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Abstract

A multi-armed bandit problem is a crystallized instance of a sequential decision-making

problem in an uncertain environment. The history of this problem at least goes back to

the 1930s, and it has recently attracted attention in the machine learning community.

This problem involves conceptual entities called arms, and a forecaster who tries to iden-

tify good arms from bad ones. At each round, the forecaster draws one of the K arms and

receives a corresponding reward. The aim of the forecaster is to maximize the cumulative

reward over rounds, which is achieved by running an algorithm that balances the explo-

ration (acquisition of information) and the exploitation (utilization of information). The

notion of strong consistency introduced by Lai and Robbins (1985) defines the optimal

balance between the exploration and the exploitation for a certain class of robust algo-

rithms. At the beginning of the 2000s, an algorithm based on the upper confidence bound

was established. Around that time, people found that many problems in web systems

that involve uncertainty are related to the multi-armed bandit problem.

In each round of the multi-armed bandit problem, the algorithm selects an arm and

receives a reward. In other words, the three core notions in the multi-armed bandit prob-

lem are (i) the sequential selection of arms, (ii) the criterion of selection (i.e., single arm

selecting), and (iii) the reward feedback. However, these three notions are usually violated

in practical applications: there are gaps between the multi-armed bandit framework and

practical problems in web systems to which we would like to apply it.

In this thesis, we first review the history and the state-of-the-art framework of the multi-

armed bandit. Then, we propose three extensions to the multi-armed bandit problem,

which are intended to fill these gaps. Namely, (i) we propose the lock-up bandit problem,

which models technical restrictions on the sequential selection of arms. (ii) Motivated

by the problem of online advertisement placement, we study a multiple-play version of

the multi-armed bandit problem. We propose an extension of the Thompson sampling

algorithm and show its effectiveness both theoretically and empirically. Moreover, (iii)

motivated by problems arising in the information retrieval domain, we study the dueling

bandit problem, a variant of the multi-armed bandit problem in which only the result of a

pairwise comparison is available. A family of algorithms based on the likelihood function

is proposed, and their effectiveness is verified.
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Chapter 1

Introduction

A multi-armed bandit problem is a crystallized instance of a sequential decision-making

problem in an uncertain environment, and it can model many real-world scenarios. This

problem involves conceptual entities called arms, and a forecaster who tries to identify

good arms from bad ones. At each round, the forecaster draws one of the arms and

receives a corresponding reward. The aim of the forecaster is to maximize the cumula-

tive reward over rounds, which is achieved by running an arm selection algorithm that

balances exploration (acquisition of information) and exploitation (utilization of infor-

mation). Assuming that the rewards of each arm are sampled from a distribution that

does not change over rounds, the maximization of the cumulative reward boils down to

choosing the distribution giving the largest expectation for the most rounds.

Although the exact origin of the multi-armed bandit problem is not clear, the essential

idea behind it first arose in very old papers. Motivated by sequential experimental design,

Thompson [1933] studied a method to compute the probability that one arm is superior

to another, which can be considered a two-armed bandit problem. Robbins [1952] also

studied the two-armed bandit problem*1. He showed that, from the strong law of large

numbers, the reward per round of the forecaster can be made arbitrarily close to the best

possible one.

The exact maximization of the cumulative reward is very hard to achieve, and the

introduction of a discount factor made the problem much easier. Bellman [1956] devised

an algorithm that maximizes the cumulative reward for some class of Bayesian discounted

two-armed bandit problems. This result was generalized by the subsequent line of research:

arguably, the most seminal result of this formulation is the so-called Gittins index [Gittins

and Jones, 1974], which by computing for each arm gives an algorithm that maximizes

the cumulative discounted reward.

In contrast, the maximization of the undiscounted cumulative reward eluded under-

standing for a long time, due in part by the lack of convergence. A breakthrough occurred

in two papers in the 1980s, when Lai and Robbins [1985] derived the asymptotic possible

*1 Note that Robbins did not cite Thompson’s work.
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best performance of an algorithm without prior knowledge of the model parameter. Lai

[1987] produced a similar result in view of Bayesian statistics. They also proposed upper

confidence bound algorithms that are optimal in a sense of these performance metrics.

The idea of an upper confidence bound was simplified later in Agrawal [1995b]. These pa-

pers established the basic framework of the stochastic bandit, which is commonly used in

today’s machine-learning community. Auer et al. [2002a] proposed the UCB1 algorithm,

which is very simple yet has strong theoretical properties. Thanks to its simplicity, UCB1

has been widely used in the machine learning community, and many extensions to it have

been proposed.

Several years before the appearance of UCB1, Abe and Nakamura [1999] applied the

bandit framework to the problem of optimal placement of online advertisements. Around

that time, the multi-armed bandit started to attract attention from the machine learning

community. People found that the framework of the bandit problem can be generalized

to a wider class of problems. Although the basic problem is about identifying the op-

timal arm (i.e., the arm with the largest expected reward) among several, in the most

general sense, the bandit problem is an important subclass of sequential learning where

the available feedback is limited. In particular, a wide variety of web related problems

that involve uncertainty can be modeled as an extension of a bandit problem. To see this,

take the example of online advertising. Consider a website that has a pool of relevant

advertisements (ads). There is space on the website to show an ad. When a user arrives,

the website selects an ad from the pool. If the user is interested in the ad, he/she clicks it.

A significant fraction of online advertising uses the pay-per-click model, and as such max-

imization of revenue is equivalent to maximization of the number of clicks. The website

does not know the percentage of users clicking on each ad (click-through rate). This ad

selection problem is a representative example of the multi-armed bandit problem. Namely,

the ads, the users, and the clicks correspond to the arms, the rounds, and the rewards

of the problem. Feedback is only available from the displayed ad, and feedback is never

available from the undisplayed ads: the feedback is limited in this sense. The multi-armed

bandit problem has even wider application to web systems: examples include not only

online advertising, but also content optimization [Agarwal et al., 2009, Scott, 2010], search

engine optimization [Radlinski et al., 2008a], network routing [Awerbuch and Kleinberg,

2004], and recommender systems [Li et al., 2010].

1.1 Balancing Exploration and Exploitation

The central theme of the multi-armed bandit problem is finding the optimal balance

between the exploration and the exploitation of information. Regret, which is defined

as the difference between the cumulative rewards of the optimal arm and the algorithm,

corresponds to how much information is required for learning the structure of the problem.
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Therefore, an algorithm minimizing the regret is the one that fully utilizes the feedback.

The theory of strongly consistent algorithms, which we describe later, is simple enough

to understand intuitively and makes sense when taking the uncertainty of the parameters

into consideration. This theory defines an amount of regret required by bandit algorithms

in the asymptotical sense, which is a reasonable answer as to the optimal balance between

the exploration and the exploitation. We argue that most of the existing bandit algorithms

are not asymptotically optimal in the sense of regret. In applying the bandit framework,

one usually resorts to well-known variants of algorithms, such as ϵ-greedy and UCB1.

However, these simple algorithms sacrifice the performance by choosing a conservative

confidence bound for the sake of ease of analysis. To design an asymptotically optimal

algorithm, the number of draws of each arm must be controlled, and a refined analysis

of the draws is required. A few algorithms, such as KL-UCB, Thompson sampling, and

Deterministic Minimum Empirical Divergence, are known to be asymptotically optimal.

We show a general idea that is common to all of these optimal algorithms.

1.2 Rethinking the Bandit Framework

The framework of the multi-armed bandit is quite simple: yet it is powerful enough to

model many situations that involve sequential decision-making. In particular, we focus

on applying the multi-armed bandit framework to content optimization problems on web

systems. Although the framework is flexible, in many situations, there are non-trivial gaps

between it and the content optimization. The contribution of this thesis is to propose a

way to fill these gaps by extending the stochastic bandit framework.

In each round of the multi-armed bandit problem, the algorithm selects an arm and

receives a reward. In other words, the three core notions in the multi-armed bandit

problem are (i) the sequential selection of arms, (ii) the criterion of selection (i.e., single

arm selecting), and (iii) the reward feedback. In this thesis, we rethink them. Figure 1.1

describes the stochastic bandit problem and the three extensions that are studied in this

thesis. A natural question is whether the exploration and the exploitation can be balanced

in these extensions: we give a positive answer to this question by proposing algorithms

that minimize the regret in these extensions.

1.2.1 A lock-up restriction for the multi-armed Bandit Problem

The multi-armed bandit framework assumes that at each round an algorithm can select

an arm freely. When we deploy bandit algorithms in web systems, this assumption is

usually violated by technological limitations.

The most well-studied restriction on the bandit problem is the one called the switching

cost [Jun, 2004, Mahajan and Teneketzis, 2008]: it penalizes switching between one arm

and another. The switching cost is mainly motivated by economic considerations: it is
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𝑡 = 1,2,… , 𝑇

𝐼 𝑡 , and

 𝑋𝐼 𝑡 𝑡

 𝑡=1
𝑇  𝑋𝐼 𝑡 (𝑡)

Fig. 1.1. The standard stochastic bandit problem and its extensions that are studied in

this thesis.

often the case that changing an option is more costly than staying with it. The switching

cost is also motivated by experimental design: it models the cost of switching between

experimental settings. Although the algorithm is motivated to stay with the current arm,

it may change the arm at any round by paying the cost: in this sense, the switching cost

is a soft constraint. While the switching cost can model these problems, it cannot model

the technical limitations that arise in web systems. For instance, in the case of online

advertisements, updates of the algorithm parameters are delayed by the latency of the

system and the users’ feedback. These delays are not reduced by paying switching costs,

and they are better modeled by a harder constraint.

Taking this into consideration, we propose a version of the bandit problem called lock-

up bandits. This problem involves lock-up periods, during which an algorithm cannot

switch the arm. The lock-up period restriction is more stringent than the switching

cost in the sense that the algorithm cannot change the arm during a period. Existing

bandit algorithms, such as UCB1 and ϵ-greedy, cannot be directly applied to a problem

with lock-up periods because they choose an arm in each round without considering the

lock-up constraint. We derive a meta-algorithm that converts certain bandit algorithms,

including UCB1 and ϵ-greedy, into ones that are compatible with lock-up periods. The

performance of these algorithms is verified theoretically and empirically: the price to pay

for the lock-up periods is linear to the longest lock-up period. Interestingly, the derived

regret bound does not depend on the number of the lock-up periods. The results of

computer simulations support this conclusion.
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1.2.2 On multiple plays of the multi-armed bandit problem

In some applications such as online advertising, multiple entities that correspond to

arms are recommended to a user: a website usually has several slots for ads, and thus

multiple ads are selected at each round. In the standard multi-armed bandit problem,

a forecaster at each round selects single arm, and it cannot directly model a multiple

ad selection problem. However, it is possible to model this multiple ad selection as a

bandit problem by considering a set of ads as a single arm: let L be the number of the

slots in which the ads are placed. The number of L subsets of K ads is KCL, which is

proportional to KL for L ≪ K: modeling each L-subset as an arm is prohibitive in the

case L > 1. Instead, we consider an extension of a multi-armed bandit problem in which

L arms among K are chosen at each round. Several algorithms that are asymptotically

optimal in the standard single-play bandit problem, such as KL-UCB [Lai, 1987, Cappé

et al., 2013], DMED [Honda and Takemura, 2010], and Thompson sampling [Thompson,

1933], are known. At a glance, it appears obvious that these algorithms are asymptotically

optimal for the multiple-play case. Interestingly, it turns out to be highly non-trivial to

prove their optimality, even the simplest case in which there is no correlation between the

click-through rates of ads; to achieve an asymptotically optimal regret in the multiple-play

bandit problem, an algorithm must have plausible combinatorial properties. We show that

the multiple-play extension of Thompson sampling has such a property.

1.2.3 On pairwise comparison in the multi-armed Bandit Problem: the Dueling

Bandit Problem

The reward in the multi-armed bandit problem is absolute metric in the sense that a

higher reward is better. However, the availability of such an absolute metric is not always

the case, especially the problems involving the preferences of humans. Even if absolute

feedback is available, it may be biased. The most well-studied case is the ranking function

evaluation used in information retrieval. Regarding the evaluation of ranking functions

based on users’ implicit feedback, absolute metrics (e.g., clicks per query) do not reflect

the retrieval quality of the ranking functions, whereas pairwise comparison based on the

interleaved ranking function [Joachims, 2003] provides a more reliable metric [Radlinski

et al., 2008b]. Motivated by such a search engine ranker evaluation problem, Yue et al.

[2009] proposed the dueling bandits problem. In this problem, an algorithm selects a pair

of arms at each round and receives information that indicates which of the two arms is

preferred. There are several criteria about the best arm based on the relative comparison.

