j is a sound instance of add♡(i, E). More precisely,

let Wk be the caulk of Rk for E{k,}. Define Xk = Wk ⊗ TE{k,i}T
†. Xk is

the caulk of Sk for add♡(i, E).

(CX) Take i, j ∈ Q. Let (Q,E) = γ(i) and (R,F ) = γ(j).

– Assume Q = R. By Proposition 3.3.29 and the same argument as we
did for U(i).

– Assume Q ̸= R.

∗ If E = F = I, CX 1
4 I

⊗2CX† = 1
4 I

⊗2.

∗ Assume E = I and F ̸= I. Take σ such that ρ = 1
2 I[i] ⊗ σ.

CX(i,j)(
1
2 I[i] ⊗ σ)CX

†
(i,j) = 1

2 |0⟩⟨0|[i] ⊗ σ + 1
2 |1⟩⟨1|[i] ⊗ X(j)σX

†
(j).

Hence, |0⟩⟨0|iCX(i,j)(
1
2 I[i] ⊗ σ)CX

†
(i,j)|1⟩⟨1|i = 0. Let ⟨Rk⟩k be a

sound instance of F . Removing all rows whose hole contains i,
we obtain ⟨Sl⟩l. It is an instance of Fnl,j , which is defined in the
definition of pnml. We claim it is a sound instance. Because any
two Pauli matrices commute or anti-commute,

P+
Sl
X(j)σX

†
(j)P

−
Sl

= X(j)P
+
Sl
σP−

Sl
X†

(j) = 0. (3.82)

∗ The other cases are the same as the above.

(if) By the induction hypothesis, Corollary 3.3.43 and Proposition 3.3.47, the
abstract state Jif i then C else C ′ fiKE(γ) is a sound approximation of
the concrete state Jif i then C else C ′ fiK(ρ) whenever γ ⊨E ρ.

(while) The same argument as above and the soundness theorem for the stabiliser
semantics can be applied.

Although we essentially showed it before, the extended stabiliser semantics
precisely analyses entanglement in the motivating example as follows.

Example 3.3.49.

α
GHZ−−→


0 1 2

X X X
Z Z I
I Z Z

 T(0)−−−→


0 1 2

♡ X X
Z Z I
I Z Z

 MEASURE1−−−−−→


0 1 2

Z

Z

Z

 . (3.83)

56




0 1 2

X X
Z Z

Z

 T(0)−−−→


0 1 2

♡ X
Z Z

Z

 CX(1,2)−−−−−→


0 1 2

♡ X X
Z Z I
I Z Z


H(1)−−−→


0 1 2

♡ Z X
Z X I
I X Z

 H(2)−−−→


0 1 2

♡ Z Z
Z X I
I X X


S(1)−−−→


0 1 2

♡ Z Z
Z Y I
I Y X

 CX(1,2)−−−−−→


0 2 1

♡ Z
Z X

Y



(3.84)

The extended stabiliser semantics is the same as the stabiliser semantics pro-
vided that the state is a stabiliser array and the non-Clifford gate is not used.
Therefore, this semantics is also not monotone. However, as the order structure
of the extended stabiliser domain is the same as of the stabiliser domain, the
same argument shows the extended stabiliser semantics is monotone under some
assumption. In the same manner, we can compute an upper approximation ofJwhile i do C odKE.
Lemma 3.3.50. All upE, measE,i, nml, pnml, and add♡ are monotone.

Proposition 3.3.51. Let γ, δ be extended assignments such that γ ≤E δ and C
be a QIL program. Assume that for any i ∈ Q, if γ1(i) = I, then δ1(i) = ■.
Then, JCKE(γ) ≤E JCKE(δ).

Although the extended stabiliser semantics uses nml, pnml, and add♡, which
do not occur in the stabiliser semantics, they do not affect the order of the time
complexity of an approximation algorithm for the extended stabiliser semantics.
Therefore, the same argument as for the stabiliser semantics shows its time com-
plexity.

Theorem 3.3.52. Let γ be an extended assignment, C be a QIL program, s be
its size, and d be its depth. JCKE(γ) is approximately computed in O(3dNd+3s)
time.

Corollary 3.3.53. Let γ be an extended assignment, C be a QIL program, s
be its size, and d be its depth. Assume that N ≤ 2s. JCKE(γ) is approximately
computed in O(3dsd+4) time. When d is constant, an approximation of JCKE(γ)
is computed in polynomial time with respect to s.

Corollary 3.3.54. Let γ be an extended assignment, C be a constant-depth QIL
program of polynomial size with respect to N . An approximation of JCKE(γ) is
computed in polynomial time with respect to N .

Finally, we point out the extended stabiliser semantics is a sound concretisa-
tion of the stabiliser semantics.

Definition 3.3.55. A function concES : S
Q → EQ is an embedding function.

abstES : E
Q → SQ is defined as follows.

abstES(γ)(j) =

{
γ(j) (γ(j) ∈ SS∗)
(γ0(j),■) (otherwise)

. (3.85)

57



The difference between these semantics is existence of ♡ and non-full matrices.
They are expressed as ■ in a stabiliser assignment. Note that abstES(concES(α))
is α itself.

Proposition 3.3.56. concES is monotone. abstES is well-defined and monotone.

Proposition 3.3.57. concES and abstES form a Galois connexion

Proof. Take α ∈ SQ and γ ∈ EQ . abstES(concES(α)) = α ≤S α. γ ≤E

abstES(γ) = concES(abstES(γ)).

Although we have a Galois connexion, we cannot use the soundness relation
induced by the connexion. This is due to the lack of monotonicity. The induced
relation σ is upper-closed. Explicitly, (γ, α) ∈ σ and α ≤S β implies (γ, β) ∈ σ.
Choosing α as γ, (α, β) ∈ σ. However, we learned that some (α, β) ∈ σ and
C ∈ QIL satisfy JCKS(α) ̸≤S JCKS(β). Hence, (JCKS(α), JCKS(β)) /∈ σ. The
soundness is broken. Then, we employ a strict and inelegant relation.

Definition 3.3.58. Let α ∈ SQ and γ ∈ EQ . We write γ ◁ES α if the following
holds: γ ≤E α; for any i ∈ Q, α1(i) = I if and only if γ1(i) = I; and for any
i ∈ Q such that α1(i) ̸= ■, α1(i) = γ1(i).

The relation states that a sound approximation must have the same informa-
tion as to where I is. Therefore, the relation is not closed under ≤S. As shown
before, monotonicity is broken due to difference in the number of I.

By definition, abstES(γ) is the smallest one among α such that γ ◁ES α.

Proposition 3.3.59. For any γ ∈ EQ, γ ◁ES abstES(γ).

Proposition 3.3.60. Let γ ∈ EQ and α ∈ SQ. If γ ◁ES α, abstES(γ) ≤S α.

Under the soundness relation, we can say the stabiliser semantics is a sound
approximation of the extended stabiliser semantics.

Theorem 3.3.61. Let C be a QIL program, γ be an extended stabilise assign-
ment, and α be a stabiliser assignment. Assume γ ◁ES α. Then, JCKE(γ) ◁ESJCKS(α).
Proof. By the induction on the structure of C.

An stabiliser assignment α satisfies α ◁ES α. Therefore, we can understand
that the soundness relation claims that the extended stabiliser semantics is more
concrete than the stabiliser semantics.

58



Chapter 4

Publicly Verifiable Blind Quantum

Computation

Quantum physics brings computer science for quantum algorithms and quantum
key distribution. The former is believed to outperform classical algorithms. A
well-known example is the prime factorisation. It is difficult to compute in a
classical computer, but it can be solved in the polynomial time when a quantum
computer is used. Quantum key distribution achieves unconditional security. Its
security relies only on the correctness of quantum physics and does not need
any assumption about computational resources. Blind quantum computation
(BQC) protocols are the place where these two notions meet: secure quantum
computation. Amazingly, these protocols achieve the perfect security. They do
not leak any information other than the size of computation. Although they
are wonderful protocols, their security is too strong. These protocols reject any
analysis of the computation. That causes a practical problem. In this chapter,
we tackle the problem with the aid of classical encryption schemes.

The chapter is organised as follows. In Section 4.1, we review an existing
verifiable BQC protocol and notions of correctness, universality, blindness, and
verifiability. Next, in Section 4.2, we describe what is a problem. We show how
a classical computer cannot analyse the computation in the protocol and why a
naive solution does not work. We propose a new notion, public verifiability, and
give its definition. Then, in Section 4.3, we show our idea and a summary of our
new protocol. In Sections 4.4, 4.5, we instantiate the protocol. In the former
section, we ignore public verifiability and show our protocol is a verifiable BQC
protocol. In the latter section, we prove our protocol is publicly verifiable. In
both sections, we discuss conditions of encryption schemes that are required to
make our protocol have such properties. In the last section, we discuss encryption
schemes. We construct an encryption scheme satisfying the conditions discussed
in the preceding section.

4.1 Verifiable blind quantum computation protocol

4.1.1 Delegated quantum computation protocol

Suppose there is a party, Alice, who does not have a quantum computer but
has limited quantum devices. She wants to perform some quantum computation
but cannot do it herself, because the computation exceeds her quantum ability.
Now, suppose that there is another party, Bob, who has a quantum computer
and that the two parties are connected via a quantum channel and a classical
channel. We assume both channels are noise-less, that is these channels carry
data without deforming them. A delegated quantum computation (DQC) protocol

59



is a communication protocol between such two parties. A DQC protocol has
the set of quantum computations, and the protocol allows Alice to delegate the
computation to Bob as far as the computation belongs to the associated set.

Definition 4.1.1. A DQC protocol is said to be universal if it allows Alice to
delegate any quantum computation to Bob.

We mainly focus on the quantum computations with classical inputs and
outputs. Alice has a bit string s and a description of a unitary matrix U , and
wants to obtain a measurement result of U |s⟩. Here, the measurement is assumed
to be performed in the X basis. We do not care about how Alice obtains the string
and the description. We assume that Alice is given them with some auxiliary data
as an input. We refer to them as an input of a DQC protocol provided that U is an
allowed operation in the DQC protocol. Because U |s⟩ = U

⊗
iX

si |0⟩ = U ′ |0⟩,
the input string can be embedded into a unitary matrix. For the sake of simplicity,
we assume the input string is always 0. Executing a DQC protocol, Alice finally
obtains an outcome of a DQC protocol. As written above, the outcome is a bit
string. When U |0⟩ is not in the X basis, the outcome of the DQC protocol is not
deterministic but probabilistic. We say an outcome is correct if it is a possible
measurement result of U |0⟩. In order to boost the computational ability of Alice,
any outcome of the DQC protocol should be correct. We assume that Alice can
accept or reject an outcome in a DQC protocol. She rejects an outcome if it is
seemed to be incorrect. How to decide whether she accepts or rejects an outcome
is defined in a DQC protocol.

Definition 4.1.2. A DQC protocol is correct if for any input, an outcome is
correct and Alice accepts it provided that both parties respect the protocol.

We say a party is honest if the party respects the protocol. If not, a party is
said to be malicious or evil. A malicious party does anything and may deviate
from the protocol. Therefore, Alice will obtain an incorrect outcome if she runs
a correct DQC protocol with evil Bob.

A blind quantum computation protocol is a correct DQC protocol with an
extra property called blindness. Blindness allows Alice to hide any information
about an input and an outcome but upper bounds of the sizes of them. The
security given by blindness is unconditional, more precisely, perfect one. That is
preserved even if Bob is malicious. Therefore, even if Bob has unlimited compu-
tational power and does anything, he has no chance to obtain any information.

Definition 4.1.3. Let L be a function. A DQC protocol is blind while leaking
at most L if for any input X, whatever Bob does,

1. L(X) determines the distribution of all classical information that Bob ob-
tains and

2. L(X) and the above distribution determine the state of the quantum system
that Bob obtains

provided that Alice is honest. We often omit to write “leaking at most L”.

Definition 4.1.4. A blind quantum computation (BQC ) protocol is a correct
and blind DQC protocol.

The definition of blindness cares about the case of malicious Bob. It guar-
antees that malicious Bob cannot learn anything except L(X) about an input

60



X. However, Bob is still able to disturb the computation in a BQC protocol.
Because Alice has no quantum computer, she may be unaware that an outcome
is incorrect. Verifiability is a property of a DQC protocol that prevents such
bad situations. Recall that Alice can accept or reject an outcome. The property
allows honest Alice to reject an incorrect outcome of a DQC protocol with a
bounded error probability.

Definition 4.1.5. Let ϵ is a real number such that 0 ≤ ϵ < 1. A DQC protocol
is said to be ϵ-verifiable if whatever Bob does, the probability of honest Alice
accepting an incorrect outcome is at most ϵ.

4.1.2 The Fitzsimons–Kashefi protocol

The Fitzsimons–Kashefi (FK) protocol [39] is a verifiable BQC protocol pro-
posed by Fitzsimons and Kashefi. The FK protocol is an improvement on the
Broadbent–Fitzsimons–Kashefi (BFK) protocol [16], which is a BQC protocol.
The (generic) FK protocol is shown in Protocol 4. Letting t = 0, we obtain the
(generic) BFK protocol. First, we explain why the BFK protocol (t = 0) is a
BQC protocol. The protocol uses a variant of MBQC, where Alice determines
the measurement angles and Bob measures the qubits with the angles. Instead of
|+⟩, Bob uses rotated states |+θ⟩ to construct a graph state. Because Z(θ) and
CZ commutes, ∏

(i,j)∈E

CZ(i,j)

(⊗
i∈V
|+θi⟩

)
=

 ∏
(i,j)∈E

CZ(i,j)

(⊗
i∈V

Z(θi) |+⟩

)

=

(⊗
i∈V

Z(θi)

) ∏
(i,j)∈E

CZ(i,j)

(⊗
i∈V
|+⟩

)
=

(⊗
i∈V

Z(θi)

)
|G⟩ . (4.3)

Hence, Bob has a rotated graph state. Alice adds θi to the measurement angle
in order to correct the rotation. Let δ′i be such that δi = δ′i + θi + πri.⊗

i∈V
⟨+δ′i+θi+πri

|
⊗
i∈V

Z(θi) |G⟩ =
⊗
i∈V
⟨+δ′i+πri

| |G⟩ (4.4)

Addition of π to δ′i inverts the measurement result, so “measurement of the ith
qubit of all qubits in

⊗
i∈V Z(θi) |G⟩ with δi and result is bi” is nothing but

“measurement of the ith qubit of all qubits in |G⟩ with δ′i and result is bi + ri”.
It is nothing but a distributed MBQC. Hence, the protocol correctly works. As
θi is uniformly randomly chosen, the angle δi is one-time padded. Similarly, the
measurement result bi is one-time padded by a random bit ri. Therefore, the
protocol is blind. Now, let t > 0. A qubit in T is called a trap qubit, and a qubit
whose state is |0⟩ or |1⟩ is called a dummy qubit. Since CZ(|d⟩⊗|ψ⟩) = |d⟩⊗Zd |ψ⟩,
any dummy qubit is not entangled with other qubits after being applied the
operator CZ.∏
(i,j)∈E

CZ(i,j)

⊗
i∈V
|qi⟩ =

⊗
i∈NG(T )

|di⟩ ⊗
∏

(i,j)∈E
i,j /∈NG(T )

CZ(i,j)

⊗
i/∈NG(T )

∏
j∈NG(i)∩NG(T )

Zdj |qi⟩

=
⊗

i∈NG(T )

|di⟩ ⊗
⊗
t∈T
|+θt⟩ ⊗ |G′⟩ . (4.5)

Therefore, any trap qubit t is isolated, and its measurement result bt is definitely
rt because δt = θt + πrt. Even if Bob deviates from the protocol and returns

61



Protocol 4 The Fitzsimons–Kashefi protocol [39]

Input

• Natural numbers n, t.

• A graph G = (V,E) where vertices are labelled from 0 to |V | − 1.

• A description of a unitary operator U on n qubits.

1: Alice sends Bob G.
2: Alice randomly selects t vertices T .
3: Let G′ = (V ′, E′) be the graph obtained by removing T and NG(T ) from G,

and fG′ be its flow.
4: Alice computes the measurement angles {ϕi}i∈V ′ to compute U where each

ϕi belongs to
{
kπ
4 | k ∈ [<8]

}
. Set ϕi = 0 for any i ∈ T ∪NG(T ).

5: for all i ∈ V do
6: if i ∈ NG(T ) then
7: Alice randomly chooses di from B.
8: end if
9: Alice randomly chooses θi from

{
kπ
4 | k ∈ [<8]

}
.

