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ABSTRACT

In this thesis, we study the parameterized inapproximability of several optimization problems.
Approximation algorithms and parameterized complexity are two powerful methods to deal with
hard computational problems. Approximation algorithm finds a solution that is close to the
optimum in polynomial time. While in the area of parameterized complexity we consider problems
with an additional parameter k and design algorithms that output the exact solution in f(k) ·
|x|O(1)-time on input an instance x. There exist problems that do not admit polynomial time
approximation algorithms within certain ratios if NP ̸= P. The celebrated PCP theorem is the
main technique to prove hardness results of polynomial time approximation. However, it does not
rule out the existence of parameterized approximation algorithms. For example, an important
open question is whether there is an f(k) · |G|O(1)-time algorithm that can find a dominating
set with 2k vertices for G given that G has a dominating set with k vertices. One of the main
contributions of this thesis is to refute the existence of such an algorithm under FPT ̸= W[1], a
stardard hypothesis in parameterized complexity theory. Our starting point is the parameterized
inapproximability of Maximum k-Subset Intersection.

Given a collection F = {S1, S2, · · · , Sn} of subsets over a finite set with m elements, the
goal of Maximum k-Subset Intersection is to select k distinct subsets from F such that their
intersection size is as large as possible. The decision version of this problem is related to the
k-Biclique problem, which asks if an input graph contains a complete bipartite subgraph with k
vertices in each side. A longstanding open question in parameterized complexity is whether there
exist any f(k) · nO(1)-time algorithms for k-Biclique. This thesis also gives a negative answer
to this question assuming FPT ̸= W[1].

The core result in this thesis is to provide a gap-producing fpt-reduction from k-Clique to
Maximum k-Subset Intersection. More precisely, we construct a set family F on input a graph G
and a small positive integer k in polynomial time such that if G contains a subgraph isomorphic
to Kk then there exist s :=

(k
2
)

sets in F with intersection size no less than nΘ(1/k), otherwise
every s sets in F have intersection size at most O(k!).

Then we derive the parameterized inapproximability of dominating set problem based on the
hardness approximation result of Maximum k-Subset Intersection. Significantly, our hardness
approximation result does not rely on the PCP theorem.

Finally, we consider the problem of finding the maximum clique whose edges use at most
k distinct colors on input a multigraph with colored edges, which we call Maximum k-Edge-
Color Clique. We show that if the input graph has unbounded number of multi-edges be-
tween its every two vertices, then this problem does not admit fpt-approximation algorithms
within any computable ratio function ρ(k) assuming FPT ̸= W[1]. We also point out that the
fpt-inapproximability of Maximum k-Edge-Color Clique on simple graphs is related to the fpt-
inapproximability of k-Clique.
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Scientists want to show that
things that don’t look alike are really the same.
That is one of their innermost Freudian motivations.
In fact, that is what we mean by understanding.

Gian-Carlo Rota
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Chapter 1

Introduction

One theme of computational complexity theory is to distinguish between computational
problems that are efficient solvable and those that are intractable, under some well-accepted
hypothesis. In classical computational complexity theory, a problem is considered to be
tractable if it can be solved by algorithms that are guaranteed to terminate in a number of
steps bounded by a polynomial in the length of its input. The theory of NP-completeness
and the polynomial-time reduction [Coo71, Kar72, Lev73] allow researchers to classify
almost all the computational problems into P and NP-hard. Under the hypothesis that P ̸=
NP, those NP-hard problems can not be solved in polynomial time. Such a classification
could be further refined if we define “efficiently solvable” in a more subtle way.

In parameterized complexity theory [DF99, FG06, Nie06, DF13, CFK+16], we consider
problems with a parameter k. For an input with length n and small parameter k, algorithms
with running-time in 2k ·nO(1) can still be considered efficient. In general, we say a problem
is fixed-parameter tractable or in FPT if it can be solved in f(k) · |x|O(1)-time on input x
with parameter k for some computable function f . The theory of parameterized complexity
leads to a refined analysis of the complexity class. Among those problems that are NP-hard,
some are showed to be in FPT, e.g. k-Vertex-Cover. Some turn out to be W[1]-hard
(analogous to NP-hard), e.g. k-Clique. The hypothesis FPT ̸= W[1] implies that every
W[1]-hard problem has no fpt-algorithm.

Many computational problems have their corresponding optimization versions. In an
optimization problem, the goal is to find a feasible solution with maximum or minimum
value of cost. Another natural relaxation is to require the algorithm to produce a solution
that is close to the optimum one. For minimization (maximization, respectively) problems,
a c-approximation algorithm always returns a solution whose cost is at most c (at least 1/c,
respectively) times the optimum. There exist optimization problems with some hardness
factors such that no polynomial time algorithms can achieve the approximate ratios below
these factors unless P = NP. For example, the hardness factor for Min-Vertex-Cover
is O(1) [H̊as01, DS02], and O(nε) for Max-Clique [FGL+96, AS98, ALM+98, H̊as96,
Kho01, Zuc06], O(log n) for Min-Dominating-Set [LY94, RS97, Fei98, AMS06, DS14].
To prove such hardness approximation results, we need stronger reductions which create
gaps in the optimal cost values. The celebrated PCP-theorem [AS98, ALM+98, Din07]
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makes such gap-producing reductions possible. See [Tre04] for a survey.

Theorem 1.0.1 (PCP Theorem: Hardness of approximation view). For a 3SAT in-
stance φ, let OPT(φ) be the maximum fraction of satisfied clauses in φ. There exist
ρ < 1 and a polynomial time reduction that on input a 3SAT instance φ of size n, it
produces a 3SAT instance η, with size |η| = n · (log n)O(1) such that

OPT(φ) = 1⇒ OPT(η) = 1 (1.1)
OPT(φ) < 1⇒ OPT(η) < ρ (1.2)

Of course, there is no reason to restrict approximation algorithms to those running in
polynomial-time. For optimization problems that are hard to approximate under P ̸= NP,
we want to know if it is possible to achieve better approximation ratios using algorithms
with moderate exponential running time. This thesis aims for proving hardness approxi-
mation results in a parameterized setting.

For instance, let us consider Min-Dominating-Set. Let γ(G) denote the size of
minimum dominating set of G. One of the main problems that we address is

Question 1.0.2. Is there any algorithm A such that on input a graph G, A outputs a
dominating set of G with size c·γ(G) in time f(γ(G))·|G|O(1) for some computable function
f and constant c?

To prove an optimization problem does not have fpt-approximation algorithms, we
should use a reduction that is not only gap-producing but also fpt. For example, suppose we
want to show that Min-Dominating-Set has no 2-approximation fpt-algorithms unless
FPT = W[1]. It suffices to find an algorithm A such that for every graph G and k ∈ N,
A(G, k) outputs a graph G′ and k′ satisfying:

– (1) if G contains a k-clique, then γ(G′) ≤ k′.

– (2) if G contains no k-clique, then γ(G′) > 2k′.

– (3) k′ ≤ g(k) for some computable function g.

– (4) A(G, k) is computable in time f(k) · |G|O(1).

Conditions (1) and (2) require the reduction to produce a gap larger than two. Conditions
(3) and (4) ensure that the reduction is fpt. The previous works based on the PCP theorem
always cause the value of k′ to be polynomial in |G′|. Hence they do not satisfy Condition
(3). It seems that we need new techniques to answer Question 1.0.2.

1.1 Parameterized Inapproximability

To see what kind of techniques are helpful in proving parameterized inapproximability. We
review the previous work in this direction.
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Let us start with results exploiting the non-monotonicity of the problems. A minimiza-
tion problem is called monotone if the superset of a solution is also a solution. Similarly,
a maximization problem is anti-monotone if a subset of its solution is also a solution. For
example, a superset of a dominating set for a graph is still a dominating set. However, with
an additional condition that requires the dominating set to be independent, the problem
of finding minimum independent dominating set is no longer monotone. In [DFMR08],
Downey et al. showed that the independent dominating set problem has no fpt approx-
imation with any approximation ratio. Another example where parameterized inapprox-
imability is showed using the non-monotonicity is the weighted satisfiability problem of
CNF-formulas. In [CGG07] it is shown that the weighted satisfiability problem of CNF-
formulas have no fpt approximation of any possible ratio.

Inapproximability results based on non-monotonicity are somewhat unsatisfying. As
Marx pointed out in [Mar08], “it can happen that the optimum is k, and every feasible
solution has cost k, which makes approximation equivalent to finding an optimum solution.
The inapproximability proofs in these examples tell us more about the hardness of finding
exact solutions than about the hardness of approximation”. What is more, many natural
minimization problems, e.g. Min-Dominating-Set, are monotone.

So let us turn our attention to monotone problems. In [AR01], Alekhnovich and
Razborov showed that there is no fpt 2-approximation algorithm for Weighted Monotone
Circuit Satisfiability, unless the class W[P] from the hierarchy of parameterized problems
is fixed-parameter tractable by randomized algorithms with one-sided error. In [EGG08],
Eickmeyer et al. derandomized Alekhnovich and Razborov’s inapproximability result and
at the same time strengthened it. In fact, they proved that the weighted monotone cir-
cuit satisfiability problem has no fixed-parameter tractable approximation algorithm with
polylogarithmic approximation ratio unless FPT = W[P]. Finally, Marx strengthened this
result significantly in [Mar13] by proving that the weighted satisfiability problem is not fpt
approximable for circuits of depth 4 without negation gates, unless FPT = W[2]. Recently,
Cristina Bazgan et al. [BCNS14] gave a reduce from Monotone Circuit Satisfiability to
Target Set Selection in polynomial time. They showed that for any functions f and ρ, the
Target Set Selection problem cannot be approximated within a factor of ρ(k) in f(k) ·nO(1)

time, unless FPT = W[P]. Let us not fail to mention that Marx’s result relies on the
k-perfect family of hashing functions in [AYZ95]. This technique also plays an important
role in many reductions of this thesis.

Another approach to parameterized inapproximability is to work on stronger hypoth-
esis. The Linear PCP conjecture claims that it is possible to achieve |η| = O(n) in
Theorem 1.0.1. Assuming the Linear PCP conjecture and ETH, Edouard Bonnet et al.
[BEKP13], showed that there is no r-approximation algorithm for Min-Dominating-Set
running in time f(k) · no(k) for some r > 1. In the same paper, they also proved that
independent set has no constant approximation fpt-algorithm, again under the Linear
PCP conjecture and ETH. In [CHK13, HKK13] it is proved that assuming ETH there
is no c

√
log γ(G)-approximation algorithm for the set cover problem, with running time

2O(γ(G)(log γ(G))d )|G|O(1), where c and d are some appropriate constants. With the additional
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Projection Game Conjecture due to [Mos12] and some of its further strengthening, the au-
thors of [CHK13, HKK13] are able to even rule out γ(G)c-approximation algorithms with
running time almost doubly exponential in terms of γ(G). In addition, they also prove
that unless NP ⊆ SUBEXP, for every 1 > δ > 0, there exists a constant F (δ) > 0 such
that Clique has no approximation with ratio k1−δ in 2kF · nO(1)-time. The drawback of the
results in [CHK13, HKK13] is that the dependence of the running time on parameters is
not an arbitrary computable function. Under the assumption ETHnu, Yijia Chen, Kord
Eickmeyer and Jörg Flum [CEF12] showed that for every d ∈ N there is a ρ > 1 such that
k-Clique has no parameterized approximation algorithm with approximation ratio ρ and
running time f(k) · nd for some function f : N → N. Assuming Deg-2-sat is not fixed
parameter tractable, Subhash Khot and Igor Shinkar [KS16] proved that k-Clique can
not be fpt-approximated to any constant ratio.

1.2 Our Contributions

The main contributions of the thesis is to present gap-producing fpt-reductions from
k-Clique to several parameterized optimization problems, hence proving the parame-
terized inapproximability of these problems under FPT ̸= W[1]. The results of this thesis
are from two papers [Lin15, CL15] and some unpublished observations.

– Parameterized Inapproximability of Max-k-Subset-Intersection. Assuming
FPT ̸= W[1], there is no fpt-algorithm to distinguish whether an input set fam-
ily contains k sets with intersection size no less than nΘ(1/

√
k) or every k sets of

this family has intersection size at most O(k!) (Theorem 4.2.1). Assuming ETH,
for every constant c ≥ 2, there is no f(k) · no(

c√
k)-time algorithm to approximate

Max-k-Subset-Intersection to ratio below nΘ(1/ c√
k) (Corollary 4.2.8).

– Parameterized Inapproximability of Min-Dominating-Set. Assuming FPT ̸=
W[1], for any constant c ≥ 1, there is no fpt-algorithm to distinguish whether an input
graph can be dominated by k vertices or every dominating set of it contains at least
ck vertices (Theorem 5.1.1). Assuming ETH, there is no fpt-algorithm which on
every input graph G outputs a dominating set of size at most 4+ε

√
log (γ(G)) · γ(G)

for every 0 < ε < 1 (Theorem 5.1.3).

– Parameterized Inapproximability of Max-k-EdgeCol-Clique and Its Re-
lation to k-Clique Unless FPT = W[1], there is no fpt-algorithm to find a k-
edge-color clique with size no less than 1/ρ(k) times the maximum ones on input a
multi-graph with colored edges (Theorem 6.1.2). Parameterized inapproximability
of Max-k-EdgeCol-Clique on simple graphs implies k-Clique does not admit
constant fpt-approximation algorithms (Theorem 6.1.3). Under some conditions, it
is possible to turn a multi-graph into a simple graph without changing the size of its
maximum k-edge-color clique (Theorem 6.1.5).
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Main Technique Our main technical of showing inapproximability is to use the gap
of set intersections. To create a gap for set intersections, we introduce a definition of
threshold property and provide two constructions of graphs satisfying such property in
polynomial time. Intuitively, for h > ℓ, a bipartite graph T = (A ∪̇ B,E) satisfying
the (n, k, ℓ, h)-threshold property if every k + 1 vertices from A have at most ℓ common
neighbors while there are many k vertices from A with h common neighbors. Such a gap
between the cardinality of common neighbors of k-vertex sets and (k+1)-vertex sets allows
us to construct gap-producing fpt-reductions.

– Probabilistic Construction We can construct bipartite random graphs satisfying
the (n, k, ℓ, h)-threshold property with probability at least 9

10 in polynomial time for
ℓ = O(k2) < h < nΘ(1/k). (Lemma 3.1.3)

– Explicit Construction. We can construct bipartite graphs satisfying the (n, k, ℓ, h)-
threshold property in polynomial time for ℓ = O(k!) < h < nΘ(1/k). (Lemma 3.1.4)

1.2.1 W[1]-hardness of k-Biclique

As we have mentioned, the decision version of Max-k-Subset-Intersection is related
to the problem of testing whether an input graph contains a subgraph (not necessarily
induced) isomorphic to a complete bipartite graph Kk,k.

k-Biclique
Instance: k ∈ N+ and a graph G.

Parameter: k.
Problem: Decide if G contains a subgraph isomorphic to

Kk,k.

It is not difficult to see that k-Biclique restricted to bipartite graphs can be interpreted as
finding k distinct vertices from one side of the bipartite graph with at lest k vertices in their
common neighbors. The k-Biclique problem is NP-hard [Joh87]. Furthermore, Max-
Biclique, which is the optimization version of k-Biclique, does not admit polynomial
time approximation algorithms to ratio nε if SAT does not have a 2nε′

-time probabilistic
algorithm [FK04, Kho06, AMS11].

Max-Biclique
Instance: k ∈ N and a graph G.
Solution: a complete bipartite subgraph of G that isomor-

phic to Kk,k.
Cost: k.
Goal: max.

Whether there exist f(k)·nO(1)-time algorithms solving k-Biclique for any computable
function f has received heavy attention from the parameterized complexity community
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[ALR12, BM11, FG06, Gro07, HKM13]. It is the first problem on the “most infamous”
list (page 677) in a new text book [DF13].

“Almost everyone considers that this problem should obviously be W[1]-
hard, and... it is rather an embarrassment to the field that the question
remains open after all these years!”.

Despite many attempts [BRFGL10, CK12, GKL12, Kut12], no fpt-reduction from
k-Clique to k-Biclique has previously been found. Another contribution of this the-
sis is to give a negative answer to the question above by proving the W[1]-hardness of
k-Biclique (Corollary 4.2.6). As a consequence, we obtain a dichotomy theorem of car-
dinality constraints satisfaction problem.

Dichotomy for Cardinality Constraint Satisfaction Problem

Fix a domain D = {0, 1, 2, . . . , d}. An instance of the constraint satisfaction problem
(CSP) is a pair I = (V,C), where V is a set of variables and C is a set of constraints.
Each constraint of C can be written as ⟨v, R⟩, where R is an r-ary relation on D for some
positive integer r and v = (v1, v2, . . . , vr), an assignment τ : V → D satisfies a constraint
⟨v, R⟩ if (τ(v1), . . . , τ(vr)) ∈ R. The goal is to find an assignment τ : V → D satisfying all
the constraints in C. In the research of complexity of CSP, we usually fix a set of relation
Γ, and denote CSP(Γ) the CSP problem in which all the relations of the constraints are in
Γ.

It is well-known that many hard problems including satisfiability and graph coloring
can be expressed under the CSP framework, hence solving constraint satisfaction problems
is NP-hard. One way to cope with this NP-hard problem is to introduce a parameter
and consider the parameterized version of such problem. In [BM11], Andrei A. Bulatov
and Dániel Marx introduced two parameterized versions of CSP. More specifically, they
assume that the domain contains a “free” value 0 and other non-zero values, which are
“expensive”. The goal is find an assignment with a limited number of variables assigning
expensive values. One way to reflect this goal is to take the number of nonzero values
used in an assignment as parameter, which leads to the definition of the CSP with size
constraints (OCSP); another more refined way is to prescribe how many variables have
to be assigned each particular nonzero value, this leads to the definition of CSP with
cardinality constraints (CCSP). They provide a complete characterization of the fixed-
parameter tractable cases of OCSP(Γ) and show that all the remaining problems are
W[1]-hard.

OCSP(Γ)
Instance: A CSP(Γ) instance I = (V,C).

Parameter: k.
Problem: find a satisfying assignment for I with k variables

assigned nonzero.
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CCSP(Γ)
Instance: A CSP(Γ) instance I = (V,C) with an additional

cardinality constraint π : D \ {0} → N.
Parameter: k = ∑

i∈D\{0} π(i).
Problem: find a satisfying assignment for I with π(i) vari-

ables assigned i (∀i ∈ D \ {0}).

For CSP with cardinality constraints, the situation is strange. A simple observation
shows that the k-Biclique problem can be expressed as a CCSP instance. Without
loss of generality, consider the k-Biclique on bipartite graph, let D = {0, 1, 2}, for any
bipartite graph G, we construct a CCSP instance with V = V (G) and C = {⟨(v1, v2), R⟩ |
v1v2 ∈ E(G), R = {(0, 0), (1, 0), (0, 2)}}, then we ask for an assignment τ : V → D with
k variables assigning 1 and k variables assigning 2. It is easy to check that for a bipartite
graph G, if and only if the corresponding CCSP instance has such an assignment, then the
bipartite complement Ḡ ofG contains aKk,k. Therefore, without settling the parameterized
complexity of k-Biclique, they can only show that CCSP(Γ) is fixed-parameter tractable,
Biclique-hard or W[1]-hard. Combining our result and Theorem 1.2 in [BM11], we finally
obtain a dichotomy theorem for the parameterized complexity of CCSP(Γ):

Theorem 1.2.1. For every finite Γ closed under substitution of constants, CCSP(Γ) is
either FPT or W[1]-hard.

Towards a Dichotomy for Subgraph Embedding

Let C be a class of graphs. k-Biclique can be formulated as a special case of subgraph
embedding defined as follows.

p-Emb(C)
Instance: G is a graph and H ∈ C.

Parameter: |H|.
Problem: Decide whether H is a subgraph of G.

To give a complete characterization of the fixed-parameter tractable cases of p-Emb(C)
is a big open question.