In particular, we study the problem of finding the arm that satisfies the Condorcet winner

criterion [Urvoy et al., 2013]. Here, we are interested in the exploration and exploitation
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trade-off in pairwise comparison: to how many users can we recommend an optimal arm

throughout the rounds?

1.3 Study of Bandit Algorithms: Theory Meets Practice

In the study of algorithms, one often observes the gap between theory and practice:

For instance, it is often the case that an algorithm with a good theoretical property (e.g.,

a performance guarantee) does not perform well in practical situations. Moreover, it is

often the case that such a theoretical algorithm is quite involved; it may contain many

artificial terms for ease of analysis. In practical situations, one usually resorts to more

practical algorithms that have weak (or sometimes no) theoretical guarantees. In my

experience, except for experts on algorithms, users prefer simple and practical algorithms

over complex ones. Therefore, the theoretical study of algorithms is somewhat different

from work aimed at making practically useful ones. Fortunately, this is not the case with

the bandit algorithms in this thesis: they are examples in which theory benefits practice.

1.4 Structure of This Thesis

The rest of this thesis is organized as follows. In Chapter 2, we introduce the standard

multi-armed bandit problem. Historically speaking, there are three approaches to setting

the rewards, and we compare them. Furthermore, among them, the stochastic approach is

currently the most widely used in the machine learning community. We explain that strong

consistency is an essential component of the stochastic bandit problem. An asymptotical

regret lower bound of a strongly consistent bandit algorithm is derived.

Henceforth, we adopt the stochastic approach. In Chapter 3, we introduce the standard

stochastic bandit algorithms. We explain the general idea that is common to efficient

stochastic bandit algorithms: they control the number of draws on suboptimal arms so

that its regret asymptotically matches the regret lower bound . Understanding this idea

is crucial when one tries to extend multi-armed bandit algorithms. Moreover, we show

the results of simulations illustrating the performance of these algorithms in practical

situations.

The following three chapters discuss extensions of the bandit problem. In Chapter 4, we

propose the lock-up bandit problem. We are interested in how the restriction on selection

affects the exploration and exploitation balance in the multi-armed bandit problem.

In Chapter 5, we study the multiple-play multi-armed bandit problem, where L ≥ 1 arms

are selected in each round. In the case of multiple selection, drawing several suboptimal

arms decreases the reward: we show that this problem can be circumvented by using an

extension of the Thompson sampling algorithm. The stochastic nature of the algorithm

is used to prove the asymptotic optimality of the algorithm.
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In Chapter 6, we study the dueling bandit problem. Under the Condorcet assumption

[Urvoy et al., 2013] on the preferences of the arms, we discuss the optimal balance between

exploration and exploitation. We derive an asymptotical regret lower bound and devise

an algorithm whose performance asymptotically matches the regret lower bound.

In Chapter 7, we give concluding remarks and discuss some of the existing studies on the

extension of the multi-armed bandit problem. The bandit problem is extensively studied

in the literature: we mainly restrict our interest to the fields of machine learning and data

mining.
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Chapter 2

Framework of Multi-armed Bandit

Problem

In this chapter, we discuss the framework of the standard multi-armed bandit problem.

Historically speaking, there are three major approaches to the bandit problem: namely,

the Bayesian, stochastic, and adversarial. We will explain these approaches and discuss

their advantages and disadvantages. The notation used in this chapter is summarized in

Table 2.1.

2.1 Multi-armed Bandit Problem

In this section, we explain the basic multi-armed bandit framework. Let there be K

arms. The notation “A := B” means that “A equals B by definition”. At each round

t = 1, 2, . . . , T , the forecaster selects an arm I(t) ∈ [K] := {1, 2, . . . ,K}, then receives

a corresponding reward X̂I(t)(t). The forecaster’s objective is to maximize the sum of

rewards. To do so, the forecaster should use an algorithm that selects the arm with the

largest expected reward, which we call the optimal arm, for most rounds. Much effort has

been devoted to finding efficient algorithms for solving the multi-armed bandit problem.

Regarding the reward model, three approaches have been considered in the literature:

Bayesian, stochastic, and adversarial (Figure 2.1).

• Bayesian approach: typically, each arm is associated with a distribution that

belongs to some parameterized family of functions (e.g., Bernoulli or Normal). The

reward at each round is an i.i.d. sample from the distribution associated with the

selected arm. This approach adopts a Bayesian view on the distribution from

which the rewards are generated. The objective of the forecaster is to maximize the

discounted sum of rewards in the Bayesian sense. Most results involve a discount

factor: an algorithm weight the current reward more than the future rewards. The

index theorem formalized by Gittins [Gittins and Jones, 1974] gives a construction
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Table. 2.1. Notation used in Chapter 2.

R+ := (0,+∞).

1{A} := 1 if A is true and 0 otherwise.

K := Number of the arms.

[K] := {1, 2, . . . ,K}.
T := Number of the rounds.

I(t) := The arm that is selected in round t.

θ = (θ1, . . . , θK) := Model parameters.

Pθi := Probability distribution from which the reward of arm i is gener-

ated.

X̂i(t) := Reward of arm i at round t.

µi := Mean reward of arm i.

∆i := µ1 − µi.

µ̂i(t) := Empirical mean reward of arm i at round t.

Ni(t) := Number of rounds in which arm i is selected before round t: that

is,
∑t−1

t′=1 1{I(t′) = i}.
d(p, q) := The KL divergence between distributions with parameters p and

q. In the case of Bernoulli distributions, d(p, q) = p log (p/q) +

(1− p) log ((1− p)/(1− q)).

of the optimal algorithm. This approach is suitable for the case in which prior

knowledge about the arms is available.

• Stochastic approach: like the Bayesian approach, each arm is associated a pa-

rameterized distribution, and the reward at each round is an i.i.d. sample from the

distribution associated with the selected arm. This approach seeks an algorithm

that performs well with any set of parameters; in the sense that it does not require

the prior knowledge of the parameters, this approach is inherently robust. The

objective is to maximize the undiscounted sum of rewards.

• Adversarial approach: in this approach, no assumption on the rewards is im-

posed: yet there are some ingenious randomized algorithms that perform effectively.

The objective is to maximize the undiscounted sum of rewards. This approach is

suitable for cases where it is difficult to model how the rewards are distributed.
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Model Parameter:

Given (prior)

Objective:

Bayes reward maximiza-

tion.

Future rewards:

Discounted

(a) Bayesian

Model Parameter:

Unknown

Objective:

Regret minimization

Future rewards:

Undiscounted

(b) Stochastic

Model Parameter:

Nonparametric

Objective:

Regret minimization

Future rewards:

Undiscounted

(c) Adversarial

Fig. 2.1. Approaches for solving the multi-armed bandit problem

2.2 Bayesian Approach

In the Bayesian approach (Figure 2.2), the reward of each arm i is drawn from a family of

distributions Pθi , which is parameterized by θi. The model parameters of the distributions

θ = (θ1, . . . , θK) ∈ Θ is drawn from a known prior Π. Let X̂i(t) ∼ Pθi be the reward of

arm i and µi = E[X̂i] be the expected reward of arm i. Let β ∈ (0, 1) be a discount factor.

The goal of the forecaster is to maximize the discounted cumulative reward:

EΠ

[
T∑

t=1

βt−1X̂I(t)(t)

]
, (2.1)

where the expectation is taken over the prior. The introduction of the discount factor

makes the analysis easier since the discounted sum of rewards converges. The most seminal

result in this setting is the Gittins index theory: each arm i is characterized by an index

function Gi = Gi(t). Gittins and Jones [1974] showed that selecting the arm of the largest

index i∗ = arg max
i∈[K]

Gi maximizes the discounted cumulative reward of the inequality (2.1).

Note that, the index theorem applies to a more general case ofK bandit processes in which

each arm has its state that evolves for each draw. For the ease of discussion, we do not

go into the details about the bandit processes.

The introduction of the discount factor implies that the future reward is less important

than the current one, and, as a result, it encourages more exploitation in early rounds.

The smaller discounted factor is, the more short-term revenue the algorithm seeks. In the

case of web systems, the rounds correspond to each user who accesses the website. The

optimal choice of the discount factor depends on how many users the website can expect

to arrive, which sometimes is difficult to estimate beforehand.
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A set of model parameters θ = (θ1, . . . , θK) ∈ Θ is drawn from the prior distribution Π.

Input: K (number of arms), β (discounted factor)

At each round t = 1, ..., T , the algorithm

1. selects an arm It, and

2. receives a reward X̂I(t)(t) ∼ PθI(t) .

Goal: maximize the cumulative reward
∑T

t=1 β
t−1X̂I(t)(t).

Fig. 2.2. The Bayesian bandit problem

2.3 Stochastic Approach

In the stochastic approach (Figure 2.3), the reward X̂i(t) from arm i is an i.i.d. sample

from a distribution Pθi . The objective of the forecaster is to maximize the cumulative

reward:

E

[
T∑

t=1

X̂I(t)(t)

]
. (2.2)

Unlike the Bayesian approach, the reward in (2.2) is undiscounted: it equally weights the

current reward and the rewards in the future rounds.

2.3.1 Optimal arm and regret

Let µi = E[X̂i(t)] be the expected reward of arm i. Without loss of generality, we can

assume µ1 ≥ µ2 ≥ · · · ≥ µK . For ease of discussion, let the arm of the largest reward

be unique*1: that is, µ1 > µ2. If all the model parameters are known, the best option

is to select the arm with the largest mean at each round. In this sense, we call arm 1

the optimal arm and the others suboptimal arms. Since the algorithm does not know the

parameters, it needs to acquire information from all arms (exploration). Meanwhile, it

should use the current information to obtain a better short-term reward (exploration). A

good algorithm should balance exploration and exploitation, which is measured in terms

of the regret.

Let ∆i = µ1−µi. The regret, which is the difference between the rewards of the optimal

arm and the algorithm, is defined as

Reg(T ) =
T∑

t=1

(µ1 − µI(t)) = ∆I(t).

*1 This assumption can be removed: for example, see Appendix A in Agrawal and Goyal [2012].
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Model Parameters θ = (θ1, . . . , θK) ∈ Θ (unknown)

Input: K (number of arms)

At each round t = 1, ..., T , the algorithm

1. selects an arm It, and

2. receives a reward X̂I(t)(t) ∼ PθI(t) .

Goal: maximize the cumulative reward
∑T

t=1 X̂I(t)(t).

Fig. 2.3. The stochastic bandit problem

Note that ∆i > 0 for all i ̸= 1 and ∆1 = 0: the regret is non-negative, and increases by

∆i if we select arm i once. Clearly, maximization of the cumulative reward is equivalent

to minimization of the regret. The expectation of the regret E[Reg(T )] measures the

performance of an algorithm. The advantage of using regret is that it clarifies the amount

of exploration and enables us to discuss the performance of the algorithms in terms of

exploration and exploitation. Robbins [1952] is one of the first papers that derived a non-

trivial result on the undiscounted cumulative reward. They studied a two-armed bandit

problem and showed that it is possible to construct an algorithm with its regret per round

approaches zero: namely, there exists an algorithm such that

lim
T→+∞

E
[
Reg(T )

T

]
→ 0.

2.3.2 Strong consistency and regret lower bound

In Section 2.3.1, we defined the regret, which by using an ingenious algorithm can be

sublinear to the number of rounds T . A natural question is how fast the regret per round

approaches zero. Given an algorithm with certain properties, a logarithmic regret can be

shown to be the best possible performance. In this subsection, we formalize this result.

An algorithm is strongly consistent if

E[Reg(T )] = o(T a)

for any a > 0 and any set of model parameters θ ∈ Θ. At In a word, a strongly consistent

algorithm is “uniformly good” over all instances. Let arm i ̸= 1 be arbitrary and Ni(t)

be the number of rounds before t in which arm i is selected. Lai and Robbins [1985]

showed that, there exists an asymptotic lower bound on Ni(T ) for any strongly consistent

algorithm. Let d(θi, θ1) be the Kullback-Leibler (KL) divergence between two distributions

with their parameters θi and θ1. For any bandit problem with itswhose rewards are drawn

from any single parameter exponential family of distributions, the following inequality
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holds:

lim inf
T→∞

E[Ni(T )]

log T
≥ 1

d(θi, θ1)
. (2.3)

An asymptotic regret lower bound easily follows from (2.3), as

lim inf
T→∞

E[Reg(T )]
log T

= lim inf
T→∞

∑
i̸=1 ∆iE[Ni(T )]

log T
≥
∑
i ̸=1

∆i

d(θi, θ1)
. (2.4)

Lai and Robbins [1985] also showed that it is possible to construct an algorithm that

is asymptotically optimal: that is, they showed a way to construct some statistical val-

ues that leads to an algorithm whose regret asymptotically matches the lower bound of

inequality (2.4).