10: Alice randomly chooses ri from B.
11: end for
12: for all i ∈ V do
13: Alice sends Bob a single qubit whose state is |qi⟩ where

|qi⟩ =
{

|di⟩ (i ∈ NG(T ))∏
j∈NG(i)∩NG(T ) Z

dj |+θi⟩ (i /∈ NG(T ))
(4.1)

14: end for
15: Bob creates the state

∏
(i,j)∈E CZ(i,j)

⊗
i∈V |qi⟩.

16: for i = 0 to |V | − 1 do
17: Alice sends Bob δi where

δi = (−1)
∑

j∈Xi
bj+rjϕi + θi + πri + π

∑
j∈Zi

(bj + rj) (mod 2π) (4.2)

and Xi = f−1
G′ (i) and Zi = { j | i ∈ NG(fG′(j)) }. Here, f−1

G′ (i) = ∅ if i /∈ G′.
18: Bob measures the ith qubit with δi.
19: Bob sends Alice the measurement result bi.
20: end for
21: Alice accepts the outcome if bt = rt for all t ∈ T .

incorrect measurement results, he will change the measurement result of a trap
qubit with some probability, because he does not know where the trap qubits
are. This is why the FK protocol is verifiable. Finally, we note that the FK
protocol requires Alice only to generate single qubits whose states are in the set{∣∣∣+ kπ

4

⟩
, |d⟩ |k ∈ [<8], d ∈ B

}
.

Theorem 4.1.6 ([39]). The FK protocol (Protocol 4) is a verifiable BQC protocol.
Specifically, the following holds.

• For any unitary matrix U , the distribution of an outcome on an input in-
cluding U coincides with the distribution of the measurement results of U |0⟩
provided U is computable in G′.

• It is blind while leaking at most G.

62



• It is
(
1− t

|V |

)
-verifiable.

Fitzsimons and Kashefi also introduced the dotted-complete graph to make
the protocol universal. Let N be a natural number. The dotted-complete graph
K̃N is the complete graph of N vertices added a vertex in the middle of each
edge. It has N + N(N−1)

2 = N(N+1)
2 vertices and 2N(N−1)

2 = N(N − 1) edges. A
removal of an added vertex with the connected edges removes the associated edge
in the original complete graph. On the other hand, removing an added vertex
and connecting the connected vertices keep the associated edge. Through these
operations, we can obtain any graph having at mostN vertices. In construction of
a graph state, the former operation and latter can be realised by setting the added
vertex a dummy qubit and |+±π

2
⟩, respectively. First, Alice prepares K̃3N and

randomly divides it into three K̃N . Bob does not know how to divide the graph.
One K̃N is used for the computation and the others are traps. All added vertices
of one K̃N and all original vertices of one K̃N are the trap qubits. They run
Protocol 4 with the construction. Universality is a consequence of the property
of the dotted-complete graph. Furthermore, encoding the computation in a fault-
tolerant manner where at most d Pauli errors will be detected or recovered, the

protocol can achieve (1− t
|V |)

d
-verifiability. However, the specific probability

and how to encode the computation are not important for the later discussion.
Therefore, we use ϵFK as a number such that the FK protocol (Protocol 4) is
ϵFK-verifiable.

4.2 Public Verifiability

The FK protocol has several good properties. In particular, it is verifiable and
allows Alice to verify whether she receives a correct outcome. However, the
protocol does not allow a third party to do that. The reader may wonder why a
third party need do that. We explain the reason by the following story.

There is a judge. One day, the judge is allocated to hear a case between Alice
and Bob. Alice says

I wanted to perform quantum computation. But, I didn’t have much
money and I couldn’t buy a quantum computer. It’s too expensive
for me. So, I decided to delegate the computation to Bob’s quantum
server using the FK protocol. Of course, he charged me the server
fee, but it is much lower than prices of quantum computers, so I
could pay. After finishing running the FK protocol with the server, I
obtained an outcome. But, I found that the measurement result bt of
some trap qubit t didn’t coincide with the expected result rt. So, Bob
was malicious. (Recall that we assumed the channels are noise-less.)
Unfortunately, I had computed a BQP-complete problem, so I can’t
directly check whether the outcome is correct. So, I had to discard
the outcome. It’s a breach of contract. He should pay me back.

On the other hand, Bob says

I did obey the FK protocol. I properly applied CZ to the received
qubits. I measured all qubits with the received measurement angles
{δi}i∈V and sent the measurement results {bi}i∈V . But, she surpris-
ingly claimed that she had been given an incorrect outcome. The liar
isn’t me but her. The complaint should be dismissed.

63



The judge first finds either Alice or Bob lies. We do not care about the
situation where both parties simultaneously lie. It is acceptable that an evil
party suffers. We assume either Alice or Bob is honest. The judge has to decide
whether Alice should pay or not. S/he thinks it is reasonable to order Bob to pay
back if Alice is received an incorrect outcome. Hence, the question is whether
Alice obtains a correct outcome or not. We emphasise that who wants to know
the answer is neither Alice nor Bob but a third party. Verifiability is a property
giving the answer to Alice and nobody else. The property does not help the judge.
Now, the judge starts to collect information for a decision. Fortunately, Alice and
Bob used a public classical channel and the judge can all messages sent via the
classical channel. In fact, it is not due to luck. The use of the public channel never
hurt the security since the FK protocol is blind: Bob cannot learn anything, not
to mention any third party. However, due to the no-cloning theorem, the judge
cannot obtain any quantum message. In summary, the judge has to decide with
all classical messages. We say a protocol is publicly verifiable if it allows anyone
to do that.

It is easy to see the FK protocol is not publicly verifiable. All classical mes-
sages in the FK protocol are G, {δi}i∈V , and {bi}i∈V . However, as explained
above, each measurement angle δi and measurement result bi are one-time padded
using a random angle θi and a random bit ri privately owned by Alice, so {δi}i∈V
and {bi}i∈V are nothing but random sequences. Obviously, the shape of the graph
G does not help the judge. Thus, s/he cannot obtain any meaningful information.
The perfect security of the FK protocol makes all public information meaningless
and hinders the judge from deciding.

Furthermore, due to the perfect security, it is impossible for the judge to
decide even if s/he exercises her/his authority. Suppose the judge orders Alice and
Bob to submit their private information. Then, the judge obtains the locations
of trap qubits T ′, the computational angles {ϕ′i}i∈V , the directions of dummy
qubits {d′i}i∈NG(T ′), the random angles {θ′i}i∈V , the random bits {r′i}i∈V , and, if
the judge has a quantum device, the post-measurement quantum states. Here, we
use prime symbols because there is no evidence that they honestly submit their
private information. When the judge finds all measurement results of trap qubits
{bi}i∈T ′ are the same as their expected results {r′i}i∈T ′ , there is no longer any
problem: Alice lies. Similarly, if the judge finds that the state of the ith qubit is
not |+δi+πbi⟩, the judge can conclude that Bob lies. However, the judge cannot
decide, when s/he finds that all quantum states are correct but there exists a
trap qubit t′ whose measurement result bt′ does not coincide with the associated
random bit r′t′ . The fact that the quantum states are

⊗
i∈V |+δi+πbi⟩ and bt′ ̸= r′t′

for some t′ ∈ T ′ means either that Alice is honest and r′t′ = rt′ ̸= bt′ or that Alice
is evil and r′t′ ̸= rt′ = bt′ . Unfortunately, there is no way to decide which one is
true. Evil Alice can pretend to be a pitiful victim by submitting all information
honestly except that r′t = rt + 1 and θ′t = θt + π for some trap qubit t. Note
that θ′t + πr′t = θt + π + πrt + π = θt + πrt = δt. Honest Alice will submit the
same information when she executes the FK protocol with the information and
evil but unlucky Bob just flips the measurement result of the trap qubit t. On
the other hand, it also easy for evil Bob to submit

⊗
i∈V |+δi+πbi⟩. Therefore,

the judge cannot decide unless the evil party is unwise.
Let us move back to public verifiability. The property requires some addi-

tional information to be public so that anyone can decide whether Alice obtains
a correct outcome. However, once it is disclosed, evil Bob will be able to improve
his strategy. Hence, the information should be hidden until it becomes impos-
sible to send an incorrect outcome. On the other hand, it should be protected

64



so that evil Alice cannot forge it. We can find such conflicts in the setting of
commitment schemes. The no-go theorem for unconditionally hiding and uncon-
ditionally binding commitment schemes suggests that there is no unconditional
public verifiability [69, 73]. Therefore, we focus on computational public verifia-
bility. Fortunately, a DQC protocol naturally allows us to relax a restriction for
Alice, because it assumes that Alice has a limited computational ability. Oth-
erwise, she need not delegate her computation. Here, we assume that Alice is a
probabilistic polynomial-time Turing machine. Now, we reach the definition of
public verifiability.

Definition 4.2.1. Let ξ be a function such that 0 ≤ ξ(X) < 1 for any inputX. A
DQC protocol is ξ-publicly verifiable if there exists a polynomial-time algorithm
P that computes “accept” or “reject” from all classical messages in the protocol
and satisfies the following two conditions.

1. For any strategy of Bob and any input X, the probability that P outputs
“accept” but Alice does not obtain a correct outcome is less than ξ(X)
when she follows the protocol.

2. For any probabilistic polynomial-time algorithm A executing the DQC pro-
tocol with honest Bob, there exists a probabilistic polynomial-time algo-
rithm A′ such that for any family of polynomially-bounded input {Xn}n∈N
and any polynomially-bounded functions h, f ,∣∣∣∣Pr [v = w

∣∣∣∣ a← h(1n, Xn), (v,m)← A(1n, Xn, a)
j ← P (m), j = reject, w ← f(1n, Xn)

]
−Pr

[
v = w

∣∣ a← h(1n, Xn), v ← A′(1n, Xn, a), w ← f(1n, Xn)
]∣∣ (4.6)

is negligible where m is all classical messages with Bob.

We call P a public verifier.

The first condition states that when a third party accepts, Bob cannot de-
ceive Alice without a bounded probability. The second states that Alice cannot
gain non-negligible information when a third party rejects. The second condition
is borrowed from semantic security and prohibits evil Alice from obtaining any
non-negligible partial information. This is because evil Alice can hide what is
the outcome. A DQC protocol usually assumes that the last messages are the
outcome. However, in a BQC protocol, Alice can secretly add meaningless com-
putation to the end of computation so that she gains the actual outcome without
receiving the seeming outcome.

By definition, we can immediately prove that public verifiability implies veri-
fiability. The implication is strict. There exists a DQC protocol that is verifiable
but not publicly verifiable.

Corollary 4.2.2. A ξ-publicly verifiable DQC protocol is ξ-verifiable.

Proposition 4.2.3. The FK protocol is not publicly verifiable unless BQP =
BPP.

Proof. Recall that all classical messages are G, {δi}i∈V , and {bi}i∈V . Assume
there exists a public verifier P . If there exists G such that P always returns
“accept”, evil Bob flips all measurement results and the first condition is bro-
ken. Therefore, for any G, there exists {δi}i∈V and {bi}i∈V such that P returns
“reject”. Let A be the algorithm that follows the FK protocol. Because the mes-
sages are uniformly random, there exists non-zero probability that P rejects. By

65



the assumption, there exists a probabilistic polynomial-time algorithm A′ that
simulates A communicating with honest Bob. Let L be a language in BQP and
{Un}n∈N be unitary matrices for the language. Let h be a constant function 0 and
f be a characteristic function. Then, for any xn ∈ { 0, 1 }n, embedding it with Un
into an input, A can correctly compute whether xn ∈ L except the probability 1

3 .
Therefore, A′ can compute it except the probability 1

3−νn where ν is a negligible
function. Therefore, BPP includes BQP.

Conversely, if BQP is BPP, Alice can compute any quantum computation
without executing the FK protocol. Therefore, the FK protocol is 0-publicly
verifiable with the public verifier that always returns “reject”.

Now, we close the story about the judge. S/he learns the above proposition
and finds that the judge cannot correctly guess. The judge tosses a coin to decide.
The result is a tail, so the judge orders Bob to pay back. Regrettably, the truth
is Alice lies. Lucky Alice succeeds in deceiving the judge and pitiable Bob works
for nothing.

At the end of this section, we point out that it is easy to resolve the problem
when there exists a trustworthy neutral party. Instead of Alice, the party decides
the locations of traps and the random bits of them, i.e., the expected measurement
results. Then, the party secretly sends Alice them. After executing the FK
protocol, the party checks whether the measurement results of the traps are the
expected ones. Therefore, if the judge had consulted before execution, the judge
could correctly decide. However, it is much too difficult to confirm the judge is
really trustful. From the view of another person, there is no reason to assume
the judge is neutral. If evil Bob bribes the judge, s/he will leak the locations to
him. If the judge is on Alice’s side, the judge will lie about the expected results.
That is the reason why we defined public verifiability so that anyone could verify
executions. In other words, we do not trust any specific party but do believe that
the majority in the world is honest.

4.3 Towards achievement of public verifiability

In the previous section, we defined public verifiability and saw that the FK proto-
col does not have the property. However, the FK protocol has several wonderful
properties as shown in the first section. Therefore, we decide to modify the FK
protocol so that it has public verifiability without weakening the protocol. In the
section, we show an idea to achieve public verifiability.

Let us recall the definition of public verifiability. The second condition re-
quires Alice to be unable to obtain any partial information when a public verifier
rejects. Because the measurement results contain partial information, it means
that the results should be hidden from Alice as long as there is a possibility of a
public verifier rejecting. On the other hand, it must be impossible for evil Bob
to change these measurement results. Therefore, we use a commitment scheme
to hide the information from Alice as follows.

1: First, Alice and Bob execute the FK protocol. However, instead of sending
each measurement result, he commits it to her.

2: Then, the outcome is accepted or rejected. The execution ends if rejected.
3: Finally, Bob reveals the committed measurement results.

However, the above simple protocol is immediately faced with two problems and
hence it cannot work.

Let us recall MBQC and the FK protocol. In MBQC, each measurement
angle depends on the previous measurement results. Indeed, Alice is required to

66



compute Equation (4.2) in the FK protocol. If she has no measurement results,
she cannot decide the measurement angle and cannot run the FK protocol. In
fact, she should not compute the measurement angle. Because she has all {ri}i∈V ,
{ϕi}i∈V , {θi}i∈V , {Xi}i∈V , and {Zi}i∈V , Equation (4.2) can be understood as
δi = gi({bj}j<i) with some function gi known by Alice. Computing the inverse of
gi inductively, she can restore measurement results bj . The other problem is how
Alice accepts or rejects an outcome. The FK protocol uses the fact she has the
measurement results of the trap qubits in the verification. If she does not know
{bt}t∈T , she cannot check whether bt = rt.

In order to resolve the two problems, we make further modifications. First,
we change the party who verify the outcome from Alice to Bob. After executing
the FK protocol, Alice discloses the traps, i.e., T and {rt}t∈T . Using them, Bob
checks whether bt = rt for any trap qubit t. Note that he certainly knows the
measurement results {bi}i∈V . Then, he decides whether he accepts or rejects
the outcome and hence whether he reveals the measurement results or not. Side
effects of the modification are that we can force Alice to disclose the true traps
and anyone can learn about the traps. If Alice discloses false traps, she will be
unable to obtain the outcome. For the first problem, we require the scheme to
be homomorphic and make Alice commit the measurement angles. In order to
measure qubits, Bob has to learn the measurement angles and thus has to be
able to reveal the measurement angles. Therefore, we decide to use a public-key
encryption scheme and implement a commitment scheme using it.

In summary, our protocol is, roughly speaking, as follows.

1: First, Bob generates a pair of keys and announces an encryption key.
2: Alice and Bob execute the FK protocol, encrypting all messages.
3: Next, Alice discloses the traps.
4: Then, Bob accepts or rejects the outcome. The execution ends if rejected.
5: Finally, Bob reveals the decryption key.

4.4 New verifiable blind quantum computation protocol

In the previous section, we showed the outline of our protocol. The next step
is an instantiation of the protocol. A question arises: Which encryption scheme
can we use? In this and the next sections, we discuss sufficient conditions for
our protocol. In the section, we focus on how to preserve the properties of
the FK protocol. For a while, we forget about public verifiability. Conditions
for the property will be discussed in the next section. Here, we give sufficient
conditions for verifiable BQC protocols, show instantiations of our protocol with
the conditions, and prove they are indeed verifiable BQC protocols.

The differences of our protocol and the FK protocol are the encryptions of all
classical messages and the disclosure of the traps. An encryption scheme has to
be chosen so that the differences do not create any hole. We can find that the
encryptions of measurement angles involve the risk of leaks of private information.
Alice computes a ciphertext of a measurement angle from the received ciphertexts
of the previous measurement results. Therefore, the random part in the ciphertext
may depend on the random parts in the received ciphertexts. Evil Bob will learn
which measurement results a measurement angle depends. Therefore, we assume
that an encryption scheme is rerandomisable, which make Bob unable to extract
anything but the plaintext. The condition is not enough. Evil Bob will send
invalid messages so that the messages of Alice contains extra information. We
illustrate how that works with the following example.