It is well known that whether H is a subgraph of G can be decided in f(|H|) · |G|O(tw(H))

time using the color-coding technique in [AYZ95], where tw(H) denotes the tree-width of H
and f is a computable function. Hence, if C is a class of graphs with tree-width bounded
by some constant, the subgraph isomorphism problem with H ∈ C is fixed parameter
tractable. In [Gro07], Martin Grohe conjectured that p-Emb is W[1]-hard if and only if C
has unbounded tree-width. Under the assumption of FPT ̸= W[1], this implies that there
is no f(k) · |G|O(1)-time algorithm to decide whether G contains a subgraph isomorphic
to Kk,k, because the class of balanced complete bipartite graphs {Kk,k | k ∈ N} has
unbounded tree-width.
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A possible approach is to consider the Partitioned Subgraph Isomorphism problem, in
which each vertex of the smaller graph G has a distinct color and the vertices of H are
partitioned into |V (G)| subsets, each set is corresponding to one color. The problem is
to find an injective mapping φ from V (G) to V (H) such that: (1) for all u ∈ V (G), u
and φ(u) have the same color; (2) if u and v are adjacent in G, then φ(u) and φ(v) are
adjacent in H. It is already known that Partitioned Subgraph Isomorphism problem on
the graph class C is W[1]-hard if C has unbounded tree-width [Gro07]. An interesting fact
is that if the graph G has no homomorphism to any of its proper induced subgraphs, then
the colored and uncolored version of Subgraph Isomorphism of G are equivalent [Mar07].
Unfortunately, this approach does not work for k-Biclique because any bipartite graph
has a homomorphism to any of its edges.

In summary, proving the W[1]-hardness of k-Biclique is one step towards a dichotomy
for Subgraph Embedding. It remains to see if we can extend our technique to more general
graph classes. On the other hand, in [LRR14], Yuan Li, Alexander Razborov and Benjamin
Rossman introduced a parameter κ. They showed that the average-case AC0 complexity
for deciding whether G contains a subgraph H is |G|Θ(κ(H)). Surprisingly, there exist graph
H whose tree-width is k but κ(H) = O(1) (See Remark 2.7 of [LRR14]). An interesting
question is to give an nO(1)-time algorithm to test whether H ⊆ G for some bipartite H
with κ(H) = O(1) and tw(H) = k.

1.3 Organization of this Thesis

After introducing some preliminaries in Chapter 2, we start with the definition of thresh-
old property and two efficient constructions in Chapter 3. In Chapter 4, we prove the
parameterized inapproximability result of Max-k-Subset-Intersection. Using this re-
sult, we derive the constant inapproximability of parameterized dominating set problem
in Chapter 5. The content of Chapter 6 is about a new optimization problem which arises
in our research on the inapproximability of the parameterized clique problem. Chapter 7
contains open questions for future work.
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Chapter 2

Preliminaries

We first introduce some basic notations. Then we review the necessary background con-
cerning computational complexity and optimization algorithms. Finally, we introduce the
mathematical tools that are useful for the rest of the thesis.

2.1 Basic Notations

2.1.1 Sets, Numbers and Functions

Sets ∅ denotes the empty set. For two sets A, B and k ∈ N+, we define the following
notations.

– A×B := {(a, b) | a ∈ A, b ∈ B}.

– A ∪̇ B is the union of A and B where A and B are two disjoint sets.

– |A| is the cardinality of A.

– Ak := {(a1, a2, . . . , ak) | ∀i ∈ [k], ai ∈ A}.

–
(
A
k

)
:= {{a1, a2, . . . , ak} | ∀i ∈ [k], ai ∈ A, ∀i ̸= j ∈ [k], ai ̸= aj}.

In other words,
(
A
k

)
is the set of all k-element subsets of A, Ak is the set of all k-tuple

of A. As a consequence, if A contains n elements, then |
(
A
k

)
| =

(
n
k

)
, and |Ak| = nk. For

v = (v1, v2, . . . , vk) ∈ Ak and i ∈ [k], v(i) := vi. {0, 1}∗ := ∪
n∈N{0, 1}n is the set of all

strings over the alphabet {0, 1}. For x ∈ {0, 1}∗, |x| := n if and only if x ∈ {0, 1}n.

Numbers N denotes the set of all natural numbers, i.e., N := {0, 1, 2, . . .}. N+ := N\{0}
is the set of all positive natural numbers. For each n ∈ N+, let [n] := {1, 2, . . . , n} be the
finite set of integer between 1 and n. We use R and C to denote the sets of real numbers
and complex numbers. For a, b ∈ R, we use a ± b to denote the set of real numbers that
are between a and b, i.e., a± b := {x ∈ R | a ≤ x ≤ b}.
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Functions For every function f : A → B and a subset S ⊆ A, f(S) := {f(x) | x ∈ A}.
Similarly, for v = (v1, v2, . . . , vk) ∈ Ak, f(v) = (f(v1), f(v2), . . . , f(vk)).

Asymptotic Notation. Let f, g : R → R be two functions. We treat O(g), Ω(g), o(g)
and Θ(g) as sets of functions. However, the statement f ∈ O(g) is usually written as
“f = O(g)”.

(1) f = O(g) if there exists some positive constant c such that |f(x)| ≤ c|g(x)|;

(2) f = Ω(g) if g ∈ O(f);

(3) f = o(g) if for every positive constant ε there exists a constant N such that f(n) ≤
εg(n) for all n > N ;

(4) f = Θ(g) if there exists two positive constants c1, c2 such that c1g(x) ≤ f(x) ≤ c2g(x).

In particular, O(1) is the class of constants. nO(1) is the class of functions of nc for any
constant c.

2.1.2 Graphs

A simple graph G := (V,E) contains a vertex set V and an edge set E ⊆
(
V
2

)
. We also

use V (G) and E(G) to denote the vertex set and edge set of G. Fix a graph G, for two
vertices u, v in V (G), we say u and v are adjacent if {u, v} ∈ E(G).

For every v ∈ V (G), NG(v) := {u | u ∈ V (G), {u, v} ∈ E(G)}. Sometimes we simply
omit the superscript G in NG(v) and write N(v). We also abbreviate edges {u, v} by uv.
For S ⊆ V (G), let Γ(S) := {u | ∀v ∈ S, u ∈ NG(v)} be the set of common neighbors of all
vertices in S. Similarly, for v := (v1, v2, . . . , vk) ∈ V (G)k, we also use Γ(v) to denote the
common neighbors of vertices in all coordinates of v.

A graph H is a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G). For X ⊆ V (G),
G[X] := (X,E(G) ∩

(
X
2

)
) is the subgraph of G induced by X. Every two vertex u, v in X

are adjacent in G[X] if and only if there are adjacent in G.
A graph G is isomorphic to another graph H if there exists a one to one function

f : V (G)→ V (H) such that for all u, v ∈ V (G), uv ∈ E(G) if and only if f(u)f(v) ∈ E(H).
We say G contains a H-subgraph or H ⊆ G if there exists a subgraph H ′ of G such that
H is isomorphic to H ′.

A dominating set of G is a set D ⊆ V (G) such that every vertex in G is either in D or
adjacent to some vertex in D. γ(G) is the minimum value of the size of dominating set of
G.

For every k ∈ N+, a k-clique Kk is a graph with k vertices and every pair of vertices
are adjacent.

For every s, t ∈ N+, a biclique Ks,t is a bipartite graph with s vertices in its left side
and t vertices in its right side and every two vertices from different side are adjacent. We
call Ks,t a balanced biclique or k-biclique if s = t = k.
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A multi-graph G := (V,E,C) contains a vertex set V , a color set C and an edge set
E ⊆

(
V
2

)
× C. We say G contains a subgraph Kk or Kk ⊆ G, if there exist k vertices

v1, v2, . . . , vk in V such that for different i, j ∈ [k], ({vi, vj}, c) ∈ E for some color c ∈ C.
For any k colors c1, c2, . . . , ck ∈ C, let G{c1,c2,...,ck} := (V,E ′, C), where E ′ =

{
({u, v}, c) ∈

E
∣∣∣ c ∈ {c1, c2, . . . , ck}

}
. For any f ∈ N, we say G is a f -multi-graph if for all v, u ∈ V (G),

there are at most f multi-edges between v, u. For any multi-graph G = (V,E,C), let

CC(G, k) := max
{
h
∣∣∣∣ h ∈ N and there exists I ∈

(
C

k

)
such that Kh ⊆ GI

}
.

2.2 Computational Complexity

2.2.1 Complexity Classes and Reductions

We identify the {0, 1}-strings and the objects encoded by it. A decision problem L can be
viewed as a subset of {0, 1}∗. For example, the problem k-Clique consists of all x ∈ {0, 1}∗

which encodes a graph G and an integer k such that G contains a clique with k vertices.
In the classical computational complexity theory, there are two important classes of

problems, namely P and NP. We say L ∈ P if there exists a Turing machine M : {0, 1}∗ →
{0, 1} such that for all x ∈ {0, 1}∗, M(x) = 1 iff x ∈ L and the running time of M(x) is
|x|O(1). And L ∈ NP if there exists a Turing machine M : {0, 1}∗ × {0, 1}∗ → {0, 1} with
two inputs such that for all x ∈ {0, 1}∗, x ∈ L if and only if there exists w ∈ {0, 1}|x|O(1)

such that M(x,w) = 1 and the running time of M(x,w) is |x|O(1).
In parameterized complexity, we have an additional parameter function κ : {0, 1}∗ → N

for each problem. The class FPT is a set of parameterized problems such that for every
(L, κ) ∈ FPT, we can decide whether x ∈ L in f(κ(x)) · |x|O(1)-time for some computable
function f . We call an algorithm fpt if its running-time is in f(κ(x)) · |x|O(1) on input an
instance x parameterized by κ.

An important concept in complexity theory is reduction, which is a mapping from one
problem A to another problem B showing that B is at least as hard as A. There two main
types of reductions, Turing reduction and many-one reduction. We only use the many-one
reduction in this thesis. For two problems A and B, a many-one reduction from A to
B is a mapping R : {0, 1}∗ → {0, 1}∗ such that x ∈ {0, 1}∗, R(x) ∈ B ⇐⇒ x ∈ A.
Obviously, if R(x) can be computed in polynomial time, then B ∈ P implies A ∈ P. R is
an fpt-reduction from a parameterized problem (L1, κ1) to another parameterized problem
(L2, κ2) if

– for all x ∈ {0, 1}∗, R(x) ∈ L2 ⇐⇒ x ∈ L1;

– R(x) can be computed in f(κ1(|x|)) · |x|O(1)-time;

– κ2(R(x)) ≤ g(κ1(x)) for some computable function g.
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We write (L1, κ1) ≤fpt (L2, κ2) if there is an fpt-reduction from (L1, κ1) to (L2, κ2). Of
course, if (L1, κ1) ≤fpt (L2, κ2), then (L2, κ2) ∈ FPT implies (L1, κ1) ∈ FPT.

Two important graph problems are believed not to be in FPT.

k-Dominating-Set
Instance: A graph G and k ∈ N.

Parameter: k.
Problem: Decide whether G has a dominating set of size

at most k.

k-Clique
Instance: A graph G and k ∈ N.

Parameter: k.
Problem: Decide whether G has a clique of size at most k.

In fact, k-Dominating-Set is complete for the parameterized complexity class W[2], the
second level of the W-hierarchy. The parameterized clique problem k-Clique is W[1]
complete. The W-hierarchy can be defined using constant depth circuit. For more detail,
we refer to [DF99, FG06, CFK+16]. Here we define W[1] and W[2] in a pragmatic way.
That is W[1] contains all the problems that can be fpt-reduced to k-Clique and W[2]
contains all the problems that can be fpt-reduced to k-Dominating-Set.

2.2.2 Hypothesis

All the hardness results of this thesis are conditional, i.e., they are based on some standard
hypothesis in computational complexity theory. The main hypothesis we work on is FPT ̸=
W[1], which is equivalent to state that there is no f(k) · |G|O(1)-time algorithm to solve
k-Clique.

We also need a stronger hypothesis made by Impagliazzo, Paturi and Zane [IPZ98].

Conjecture 2.2.1 (Exponential Time Hypothesis). n-variable 3-SAT cannot be solved in
time 2o(n).

We use the following lower bound for k-Clique under ETH.

Theorem 2.2.2 ([CHKX04]). Assumming ETH there is no f(k) · no(k)-time algorithm for
k-Clique.

2.3 Optimization Problems

An optimization problem O is a 4-tuple (I, sol, cost, goal) where

(1) I is the set of instances.
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(2) For an instance x ∈ I, sol(x) is a set of feasible solutions of x.

(3) For x ∈ I and y ∈ sol(x), cost(x, y) ∈ N.

(4) goal ∈ {max,min}.
Example 2.3.1. Consider the following optimization problem.

Max-Clique
Instance: A graph G.
Solution: A subset K ⊆ V (G) such that G[K] is a clique.

Cost: |K|.
Goal: max.

In this case, goal = max and I is the set of all graphs. For every graph G, sol(G) is the
collection of subsets of V (G) which induces a clique in G. For K ∈ sol(G), cost(G,K) =
|K|.

The task of an optimization problem is to find a feasible solution y ∈ sol(x) for an
input x with optimal cost value OPT(x), i.e., OPT(x) = cost(x, y) = goal{cost(y′, x) | y′ ∈
sol(x)}. For ρ ≥ 1, A is an ρ-approximation algorithm for O if for all x ∈ I, cost(x,A(x))

OPT(x) ≤ ρ

when goal = min and OPT(x)
cost(x,A(x)) ≤ ρ when goal = max.

An optimization problem O is NP-optimization if for all y ∈ sol(x), |y| ≤ |x|O(1) and
there is a polynomial time algorithm that decides whether y′ ∈ sol(x) for all y′ ∈ {0, 1}|x|O(1)

and the value of cost(x, y) can be computed in polynomial time. All the optimization
problems we consider in this thesis are NP-optimization.

2.3.1 Parameterized Approximation

Parameterized complexity and approximation algorithm can be combined in several ways
[Mar08]. In this thesis, we only consider the following two versions:

– Approximation parameterized by cost. In this case, we use the cost of the opti-
mal solution as parameter. Using the definition of [CGG07], A is an fpt-approximation
algorithm with ratio ρ ≥ 1 if for every input (x, k) with sol(x) ̸= ∅ satisfyingOPT(x) ≥ k if goal = max,

OPT(x) ≤ k if goal = min,
(2.1)

A outputs y ∈ sol(x) in running time f(k) · |x|O(1) such thatcost(x, y) ≥ k
ρ

if goal = max,
cost(x, y) ≤ ρ · k if goal = min,

(2.2)

If (x, k) does not satisfy (2.1), the output of A can be arbitrary. For Max-Clique
and Min-Dominating-Set, we consider approximation algorithms parameterized
by cost.
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– Approximation with instance parameters. In this case, the parameter k and
OPT(x) need not to satisfy the condition (2.1). We try to find an approximation
algorithm whose running time is f(k) · |x|O(1). For Max-k-Subset-Intersection
and Max-k-EdgeCol-Clique, we consider approximation algorithms parameter-
ized with instance parameters k.

2.3.2 Gap-producing fpt-reductions

We need stronger reductions for parameterized optimization problems. Suppose we want
to prove an maximization problem O with parameter function κ is hard to approximate
to ratio ρ under FPT ̸= W[1]. It suffices to find an fpt-reduction R from k-Clique to O
with two additional conditions that

(1) if G contains a k-clique, then OPT(R(G, k)) ≥ ρ · g(G, k),

(2) if G contains no k-clique, then OPT(R(G, k)) < g(G, k),

where g is a computable function.

Remark 2.3.2. If the optimization problem O is parameterized by cost, then g is a com-
putable function that depends only on k.

Similarly, we can define gap-producing fpt-reductions for minimization problems. If O
is a minimization problem, then the fpt-reduction R should also satisfy the following two
conditions:

(1) if G contains a k-clique, then OPT(R(G, k)) ≤ g(G, k).

(2) if G contains no k-clique, then OPT(R(G, k)) > ρ · g(G, k).

For example, a gap-producing fpt-reduction from k-Clique to Min-Dominating-Set for
ratio 2 is a reduction R such that on input every graph G and k, it constructs a graph H
in f(k) · |G|O(1)-time satisfying

– if G contains a k-clique, then γ(H) ≤ g(k),

– if G contains no k-clique, then γ(H) > 2g(k).

Given that there is a gap-producing fptreduction from k-Clique to an optimization
problem O1, we can prove the inapproximability of another optimization problem O2 by
providing a gap-preserving fpt-reduction from O1 to O2.
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Gap-preserving fpt-reductions

Depending on whether O1 and O2 are minimization or maximization, there are four cases
of gap-preserving reduction. We define gap-preserving fpt-reduction from a maximization
problem O1 to a minimization problem O2. The other cases are similar.

For α, β > 1, g1, g2, : N→ N, and two parameter function κ1, κ2 : {0, 1}∗ → N. An fpt-
reduction from O1 to O2 is gap-preserving if on input every instance x1 ∈ O1, it constructs
an instance x2 satisfying the following property.

– OPT(x1) ≥ α · g1(x1, κ(x1))⇒ OPT(x2) ≤ g2(x1, κ1(x1)).

– OPT(x1) < g1(x1, κ(x1))⇒ OPT(x2) > β · g2(x1, κ1(x1)).

2.4 Probability

In this thesis, we deal exclusively with probability spaces (Ω,Pr) where Ω contains finite
samples. Pr is a nonnegative function from Ω to [0, 1] such that ∑x∈Ω Pr[x] = 1.

A random variable over (Ω,Pr) is a function X : Ω→ R. The expectation and variance
of a random variable are defined as follows.

– E[X] := ∑
x∈Ω X(x) · Pr[x].

– Var[X] := ∑
x∈Ω E[X(x)2]− E[X(x)]2.

An event E can be treated as a subset of Ω. The probability of E is defined as Pr[E] :=∑
x∈E Pr[x]. For example, given a random variable X, the event “X > 0” can be regarded

as a set E := {x ∈ Ω | X(x) > 0}. Hence Pr[X > 0] = ∑
x∈Ω,X(x)>0 Pr[x].

One important methodology we learn from Erdős’s paper [Erd59] on graph theory
and probability is that to prove some graph with a certain property exists, it suffices to
demonstrate that the probability of such graph is positive in some probability space.

Example 2.4.1. Suppose we want to show that there exists a graph which contains many
Kk-subgraphs but has no Kk+1,k+1-subgraph.

For n ∈ N and p : N → [0, 1]. The random graph G(n, p) is a probability space where
Ω is the set of all graphs with vertex set [n]. p(n) is the probability that two vertices are
adjacent. For each graph G ∈ Ω, Pr(G) = p(n)|E(G)|(1− p(n))(

n
2)−|E(G)|.

For a graph H, let XH : Ω→ N be the random variable over G(n, p) such that for each
G ∈ Ω XH(G) is the number of H-subgraphs in G.

For ε > 0, it is easy to check that:

– If p(n) = n− |V (H)|+ε
|E(H)| , then E[XH ] ∈ O(n−ε).

– If p(n) = n− |V (H)|−ε
|E(H)| , then E[XH ] ∈ O(nε).
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Observe that 2k+2
(k+1)2 <

2k
k(k−1) . Let δ ∈ ( 2k+2

(k+1)2 +ε, 2k
k(k−1)−ε) for some small positive ε. Then

we consider the random graph G(n, n−δ) and the random variables XKk
and XKk+1,k+1 over

it. If we could show that Pr[XKk
< nε] + Pr[XKk+1,k+1 > n−ε] < 1, then there exists

G ∈ G(n, n−δ) satisfying XKk
(G) ≥ nε and XKk+1,k+1(G) ≤ n−ε < 1. Hence G has nε

Kk-subgraphs but contains no Kk+1,k+1-subgraph.

To give upper bounds for formulas in the forms Pr[X > α] and Pr[X < α], we need the
following tools.

Theorem 2.4.2 (Markov’s Inequality). Let X ≥ 0 be a random variable , then

Pr[X ≥ α] ≤ E[X]
α

. (2.3)

Theorem 2.4.3 (Chebyshev’s Inequality). For any real λ > 0,

Pr[|X − E[X]| ≥ λ] ≤ Var[X]
λ2 . (2.4)

2.5 Finite Field

A finite field (F, ·,+) consists of a set of finite elements F and two operations, namely
multiplication · and addition +. F contains two distinct elements 1 and 0 . The elements
in F and the two operations obey the following rules.

– Rules about addition:

– for every u, v, w ∈ F, u+ v + w = u+ (v + w);
– for every v ∈ F, v + 0 = v;
– for every u, v ∈ F, u+ v = v + u;
– for every v ∈ F, there exists a unique u ∈ F such that u + v = 0 . Such u is

written as −v. We can define subtraction by x− v = x+ (−v).

– Rules about multiplication:

– for every u, v, w ∈ F, u · v · w = u · (v · w);
– for every v ∈ F, v · 0 = 0 ;
– for every v ∈ F, v · 1 = v;
– for every u, v ∈ F, u · v = v · u;
– for every v ∈ F \ {0}, there exists a unique u ∈ F such that u · v = 1 . Such u

can be regarded as v−1 . We can define division for nonzero v by x/v = x · v−1 .