The above result was later extended in several directions. (i) More general class of

reward distributions: Burnetas and Katehakis [1996] showed that it could be extended to

multi-parameter distributions. Honda and Takemura [2010] showed that its bound could

be applied to distributions with finite support. (ii) Even more general systems: Graves

and Lai [1997] showed that the asymptotic lower bound can be extended to Markovian

systems with a compact parameter space. Most papers on the bandit problem and its

extensions implicitly or explicitly assume the strong consistency defined above. For ex-

ample, algorithms that have logarithmic regret for any set of model parameters of interest

(i.e., UCB1) are implicitly strongly consistent.

2.4 Adversarial Approach

Unlike the aforementioned approaches, the adversarial approach assumes nothing but

the boundedness of the distribution of rewards. The bandit problem is formalized as a two-

player game played by a forecaster and an adversary. The forecaster seeks a high reward,

whereas the adversary tries to deceive the forecaster. Figure 2.4 formalizes the problem.

The forecaster selects an arm (possibly using randomization), and at the same time, the

adversary determines the reward of each arm in some bounded region to maximize the

regret. Without loss of generality, we can assume the reward is in [0, 1]. The regret in

this problem is defined as the difference between the cumulative reward of a single arm

and the one of the algorithm.

Reg(T ) = max
i∈[K]

(
T∑

t=1

X̂i(t)

)
−

T∑
t=1

X̂I(t)(t).

The objective of the forecaster here is again to minimize the expected regret against the

worst adversary who determines reward vectors based on the past selection of arms.

It is not difficult to show that any deterministic algorithm has linear regret: let the



14 Chapter 2 Framework of Multi-armed Bandit Problem

Input: K (number of arms)

At each round t = 1, ..., T :

1. The forecaster selects an arm It ∈ [K] (possibly using randomization).

2. The adversary at the same time selects the rewards of arms X̂(t) =

(X̂1(t), X̂2(t), . . . , X̂K(t)).

3. The forecaster receives a reward X̂I(t)(t).

Goal: minimize the regret Reg(T ) = maxi∈[K]

(∑T
t=1 X̂i(t)

)
−
∑T

t=1 X̂I(t)(t).

Fig. 2.4. The adversarial bandit problem

algorithm be deterministic, and the adversary allocates the rewards as

X̂i(t) =

0 (i = I(t))

1 (otherwise).
(2.5)

As a result, the forecaster receives zero reward. In contrast, as the sum of the rewards

allocated to the arms is (K − 1)T , at least one of the arms has a cumulative regret larger

than (K − 1)T/K, which implies the regret is Ω(T ).

The key in competing with an adversary is randomization: it is still possible to build

an unbiased estimator of the cumulative reward of the arms. Let pi(t) be the probability

that the arm i is selected at round t. Then,

T∑
t=1

X̂i(t)

pi(t)
1{I(t) = i} (2.6)

is an unbiased estimator of the cumulative reward of arm i. It is expected that, if the

variance of this unbiased estimator is bounded as o(T 2), we can make the regret sublinear:

a class of randomized algorithms, called exponentially weighted forecasters, is known to

have sublinear regret [Auer et al., 1995, 2002b]. Exp3 (Algorithm 1) is the most well-

known version of the exponentially weighted forecaster. The following theorem states

that the regret of Exp3 is upper bounded as O(
√
KT logK).

Theorem 1. ([Auer et al., 2002b]) The regret of Exp3 with γ = min (1,
√

K logK
(e−1)T ) is

bounded as follows:

2
√
e− 1

√
TK logK, (2.7)

where e ≈ 2.73 is the base of the natural logarithm.

It is also interesting to consider an algorithm that has works well in both stochastic and

adversarial settings. Some studies [Bubeck and Slivkins, 2012, Seldin et al., 2014] have
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Algorithm 1 Exp3 Algorithm [Auer et al., 2002b]

Input: # of armsK, γ ∈ R+

t← 1, and wi(1) = 1 for i ∈ [K].

for t = 1, 2, . . . , T do

for i = 1, 2, . . . ,K do

pi(t)← (1− γ) wi(t)∑K
i=1 wi(t)

+ γ
K

end for

Select I(t) randomly in accordance with the probability {pi(t)}i∈[K].

Receive reward X̂I(t) ∈ [0, 1].

for i = 1, 2, . . . ,K do

x̂i(t) =

X̂i(t)/pi(t) (i = I(t))

0 (otherwise)

wi(t+ 1)← wi(t) exp (γx̂i(t)/K)

end for

end for

proposed algorithms that simultaneously achieve good performance in both settings*2.

2.5 Comparison of the Three Approaches

In this thesis, we design algorithms based on the stochastic approach, because it has

the following advantages when it is applied to web systems:

• Algorithms based on the discounted cumulative reward are optimized for short-term

rewards and explore too much when the discount factor is not properly set. Modern

web systems involve a large number of people: the number of rounds T can be very

large, and we can expect that the future reward will be as important as the current

reward. In this sense, the undiscounted setting is more appropriate.

• The stochastic algorithms perform well with any parameter. In this sense, algo-

rithms optimized for the stochastic approach are robust.

• The adversarial algorithms, such as Exp3, are also robust in regard to the reward

distribution and balance exploration and exploitation in the game-theoretic sense.

However, they are excessively conservative (i.e., they do more exploration than they

need) when the reward is close to being stationary distributed.

A modern web server usually deals with a large number of users, and it makes sense to

exploit the statistical properties of the rewards. The i.i.d. property of the rewards is the

*2 More formally, such algorithms have Õ(K) regret in the stochastic bandit and Õ(
√
KT ) regret in

the adversarial bandit, where Õ hides a polylog factor as a function of K,T .
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primary assumption placed on learning in many-user environments.

2.6 Proof of Asymptotic Regret Lower Bound

Here, we give a proof of the asymptotic regret lower bound in the stochastic approach

(i.e., inequality (2.4)). For ease of analysis, the following theorem exclusively deals with

the case of Bernoulli rewards. In this case, the parameter of each arm i corresponds to

the expectation µi.

Theorem 2. (Asymptotic regret lower bound of a strongly consistent algorithm) For any

model parameters {µi} and any strongly consistent algorithm, the regret is lower bounded

as

E[Reg(T )] ≥
∑
i ̸=1

(1− o(1))∆i

d(µi, µ1)
log T,

where d(p, q) = p log p
q + (1 − p) log 1−p

1−q is the KL divergence between two Bernoulli dis-

tributions with parameters p and q ∈ (0, 1).

To prove Theorem 2, we prove there is an asymptotic lower bound on the number

of draws on each arm i ̸= 1. The following proof follows essentially the same steps as

Theorem 2 in Lai and Robbins [1985].

Lemma 3. For any model parameters {µi} and any strongly consistent algorithm, the

following inequality holds:

∀i ̸=1 E[Ni(T )] ≥ (1− o(1)) log T

d(µi, µ1)
. (2.8)

Let µ̂i be the empirical mean of the expected reward of arm i. Strong consistency

requires an algorithm to make sure the possible risk that action i ̸= 1 is optimal is smaller

than 1/t. The large deviation principle states that the probability that the arm with

true parameter µi behaves like the arm of parameter µ̂i is about exp (−Ni(T )d(µ̂i, µi)).

Therefore, we need to continue the exploration of arm i until Ni(T )d(µi, µ1) ∼ log t holds

in order to reduce the risk that the expectation of arm i is larger than the one of arm 1

to exp (− log t) = 1/t.

Proof of Lemma 3. Let arm i ̸= 1 be arbitrary suboptimal. Consider a modified bandit

instance in which the expectation of arm i is different. Namely, the expectation of arm i

is µ′
i > µ1 such that

d(µi, µ
′
i) = d(µi, µ1) + ϵ. (2.9)

From the monotonicity and continuity of the KL divergence, such a µ′
i uniquely exists

for sufficiently small ϵ > 0. The expectation of arm j ̸= i is the same as the one in the
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original bandit instance. Note that, unlike the original bandit instance, the optimal arm

in the modified bandit instance is not arm 1, but arm i.

Now, let X̂m
i ∈ {0, 1} be the result of the m-th draw of arm i,

K̂L(n) =
n∑

m=1

log

(
X̂m

i µi + (1− X̂m
i )(1− µi)

X̂m
i µ

′
i + (1− X̂m

i )(1− µ′
i)

)
,

and P′, E′ be the probability and expectation with respect to the modified bandit game.

Let us define the events, Let us define the events

D1 =
{
Ni(T )d(µi, µ

′
i) < (1− ϵ) log T,Ni(T ) <

√
T
}
,

D2 =
{
K̂L(Ni(T )) ≤

(
1− ϵ

2

)
log T

}
,

D12 = D1 ∩ D2,

D1\2 = D1 ∩ Dc
2.

First step (P{D12} = o(1)): let {nj} ∈ NK . We have,

P′(D12 ∩
∩

j∈[K]

{Nj(T ) = nj}) =
∫
D12∩

∩
j∈[K]{Nj(T )=nj}

exp
(
−K̂L(Ni(T ))

)
dP

≥ E

1
D12 ∩

∩
j∈[K]

{Nj(T ) = nj}

 exp
(
−
(
1− ϵ

2

)
log T

)
= T−(1−ϵ/2)P

D12 ∩
∩

j∈[K]

{Nj(T ) = nj}

 .
Summing over a disjoint union of events

∩
j∈[K]{Nj(T ) = nj} for each {nj} ∈ NK , we

obtain

P′(D12) ≥ T−(1−ϵ/2)P(D12).

Accordingly, we have

P(D12) ≤ T (1−ϵ/2)P′(D12)

≤ T (1−ϵ/2)P′
(
Ni(T ) <

√
T
)

= T (1−ϵ/2)P′
(
T −Ni(T ) > T −

√
T
)

≤ T (1−ϵ/2)E′[T −Ni(T )]

T −
√
T

(by the Markov inequality). (2.10)

Since this algorithm is strongly consistent, E′[T −Ni(T )]→ o(T a) for any a > 0. There-

fore, the RHS of the last line of (2.10) is o(T a−ϵ/2), which, by choosing a sufficiently small

a, converges to zero as T →∞. In summary, P{D12} = o(1).
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Second step (P{D1\2} = o(1)): we have

P{D1\2}

= P
{
Ni(T )d(µi, µ

′
i) < (1− ϵ) log T,Ni(T ) <

√
T , K̂L(Ni(T )) >

(
1− ϵ

2

)
log T

}
≤ P

{
max

n∈N,d(µi,µ′
i)<(1−ϵ) log T

K̂L(n) >
(
1− ϵ

2

)
log T

}
.

Note that

max
1≤n≤N

K̂L(n) = max
1≤n≤N

n∑
m=1

log

(
X̂m

i µi + (1− X̂m
i )(1− µi)

X̂m
i µ

′
i + (1− X̂m

i )(1− µ′
i)

)
,

is the maximum of the sum of positive-mean random variables, and thus it converges to

its average (c.f., Lemma 10.5 in Bubeck, 2010). Namely,

lim
N→∞

max
1≤n≤N

K̂L(n)

N
= d(µi, µ

′
i) a.s. (2.11)

By using the fact that (2.11) holds almost surely and 1− ϵ/2 > 1− ϵ, we have

P
(

max
n∈N,nd(µi,µ′

i)<(1−ϵ) log T
K̂L(n) >

(
1− ϵ

2

)
log T

)
= o(1).

In summary, we obtain P
{
D1\2

}
= o(1).

Last step: we have

D1 = {Ni(T )d(µi, µ
′
i) < (1− ϵ) log T} ∩

{
Ni(T ) <

√
T
}

= {Ni(T )(d(µi, µ1) + ϵ) < (1− ϵ) log T} ∩
{
Ni(T ) <

√
T
}

(By (2.9))

⊇
{
Ni(T )(d(µi, µ1) + ϵ) +

(1− ϵ) log T√
T

Ni(T ) < (1− ϵ) log T
}
,

where we have used the fact that {A < C}∩{B < C} ⊇ {A+B < C} for A,B > 0 in the

last line. Note that, by using the result of the previous steps, P{D1} = P{D12}+P{D1\2} =
o(1). By using the complement of this fact, we have

P
{
Ni(T )(d(µi, µ1) + ϵ) +

(1− ϵ) log T√
T

Ni(T ) ≥ (1− ϵ) log T
}
≥ P{Dc

1} = 1− o(1).