67



Example 4.4.1. Suppose Alice and Bob use Goldwasser-Micali encryption scheme.
An encryption key is (n, x) and Alice has a bit b0 and a set I ⊂ { 0, 1, 2 }. The
bit b0 and the set I is her secret. Alice computes a ciphertext α0 of b0 and re-
ceives two encrypted bits α1, α2 from Bob. Then, she sends β = r2

∏
i∈I αi with

randomly chosen r ∈ Z∗
n. It seems that she successfully sends the bit summation

of bits in I and no other information is leaked. Now, suppose Bob is evil. He

sends n = p0p1p2p3p4p5 and x ∈ Z∗
n such that

(
x
p0

)
=
(
x
p1

)
= −1 and

(
x
pi

)
= 1

for other i. Moreover, αi is taken such that
(
αi
p2i

)
=
(

αi
p2i+1

)
= −1 and

(
αi
pj

)
= 1

for other j. Note that
(
x
n

)
=
(
α1
n

)
=
(
α2
n

)
= 1 and they are seemed to Alice to

be valid ciphertexts unless she knows n is not the product of two primes. Then,(
r2

pi

)
= 1 for any i and

(
αj

p2k

)
= 1 unless j = k. Therefore,

(
β
p2i

)
= −1 if and

only if i ∈ I for i ∈ { 1, 2 }. Moreover,
(
β
p0

)
= −1 implies 0 ∈ I and b0 = 1. It

means evil Bob succeeds in obtaining partial information about I and b0, which
are the private information of Alice.

Such a trick will be revealed when Bob discloses the decryption key. However,
the trick succeeds in damaging blindness, which states Bob cannot learn anything
whatever he does. Notice that the bit summation is needed to compute measure-
ment angles. Hence, we require that Alice can verify whether Bob’s messages are
valid.

Definition 4.4.2. We say a classical public-key encryption scheme (G,E,D) is
verifiable if there exist polynomial-time algorithms VE , VD, and VC such that for
any n ∈ N, any e′, d′, α′ ∈ B∗, and any e ∈ EKSn,

VE(n, e
′) =

{
1 (e′ ∈ EKSn)
0 (e′ /∈ EKSn)

(4.7)

VD(n, e, d
′) =

{
1 ((e, d′) ∈ KSn)
0 ((e, d′) /∈ KSn)

(4.8)

VC(e, α
′) =

{
1 (α′ ∈ CSn,e)
0 (α′ /∈ CSn,e)

(4.9)

If an encryption scheme is verifiable, Bob will not send invalid messages. Even
if he does, the invalid messages are certainly detected by Alice. Still, he is able
to send a valid ciphertext of a plaintext that exceeds the range of measurement
bits, i.e. B. Recall that any angle is a multiple of π4 . Therefore, an angle can be
encoded into a number in [<8]. For the reason, we assume the plaintext space of
an encryption scheme is [<8].

In fact, the above conditions are sufficient. No additional conditions are
needed except for being homomorphic. The following functions are needed to
compute the measurement angles. Hence, we assume that the encryption scheme
is homomorphic with respect to these functions.

Definition 4.4.3. We define the family of functions FB =
{
γp,ql,X,Z

}
l∈N,X,Z∈[<l],p,q∈P

where each γp,ql,X,Z is a function from [<8]l+m to [<8] such that

γp,ql,X,Z({bj}0≤j<l) = p+ (−1)
∑

j∈X bjq + 4
∑
j∈Z

bj (mod 8). (4.10)

We obtain the functions from Equation (4.2) by classifying terms into those
known by Alice and the others, and by dividing them by π

4 .

68



Now, it is time to show an instantiation of our protocol. We use a classical
public-key encryption scheme such that the plaintext space PS is [<8], and it is
verifiable, rerandomisable, and FB-homomorphic. With the encryption scheme,
our protocol can be concretised as shown in Protocol 5 where n′ is the preshared
security parameter. Each time Alice or Bob is received a message, the party
checks whether the received message is valid, and aborts if the party finds it is
invalid. Because a third party can access these messages and compute VE , VD,
and VC , the party will be able to learn which party sends an invalid message
when the protocol aborts for the reason. That will make a third party able to
get a better guess than one that public verifiability gives. But, we do not enter
into the details now.

We prove Protocol 5 is correct, blind, and verifiable. The proof is a reduction
into the FK protocol. Recall that the differences between our protocol and the FK
protocol are that messages are encrypted and that the traps are disclosed. The
latter does not depend on a choice of an encryption scheme. For later discussions,
our proof goes through a modified FK protocol, where Alice and Bob executes
the FK protocol but Alice finally discloses the traps. The detail is shown in
Protocol 6. This protocol can be understood as a variant of Protocol 5 with the
trivial encryption scheme. Note that the trivial encryption scheme is trivially
verifiable, rerandomisable, and FB-homomorphic. First, we prove Protocol 6 is
correct, blind, and verifiable to show the disclosure of the traps does not benefit
evil Bob and hence never damage the property of the FK protocol.

Lemma 4.4.4. Assume both Alice and Bob respect Protocol 6. The protocol never
aborts. The distribution of an outcome on an input including a unitary operator
U coincides with the distribution of the measurement results of U |0⟩ provided U
is computable in G′. Alice always accepts the outcome.

Proof. Assume both Alice and Bob respect the protocol. Alice has the same
information between the FK protocol and Protocol 6. Therefore, due to the
correctness of the FK protocol, Alice obtains a correct outcome and accepts it if
the protocol is not aborted. We show Bob does not abort the protocol. Because
Alice is honest, he obtains the true T and {rt}t∈T . Hence, Bob aborts if and only
if Alice rejects the outcome. Therefore, Bob never aborts.

Lemma 4.4.5. Protocol 6 is blind while leaking at most G and t.

Proof. In Protocol 6, all classical information obtained by Bob is G, {δi}i∈V ,
{bi}i∈V , T , and {rt}t∈T . Therefore, he learns about G and t = |T |. T is uniformly
randomly chosen from the vertices of G, and each rt for t ∈ T is also uniformly
randomly chosen from B. The blindness of the FK protocol tells us that {δi}i∈V
and {bi}i∈V are determined by some distribution for fixed G. (In fact, it is
the uniform distribution.) Hence, the distribution of all classical information is
determined by G and t.

Fix the classical information. A state of any qubit not in T or NG(T ) is the
same as of the qubit in the FK protocol. Let a state |qi⟩ be such that i ∈ T .
Then, |qi⟩ = |+θi⟩ = |+δi−πri⟩ and thus |qi⟩ is fixed. Let i ∈ NG(T ). |qi⟩ = |di⟩
with randomly chosen di. di is independently chosen. Therefore, the state of i is
1
2 |0⟩⟨0|+

1
2 |1⟩⟨1| =

1
2 I.

Lemma 4.4.6. Protocol 6 is ϵFK-verifiable.

Proof. Assume not. Thus, there exists a strategy of Bob such that the proba-
bility that honest Alice accepts an incorrect outcome exceeds ϵFK. Suppose Bob

69



Protocol 5 Verifiable blind quantum computation protocol with encryption

Input

• Natural numbers n, t.

• A graph G = (V,E) where vertices are labelled from 0 to |V | − 1.

• A description of a unitary operator U on n qubits.

1: Alice sends Bob G.
2: Alice randomly selects t vertices T .
3: Let G′ = (V ′, E′) be the graph obtained by removing T and NG(T ) from G,

and fG′ be its flow.
4: Alice computes the angles {ϕi}i∈V ′ to compute U where each ϕi belongs to{

kπ
4 | k ∈ [<8]

}
. Set ϕi = 0 for any i ∈ T ∪NG(T ). Let pi =

4
πϕi.

5: for all i ∈ V do
6: if i ∈ NG(T ) then
7: Alice randomly chooses di from B.
8: end if
9: Alice randomly chooses ki from [<8]. Let θi =

π
4ki.

10: Alice randomly chooses ri from B.
11: end for
12: for all i ∈ V do
13: Alice sends Bob a single qubit whose state is |qi⟩ defined by Equation (4.1).
14: end for
15: Bob creates the state

∏
(i,j)∈E CZ(i,j)

⊗
i∈V |qi⟩.

16: Bob generates keys (e, d)← G(1n
′
) and sends Alice the encryption key e.

17: Alice aborts if VE(n
′, e) = 0.

18: for i = 0 to |V | − 1 do
19: Alice computes αi and sends Bob it where

αi ← Cγo,pii,Xi,Zi

(e, {βj}j<i) (4.11)

and
o = (−1)

∑
j∈Xi

rjpi + ki + 4ri + 4
∑
j∈Zi

rj (mod 8). (4.12)

20: Bob aborts if VC(n
′, e, αi) = 0.

21: Bob computes li ← D(e, d, αi). Let δi =
π
4 li.

22: Bob measures the ith qubit with δi and obtains bi.
23: Bob computes βi ← E(e, bi) and sends Alice βi.
24: Alice aborts if VC(n

′, e, βi) = 0.
25: end for
26: Alice sends T and {rt}t∈T to Bob.
27: Bob aborts if bt ̸= rt for some t ∈ T .
28: Bob sends Alice the decryption key d.
29: Alice aborts if VD(n

′, e, d) = 0.
30: Alice computes bi ← D(e, d, βi) for all i ∈ V .
31: Alice accepts the outcome if bt = rt for all t ∈ T .

70



Protocol 6 The FK protocol with disclosure of trap

Input

• Natural numbers n, t.

• A graph G = (V,E) where vertices are labelled from 0 to |V | − 1.

• A description of a unitary operator U on n qubits.

1: Alice sends Bob G.
2: Alice randomly selects t vertices T .
3: Let G′ = (V ′, E′) be the graph obtained by removing T and NG(T ) from G,

and fG′ be its flow.
4: Alice computes the measurement angles {ϕi}i∈V ′ to compute U where each

ϕi belongs to
{
kπ
4 | k ∈ [<8]

}
. Set ϕi = 0 for any i ∈ T ∪NG(T ).

5: for all i ∈ V do
6: if i ∈ NG(T ) then
7: Alice randomly chooses di from B.
8: end if
9: Alice randomly chooses θi from

{
kπ
4 | k ∈ [<8]

}
.

10: Alice randomly chooses ri from B.
11: end for
12: for all i ∈ V do
13: Alice sends Bob a single qubit whose state is |qi⟩ defined by Equation (4.1).
14: end for
15: Bob creates the state

∏
(i,j)∈E CZ(i,j)

⊗
i∈V |qi⟩.

16: for i = 0 to |V | − 1 do
17: Alice sends Bob δi defined by Equation (4.2).
18: Bob measures the ith qubit with δi.
19: Bob sends Alice the measurement result bi.
20: end for
21: Alice sends T and {rt}t∈T to Bob.
22: Bob aborts if bt ̸= rt for some t ∈ T .
23: Alice accepts the outcome if bt = rt for all t ∈ T .

succeeds in making Alice accept an incorrect outcome with the strategy. Because
Alice is honest, it means bt = rt for any trap qubit t. Moreover, that Alice ac-
cepts means that Bob does not abort. Notice that Bob cannot do anything after
receiving T and {rt}t∈T except aborting. He already sends all bi so he cannot
change any of them. Therefore, Bob can use the same strategy in the FK protocol
and achieves the same probability. It contradicts the definition of ϵFK.

Precisely speaking, Protocol 6 is weaker than the FK protocol because it leaks
the number of traps t. It allows Bob to guess a more precise upper bound of the
size of the computation of Alice. If t is determined by G, Protocol 6 will be the
same as the FK protocol. Indeed, for the dotted-complete graph G, t is fixed.
Therefore, We do not care about the new leak.

Now, we prove that Protocol 5 is a verifiable BQC protocol. Recall we use a
verifiable, rerandomisable, and FB-homomorphic classical public-key encryption
scheme such that the message space PS is [<8].

Lemma 4.4.7. Assume both Alice and Bob respect Protocol 5. The protocol never
aborts. The distribution of an outcome on an input including a unitary operator
U is the same as the distribution of the measurement results of U |0⟩ provided U
is computable in G′. Alice always accepts the outcome.

71



Proof. Assume both Alice and Bob respect the protocol. All steps until Bob
creates the graph state are the same in Protocol 5 and Protocol 6.

π

4
D(e, d, αi) =

π

4
D(e, d, Cγo,pii,Xi,Zi

(e, {βj}j<i))

=
π

4
D(e, d, Cγo,pii,Xi,Zi

(e, {E(e, bj)}j<i)) =
π

4
γo,pii,Xi,Zi

({bj}j<i)

=
π

4

(−1)
∑

j∈Xi
rjpi + ki + 4ri + 4

∑
j∈Zi

rj + (−1)
∑

j∈Xi
bjpi + 4

∑
j∈Zi

bj (mod 8)


= (−1)

∑
j∈Xi

rjϕi + θi + πri + π
∑
j∈Zi

rj + (−1)
∑

j∈Xi
bjϕi + π

∑
j∈Zi

bj (mod 2π)

= δi (4.13)

Therefore, Bob correctly obtains δi defined by Equation (4.2). Similarly, Alice
obtains D(e, d, E(e, bi)) = bi and therefore she obtains a correct outcome unless
that the protocol aborts. Since Alice and Bob are honest, an encryption key,
a decryption key, and all ciphertexts are valid. By Equations 4.7, 4.8, and 4.9,
they do not abort. Because honest Alice and Bob never abort in Protocol 6, they
never do in the protocol.

Lemma 4.4.8. Protocol 5 is blind while leaking at most G and t.

Proof. We will show the classical information obtained by Bob in Protocol 5 is
essentially the same as that in Protocol 6. Because the quantum state are the
same, that implies the protocol is blind.

All Bob obtains isG, {αi}i∈V , {bi}i∈V , T , and {rt}t∈T . The difference between
both protocols is that {αi}i∈V and {δi}i∈V . Take αi. Bob has the ciphertext,
so Alice does not find VE(n, e) = 0 or VC(n, e, βj) for any j < i, because of
equations 4.7 and 4.9. βi is a ciphertext of a plaintext in [<8].

γp,ql,X,Z({bj + 2kj}0≤j<l) = p+ (−1)
∑

j∈X(bj+2kj)q + 4
∑
j∈Z

(bj + 2kj) (mod 8)

= p+ (−1)
∑

j∈X bjq + 4
∑
j∈Z

bj (mod 8) = γp,ql,X,Z({bj}0≤j<l). (4.14)

Therefore, we can regard each βi as a ciphertext of 0 or 1. αi is a ciphertext of
δi. Since an encryption scheme is rerandomisable, αi is uniformly distributed on
the set of ciphertexts of δi.

Lemma 4.4.9. Protocol 5 is ϵFK-verifiable.

Proof. Assume Alice respects the protocol and that Protocol 5 is not ϵFK-verifiable.
Therefore, there exists an input and a strategy of Bob such that the probability
of Alice accepting an incorrect outcome is larger than ϵFK. Sending invalid mes-
sages will be detected and will decrease the succeeding probability. Therefore,
we ignore such strategies.

Then, Alice and Bob executes the Protocol 6. Bob simulates the above strat-
egy. When a message is come from Alice, he encrypts it, rerandomise it, and
executes the strategy. After finishing the execution, he decrypts the result and
the residue of the plaintext modulo 2 to Alice.

Due to the proof of blindness and correctness, if Alice executes Protocol 6
honestly, he can honestly executes Protocol 5 with his simulated strategy. In
particular, when he decides to accept an outcome, Alice also accepts the outcome.

72



Therefore, a strategy of Bob in Protocol 5 can be interpreted as one in Protocol 6.
It means that he succeeds in making Alice accept an incorrect outcome with a
larger probability than ϵFK. It contradicts the definition of ϵFK.

Theorem 4.4.10. Protocol 5 is a verifiable BQC protocol.

We proved an encryption scheme preserves the property of the FK protocol
if the scheme satisfies several conditions. However, we do not know whether
such encryption scheme exists other than the trivial encryption scheme. The
conditions are sufficient but unnecessarily strong. In the rest of the section, we
weaken the conditions.