– Distributivity: for every u, v, w ∈ F, u · (v + w) = u · v + u · w.
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Since 1 ∈ F and F is close under addition, the elements 1 , 1 + 1 , . . ., 1 + 1 + . . . + 1
are all in F. To ease the notation, for n ∈ N and x ∈ F, let nx := ∑n

i=1 x be the sum of n
identical elements x in F. Of course if n = 0, then nx := 0 .

Note that F is finite. There must exist distinct n,m ∈ N such that m1 = n1 . Thus
there exists a minimum p ∈ N+ such that p1 = 0 , which is called the characteristic of this
field. It is a well-known fact that the characteristic of a finite field is prime.

Fact 2.5.1. The characteristic of every finite field F is prime.

Example 2.5.2. For every prime p, we have a finite field GF (p) := {0, 1, 2, . . . , p − 1}
with p elements. For a, b ∈ GF (p), a + b (resp. a · b) is the remainder of the integer
addition (resp. multiplication) of a and b divided by p. The existence of inverse for every
nonzero element under operation · comes from the fact that for every 1 < a < p, there
exists 1 < b < p such that ab = 1 mod p. Obviously, a−1 = b.

Example 2.5.3. For every d ∈ N+, suppose f(x) := c0 + c1x+ . . .+ cdx
d is a polynomial

with degree d, which means that cd ̸= 0. Let GF (pd) := {a0 + a1x + . . . + ad−1x
d−1

∣∣∣ ai ∈
GF (p)} be a set with pd polynomials. For g, h ∈ GF (pd), define g + h (resp. g · h) as
the remainder of the polynomial addition (resp. multiplication) of g and h divided by f .
Suppose f(x) is irreducible, i.e. there do not exist non-constant polynomials f1(x) and
f2(x) such f(x) = f1(x)f2(x). It follows that for every nonzero g(x) ∈ GF (pd), there
exists a unique nonzero h(x) ∈ GF (pd) such that gh+ ef = 1 for some polynomial e. We
have g−1 = h. Thus GF (pd) is a finite field.

To construct a finite field with pd elements, we need to find an irreducible polynomial
with degree d over GF (p).

Fact 2.5.4. There exist irreducible polynomials of every degree over every prime field.

Given d and p, the problem of finding an irreducible polynomial with degree d over the
fieldGF (p) is a fundamental problem. In [AL86], the authors give a deterministic algorithm
that outputs an irreducible polynomial with degree d in (d · log p)O(1) steps, assuming
extended Riemann hypothesis. To remove the need for extended Riemann hypothesis in
this algorithm is still an open question. In this thesis, we do not need such (d · log p)O(1)-
time algorithm. A algorithm in pO(d) steps suffices. It is easy to see that we can enumerate
every polynomial f with degree d and check whether f can be divide by other polynomial
g using pO(d) arithmetic operations. For more details we refer the reader to [Shp99].

2.6 Color-Coding

We introduce the color-coding technique [AYZ95] which can be used to reduce connected
subgraph isomorphic problem to its colored version.
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Lemma 2.6.1 ([AYZ95]). For every n, k ∈ N there is a family Λn,k of polynomial time
computable functions from [n] to [k] such that for every k-element subset X of [n], there is
an h ∈ Λn,k such that h(X) = [k]. Moreover, Λn,k can be computed in time 2O(k) · nO(1).

An immediate application of Lemma 2.6.1 is: when we try to find a reduction to a
problem P from a problem of deciding whether a graph G contains a small connected
subgraph H, we can assume there is a coloring φ : V (G)→ V (H) and find a reduction to
our target problem P from the problem of deciding whether a graph G contains a subgraph
X isomorphic to H and the vertices of V (X) get distinct colors under φ.

2.6.1 (n, k)-Universal Sets

To construct the family of functions in Lemma 2.6.1, we use a tool called (n, k)-universal
set.

Definition 2.6.2 ((n, k)-universal set). Let n, k ∈ N+. A set U ⊆ {0, 1}n is an (n, k)-
universal set if for all k distinct indices i1, i2, . . . , ik ∈ [n],∣∣∣ {(v(i1),v(i2), . . . ,v(ik))|v ∈ U}

∣∣∣ = 2k

The following lemma can be deduced from Theorem 10.20 and Proposition 10.19 of
[Juk11], which provided an elegant construction of (n, k)-Universal Sets using Paley-type
graphs and Weil’s character sum theorem.

Lemma 2.6.3. For k2k < n. We can compute an (n, k)-universal set in nO(1)-time.

Lemma 2.6.4. Let k, n,m ∈ N with

(k · log m)2k·log m <
√
n · log m.

Then in time (nlog m)O(1) we can construct a set C of functions [n]→ [m] of size n · log m
such that for every 1 ≤ i1 < i2 < . . . < ik ≤ n and every c : [k] → [m] there is a function
c : [n]→ [m] in C with

c(ij) = c(j)

for all j ∈ [k].

Proof: We use Lemma 2.6.3 with parameters

k ← k · log m and n← n · log m

to construct a (n · log m, k · log m)-universal set C ⊆ {0, 1}n·log m. It is easy to see that
every string c ∈ {0, 1}n·log m can be understood as a function c : [n] → [m] by dividing c
into n blocks, each of length log m. The desired property of C as a set of functions follows
directly from the (n · log m, k · log m)-universality. □

Using the tool of (n, k)-universal set, we can obtain a stronger version of Lemma 2.6.1.
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Lemma 2.6.5. For k, n ∈ N, we can construct a set Φ := {φ1, φ2, . . . , φn}, where φi :
[n]→ [k] in f(k) ·nO(1)-time such that for all S ∈

(
[n]
k

)
and ψ : S → [k], there exists φ ∈ Φ

such that for all s ∈ S, φ(s) = ψ(s).

Proof: If (k · log k)2k·log k ≥
√
n · log k, then n ≤ g(k) for some computable function g.

We can construct the set Φ by enumerating all possible function from [n] to [k] in time
nk = O(g(k)k), which is still in FPT. If (k ·log k)2k·log k <

√
n · log k, then by Lemma 2.6.4,

we are done. □
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Chapter 3

(n, k, ℓ, h)-Threshold Property

In this chapter, we aim to answer the question “where does the gap come from?”. To
this end, we introduce a threshold property for bipartite graphs. This is followed by two
efficient constructions of bipartite graphs satisfying such a property.

3.1 Definition

The key step in proving results of hardness approximation is to produce a gap in the
reduction. The PCP-theorem in its hardness of approximation version creates a gap for
the maximum fraction of satisfiable clauses of a SAT instance. We note that the maximum
fraction of satisfiable clauses is a global notion. It involves all the clauses in the instance
of SAT problem. Of course, one can derive gaps for local objects like clique using the
PCP-theorem. However, the reduction always causes the size of the clique to depend on
the cardinality of the graph, hence is not fpt.

We make a new approach for proving hardness of approximation by using a class of
graphs with a threshold property defined as follows.

Definition 3.1.1 ((n, k, ℓ, h)-threshold property). For h > ℓ, a bipartite graph T =
(A ∪̇ B,E) with a partition A = V1 ∪̇ V2 ∪̇ . . . ∪̇ Vn satisfy the (n, k, ℓ, h)-threshold
property if:

(T1) Every k + 1 distinct vertices in A have at most ℓ common neighbors in B, i.e.

∀V ∈
(

A

k + 1

)
, |Γ(V )| ≤ ℓ.

(T2) For every k distinct indices {i1, i2, . . . , ik} ∈
(

[n]
k

)
, there exist vi1 ∈ Vi1 , . . . ,

vik ∈ Vik such that vi1 , . . . , vik have at least h common neighbors in B, i.e.

∃vi1 ∈ Vi1 , . . . , vik ∈ Vik , |Γ({vi1 , . . . , vik})| ≥ h.
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Observed that for h≫ ℓ, there is a gap between the sizes of common neighbors of k-vertex
set and (k + 1)-vertex set. In Chapter 4, we will see that such a gap allows us to conduct
reductions which perform local transformations and also produce a gap.

Example 3.1.2. Let G := (A ∪̇ R,E) be a bipartite graph with A := [n], B :=
(

[n]
k

)
and

for every v ∈ A and u ∈ B,
{v, u} ∈ E ⇐⇒ v ∈ u

Then for every k-vertex set V ∈
(
A
k

)
=
(

[n]
k

)
, there exists exactly one vertex u ∈ B =

(
[n]
k

)
such that V = u. It is easy to verify that for every v ∈ V , {v, u} ∈ E(G). On the other
hand, every u ∈ B has at most k neighbors according to the definition, which means that
every k+ 1 vertices in A have no common neighbors. The graph G satisfies the (n, k, 0, 1)-
threshold property with each Vi contains exactly one vertex i ∈ [n]. We note that G contains
Ω(nk) vertices.

The definition of threshold property was inspired by the work from a remarkable paper
[BGK+96], in which the authors gave an explicit construction of a class of graphs satisfying
(T1) and

⋆ At least a 1
2ℓ−1 fraction of the sets V ∈

(
A
k

)
have h common neighbors.

for ℓ = (k+1)! and h = nΘ(1/k). (see Theorem 3.6 and Lemma 3.7 of [BGK+96]) We replace
the property ⋆ by (T2) because in the reduction based on graphs with threshold property,
we need the k-vertex set with h common neighbors to appear in a predictable way. (The
corresponding relation between our notation and that in [BGK+96] is: k + 1 ↔ t, ℓ ↔ s,
A↔ V1. )

Another more intuitive way of defining the threshold property is to replace (T2) with

– (T2’) Every k distinct vertices in A have at least h common neighbors in B.

We can see that (T2’) is a special case of (T2) when |Vi| = 1 for all i ∈ [n]. We did not
choose (T2’), even though it looks simpler, because we do not know how to construct a
graph satisfying (T1) and (T2’) in f(k) ·nO(1) time (see the Remark 3.2.6). However, with
(T2), we can construct graphs satisfying the threshold property in polynomial time.

In the following sections, we give two efficient constructions.

Lemma 3.1.3 (Probabilistic Construction). For k, ℓ, h, n ∈ N with n ≥ max{2(k +
1)2, 20}, ℓ = 2k2 + 4k − 1 and ℓ < h ≤ n

1
4(k+1) , we can construct in polynomial time a

bipartite random graph satisfying the (n, k, ℓ, h) threshold property with probability at
least 9

10 .

Lemma 3.1.4 (Explicit Construction). For k, n ∈ N+ with k = 6ℓ−1 for some ℓ ∈ N+

and ⌈(n + 1)
6

k+1 ⌉ > (k + 1)!, a bipartite graph with the (n, k, (k + 1)!, ⌈(n + 1)
6

k+1 ⌉)-
threshold property can be constructed in O(n18)-time.

21



3.2 Probabilistic Construction

For k, n ∈ N+ and p ∈ [0, 1], we define a probability space G(n, p) = (Ω, p), where Ω is
the set of all bipartite random graphs G = (A ∪̇ B,E) with |A| = |B| = n2 and every
pair of vertices u ∈ A and v ∈ B is joined by an edge with probability p, randomly
and independently. Furthermore we partition A into n subsets A = V1 ∪̇ V2 , . . . , ∪̇ Vn
with |Vi| = n for each i ∈ [n]. We use G(n, p) to denote the random variable which is
the identity function on Ω. Hence, for every G ∈ Ω, Pr[G(n, p) = G] = Pr(G). We
will show that with high probability G(n, p) satisfies the (n, k, ℓ, h)-threshold property for
ℓ = 2k2 + 4k − 1 < h ≤ n

1
4(k+1) and p = n− 2(k+ℓ+3)

(k+1)(ℓ+1) .

3.2.1 Estimate Pr[G(n, p) does not satisfy (T1)]

To bound the probability of G(n, p) containing a subgraph isomorphic to Kk+1,h, we need
the following lemma, which is a simple consequence of Markov’s Inequality:

Lemma 3.2.1. Let X be a nonnegative integral random variable, then Pr[X > 0] ≤ E[X].

Lemma 3.2.2. With probability at most n−2, G(n, p) does not satisfy (T1).

Proof: Let X be the number of Kk+1,ℓ+1-subgraphs in G(n, p) with the left k + 1 vertices
in A and the other ℓ+ 1 vertices in B. Then

E[X] =
(

n2

k + 1

)
·
(
n2

ℓ+ 1

)
· p(k+1)(ℓ+1) ≤ n2(k+1+ℓ+1) · n−2(k+ℓ+3) = n−2 (3.1)

We have Pr[X > 0] ≤ E[X] ≤ n−2. It follows from the definition that:

Pr[G(n, p) does not satisfy (T1)] ≤ Pr[X > 0] ≤ n−2.

Hence, when n → ∞, G(n, p) satisfies the first condition of threshold property with
high probability.

3.2.2 Estimate Pr[G(n, p) does not satisfy (T2)]

Recall that Γ(S) is the common neighbors of all vertices in S. For S ∈
(
A
k

)
, let

XS :=
∣∣∣∣∣
{
T ∈

(
B

h

)∣∣∣T ⊆ Γ(S)
}∣∣∣∣∣ (3.2)

In other words, XS denotes the number of Kk,h-subgraphs in G(n, p) whose left side vertex
set is S.
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Lemma 3.2.3. If h < n
1

4(k+1) then Pr[XS = 0] ≤ n− 1
2(k+1) .

Proof: By the Chebyshev’s Inequality, Pr[XS = 0] ≤ Var[XS ]
E[XS ]2 . To give an upper bound for

Pr[XS = 0], we need to estimate E[XS] and V ar[XS]. It is easy to see that

E[XS] =
(
n2

h

)
· pkh (3.3)

For T ∈
(
B
h

)
, Let Xs,t be a random variable that XS,T = 1 if S ∪ T forms a complete

bipartite subgraph, and XS,T = 0 otherwise. It follows that:

Var[XS]
=E[X2

S]− E[XS]2

=E[(
∑

T∈(B
h)
XS,T )2]− E[XS]2

=
∑

T,T ′∈(B
h)
E[XS,TXS,T ′ ]− E[XS]2

=
h∑
i=0

∑
T,T ′∈(B

h),|T∩T ′|=i

XS,TXS,T ′ Pr[XS,T = 1, XS,T ′ = 1]− E[XS]2

=
h∑
i=0

(
n2

h

)(
n2 − h
h− i

)(
h

i

)
· p2hk−ik − E[XS]2

≤
h∑
i=1

(
n2

h

)(
n2 − h
h− i

)(
h

i

)
· p2hk−ik (using

(
n2 − h
h

)
≤
(
n2

h

)
and (3.3))

≤
(
n2

h

)(
n2

h

)
p2hk

h∑
i=1

(
n2−h
h−i

)(
h
i

)
p−ik(

n2

h

)
≤E[XS]2

h∑
i=1

(
n2−h
h−i

)(
h
i

)
p−ik(

n2

h

) (using (3.3))

≤E[XS]2
h∑
i=1

h2in−2ip−ik (using
(
n2 − h
h− i

)(
n2

i

)
≤
(
n2

h

)(
h

i

)
and

(
h

i

)
n2i ≤

(
n2

i

)
hi)

≤E[XS]2
h∑
i=1

n−2i[1− k(k+ℓ+3)
(k+1)(ℓ+1) − 1

4(k+1) ] (using h ≤ n
1

4(k+1) and p = n− 2(k+ℓ+3)
(k+1)(ℓ+1) )

≤E[XS]2
h∑
i=1

n
−i

2(k+1) (using ℓ = 2k2 + 4k − 1)

≤E[XS]2 · n− 1
2(k+1)

Applying the Chebyshev’s Inequality, we obtain Pr[XS = 0] ≤ n− 1
2(k+1) .
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Remark 3.2.4. In the above deduction, we use ℓ = 2k2 + 4k − 1 to show that

1− k(k + ℓ+ 3)
(k + 1)(ℓ+ 1)

− 1
4(k + 1)

>
1

4(k + 1)

We can see that if 1− k(k+ℓ+3)
(k+1)(ℓ+1) −

1
4(k+1) = α, then V ar[XS] ≤ E[XS]2 ·n−2α. Using the

the Chebyshev’s Inequality will give us Pr[XS = 0] ≤ n−2α. Since our goal is to show
that Pr[XS = 0] is very small, we need to guarantee that α > 0, which implies we must
choose ℓ ≥ Ω(k2).

Lemma 3.2.5. If n > 2(1 + k)2 then with probability at most n−1, G(n, p) does not satisfy
the second condition of threshold graph.

Proof: For I = {a1, a2, . . . , ak} ∈
(

[n]
k

)
, consider the subsets Va1 , Va2 , . . . , Vak

in the
partition of A. For each i ∈ [k], suppose Vai

= {vi1, vi2, . . . , vin}. Denote by YI the number
of Kk,h-subgraph in G(n, p) with the restriction that each Vai

(i ∈ [k]) contains exactly one
vertex from the left side of such Kk,h-subgraph. For each j ∈ [n] let Sj := {v1j, v2j, . . . , vkj}
and XSj

be the number of h-vertex sets in Γ(Sj) as defined in (3.2). We note that for
distinct j and j′, Sj ∩ Sj′ = ∅. It is easy to see that:

Pr[YI = 0] ≤Pr[∀j ∈ [n], XSj
= 0] (3.4)

=
n∏
j=1

Pr[XSj
= 0] (3.5)

≤n− n
2(k+1) (3.6)

G(n, p) does not satisfy the second condition of threshold graph if there exists I ∈
(

[n]
k

)
such that YI = 0. By the union bound:

Pr[G(n, p) does not satisfy (T2)] (3.7)
≤

∑
I∈([n]

k )
Pr[YI = 0] (3.8)

≤nk− n
2(k+1) (3.9)

≤n−1 (3.10)

Remark 3.2.6. In step 3.5, we use the fact that each Vi contains n vertices. Suppose
we replace (T2) with (T2’) in the definition of threshold property, then each Vi con-
tains exactly one vertex. In this case, we can only bound Pr[YI = 0] by n− 1

2(k+1) . In
consequence, we obtain nk− 1

2(k+1) in step 3.9 instead of nk− n
2(k+1) , which is insufficient
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for us to deduce
Pr[G(n, p) does not satisfy (T2’)] ≤ n−1

3.2.3 Proof of Lemma 3.1.3

Choose n large enough such that n > 2(1 + k)2 and n > 20, then from Lemma 3.2.3 and
Lemma 3.2.5 we can deduce:

Pr[G(n, p) does not satisfy T1 or T2] ≤ n−2 + n−1 ≤ 1/10 (3.11)

Thus G(n, p) is an (n, k, ℓ, h) threshold bipartite graph with probability larger than
9/10.

3.3 Explicit Construction

3.3.1 Using Paley-Type Graphs

Definition 3.3.1 (Paley-type Graphs). For any prime power q = pt and d | q − 1, a
Paley-type bipartite graph G(q, d) := (A ∪̇ B,E) is defined as follows.

Vertices A = B = GF (q)×;

Edges ∀x ∈ A, y ∈ B, xy ∈ E ⇐⇒ (x+ y) q−1
d = 1.

It is a well-known fact that for any prime power q = pt, there exists a finite field Fq
with q elements and Fq = Fp[X]/(f), where f is an irreducible polynomial over Fp with
degree t. Such irreducible polynomial can be found by brute-force search. It is not hard
to see that:

Lemma 3.3.2. G(q, d) can be constructed in O(q3) time.

The Paley-type graphs have many nice properties, the following one is proved in
[KRS96, BGK+96]:

Theorem 3.3.3 (Theorem 5.1 in [BGK+96]). The graph G(pt, p − 1) contains no
subgraph isomorphic to Kt,t!+1.

Therefore, the graph G(pt, p− 1) satisfies (T1) for k ← t− 1 and ℓ← t!, our next step
is to show that it also satisfies (T2) for a proper choice of parameter values. To this end,
we prove:

Lemma 3.3.4 (Intersection). For any d, k, r, s ∈ N+ and prime power q with q−1 = rs,
d | q − 1 and √q ≥ sk

d
+ 1. Let a1, . . . , ak be distinct elements in GF×(q), g be the

generator of GF×(q), for each i ∈ [s], denote Vi := {gi+s, gi+2s, . . . , gi+sr}, then for
any j ∈ [s], the number of solutions x ∈ Vj to the system of equations (ai + x)

q−1
d =
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1(∀i ∈ [k]) is in q
sdk ± k

√
q.