The Markov inequality yields

E
{
Ni(T )(d(µi, µ1) + ϵ) +

(1− ϵ) log T√
T

Ni(T )

}
≥ (1− ϵ)(1− o(1)) log T. (2.12)

Because E[Ni(T )] is a subpolynomial function of T due to consistency, the second term in

the LHS of (2.12) is o(1) and thus negligible. Lemma 27 follows from the fact that (6.11)

holds for sufficiently small ϵ.
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Proof of Theorem 2. The proof follows directly from Lemma 3:

E[Reg(T )] =
∑
i∈[K]

∆iE[Ni(t)] ≥ (1− o(1)) ∆i log T

d(µi, µ1)
.
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Chapter 3

Algorithms for Solving Multi-armed

Bandit Problem

Chapter 2 explained the three approaches to the bandit problem. The rest of this thesis

concerns the stochastic approach, which exploits the i.i.d. property of the rewards. The

asymptotic regret lower bound, which defines the optimality of an algorithm under the

strong consistency assumption, was derived in Section 2.3.2. In this chapter, we discuss

the well-known stochastic bandit algorithms and the ideas underlying them. Table 3.1

compares these algorithms, i.e., ϵ-greedy, Upper Confidence Bound (UCB), Thompson

sampling (TS), and Deterministic Minimum Empirical Divergence (DMED). ϵ-greedy is

a popular heuristic algorithm that is used in the field of reinforcement learning (Section

3.1). However, ϵ-greedy and its versions are not asymptotically optimal in terms of re-

gret: whereas it conducts uniform exploration over all suboptimal arms, an asymptotically

optimal algorithm needs to control the amount of exploration adaptively for each arm.

The other three algorithms can adaptively control the number of draws and obtain an

asymptotically optimal regret (Section 3.2). Each algorithm has its own way of deter-

mining the next arm to draw. UCB is a class of algorithms that explicitly follows the

Table. 3.1. Multi-armed bandit algorithms. An algorithm is defined to be asymptotically

optimal if it has a regret bound that asymptotically matches the lower bound

of Section 2.3.2.

Algorithm ϵ-greedy UCB TS DMED

asymptotically
optimal no yes yes yes

strategy
uniform

exploration
optimistic within
confidence interval

posterior
sampling

likelihood-based
exploration
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idea of the optimism under uncertainty (Section 3.3). TS [Thompson, 1933] is an old

heuristic for sequential decision-making on the sampling among distributions, which was

first proposed in the 1930s (Section 3.4). TS takes a prior and is inherently Bayesian.

DMED [Honda and Takemura, 2010] is a recent algorithm that is based on the likelihood

of each arm being the optimal one (Section 3.5). We will analyze the regret bounds of

these algorithms. For ease of analysis, we will restrict ourselves to the Bernoulli bandit

problem, where rewards are in {0, 1}. Overall, most of the results in this section can be

extended to a one-parameter canonical exponential family of reward distributions, such

as Gaussian distributions with a known variance. Section 3.6 discusses the performance

of the algorithms, while Section 3.7 discusses other topics, such as extendability. The

notation in this chapter is summarized in Table 3.2.

Table. 3.2. Notation used in Chapter 3.

1{A} := 1 if A is true and 0 otherwise.

K := Number of the arms.

[K] := {1, 2, . . . ,K}.
T := Number of the rounds.

I(t) := The arm that is selected in round t.

X̂i(t) := Reward of arm i at round t.

µi := Mean reward of arm i.

∆i := µ1 − µi.

µ̂i(t) := Empirical mean reward of arm i at round t.

µ̃i(t) := Posterior sample of µi at round t in Thompson sampling.

Ni(t) := Number of rounds in which arm i is selected before round t: that

is,
∑t−1

t′=1 1{I(t′) = i}.
d(p, q) := p log (p/q) + (1− p) log ((1− p)/(1− q)).

F beta
α,β (y) := Cumulative distribution function of the beta distribution with in-

teger parameters α and β.

FB
n,p(·) := Cumulative distribution function of the binomial distribution with

parameters n, p.

Large deviation inequalities: the stochastic bandit problem involves an estimation

of the expectation of each arm. Therefore, we need to know the probability of the deviation

of the empirical means of the arms from the true mean. In this thesis, we use the following

large deviation inequalities that bound the tail probability of the sum of random variables.

Hoeffding’s inequality holds for random variables with finite support, and the Chernoff

bound holds for binary variables.

Fact 4. (Hoeffding’s inequality for random variables with finite support)
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Algorithm 2 ϵ-greedy and ϵt-greedy

Input: # of armsK, ϵ ∈ (0, 1) (ϵ-greedy), c ∈ R+ (ϵt-greedy)

for t = 1, 2, . . . , T do

Let î∗ be the arm with the largest empirical mean reward (ties broken arbitrarily).

ϵ← min (1, c/t) (ϵt-greedy)

With probability 1− ϵ, select î∗ as I(t). With probability ϵ, select I(t) uniformly at

random.

end for

Let X̂1, . . . , X̂n be i.i.d. random variables on [0, 1], and let X̂ = 1
n

∑n
i=1 X̂i and µ =

E[X̂i]. Then, for any ϵ ∈ R+,

P(X̂ ≥ µ+ ϵ) ≤ exp
(
−2ϵ2n

)
.

and for any ϵ ∈ R+,

P(X̂ ≤ µ− ϵ) ≤ exp
(
−2ϵ2n

)
.

The union bound of the two inequalities yields

P(|X̂ − µ| ≥ ϵ) ≤ 2 exp
(
−2ϵ2n

)
.

Fact 5. (Chernoff bound for binary random variables)

Let X̂1, . . . , X̂n be i.i.d. binary random variables. Let X̂ = 1
n

∑n
i=1 X̂i and µ = E[X̂i].

Then, for any ϵ ∈ R+,

P(X̂ ≥ µ+ ϵ) ≤ exp (−d(µ+ ϵ, µ)n).

and for any ϵ ∈ R+,

P(X̂ ≤ µ− ϵ) ≤ exp (−d(µ− ϵ, µ)n).

3.1 ϵ-greedy

ϵ-greedy (Algorithm 2) is a well-known algorithm for solving reinforcement learning

problems [Sutton and Barto, 1998]. The idea behind it is quite simple: it exploits on the

basis of current knowledge with probability 1 − ϵ and explores with probability ϵ. One

can expect the exploration and exploitation trade-off can be balanced by optimizing the

probability ϵ. Unfortunately, this algorithm is not optimal for the multi-armed bandit

problem since an ϵ ∈ (0, 1) fraction of rounds generates regret, and thus, its regret is

linear to the number of the rounds. A version of this algorithm, called ϵt-greedy [Auer
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et al., 2002a], is also well-known in the field of machine learning. ϵt-greedy decreases

the probability of exploration at an O(1/t) rate, which makes sense because the optimal

amount of exploration in the multi-armed bandit problem is O(log T ) and
∑T

t=1(1/t) =

O(log T ). The following theorem implies that, by choosing a sufficiently large c, ϵt-greedy

has a logarithmic regret bound.

Theorem 6. (Theorem 3 in Auer et al. [2002a]) Let ∆2 := µ1 − µ2 > 0. For an ϵt-

greedy algorithm with c > max (5K, (2K)/(∆2)
2), for all t > c∆2, the probability that the

algorithm selects a suboptimal arm is Θ(1/t).

Sketch of the proof of Theorem 6. Uniform exploration (ϵt = c/t) is sufficient if we select

a sufficiently large parameter c. The appropriate value of c depends on ∆2. This is because

the expectation of arm 2 is the closest to the one of arm 1 (i.e., the optimal arm): it is

arm 2 that requires the largest number of samples to be distinguished from arm 1.

Let arm i ̸= 1 be arbitrary suboptimal. We have

P[I(t) = i] ≤ P[µ̂i(t) ≥ µi +∆i/2] + P[µ̂1(t) ≤ µ1 −∆i/2]. (3.1)

In what follows, we bound the first term of the RHS. The second term of the RHS can be

bounded by using the same argument. The first term is decomposed as

P[µ̂i(t) ≥ µi +∆i/2]

≤
⌊x0⌋∑
n=0

P[µ̂i(t) ≥ µi +∆i/2, Ni(t) = n]︸ ︷︷ ︸
(X)

+
∞∑

n=⌈x0⌉

P[µ̂i(t) ≥ µi +∆i/2, Ni(t) = n]

︸ ︷︷ ︸
(Y )

,

where x0 = (c/2K)
∑T

t=1. From Bernstein’s inequality, one can prove that uniform explo-

ration for each P[Ni(t) = n] ≤ exp−x0/5, which, with the union bound over n = 1, . . . , x0,

bounds term (X). Assuming that the arm is drawn Ni(t) = n times, from Hoeffding’s

inequality, it follows that

P[µ̂i,n − µi ≥ ∆i/2] ≤ e−∆2
in/2,

which, by summing over n ≥ ⌈x0⌉, bounds term (Y). In summary, term (X) is O(x0e
−x0/5),

and term (Y) is O(e−∆2
ix0/2). The first term on the RHS of (3.1) is upper bounded by

the sum of terms (X) and (Y). Theorem follows by lower-bounding x0 as

x0 ≥
c

K
log

T

c
.

Although the logarithmic regret bound directly follows from Theorem 6, the perfor-

mance of the algorithm depends on the constant c. The optimal value of c that minimizes
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UCB:

confidence bound

TS:

sample from

posterior

DMED:

divergence-based

likelihood

�1

�i �i �i

Fig. 3.1. Illustration of the three asymptotically optimal algorithms. UCB uses the top

(1/t)-quantile of the confidence bound, which in practice is approximated by

a large deviation bound. TS samples from the posterior distribution. DMED

is based on the empirical divergence, the negative exponential of which can

be considered as a likelihood that the expectation of arm i is larger than the

empirical best one. DMED continues exploring until the likelihood becomes

∼ 1/t.

the regret depends on the model parameters, which are hard to optimize beforehand. In

general, ϵt-greedy is not asymptotically optimal, because it explores all arms uniformly:

the sufficient amount of exploration differs among arms, and thus, an optimal algorithm

needs to control the amount of exploration for each arm. This aspect is not considered in

greedy algorithms.

Despite the lack of a strong theoretical guarantee, ϵ-greedy and ϵt-greedy are widely used

in practice. Examples of applications of ϵ-greedy include the following. Li et al. [2010]

tested ϵ-greedy for news article recommendation on the front page of Yahoo! Banditron

[Valizadegan et al., 2011], a bandit-based algorithm for multi-class prediction with partial

feedback, balances exploration and exploitation by using the ϵ-greedy strategy. Motivated

by e-commerce applications, Chakrabarti et al. [2008] proposed a version of the bandit

problem in which each arm has a lifetime after which it is no longer available. They

proposed adaptive-greedy heuristics, a variant of ϵ-greedy that adaptively tunes ϵ based

on the past rewards.

3.2 Asymptotically Optimal Algorithms: Controlling the Number

of Draws

In Section 3.1, we introduced ϵ-greedy and its variant ϵt-greedy. Although ϵt-greedy

has a logarithmic regret, the leading constant in front of the logarithmic factor is hard
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μ1

μi

Fig. 3.2. The draw of suboptimal arm i implies either (i) underestimation of the optimal

arm or (ii) overestimation of arm i.

to optimize because ϵt-greedy conducts a uniform exploration over all arms. In contrast,

UCB, TS, and DMED that we explain later are asymptotically optimal in the sense of the

regret. In this section, we explain the underlying idea of these algorithms. The asymptotic

regret lower bound (c.f., Section 2.3.2) is the sum over K−1 suboptimal arms. To confirm

that arm i is not as good as the optimal one, a strongly consistent bandit algorithm needs

to draw each arm
log T

d(µi, µ1)

times. Of course, an algorithm is not informed of the model parameters {µi}i∈[K], and thus

it needs to adapt to the distributions. In the following, we give an intuitive argument as to

why an asymptotically optimal algorithm can control the number of draws. An algorithm

with sublinear regret selects the optimal arm in most of the rounds: suppose that Ni(t)

for each suboptimal arm i ̸= 1 is o(t). This implies N1(t) = t −
∑

i̸=1Ni(t) = t − o(t).
Given O(t) samples, the deviation |µ̂1 − µ1| is O(1/

√
t) from the law of large numbers,

which is very small compared with |µ̂i−µi| of arm i ̸= 1. For this reason, we can identify

µ̂1 and µ1 when we examine the leading logarithmic term. To satisfy consistency, an

algorithm needs to check that the true expectation of arm i is less than that of arm 1

with a confidence level of ∼ 1/t. Assume that arm i has the expectation µ′
i = µ1, but its

empirical expectation µ̂i ∼ µi. The large deviation principle states that Ni(t) ∼ log t
d(µi,µ1)

implies P{µ̂i(t) < µi} ≤ exp (−Ni(t)d(µi, µ1)) ∼ 1/t if arm i’s expectation is µ1.

The idea behind the three algorithms is illustrated in Figure 3.1: to approximate a

1/t confidence level, UCB, TS, and DMED respectively use an upper confidence bound,

posterior samples, or a likelihood function. These algorithms are described in the later

sections.