Let us recall that we required an encryption scheme to be verifiable. The
purpose was that the ciphertext Alice sends does not leak any information other
than the desired measurement angle. As long as the purpose is achieved, we can
weaken the definition of verifiability. In the definition of verifiability, we required
the existence of polynomial-time algorithms that never output wrong answers.
Because of correctness, we cannot admit any false negative error. That is, Alice
has to judge a valid encryption key, a valid ciphertext, and a valid decryption
key to be valid. However, we can admit false positive errors for verification of
an encryption key and a ciphertext provided that no information is leaked. On
the other hand, we cannot admit false positive errors for a decryption key. If
so, there is a possibility that Alice overlooks an invalid decryption key, and that
increases a probability of Alice accepting an incorrect outcome. Similarly, we
have to care about the case such that there exists two decryption keys for an
encryption key, and there exists a bit string such that the decryption outputs
different strings when different keys are used. That allows evil Bob to choose
which key he discloses and to secretly change the plaintext of the sent messages.
Note that for any valid ciphertext, that never happens.

Proposition 4.4.11. Let (G,E,D) be a public-key encryption scheme. For any
n ∈ N,

Pr

[
m = m′

∣∣∣∣ (e, d), (e′, d′)← G(1n), e = e′, α← CSn,e
m← D(e, d, α),m′ ← D(e, d′, α)

]
= 1 (4.15)

Proof. Take (e, d), (e′, d′) ∈ KSn and assume e = e′. Because α ∈ CSn,e, there
exists m ∈ P such that α ∈ CSn,e,m. The definition of encryption schemes,

D(e, d, α) = D(e, d, E(e,m)) = m = D(e, d′, E(e,m)) = D(e, d′, α). (4.16)

However, we now admit false positive errors for a ciphertext. That does not
satisfy the premise of the above proposition.

Definition 4.4.12. Let E = (G,E,D) be an F -homomorphic classical public-key
encryption scheme. We say E is covered if there exist probabilistic polynomial-
time algorithms VCE and VCC and polynomial-time algorithms VCED and VCCK
that outputs either 0 or 1 and satisfies the following.

• For any n ∈ N, Pr [v = 1 | (e, d)← G(1n), v ← VCE(n, e)] = 1.

• For any n ∈ N, Pr [v = 1 | (e, d)← G(1n), α← CSn,e, v ← VCC(e, α)] = 1.

• For any n ∈ N and e′, d′ ∈ B∗,

VCED(n, e
′, d′) =

{
1 ((e′, d′) ∈ KSn)
0 ((e′, d′) /∈ KSn)

. (4.17)

73



• For any n ∈ N, (e, d) ∈ KSn, and α
′ ∈ B∗,

VCCK(e, d, α′) =

{
1 (α′ ∈ CSn,e)
0 (α′ /∈ CSn,e)

. (4.18)

• For any n, l ∈ N and any e′ /∈ EKSn such that VWE(n, e) = 1, there exists
a distribution on the bit strings that satisfies the following.

– For any f ∈ F whose arity is l and for any bit string α0, . . . , αl−1 ∈ B∗,
Cf (e

′, α0, . . . , αl−1) obeys the distribution.

• For any n, l ∈ N, any e ∈ EKSn, and any α /∈ E(e, P ) such that VWC(e, α) =
1, there exists a distribution on the bit strings that satisfies the following.

– For any f ∈ F whose arity is l and for any α0, . . . , αl−1 ∈ B∗ such that
αi = α for some i, Cf (e, α0, . . . , αl−1) obeys the distribution.

If evil Bob sends an invalid encryption key, he will receive a random bit string
that obeys a predetermined distribution. Similarly, when Bob sends an invalid
encryption key, he will also receive a random bit string. He cannot obtain new
information, sending an invalid message. The reader may wonder if evil Bob can
learn whether an invalid message is used to compute the measurement angle.
That is true but not a problem. This is because he cannot learn which function
Alice uses. Bob knows each measurement angle is computed from his messages.
In particular, it can be computed from all messages. Hence, if Alice always
computes the angles with all received messages, he cannot learn anything new.

With these conditions, we can prove that a variant of Protocol 5 is a verifiable
BQC protocol by the same arguments. For completeness, we show the detail in
Protocol 7 and show a proof.

Theorem 4.4.13. Let E be a covered, rerandomisable, and FB-homomorphic
classical public-key encryption scheme such that the plaintext space is [<8]. Pro-
tocol 7 is a verifiable BQC protocol.

Proof. Correctness immediately follows from the correctness of Protocol 5 and the
fact we do not admit any false negative errors (Definition 4.4.12). For blindness
and verifiability, assume Alice is honest. All classical information obtained by
Bob is G, {αi}i∈V , {bi}i∈V , T , and {rt}t∈T . If he sends an invalid encryption key
or invalid ciphertexts, αi obeys a fixed distribution. It is predetermined, so it is
independent of an input. Therefore, the protocol is blind.

Evil Bob can send invalid messages. However, using VCED and VCCK , Alice
finally finds they are invalid. If she finds, she aborts. She never accepts. There-
fore, Bob cannot use invalid messages to make Alice accept an incorrect outcome.
Therefore, the success probability is not larger than one in Protocol 5.

Finally, we point out that we can change the plaintext space from [<8] to B
without affecting the properties. It just needs to change the definition of FB.

4.5 Publicly verifiable blind quantum computation protocol

In the previous section, we left the security of an encryption scheme. Indeed, as
pointed out before, the trivial encryption scheme satisfies all conditions proposed
in the previous section. It is time to discuss about the security. Here, we discuss
about it and give an instantiation of our protocol, which is publicly verifiable
BQC protocol.

74



Protocol 7 Verifiable blind quantum computation protocol with encryption sat-
isfying weaker conditions

Input

• Natural numbers n, t.

• A graph G = (V,E) where vertices are labelled from 0 to |V | − 1.

• A description of a unitary operator U on n qubits.

1: Alice sends Bob G.
2: Alice randomly selects t vertices T .
3: Let G′ = (V ′, E′) be the graph obtained by removing T and NG(T ) from G,

and fG′ be its flow.
4: Alice computes the angles {ϕi}i∈V ′ to compute U where each ϕi belongs to{

kπ
4 | k ∈ [<8]

}
. Set ϕi = 0 for any i ∈ T ∪NG(T ). Let pi =

4
πϕi.

5: for all i ∈ V do
6: if i ∈ NG(T ) then
7: Alice randomly chooses di from B.
8: end if
9: Alice randomly chooses ki from [<8]. Let θi =

π
4ki.

10: Alice randomly chooses ri from B.
11: end for
12: for all i ∈ V do
13: Alice sends Bob a single qubit whose state is |qi⟩ defined by Equation (4.1).
14: end for
15: Bob creates the state

∏
(i,j)∈E CZ(i,j)

⊗
i∈V |qi⟩.

16: Bob generates keys (e, d)← G(1n
′
) and sends Alice the encryption key e.

17: Alice aborts if VCE(n
′, e) = 0.

18: for i = 0 to |V | − 1 do
19: Alice computes αi defined by Equation (4.11) and sends Bob it.
20: Bob aborts if VCCK(e, d, αi) = 0.
21: Bob computes li ← D(e, d, αi). Let δi =

π
4 li.

22: Bob measures the ith qubit with δi and obtains bi.
23: Bob computes βi ← E(e, bi) and sends Alice βi.
24: Alice aborts if VCC(e, βi) = 0.
25: end for
26: Alice sends T and {rt}t∈T to Bob.
27: Bob aborts if bt ̸= rt for some t ∈ T .
28: Bob sends Alice the decryption key d.
29: Alice aborts if VCED(n

′, e, d) = 0.
30: Alice aborts if VCCK(e, d, βi) = 0 for some i ∈ V .
31: Alice computes bi ← D(e, d, βi) for all i ∈ V .
32: Alice accepts the outcome if bt = rt for all t ∈ T .

75



What should an encryption scheme satisfy to be secure against Alice? In the
definition of public verifiability, we assume that Alice is a polynomial-time Turing
machine. The plaintexts of the ciphertexts obtained by Alice are the measure-
ment results. The distribution of them is determined by the measurement angles
sent by Alice. She sends them after receiving an encryption key. Therefore, she
can adjust the distribution for the key. It seems that it is enough that we use an
IND-CPA secure encryption scheme. The security guarantees that a plaintext is
concealed from Alice, even if she determines a distribution of plaintexts using the
knowledge of an encryption key. In fact, it is not sufficient. In our setting, Alice
can do more. That comes from the fact that the plaintexts, i.e. the measurement
results are outputs of quantum operations. These operations are chosen by Al-
ice. Therefore, Alice can choose distribution of plaintexts using Bob’s quantum
power. Precisely speaking, Alice cannot freely choose the plaintexts due to the
probabilistic nature of quantum measurement, and each measurement result is
randomly chosen. However, the whole measurement results may correlate with
the outputs of quantum operations. The IND-CPA security assumes that the
plaintext is chosen by a polynomial-time algorithm, so our situation is out of its
scope. Some IND-CPA secure encryption schemes allow quantum computers to
compute their decryption keys from their encryption keys. For example, although
the ElGamal encryption scheme is known to be IND-CPA secure, a quantum com-
puter can obtain its decryption key because it can efficiently compute discrete
logarithms. For these schemes, plaintexts may depend on or be itself their de-
cryption keys. Such attacks are known to be key-dependent message (KDM)
attacks [14, 71]. Roughly speaking, an encryption scheme is KDM secure with
respect to a set of functions F if any attacker cannot distinguish ciphertexts of
f(d) from ciphertexts of some fixed plaintext where f is any function in F and
d is the decryption key. We can conclude that the encryption scheme should be
KDM secure with respect to all quantum computations.

A problem is that it is too difficult to find an encryption scheme that is
KDM secure and satisfies the conditions shown in the previous section. Stronger
security tends to need an encryption scheme having a more complex structure. On
the other hand, such a structure makes it difficult for a scheme to be homomorphic
and to be tolerant to invalid attacks, i.e., to be covered. Hence, we employ the
opposite way. We impose a weaker requirement on the security of the encryption
scheme but do a stronger requirement than being homomorphic. The idea is
as follows. The reason why we have to care about KDM attacks is that Alice
can decide measurement angles after receiving an encryption key. Therefore, if
an encryption key is chosen after Bob receives a measurement angle, there is no
possibility of such attacks. Any encryption key is definitely independent of a
measurement result, a plaintext. However, that means each measurement result
is encrypted by a different encryption key because each measurement result has
to be encrypted before receiving the measurement angle of the next qubit. Alice
has to compute a ciphertext of a measurement angle from measurement results
encrypted by different keys. Now, being homomorphic is not sufficient.

Definition 4.5.1. Let E = (G,E,D) be a classical encryption scheme whose
plaintext spaces are independent of the security parameter. Let F be a set of
functions on the plaintext space. Let LF be the set of the arities of functions in F ,
that is LF = { l | f : PSl → PS ∈ F }. Fl = { f ∈ F | f : PSl → PS }. We say E
is unitedly homomorphic with respect to F , or unitedly F -homomorphic, if there
exist probabilistic polynomial-time algorithms {EH,f}f∈F and polynomial-time

algorithms {DH,l}l∈LF
such that

76



• EH,f∈Fl
computes a bit string from 2l bit strings,

• DH,l computes a bit string from 2l + 1 bit strings, and

• for any f ∈ Fl and any n ∈ N,

Pr


m = m′

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(e0, d0), . . . , (el−1, dl−1)← G(1n)
m0, . . . ,ml−1 ← PS
α0 ← E(e0,m0)
...
αl−1 ← E(el−1,ml−1)
β ← EH,f ({ei}i<l, {αi}i<l)
m← DH,l({ei}i<l, {di}i<l, β)
m′ ← f({mi}i<l)


= 1 (4.19)

• for any f ∈ Fl, any n ∈ N, any (e0, d0), . . . , (el−1, dl−1) ∈ KS, anym0, . . . ,ml−1 ∈
PS, and any α0 ∈ CSn,e0,m0 , . . . , αl−1 ∈ CSn,el−1,ml−1

, EH,f ({ei}i<l, {αi}i<l)
is the uniform distribution on the set Cm,{ei}i<l

where m is f({mi}i<l),

Cm,{ei}i<l
=

∪
g∈Fl

s.t. m=g({mi}i<l)

Sg, (4.20)

and Sg is the support of the distribution of EH,g({ei}i<l, {E(ei,mi)}i<l).

Definition 4.5.2. Let E = (G,E,D) be a unitedly F -homomorphic classical
public-key encryption scheme. We say E is unitedly covered if there exist proba-
bilistic polynomial-time algorithms VCE and VCC and polynomial-time algorithms
VCED, VCCK , and {VCCH,l}l∈LF

that outputs either 0 or 1 and satisfies the first
four requirements in Definition 4.4.12 and the following.

• For any l ∈ LF , any n ∈ N and any e′ /∈ EKSn such that VWE(n, e) = 1,
there exists a distribution on the bit strings that satisfies the following.

– For any f ∈ Fl and for any e0, . . . , el−1, α0, . . . , αl−1 ∈ B∗ such that
ei = e′ for some i, EH,f ({ei}i<l, {αi}i<l) obeys the distribution.

• For any l ∈ LF , any n ∈ N, any e, e0, . . . , el−1 ∈ EKSn, and any α /∈ CSn,e
such that VWC(e, α) = 1, there exists a distribution on the bit strings that
satisfies the following.

– For any f ∈ Fl and for any α0, . . . , αl−1 ∈ B∗ such that αi = α and
ei = e for some i, EH,f ({ei}i<l, {αi}i<l) obeys the distribution.

• For any n ∈ N, any l ∈ Lf , any (e0, d0), (el−1, dl−1) ∈ KSn, and β
′ ∈ B∗,

VCCH,l({ei}i<l, {di}i<l, β
′) =

{
1 (β′ ∈

∪
m∈PS Cm,{ei}i<l

)

0 (β′ /∈
∪
m∈PS Cm,{ei}i<l

)
. (4.21)

where Cm,{ei}i<l
is defined by Equation (4.20).

Under the conditions, our protocol is still a verifiable BQC protocol. More-
over, the protocol is publicly verifiable with some assumptions. Instead of Cf ,
we use EH,f so Protocol is slightly changed. We give a final instantiation of
our protocol in Protocol 8. We assume that an encryption scheme is unitedly
FB-homomorphic, rerandomisable, and unitedly covered, the plaintext space is
[<8], and it has indistinguishable encryptions. We need not IND-CPA security
because a plaintext is independent of an encryption key.

77



Protocol 8 Publicly Verifiable BQC protocol

Input

• Natural numbers n, t.

• A graph G = (V,E) where vertices are labelled from 0 to |V | − 1.

• A description of a unitary operator U on n qubits.

1: Alice sends Bob G.
2: Alice randomly selects t vertices T .
3: Let G′ = (V ′, E′) be the graph obtained by removing T and NG(T ) from G,

and fG′ be its flow.
4: Alice computes the angles {ϕi}i∈V ′ to compute U where each ϕi belongs to{

kπ
4 | k ∈ [<8]

}
. Set ϕi = 0 for any i ∈ T ∪NG(T ). Let pi =

4
πϕi.

5: for all i ∈ V do
6: if i ∈ NG(T ) then
7: Alice randomly chooses di from B.
8: end if
9: Alice randomly chooses ki from [<8]. Let θi =

π
4ki.

10: Alice randomly chooses ri from B.
11: end for
12: for all i ∈ V do
13: Alice sends Bob a single qubit whose state is |qi⟩ defined by Equation (4.1).
14: end for
15: Bob creates the state

∏
(i,j)∈E CZ(i,j)

⊗
i∈V |qi⟩.

16: for i = 0 to |V | − 1 do
17: if i = 0 then
18: Alice computes δ0 and sends it to Bob where δ0 is defined by Equa-

tion (4.2).
19: else
20: Alice computes αi ← EH,f ({ej}j<i, {βj}j<i) and sends it where the

function f is γo,pii,Xi,Zi
and o is defined by Equation (4.12).

21: Bob aborts if VCCH,i({ej}j<i, {dj}j<i, αi) = 0.
22: Bob computes li ← DH,i(e, d, αi). Let δi =

π
4 li.

23: end if
24: Bob measures the ith qubit with δi and obtains bi.
25: Bob generates keys (ei, di)← G(1n

′
).

26: Bob computes βi ← E(ei, bi) and sends Alice ei and βi.
27: Alice aborts if VCE(n

′, ei) = 0 or VCC(ei, βi) = 0.
28: end for
29: Alice sends T and {rt}t∈T to Bob.
30: Bob aborts if bt ̸= rt for some t ∈ T .
31: Bob sends Alice {di}i∈V .
32: Alice aborts if VCED(n

′, ei, di) = 0 for some i.
33: Alice aborts if VCCK(ei, di, βi) = 0 for some i.
34: Alice computes bi ← D(ei, di, βi) for all i ∈ V .
35: Alice accepts the outcome if bt = rt for all t ∈ T .
Public verifier

• A public verifier accepts if Bob sends all decryption keys, VCED(n, ei, di) =
1 and VCCK(ei, di, βi) = 1 for any i, and bt = rt for all t ∈ T .