Lemma 3.3.4 generalizes Lemma 3.8 in [BGK+96] by restricting the solutions to any
subset Vj(j ∈ [s]). If we set s = 1, then we obtain Lemma 3.8 in [BGK+96]. The intuition
behind Lemma 3.3.4 is that the solutions of (ai + x) q−1

d = 1 distribute “randomly”: the
equation (ai+x) q−1

d = 1 has q−1
d

solutions, we may say that a random generated element x ∈
GF×(q) satisfies this equation with probability 1

d
, hence x satisfies the system of equations

(ai + x)
q−1

d = 1(∀i ∈ [k]) with probability 1
dk . Since Vj contains 1

s
elements of GF×(q), we

expect the number of solutions x ∈ Vj to the system of equations (ai + x) q−1
d = 1(∀i ∈ [k])

is dominated by q
sdk , and k

√
q is the error term. We postpone the proof of Lemma 3.3.4.

Lemma 3.3.5. For any p, r, s, t ∈ N+ with p is prime, s
p−1 + 1 ≤

√
pt+1 and pt+1− 1 = rs.

Let g be the generator of GF×(pt+1), for each i ∈ [s], denote Vi := {gi+s, gi+2s, . . . , gi+sr}.
Then in the Paley-type bipartite graph G(pt+1, p − 1) = (A ∪̇ B,E), for any t distinct
indices a1, a2, . . . , at ∈ [s], there exist v ∈ Va1 × . . .× Vat, such that |Γ(v)| ≥ p.

Proof: Fix t distinct indices a1, a2, . . . , at ∈ [s]. Consider the sets S := Va1 × . . .×Vat and
Γ⟨S⟩ := {{v, u} | v ∈ S, u ∈ B, u ∈ Γ(v)}. Since s

p−1 + 1 ≤
√
pt+1, apply Lemma 3.3.4

with q ← pt+1 d← p− 1 k ← 1, each elements in GF×(pt+1) has at least

pt+1

s(p− 1)
− p

t+1
2 ≥ pt

s
+ pt−1

s
− p

t+1
2 ≥ pt

s
+ p

t+1
2 − p

t+1
2 = pt

s

neighbors in each Vai
. Thus |Γ⟨S⟩| ≥ (pt

s
)t(pt+1 − 1); on the other hand, |S| = (pt+1−1

s
)t,

by the pigeonhole principle, there exists v ∈ S such that

|Γ(v)| ≥ |Γ⟨S⟩|
|S|

≥
(pt

s
)t(pt+1 − 1)
(pt+1−1

s
)t

= pt
2

(pt+1 − 1)t−1 ≥
pt

2

pt2−1 ≥ p

In the construction of the threshold bipartite graphs, we need the famous Bertrand’s
Postulate from number theory, whose proof can be found in [Ram19, Erd34].
Proof: [of Lemma 3.1.4] For any positive integer n and k = 6ℓ−1, by Bertrands’s Postulate,
we can choose an arbitrary prime p between ⌈(n+ 1) 1

ℓ ⌉ and 2⌈(n+ 1) 1
ℓ ⌉, then we construct

the Paley-type graph G(pk+1, p − 1) = (A ∪̇ B,E). Let s = pℓ − 1, we have s ≥ n and
pk+1 − 1 = p6ℓ − 1 = sr, where r = (p2ℓ + pℓ + 1)(p3ℓ + 1). For each i ∈ [s], denote
Vi := {gi+s, gi+2s, . . . , gi+rs}, where g is the generator of GF×(pk+1). It is easy to see that
the graph G(pk+1, p − 1) including the partition of its vertices set can be constructed in
O(p3(k+1)) = O(n18). We only need to check G(pk+1, p − 1) satisfies (T1) and (T2) for
parameter n, k, ℓ← (k + 1)! and h← ⌈(n+ 1)6/(k+1)⌉.

By Theorem 3.3.3, G(pk+1, p− 1) contains no subgraph isomorphic to Kk+1,(k+1)!+1, i.e.
every k + 1 distinct vertices in A have at most (k + 1)! common neighbors in B. Thus
G(pk+1, p− 1) satisfies (T1).
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Since s
p−1 + 1 = pℓ−1

p−1 + 1 ≤ p3ℓ = p
k+1

2 , apply Lemma 3.3.5 with t← k, we have for any
k distinct indices a1, a2, . . . , ak ∈ [s], there exist vai

∈ Vai
(∀i ∈ [k]) such that va1 , . . . , vak

have at least p ≥ ⌈(n+ 1) 1
ℓ ⌉ > (k + 1)! common neighbors in B.

Finally, since s ≥ n, G(pk+1, p− 1) is an (n, k, (k + 1)!, ⌈(n+ 1) 1
ℓ ⌉) threshold bipartite

graph.

3.3.2 Proof of the Intersection Lemma

Definition 3.3.6 (Character). A character of a finite field GF (q) is a function χ :
GF (q)→ C satisfying the following conditions:

1 χ(0) = 0;

2 χ(1) = 1;

3 ∀a, b ∈ GF (q), χ(ab) = χ(a)χ(b)

Remark 3.3.7. Since for all x ∈ GF×(q), xq−1 = 1, we have χ(x)q−1 = χ(xq−1) = 1.
That is χ maps all the elements in GF×(q) to the roots of zq−1 = 1 in C.

Definition 3.3.8 (Order). A character χ of a finite field GF (q) has order d if d is the
minimal positive integer such that ∀a ∈ GF (q)×, χ(a)d = 1.

Theorem 3.3.9 (A. Weil). Let GF (q) be a finite field, χ a character of GF (q) and
f(x) a polynomial over GF (q) if:

1 The order of χ is d;

2 f(x) ̸= c · (g(x))d for any polynomial g over GF (q) and c ∈ GF (q);

3 The number of distinct roots of f in the algebraic closure of GF (q) is s.

then
|
∑

x∈GF (q)
χ(f(x))| ≤ (s− 1)√q

(See [Sch76], page 43, Theorem 2C’)

Remark 3.3.10. It is well known that the expected translation distance after n-step random
walk in 2-dimension space is about

√
n. By the character sum theorem, we can see that the

values of f(x) for x ∈ GF (q) distribute randomly to some extent.

Suppose g is the generator of GF (q), where q is a prime power and q−1 = rs(s, r ∈ N),
let Vi := {gi+s, gi+2s, · · · , gi+rs} l(i ∈ [s]). It is obvious that GF×(q) = V1 ∪ V1 · · · ∪ Vs and
∀i ∈ [s], |Vi| = r. With these notations, we have:
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Lemma 3.3.11. Suppose f is a function from GF (q) to C, then ∀i ∈ [s],

∑
z∈Vi

f(z) = 1
s

∑
x∈GF×(q)

f(gixs)

Proof: For any element z = gi+js ∈ Vi(j ∈ [r]), consider the set

Xj := {x ∈ GF×(q) | gixs = gi+js}.

It is easy to check that Xj = {gj+r, · · · , gj+sr}, i.e. there are exactly s element x in GF×(q)
such that gixs = z for each z ∈ Vi. Thus ∑z∈Vi

f(z) = 1
s

∑
x∈GF×(q) f(gixs).

Proof: [of Lemma 3.3.4] Let ω ∈ C be the primitive dth root of unity and g be a generator
of the multiplicative group GF×(q), define a function χ : GF (q)→ C as:

1 χ(0) = 0;

2 for gℓ ∈ GF×(q) set χ(gℓ) = ωℓ.

Then:

i χ is a character of GF (q). Because χ(ga · gb) = ωa+b = χ(ga)χ(gb) and χ(1) =
χ(gq−1) = wq−1 = 1 since d | q − 1;

ii The order of χ is d. Observed that χ(g)n = χ(gn) = 1 ⇐⇒ ωn = 1 ⇐⇒ d | n, the
order of χ is ≥ d; on the other hand, for all z = giz ∈ GF (q)×, χ(z)d = χ(gizd) =
ωdiz = 1, so the order of χ is ≤ d;

iii χ(x) = 1 ⇐⇒ x
q−1

d = 1. Suppose x = gi and notice that gℓ = 1 ⇐⇒ q − 1 | ℓ,
it follows that 1 = x

q−1
d = g

i(q−1)
d ⇐⇒ q − 1 | i(q−1)

d
⇐⇒ d | i ⇐⇒ ωi = 1 ⇐⇒

χ(x) = χ(gi) = 1.

By iii, (ai + x) q−1
d = 1 ⇐⇒ χ(ai + x) = 1, let

X := {x ∈ Vj | ∀i ∈ [k], χ(x+ ai) = 1}

Recall that a ± b denotes the set of real number between a − b and a + b, our goal is to
show that |X| ∈ q

sdk ± k
√
q.

Consider a polynomial h : C→ C with h(z) = zd−1
z−1 = 1 + z + · · ·+ zd−1, then:

h(1) = d;

h(ωi) = 0, for i = 1, 2, · · · , d− 1;

h(0) = 1.

Let H(x) = ∏k
i=1 h(χ(ai + x)), then:
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if x ∈ X, then H(x) = dk;

if x = −ai for some i ∈ [k] and χ(x+ ai′) = 1(∀i′ ∈ [k], i′ ̸= i), then H(x) = dk−1;

otherwise H(x) = 0

Now consider the sum S := ∑
x∈Vj

H(x), we have:

|X|dk ≤ S ≤ |X|dk + kdk−1

We only need to estimate S. Using Lemma 3.3.11, we can rewrite S as

S =
∑
x∈Vj

H(x)

= 1
s

∑
x∈GF×(q)

H(gjxs)

= 1
s

[
∑

x∈GF (q)
H(gjxs)−H(0)]

Expand the product in H(gjxs):∑
x∈GF (q)

H(gjxs)

=
∑

x∈GF (q)

k∏
i=1

h(χ(ai + xsgj))

=
∑

x∈GF (q)

k∏
i=1

[1 + χ(ai + xsgj) + · · ·+ χ(ai + xsgj)d−1]

=
∑

x∈GF (q)

∑
ψ∈{0,··· ,d−1}k

χ(fψ(x))

=q +
∑

ψ∈{0,··· ,d−1}k\{0}k

∑
x∈GF (q)

χ(fψ(x))

Where ψ ∈ {0, 1, · · · , d−1}k is a function from [k] to {0, · · · , d−1} and fψ(x) := ∏k
i=1(ai+

xsgj)ψ(i).
To invoke Weil’s theorem on the character sum ∑

χ(fψ(x)) for any ψ ∈ {0, · · · , d −
1}k \ {0}k, we need to check:

(1) The order of χ is d, this is done in the previous discussion;

(2) fψ(x) ̸= c · (g(x))d for any polynomial g over GF (q) and c ∈ GF (q). It suffices to
show that any solution of fψ(x) in the algebraic closure of GF (q) has multiplicity
≤ d−1. Let fij(x) = ai+xsgj, notice that the derivative of fij(x) is f ′

ij(x) = sgjxs−1,
we claim that all the roots of fij(x) have multiplicity 1, otherwise fij(x) and f ′

ij(x)
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have a common root, then sai = 0. This is impossible because q − 1 = sr implies
rsai = −ai ̸= 0; on the other hand, for distinct i, i′ ∈ [k], fij(x) and fi′j(x) do not
share a common root because ai ̸= ai′ . It follows that each root of fψ has multiplicity
≤ d− 1.

(3) fψ has at most ks distinct roots in the algebraic closure field of GF (q).

By Weil’s theorem
|
∑

x∈GF (q)
χ(fψ(x))| ≤ (ks− 1)√q,

So

|S + H(0)
s
− q

s
| = 1

s

∑
ψ∈{0,··· ,d−1}k\{0}k

∑
x∈GF (q)

χ(fψ(x))

≤ dk

s
(ks− 1)√q

Finally, notice that H(0) ≤ dk and √q > sk
d

+ 1, we have

|X| ∈ S

dk
± k

d

⊆
q −H(0)± (ks− 1)dk√q

sdk
± k

d

⊆ q

sdk
± (k√q + k

d
+ 1
s
−
√
q

s
)

⊆ q

sdk
± k√q

3.4 Some Extremal Questions

In Remark 3.2.4, we observe that ℓ = Ω(k2) is necessary for the probabilistic construction
of graphs satisfying the threshold property. A natural question is

Question 3.4.1. Is it possible to construct an nO(1)-vertex graph satisfying the (n, k, ℓ, h)-
threshold for every large n and ℓ = o(k2)?

In Remark 3.2.6, we discuss why we use (T2) instead of (T2’) in the definition of
threshold property. It seems that the answer to the following question is negative.

Question 3.4.2. Is there any nO(1)-vertex bipartite graph G := (A ∪̇ B,E) satisfying

– (T1) for all V ∈
(
A
k+1

)
, V has at most ℓ common neighbors.

– (T2’) for all V ∈
(
A
k

)
, V has at least h common neighbors.

where h > ℓ > 0.
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In both questions above, we require the vertex number to be in nO(1), otherwise a trivial
solution is to introduce h new vertices for every V ⊂

(
[n]
k

)
and make them adjacent to every

vertex in V . The graph constructed in this way has Θ(nk) vertices but satisfies (T1) and
(T2’) and the parameter ℓ is equal to zero. (See Example 3.1.2.)

In Question 3.4.2, if
(
n
h

)
<
(
n
k

)
, we can show that no such graph exists. By (T1), every

k-vertex subset of A has at least h common neighbors. Since
(
n
h

)
<
(
n
k

)
, by the pigeonhole

principle, there must exist two distinct k-vertex subsets V1 and V2 of A such that V1 and
V2 share h common neighbors. This implies that V1 ∪ V2 has h > ℓ common neighbors.
However |V1 ∪ V2| ≥ k + 1, which contradicts (T2’).

To ask more questions with such flavor, a definition would bring us a lot of convenience.

Definition 3.4.3. For bipartite graphs G := (A(G) ∪ B(G), E(G)) and S := (A(S) ∪
B(S), E(S)), let

lcount(G,S) :=
∣∣∣∣∣
{
X ∈

(
A(G)
|A(S)|

) ∣∣∣ S ⊆ G[X ∪B(G)]
}∣∣∣∣∣

Assume that G contains n vertices in each side. Then Question 3.4.2 and Question 3.4.1
can be formulated as follows.

Question 3.4.4. Does lcount(G,Kk+1,ℓ) = 0 ⇒ lcount(G,Kk,ℓ+1) = no(k) for every
ℓ = o(k2)?

Question 3.4.5. Does lcount(G,Kk,ℓ) =
(
n
k

)
⇒ lcount(G,Kk+1,h) > 0 for any h, ℓ ∈

N+?

A more general question in this direction is

Question 3.4.6. Let S and T be two bipartite graphs. What is the maximum value of
lcount(G,S) over all the bipartite graphs G with lcount(G, T ) = 0?

The pursuit of the answer to Question 3.4.6 is beyond the scope of this thesis. I believe
that it is not an easy task.
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Chapter 4

Maximum k-Subset Intersection

In this chapter, we consider an optimization problem whose goal is to find a maximum
k-subset intersection on input a family of subsets over [n]. This is equivalent to finding a
k-vertex set in a bipartite graph with largest common neighbors, i.e. a maximum biclique
with k vertices on its left side. The main result of this chapter is to give a gap-producing
fpt-reduction from k-Clique to this problem. The reduction heavily relies upon bipartite
graphs with the threshold property. In the introduction, we give a high level overview
of the main ideas for this reduction. This is followed by the main result and some of its
consequences. Our methodology is to exploit the cardinality gap between the common
neighbors of k-vertex set and (k+1)-vertex set in graphs satisfying the threshold property.
Using the fact that a k-vertex subgraph is a clique if and only if its edge number is equal
to s, we are able to encode the k-clique in an input graph G by s subsets with large
intersection size in the set family F . Finally, we end this chapter by giving some related
open questions.

4.1 Introduction

Given a collection F = {S1, S2, . . . , Sn} of subsets over [m], where m = nO(1). The goal
of Maximum k-Subset Intersection is to select k distinct subsets from F such that their
intersection size is as large as possible.

Max-k-Subset-Intersection
Instance: k and a set family F = {S1, S2, . . . , Sn} over [m],

where m = nO(1).
Solution: k distinct subsets Sj1 , Sj2 , . . . , Sjk from F .

Cost: the intersection size |Sj1 ∩ . . . ∩ Sjk |.
Goal: max.

Example 4.1.1. Suppose m = 6, F = {{1, 2, 3}, {2, 3, 4}, {2, 3, 5}, {2, 4, 6}} and k = 3.
We can see that n = 4. There are

(
n
3

)
=
(

4
3

)
= 4 possibilities of choosing 3 subsets from F .

1 {1, 2, 3}, {2, 3, 4}, {2, 3, 5}
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2 {1, 2, 3}, {2, 3, 4}, {2, 4, 6}

3 {2, 3, 4}, {2, 3, 5}, {2, 4, 6}

4 {1, 2, 3}, {2, 3, 5}, {2, 4, 6}

The maximum cardinality intersection of three subsets from F is

{2, 3} = {1, 2, 3} ∩ {2, 3, 4} ∩ {2, 3, 5}

The polynomial time inapproximability of Maximum k-Subset Intersection has been
proved in [Xav12] based on the inapproximability of Maximum Edge Biclique [AMS11].

However, it does not rule out approximate algorithms in f(k) · nO(1)-time. The main
result of this chapter is that we can construct F and s on input a graph G and a positive
integer k in polynomial time such that s =

(
k
2

)
and

– if G contains a subgraph isomorphic to Kk then F has an s-intersection with size no
less than nΘ(1/k);

– if G contains no Kk-subgraph then every s-intersection of F has size at most (k+1)!.1

In other words, unless FPT = W[1], there are no f(s)·nO(1)-time algorithms to approximate
the Maximum s-Subset Intersection within ratio o(n1/

√
s).

We emphasize that our result of hardness approximation does not rely on the PCP-
theorem. Instead, we exploit the gap between the sizes of the common neighbors of k-vertex
sets and (k + 1)-vertex sets in graphs satisfying the threshold property. Here we give a
high level overview of the main ideas of our reduction for Maximum s-Subset Intersection.
Suppose we can construct a collection of sets T = {S1, S2, . . . , Sn} for any positive integers
k, n and h > ℓ (e.g. h = n1/k and ℓ = (k + 1)!) such that

(T1) every k + 1 distinct subsets in T has intersection size at most ℓ;

(T2’) every k distinct subsets in T has intersection size at least h.

Here we use (T2’) instead of (T2) to simplify the explanation. Then on input a graph G
with V (G) = [n], we construct a new family of subsets F := {S{ij} := Si∩Sj | ij ∈ E(G)}.

IfG has a k-clique, say {1, 2, . . . , k} forms aKk-subgraph inG, then by (T2’) |∩i∈[k] Si| ≥
h. It follows that {S{ij} | {i, j} ∈

(
[k]
2

)
} are s =

(
k
2

)
distinct subsets in F with intersection

cardinality at least h; on the other hand, if G contains no k-clique then every s distinct
subsets in F must come from at least k + 1 distinct subsets in T , by (T1) these subsets
have intersection size at most ℓ.

It remains to construct the set family T efficiently for some proper parameters k, n, h
and ℓ. However, the condition (T2’) is too strong. We make a relaxation by considering
a family with n′ (n < n′ = nO(1)) subsets and partitioning [n′] into n disjoint subsets
[n′] = I1 ∪̇ I2 , . . . , In. Then we replace (T2’) with

1However, in this case, there may exist s− 1 distinct subsets in F with intersection size nΘ(1/k).
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Figure 4.1: Reduction from Finding K3 to Max 3-Subset Intersection

(T2) for any k distinct indices a1, a2, . . . , ak ∈ [n], there exists b1 ∈ Ia1 , b2 ∈ Ia2 . . . , bk ∈
Iak

such that |∩i∈[k] Sbi
| ≥ h.

With little effort, we adapt our reduction to the set family satisfying (T1) and (T2). In
the previous chapter, we have seen that a bipartite graph in which the family of neighbor
sets for all vertices satisfying (T1) and (T2) can be computed in polynomial time. This
complete our reduction.

4.2 The Gap-producing Reduction

Theorem 4.2.1 (Main). We can construct a bipartite graph H = (A ∪̇ B,E) on input
an n-vertex graph G and a positive integer k with ⌈n

6
k+6 ⌉ > (k + 6)! in O(n18)-time

such that:

(1) if Kk ⊆ G, then there are s vertices in A with at least ⌈n
6

k′+1 ⌉ common neighbors
in B;

(2) if Kk ⊈ G, then every s vertices in A have at most (k′ + 1)! common neighbors
in B.

where s =
(
k′

2

)
and k′ is the minimum integer such that 6 | k′ + 1 and k′ ≥ k.

To prove the main theorem, we need the following reduction lemma.