3.2.1 Regret analysis: general idea

Given an algorithm, our next concern is how to analyze its regret. The technique de-

pends on the algorithm, yet we can discern that they share a common structure: the draw

of arm i ̸= 1 implies either an underestimation of the optimal arm or an overestimation
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of arm i. Namely,

T∑
t=1

1{I(t) = i}

⊂
T∑

t=1

1{Underestimation of the optimal arm}+
T∑

t=1

1{Overestimation of arm i}

⊂
T∑

t=1

1{Underestimation of the optimal arm}

+
T∑

t=1

1{Overestimation of arm i after it is sufficiently sampled.}

+ (sufficient number of samples:
log T

d(µi, µ1)
+ o(log T )),

which is illustrated in Figure 3.2. The first term is the underestimation of the optimal

arm. Since the optimal arm is often sampled, the overestimation of this term is unlikely

to happen and is expected to be o(log T ). Interestingly, bounding this term is often the

most difficult part of the proof. The second term is the overestimation of arm i. Given

sufficient samples, the use of large deviation inequalities leads to the bound of this term.

Therefore, the overestimation of arm i after a sufficient number of samples is expected to

be o(log T ). Below, we discuss the individual algorithms.

3.3 Upper Confidence Bound (UCB)

UCB is a class of algorithms that is based on the upper confidence bound on the expected

reward of each arm. UCB is a realization of the “optimism under uncertainty” principle:

the uncertainty of each arm is optimistically evaluated in the form of the upper confidence

bound, which turns out to be effective on bandit problems. There are several versions of

UCB: probably the most famous one is UCB1 [Auer et al., 2002a] (Algorithm 3). However,

the use of an upper confidence bound in bandit problems goes back at least to the 1980s

[Lai and Robbins, 1985].

Theorem 7. (Regret bound of UCB1) The regret of UCB1 with α > 1 is bounded as

Reg(T ) ≤
∑
i ̸=1

4α log T

∆i
+O(1),

where O(1) is a constant as a function of T .

UCB1 has a logarithmic regret, but its constant factor on the logarithmic term is not

optimal because its confidence bound is based on Hoeffding’s inequality. Although Ho-

effding’s inequality holds for any reward distribution with finite support, it is not very

tight on a specific family of distributions, such as Bernoulli.
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Algorithm 3 UCB1

Input: # of armsK, α ∈ R+.

Select each arm once and receive the rewards. t← K + 1.

for t = K + 1, 2, . . . , T do

Calculate the UCB1 index of each arm as

ci(t) = µ̂i(t) +

√
α log t

Ni(t)

Select the arm of the largest UCB1 index as I(t) (ties broken arbitrarily).

end for

Relation to the discussion in Section 3.2.1: Section 3.2.1 indicates that deriving

the bound on the underestimation of the optimal arm is usually the hardest part in

the regret analysis. The analysis of this term in UCB1 is easier because Hoeffding’s

inequality approximates the KL divergence, and thus, it does not require the inverse of

the KL divergence to be calculated.

Relation between the O(log T/∆i) bound and the optimal bound: the leading

constant 4α log T
∑

i ̸=1(1/∆i) can be considered to be an approximation of the asymptot-

ically optimal bound in the following sense. Pinsker’s inequality (inequality (35)) states

that

d(µi, µ1) ≥ 2∆2
i , (3.2)

and thus, the regret of UCB1 is larger than the optimal bound:∑
i̸=1

∆i log T

d(µi, µ1)
≤
∑
i̸=1

log T

2∆i
< 4α

∑
i ̸=1

log T

∆i
. (3.3)

On the other hand, d(µi, µ1) is upper-bounded as follows:

d(µi, µ1) =

∫ µ1

µi

∂d(µi, x)

∂x
dx

=

∫ µ1

µi

x− µi

(1− x)x
dx

≤ ∆2
i

(1− µ1)µi
.

Therefore, when min (µi, 1− µ1) is not very small, d(µi, µ1) ∼ Θ(∆2) is a good approxi-

mation. Unlike the regret bound of ϵt-greedy, which cannot adapt to model parameters

{µi}, the regret bound of UCB1 reflects the reward gap {∆i} and is more reasonable.

Because of its simplicity and reasonable regret bound, UCB1 has been widely used in

the machine learning community. There are hundreds of applications and extensions, but

we will not discuss them in any detail.
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3.3.1 Analysis of UCB1

In this subsection, we give a proof of the UCB1 regret bound.

Proof of Theorem 7. To prove the theorem, it suffices to show that for any i ̸= 1

E[Ni(T + 1)] ≤ 4α log T

∆2
i

+O(1), (3.4)

since Reg(T ) =
∑

i̸=1 ∆iNi(T + 1).

To simplify the discussion, we will ignore the initial exploration (one sample from each

arm) since the regret in this duration is at most K. Let

A(t) :=

{
µ̂1(t) +

√
α log t

N1(t)
< µ1

}

B(t) :=

{
µ̂i(t) > µi +

√
α log t

Ni(t)

}

C(t) :=
{
Ni(t) ≤

4α log t

∆2
i

}
.

In the following, we often denote {A,B} instead of {A∩B} for two events A and B. A(t)
means underestimation of arm 1 (optimal arm), B(t) means overestimation of arm i, and

C(t) means that arm i is not sufficiently sampled.

Note that

1{I(t) = i} ≤ 1{A(t)}+ 1{B(t)}+ 1{C(t)} (3.5)

since {A(t)c ∩ B(t)c ∩ C(t)c} implies

µ̂1(t) +

√
α log t

N1(t)
≥ µ1 = µi +∆i > µi + 2

√
α log t

Ni(t)
≥ µ̂i +

√
α log t

Ni(t)
,

and thus the arm i is not selected. Next, we bound each event. Let µ̂1,n be the empirical

mean of n samples on arm 1. We have

T∑
t=1

P{A(t)} ≤
T∑

t=1

t∑
n=1

P

{
µ̂1(t) +

√
α log t

N1(t)
< µ1, N1(t) = n

}

=
T∑

t=1

t∑
n=1

P

{
µ̂1,n +

√
α log t

n
< µ1

}

≤
∞∑
t=1

t∑
n=1

1

t2α
(by Hoeffding’s inequality)

≤
∞∑
t=1

1

t2α−1
≤ O(1).
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where we have used 2α−1 > 1 and
∑

t∈N(1/t
z) = O(1) for any z > 1. The same argument

yields

T∑
t=1

P{B(t)} = O(1).

The term of C(t) is bounded as

T∑
t=1

1{C(t)} ≤ 4α log T

∆2
i

+ 1

{
C(t), Ni(t) >

4α log T

∆2
i

}
=

4α log T

∆2
i

.

Taking the expectation of (3.5) and using the three bounds above yield (3.4).

Note that a more refined analysis with Hoeffding’s maximal inequality and the peeling

trick slightly improves a bound (c.f., Theorem 2.2 in Bubeck [2010]).

Nevertheless, the leading logarithmic constant of UCB1 cannot be optimal from the fact

that it uses Hoeffding’s inequality to approximate the confidence bound.

3.3.2 KL-UCB: optimizing the leading coefficient

As we discussed in Section 3.2, UCB needs to set the confidence level to 1/t to be

strongly consistent. The confidence level determined by the large deviation principle,

which describes the tail probability of the distributions. UCB1 defines the confidence

bound by using Hoeffding’s inequality. Although the inequality holds for any finite support

distribution, it is loose when we consider a family of specific distributions, such as Bernoulli

distributions.

A more refined algorithm, called KL-UCB (Algorithm 4), approximates the 1/t confi-

dence bound by using KL-divergence-based concentration inequalities*1. Note that the

KL-UCB index can be efficiently calculated by using Newton or bisection iterations. Al-

though KL-UCB was proposed in Garivier and Cappé [2011], essentially the same idea on

the confidence bound was proposed in Lai [1987].

Section 3.3.1 showed that the underestimation of the optimal arm is o(log T ). This

still holds for KL-UCB. Unlike UCB1, the analysis of KL-UCB is rather involved. KL-

UCB uses a KL-divergence-based confidence bound that is optimal with respect to its

exponential factor. As a result, we need a more involved analysis of the self-normalized

inequality to bound this factor. For more details, see Kaufmann [2014].

Theorem 8. (Theorem 1 in Cappé et al. [2013]) For KL-UCB with c = 3 and for any

suboptimal arm i ̸= 1,

E[Ni(T + 1)] ≤ log T

d(µi, µ1)
+ o(log T ),

*1 In the case of the Bernoulli distribution, this corresponds to the Chernoff bound (Fact 5).
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Algorithm 4 KL-UCB

Input: # of armsK, c ∈ R+.

Select each arm once and receive the rewards. t← K + 1.

for t = K + 1, 2, . . . , T do

Calculate the KL-UCB index of each arm as

ci(t) =

{
max
q∈[0,1]

: Ni(T )d(µ̂i(t), q) ≤ log t+ c log (log t)

}
.

Select the arm of the largest KL-UCB index as I(t) (ties broken arbitrarily).

end for

from which an asymptotically optimal bound on the regret directly follows.

3.4 Thompson Sampling (TS)

Thompson sampling is one of the oldest heuristics in the field of sequential decision-

making. Motivated by clinical trials, Thompson [1933] originally studied the probability

that one distribution is superior to another in the sense of its expectation. Although

Thompson [1933] was originally interested in the computational aspect of this probability,

today we can obtain the numerical value of such a probability relatively easily for many

distributions, and here, we are more interested in the general idea of selecting arms in

the bandit problem. Today, we use the term “Thompson sampling” to refer to a class of

algorithms that behave greedily based on posterior samples. TS is inherently Bayesian:

given a prior distribution over the parameters P (θ) and observations D1, . . .Dt of the

rewards of the selected arm, it computes the posterior distribution by using Bayes’s rule

P (θ|D1, . . . ,Dt) ∝ P (D1, . . . ,Dt|θ)P (θ). A closed-form expression for the posterior dis-

tribution can be computed in the case of the conjugate prior. In the multi-armed bandit

problem, the model parameter of each arm is disjoint. Algorithm 5 is TS with Bernoulli

rewards. At the beginning, TS initializes the distribution of each arm with a uniform

prior Beta(1, 1). At each round, TS selects an arm and receives a reward. The posterior

of each arm i is Beta(Ai, Bi), where Ai = Ai(t) and Bi = Bi(t) are one plus the number

of rewards 1 and 0, respectively. For selecting an arm, TS adopts the posterior sampling

method: namely, it selects each arm in accordance with the probability that it maximizes

the expected reward; that is,∫
1{µi = max

j∈[K]
µj}P (µ|D1, . . . ,Dt)dµ.

An explicit computation of this probability is not required. In implementing TS, just a sin-

gle sample from the posterior distribution is enough. TS for the Bernoulli bandit samples

from each arm’s posterior µ̃i(t) ∼ Beta(Ai(t), Bi(t)) and chooses arm arg max
i

µ̃i(t). Sam-
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Algorithm 5 Thompson sampling (TS) for binary rewards.

Input: # of armsK

for i = 1, 2, . . . ,K do

Ai, Bi ← 1, 1

end for

t← 1.

for t = 1, 2, . . . , T do

for i = 1, 2, . . . ,K do

µ̃i(t) ∼ Beta(Ai, Bi)

end for

I(t) = arg max
i

µ̃i(t) (ties broken arbitrarily).

if X̂I(t)(t) = 1 then

AI(t) ← AI(t) + 1

else

BI(t) ← BI(t) + 1

end if

end for

pling from many posterior distributions such as the Bernoulli and Normal distributions is

easy, and thus, Thompson sampling is computationally efficient.

Thompson sampling had long been forgotten until recently. Scott [Scott, 2010, 2015]

found that TS is effective at optimizing web systems, and Chapelle and Li [2011] verified

its effectiveness at online advertisement selection. Subsequently, people have analyzed its

performance from a theoretical viewpoint. In the case of Bernoulli rewards, a TS with

a uniform prior has been shown to be asymptotically optimal in the sense of stochastic

regret: [Ortega and Braun, 2010] showed the regret is o(t), and Agrawal and Goyal [2012]

showed the regret is O(log T ) with the introduction of techniques for Bernoulli rewards.

Kaufmann et al. [2012], Agrawal and Goyal [2013a] showed its asymptotic optimality.

Theorem 9. (Theorem 1 in Agrawal and Goyal [2013a])

The regret of TS is upper bounded as

E[Reg(T )] ≤
∑
i̸=1

∆i log T

d(µi, µ1)
+ o(log T ).