78



Theorem 4.5.3. Let E be a unitedly covered, rerandomisable, and unitedly FB-
homomorphic classical public-key encryption scheme such that the plaintext space
is [<8]. Protocol 8 is a verifiable BQC protocol.

Proof. The protocol does not abort when all parties are honest because we do not
admit any false negative errors and Protocol 7 is correct. Alice obtains a correct
outcome and accepts it, due to the correctness of Protocol 7 and Equation (4.19).
Note that a public verifier accepts because the verifier does the same as Alice does
and honest Alice accepts an outcome. Therefore, the protocol is correct. A proof
of blindness and verifiability is the same as the proof for Protocol 7 mutatis
mutandis.

Now, we show our protocol is publicly verifiable. We impose two additional
assumptions. One is the number of qubits is polynomial. The other is that Alice
cannot create any entangled state. The former is natural. If the number of qubits
is superpolynomial, Alice cannot send these qubits. The latter is imposed to
prevent Alice from directly reading the measurement results. If Alice can create
a pair of qubits in an entangled state, she will send the half to Bob, and establish
a secret quantum channel to Bob’s quantum system. Our protocol relies on an
assumption that Alice has no information about measurement results except for
the ciphertexts. It is difficult to estimate an upper bound of leakage information
via a secret quantum channel. Finally, note that even if Alice cannot create any
entangled state, she can execute our protocol.

Theorem 4.5.4. Let E be a unitedly covered, rerandomisable, and unitedly FB-
homomorphic classical public-key encryption scheme such that the plaintext space
is [<8], and it has indistinguishable encryptions. Moreover, we assume that the
numbers of vertices of graphs are polynomially bounded with respect to the security
parameter n′, and that Alice cannot create any entangled state. Protocol 8 is ϵFK-
publicly verifiable.

Proof. The first condition of public verifiability holds with ξ = ϵFK due to the
fact that a public verifier accepts if and only if honest Alice accepts an outcome.

We will prove that the protocol satisfies the second condition. Assume that
Bob is honest. First, we note that Alice does not have any decryption key when
a public verifier rejects. When the verifier rejects, Bob does not disclose the
decryption keys, VCED(n, ei, di) = 1 or VCCK(ei, di, βi) = 1 for some i ∈ V , or
bt ̸= rt for some t ∈ T . If Bob sends the decryption keys, he confirms bt = rt
for any t ∈ T . Since he is honest, VCED(n, ei, di) and VCCK(ei, di, βi) are always
1. Therefore, Bob does not send the decryption keys. He aborts the protocol
somewhere. Next, we note that a strategy of Alice is definitely classical. Alice is
assumed to be unable to create any entangled states. Therefore, all qubits sent
by her is single qubits, and she does not have any secret quantum channel to Bob.
Finally, we note that Alice gains nothing by sending invalid ciphertexts. Even
if she does, Bob immediately finds that it is invalid because of the definition of
VCCH,i, and he aborts. Moreover, since a public verifier always rejects when Bob
aborts, that cannot make a public verifier accept. Therefore, we assume that
Alice never send invalid ciphertexts in the protocol.

Fix a strategy of Alice. Let A be a probabilistic polynomial-time algorithm
running Protocol 8 with honest Bob that implements the strategy. We will show
a probabilistic polynomial-time algorithm B simulates A. Let Ai be the same
algorithm as A except that Bob always sends a ciphertext of zero after he sends
a ciphertext of the ith measurement result. A = At(n

′) where t(n′) is the number

79



of qubits with polynomially-bounded function t. Let Xn′ be an input of the
protocol, and h, f be polynomially-bounded functions. Define p(i) as follows.

p(i) = Pr

[
v = w

∣∣∣∣ a← h(1n
′
, Xn′), (v,m)← Ai(1n

′
, Xn′ , a)

j ← P (m), j = reject, w ← f(1n
′
, Xn′)

]
(4.22)

Because an encryption scheme has indistinguishable encryptions,
∣∣p(i+1) − p(i)

∣∣
is negligible for any i. Therefore,

∣∣∣p(t(n′)) − p(0)
∣∣∣ is still negligible. In A(0), Al-

ice receives ciphertexts of zeros from Bob. These ciphertexts can be computed
herself. Therefore, simulating Bob’s behaviour in A0, we obtain a probabilistic
polynomial-time algorithm B. By definition, it achieves the same probability
p(0).

4.6 Encryption scheme

We showed there exists a publicly verifiable BQC protocol provided that there
exists an encryption scheme that satisfies several conditions. In the section, we
show there exists such a good scheme.

4.6.1 Inattentive evaluation of circuits

From the view of Bob, communication with Alice can be understood as secret
computation: He sends an encrypted bit. Then, she applies a secret function to
it, and sends back the output. Equivalently, it can be understood as a cooperative
evaluation of a known function with private inputs. There is a known function.
Alice and Bob has their own private inputs. They compute the output of the
function without letting each party learn the input of the other party. These
tasks are known as private computation, secure circuit evaluation, and so on.
Inattentive evaluation of circuits [95] is a method to tackle the task. Here, we
review the method.

Suppose the following task. Bob has private bits x0, . . . , xn−1. Alice has a
private circuit C. The circuit is implemented by OR gates and NOT gates. Each
input is assumed to have the same depth, that is the number of applied OR gates.
That is, an input is, for example, a form of ¬(P0∨P1)∨(P2∨P3), not ¬P0∨(P1∨
P2). The latter can be rewritten as (¬P0 ∨¬P0)∨ (P1 ∨P2). Now, Alice and Bob
want to obtain C(x0, . . . , xn−1). The encoding is performed inductively. Sets{
Enck

}
k∈N,

{
Addk+1

}
k∈N,

{
Enckb

}
b∈B,k∈N, and

{
Addk+1

b

}
b∈B,k∈N

are defined

as follows.

Enck = Enck0 ∪Enck1 (4.23)

Addk = Addk0 ∪Addk1 (4.24)

Enc0b = { (b, 1− b) } (4.25)

Addk+1
b = { (a0, a1) | ai ∈ Enckbi , b0 + b1 = b (mod 2) } (4.26)

Enck+1
b = { (a0, a1, a2, a3) | ai ∈ Addk+1

bi
, exactly three of {bi}i<4 is b } (4.27)

The subscript b of each set represents that an element of the set encodes the bit b.
For example, (((0, 1), (1, 0)), ((1, 0), (1, 0)), ((0, 1), (1, 0)), ((1, 0), (0, 1))) encodes a
bit 1. Using these sets, the evaluation of circuits was implemented as shown in
Algorithm 9. An element of Enck is said to be in the kth layer. The proce-
dures Ork and Notk are evaluations of OR and NOT gates in the kth layer,
respectively. Although Notk does not change the layer, Ork lifts it, that is the

80



Algorithm 9 Operations in inattentive evaluation of circuits [95]

procedure Ork(x ∈ Enck, y ∈ Enck)
Output ((x, 0k), (y, 0k), (x, y), (1k, 0k)) where bk ∈ Enckb .

end procedure

procedure Not0((a, b) ∈ Enc0)
Output (b, a).

end procedure
procedure Notk+1(((a0, b0), (a1, b1), (a2, b2), (a3, b3)) ∈ Enck+1)

Output ((Notk(a0), b0), (Notk(a1), b1), (Notk(a2), b2), (Notk(a3), b3)).
end procedure

procedure Decode0((a, b) ∈ Enc0)
Output a.

end procedure
procedure Decodek+1((a0, a1, a2, a3) ∈ Enck+1)

Output b such that exactly three of
{
SubDecodek+1(ai)

}
i<4

is b.
end procedure

procedure SubDecodek+1((a, b) ∈ Addk+1)
Output Decodek(a) +Decodek(b) (mod 2).

end procedure

procedure Randomise0(b ∈ Enc0)
Output b.

end procedure
procedure Randomisek+1((a0, a1, a2, a3) ∈ Enck+1)

for i = 0 to 3 do
ci ← SubRandomisek+1(ai)

end for
σ ← S4 where S4 is the permutation group of order 4.
Output (cσ(0), cσ(1), cσ(2), cσ(3)).

end procedure

procedure SubRandomisek+1((a, b) ∈ Addk+1)
c← Randomisek(a), d← Randomisek(b).
r ← B.
if r = 0 then

Output (c, d).
else

Output (Notk(c),Notk(d)).
end if

end procedure

81



domain and codomain of Ork are Enck × Enck and Enck+1. SubDecodek

and Decodek shows how to decode elements of Addk and Enck, respectively.
Similarly, SubDecodek and Randomisek shows how to rerandomise elements.
Then, receiving inputs as pairs ((x0, 1− x0), . . . , (xn−1, 1− xn−1)), Alice can ob-
tain a tuple encoding C(x0, . . . , xn−1). Randomise hides all information other
than C(x0, . . . , xn−1) from Bob. The method does not touch x0, . . . , xn−1, so it
works even if each xi is encrypted. Let E be an IND-CPA secure, rerandomis-
able classical encryption scheme. The following protocol allows Alice and Bob to
perform the task described above.

1: Bob generates a key (e, d)← G(1n).
2: Bob encrypts his inputs αi ← E(e, xi) and its negation βi ← E(e, 1− xi)
3: Bob sends (α0, β0), . . . , (αn−1, βn−1) Alice.
4: Alice applies Or and Not to the received inputs according to her circuit C.
5: Alice applies Randomise, and finally rerandomise each element of the output

tuple.
6: Alice sends the tuple Bob.
7: Bob applies Decode and finally the decryption to the received output.

Theorem 4.6.1 ([95]). Assume both parties are honest. The output of the above
protocol is C(x0, . . . , xn−1). Alice cannot distinguish the two possible inputs with-
out a negligible probability in the sense of IND-CPA security. Bob learns nothing
other than the output C(x0, . . . , xn−1).

The method gives perfect security to Alice. However, it has two flaws. One
is that it needs much longer messages. An element of Enck+1 consists of eight
elements of Enck. Therefore, the former is eight times as long as the latter. The
method cannot evaluate circuits whose depth grows faster than logarithm, i.e.,
circuits that does not belong to NC1. In our protocol, Alice needs to evaluate
a function with the received ciphertexts, the size of which grows linearly. The
other problem is that it is not tolerant to invalid messages. The method requires
Bob to send a pair of ciphertexts of different bits, i.e., (0, 1) or (1, 0). Evil
Bob may send a pair of ciphertext of the same bits, i.e., (0, 0) or (1, 1). If
an encryption scheme is IND-CPA secure, Alice cannot distinguish invalid pairs
from valid pairs without negligible probability. Hence, even if the encryption
scheme is verifiable, evil Bob can use invalid messages without being detected.
In the original paper [95], the authors use non-interactive zero-knowledge proofs
to detect such attacks. However, we cannot use this mode. Non-interactive zero-
knowledge proofs require Alice and Bob to share a common random string, which
is produced by a trustworthy party. We cannot assume the existence of such a
party. If so, public verifiability is no longer meaningful, as pointed out at the end
of Section 4.2.

4.6.2 Adjustment of inattentive evaluation of circuits

In order to use inattentive evaluation of circuits, we have to adjust the method to
our protocol. First of all, we change the plaintext space of an encryption scheme
from [<8] to B. As noted before, that causes nothing dangerous. A measurement
angle belong to [<8] but it can be expressed as three bits. The measurement
result is already an element of B and, as shown in the proof of Lemma 4.4.8,
any other element of [<8] works as its parity. Therefore, the change does not
influence even behaviours of an evil party. Alice computes measurement angles
bitwisely.

82



Table 4.1: Patterns of γp,ql,X,Z
ζ0 ζ1 ζ2 ζ3 Formula a00 a01 a10 a11

0 0 0 0 0 0 0 0 0

bX bZ 1 0 ¬(bX ∨ bZ) 0 0 0 1

bX bZ bX 0 (bX ∨ bZ)⊕ bX 0 0 1 0

¬bX 0 0 0 ¬bX 0 0 1 1

bX bZ 0 bZ (bX ∨ bZ)⊕ bZ 0 1 0 0

0 ¬bZ 0 0 ¬bZ 0 1 0 1

bX 0 0 bZ bX ⊕ bZ 0 1 1 0

¬bX ¬bZ 0 0 ¬bX ∨ ¬bZ 0 1 1 1

¬bX ¬bZ 1 0 ¬(¬bX ∨ ¬bZ) 1 0 0 0

¬bX 0 0 bZ ¬bX ⊕ bZ 1 0 0 1

0 bZ 0 0 bZ 1 0 1 0

bX bZ 0 ¬bZ (bX ∨ bZ)⊕ ¬bZ 1 0 1 1

bX 0 0 0 bX 1 1 0 0

bX bZ ¬bX 0 (bX ∨ bZ)⊕ ¬bX 1 1 0 1

bX bZ 1 0 ¬(bX ∨ bZ) 1 1 1 0

1 0 0 0 1 1 1 1 1

First, we focus on the first problem. For a while, we assume that Bob is
honest in the sense that he does not send a pair of the same bits. Let us see
Equation (4.10), which Alice needs to compute. In the equation, the inputs
appear in the forms of bit summations and nothing else. Hence, if we prepare an
encoding of a bit summation that has a variable length, the depth no longer grows
linearly. Indeed, each bit of Equation (4.10) can be computed by evaluation of a
constant-depth formula.

Proposition 4.6.2. Let γp,ql,X,Z be a function in FB. Although the output of the
function is three bits, Alice wants to compute the jth bit of it for 0 ≤ j < 2. Then,
there exists four elements ζ0, ζ1, ζ2, ζ3 of a set { 0, 1,bX ,bZ ,¬bX ,¬bZ } such that
for any {bi}i<l, the jth bit of γp,ql,X,Z({bi}i<l) is 1 if and only if (ζ0 ∨ ζ1) ⊕ (ζ2 ∨
ζ3)[
⊕

i∈X bi,
⊕

i∈Z bi/bX ,bZ ] is 1. Here, P [A/B] means the substitution of A for
B in P .

Proof. By the definition of γp,ql,X,Z , it can be written as g(⊕i∈Xbi,⊕i∈Zbi) for some
function g. The output is 0 or 1. Hence, there exists four bits a00, a01, a10, a11
such that g(bX , bZ) = abXbZ . All patterns can be expressed by (ζ0∨ζ1)⊕ (ζ2∨ζ3)
with ζi ∈ { 0, 1, bX , bZ ,¬bX ,¬bZ }. See Table 4.1. The column “Formula” lists
simplified (ζ0∨ζ1)⊕(ζ2∨ζ3). A boring check shows that in each row of the table,
for any bX ,bZ ∈ B, (ζ0 ∨ ζ1)⊕ (ζ2 ∨ ζ3) = 1 if and only if g(bX ,bZ) = abXbZ

=
1.

For an encoding of bit summation, we follow an idea of Addk+1. A pair in
the set encodes the bit summation of its two elements. Instead of a pair, we use
a sequence.

⊕
i∈X bi can be encoded to a sequence (ai)i<l where ai is bi if i ∈ X

and otherwise 0. With the encoding, Alice can compute a measurement angle.

83



For the completeness, we show the details.

As0b = Enc0b (4.28)

As1,lb =
∪

⊕
bi=b

∏
i<l

As0bi (4.29)

As2,lb =

{
((ai, ci))i<4

∣∣∣∣∣ ai ∈ As1,lbi ci ∈ As1,ldi
exactly three of {bi ⊕ di}i<4 is b

}
(4.30)

As3,lb =
∪

b0⊕b1=b
As2,lb0 ×As2,lb1 (4.31)

where l ∈ N. An element of Askb is said to be in the kth layer. The second layer
is used to compute OR gates. In the first and third layers, bit summations are
computed. Although it performs trivial work, we explicitly write the zeroth layer,
because the layer will be replaced later. For each layer, eEncodek produces an
element ofAskb defined below. Suppose Alice has measurement results {(bi, ci)}i<l
where bi ∈ B and ci = 1 − bi. Moreover, she has ζ0, . . . , ζ3 such that P =
(ζ0∨ζ1)⊕ (ζ2∨ζ3) expresses a bit of a measurement angle. Then, Alice computes
M = eEncode3(P, {(bi, ci)}i<l), and sends an output of eRandomise3(M) to
Bob. Bob computes b = eDecode3(M), which is a bit of the measurement
angle. The operations eEncode3, eRandomise3, and eDecode3 are shown
in Algorithms 10 and 11. The lengths of elements of As0b , As1,lb , As2,lb , and

As3,lb are 2, 2l, 16l, and 32l, respectively. Therefore, the length of message
grows linearly and Alice can use the method to compute measurement angles.
The method, of course, works correctly, and hides the formula from Bob. The
following propositions trivially hold.