Lemma 4.2.2 (reduction). On input an n-vertex simple graph G and an (n, k, ℓ, h)-
threshold bipartite graph T , we can construct a new graph H = (A ∪̇ B,E) in nO(c)-time,
such that:

(H1) if Kk ⊆ G, then ∃V ∈
(
A
s

)
, |Γ(V )| ≥ h.
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Figure 4.2: The Reduction of Theorem 4.2.1

(H2) if Kk ⊈ G, then ∀V ∈
(
A
s

)
, |Γ(V )| ≤ ℓ.

where s :=
(
k
2

)
.

Proof: Suppose V (G) = [n] and A(T ) = V1 ∪̇ V2 ∪̇ . . . ∪̇ Vn. Our goal is to construct
a bipartite graph H = (A ∪̇ B,E) satisfying (H1) and (H2). We associate to each Vi a
vertex i ∈ V (G). Let ι : A(T ) → V (G) be the function that for each u ∈ Vi, ι(u) = i.
Then we construct the bipartite graph H = (A ∪̇ B,E) as follows.

A := {{u1, u2} | u1, u2 ∈ A(T ), {ι(u1), ι(u2)} ∈ E(G)};

B := B(T );

E := {{e, v} | {u1, u2} = e ∈ A, v ∈ B, u1v ∈ E(T ), u2v ∈ E(T )}.

We show that H satisfies (H1) and (H2):

(1) If Kk ⊆ G, let us say {a1, . . . , ak} induces a Kk in G. Then by (T2), there exists
uai
∈ Vai

(∀i ∈ [k]) such that {ua1 , . . . , uak
} has at least h common neighbors in

B(T ). Let X := {ua1 , . . . , uak
} and Y := Γ(X), we have |X| = k and |Y | ≥ h.

Let EX :=
(
X
2

)
. Since {ι(uai

), ι(uaj
)} = {ai, aj} ∈ E(G) for all distinct i, j ∈ [k],

we have EX ⊆ A, hence for all e ∈ EX and v ∈ Y , {e, v} ∈ E. So EX ∪̇ Y
induces a complete bipartite subgraph in H. It follows that H satisfies (H1) because
|EX | =

(
|X|
2

)
=
(
k
2

)
= s and |Y | ≥ h;
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(2) If there exists V ∈
(
A
s

)
with |Γ(V )| ≥ ℓ + 1, we need to show Kk ⊆ G. Let

EX := V , Y := Γ(V ). We have |EX | = s and |Y | ≥ ℓ + 1. Consider X :=
{u ∈ A(T ) | ∃ e ∈ EX u ∈ e}. By the definition of the edge set E, in the graph
T , Y ⊆ Γ(X). Since |Y | = ℓ + 1 and ∀X ∈

(
A(T )
k+1

)
, |Γ(X)| ≤ ℓ, we have |X| ≤ k;

on the other hand, it is not hard to see that EX ⊆
(
X
2

)
, hence |EX | =

(
k
2

)
implies

|X| > k − 1. Thus |X| = k and for any distinct u1, u2 ∈ X, {u1, u2} ∈ A. Recall
that {u1, u2} ∈ A ⇐⇒ {ι(u1), ι(u2)} ∈ E(G) and G is simple. It follows that
{ι(u) | u ∈ X} induces a Kk in G.

□

Remark 4.2.3. Inspection of the proof of Lemma 4.2.2 shows that the graph H = (A ∪̇ B,E)
created by our reduction also satisfies the following property. For 0 < β < α ≤ 1.

– if G contains a k-vertex subgraph with α · s edges, then ∃V ∈
(
A
αs

)
, |Γ(V )| ≥ h.

– if every k-vertex subgraph of G has at most β ·s edges, then ∀V ∈
(

A
βs+1

)
, |Γ(V )| ≤ ℓ.

In other words, if there is no fpt-algorithm to distinguish between graphs with a k-vertex
subgraph containing αs edges and graphs without k-vertex subgraph containing (βs + 1)
edges, then k-Biclique and hence k-Clique cannot be fpt-approximated to ratio α

β
.

Lemma 4.2.2 can be extended as follows. For ∆ : N→ N+, we duplicate every vertex of
A in the bipartite graph H ∆(k) times. Then we obtain a more general reduction lemma.

Lemma 4.2.4. For ∆ : N→ N+. On input an n-vertex simple graph G and an (n, k, ℓ, h)-
threshold bipartite graph T , we can construct a new graph H = (A ∪̇ B,E) in ∆(k) ·nO(1)-
time, such that:

– if Kk ⊆ G, then ∃V ∈
(

A
∆(k)·s

)
, |Γ(V )| ≥ h.

– if Kk ⊈ G, then ∀V ∈
(

A
∆(k)·s

)
, |Γ(V )| ≤ ℓ.

Now we are ready to prove Theorem 4.2.1.

Proof: [of Theorem 4.2.1] Given G and k, let k′ be the minimum integer such that k′ ≥ k
and 6 | k′ + 1, we have k′ ≤ k + 5. Then we add a new clique with k′ − k vertices into G
and connect them with every vertex in G. It is easy to see that the new graph contains a
k′-clique if and only if G contains a k-clique. Since ⌈n

6
k+6 ⌉ > (k + 6)!, we have ⌈n

6
k′+1 ⌉ >

(k′ + 1)!. Apply Lemma 3.1.4 on n and k′, we obtain an (n, k′, (k′ + 1)!, ⌈(n + 1)
6

k′+1 ⌉)-
threshold bipartite graph. The result then follows from Lemma 4.2.2.

From Theorem 4.2.1, we obtain an inapproximation result for the Maximum k-Subset
Intersection Problem immediately.
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Corollary 4.2.5. Assuming FPT ̸= W[1], there is no f(k) · nO(1)-time algorithm approxi-
mating Maximum k-Subset Intersection within nε-approximation ratio for ε < 6√

k+1 .

To see that Theorem 4.2.1 implies the W[1]-hardness of k-Biclique. Let t = (k′ +
1)! + 1. We add (t− s) vertices to H and make them adjacent to every vertex in B. It is
easy to check that the resulting graph contains a Kt,t if and only if the original graph G
contains a Kk.

Corollary 4.2.6. k-Biclique is W[1]-hard.

4.2.1 Lower Bounds under ETH

More refined lower bounds can be obtained if we assume ETH. From Theorem 2.2.2 and
Theorem 4.2.1, we can deduce

Corollary 4.2.7. Assuming ETH, there is no f(k) · no(
√
k)-time algorithm approximating

Maximum k-Subset Intersection within nε-approximation ratio for ε < 6√
k+1 .

Using Lemma 4.2.4, we obtain a inapproximability result with a trade-off between the
running time of the algorithm and the approximation ratio.

Corollary 4.2.8. Assuming ETH, for every constant c ≥ 2 there is no f(k) · no(
c√
k)-time

algorithm approximating Maximum k-Subset Intersection within nε-approximation ratio for
ε < 6

c√
k+1 .

An interesting question is to find a linear fpt-reduction from k-Clique to k-Biclique,
that is given G and k, computing a new graph G′ in f(k) · nO(1)-time such that Kk ⊆ G if
and only if Kk′,k′ ⊆ G′, where k′ = ck for some constant c. The existence of such reduction
would imply that k-Biclique has no f(k) ·no(k)-time algorithm under the ETH. However,
since our reduction causes a quadratic blow-up of the size of solution, k′ =

(
k
2

)
is the

best we may achieve. We note that by Theorem 4.2.1, we can get k′ = Ω(k!). Using the
probabilistic method, we have:

Theorem 4.2.9. For any n-vertex graph G and positive integer k with n ≥ max{2(k +
1)2, 20}, ℓ = 2k2 + 4k − 1 < n

1
4(k+1) , we can construct a random graph G′ in polynomial

time such that, with probability at least 9
10 , G′ contains a Kℓ+1,ℓ+1 if and only if G contains

a Kk.

We can see Theorem 4.2.9 follows from Lemma 3.1.3.
Consider a randomized version of ETH which states that there are no randomized

algorithms with two-sided error such that on input an instance of 3-SAT decide if it is
satisfiable or not correctly with probability larger than 1/2 in 2o(n)-time. For more detail
we refer to [CFK+16]. Then Theorem 4.2.9 yields a better lower bound for k-Biclique:

Corollary 4.2.10. Under the randomized ETH, there is no f(k)·no(
√
k) algorithm to decide

whether a given graph contains a subgraph isomorphic to Kk,k.
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4.3 Open Questions

In Corollary 4.2.8, we obtained a hardness result with a trade-off between the approxi-
mation ratio and the running-time of the algorithm for Max-k-Subset-Intersection.
This suggests a question.

Question 4.3.1. Given two function h, ℓ : N × N → N with h(n, k) ≥ ℓ(n, k), what is
the minimum value δ(k) such that there is an f(k) · nδ(k)-time algorithm that on input an
n-vertex bipartite graph G = (A ∪̇ B,E) distinguishes

– whether there exists S ∈
(
A
k

)
such that |Γ(S)| ≥ h(n, k);

– or every S ∈
(
A
k

)
has |Γ(S)| ≤ ℓ(n, k).

The following question is relevant.

Question 4.3.2. Fix two function h, ℓ : N × N → N with h(n, k) ≥ ℓ(n, k), what is
the minimum value of δ(k) := kε1(k)

δ1(k) such that lcount(G,Kδ1(k),h(n,k)) > nε1(k) implies
lcount(G,Kk,ℓ(n,k)) > 0 ?

The minimum value of δ(k) is linked to the running time of the algorithm in Ques-
tion 4.3.1. We can enumerate every δ1(k)-vertex subset of A(G) with h(n, k) common
neighbors. If the number of such subsets exceed nε1(k), then there are k vertices in A(G)
with more than ℓ(n, k) common neighbors. Otherwise, we only need to check n

kε1(k)
δ1(k) = nδ(k)

cases.
In particular, by Lemma 6.3.4, we have that for 0 < ε < 1 if

lcount(G,K1,nε) · nε > lcount(G,K1,nε)1−1/tn+ tlcount(G,K1,nε),

then lcount(G,K2,t) > 0. For instance, suppose (1− ε)t < 1 and nε ≫ t, then we obtain

lcount(G,K1,nε) > n(1−ε)t ⇒ lcount(G,K2,t) > 0

It is possible to distinguish graphs containing two vertices with nε common neighbors
and graphs without K2,t+1-subgraph in time n2(1−ε)t = o(n2).

The following question aims to derandomize Theorem 4.2.9.

Question 4.3.3. Give an explicit construction of graphs satisfying the (n, k, k2, k2 + 1)-
threshold property in f(k) · nO(1)-time.

A more aggressive one is

Question 4.3.4. Give an explicit construction of graphs satisfying the (n, k, k2, nΘ(1/k))-
threshold property in f(k) · nO(1)-time.
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According to the construction in Chapter 5, we can see that solving Question 4.3.4
leads to a better inapproximability result of Min-Dominating-Set under ETH.

Note that even if the bipartite graphs with (n, k, k2, k2 + 1)-threshold property can
be constructed in deterministic fpt time, we could only show that k-Biclique has no
f(k) · no(

√
k) algorithm under ETH, since our reduction causes a quadratic blow-up of the

parameter. The following question is still open.

Question 4.3.5. Is there any f(k) · no(k)-time algorithm solving k-Biclique?

A possible way to avoid such quadratic blow-up of the parameter is to do reduction
from the Partition Subgraph Isomorphism, in which the number of edge is treated as
parameter [Mar07]. However, we can only reduce the Partition Subgraph Isomorphism of
a smaller graph G with v-vertex to the k-Biclique problem with k =

(
v
2

)
. The hardness

result in [Mar07] states that if Partitioned Subgraph Isomorphism can be solved in f(G) ·
no(|E(G)|/log |E(G)|), then ETH fails. In this statement, |E(G)| = Θ(|V (G)|), we still can not
avoid the quadratic blow-up of parameter.

Figure 4.3: A 3× 4 grid.

We have shown the W[1]-hardness of k-Biclique. Can we extend our technique to
other graph classes with unbounded tree-width? Another natural graph class with un-
bounded treewidth is grid.

Definition 4.3.6 (Gr×c). For c, r ∈ N+, a r × c-grid is a graph G := (V,E) with

– V := [r]× [c];

– For (i, j), (i′, j′) ∈ V , {(i, j), (i′, j′)} ∈ E iff |i− i′|+ |j − j′| = 1.

k-Grid
Instance: k ∈ N+ and a graph G.

Parameter: k.
Problem: Decide if G contains a subgraph isomorphic to a

Gk×k.
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Question 4.3.7. Is there any f(k) · nO(1)-time algorithm solving k-Grid?
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Chapter 5

Minimum Dominating Set

The main result of this chapter is to prove the constant inapproximability of the param-
eterized minimum dominating set problem. To help readability, we first prove that the
dominating set problem is not fpt approximable with ratio smaller than 3/2 in Section 5.2.
In the case of the clique problem, once we have inapproximability for a particular constant
ratio, it can be easily improved to any constant by gap-amplification via graph products.
But dominating sets for general graph products are notoriously hard to understand (see
e.g. [KZ96]). So to prove the main result, Section 5.3 presents a modified reduction which
contains a tailor-made graph product. Section 5.4 discusses some consequences of our
results. We conclude in Section 5.5.

5.1 Introduction

The dominating set problem, or equivalently the set cover problem, was among the first
problems proved to be NP-hard [Kar72]. Moreover, it has been long known that the greedy
algorithm achieves an approximation ratio ≈ lnn [Joh74, Ste74, Lov75, Chv79, Sla97].
And after a sequence of papers (e.g. [LY94, RS97, Fei98, AMS06, DS14]), this is proved
to be best possible. In particular, Raz and Safra [RS97] showed that the dominating
set problem cannot be approximated with ratio c · log n for some constant c ∈ N unless
P = NP [RS97]. Under a stronger assumption NP ̸⊆ DTIME

(
nO(log log n)

)
Feige proved

that no approximation within (1 − ε) lnn is feasible [Fei98]. Finally Dinur and Steuer
established the same lower bound assuming only P ̸= NP [DS14]. However, it is important
to note that the approximation ratio lnn is measured in terms of the size of an input
graph G, instead of γ(G), i.e., the size of its minimum dominating set. As a matter of fact,
the standard examples for showing the Θ(log n) greedy lower bound have constant-size
dominating sets. Thus, the size of the greedy solutions cannot be bounded by any function
of γ(G). So the question arises whether there is an approximation algorithm A that always
outputs a dominating set whose size can be bounded by ρ(γ(G)) ·γ(G), where the function
ρ : N→ N is known as the approximation ratio of A. The constructions in [Fei98, AMS06]
indeed show that we can rule out ρ(x) ≤ ln x. To the best of our knowledge, it is not known
whether this bound is tight. For instance, it is still conceivable that there is a polynomial
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time algorithm that always outputs a dominating set of size at most 22γ(G) .
Other than looking for approximate solutions, parameterized complexity [DF99, FG06,

Nie06, DF13, CFK+16] approaches the dominating set problem from a different perspective.
With the expectation that in practice we are mostly interested in graphs with relatively
small dominating sets, algorithms of running time 2γ(G) · |G|O(1) can still be considered
efficient. Unfortunately, it turns out that the parameterized dominating set problem is
complete for the second level of the so-called W-hierarchy [DF95], and thus fixed-parameter
intractable unless FPT = W[2]. So one natural follow-up question is whether the problem
can be approximated in fpt-time. More precisely, we aim for an algorithm with running
time f(γ(G)) · |G|O(1) which always outputs a dominating set of size at most ρ(γ(G)) ·γ(G).
Here, f : N→ N is an arbitrary computable function. The study of parameterized approx-
imability was initiated in [CH10, CGG07, DFM06]. Compared to the classical polynomial
time approximation, the area is still in its very early stage with few known positive and
even less negative results.

5.1.1 Our Results

We prove that any constant-approximation of the parameterized dominating set problem
is W[1]-hard.

Theorem 5.1.1. For any constant c ∈ N there is no fpt-algorithm A such that on every
input graph G the algorithm A outputs a dominating set of size at most c · γ(G), unless
FPT = W[1] (which implies that the exponential time hypothesis (ETH) fails).

In the above statement, clearly we can replace “fpt-algorithm” by “polynomial time
algorithm,” thereby obtaining the classical constant-inapproximability of the dominating
set problem. But let us mention that our result is not comparable to the classical version,
even if we restrict ourselves to polynomial time tractability. The assumption FPT ̸= W[1]
or ETH is apparently much stronger than P ̸= NP, and in fact ETH implies NP ̸⊆
DTIME

(
nO(log log n)

)
used in aforementioned Feige’s result. But on the other hand, our

lower bound applies even in case that we know in advance that a given graph has no large
dominating set.

Corollary 5.1.2. Let β : N→ N be a nondecreasing and unbounded computable function.
Consider the following promise problem.

Min-Dominating-Setβ
Instance: A graph G = (V,E) with γ(G) ≤

β(|V |).
Solution: A dominating set D of G.

Cost: |D|.
Goal: min.

Then Min-Dominating-Setβ does not admit a polynomial time constant approximation
algorithm, unless FPT = W[1].
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The proof of Theorem 5.1.1 is crucially built on Theorem 4.2.1. We exploit the gap
created in its hardness reduction. In the known proofs of the classical inapproximability
of the dominating set problem, one always needs the PCP theorem in order to have such a
gap, which makes those proofs highly non-elementary. More importantly, it can be verified
that reductions based on the PCP theorem produce instances with optimal solutions of
relatively large size, e.g., a graph G = (V,E) with γ(G) ≥ |V |Θ(1). This is inevitable,
since otherwise we might be able to solve every NP-hard problem in sub-exponential time.
As an example, if it is possible to reduce an NP-hard problem to the approximation of
Min-Dominating-Setβ for β(n) = log log log n, then by brute-force searching for a min-
imum dominating set, we are able to solve the problem in time nO(log log log n). It implies
NP ⊆ DTIME

(
nO(log log log n)

)
. Because of this, Corollary 5.1.2, and hence also Theo-

rem 5.1.1, is unlikely provable following the traditional approach.

Using a result of Chen et.al. [CHKX04] the lower bound in Theorem 5.1.1 can be further
sharpened.

Theorem 5.1.3. Assume ETH holds. Then there is no fpt-algorithm which on every input
graph G outputs a dominating set of size at most 4+ε

√
log (γ(G)) ·γ(G) for every 0 < ε < 1.

Related Work

The existing literature on the dominating set problem is vast. The most relevant to our
work is the classical approximation upper and lower bounds as explained in the beginning.
But as far as the parameterized setting is concerned, what was known is rather limited.

Downey et al. proved that there is no additive approximation of the the parameterized
dominating set problem [DFMR08]. In the same paper, they also showed that the inde-
pendent dominating set problem has no fpt approximation with any approximation ratio.
Recall that an independent dominating set is a dominating set which is an independent
set at the same time. With this additional requirement, the problem is no longer mono-
tone, i.e., a superset of a solution is not necessarily a solution. Thus it is unclear how
to reduce the independent dominating set problem to the dominating set problem by an
approximation-preserving reduction.

In [CHK13, HKK13] it is proved under ETH that there is no c
√

log γ(G)-approximation
algorithm for the dominating set problem1 with running time 2O(γ(G)(log γ(G))d )|G|O(1), where
c and d are some appropriate constants. With the additional Projection Game Conjecture
due to [Mos12] and some of its further strengthening, the authors of [CHK13, HKK13] are
able to even rule out γ(G)c-approximation algorithms with running time almost doubly
exponential in terms of γ(G). Clearly, these lower bounds are against far better approxi-
mation ratio than those of Theorem 5.1.1 and Theorem 5.1.3, while the drawback is that
the dependence of the running time on γ(G) is not an arbitrary computable function.

1The papers actually address the set cover problem, which is equivalent to the dominating set problem
as mentioned in the beginning.
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Figure 5.1: Overview of the Reduction

The dominating set problem can be understood as a special case of the weighted satisfia-
bility problem of CNF-formulas, in which all literals are positive. The weighted satisfiability
problems for various fragments of propositional logic formulas, or more generally circuits,
play very important roles in parameterized complexity. In particular, they are complete
for the W-classes. In [CGG07] it is shown that they have no fpt approximation of any
possible ratio, again by using the non-monotonicity of the problems. Marx strengthened
this result significantly in [Mar13] by proving that the weighted satisfiability problem is not
fpt approximable for circuits of depth 4 without negation gates, unless FPT = W[2]. Our
result can be viewed as an attempt to improve Marx’s result to depth-2 circuits, although
at the moment we are only able to rule out fpt approximations with constant ratio.

5.1.2 Overview of Our Reduction

To give a brief overview of our reduction, let us consider the weighted version of the
minimum dominating set problem.