It is interesting that this Bayesian algorithm is optimal in the sense of the frequentist

interpretation. Later, Korda et al. [2013] showed that choosing the Jeffrey’s prior leads to

an asymptotically optimal regret for the one-parameter exponential family of distributions,

which is a generalization of the earlier result on Bernoulli bandits. However, Jeffrey’s prior

is not always good if we consider multi-parameter distributions. In some multi-parameter
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distributions, it is known that a naive choice of the prior does not suffice to have strong

consistency: Honda and Takemura [2014] showed that in TS for Normal distributions with

unknown mean and variance, using Jeffrey’s prior can result in a linear regret. A recent

trend in machine learning is to generalize the idea of TS; such studies include Agrawal

and Goyal [2013b], Gopalan et al. [2014], Kocák et al. [2014].

3.4.1 Idea behind TS

As we discussed in Section 3.2, strong consistency requires that Ni(t) ∼ log t
d(µi,µ1)

. In

other words, a suboptimal arm needs to be drawn until it is suboptimal with a confidence

level of 1/t. Here, we give an intuitive explanation on how TS controls the probability of

selecting suboptimal arms. A more formal analysis is provided in Section 3.4.2.

TS selects each arm in accordance with the probability that it maximizes the expected

reward. Let pi(t) be the probability that arm i is selected at round t. When t is large,

pi(t) should be the approximate empirical probability that the arm was selected up to

that round, which is expected to be close to P[µ̃i(t) ≥ µ1]. That is,

Ni(t) ∼ pi(t)t. (3.6)

Assuming that Ni(t) ∼ log t = Θ̃(1)*2, pi(t) ∼ 1/t. Let F beta
α,β (y) be the cdf of a beta

distribution with integer parameters α and β. Furthermore, let FB
n,p(·) be the cdf of a

binomial distribution with parameters n, p. Since TS selects an arm based on the posterior

sample, pi(t) corresponds to the tail probability 1 − F beta
nµ̂1,n+1,n(1−µ̂1,n)+1(µ1), where we

define n = Ni(t) to simplify the notation. From the Beta-Binomial equality, (Fact 34)

turns out to be

1− F beta
nµ̂1,n+1,n(1−µ̂1,n)+1(µ1) = FB

n+1,µ1
(nµ̂1,n). (3.7)

Assuming that µ̂1,n ∼ µi, the RHS of (3.7) is FB
n+1,µ1

(nµi). This quantity is the proba-

bility that the Bernoulli(µ1) behaves like Bernoulli(µi), which is the confidence level. In

summary, the confidence level of arm i being suboptimal is ∼ 1/t.

3.4.2 Analysis of TS

In this section, we provide a sketch of the proof of the regret bound of TS. Although

we focus on the analysis of Bernouli rewards, the technique here applies to many reward

settings, such as the one-parameter exponential family [Korda et al., 2013] or the Normal

distribution [Honda and Takemura, 2014]. The analysis is mainly based on the techniques

in Agrawal and Goyal [2013a] and Honda and Takemura [2014].

*2 Θ̃ ignores a polylog factor.
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Sketch of the proof of Theorem 9. We prove that, for an arbitrary arm i ̸= 1 and suffi-

ciently small ϵ > 0,

E[Ni(T + 1)] ≤ log T

(1− ϵ)d(µi, µ1)
+O(1), (3.8)

from which Theorem 9 easily follows.

Let µ̂i(t) be the empirical mean reward of arm i at round t and µ̃∗(t) = maxi∈[K] µ̃i(t).

Furthermore, let δ > 0 be sufficiently small and

A(t) := {µ̃∗(t) < µ1(t)− δ}

B(t) := {µ̂i(t) > µi(t) + δ}

C(t) :=
{
Ni(t) <

log T

d(µi(t) + δ, µ1 − δ)

}
.

Event A(t) is related to the underestimation of the optimal arm, event B(t) is related

to the overestimation of arm i, and event C(t) corresponds to the case that arm i is not

sufficiently sampled. If none of these three events occurs, it is very unlikely that arm i is

sampled. First, we decompose the number of draws of each arm as

E

[
T∑

t=1

1[I(t) = i]

]

≤ E

[
T∑

t=1

1[I(t) = i,A(t)]

]
+ E

[
T∑

t=1

1[I(t) = i,B(t)]

]

+ E

[
T∑

t=1

1[I(t) = i, C(t)]

]
+ E

[
T∑

t=1

1[I(t) = i,Ac(t),Bc(t), Cc(t)]

]

≤ log T

d(µi(t) + δ, µ1 − δ)
+ E

[
T∑

t=1

1[I(t) = i,A(t)]

]
︸ ︷︷ ︸

(X)

+ E

[
T∑

t=1

1[I(t) = i,B(t)]

]
︸ ︷︷ ︸

(Y)

+E

[
T∑

t=1

1[I(t) = i,Ac(t),Bc(t), Cc(t)]

]
︸ ︷︷ ︸

(Z)

.

In the following, we bound terms (X), (Y), and (Z) separately.

Bounding term (X):

Term (X), which implies the underestimation of the optimal arm by δ, is O(poly(1/δ)) =

O(1) as a function of T . Interestingly, bounding this non-leading term is the hardest part
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in the analysis of TS. In bounding the overestimation of a suboptimal arm, we have

T∑
t=1

1[I(t) = i,A(t)] =
T∑

n=0

T∑
t=1

1[I(t) = i,A(t), N1(T ) = n]

=
T∑

n=0

T∑
m=1

1

[
m ≤

T∑
t=1

1[I(t) = i,A(t), N1(T ) = n]

]

Note that event {
m ≤

T∑
t=1

1[I(t) = i,A(t), N1(T ) = n]

}

implies that µ̃1(t) ≤ µ̃∗(t) ≤ µ1−δ occurred for the firstm elements of {t : Ac(t), N1(T ) =

n}. Therefore,

P

[
m ≤

T∑
t=1

1[I(t) = i,A(t), N1(T ) = n]

∣∣∣∣∣µ̂1,n

]
≤ (F beta

nµ̂1,n+1,n(1−µ̂1,n)+1(µ1 − δ))m,

where µ̂i,n is the empirical mean reward of arm i with n samples. Accordingly, we get

E

[
T∑

t=1

1[I(t) = i,A(t)]

]
≤

T∑
n=0

T∑
m=1

P

[
m ≤

T∑
t=1

1[I(t) = i,A(t), N1(T ) = n]

]

≤
T∑

n=0

T∑
m=1

E
[
(F beta

nµ̂1,n+1,n(1−µ̂1,n)+1(µ1 − δ))m
]

≤
T∑

n=0

E

[(
1

1− F beta
nµ̂1,n+1,n(1−µ̂1,n)+1(µ1 − δ)

− 1

)]
, (3.9)

where the last two expectations are taken with respect to µ̂1,n. Bounding (3.9) is rather

technical. The existing papers [Kaufmann et al., 2012, Agrawal and Goyal, 2013a] give

estimates for the partial Binomial sums [Jerábek, 2004]. In fact, one can show that

(3.9) = O(1). In general, bounding this term requires a special technique for each class

of reward distributions. Besides the Bernoulli distribution, bounds on term (X) have

been formulated for the Normal distribution [Honda and Takemura, 2014] and the one-

parameter exponential distribution [Korda et al., 2013].

Bounding term (Y):

This term is related to the deviation of the empirical mean, and thus, it will have a large

deviation inequality. Note that event {I(t) = i, µ̂i(t) > µi + δ,Ni(t) = n} occurs at most
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once and µ̂i(t) is fixed during Ni(t) = n. Therefore,

E

[
T∑

t=1

1[I(t) = i,B(t)]

]
=

T∑
t=1

P{I(t) = i, µ̂i(t) > µi + δ}

= 1 +

T∑
n=1

P{µ̂i,n > µi + δ}

= 1 +

T∑
n=1

e−2δ2n (by Hoeffding’s inequality)

= O(1).

Bounding term (Z):

Under {Ac(t),Bc(t), Cc(t)}, it suffices to bound µ̃i(t), which is drawn from Beta(Ni(t)µ̂i(t)+

1, Ni(t)(1 − µ̂i(t)) + 1). This term is specific to TS: in TS, one needs to bound the tail

probability of the conjugate posterior distribution. Namely,

E

[
T∑

t=1

1[I(t) = i,Ac(t),Bc(t), Cc(t)]

]

=

T∑
t=1

P[I(t) = i,Ac(t),Bc
i (t), Cci (t)]

≤
T∑

t=1

P
[
µ̃i(t) > µ1(t)− δ, µ̂i(t) ≤ µi + δ,Ni(t) ≥

log T

d(µi(t) + δ, µ1 − δ)

]

≤
T∑

t=1

1

T
= 1.

where the last inequality is derived by using the Beta-Binomial transformation and the

Chernoff inequality (c.f., (B.2) in Agrawal and Goyal [2013a]).

Final step:

From the continuity of the KL divergence, one can find ci = ci(µi, µ1) such that

d(µi(t) + δ, µ1 − δ) ≥ (1− ciδ)d(µi(t), µ1),

and thus, by letting δ = ϵ/ci and using the results on for terms (X), (Y), and (Z), we

yield get (3.8).

3.5 Deterministic Minimum Empirical Divergence (DMED)

DMED (deterministic minimum empirical divergence) proposed by Honda and Take-

mura [2010] is a relatively new algorithm for solving the stochastic bandit problem, which

was proposed by Honda and Takemura [2010]. There is also a probabilistic version of the

algorithm, called MED [Honda and Takemura, 2011].
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Algorithm 6 DMED

Input: # of armsK.

LC , LR ← [K], LN ← ∅.
Select each arm once and receive the rewards. t← K + 1.

while t ≤ T do

for i ∈ LC in an arbitrary fixed order, do

Select arm i and receive the corresponding reward. t← t+ 1.

LR ← LR \ {i}.
LN ← LN ∪ {j} (without a duplicate) for all j /∈ LR such that Jj(t) holds, where

Ji(t) := {Ni(t)d(µ̂i,max
i′

µ̂i′) ≤ log (t/Ni(t))} (3.10)

end for

LC , LR ← LN , LN ← ∅.
end while

One of the novel contributions of DMED to the understanding of the bandit problem

is the introduction of the notion of “likelihood”. The quantity Ni(t)d(µ̂i,maxi′ µ̂i′) in

(3.10), which corresponds to the empirical divergence of each arm, can be considered as

the negative log-likelihood that the arm is the optimal one. DMED continues sampling

each arm until its empirical divergence becomes larger than log (t/Ni(t)), which turns out

to be sufficient for minimizing the expected regret. The computation of (3.10) is easy for

Bernoulli rewards. One of the advantages of DMED lies in its extendability: this inequality

can be efficiently computed for a large class of distributions with finite support. Although

DMED was conceived from the Bayesian viewpoint, it requires no prior distribution.

The following theorem states that DMED is an optimal algorithm.

Theorem 10. The regret of DMED is upper bounded as

E[Reg(T )] ≤
∑
i̸=1

∆i log T

d(µi, µ1)
+ o(log T ),

3.5.1 Analysis of DMED

In this section, we prove the following statement: for any suboptimal arm i ̸= 1 and

sufficiently small ϵ > 0, we have

E[Ni(T + 1)] ≤ (1 + ϵ)
log T

d(µi, µ1)
+O(1),

from which Theorem 10 easily follows. During In the proof, we will use the two following

properties: namely,
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• (Property 1)
∑T

t=1 1{I(t) = i} ≤
∑T

t=1 1{Ji(t)}+ 2. Moreover,

• (Property 2) If Ji(t) holds, then the arm will be drawn within K rounds.

The proof here follows the essentially the same steps to as the one in Honda and Takemura

[2010], with some improvements made on to the arguments.

Let µ̂∗(t) = maxi∈[K] µ̂i(t) and δ > 0 be such that µ2 + δ < µ1. Let

A(t) := {µ̂∗(t) ≤ µ2 + δ}

B(t) := {µ̂1 ≤ µ1 − δ}

C(t) := {Ni(t) ≤
(1 + ϵ) log T

d(µi, µ1)
}.

Event A(t) is related to the underestimation of the optimal arm, event {Ac(t),B(t)} is

related to the overestimation of suboptimal arms, and C(t) corresponds to the case that

arm i is not sufficiently sampled. We first decompose the number of draws on each arm

as

E

[
T∑

t=1

1[I(t) = i]

]

≤ E

[
T∑

t=1

1[A(t)]

]
+ E

[
T∑

t=1

1[Ac(t),B(t)]

]

+ E

[
T∑

t=1

1[I(t) = i, C(t)]

]
+ E

[
T∑

t=1

1[I(t) = i,Ac(t),Bc(t), Cc(t)]

]

≤ (1 + ϵ) log T

d(µi, µ1)
+ E

[
T∑

t=1

1[A(t)]

]
︸ ︷︷ ︸

(X)

+ E

[
T∑

t=1

1[Ac(t),B(t)]

]
︸ ︷︷ ︸

(Y)

+E

[
T∑

t=1

1[I(t) = i,Bc(t), Cc(t)]

]
︸ ︷︷ ︸

(Z)

.