Proposition 4.6.3. For any b ∈ B and ζ ∈ { 0, 1,b }, eEncode0(ζ, (b, 1 − b))
belongs to As0ζ[b/b].

Proposition 4.6.4. Let k ∈ { 1, 2, 3 }, l ∈ N, and X,Z be subsets of [<l]. Let
P be a formula whose form is appropriate for the kth layer. Let {bi}i<l be a

bit sequence. Define b = P [
⊕

i∈X bi,
⊕

i∈Z bi/bX ,bZ ]. Then, Ask,lb contains

eEncodek(P, {(bi, 1− bi)}i<l).

Proposition 4.6.5. Let k ∈ [<4], b ∈ B, and l ∈ N. eNotk is an isomorphism

between Ask,lb and Ask,l1−b. Here, As0,lb means As0b .

Proposition 4.6.6. Let k ∈ [<4], b ∈ B, and l ∈ N. For any M ∈ Ask,lb ,
eDecodek(M) = b.

Proposition 4.6.7. Let k ∈ [<4], b ∈ B, and l ∈ N. There exists a distribution

on Ask,lb such that for any M ∈ Ask,lb , eRandomisek(M) is the distribution.

Proof. We only show when k = 1. For the other layer, the statement holds due
to Theorem 4.6.1.

Let {bi}i<l be such that M ∈
∏
i<lAs0bi . For any {ci}i<l such that

⊕
ci = b,

{bi ⊕ ci}i<l is a bit string that contains even number 1’s. Conversely, such a
sequence {di}i<l creates a bit string {bi ⊕ di}i<l that satisfies

⊕
bi ⊕ di = b. It

defines an isomorphism. eRandomise1 uniformly randomly chooses an l − 1-
length bit string The set of l−1-length strings is isomorphic to the set of l-length
bit string having even number 1’s. Therefore, eRandomise1 uniformly chooses
{ci}i<l such that

⊕
ci = b. Because the statement holds when k = 0, the

statement also holds when k = 1.

84



Algorithm 10 Inattentive evaluation of measurement angles

procedure eEncode0(ζ ∈ { 0, 1,b } , (b, c))
if ζ = 0 then

Output (0, 1).
else if ζ = 1 then

Output (1, 0).
else

Output (b, c).
end if

end procedure

procedure eEncode1(ζ ∈ { 0, 1,bX ,bZ ,¬bX ,¬bZ } , {(bi, ci)}i<l)
if ζ is 0 or 1 then

for all i < l do
xi = eEncode0(0, (bi, ci)).

end for
else

Let Y be either X or Z such that ζ is bY or ¬bY .
for all i < l do

if i ∈ Y then
xi = eEncode0(b, (bi, ci)).

else
xi = eEncode0(0, (bi, ci)).

end if
end for

end if
if ζ is either 1 or of the form ¬η then

x0 = eNot0(x0).
end if
Output (xi)i<l.

end procedure

procedure eEncode2(η ∨ ζ, {(bi, ci)}i<l)
x = eEncode1(η, {(bi, ci)}i<l).
y = eEncode1(ζ, {(bi, ci)}i<l).
z = eEncode1(0, {(bi, ci)}i<l).
w = eEncode1(1, {(bi, ci)}i<l).
Output ((x, z), (y, z), (x, y), (w, z)).

end procedure

procedure eEncode3(η ⊕ ζ, {(bi, ci)}i<l)
x = eEncode2(η, {(bi, ci)}i<l).
y = eEncode2(ζ, {(bi, ci)}i<l).
Output (x, y).

end procedure

85



Algorithm 11 Inattentive evaluation of measurement angles (Cont.)

eDecode2 is the same as Decode except it uses eDecode1 instead of
SubDecode.
eDecode3 is the same as SubDecode except it uses eDecode2 instead of
Decode.
eRandomise2 is the same as Randomise except it uses eRandomise1 instead
of SubRandomise.
eRandomise3 is the same as SubRandomise except it uses eRandomise2

and eNot2 instead of Randomise and Not.
eNot0 is the same as Not0.
eNot2 is the same as Notk+1 except it uses eNot1 instead of Notk.

procedure eDecode0((b, c))
Output b.

end procedure

procedure eDecode1((xi)i<l)
Output

⊕
i<l eDecode0(xi).

end procedure

procedure eRandomise0((b, c))
Output (b, c).

end procedure

procedure eRandomise1((xi)i<l)
c = 0.
for all i < l − 1 do

yi =eRandomise0(xi).
r ← B.
if r = 1 then

yi =eNot0(yi).
c = c+ 1.

end if
end for
yl−1 =eRandomise0(xl−1).
if c is odd then

yl−1 =eNot0(yl−1).
end if
Output (yi)i<l.

end procedure

procedure eNot1((xi)i<l)
x0 = eNot0(x0)
Output (xi)i<l.

end procedure

procedure eNot3((x, y))
Output (eNot2(x), y)

end procedure

86



We note that eEncode and eRandomise make an encryption scheme to be
unitedly FB-homomorphic. In eEncode1, the ith element (bi, ci) of an input
{(bi, ci)}i<l is used to compute the ith element xi of the output. eRandomise1

does not change the order. Suppose the input is ciphertexts and the ith element
is encrypted by the ith encryption key. Even after eEncode and eRandomise,
the ith element of the output is still a ciphertext by the ith encryption key.
Therefore, Bob can decrypt the output.

Let us move to the other problem. We care about evil Bob. What happens
when Bob sends (0, 0) instead of (0, 1)? Suppose Alice evaluates a formula (ζ0 ∨
ζ1)⊕ (ζ2∨ζ3) with an input containing (0, 0) and sends the output to Bob. Then,
he checks whether the output contains (0, 0) and learns whether each ζi is constant
or not. Of course, he cannot do that when Alice removes the second elements
of all pairs in the zeroth layer before sending the output. The modification does
not obstruct eDecode. However, even if so, he can guess that. He just counts
the number of zeros. Since (0, 0) is invariant under eNot, if an output has many
zeros, it probably depends on the inputs.

In order to prevent such attacks, we modify the zeroth layer. Roughly speak-
ing, an idea is to encode a constant using the given input so that even when he
sends invalid messages, Bob cannot distinguish a constant from a value depending
on the inputs.

ZAs−1,b
0 =

{
{(ai, ci)}i<4

∣∣∣∣ {(ai, ci)}i<4 has two (b, b), one
(1− b, 1− b) and one (0, 1) or (1, 0).

}
(4.32)

ZAs−1,b
1 =

{
{(ai, ci)}i<4

∣∣ ∃j s.t. aj = cj = b,∀k ̸= j, ak ⊕ ck = 1
}

(4.33)

ZAs0,b
′

b = ZAs−1,b′

b × ZAs−1,b′

1−b (4.34)

b shows an input from Bob. We can immediately define ZAs
k,{bi}i<l

b in the same
manner as As. How to encode a constant are shown in Algorithm 12. We
prepare algorithms such as zEncode0. We use them instead of algorithms such
as eEncode0 and define algorithms such as zEncode3.

First, we show the method correctly works when Bob is honest.

Proposition 4.6.8. For any b ∈ B and ζ ∈ { 0, 1,b }, zEncode0(ζ, (b, 1 − b))
belongs to ZAs0,bζ[b/b].

Proof. When b = 0, x = { (0, 0), (0, 0), (1, 1), (0, 1) }, y = { (0, 0), (0, 1), (0, 1), (0, 1) },
z = { (0, 0), (0, 0), (1, 1), (0, 1) }, and w = { (0, 0), (0, 1), (0, 1), (1, 0) }. When
b = 1, x = { (1, 1), (1, 1), (0, 0), (1, 0) }, y = { (1, 1), (1, 0), (1, 0), (1, 0) }, z =
{ (1, 1), (0, 1), (1, 0), (1, 0) }, and w = { (1, 1), (1, 1), (0, 0), (1, 0) }. Here, we re-
gard them as sets.

Proposition 4.6.9. Let b, b′ ∈ B. zNot0 is an isomorphism between ZAs0,b
′

b

and As0,b
′

1−b.

Proposition 4.6.10. Let b, b′ ∈ B. For any M ∈ ZAs0,b
′

b , zDecodek(M) = b.

Proposition 4.6.11. Let b, b′ ∈ B. There exists a distribution on ZAs0,b
′

b such

that for any M ∈ ZAs0,b
′

b , zRandomise0(M) is the distribution.

Proof. Let S = S4 × B. We first note ZAs−1,b
b is closed under a permutation

defined by an element of S. Take b′ ∈ B and {(ai0, ai1)}i<4 ∈ ZAs−1,b′

0 . Let

87



Algorithm 12 Modification of the zeroth layer

procedure zEncode0(ζ ∈ { 0, 1,b } , (b, c))
x = ((b, 0), (b, 1), (b, b), (c, c)).
y = ((b, 0), (b, 1), (b, c), (b, c)).
z = ((b, 0), (c, 1), (b, b), (b, c)).
w = ((c, 0), (b, 1), (b, b), (b, c)).
if ζ = 0 then

Output (x, y).
else if ζ = 1 then

Output (y, x).
else

Output (z, w).
end if

end procedure

procedure zDecode0(({(ai, bi)}i<4, c))
Output b such that exactly three of {ai ⊕ bi}i<4 is b.

end procedure

procedure zRandomise0(({(ai0, ai1)}i<4, {(bi0, bi1)}i<4))
σ ← S4.
π ← S4.
for all i < 4 do

r ← B.
(ci0, ci1) = (aσ(i)r, aσ(i)(1−r)).
r′ ← B.
(di0, di1) = (bπ(i)r′ , bπ(i)(1−r′)).

end for
Output ({(ci0, ci1)}i<4, {(di0, di1)}i<4).

end procedure

procedure zNot0((x, y))
Output (y, x).

end procedure

ja be such that aja0 = aja1 = 1 − b′, ka be such that aka0 ̸= cka0, and ra be

akara = 0. Let {(ci0, ci1)}i<4 ∈ ZAs−1,b′

0 . Similarly, we can take jc, kc, rc. The

values ja, jc, ka, kc, ra, rc defines how to permute {(ai0, ai1)}i<4 ∈ ZAs−1,b′

0 to

obtain {(ci0, ci1)}i<4 ∈ ZAs−1,b′

0 . The permutation can be extended to elements
of S, and the number of these elements are the same for any jc, kc, rc. Therefore,

zRandomise0 uniformly distributes an element of ZAs−1,b′

0 . The same can be

held in ZAs−1,b′

1 . Hence, the statement holds.

For the same reason as noted before, zEncode and zRandomise make an
encryption scheme to be unitedly FB-homomorphic.

Theorem 4.6.12. Let E be a rerandomisable and verifiable classical public-key
encryption scheme such that the plaintext space is B. Then, E is unitedly FB-
homomorphic with zEncode3 and zRandomise3. .

Now, suppose Bob sends (b, b). Then, x = y = z = w in zEncode0. There-
fore, the output of zEncode0 is independent of ζ and no information is leaked.

88



Furthermore, via zRandomise1, that influences the other elements.

IZAs0,b = { (x, x) | x = ((b, 0), (b, 1), (b, b), (b, b)) } (4.35)

IZAs1,{bi}i<l,j0,...,jm−1 =
∏

i̸=j0,...,jm−1

ZAs0,bi ×
∏

i=j0,...,jm−1

IZAs0,bi (4.36)

where jk are distinct elements of [<l] and 0 < m < l.

Proposition 4.6.13. Let {bi}i<l be a bit string, m be such that 0 < m < l, and

j0, . . . , jm−1 ∈ [<l]. There is a distribution on IZAs1,{bi}i<l,j0,...,jm−1 such that
for any M ∈ IZAs1,{bi}i<l,j0,...,jm−1, zRandomise1(M) obeys the distribution.

Proof. For a bit string (ai)i ̸=j0,...,jm−1
, we write X(ai)i̸=j0,...,jm−1

to denote a set∏
i̸=j0,...,jm−1

ZAs0,biai ×
∏
i=j0,...,jm−1

IZAs0,bi . Let a = (ai)i̸=j0,...,jm−1
be a bit

string such that M ∈ Xa. For any bit string c = (ci)i ̸=j0,...,jm−1
, M can be

converted to an element ofXc by applying zNot0 to elements such that ai⊕ci = 1.
Because IZAs0,bi is invariant under zNot0, c = (ci)i ̸=j0,...,jm−1

such that an

output of zRandomise1 belongs to Xc is determined by an l − m bit string.
zRandomise1 uniformly randomly chooses an l − 1-length bit string, which is
also a uniformly random l − m-length bit string. zRandomise0 obeys some
distribution determined by each set, so the statement also holds.

As a consequence, zEncode and zRandomise make an encryption schemes
to be unitedly covered.

Theorem 4.6.14. Let E be a rerandomisable and verifiable classical public-key
encryption scheme such that the plaintext space is B. Then, E is unitedly FB-
homomorphic and unitedly covered with zEncode3 and zRandomise3.

4.6.3 Publicly verifiable BQC protocol exists

Due to Theorem 4.6.14, all we have to do is to find a rerandomisable and veri-
fiable classical public-key encryption scheme such that the plaintext space is B.
Fortunately, we can easily find such an encryption scheme. We use the ElGamal
encryption scheme.

Definition 4.6.15. Define EBEG = (GBEG, EBEG, DBEG, RBEG) as follows.
GBEG = GEG. Let (p, g, gx) be an encryption key. The plaintext space PS
is B. Let b ∈ B. EBEG((p, g, gx), b) is (gmgxr, gr) where r is random cho-
sen from Zp and m is 0 if b = 0 and otherwise randomly chosen from Z∗

p.

DBEG((p, g, gx), x, (gm, gr)) is 0 if gm(g
x
r )

−1 = 1 and otherwise 1. RBEG((p, g, gx), x, (gm, gr))
is (gymgxz, g

y
rgz) where y and z are uniformly randomly chosen from Z∗

p and Zp,
respectively.

Proposition 4.6.16. EBEG is a rerandomisable and verifiable classical encryp-
tion scheme.

Proof. EBEG is a classical encryption scheme because EEG is. Let e = (p, g, gx)
be an encryption key. The ciphertext spaces are CSn,e,0 = { (gxr, gr) | r ∈ Zp }
and CSn,e,1 = { (gmgxr, gr) | m ∈ Z∗

p, r ∈ Zp }.
Let (gxr, gr) ∈ CSn,e,0. An output ofRBEG(e, x, (gxr, gr)) is (gxrygxz, grygz) =

(gx(ry+z), gry+z) with randomly chosen y and z. For any r, s ∈ Zp and any
y ∈ Z∗

p, there exists a unique z ∈ Zp such that s = ry + z. Therefore, an out-
put is uniformly distributed on CSn,e,0. Let (gmgxr, gr) ∈ CSn,e,1. An output

89



of RBEG(e, x, (gmgxr, gr)) is (gmygxrygxz, grygz) = (gmygx(ry+z), gry+z) with ran-
domly chosen y and z. Because Z∗

p is an abelian group, my is a uniformly random
chosen element of Z∗

p if y is uniformly chosen. Therefore, an output is uniformly
distributed on CSn,e,1.

Finally, we show EBEG is verifiable. Let 2p+1 be a safe prime and Gp be the
subgroup of order p of the cyclic group Z∗

2p+1. We note that x ∈ Z∗
2p+1 belongs

to Gp if and only if xp is 1 or not. The latter can be checked in polynomial-time.
An encryption key (p, g, gx) is required to be satisfy the conditions that p is a safe
prime, g, gx belongs to Gp. Conversely, if a trio satisfies the above conditions,
it is a valid encryption key. The decryption key is unique. Since Gp is cyclic,
gx = gy and x, y ∈ Zp means x = y. The whole ciphertext space CSn,e,0∪CSn,e,1
is { (gxr, gr) | r ∈ Zp } ∪ { (gmgxr, gr) | m ∈ Z∗

p, r ∈ Zp } = Gp ×Gp.

Proposition 4.6.17. EBEG is IND-CPA secure under the DDH assumption.

Proof. If a ciphertext of 0 can be distinguished from a ciphertext of 1, a ciphertext
of 0 can be distinguished from a ciphertext of non-zero plaintext in the ElGamal
encryption scheme.

Using EBEG, zEncode, and zRandomise, Protocol 8 is a publicly verifiable
BQC protocol.

Corollary 4.6.18. There exists an ϵFK-verifiable BQC protocol that is ϵFK-
publicly verifiable if the numbers of vertices of graphs are polynomially bounded
with respect to the security parameter n′, and that Alice cannot create any entan-
gled states, and the DDH assumption holds.