Min Weighted Dominating Set
Instance: A graph G and w : V (G)→ R.
Solution: D ⊆ V (G) is a dominating set of

G.
Cost: ∑

v∈D w(v).
Goal: min.

For a given weight function w, let γw(G) be the minimum value of weighted dominating
set for G.

The intuition of our reduction is illustrated in Figure 5.1. First, we provide an fpt-
reduction from Max-k-Subset-Intersection to minimum weighted dominating set which
creates a gap close to 2. Then we improve this reduction using two methods: duplicating
the vertices and taking graph product.

In Section 5.2, we obtain a 3/2-gap fpt-reduction for the unweighted version by dupli-
cating the vertices. In Section 5.3, we increase the gap to any constant using the method
of graph product.

We end this section with an informal description of the fpt-reduction for minimum
weighted dominating set which creates a gap close to 2.

First, we choose a large d ∈ N+ with ε
√
d > ℓ and partition B into d disjoint subsets.

Then for each i ∈ [d], we introduce a set of vertices Wi and add edges between A and Wi,
Wi and Bi such that there are two ways to dominate the vertices in Wi:
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– Using one vertex in Bi and its s neighbors in A.

– Using two vertices in Bi.

Finally, we choose t ∈ N+ with t = d1− 1
2s and give the vertices in A weight t. On the other

hand, we assign to all the vertices in W infinite weight and to vertices in B weight 1.
If ∃X ∈

(
A
s

)
Γ(X) ≥ d, then we can choose this s-vertex set X and its d common

neighbors as the dominating set. The weight of this dominating set is st+ d. Choosing d
large enough, we have that st+ d ≤ (1 + ε)d by t = o(d).

If ∀X ∈
(
A
s

)
Γ(X) ≤ ℓ. Let D be the dominating set. Then

– Either there are (1 − ε) fraction of i ∈ [d], |D ∩ Bi| ≥ 2. In this case, the weight of
D is w(D) ≥ (1− ε)2d ≈ 2d;

– Or for εd distinct i ∈ [d], we use a vertex vi ∈ Bi ∩D and its s neighbors in D ∩ A
to dominate Wi. Assume that w(D) ≤ 2d, otherwise we are done. It follows that
|D ∩ A| ≤ 2d/t. We have that there are εd vertices in D ∩B, each having at least s
neighbors in |D∩A| ≤ 2d/t = O(d1/2s). There are at most (2d/t)s = O(d1/2) distinct
s-tuples of D ∩ A. By the pigeonhole principle, at least εd1/2 > ℓ vertices in D ∩ B
must be adjacent to the same s-tuples of D ∩ A. This contradicts to the fact that
every s-vertex set in A has at most ℓ common neighbors in B.

5.2 The Case ρ < 3/2

As the first illustration of how to use the gap created in Theorem 4.2.1, we show in this
section that k-Dominating-Set cannot be fpt approximated within ratio < 3/2. This
serves as a stepping stone to the general constant-inapproximability of the problem.

Theorem 5.2.1. Let ρ < 3/2. Then there is no fpt approximation of the parameterized
dominating set problem achieving ratio ρ unless FPT = W[1].

Proof: We fix some ε, δ ∈ R with 0 < ε < 1, 0 < δ < 1/2, and

3/2− δ
1 + ε

> ρ. (5.1)

Let G be a graph with n vertices and k ∈ N a parameter. We set s :=
(
k
2

)
,

d :=
⌈
s

ε

⌉2s
, and t :=

⌈(1
2
− δ

)
· d1−1/2s

⌉
.
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As a consequence, when k and n are sufficiently large, we have

st < εd,
(1

2
− δ

)
· d
t
≤ 2s
√
d, (k + 1)! < 2δ

√
d− 1, and d ≤ ⌈n

6
k+1 ⌉. (5.2)

By Theorem 4.2.1 (and the preprocessing) we can compute in fpt-time a bipartite graph
H0 = (A0 ∪̇ B0, E0) such that:

- if Kk ⊆ G, then there are s vertices in A0 with d common neighbors in B0;

- if Kk ⊈ G, then every s vertices in A0 have at most (k + 1)! common neighbors in
B0.

Then using the color-coding in Lemma 2.6.1, again in fpt-time, we construct two function
families ΛA := Λ|A0|,s and ΛB := Λ|B0|,d such that

- for every s-element subset X ⊆ A0 there is an h ∈ ΛA with h(X) = [s];

- for every d-element subset Y ⊆ B0 there is an h ∈ ΛB with h(Y ) = [d].

Define the bipartite graph H =
(
A(H) ∪̇ B(H), E(H)

)
by

A(H) := A0 × ΛA × ΛB, B(H) := B0 × ΛA × ΛB

E(H) :=
{{

(u, h1, h2), (v, h1, h2)
} ∣∣∣∣ u ∈ A0, v ∈ B0, h1 ∈ ΛA, h2 ∈ ΛB, and {u, v} ∈ E0

}
.

Moreover, define two colorings α : A(H)→ [s] and β : B(H)→ [d] by

α(u, h1, h2) := h1(u) and β(v, h1, h2) := h2(v).

It is straightforward to verify that

(H1) if Kk ⊆ G, then there are s vertices of distinct α-colors in A(H) with d common
neighbors of distinct β-colors in B(H);

(H2) if Kk ⊈ G, then every s vertices in A(H) have at most (k + 1)! common neighbors
in B(H).

Now from H, α, and β we construct a new graph G′ =
(
V (G′), E(G′)

)
as follows. First,

its vertex set is defined by

V (G′) := B(H) ∪̇
{
xi, yi

∣∣∣ i ∈ [d]
}
∪̇ C ∪̇ W,

where

C := A(H)× [t] and W :=
{
wb,j,i

∣∣∣∣ b ∈ B(H), i ∈ [t], j ∈ [s]
}
.

Moreover, G′ contains the following types of edges.
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(E1) {b, b′} ∈ E(G′) with b, b′ ∈ B(H), b ̸= b′, and β(b) = β(b′)
(
i.e., all vertices in B(H)

with the same color under β form a clique in G′
)
.

(E2) Let b ∈ B(H) and c := β(b). Then {xc, b}, {yc, b} ∈ E(G′).

(E3) Let b, b′ ∈ B(H) with β(b) = β(b′) and b ̸= b′. Then
{
wb,j,i, b

′
}
∈ E(G′) for every

i ∈ [t] and j ∈ [s].

(E4)
{
(a, i), wb,j,i

}
∈ E(G′) for every {a, b} ∈ E(H), j = α(a) and i ∈ [t].

(E5) Let a, a′ ∈ A(H) with a ̸= a′ and i ∈ [t]. Then
{
(a, i), (a′, i)

}
∈ E(G′).

To ease presentation, for every c ∈ [d] we set

Bc :=
{
b ∈ B(H)

∣∣∣ β(b) = c
}
∪ {xc, yc}.

Claim 1. If D is a dominating set of G′, then D ∩Bc ̸= ∅ for every c ∈ [d].

Proof of the claim. We observe that every xc is only adjacent to vertices in Bc. ⊣

Claim 2. If G contains a k-clique, then γ(G′) < (1 + ε)d.

Proof of the claim. By (H1) the bipartite graph H has a Ks,d biclique K with α(A(H) ∩
K) = [s] and β(B(H) ∩K) = [d]. It is then easy to verify that(

B(H) ∩K
)
∪̇
(
(A(H) ∩K)× [t]

)
is a dominating set of G′, whose size is d+ s · t < (1 + ε)d by (5.2). ⊣

Claim 3. If G contains no k-clique, then every s-vertex set of A(H) has at most (k+ 1)! <
2δ
√
d− 1 common neighbors in B(H).

Claim 4. If G contains no k-clique, then

γ(G′) >
(3

2
− δ

)
· d.

Proof of the claim. Let D be a dominating set of G′. By Claim 1 we have D ∩ Bc ̸= ∅ for
every c ∈ [d]. Define

e :=
∣∣∣∣{c ∈ [d]

∣∣∣ |D ∩Bc| ≥ 2
}∣∣∣∣.

If e > (1/2− δ) · d then |D| > d+ e > (3/2− δ) · d and we are done.

So let us consider e ≤ (1/2 − δ) · d and without loss of generality |D ∩ Bc| = 1 for
every c ≤ (1/2 + δ) · d. Fix such a c and assume D ∩ Bc = {bc}. Recall xc, yc ∈ V (G′)
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are not adjacent to any vertex outside Bc, and there is no edge between them, thus bc ∈
Bc \ {xc, yc} =

{
b ∈ B(H)

∣∣∣ α(b) = c
}
. Let

W1 :=
{
wbc,j,i

∣∣∣∣ i ∈ [t], j ∈ [s], and c ≤ (1/2 + δ) · d
}
⊆ W.

(E3) implies that every wbc,j,i ∈ W1 is not dominated by any vertex in D ∩ ∪c∈[d] Bc.
Therefore, it has to be dominated by or included in D ∩ (C ∪W ).

If |D∩W1| > (1/2− δ) ·d, then again we are done. So suppose |D∩W1| ≤ (1/2− δ) ·d.
Without loss of generality let

W2 :=
{
wbc,j,i

∣∣∣∣ i ∈ [t], j ∈ [s], and c ≤ 2δd
}
⊆ W1

and assume W2 ∩D = ∅. Thus W2 has to be dominated by D ∩ C. For later purpose, let

Y :=
{
bc
∣∣∣ c ≤ 2δd

}
.

Obviously, |Y | ≥ 2δd− 1.
Again we only need to consider the case |D∩C| ≤ (1/2− δ) · d. Recall C = A(H)× [t].

Thus there is an i ∈ [t] such that∣∣∣∣D ∩ (A(H)× {i}
)∣∣∣∣ ≤ (1

2
− δ

)
· d
t
.

Let X :=
{
a ∈ A(H)

∣∣∣ (a, i) ∈ D
}
, and in particular, |X| ≤ (1/2 − δ) · d/t. Since W2

is dominated by D ∩ C, we have for all b ∈ Y and j ∈ [s] there exists a ∈ X such that{
(a, i), wb,j,i

}
∈ E(G′), which means that {a, b} ∈ E(H) and α(a) = j. It follows that in

the graph H every vertex of Y has at least s neighbors in X. Recall that (1/2−δ)·d/t ≤ 2s
√
d

by (5.2). There are at most
√
d different types of s-vertex sets in X, i.e.,∣∣∣∣∣

(
X

s

)∣∣∣∣∣ ≤
(

(1/2− δ) · d/t
s

)
≤
(

2s
√
d
)s

=
√
d.

By the pigeonhole principle, there exists an s-vertex set of X ⊆ A(H) having at least
|Y |/
√
d ≥ 2δ

√
d− 1 common neighbors in Y ⊆ B(H), which contradicts Claim 3. ⊣.

Claim 2 and Claim 4 indeed imply that there is an fpt-reduction from the clique problem
to the dominating set problem which creates a gap great than

3/2− δ
1 + ε

.

So if there is a ρ-approximation of the dominating set problem, by (5.1) we can decide the
clique problem in fpt time. □
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5.3 The Constant-Inapproximbility of k-Dominating-Set

Theorem 5.1.1 is a fairly direct consequence of the following theorem.

Theorem 5.3.1 (Main). There is an algorithm A such that on input a graph G, k ≥ 3,
and c ∈ N the algorithm A computes a graph Gc such that

(i) if Kk ⊆ G, then γ(Gc) < 1.1 · dc;

(ii) if Kk ⊈ G, then γ(Gc) > c · dc/3,

where d = (30 · c2 · (k + 1)2)4·k3+3c. Moreover the running time of A is bounded by f(k, c) ·
|G|O(c) for a computable function f : N× N→ N.

Proof: [of Theorem 5.1.3] Suppose for some ε > 0 there is an fpt-algorithm A(G) which
outputs a dominating set for G of size at most 4+ε

√
log (γ(G)) · γ(G). Of course we can

further assume that ε < 1. Then on input a graph G and k ∈ N, let

c :=
⌈
k1−ε/5

⌉
= o(k) and d :=

(
30 · c2 · (k + 1)2

)4·k3+3c
.

We have
4+ε

√
log (1.1 · dc) = O

(
4+ε

√
c · k3 · log k

)
= o

(
k

4
4+ε

)
= o(c).

By Theorem 5.3.1, we can construct a graph Gc with properties (i) and (ii) in time

f(k, c) · |G|O(c) = h(k) · |G|o(k)

for an appropriate computable function h : N → N. Thus, G contains a clique of size k if
and only if A(Gc) returns a dominating set of size at most

1.1 · dc · 4+ε

√
log (1.1 · dc) = o (c · dc) < c · dc

3
,

where the inequality holds for sufficiently large k
(
and hence sufficiently large c · dc

)
.

Therefore we can determine whether G contains a k-clique in time g(k) · |G|o(k) for some
computable g : N → N. This contradicts a result in Chen et.al. [CHKX04, Theorem 4.4]
under ETH. □

5.3.1 Proof of Theorem 5.3.1

We start by showing a variant of Theorem 4.2.1.

Theorem 5.3.2. Let ∆ ∈ N+ be a constant and d : N+ → N+ a computable function. Then
there is an fpt-algorithm that on input a graph G and a parameter k ∈ N with 6 | k + 1
constructs a bipartite graph H =

(
A(H) ∪̇ B(H), E(H)

)
together with two colorings

α : A(H)→ [∆s] and β : B(H)→ [d(k)]

such that:
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(H1) if Kk ⊆ G, then there are ∆s vertices of distinct α-colors in A(H) with d(k) common
neighbors of distinct β-colors in B(H);

(H2) if Kk ⊈ G, then every ∆(s− 1) + 1 vertices in A(H) have at most (k + 1)! common
neighbors in B(H),

where s =
(
k
2

)
.

Proof: Let G be a graph with n vertices and k ∈ N. Assume without loss of generality⌈
n

6
k+6
⌉
> (k + 6)! and

⌈
n

6
k+1
⌉
≥ d(k).

By Theorem 4.2.1 we can construct in polynomial time a bipartite graphH0 = (A0 ∪̇ B0, E0)
such that for s :=

(
k
2

)
:

– if Kk ⊆ G, then there are s vertices in A0 with at least d(k) common neighbors in
B0;

– if Kk ⊈ G, then every s vertices in A0 have at most (k + 1)! common neighbors in
B0.

Define

A1 := A0 × [∆], B1 := B0, and E1 :=
{
{(u, i), v}

∣∣∣ (u, i) ∈ A0 × [∆], v ∈ B0, and {u, v} ∈ E0
}
.

It is easy to verify that in the bipartite graph (A1 ∪̇ B1, E1)

– if Kk ⊆ G, then there are ∆s vertices in A1 with at least d(k) common neighbors in
B2;

– if Kk ⊈ G, then every ∆(s − 1) + 1 vertices in A1 have at most (k + 1)! common
neighbors in B1.

Applying Lemma 6.3.2 on(
n← |A1|, k ← ∆s

)
and

(
n← |B1|, k ← d(k)

)
we obtain two function families ΛA := Λ|A1|,∆s and ΛB := Λ|B1|,d(k) with the stated proper-
ties. Finally the desired bipartite graph H is defined by

(
(A1 × ΛA × ΛB) ∪̇ (B1 × ΛA ×

ΛB), E)
)

with

E :=
{{

(u, h1, h2), (v, h1, h2)
} ∣∣∣∣ u ∈ A1, v ∈ B1, h1 ∈ ΛA, h2 ∈ ΛB, and {u, v} ∈ E1

}
and the colorings

α(u, h1, h2) := h1(u) and β(v, h1, h2) := h2(v). □
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Setting the parameters. Let ∆ := 2. Recall that k ≥ 3, s =
(
k
2

)
≥ 3, and c ∈ N+. We

first define
d := d(k) :=

(
30 · c2 · (k + 1)2

)4·k3+3c
.

It is easy to check that:

(i) d
1
2 − 1

2s > c · sc
(

= c ·
(
k
2

)c)
.

(ii) d >
(
3(k + 1)!

)2s
.

(iii) d > (10∆s · c2)2∆s.

Then let
t := c · dc−

1
2∆s .2 (5.3)

From (ii), (iii), and (5.3) we conclude

∆sct < 0.1 · dc, c · dc

3t
≤ 2∆s
√
d, and (k + 1)! <

2s
√
d

3
. (5.4)

Moreover by (i) and ∆ = 2 we have

c · dc + c∆cscdc−
1
2 + 1

2s < 2∆cdc. (5.5)

Construction of Gc. We invoke Theorem 5.3.2 to obtain H = (A ∪̇ B,E), α, and β.
Then we construct a new graph Gc =

(
V (Gc), E(Gc)

)
as follows. First, the vertex set of

Gc is given by
V (Gc) :=

∪
i∈[d]c

Vi ∪̇ C ∪̇ W,

where
Vi :=

{
v ∈ Bc

∣∣∣ β(v) = i
}

for every i ∈ [d]c,

C := A× [c]× [t], and W :=
{
wv,j,i

∣∣∣∣ v ∈ Vi for some i ∈ [d]c, j ∈ [∆s]c and i ∈ [t]
}
.

Moreover, Gc contains the following types of edges.

(E1) For each i ∈ [d]c, Vi forms a clique.

(E2) Let i ∈ [d]c and v, v′ ∈ Vi . If for all ℓ ∈ [c] we have v(ℓ) ̸= v′(ℓ) then {wv,j,i, v′} ∈
E(Gc) for every i ∈ [t] and j ∈ [∆s]c.

(E3) Let i ∈ [t]. Then
{
(u, ℓ, i), wv,j,i

}
∈ E(Gc) if {u, v(ℓ)} ∈ E and j(ℓ) = α(u).

2Here, we assume dc− 1
2∆s is an integer. Otherwise, let d← d2∆s which maintains (i)– (iii).
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(E4) Let u, u′ ∈ A(H) with u ̸= u′, ℓ ∈ [c], and i ∈ [t]. Then
{
(u, ℓ, i), (u′, ℓ, i)

}
∈ E(Gc).

Theorem 5.3.1 then follows from the completeness and the soundness of this reduction.

Lemma 5.3.3 (Completeness). If G contains k-clique, then γ(Gc) < 1.1dc.

Lemma 5.3.4 (Soundness). If G contains no k-clique then γ(Gc) > c · dc/3.

We first show the easier completeness.
Proof: [of Lemma ??] By (H1) in Theorem 5.3.2, if G contains a subgraph isomorphic to
Kk, then the bipartite graph H has a K∆s,d-subgraph K such that α(A ∩K) = [∆s] and
β(B ∩K) = [d]. Let

D := (B ∩K)c ∪̇
(
(A ∩K)× [c]× [t]

)
.

Obviously, |D| = dc+ ∆sct < 1.1 ·dc by (5.4). And (E1) and (E4) imply that D dominates
every vertex in C and every vertex in Vi for all i ∈ [d]c.

To see that D also dominates W , let wv,j,i be a vertex in W . First consider the case
where v(ℓ) /∈ B ∩ K for all ℓ ∈ [c]. Since β

(
(B ∩ K)c

)
= [d]c, there exists a vertex

v′ ∈ (B ∩K)c with β(v′) = β(v) and v(ℓ) ̸= v′(ℓ) for all ℓ ∈ [c]. Then wv,j,i is dominated
by v′ because of (E2).

Otherwise assume v(ℓ) ∈ B ∩ K for some ℓ ∈ [c], then A ∩ K ⊆ NH(v(ℓ)) =
{
u ∈

A
∣∣∣ {u, v(ℓ)} ∈ E

}
. There exists a vertex u ∈ A∩K such that α(u) = j(ℓ) and

{
v(ℓ), u

}
∈

E. By (E3), wv,j,i is adjacent to (u, ℓ, i). □

5.3.2 Soundness

Lemma 5.3.5. Suppose c,∆, t ∈ N+ and ∆ < t. Let V ⊆ [t]c. If there exists a function
θ : V → [c] such that for all i ∈ [c] we have∣∣∣∣{v(i)

∣∣∣ v ∈ V and θ(v) = i
}∣∣∣∣ ≤ t−∆, (5.6)

then |V | ≤ tc −∆c.

Proof: When c = 1, we have |V | ≤ t −∆ by (5.6). Suppose the lemma holds for c ≤ n
and consider c = n+ 1. Given V ⊆ [t]n+1 and θ, let

Cn+1 :=
{
v(n+ 1)

∣∣∣ v ∈ V and θ(v) = n+ 1
}
.