In the following, we bound terms (X), (Y), and (Z) separately.

Bounding term (X):

Term (X) is related to the underestimation of the optimal arm. Recall that, in bounding

the underestimation of the optimal arm, TS requires an elaborate technique which, which

is highly specific to the Bernoulli distribution. KL-UCB also requires the self-normalizing

bound to this end. On the contrary, the following bound on term (X) does not require

any special technique.

We have

T∑
t=1

1[A(t)] =
T∑

t=1

1{I(t) = i, µ̂1(t) ≤ µ2 + δ, µ̂∗(t) ≤ µ2 + δ}.
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Under event {µ̂∗(t) ≤ µ2 + δ}, if

t/Ni(t) ≥ exp (Ni(t)d(µ̂1(t), µ2 + δ))

then J1(t) holds and arm 1 will be drawn within K rounds (by Property 2). Therefore,

T∑
t=1

1 [µ̂1(t) ≤ µ2 + δ,N1(t) = n, µ̂∗(t) ≤ µ2 + δ] ≤ n exp (nd(µ̂1,n, µ2 + δ)) +K,

where µ̂i,n be the empirical mean reward of arm i with n samples. Let P1(x) = P[µ̂1,n ≤
µ2 + δ, d(µ̂1,n, µ2 + δ) ≥ x]. Then,

E

[
T∑

t=1

1 [µ̂1(t) ≤ µ2 + δ,N1(t) = n, µ̂∗(t) ≤ µ2 + δ]

]

≤
∫ log (1/(1−µ2−δ))

0

(nenx +K) d(−P1(x))

≤ KP1(0) +

∫ log (1/(1−µ2−δ))

0

nenxd(−P1(x))

≤ KP1(0) + [nenx(−P1(x))]
log (1/(1−µ2−δ))
x=0 +

∫ log (1/(1−µ2−δ))

0

n2enxP1(x)dx

(by integration by parts)

≤ (n+K)P1(0) +

∫ log (1/(1−µ2−δ))

0

n2end(µx,µ2+δ)e−nd(µx,µ1)dx,

where µx ≤ µ2 + δ is such that d(µx, µ2 + δ) = x. By using Fact 36, we have∫ log (1/(1−µ2−δ))

0

n2end(µx,µ2+δ)e−nd(µx,µ1)dx

≤
∫ log (1/(1−µ2−δ))

0

n2e−nC1(µ1,µ2+δ)dx

≤ log (1/(1− µ2 − δ))n2e−nC1(µ1,µ2+δ),

where C1(µ, µ2) = (µ− µ2)
2/(2µ(1− µ2)). Summing these results over n yields

E

[
T∑

t=1

1 [µ̂1(t) ≤ µ2 + δ, µ̂∗(t) ≤ µ2 + δ]

]

≤ E

[
T∑

t=1

∞∑
n=1

1 [µ̂1(t) ≤ µ2 + δ, µ̂∗(t) ≤ µ2 + δ,Ni(t) = n]

]

≤
∞∑

n=1

(
(n+K)P1(0) + log (1/(1− µ2 − δ))n2e−nC1(µ1,µ2+δ)

)
≤

∞∑
n=1

(
(n+K)e−nd(µ2+δ,µ1) + log (1/(1− µ2 − δ))n2e−nC1(µ1,µ2+δ)

)
=

(
ed(µ2+δ,µ1)

(ed(µ2+δ,µ1) + 1)2
+K

1

ed(µ2+δ,µ1) + 1
+ log

(
1

1−µ2−δ

)
eC1(µ1,µ2+δ)(e2C1(µ1,µ2+δ) − 1)

(eC1(µ1,µ2+δ) + 1)4

)
< +∞,
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where we have used the fact that
∑∞

n=1 e
−nx = 1/(ex + 1),

∑∞
n=1 ne

−nx = ex/(ex + 1)2,

and
∑∞

n=1 n
2e−nx = ex(e2x− ex)/((ex+1)4). In summary, term (X) is O(1) as a function

of T .

Bounding term (Y):

Note that
T∑

t=1

1[Ac(t),B(t)] =
T∑

t=1

1[µ̂∗(t) > µ2 + δ, µ̂1 ≤ µ1 − δ]

implies ∪i∈[K]{µ̂i(t) = µ̂∗(t), |µ̂i(t)− µi| ≥ δ}. Here,

T∑
t=1

1[µ̂i(t) = µ̂∗(t), |µ̂i(t)− µi| ≥ δ] =
T∑

t=1

T∑
n=1

1[µ̂i(t) = µ̂∗(t), |µ̂i(t)− µi| ≥ δ,Ni(t) = n].

Suppose that {µ̂i(t0) = µ̂∗(t0), Ni(t0) = n} occurs the first time at round t0. Then, Ji(t)
holds, and arm i is drawn within K rounds (from Property 2). Therefore, 1[µ̂i(t) =

µ̂∗(t), |µ̂i(t)− µi| ≥ δ,Ni(t) = n] occurs at most K rounds. By using this fact, we have

E

[
T∑

t=1

1[µ̂i(t) = µ̂∗(t), |µ̂i(t)− µi| ≥ δ]

]
≤ KE

[
T∑

n=1

1[|µ̂i,n(t)− µi| ≥ δ]

]

≤ 2K

T∑
n=1

e−2nδ2 (by Hoeffding’s inequality)

=
2K

eδ2 − 1
<∞.

In summary, term (Y) is O(1).

Bounding term (Z):

This term is related the overestimation of arm i after a sufficient number of samples.

With a sufficient number of samples, the deviation of µ̂i(t) from µi is likely to be small.
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Therefore, this term is expected to be O(1).

T∑
t=1

1[I(t) = i,Bc(t), Cc(t)]

T∑
t=1

1

[
I(t) = i, µ̂∗ > µ1 − δ,Ni(t) ≥

(1 + ϵ) log T

d(µi, µ1)

]

≤
T∑

t=1

1

[
I(t) = i, µ̂∗ > µ1 − δ,Ni(t) ≥

(1 + ϵ) log T

d(µi, µ1)

]

≤ 2 +

T∑
t=1

1

[
Ji(t), µ̂∗ > µ1 − δ,Ni(t) ≥

(1 + ϵ) log T

d(µi, µ1)

]
(from Property 1)

≤ 2 +

T∑
n=⌈ (1+ϵ) log T

d(µi,µ1)
⌉

1

[
T∪

t=1

{nd(µ̂i,n, µ1 − δ) ≤ log t}

]

≤ 2 +
T∑

n=⌈ (1+ϵ) log T
d(µi,µ1)

⌉

1

[
(1 + ϵ) log T

d(µi, µ1)
d(µ̂i,n, µ1 − δ) ≤ log T

]

≤ 2 +

T∑
n=⌈ (1+ϵ) log T

d(µi,µ1)
⌉

1

[
d(µ̂i,n, µ1 − δ) ≤

d(µi, µ1)

1 + ϵ

]
.

If δ is sufficiently small, there exists a sufficiently small c = c(ϵ, δ) > 0 such that

P
[
d(µ̂i,n, µ1 − δ) ≤

d(µi, µ1)

1 + ϵ

]
≤ e−nc. (3.11)

In summary, we have

E

[
T∑

t=1

1[I(t) = i,Bc(t), Cc(t)]

]
≤ 2 +

∞∑
n=1

e−nc = O(1). (3.12)

Summing up the bounds on terms (X), (Y), and (Z) completes the proof.

3.6 Performance of the Algorithms

We examined the performances of the bandit algorithms in a computer simulation*3.

The simulation involved ten Bernoulli arms with µ1 = 0.1, µ2, . . . , µ4 = 0.05, µ5, . . . , µ7 =

0.02, µ8, . . . , µ10 = 0.01. The algorithms were as follows: ϵt-greedy [Auer et al., 2002a]

with ϵt = 0.1/t, UCB1 (Algorithm 3) with α = 1, MOSS [Audibert and Bubeck, 2009],

and UCB-V [Audibert et al., 2009]. KL-UCB (T) is Algorithm 4 with c = 0, and KL-

UCB (ToN) is a version of KL-UCB with its log t factor replaced by log (t/Ni(t)), which

*3 The simulation was based on the author’s open source software, which is available at URL:

https://github.com/jkomiyama/banditlib.
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Fig. 3.3. Regret-round semilog plots of algorithms. LB is the asymptotic lower bound

(=
∑

i̸=1
∆i log t
d(µi,µ1)

). The results are averaged over 10, 000 trials.

is referred to as KL-UCB+ in Garivier and Cappé [2011]. DMED-ToN is Algorithm 6,

and DMED-T is a version with log (t/Ni(t)) in (3.10) replaced by log t. TS is Algorithm

5. Note that the KL-UCBs, DMEDs, and TS are asymptotically optimal in the sense that

their regret bound asymptotically matches the lower bound, whereas the other algorithms

are not. The results are shown in Figure 3.3. KL-UCB (ToN), DMED-ToN, and TS

performed the best and were very close to each other, which is probably related to the
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fact that they are based on the optimal exploration rate, as discussed in Section 3.2.

3.7 Discussion

Here, we examine a number of topics related to the bandit algorithms. Section 3.7.1

discusses the asymptotic and finite-time properties of the analyses, and section 3.7.2 looks

at the distribution-independent regret, which is yet another regret that holds for any model

parameter {µi}. Section 3.7.3 examines the Bayes risk of the undiscounted cumulative

reward, and section 3.7.4 describes the relation between the space of the parameters and

the regret lower bound. Section 3.7.5 discusses the extendability of the bandit algorithms.

3.7.1 Asymptotic and finite-time analyses

We have demonstrated that KL-UCB, TS, and DMED have asymptotic regret bounds.

Recall that an algorithm is called asymptotically optimal if it has a regret bound that

implies

E[Reg(T )] ≤
∑
i̸=1

∆i log T

d(µi, µ1)
+ o(log T ). (3.13)

Note that the small-o notation in (3.13) only specifies an asymptotic property: an o(log T )

function is arbitrarily smaller than log T given sufficiently large T , but it does not specify

how fast it becomes bounded. On the other hand, a finite-time analysis, which gives an

explicit regret bound for given T , and thus guarantees the performance of the algorithm

in a more explicit way, is important in the field of machine learning.

The properties of algorithms we consider in this section are illustrated in Figure 3.4.

Here, we will not explicitly discuss the finite-time property of the regret bounds because it

is not difficult to obtain a finite-time bound for the Bernoulli rewards. In general, whether

a finite-time analysis is possible or not depends on the distribution of the rewards.

3.7.2 Distribution-independent regret bound

The regret lower bound is described in terms of the KL divergence between the distri-

butions (Section 2.3.2). This bound is asymptotic for T →∞ when we regard the model

parameters {µi}i∈[K] as constants. In this sense, it is distribution-dependent. In the multi-

armed bandit problem, another kind of regret bound is known: namely, a distribution-

independent regret bound that holds for any parameter {µi}i∈[K]. It is easy to show that

an algorithm with an O(K log T/∆2) distribution-dependent regret bound (e.g., UCB1,

KL-UCB, TS, and DMED) also has an O(
√
TK log T ) distribution-free regret (e.g., The-

orem 2.2 in Bubeck [2010] or Theorem 2 in Agrawal and Goyal [2013a]). On the other

hand, the distribution-free regret is lower-bounded by Ω(
√
KT ).
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Fig. 3.4. Asymptotic and finite-time properties of the bandit algorithms that we discuss

in this thesis. Asymptotical optimality means that an algorithm is associated

with a regret bound that satisfies inequality (3.13). The finite-time property

indicates the availability of an explicit formula of the regret bound for given T .

Note that the regret of all algorithms considered in this section is finite-time for

Bernoulli rewards.

Theorem 11. (Appendix A in Auer et al. [2002b]) For any algorithm, there exists a set

of parameters {µi}i∈[K] such that the regret is lower bounded as

E[Reg(T )] ≥ 1

20

√
KT.

There is a logarithmic gap between the O(
√
TK log T ) regret upper bound and the

Ω(
√
KT ) regret lower bound of Theorem 11. The MOSS algorithm [Audibert and Bubeck,

2009] is a stochastic bandit algorithm with O(
√
KT ) regret, and it fills the logarithmic

gap. To the best of our knowledge, the optimal leading constant of O(
√
KT ) regret is

unknown.