Proof. The statement follows from Theorems 4.5.3, 4.5.4, and 4.6.14 and Propo-
sitions 4.6.16 and 4.6.17.

90



Chapter 5

Conclusions

In Chapters 3, 4, we showed that two classical methods are useful to analyse
quantum computation. They illustrate that there are classical methods that have
not been used well to investigate quantum computation but is indeed useful. We
believe that such direction of research will accelerate and broaden the research
of quantum computation. The summary and future work of each chapter are as
follows.

5.1 Stabiliser abstract semantics

In Chapter 3, we proposed two new abstract semantics. They were based on an
existing abstract semantics that we call the basis abstract semantics. The basis
abstract semantics was introduced as application of abstract interpretation to
quantum computation [89]. It is based on observations that unitary operators
acting on multiple qubits entangle qubits unless their states belong to some bases
and that quantum measurement destroys all entanglement with the measured
qubit. However, the semantics ignores the facts that these unitary operators can
undo entanglements and that quantum measurement may destroy entanglement
between unmeasured qubits.

In order to reflect the facts, we decided to use stabilisers to abstract entan-
gled states. Based on the idea, we proposed an abstract semantics named the
stabiliser abstract semantics in Section 3.2. First, we discussed how to decom-
pose stabiliser arrays (Algorithm 1). We proposed the stabiliser domain and the
stabiliser abstract semantics in Subsections 3.2.3, 3.2.4. Then, we proved the
soundness of the semantics in Theorem 3.2.35. Therefore, the semantics never
gives wrong approximations of separability of concrete states. Although the se-
mantics lacks monotonicity (Proposition 3.2.37) and it may take superpolynomial
time to compute while loop, we showed that an upper approximation of it con-
verges by repeating computation polynomial times. Moreover, we showed that
an approximation of the semantics of any constant-depth program can be com-
putable in polynomial time with respect to the program size. At the end of the
section (Subsection 3.2.5), we showed that there exists a Galois connexion be-
tween the stabiliser domain and the basis domain, and that the basis abstract
semantics is a sound approximation of the stabiliser abstract semantics.

In the next section, we improved the stabiliser abstract semantics. The se-
mantics analyses nothing about non-stabiliser states, more precisely, about states
of qubits that go through non-stabiliser states. We stopped crushing a stabiliser
into a symbol ■ and introduced a symbol ♡. We proved that orthonormal abelian
groups of Hermitian unitary matrices are appropriate to instances of arrays
containing ♡ (Proposition 3.3.1) and defined extended stabiliser arrays (Defini-

91



tion 3.3.1). Although the definition of extended stabiliser arrays is more complex
than that of stabiliser arrays, we can efficiently decompose stabiliser arrays (Al-
gorithm 3). With these arrays, we proposed our second abstract semantics named
the extended stabiliser abstract semantics in Subsection 3.3.3. We proved that
the semantics is sound in Theorem 3.3.48. Although it inherits various features
of the stabiliser abstract semantics, the extended stabiliser abstract semantics is
strictly better than the stabiliser abstract semantics (Theorem 3.3.48). It is worth
noting that an upper approximation of the semantics of any constant-depth pro-
gram can be efficiently computed in the extended stabiliser abstract semantics.
Therefore, we can use the semantics and classical computers to analyse quantum
entanglement in quantum programs.

5.1.1 Future work

Before moving the next section, we list possible directions of further work.

• In the thesis, we proposed two domains. They have essentially the same
structures. The reason is that both the sets of stabiliser arrays and extended
stabiliser arrays are flat lattices. Can we give a more complex order to each
set? In particular, the set of extended stabiliser arrays may have another
order.

• We used the normalisation operator nml when we take the approximate join
of extended stabiliser arrays. This is because an extended stabiliser array
γ has many instances and γ ⊨E ρ and γ ⊨E σ do not necessarily imply
γ ⊨E ρ+ σ. Therefore, if we know ρ and σ have a common instance, we do
not have to normalise the extended stabiliser array. By recording whether
a block is touched, we will achieve it.

• We gave algorithms to compute the stabiliser abstract semantics and the ex-
tended stabiliser abstract semantics. Precisely speaking, they include upper
approximations. However, we have no implementation of these algorithms.
They are needed to be implemented.

5.2 Publicly verifiable blind quantum computation

We formulated a new property of BQC protocols, which is named public verifia-
bility (Definition 4.2.1) in Section 4.2. Although several existing BQC protocols
achieve a property called verifiability, the property does not help third parties
analyse quantum computation on BQC protocols. Hence, they cannot analyse
computation in existing BQC protocols, even if they can use quantum comput-
ers. We illustrated how the impossibility causes practical problems in the section.
Our new property is necessary for classical computers to analyse BQC computa-
tion. After that, we first proposed new verifiable BQC protocols (Protocols 5, 7)
in Section 4.4. These protocols were proved to be correct, blind, and verifiable
provided that appropriate encryption schemes exist in Theorems 4.4.10, 4.4.13.
However, we did not show whether such an encryption scheme really exists. Then,
we proposed a publicly verifiable BQC protocol (Protocol 8) in Section 4.5. In
order to find an appropriate encryption schemes, we relaxed the security con-
dition on encryption schemes. No security condition was imposed on schemes
except for the condition that they have indistinguishable encryptions, but the
schemes were required to be homomorphic with different encryption keys. We
proved in Theorem 4.5.4 that the above protocol is publicly verifiable provided

92



that such an encryption scheme exists and Alice cannot create any entangled
state. In Section 4.6, we proved that such an appropriate encryption scheme
exists (Theorem 4.6.14 and Proposition 4.6.17). We employed inattentive evalu-
ation of circuits and the ElGamal encryption scheme. The former allows us to
use different keys with the perfect security and the latter does us to verify the
validity of encryption keys. As a consequence, we proved that a publicly verifiable
BQC protocol exists under the restriction on quantum devices of Alice (Corol-
lary 4.6.18).

Although our protocol is based on the FK protocol, our technique is purely
classical. Therefore, it can be adapted for other protocols having the same style
as the FK protocol has.

5.2.1 Future work

We list several questions here.

• In Section 4.2, we inferred that no unconditionally publicly verifiable BQC
protocol exists due to the no-go theorem for unconditionally secure bit
commitment scheme. We did not give any formal proof, so it is needed to
be proved. Moreover, precisely speaking, there are unconditionally secure
bit commitment schemes [64, 65, 66, 67, 70]. The security is guaranteed by
special relativity. These schemes assume that both parties have own agents
in a distant place. They communicate with these agents to commit a bit
value. The committed bit value cannot change due to the impossibility of
superluminal signalling. In order to apply these schemes to BQC protocols
for public verifiability, we have to assume that both Alice and Bob has own
trustful agents. This is a weaker assumption than they trust the same party
but it is stronger than our setting, where Alice and Bob do not trust any
other party. If we accept the assumption, can we achieve unconditionally
publicly verifiable BQC protocol?

• Our publicly verifiable BQC protocol is publicly verifiable under an assump-
tion that Alice cannot create any entangled state. If she has an ability to
create entangled state of any number of qubits and has a quantum mea-
surement device, she will be able to perform MBQC herself. On the other
hand, if she creates only constant-size entanged states, she will be unable
to obtain sufficient information to guess measurement results. Therefore,
the assumption seems not to be essential. Can we remove the assumption?

• Our protocol computes classical outputs from classical inputs. Many BQC
protocols including the FK protocol work on quantum input and quantum
output. Can we improve our protocol so that it takes quantum input and
computes quantum output? It is obvious that our protocol works on quan-
tum input. A challenge is to compute quantum output. In verifiable BQC
protocols, quantum output contain traps. Alice receives quantum outputs
and checks its correctness by measuring the trap qubits. The measurement
is privately performed, so no classical information about traps in quantum
output is revealed. For quantum output publicly verifiable BQC protocols,
we have to bind quantum output to some classical information. Naturally,
we have to change the definition of public verifiability when we allow pro-
tocols to work with quantum input and output.

• We have focused on single-server and generation-only BQC protocols. There
are other styles of BQC protocols. One is double-server protocols, where

93



Alice delegates computation to two servers, Bob1 and Bob2 [16, 80]. Al-
though Alice having no quantum device cannot perform a BQC protocol
with Bob [81], she can blindly delegate quantum computation to two servers.
The other style is measurement-only protocols [58, 76, 79]. In the protocol,
Bob generates an entangled quantum state and sends qubits to Alice one
by one. Alice performs MBQC by measuring each qubit with her desired
angle. The protocol requires Alice to have a quantum measurement device
instead of a single qubit generator. Can we give public verifiability to these
styles of BQC protocols? The double-server protocol works unless the two
servers communicate with each other. The assumption conflicts a premise
of public verifiability that communication between Alice and a server is
public. However, if Alice uses three servers and is able to access quan-
tum channels, the assumption can be removed [68]. The measuring-Alice
protocol and public verifiability have serious conflicts. One is that there
are no classical messages. Bob sends only qubits and Alice sends nothing.
Anyone cannot observe anything in their communication. Moreover, a big
advantage of the protocol is that the security is guaranteed by no-signalling
principle, which is known to be strictly weaker than the axiom of quantum
physics [91]. Giving public verifiability, the advantage will be lost.

• We proved the existence of appropriate encryption schemes using inatten-
tive evaluation of circuits. Is there another appropriate encryption scheme?
Can we reduce the length of messages between Alice and Bob? Moreover,
we imposed strong conditions on encryption schemes. We refused any pos-
sibility that the security of the FK protocol is damaged. Although we
weakened the conditions, they are still strong. Can we relax the conditions
more? For example, a protocol having imperfect blindness was proposed
in [32]. For such a protocol, we may be able to relax the definition of
united cover. Then, we may be able to use encryption schemes such as
fully homomorphic encryption schemes [44, 84, 105] and techniques such as
zero-knowledge proofs [15, 51].

94



References

[1] Scott Aaronson and Daniel Gottesman. Improved simulation of stabilizer
circuits. Physical Review A, 70:052328, Nov 2004.

[2] Martin Abadi, Joan Feigenbaum, and Joe Kilian. On hiding information
from an oracle. In Proceedings of the 19th Annual ACM Symposium on
Theory of Computing, STOC ’87, pages 195–203, New York, NY, USA,
1987. ACM.

[3] Dorit Aharonov, Michael Ben-Or, and Elad Eban. Interactive proofs for
quantum computations. In Innovations in Computer Science, pages 453–
469, 2010.

[4] Dorit Aharonov, Vaughan Jones, and Zeph Landau. A polynomial quan-
tum algorithm for approximating the Jones polynomial. Algorithmica,
55(3):395–421, 2009.

[5] Thorsten Altenkirch and Jonathan Grattage. A functional quantum pro-
gramming language. In Logic in Computer Science, 2005. LICS 2005. Pro-
ceedings. 20th Annual IEEE Symposium on, pages 249–258, June 2005.

[6] Andris Ambainis. Quantum walk algorithm for element distinctness. SIAM
Journal on Computing, 37(1):210–239, 2007.

[7] Pablo Arrighi and Louis Salvail. Blind quantum computation. International
Journal of Quantum Information, 04(05):883–898, 2006.

[8] Koenraad M R Audenaert and Martin B Plenio. Entanglement on mixed
stabilizer states: normal forms and reduction procedures. New Journal of
Physics, 7(1):170, 2005.

[9] Stefanie Barz, Joseph F. Fitzsimons, Elham Kashefi, and Philip Walther.
Experimental verification of quantum computation. Nature Physics,
9(11):727–731, Nov 2013.

[10] Stefanie Barz, Elham Kashefi, Anne Broadbent, Joseph F. Fitzsimons, An-
ton Zeilinger, and Philip Walther. Demonstration of blind quantum com-
puting. Science, 335(6066):303–308, 2012.

[11] Charles H. Bennett and Gilles Brassard. Quantum cryptography: Public
key distribution and coin tossing. In IEEE International Conference on
Computers, Systems and Signal Processing, pages 175–179, 1984.

[12] Charles H. Bennett, Gilles Brassard, Claude Crépeau, Richard Jozsa, Asher
Peres, and William K. Wootters. Teleporting an unknown quantum state
via dual classical and Einstein-Podolsky-Rosen channels. Physical Review
Letters, 70(13):1895–1899, March 1993.

95



[13] Charles H. Bennett and Stephen J. Wiesner. Communication via one- and
two-particle operators on Einstein-Podolsky-Rosen states. Physical Review
Letters, 69:2881–2884, Nov 1992.

[14] Dan Boneh, Shai Halevi, Mike Hamburg, and Rafail Ostrovsky. Circular-
secure encryption from decision Diffie-Hellman. In Advances in Cryptology
CRYPTO 2008, volume 5157 of Lecture Notes in Computer Science, pages
108–125. Springer Berlin Heidelberg, 2008.

[15] Gilles Brassard, David Chaum, and Claude Crépeau. Minimum disclosure
proofs of knowledge. Journal of Computer and System Sciences, 37(2):156
– 189, 1988.

[16] Anne Broadbent, Joseph Fitzsimons, and Elham Kashefi. Universal blind
quantum computation. In Foundations of Computer Science, 2009. FOCS
’09. 50th Annual IEEE Symposium on, pages 517–526, Oct 2009.

[17] Daniel E. Browne, Elham Kashefi, Mehdi Mhalla, and Simon Perdrix. Gen-
eralized flow and determinism in measurement-based quantum computa-
tion. New Journal of Physics, 9(8):250, 2007.

[18] Andrew M. Childs. Secure assisted quantum computation. Quantum In-
formation and Computation, 5(6):456–466, September 2005.

[19] Patrick Cousot and Radhia Cousot. Static determination of dynamic prop-
erties of programs. In Proceedings of the Second International Symposium
on Programming, pages 106–130. Dunod, Paris, France, 1976.

[20] Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lat-
tice model for static analysis of programs by construction or approximation
of fixpoints. In Proceedings of the 4th ACM SIGACT-SIGPLAN Sympo-
sium on Principles of Programming Languages, POPL ’77, pages 238–252,
New York, NY, USA, 1977. ACM.

[21] Patrick Cousot and Radhia Cousot. Abstract interpretation frameworks.
Journal of Logic and Computation, 2(4):511–547, 1992.

[22] Vincent Danos and Elham Kashefi. Determinism in the one-way model.
Physical Review A, 74:052310, Nov 2006.

[23] Vincent Danos, Elham Kashefi, and Prakash Panangaden. The measure-
ment calculus. Journal of the ACM, 54(2), April 2007.

[24] Vincent Danos, Elham Kashefi, Prakash Panangaden, and Simon Perdrix.
Extended measurement calculus. In Semantic Techniques in Quantum
Computation, pages 235–310. Cambridge University Press, 2009.

[25] Niel de Beaudrap. Finding flows in the one-way measurement model. Phys-
ical Review A, 77:022328, Feb 2008.

[26] D. Deutsch. Quantum theory, the Church-Turing principle and the uni-
versal quantum computer. Proceedings of the Royal Society of London A:
Mathematical, Physical and Engineering Sciences, 400(1818):97–117, 1985.

[27] D. Deutsch. Quantum computational networks. Proceedings of the Royal
Society of London A: Mathematical, Physical and Engineering Sciences,
425(1868):73–90, 1989.

96



[28] David Deutsch and Richard Jozsa. Rapid solution of problems by quantum
computation. Proceedings of the Royal Society of London A: Mathematical,
Physical and Engineering Sciences, 439(1907):553–558, 1992.

[29] D. Dieks. Communication by EPR devices. Physics Letters A, 92(6):271 –
272, 1982.

[30] Paul A. M. Dirac. A new notation for quantum mechanics. Mathematical
Proceedings of the Cambridge Philosophical Society, 35:416–418, 7 1939.

[31] Vedran Dunjko, JosephF. Fitzsimons, Christopher Portmann, and Renato
Renner. Composable security of delegated quantum computation. In Ad-
vances in Cryptology ASIACRYPT 2014, volume 8874 of Lecture Notes in
Computer Science, pages 406–425. Springer Berlin Heidelberg, 2014.

[32] Vedran Dunjko, Elham Kashefi, and Anthony Leverrier. Blind quantum
computing with weak coherent pulses. Physical Review Letters, 108:200502,
May 2012.

[33] Taher Elgamal. A public key cryptosystem and a signature scheme based on
discrete logarithms. Information Theory, IEEE Transactions on, 31(4):469–
472, Jul 1985.

[34] Edward Farhi, Jeffrey Goldstone, Sam Gutmann, Joshua Lapan, An-
drew Lundgren, and Daniel Preda. A quantum adiabatic evolution al-
gorithm applied to random instances of an NP-complete problem. Science,
292(5516):472–475, 2001.