By (5.6), |Cn+1| ≤ t − ∆. If |Cn+1| < t − ∆, we add
(
t − ∆ − |Cn+1|

)
arbitrary integers

from [t] \ Cn+1 to Cn+1. So we have |Cn+1| = t−∆. Let A :=
{
v ∈ V

∣∣∣ v(n+ 1) ∈ Cn+1
}

and B := V \ A. It follows that

|A| ≤ (t−∆)tc−1, (5.7)
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∣∣∣∣{v(n+ 1)
∣∣∣ v ∈ B

}∣∣∣∣ ≤ ∆, and θ(v) ∈ [c− 1] for v ∈ B. Let

V ′ :=
{
(v1, v2, . . . , vn)

∣∣∣ ∃vn+1 ∈ [t], (v1, v2, . . . , vn, vn+1) ∈ B
}
.

We define a function θ′ : V ′ → [c − 1] as follows. For all v′ ∈ V ′, choose v ∈ B with the
minimum v(c) such that for all i ∈ [c−1] it holds v′(i) = v(i). By the definition of V ′, such
a v must exist, and we let θ′(v′) := θ(v). By (5.6),

∣∣∣∣{v′(i)
∣∣∣ v′ ∈ V ′ and θ′(v′) = i

}∣∣∣∣ ≤ t−∆
for all i ∈ [c−1]. Applying the induction hypothesis, we get |V ′| ≤ tc−1−∆c−1. Obviously,

|B| ≤ ∆|V ′| ≤ ∆tc−1 −∆c. (5.8)

From (5.7) and (5.8), we deduce that |V | = |A|+ |B| ≤ (t−∆)tc−1 +∆tc−1−∆c ≤ tc−∆c.
□

We are now ready to prove the soundness of our reduction.
Proof: [of Lemma 5.3.4] Let D be a dominating set of Gc. Define

a :=
∣∣∣∣{i ∈ [d]c

∣∣∣ |D ∩ Vi | ≥ c+ 1
}∣∣∣∣.

If a > dc/3, then |D| ≥ (c+ 1)a > c · dc/3 and we are done.

So let us consider a ≤ dc/3. Thus, the set

I :=
{
i ∈ [d]c

∣∣∣ |D ∩ Vi | ≤ c
}

has size |I| ≥ 2dc/3. Let i ∈ I and assume that D ∩ Vi =
{
v1, v2, . . . , vc′

}
for some c′ ≤ c.

We define a vi ∈ Vi as follows. If c′ = 0, we choose an arbitrary vi ∈ Vi .3 Otherwise, let

vi(ℓ) :=

vℓ(ℓ) for all ℓ ∈ [c′];
v1(ℓ) for all c′ < ℓ ≤ c.

Obviously, β(vi) = i.
(E2) implies that for every j ∈ [∆s]c and every i ∈ [t], the vertex wvi ,j,i is not dominated

by D ∩ Vi . Observe that wvi ,j,i cannot be dominated by other D ∩ Vi′ with i ′ ̸= i either,
by (E2) and (E3). Therefore every vertex in the set

W1 :=
{
wvi ,j,i

∣∣∣ i ∈ I, j ∈ [∆s]c, and i ∈ [t]
}

is not dominated by D ∩ ∪i∈[d]c Vi . As a consequence, W1 has to be dominated by or
included in D ∩ (C ∪W ).

3Since the coloring β is obtained by the color-coding used in the proof of Theorem 5.3.2, for every
b ∈ [d] it holds that {v ∈ B | β(v) = b} ̸= ∅, hence Vi ̸= ∅.
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If |D ∩W1| > c · dc/3, then again we are done. So suppose |D ∩W1| ≤ c · dc/3 and let
W2 := W1 \ D. It follows that W2 has to be dominated by D ∩ C. Once again we only
need to consider the case |D ∩ C| ≤ c · dc/3, and hence there is an i′ ∈ [t] such that∣∣∣∣D ∩ (A× [c]× {i′}

)∣∣∣∣ ≤ c · dc

3t
. (5.9)

Then we define

Z :=
{
wv,j,i ∈ W2

∣∣∣ i = i′
}

=
{
wvi ,j,i′

∣∣∣ i ∈ I, j ∈ [∆s]c, and wvi ,j,i′ /∈ D
}
.

So Z has to be dominated by D∩C, and in particular those vertices of the form (u, ℓ, i′) ∈
D ∩ C. Moreover,

|Z| ≥ ∆csc|I| − |D ∩W1| ≥ ∆csc|I| − c · dc/3. (5.10)

Our next step is to upper bound |Z|. To that end, let

X :=
{
u ∈ A

∣∣∣ (u, ℓ, i′) ∈ D for some ℓ ∈ [c]
}
.

Thus Z is dominated by those vertices (u, ℓ, i′) with u ∈ X. And by (5.9)

|X| ≤ c · dc

3t
.

Set
Y :=

{
v ∈ B

∣∣∣∣ ∣∣∣NH(v) ∩X
∣∣∣ > ∆(s− 1)

}
.

Recall that c · dc/(3t) ≤ 2∆s
√
d by (5.4). Hence X has at most

√
d different subsets of size

∆(s− 1) + 1, i.e., ∣∣∣∣∣
(

X

∆(s− 1) + 1

)∣∣∣∣∣ ≤ |X|∆(s−1)+1 ≤ |X|∆s ≤
√
d.

We should have

|Y | ≤
√
d · (k + 1)! ≤ d

1
2 + 1

2s

3
, (5.11)

where the second inequality is by (5.4). Otherwise, by the pigeonhole principle, there exists
a (∆(s−1)+1)-vertex set ofX ⊆ A(H) having at least |Y |/

√
d > (k+1)! common neighbors

in Y ⊆ B(H). However, if G contains no k-clique, then by (H2) every
(
∆(s−1)+1

)
-vertex

set of A(H) has at most (k+1)! common neighbors in B(H), and we obtain a contradiction.
Let

Z1 :=
{
wv,j,i′ ∈ Z

∣∣∣ there exists an ℓ ∈ [c] with v(ℓ) ∈ Y
} (

⊆ Z
)

=
{
wvi ,j,i′

∣∣∣ i ∈ I, j ∈ [∆s]c, wvi ,j,i′ /∈ D, and there exists an ℓ ∈ [c] with vi(ℓ) ∈ Y
}

and Z2 :=Z \ Z1 =
{
wvi ,j,i′

∣∣∣ i ∈ I, j ∈ [∆s]c, wvi ,j,i′ /∈ D, and vi(ℓ) /∈ Y for all ℓ ∈ [c]
}
.
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Moreover, let I1 := {i ∈ I | there exists a wvi ,j,i′ ∈ Z1}. From the definition, we can deduce
that

for all i ∈ I1 there exists an ℓ ∈ [c] such that i(ℓ) ∈ β(Y ).

Then |I1| ≤ c|Y |dc−1 and hence

|Z1| ≤ |I1|∆csc ≤ c|Y |dc−1∆csc.

To estimate |Z2|, let us fix an i ∈ I and thus fix the tuple vi ∈ Bc, and consider the
set

Ji :=
{

j ∈ [∆s]c
∣∣∣ wvi ,j,i′ ∈ Z2

}
.

Recall that Z is dominated by those vertices (u, ℓ, i′) with u ∈ X, so for every j ∈ Ji the
vertex wvi,j,i′ is adjacent to some (u, ℓ, i′) in the dominating set D with u ∈ X. Moreover,
for every ℓ ∈ [c], in the original graph H the vertex vi(ℓ) ∈ B has at most ∆(s − 1)
neighbors in X, by the fact that vi(ℓ) /∈ Y and our definition of the set Y .

Define a function θ : Ji → [∆s] such that for each j ∈ Ji , if wvi ,j,i′ is adjacent to a
vertex (u, ℓ, i′) ∈ D with u ∈ X, then θ(j) = ℓ. As argued above, such a (u, ℓ, i′) must
exist, and if there are more than one such, choose an arbitrary one.

Let j ∈ Ji and ℓ := θ(j). By (E3), in the graph H the vertex vi(ℓ) is adjacent to some
vertex u ∈ X with α(u) = j(ℓ). It follows that for each ℓ ∈ [c] we have∣∣∣∣{ j(ℓ)

∣∣∣ j ∈ Ji and θ(j) = ℓ
}∣∣∣∣ ≤ ∣∣∣∣{α(u)

∣∣∣ u ∈ X adjacent to vi(ℓ)
}∣∣∣∣ ≤ ∆(s− 1).

Applying Lemma 5.3.5, we obtain ∣∣∣Ji

∣∣∣ ≤ ∆csc −∆c.

Then ∣∣∣Z2

∣∣∣ =
∑
i∈I

∣∣∣Ji

∣∣∣ ≤ |I|(∆csc −∆c).

By (5.10) and the definition of Z1 and Z2, we should have

∆csc|I| − c · dc/3 ≤ |Z| = |Z1|+ |Z2| ≤ c|Y |dc−1∆csc + |I|(∆csc −∆c).

That is,
c · dc/3 + c|Y |dc−1∆csc ≥ ∆c|I| ≥ 2∆cdc/3.

Combined with (5.11), we have

c · dc + c∆cscdc−
1
2 + 1

2s ≥ 2∆cdc,

which contradicts the equation (5.5). □
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5.4 Some Consequences

Proof: [of Corollary 5.1.2] Let c ∈ N+, and assume that A is a polynomial time algorithm
which on input a graph G = (V,E) with γ(G) ≤ β(|V |) outputs a dominating set D with
|D| ≤ c · γ(G). Without loss of generality, we further assume that given 0 ≤ k ≤ n it can
be tested in time nO(1) whether k > c · β(n).

Now let G be an arbitrary graph. We first simulate A on G, and there are three possible
outcomes of A.

– A does not output a dominating set. Then we know γ(G) > β(|V |). So in time

2O(|V |) ≤ 2O(β−1(γ(G)))

we can exhaustively search for a minimum dominating set D of G.

– A outputs a dominating set D0 with |D0| > c · β(|V |). We claim that again γ(G) >
β(|V |). Otherwise, the algorithm A would have behaved correctly with

|D0| ≤ c · γ(G) ≤ c · β(|V |).

So we do the same brute-force search as above.

– A outputs a dominating set D0 with |D0| ≤ c · β(|V |). If |D0| > c · γ(G), then

c · β(|V |) ≥ |D0| > c · γ(G), i.e., β(|V |) > γ(G),

which contradicts our assumption for A. Hence, |D0| ≤ c · γ(G) and we can output
D := D0.

To summarize, we can compute a dominating set D with |D| ≤ c · γ(G) in time f(γ(G)) ·
|G|O(1) for some computable f : N→ N. This is a contradiction to Theorem 5.1.1. □

Now we come to the approximability of the monotone circuit satisfiability problem.

Monotone-Circuit-Sat
Instance: A monotone circuit C.
Solution: A satisfying assignment S of C.

Cost: The weight of |S|.
Goal: min.

Recall that a Boolean circuit C is monotone if it contains no negation gates; and the weight
of an assignment is the number of inputs assigned to 1.

As mentioned in the Introduction, Marx showed [Mar13] that Monotone-Circuit-Sat
has no fpt approximation with any ratio ρ for circuits of depth 4, unless FPT = W[2].

Corollary 5.4.1. Assume FPT ̸= W[1]. Then Monotone-Circuit-Sat has no constant
fpt approximation for circuits of depth 2.
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Proof: This is an immediate consequence of Theorem 5.1.1 and the following well-known
approximation-preserving reduction from Monotone-Circuit-Sat to Min-Dominating-Set.
Let G = (V,E) be a graph. We define a circuit

C(G) =
∧
v∈V

∨
{u,v}∈E

Xu.

There is a one-one correspondence between a dominating set in G of size k and a satisfying
assignment of C(G) of weight k. □

Remark 5.4.2. Of course the constant ratio in Corollary 5.4.1 can be improved according
to Theorem 5.1.3.

5.5 Conclusions

We have shown that k-Dominating-Set has no fpt approximation with any constant
ratio, and in fact with a ratio slightly super-constant. The immediate question is whether
the problem has fpt approximation with some ratio ρ : N→ N, e.g., ρ(k) = 22k . We tend
to believe that it is not the case.

Remark 5.5.1. Of course the constant ratio in Corollary 5.4.1 can be improved according
to Theorem 5.1.3.

Question 5.5.2. Does Monotone-Circuit-Sat admit any fpt approximation algorithm
for some computable ratio function ρ(k)?
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Chapter 6

Maximum k-Edge-Color Clique

In the Maximum k-Edge-Color Clique problem, the task is to find a maximum clique whose
edges use at most k distinct colors in a multi-graph G with colored edges. As far as we are
aware, this problem has received no attention in the literature. Our study of this problems
is motivated by its connection to the parameterized inapproximability of k-Clique. We
show that there is no fpt-algorithm that can approximate Maximum k-Edge-Color Clique
to any computable ratio function ρ(k) on mutigraphs unless FPT = W[1]. We also prove
that the inapproximability of Maximum k-Edge-Color Clique on simple graphs implies
the constant inapproximability of k-Clique. Finally, we point out a possible approach
to transfer a multi-graphs into a simple graph without changing the cardinality of its
maximum k-edge-color clique.

6.1 Introduction

Let us start with the question of proving the constant inapproximability of the param-
eterized clique problem. In order to show that k-Clique has no ρ-approximation fpt-
algorithm for some ratio ρ > 1 under FPT ̸= W[1], it suffices to find an algorithm A such
that on input an instance (G, k) of k-Clique, A outputs a graph G′ and an integer k′ in
f(k) · |G|O(1)-time. Moreover, G′ satisfies the following properties.

– if G contains a k-clique, then G′ contains a ρk′ clique.

– if G contains no k-clique, then G′ contains no k′ clique.

– k′ = g(k) for some computable function g.

Informally, by Theorem 4.2.1, we know how to construct a bipartite graph H =
(A(H) ∪̇ B(H), E(H)) from a graph G and a small integer k in polynomial time sat-
isfying the following properties.

– (H1) if G contains a k-clique, then H contains a K(k
2),n1/k-subgraph;

– (H2) if G contains no k-clique, then H contains no K(k
2),(k+1)!+1-subgraph.
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A simple idea is to start with an operation that transforms a K(k
2),n1/k into a large clique

but turns aK(k
2),(k+1)! into a small clique. Note that in the case (H2) of Theorem 4.2.1, there

may exist a K(k
2)−1,n1/k-subgraph in the graph H. This means that our desired operation

should also transform a K(k
2)−1,n1/k-subgraph into a small clique.

Let s :=
(
k
2

)
. Our approach is motivated by an observation that it is possible to

construct a family of edge sets E := {E1, E2, . . . , En} over a vertex set V := [n] satisfying
the following properties.

– for every I ∈
(
n
s−1

)
, the graph GI := (V,∪i∈I Ei) contains no (2s−1 + 1)-clique.

– for a random I ∈
(
n
s

)
, with high probability the graph GI := (V,∪i∈I Ei) contains a

2s-clique.

This observation promoted us to do the following reduction. On input a bipartite graph
H := (A(H) ∪̇ B(H), E(H)) with A(H) = [n], we associate each vertex u in A(H) with a
set of edge Eu ⊆

(
NH(u)

2

)
and hence obtain a family of edge sets E := {E1, E2, . . . , En} where

each Ei is a subset of
(
B(H)

2

)
. For any I ⊆ [n], let GI be the graph with V (GI) := B(H)

and E(GI) := ∪
i∈I Ei. Choosing the edge set Eu for each u ∈ A(H) properly, we may

expect to prove something as follows.

– if H contains a Ks,2s , then there exists I ∈
(
A(H)
s

)
such that GI contains a 2s-clique;

– if H contains no Ks,(k+1)!+1, then for all I ∈
(
A(H)
s

)
, GI contains no (2s−1 + O(k!))-

clique.

The discussion above provides the intuition of a gap-preserving reduction from max-
imum subset intersection to an optimization problem whose goal is to find a maximum
clique in a graph GI with V (GI) := V and E(GI) := ∪

i∈I Ei for some I ∈
(
n
k

)
, on input

a family of edge sets E := {E1, E2, . . . , En} over V := [n]. Recall the definition of multi-
graph G = (V,E,C) in Chapter 2. The family of edge sets E together with V can be
treated as a multi-graph G := (V,E,C) with C := [|E|] and E := ∪

i∈C Ei × {i}.
Formally, we consider the following parameterized optimization problems.

Max-k-EdgeCol-Clique
Instance: A multi-graph G = (V,E,C) and a positive integer

k.
Solution: A clique K ⊆ GI for some I ∈

(
C
k

)
.

Cost: |K|.
Goal: max.

Example 6.1.1. For example, the multi-graph G in Figure 6.1 has a 2-edge-color clique
with three vertices. The edges of this clique use two color, red and blue. Obviously, it is
the maximum 2-edge-color clique of this graph.
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A	  mul+-‐graph	  G A	  2-‐edge-‐color	  3-‐clique 

Figure 6.1: Max-2-Edge-Color Clique

6.1.1 Main Results

Theorem 6.1.2. For any computable function ρ(k). Max-k-EdgeCol-Clique has no
ρ(k)-approximation fpt-algorithm, unless FPT = W[1].

In a multi-graph G = (V,E,C), there may exist |C| edges between two vertices in V .
For f ∈ N, recall again that f -multi-graphs is a special case of multi-graphs such that
every two vertices has at most f edges. We consider Max-k-EdgeCol-Clique restricted
to 1-multi-graphs.

Max-k-EdgeCol-Clique1
Instance: A 1-multi-graph G = (V,E,C) and a positive in-

teger k.
Solution: A clique K ⊆ GI for some I ∈

(
C
k

)
.

Cost: |K|.
Goal: max.

The following theorem is an attempt to provide a gap-preserving fpt-reduction to k-Clique
from Max-k-EdgeCol-Clique, although at the moment we are only able to do this for
Max-k-EdgeCol-Clique1.

Theorem 6.1.3. If Max-k-EdgeCol-Clique1 has no 4(k+1)k approximation fpt-algorithm,
then k-Clique cannot be fpt-approximated to any constant ratios.

Theorem 6.1.3 and Theorem 6.1.2 suggest a question:

Question 6.1.4. Is it possible to turn a general multi-graph into a 1-multi-graph without
changing the size its maximum k-edge-color clique significantly?
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To ease notation, for any multi-graph G = (V,E,C), let

CC(G, k) := max
{
h

∣∣∣∣ h ∈ N and there exists I ∈
(
C

k

)
such that Kh ⊆ GI

}
.

As a partial answer to Question 6.1.4, we prove

Theorem 6.1.5. Let f, h : N→ N be two computable functions. Assume for every k ∈ N
the computable function f satisfies

f(k) >
(
h(k)

2

)
.

Then, there is an fpt-algorithm A that on input k ∈ N and an n1/f(k)-multi-graph G with
CC(G, k) ≤ h(k), it outputs a 1-multi-graph G′ satisfying

CC(G, k) = CC(G′, k)

6.2 Inapproximability of Max-k-EdgeCol-Clique

In this section, we establish the parameterized inapproximability of the maximum edge-
colored clique problem on multi-graphs.

Theorem 6.2.1. There is an algorithm A such that on input an n-vertex graph G and a
positive integer k with ⌈n

6
k+1 ⌉ > (k + 1)! and 6 | k + 1, it output a multi-graph G′ in time

f(k) · |G|O(1) satisfying the following properties.

(1) if G contains a k-clique, then G′ contains an s-edge-colored clique with sized ds;

(2) if G contains no k-clique, then every s′-edge-color clique in G′ has at most
(
s′

s−1

)
ds−1+(

s′

s

)
(k + 1)! vertices.

where s =
(
k
2

)
and d ∈ N with ds−1 > (k + 1)! and ⌈n

6
k+1 ⌉ ≥ ds.

Obviously, Theorem 6.1.2 is a corollary of the above theorem.

The Construction Given a graph G and an integer k, we first compute the graph H =
(A ∪̇ B,E(H)) as stated in Theorem 4.2.1. Choose d ∈ N, s =

(
k
2

)
with ds−1 > (k + 1)!.

For α : A→ [s] and β : B → [d]s, we construct a multi-graph G′
α,β,s,d = (V,E,C), where

– V = B;

– C = A;

– For u1, u2 ∈ V, c ∈ C, ({u1, u2}, c) ∈ E if:
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(E1) β(u1)(α(c)) ̸= β(u2)(α(c));1

(E2) {u1, c}, {u2, c} ∈ E(H);

Using the color-coding technique, we have:

Lemma 6.2.2. There is an fpt-algorithm A such that on input a bipartite graph H =
(A ∪̇ B,E) and two parameters s and t, it constructs two class of functions AA,s ⊆ [s]A

and BB,t ⊆ [t]B such that for every C ∈
(
A
s

)
, D ∈

(
B
t

)
there exist α ∈ AA,s and β ∈ BB,q

with
α(C) = [s], β(D) = [t].

Lemma 6.2.3 (Completeness). If Kk ⊆ G, then there exist α ∈ AA,s and β ∈ BB,dS such
that G′

α,β,s,d contains an s-edge-colored clique with size ds.

Proof: If Kk ⊆ G, then there exist an s-vertex set C ′ = {c1, . . . , cs} in A(H) and a
ds-vertex set V ′ in B(H) such that V ′ ⊆ Γ(C ′). By Lemma 6.2.2, there exist α ∈ AA,s and
β ∈ BB,ds with α(C ′) = [s], β(V ′) = [d]s.

For all vi, vj ∈ V ′ with vi ̸= vj, by |β(V ′)| = ds = |V ′|, we should have that β(vi) ̸=
β(vj). Then there must exist an index ℓ ∈ [s] such that β(vi)(ℓ) ̸= β(vj)(ℓ). Since
α(C ′) = [s], we can find a c ∈ C ′ such that α(c) = ℓ.

It is easy to verify that vi, vj and c satisfy

β(vi)(α(c)) ̸= β(vj)(α(c)). (6.1)

On the other hand, recall that V ′ ⊆ Γ(C ′), which implies

{vi, c}, {vj, c} ∈ E(H). (6.2)

(6.1) and (6.2 actually mean that ({vi, vj}, c) ∈ E(G′
α,β,s,d).

We conclude that V ′ is a clique in G′
α,β,s,d, its edges only use colors in C ′. Thus V ′ is

a s-edge-color clique with size ds. □

Lemma 6.2.4 (Soundness). Let s′ ≥ s. If Kk ⊈ G, then every s′-edge-color clique in
G′
α,β,s,d has at most

(
s′

s−1

)
ds−1 +

(
s′

s

)
(k + 1)! vertices.

Proof: Let W ⊆ C be an s′-color set such that there exists a set X with

∀u, v ∈ X, ∃c ∈ W, s.t.
(
{u, v}, c) ∈ E(G′

α,β,s,d

)
. (6.3)

For any u in X, let

C(u) :=
{
c ∈ W

∣∣∣ ∃v ∈ X, ({u, v}, c) ∈ E(G′
α,β,s,d)

}
. (6.4)

1β(ui) is a vector with s elements, β(ui)(α(v)) is the α(v)-th element of this vector
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Let Y =
{
u ∈ X

∣∣∣ |C(u)| ≤ s− 1
}
. Then we have:

Claim: |Y | ≤
(
s′

s−1

)
ds−1.

Proof of the Claim: Let Ws−1 :=
(
W
s−1

)
. Because |W | = s′, there are

(
s′

s−1

)
distinct (s− 1)-

vertex subsets of W , i.e., |Ws−1| =
(
s′

s−1

)
. For every u ∈ Y , |C(u)| ≤ s − 1, there exists

C ′ ∈ Ws−1 such that C(u) ⊆ C ′. If |Y | >
(
s′

s−1

)
ds−1, then by the pigeonhole principle,

there exist C ′ ∈ Ws−1 and Y ′ ⊆ Y such that |Y ′| > ds−1 and ∀u ∈ Y ′, C(u) ⊆ C ′.
By the pigeonhole principle again, there must exist two vertices u, u′ ∈ Y ′ such that

∀c ∈ C ′, β(u1)(α(c)) = β(u2)(α(c)). According to (E1) there is no c ∈ C ′ such that
({u, u′}, c) ∈ E(G′

α,β,s,d). This contradicts (6.3) and (6.4). ⊣

Let Z =
{
u ∈ X

∣∣∣ |C(u)| ≥ s
}
. By (E2), every vertex in C(u) is adjacent to u in

the graph H. Since Kk ⊈ G, every s-vertex set in A(H) has at most (k + 1)! common
neighbors in B(H). We have

|Z| ≤
(
s′

s

)
(k + 1)!.

Therefore |X| ≤
(
s′

s−1

)
ds−1 +

(
s′

s

)
(k + 1)!. □

6.3 From Max-k-EdgeCol-Clique to k-Clique

In this section, we present a gap-preserving reduction from the maximum edge-colored
clique problem on 1-multi-graphs to the clique problem. Recall that a 1-multi-graph is a
simple graph with colored edges.

Theorem 6.3.1. Let ρ : N → N. On input a 1-multi-graph G = (V,E,C) and k, ℓ ∈ N,
we can construct a simple graph H in f(k, ℓ) · |G|O(1)-time such that:

– if CC(G, k) = h, then H contains a hq-clique;

– if CC(G, k) = ℓ, then H contains no clique with more than 2hq
ρ(k) vertices.

where h = ℓρ(k)(k+1)k , q = 2ρ(k)(k + 1)k.

Let ρ = 4. If k-Clique can be fpt-approximated with ratio 2 = ρ/2, then the pa-
rameterized edge-colored clique problem on 1-multi-graphs can be fpt-approximated with
ratio

h

ℓ
= 4(k+1)k

.

Hence we have Theorem 6.1.3.
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6.3.1 The Construction.

Let G =
(
V (G), E(G), C(G)

)
be an edge-colored simple graph and k ∈ N with 6 | k + 1.

Moreover, let n := |C| and h ∈ N. We assume without loss of generality that C = [n], n is
large enough and G has no clique of size h+ 1.

We apply Lemma 3.1.4 and obtain a bipartite graph Gn,k =
(
A ∪̇ B,E(Gn,k)

)
with the(

n, k, (k + 1)!, n⌈6/(k+1)⌉
)
-threshold property, in particular

A =
∪̇

i∈[n]
Vi(A).

For every q ∈ N and β : B → [q] we construct a graph H = H
(
G,Gn,k, β

)
as follows:

(1) V (H) := V (G)×B

(2)
{
(u1, b1), (u2, b2)

}
∈ E(H) if u1 = u2 and β(b1) ̸= β(b2) or all of following conditions

are satisfied:

(a) u1 ̸= u2

(b) b1 = b2 ∨ β(b1) ̸= β(b2)

(c)
(
{u1, u2}, c

)
∈ E(G) for some color c ∈ C(G) and {a, b1}, {a, b2} ∈ E(Gn,k) for

some a ∈ Vc(A)

The following lemma is essentially the Lemma 2.6.1.

Lemma 6.3.2. We can construct in fpt-time on input a set B and a parameter q a class
of functions BB,q ⊆ [q]B such that for every D ∈

(
B
q

)
there is a β ∈ BB,q with

β(D) = [q].

From G, Gn,k and BB,q, we construct our target graph H as:

H :=
∪̇

β∈BB,q
H
(
G,Gn,k, β

)
6.3.2 Completeness.

Lemma 6.3.3 (completeness). If G has a k-edge-colored clique of size h, then for every
q ≤ n⌈6/(k+1)⌉ there is a β ∈ BB,q such that H = H

(
G,Gn,k, β

)
has a clique of size

h · q.

Proof: Let c1, c2, . . . , ck be k colors in C(G) such that G{c1,c2,...,ck} contains a h-clique with
vertex set {u1, u2, . . . , uh}. We have that

∀i ̸= j ∈ [h],∃ℓ ∈ [k], ({ui, uj}, cℓ) ∈ E(G) (6.5)
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By (T2) there exist a1 ∈ Vc1 , a2 ∈ Vc2 , . . . , ak ∈ Vck
and b1, b2, . . . , bq ∈ B such that

∀i ∈ [k], j ∈ [q], {ai, bj} ∈ E(Gn,k). (6.6)

By Lemma 6.3.2, there exists β ∈ BB,q such that

β({b1, b2, . . . , bq}) = [q]. (6.7)

Claim. The vertex set
K := {(ui, bj) | i ∈ [h], j ∈ [q]}

forms a Khq-subgraph in H = H(G,Gn,k, β).

Proof of Claim. Let (ui1 , bj1) and (ui2 , bj2) be two distinct vertices in K, where i1, i2 ∈ [h],
j1, j2 ∈ [q].

If i1 = i2, then we should have bj1 ̸= bj2 . By (6.7), β(bj1) ̸= β(bj2). According to the
definition of E(H), {(ui1 , bj1), (ui2 , bj2)} ∈ E(H).

Now assume i1 ̸= i2. By (6.5), there exists some color cℓ ∈ C(G) such that ({ui, uj}, cℓ) ∈
E(G). By (6.6), there exists a aℓ ∈ Vcℓ

with {aℓ, bj1}, {aℓ, bj2} ∈ E(Gn,k)). Note that if
bj1 ̸= bj2 , then β(bj1) ̸= β(bj2). We conclude that {(ui1 , bj1), (ui2 , bj2)} ∈ E(H) ⊣.

Thus H contains a Khq-subgraph. We are done. □

6.3.3 Soundness

The following lemma is a well-known result in extremal graph theory. It is linked to the
famous Zarankiewicz’s problem. More detail can be found in Section 2.4 of [Juk11]. For
the convenience of the reader, we provide a proof based on the double counting argument.

Lemma 6.3.4. Let s, t ∈ N and T =
(
U ∪̇ V,E(T )

)
be a bipartite graph such that every

s vertices in U have at most t common neighbors in V with |V | ≥ t. Then∣∣∣E(T )
∣∣∣ ≤ s1/t|U |1−1/t|V |+ t|U |. (6.8)

Proof: Let

S :=
{(
u, {v1, . . . , vt}

) ∣∣∣∣ u ∈ U and {v1, . . . , vt} ∈
(
N(u)
t

)}
.

Then ∑
u∈U

(
deg(u)
t

)
= |S| ≤ s

(
|V |
t

)
. (6.9)

Observe that
∣∣∣E(T )

∣∣∣ = ∑
u∈U deg(u). Following the notation in Section 2.4 of [Juk11], we

set f(x) :=
(
x
t

)
if x ≥ t, and f(x) := 0 otherwise. Then f is convex, Jensen’s Inequality

yields
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∑
u∈U

(
deg(u)
t

)
≥
∑
u∈U

f(deg(u)) ≥ |U |f(
∑
u∈U

deg(u)
|U |

) = |U | · f( |E(T )|
|U |

).

If |E(T )| ≤ |U |t, then (6.8) holds. Otherwise |E(T )| > |U |t, then we have that

|S| ≥ |U |f( |E(T )|
|U |

) = |U |
(∣∣∣E(T )

∣∣∣/|U |
t

)
.

Combined with (6.9), we obtain:

|U |
(∣∣∣E(T )

∣∣∣/|U |
t

)
≤ s

(
|V |
t

)
(6.10)

Using (n−k+1)k

k! ≤
(
n
k

)
≤ nk

k! , then (6.10) implies:

|U | · (|E(T )/|U | − t+ 1)t ≤ s(|V |)t

Hence, ∣∣∣E(T )
∣∣∣ ≤ s1/t|U |1−1/t|V |+ (t− 1)|U |. □

Lemma 6.3.5 (Soundness). For any ρ : N→ N. If G has no k-edge-colored clique of size
ℓ with

ℓ = h

ρ(k)(k+1)k , (6.11)

then for every β : B → [q], H = H
(
G,Gn,k, β

)
has no clique of size larger than

2h · q
ρ(k)

.

where q = 2ρ(k)(k + 1)k.

Proof: Let
X =

{
(u1, b1), . . . , (um, bm)

}
(6.12)

be a clique of size
m >

2h · q
ρ(k)

≥ 2h(k + 1)k (6.13)

in H. We define a bipartite graph T =
(
U ∪̇ V,E(T )

)
with

U := {ui | i ∈ [m]}, V := {bi | i ∈ [m]}, and E(T ) :=
{
{ui, bi}

∣∣∣ i ∈ [m]
}
. (6.14)

By the definition of H, it is easy to see that U is a clique in G, and therefore |U | ≤ h. And
recall β : B → [q], thus |V | ≤ q by β(bi) ̸= β(bj) for every 1 ≤ i < j ≤ m.
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We should have that |V | ≥ (k+1)k, otherwise m ≤ h|V | < h(k+1)k, which contradicts
(6.13). Now we apply Lemma 6.3.4 to T with

t← (k + 1)k s← ℓ

and hence by (6.11) (
h

s

) 1
(k+1)k

= ρ(k). (6.15)

Thus
∣∣∣E(T )

∣∣∣ = m > 2 h·q
ρ(k) implies, by (6.15),

∣∣∣E(T )
∣∣∣

2
= ρ(k) ·

(
s

h

) 1
(k+1)k

∣∣∣E(T )
∣∣∣

2
> s

1
(k+1)k h

1− 1
(k+1)k q ≥ s1/t|U |1−1/t|V |.

On the other hand, if m ≤ 2|U |t then m ≤ 2ht, which contradicts (6.13). Therefore, we
have

|E(T )| = m ≥ s1/t|U |1−1/t|V |+ t|U |.

That is, (6.8) in Lemma 6.3.4 does not hold. It follows that, in the graph T , there are s
vertices in U with more than t common neighbors in V . Without loss of generality, assume
they are u1, . . . , us and b1, . . . , bt, respectively.

Note {u1, . . . , us} is an s-clique in G. We collect its corresponding edge colors by

K :=
{
c
∣∣∣∣ ({ui, uj}, c) ∈ E(G) for 1 ≤ i < j ≤ s

}
. (6.16)

The goal is to show |K| ≤ k.

Claim: For every c ∈ K and every ℓ ∈ [t] we have {c, bℓ} ∈ E(Gn,k).

Proof of the claim: By (6.16) there exist some distinct i, j ∈ [s] with
(
{ui, uj}, c

)
∈ E(G).

Take an arbitrary ℓ′ ∈ [t] with ℓ′ ̸= ℓ. Since all u1, . . . , us are adjacent to all b1, . . . , bt in
T , we have from (6.14)

(ui, bℓ) and (uj, bℓ′)

are two vertices in the clique X in H defined in (6.12). Then by the definition of H, we
can conclude {c, bℓ} ∈ E(Gn,k), since every edge in G has a unique color. ⊣

Recall Gn,k satisfies the
(
n, k, (k + 1)!, n⌈6/(k+1)⌉

)
-threshold property. Therefore, if

|K| ≥ k, then (T1) implies that all vertices in K have at most (k + 1)! < t common
neighbors, which contradicts the above claim.
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6.4 Multi-graphs with Few Multi-edges

In this section, we present a proof of Theorem 6.1.5.
Proof: [of Theorem 6.1.5] Let n, k ∈ N and G be a n1/f(k)-multi-graph with n vertices. We
set h := h(k). For f(k) >

(
h
2

)
and n sufficiently large, we have that

(
h
2

)
log n
f(k)

n(h
2)/f(k) <

√√√√(n2)log n
f(k)

, (6.17)

Then we can apply Lemma 2.6.4 with parameters

k ←
(
h

2

)
, n←

(
n

2

)
, and m← n1/f(k)

to obtain a set C of functions
[(
n
2

)]
→
[
n1/f(k)

]
.

Now for every c ∈ C we construct a simple edge-colored graph Gc from the multi-graph
G = (V,E,C) as follows:

(1) As |V | = n, we can assume V = [n].

(2) For every pair {u, v} ∈
(

[n]
2

)
we order the edges between u and v. By the assumption,

there are at most m such edges.

(3) Note {u, v} can be uniquely identified with a number in
[(
n
2

)]
which is the domain of

c. Then in Gc we only keep the c({u, v})th edge from G with all the others removed.
Of course, it might happen that there is no c({u, v})th edge. Consequently, there is
no edge between u and v in Gc.

Then we let
H :=

∪̇
c∈C

Gc,

which can be constructed in fpt-time. Again H is simple. Obviously CC(H, k) ≤ CC(G, k).
Suppose G has a k-edge-colored clique K of size at most h. There exists c ∈ C such that
for every {u, v} ∈

(
K
2

)
, ({u, v}, c({u, v})) ∈ E(G). It is routine to verify that Gc and

hence H contains a k-edge-colored clique with size |K|. Thus CC(G, k) ≤ h implies that
CC(H, k) = CC(G, k). □
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Chapter 7

Conclusions and Future Work

There are two kinds of hardness results in computational complexity. One states that to
solve some problem enumeration is inevitable. The other states that it is impossible to
approximate some problem to a certain ratio in an efficient way. This thesis is a step in
the direction of proving hardness results which combine these two perspectives.

We have developed a tool that allows us to prove some results of this kind. By exploiting
the threshold property of a certain class of bipartite graphs, we have established the param-
eterized inapproximability of Max-k-Subset-Intersection, Min-Dominating-Set,
and Max-k-EdgeCol-Clique.

This is not an end of the story. It remains to see if it is possible to combine our
technique with the deep PCP-theorem. The ultimate goal is to find parameters that
determine the hardness of approximation for the problems. For certain problems, we
expect to obtain hardness results with trade-off between the running-time of algorithms
and the approximation ratios.

To motivate further research, we end this thesis by listing some open questions.

7.1 Questions on Parameterized Inapproximability

k-Clique One of the the open problems in parameterized complexity is whether k-Clique
admits any constant fpt-approximation algorithms. There is evidence suggesting that the
answer to this question is negative. In [Ros08], Benjamin Rossman showed that with high
probability constant-depth circuits of size O(nt) can not distinguish between a random
graph G with edge probabilities n−α where α ≤ 1

2t−1 and the graph obtained by planting a
k-clique into G. Since for α > 2

k′−1 , the random graph G does not contain a Kk′ with high
probability. For t = k′/4, there exists α satisfying α ≤ 1

2t−1 and α > 2
k′−1 . In particular,

let k′ = k/2, we obtain a corollary that constant-depth circuits of size O(nk/8) can not
distinguish whether a graph contains a Kk or contains no Kk/2.

In Chapter 6, we prove the following results.

(1) Max-k-EdgeCol-Clique on multi-graphs has no fpt-approximation algorithm to
any ratio ρ(k) unless FPT = W[1].
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(2) If Max-k-EdgeCol-Clique on simple graphs does not admit fpt-approximation
algorithms to ratio ρ(k), then k-Clique has no constant fpt-approximation algo-
rithms.

To rule out the constant fpt-approximation for k-Clique, it suffices to solve the following
question.

Question 7.1.1. On input a multi-graph G and h ∈ N, construct a simple graph G′ with
colored edges in fpt-time such that

– if CC(G, k) ≥ h, then CC(G′, k′) ≥ h′;

– if CC(G, k) ≤ h
ρ
, then CC(G′, k′) ≤ h′

4(k′+1)k′ .

Another approach is promoted by the observation that the constant inapproximability
of k-Clique can be derived from the hardness approximation of Densest-k-Subgraph
(Remark 4.2.3).

Densest-k-Subgraph. Densest-k-Subgraph is a classical optimization problem. On
input a graph G, it asks for a k-vertex subgraph of G with the most edges. In [KP93], a
polynomial time approximation for Densest-k-Subgraph with ratio n7/18 was presented.
The approximation ratio was improved to n1/3 in [FPK01] and O(n1/4) in [BCC+10]. On
the other hand, it remains a major open problem to prove Densest-k-Subgraph is NP-
hard to approximated to any constant ratio.

Densest-k-Subgraph
Instance: k and a graph G.
Solution: k-vertex subsets K ∈

(
V (G)
k

)
.

Cost: |E(G)∩(K
2 )|

(k
2)

.
Goal: max.

The result in [BKRW15] rules out an additive PTAS for Densest k-Subgraph up to ETH.
Notice that this problem has a natural parameter k, we may ask whether it has a constant
fpt-approximation algorithm.

Question 7.1.2. Assuming ETH, does Densest-k-Subgraph admit an fpt-approximation
algorithm to any constant ratio?
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Set Cover In the decision version of Set Cover problem, we are given k ∈ N and a family
of subset over a finite set U with n elements, the goal is to select k subsets whose union
covers U . This problem has two optimization versions. One is to keep the goal unchanged
and look for a minimum number of subsets that can cover U . Let us call such version
Min-Set-Cover. Another version, which we call Max-k-Set-Cover, is to select k subsets
whose union covers as many elements as possible.

The constant inapproximability of Min-Dominating-Set can be easily transfer to
Min-Set-Cover. The immediate question is whether the problem has fpt approximation
with some ratio ρ : N → N. On the other hand, the reduction in Chapter 5 does not
apply to Max-k-Set-Cover, which can be approximated to e

e−1 by the greedy algorithm.
In [Fei98], it is shown that Max-k-Set-Cover cannot be approximated within a ratio of
e
e−1 − ε, unless P = NP. The question is, can we achieve better ratios by using some
moderate exponential time approximation algorithms.

Question 7.1.3. Given δ(k), what is the minimum ε(k) such that there is an f(k) · nδ(k)-
time algorithm that approximate Max-k-Set-Cover to 1 + ε(k).
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