[35] Edward Farhi, Jeffrey Goldstone, Sam Gutmann, and Michael Sipser.
Quantum computation by adiabatic evolution. arXiv:quant-ph/0001106,
2000.

[36] Joan Feigenbaum. Encrypting problem instances. In Advances in Cryptol-
ogy― CRYPTO ’85 Proceedings, volume 218 of Lecture Notes in Computer
Science, pages 477–488. Springer Berlin Heidelberg, 1986.

[37] Yuan Feng, Runyao Duan, Zhengfeng Ji, and Mingsheng Ying. Probabilis-
tic bisimulations for quantum processes. Information and Computation,
205(11):1608 – 1639, 2007.

[38] Dario Fiore and Rosario Gennaro. Publicly verifiable delegation of large
polynomials and matrix computations, with applications. In Proceedings
of the 2012 ACM Conference on Computer and Communications Security,
CCS ’12, pages 501–512, New York, NY, USA, 2012. ACM.

[39] Joseph F. Fitzsimons and Elham Kashefi. Unconditionally verifiable blind
computation. arXiv:1203.5217, 2012.

[40] Michael H. Freedman, Alexei Kitaev, Michael J. Larsen, and Zhenghan
Wang. Topological quantum computation. Bulletin of the American Math-
ematical Society, 40(1):31–38, 2003.

[41] Simon J. Gay. Quantum programming languages: survey and bibliography.
Mathematical Structures in Computer Science, 16:581–600, 8 2006.

97



[42] Simon J. Gay, Rajagopal Nagarajan, and Nikolaos Papanikolaou. QMC:
A model checker for quantum systems. In Computer Aided Verification,
volume 5123 of Lecture Notes in Computer Science, pages 543–547. Springer
Berlin Heidelberg, 2008.

[43] Simon J. Gay, Rajagopal Nagarajan, and Nikolaos Papanikolaou. Specifi-
cation and verification of quantum protocols. In Semantic Techniques in
Quantum Computation, pages 414–472. Cambridge University Press, 2009.

[44] Craig Gentry. Fully homomorphic encryption using ideal lattices. In Pro-
ceedings of the 41st Annual ACM Symposium on Theory of Computing,
STOC ’09, pages 169–178, New York, NY, USA, 2009. ACM.

[45] Alexandru Gheorghiu, Elham Kashefi, and Petros Wallden. Robustness and
device independence of verifiable blind quantum computing. New Journal
of Physics, 17(8):083040, 2015.

[46] Vittorio Giovannetti, Lorenzo Maccone, Tomoyuki Morimae, and Terry G.
Rudolph. Efficient universal blind quantum computation. Physical Review
Letters, 111:230501, Dec 2013.

[47] Oded Goldreich. Foundations of Cryptography, volume 1. Cambridge Uni-
versity Press, 2001.

[48] Oded Goldreich. Foundations of Cryptography, volume 2. Cambridge Uni-
versity Press, 2004.

[49] Shafi Goldwasser, Yael Kalai, Raluca Ada Popa, Vinod Vaikuntanathan,
and Nickolai Zeldovich. Reusable garbled circuits and succinct functional
encryption. In Proceedings of the 45th Annual ACM Symposium on Theory
of Computing, STOC ’13, pages 555–564, New York, NY, USA, 2013. ACM.

[50] Shafi Goldwasser and Silvio Micali. Probabilistic encryption & how to play
mental poker keeping secret all partial information. In Proceedings of the
14th Annual ACM Symposium on Theory of Computing, STOC ’82, pages
365–377, New York, NY, USA, 1982. ACM.

[51] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge com-
plexity of interactive proof-systems. In Proceedings of the 17th Annual ACM
Symposium on Theory of Computing, STOC ’85, pages 291–304, New York,
NY, USA, 1985. ACM.

[52] Daniel Gottesman. The Heisenberg representation of quantum comput-
ers. Group22: Proceedings of the XXII International Colloquium on Group
Theoretical Methods in Physics, pages 32–43, 1999.

[53] Daniel Gottesman and Isaac L. Chuang. Demonstrating the viability of
universal quantum computation using teleportation and single-qubit oper-
ations. Nature, 402(6760):390–393, Nov 1999.

[54] Alexander S. Green, Peter LeFanu Lumsdaine, Neil J. Ross, Peter Selinger,
and Benôıt Valiron. Quipper: A scalable quantum programming language.
In Proceedings of the 34th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’13, pages 333–342, New York,
NY, USA, 2013. ACM.

98



[55] Gerhard Grössing and Anton Zeilinger. Quantum cellular automata. Com-
plex Systems, 2(2):197–208, 1988.

[56] Lov K. Grover. A fast quantum mechanical algorithm for database search.
In Proceedings of the 28th Annual ACM Symposium on Theory of Comput-
ing, STOC ’96, pages 212–219, New York, NY, USA, 1996. ACM.

[57] Leonid Gurvits. Classical deterministic complexity of Edmonds’ problem
and quantum entanglement. In Proceedings of the 35th Annual ACM Sym-
posium on Theory of Computing, STOC ’03, pages 10–19, New York, NY,
USA, 2003. ACM.

[58] Masahito Hayashi and Tomoyuki Morimae. Verifiable measurement-only
blind quantum computing with stabilizer testing. Physical Review Letters,
115:220502, Nov 2015.

[59] Kentaro Honda. Analysis of quantum entanglement in quantum programs
using stabilizer formalism. In Proceedings of the 12th International Work-
shop on Quantum Physics and Logic, volume 195 of Electronic Proceedings
in Theoretical Computer Science, pages 262–272. Open Publishing Associ-
ation, 2015.

[60] Lawrence M. Ioannou. Computational complexity of the quantum sepa-
rability problem. Quantum Information and Computation, 7(4):335–370,
May 2007.

[61] Ali JavadiAbhari, Shruti Patil, Daniel Kudrow, Jeff Heckey, Alexey Lvov,
Frederic T. Chong, and Margaret Martonosi. ScaffCC: Scalable compilation
and analysis of quantum programs. Parallel Computing, 45:2 – 17, 2015.

[62] Philippe Jorrand and Marie Lalire. Toward a quantum process algebra. In
Proceedings of the 1st Conference on Computing Frontiers, CF ’04, pages
111–119, New York, NY, USA, 2004. ACM.

[63] Theodoros Kapourniotis, Elham Kashefi, and Animesh Datta. Blindness
and verification of quantum computation with one pure qubit. In 9th
Conference on the Theory of Quantum Computation, Communication and
Cryptography (TQC 2014), volume 27 of Leibniz International Proceedings
in Informatics, pages 176–204, Dagstuhl, Germany, 2014. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik.

[64] Adrian Kent. Unconditionally secure bit commitment. Physical Review
Letters, 83:1447–1450, Aug 1999.

[65] Adrian Kent. Secure classical bit commitment using fixed capacity com-
munication channels. Journal of Cryptology, 18(4):313–335, 2005.

[66] Adrian Kent. Unconditionally secure bit commitment with flying qudits.
New Journal of Physics, 13(11):113015, 2011.

[67] Adrian Kent. Unconditionally secure bit commitment by transmitting mea-
surement outcomes. Physical Review Letters, 109:130501, Sep 2012.

[68] Qin Li, Wai Hong Chan, Chunhui Wu, and Zhonghua Wen. Triple-server
blind quantum computation using entanglement swapping. Physical Review
A, 89:040302, Apr 2014.

99



[69] Hoi-Kwong Lo and H. F. Chau. Is quantum bit commitment really possible?
Physical Review Letters, 78:3410–3413, Apr 1997.

[70] Tommaso Lunghi, Jedrzej Kaniewski, Felix Bussières, Raphael Houlmann,
Marco Tomamichel, Adrian Kent, Nicolas Gisin, Stephanie Wehner, and
Hugo Zbinden. Experimental bit commitment based on quantum commu-
nication and special relativity. Physical Review Letters, 111:180504, Nov
2013.

[71] Tal Malkin, Isamu Teranishi, and Moti Yung. Key dependent message
security: Recent results and applications. In Proceedings of the First ACM
Conference on Data and Application Security and Privacy, CODASPY ’11,
pages 3–12, New York, NY, USA, 2011. ACM.

[72] Atul Mantri, Carlos A. Pérez-Delgado, and Joseph F. Fitzsimons. Opti-
mal blind quantum computation. Physical Review Letters, 111:230502, Dec
2013.

[73] Dominic Mayers. Unconditionally secure quantum bit commitment is im-
possible. Physical Review Letters, 78:3414–3417, Apr 1997.

[74] Tomoyuki Morimae. Continuous-variable blind quantum computation.
Physical Review Letters, 109:230502, Dec 2012.

[75] Tomoyuki Morimae. Quantum computation: Honesty test. Nature Physics,
9(11):693–694, Nov 2013.

[76] Tomoyuki Morimae. Verification for measurement-only blind quantum com-
puting. Physical Review A, 89:060302, Jun 2014.

[77] Tomoyuki Morimae, Vedran Dunjko, and Elham Kashefi. Ground state
blind quantum computation on AKLT state. Quantum Information and
Computation, 15:0200–0234, 2015.

[78] Tomoyuki Morimae and Keisuke Fujii. Blind topological measurement-
based quantum computation. Nature Communications, 3:1036, Sep 2012.

[79] Tomoyuki Morimae and Keisuke Fujii. Blind quantum computation proto-
col in which Alice only makes measurements. Physical Review A, 87:050301,
May 2013.

[80] Tomoyuki Morimae and Keisuke Fujii. Secure entanglement distillation
for double-server blind quantum computation. Physical Review Letters,
111:020502, Jul 2013.

[81] Tomoyuki Morimae and Takeshi Koshiba. Impossibility of secure cloud
quantum computing for classical client. arXiv:1407.1636, 2014.

[82] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quan-
tum Information. Cambridge University Press, Oct 2000.

[83] Bernhard Ömer. Quantum programming in QCL. Master’s thesis, Technical
University of Vienna, 2000.

[84] Rafail Ostrovsky, Anat Paskin-Cherniavsky, and Beni Paskin-Cherniavsky.
Maliciously circuit-private FHE. In Advances in Cryptology CRYPTO
2014, volume 8616 of Lecture Notes in Computer Science, pages 536–553.
Springer Berlin Heidelberg, 2014.

100



[85] Charalampos Papamanthou, Elaine Shi, and Roberto Tamassia. Signatures
of correct computation. In Theory of Cryptography, volume 7785, pages
222–242. Springer Berlin Heidelberg, 2013.

[86] Bryan Parno, Mariana Raykova, and Vinod Vaikuntanathan. How to dele-
gate and verify in public: Verifiable computation from attribute-based en-
cryption. In Theory of Cryptography, volume 7194, pages 422–439. Springer
Berlin Heidelberg, 2012.

[87] Simon Perdrix. Quantum patterns and types for entanglement and separa-
bility. Electronic Notes in Theoretical Computer Science, 170(0):125–138,
2007.

[88] Simon Perdrix. A hierarchy of quantum semantics. Electronic Notes in
Theoretical Computer Science, 192(3):71–83, 2008.

[89] Simon Perdrix. Quantum entanglement analysis based on abstract inter-
pretation. In Static Analysis, volume 5079 of Lecture Notes in Computer
Science, pages 270–282. Springer Berlin Heidelberg, 2008.

[90] Carlos A. Pérez-Delgado and Joseph F. Fitzsimons. Iterated gate teleporta-
tion and blind quantum computation. Physical Review Letters, 114:220502,
Jun 2015.

[91] Sandu Popescu and Daniel Rohrlich. Quantum nonlocality as an axiom.
Foundations of Physics, 24(3):379–385, 1994.

[92] Frédéric Prost and Chaouki Zerrari. Reasoning about entanglement and
separability in quantum higher-order functions. In Unconventional Compu-
tation, volume 5715 of Lecture Notes in Computer Science, pages 219–235.
Springer Berlin Heidelberg, 2009.

[93] Robert Raussendorf and Hans J. Briegel. A one-way quantum computer.
Physical Review Letters, 86:5188–5191, May 2001.

[94] Robert Raussendorf, Daniel E. Browne, and Hans J. Briegel. Measurement-
based quantum computation on cluster states. Physical Review A,
68:022312, Aug 2003.

[95] Tomas Sander, Adam Young, and Moti Yung. Non-interactive cryptocom-
puting for NC1. In Foundations of Computer Science, 1999. 40th Annual
Symposium on, pages 554–566, 1999.

[96] Jeff W. Sanders and Paolo Zuliani. Quantum programming. In Mathemat-
ics of Program Construction, volume 1837 of Lecture Notes in Computer
Science, pages 80–99. Springer Berlin Heidelberg, 2000.

[97] Peter Selinger. Towards a quantum programming language. Mathematical
Structures in Computer Science, 14:527–586, 8 2004.

[98] Peter Selinger and Benôıt Valiron. A lambda calculus for quantum compu-
tation with classical control. Mathematical Structures in Computer Science,
16:527–552, 6 2006.

[99] Peter Selinger and Benôıt Valiron. Quantum lambda calculus. In Semantic
Techniques in Quantum Computation, pages 135–172. Cambridge Univer-
sity Press, 2009.

101



[100] Peter W. Shor. Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer. SIAM Journal on Computing,
26(5):1484–1509, 1997.

[101] Michel Sintzoff. Calculating properties of programs by valuations on specific
models. SIGPLAN Notice, 7(1):203–207, January 1972.

[102] Takahiro Sueki, Takeshi Koshiba, and Tomoyuki Morimae. Ancilla-driven
universal blind quantum computation. Physical Review A, 87:060301, Jun
2013.

[103] Yiannis Tsiounis and Moti Yung. On the security of ElGamal based en-
cryption. In Public Key Cryptography, volume 1431 of Lecture Notes in
Computer Science, pages 117–134. Springer Berlin Heidelberg, 1998.

[104] Benôıt Valiron. Quantum computation: From a programmer’s perspective.
New Generation Computing, 31(1):1–26, 2013.

[105] Marten van Dijk, Craig Gentry, Shai Halevi, and Vinod Vaikuntanathan.
Fully homomorphic encryption over the integers. In Advances in Cryptology
EUROCRYPT 2010, volume 6110 of Lecture Notes in Computer Science,
pages 24–43. Springer Berlin Heidelberg, 2010.

[106] André van Tonder. A lambda calculus for quantum computation. SIAM
Journal on Computing, 33(5):1109–1135, 2004.

[107] William K. Wootters and Wojciech Hubert Zurek. A single quantum cannot
be cloned. Nature, 299(5886):802–803, Oct 1982.

[108] Li Yu, Carlos A. Pérez-Delgado, and Joseph F. Fitzsimons. Limitations on
information-theoretically-secure quantum homomorphic encryption. Phys-
ical Review A, 90:050303, Nov 2014.

102


	1 Introduction
	1.1 Background
	1.1.1 Quantum programming language
	1.1.2 Blind quantum computation protocol

	1.2 Contributions
	1.3 Related work
	1.3.1 Stabiliser abstract semantics
	1.3.2 Publicly verifiable blind quantum computation

	1.4 Organisation

	2 Preliminaries
	2.1 Notation
	2.2 Quantum computation
	2.2.1 Rudiments of quantum computation
	2.2.2 Stabiliser formalism
	2.2.3 Measurement-based quantum computation

	2.3 Abstract interpretation
	2.4 Encryption scheme

	3 Stabiliser Abstract Semantics
	3.1 Basis abstract semantics
	3.1.1 Quantum imperative language
	3.1.2 Basis abstract semantics

	3.2 Stabiliser abstract semantics
	3.2.1 Motivation and idea
	3.2.2 Stabiliser array
	3.2.3 Stabiliser domain
	3.2.4 Stabiliser abstract semantics
	3.2.5 Comparison with the basis semantics

	3.3 Extended stabiliser abstract semantics
	3.3.1 Motivation and idea
	3.3.2 Extended stabiliser domain
	3.3.3 Extended stabiliser abstract semantics


	4 Publicly Verifiable Blind Quantum Computation
	4.1 Verifiable blind quantum computation protocol
	4.1.1 Delegated quantum computation protocol
	4.1.2 The Fitzsimons–Kashefi protocol

	4.2 Public Verifiability
	4.3 Towards achievement of public verifiability
	4.4 New verifiable blind quantum computation protocol
	4.5 Publicly verifiable blind quantum computation protocol
	4.6 Encryption scheme
	4.6.1 Inattentive evaluation of circuits
	4.6.2 Adjustment of inattentive evaluation of circuits
	4.6.3 Publicly verifiable BQC protocol exists


	5 Conclusions
	5.1 Stabiliser abstract semantics
	5.1.1 Future work

	5.2 Publicly verifiable blind quantum computation
	5.2.1 Future work


	References