3.7.3 Bayesian view of regret

Unlike the Bayesian approach that we explained in Section 2.2, in this section, we focus

on the case in which the rewards are undiscounted. Lai [1987] considered a maximiza-

tion of the undiscounted cumulative reward from the Bayesian point of view. They also

proposed an algorithm that is similar to KL-UCB+ [Garivier and Cappé, 2011], which is

asymptotically optimal in the sense of the Bayes risk. Interestingly, to show the asymp-

totic optimality of the algorithm, they first prove the optimality of KL-UCB+ in the

frequentist sense (i.e., as a stochastic bandit algorithm), and after that, they prove the

optimality of the algorithm with respect to the Bayes risk:

EΠ

[
T max

i
µi −

T∑
t=1

X̂I(t)(t)

]
,



44 Chapter 3 Algorithms for Solving Multi-armed Bandit Problem

where the expectation is taken over a given prior distribution Π. Although the optimality

of a stochastic bandit algorithm does not imply the optimality of a Bayesian bandit

algorithm [Kaufmann, 2014], the frequentist and Bayesian criteria are rather similar when

we adopt undiscounted reward.

3.7.4 Model class and regret

Suppose that in the stochastic bandit problem a forecaster is informed of the fact µ1 >

µ2. In this case, how much exploration over the arm 2 does the forecaster need to do?

Not a single draw of arm 2 is required, since the forecaster knows arm 2 is not optimal.

As demonstrated in this example, the optimal regret depends on the space of the model

parameters under consideration. Given an additional restriction on the model parameter

space, the regret can be made smaller than that of searching the entire model space.

Graves and Lai [1997] generalized the multi-armed bandit problem so that the model

parameters can be shared among arms*4. Let θ ∈ Θ be a set of unknown model parameters

and Θ be compact. Let Pi(θ) be a distribution parameterized by θ. At each round, the

algorithm draws an arm I(t) and receives a corresponding reward X̂I(t) ∼ PI(t)(θ). To

simplify the discussion, we will assume that Pi(θ) is Bernoulli and µi = µi(θ) is the

expectation of the arm i with parameter θ. Moreover, we will assume that arm 1 is

optimal (i.e., the unique maximizer of the expectation). The goal of the algorithm is to

minimize the regret,

Reg(T ) := Tµ1(θ)−
T∑

t=1

µI(t)(θ).

Under some mild assumptions on the reward distributions, the regret of any strongly

consistent algorithm can be asymptotically lower bounded as follows. As in the standard

bandit problem, an strongly consistent algorithm needs to confirm that each arm i ̸= 1 is

suboptimal. Let

R1 :=

{cj} ∈ [0,∞)K−1 : inf
θ′∈Θ:arg max

i∈[K]

µi(θ′) ̸=1,µ1(θ′)=µ1(θ)

∑
j ̸=1

cjd(µj(θ), µj(θ
′)) ≥ 1

 .

Intuitively, receiving the rewards of each suboptimal arm i for ci log t times is sufficient

for making sure that the optimal arm is not 1 with a confidence level 1/t. Thus,

E[Reg(T )] ≥ C∗ log T − o(T ),

where C∗ = inf{cj}∈R1

∑
j ̸=1 cj(µ1(θ)− µj(θ)). The quantity C∗ log T defines the mini-

mum amount of exploration to ensure that each arm i ̸= 1 is suboptimal with a confidence

*4 They also extended the bandit problem to involve a state (i.e., Markovian), which we will not discuss

here.
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level 1/t. A more general version of this result is stated in Theorem 1 in Graves and Lai

[1997]. The regret lower bound of the standard multi-armed bandit problem that we dis-

cussed in Section 2.3.2 can be considered a special case where the model parameters of

the arms are disjoint: θ = (µ1, µ2, . . . , µK) ∈ Θ = (0, 1)K . One can easily confirm that

C∗ =
∑

i ̸=1 ∆i/d(µi, µ1).

By using the above bound, one can derive the lower bound on the regret for the unimodal

bandit problem [Yu and Mannor, 2011], a version of the stochastic bandit problem. In the

unimodal bandit problem, arms are associated with an undirected graph. The expected

reward of arms must be unimodal on the graph: in this sense, the model parameter is

restricted. This is an example in which the model parameter space is smaller than the

entire space. Because of the smaller model space, the regret of the unimodal bandits is

smaller than that of the standard multi-armed bandit [Combes and Proutiere, 2014].

3.7.5 Extending the bandit algorithms

In this section, we consider the applicability of the aforementioned algorithms in solving

extensions to the bandit problem. Since UCB is the most widely used bandit algorithm,

we will consider it first. Recall that at each round, UCB selects the arm with the largest

upper confidence bound. The behavior of the algorithm is illustrated in Figure 3.5. For

large t, the upper confidence bound of arm 1 is close to µ1. Each suboptimal arm is

sampled until its upper confidence bound reaches µ1. UCB provides an efficient solution

as long as (i) each arm is associated with its expected reward, and (ii) exploring each

arm with a large uncertainty is an efficient search method. These criteria are satisfied by

not only the multi-armed bandit problem but also by certain classes of continuous bandit

problems (Section 7.2.1) in which the number of arms is infinite. In these continuous

bandit problems, a metric is associated with the arms and arms nearby each other on the

metric are likely to have similar expectations. In these problems, exploring an arm with

a large uncertainty reduces the uncertainty around the arm and is thus an effective way

of determining the optimal arm.

Nevertheless, UCB is not always an efficient way of solving extensions of the bandit

problem. The dueling bandit problem, which we discuss in Chapter 6, is one such case.

In the dueling bandit problem, the feedback is limited to a relative comparison between

arms. Since the expectation of each arm is not directly observable in this problem, UCB

is not directly applicable. Allocating a confidence bound on each pair of arms is possible,

but it turns out to be not very effective: comparing each pair until its upper confidence

bound shrinks results in an O(K2 log T ) regret since the number of pairs is O(K2), whereas

the optimal regret lower bound in the dueling bandit is Ω(K log t) [Yue et al., 2012]. To

circumvent this problem, in Chapter 6, we provide a version of the DMED algorithm

and derive its optimal regret bound: we define the likelihood of each arm to be optimal
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Fig. 3.5. Illustration of confidence bounds in UCB. The arms are not sufficiently explored

after a small number of rounds t. Their confidence bound is very large, and some

of their means are larger than those of the optimal ones. When t is sufficiently

large, arm 1 (optimal arm) is sampled O(t) times and its confidence bound is

very small. The other arms are sampled until each of their upper confidence

bounds is close to µ1.

and explore each arm until its likelihood is sufficiently small, which requires O(log T )

observations per arm. As a result, the proposed algorithm has O(K log T ) regret.

Thompson sampling appears to be effective in most of the problems to which UCB
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applies. In particular, TS has been shown to be effective on most of the continuous

bandit problems. The author is not sure to what extent the idea of posterior sampling

is applicable. Note also that there are some problems in which all of UCB, TS, and

DMED are unsuccessful: namely, the many-armed bandit problems in which the number

of arms is very large. Unlike the continuous-armed bandit problems, the metric structure

of the arms is not available in many-armed bandit problems. Instead, one can exploit

assumptions on the tail-probability on the sampled arm’s expectation. We discuss these

ideas in Section 7.2.2.
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Chapter 4

Multi-armed Bandit Problem with

Lock-up Periods

In this chapter, we investigate a version of the stochastic multi-armed bandit problem

in which the forecaster’s choice is restricted. In this version, rounds are divided into

lock-up periods and the forecaster must select the same arm throughout a period. As

explained in Chapter 3, there has been much work on finding optimal algorithms for the

stochastic multi-armed bandit problem. However, their use under restricted conditions

is not obvious. We extend the application ranges of these algorithms by proposing a

natural conversion method from algorithms for the stochastic bandit problem to ones for

the multi-armed bandit problem with lock-up periods. We prove that the regret of the

converted algorithms is O(log T + Lmax), where T is the total number of rounds and

Lmax is the maximum size of the lock-up periods. The regret is preferable, except for the

case when the maximum size of the lock-up periods is large. For that case, we propose

a meta-algorithm that results in a smaller regret by using an empirical optimal arm for

large periods. We empirically compare and discuss these algorithms*1. The notation in

this chapter is summarized in Table 4.1.

4.1 Motivation

In studying the bandit problems, the forecaster has the freedom to select an arbitrary

arm at each round. However, in practical situations there are various restrictions for

selecting arms. Many requirements, such as operation ease or resource constraints prevent

the forecaster from free allocation. The examples below are typical scenarios.

Example 1. (A/B testings) A/B testing is a well-known method when releasing new

web page features. By comparing the user responses for multiple versions of web pages,

administrators can estimate the effectiveness of the releases. There are many targets of

*1 The contents of this chapter were published in Komiyama et al. [2013a] and Komiyama et al. [2013b].
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Table. 4.1. Notation used in Chapter 4.

1{A} := 1 if A is true and 0 otherwise.

K := Number of the arms.

T := Number of the rounds.

N := Number of the lock-up periods.

I(t) := The arm that is selected in round t.

X̂i(t) := Reward of arm i at round t.

µi := Expected reward of arm i.

µ∗ := maxi µi.

µ̂i(t) := Empirical mean reward of arm i at round t.

i∗ := arg max
i

µi (assumed to be unique).

∆i := µ∗ − µi.

∆ := mini∈{1,...,K},i ̸=i∗ ∆i > 0.

Ti(t) :=
∑t

t′=1 1{I(t′) = i}.
Ln := Size of lock-up period n.

L(j) := Size of the j-th largest lock-up period.

Lmax := Size of the largest lock-up period.

sn, fn := Start and end of of the lock-up period n.

A/B testing, e.g., ad placements, emails and top pages. Optimizing user attention is

of great importance for most large-scale websites. However, there are many constraints

preventing optimal allocation. In a web system, the update of the database is delayed,

and the click feedback of a user takes some time since it is displayed on the user’s screen.

Example 2. (Clinical trials) Clinical trials are conducted in the final stages of drug

development. The aim of such trials is to ensure the effectiveness and safety of newly

developed drugs. There are many conditions necessary for this, e.g., amounts of drugs,

placebo conditions, patients conditions. The trials are divided into many test phases.

Between each test, the results of the previous test are reported. The next test is based on

the information up to that and including that of the previous test. For the simplicity of

operation, each test should be done with a single option. We would like to optimize the

allocation even within these restrictions.

Essentially, these problems lie midway between sequential and batch problems. Fore-

casters are restricted to selecting the same option for certain rounds due to external

constraints. Also, the sum of rewards is the quantity to optimize. To model these scenar-

ios, we propose and study a multi-armed bandit problem with lock-up periods (lock-up

bandit). The term “lock-up period” is a financial term meaning the predefined amount

of time during which people concerned cannot sell shares. In the problem, we define the
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Fig. 4.1. Lock-up bandit. Black dots represent rounds and rectangles represent lock-up

periods.

lock-up period as a set of successive rounds where the forecaster cannot change the arm

to pull.

The rest of this chapter is structured as follows. In Section 4.2 we formalize the proposed

problem and discuss related work. In the following sections, we start from the stochastic

multi-armed bandit algorithms and prove they can keep small regrets in the existence of

lock-up periods. The state-of-the-art algorithms for the stochastic bandit problem are

not directly applicable to restricted environments. In Section 4.3, we discuss the natural

conversion from the standard stochastic bandit algorithms to lock-up bandit ones. We

prove the upper-bound regret of converted UCB, which is optimal up to a constant factor

when the periods are small compared with the total number of rounds. The regrets of the

converted algorithms are upper bounded by the size of the largest lock-up period. In some

cases, there are large lock-up periods and in these cases the regret is linear to that much

sizes. For such a case, we want to minimize the regret during these the large periods. In

Section 4.4, we propose the balancing and recommendation (BaR) meta-algorithm, which

effectively reduces the regret losses in large periods. The regret of this meta-algorithm is

represented using the cumulative and simple regrets of the base algorithm. In Section 4.5,

we show the results of two sets of experiments we conducted. The first was the empirical

relation between the period size and the regret. The second set of experiments involved

the before-after analysis of the BaR meta-algorithm. Finally, we conclude this chapter in

Section 4.6.

4.2 Multi-armed Bandit Problem with Lock-up Periods

Our lock-up bandit is based on the stochastic bandit problem, in which the forecaster

can select one arm at each round. However, in lock-up bandit, the rounds are divided into

lock-up periods and the forecaster must select one arm for each lock-up period (Figure 4.1).
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The lock-up bandit problem is formally defined as follows. There are K arms associated

with constant reward distributions {P1, ..., PK}. We assume the supports of the reward

distributions are in [0, 1]*2. There are T rounds that are divided into lock-up periods

L1, ..., LN where
∑N

n=1 Ln = T . We denote the start and end rounds of each periods as

(s1, f1), ..., (sN , fN ). Note that s1 = 1, fN = T , sn+1 − 1 = fn and Ln = fn − sn + 1

hold for all periods n ∈ [1, ..., N − 1]. Before the start of the first round, the forecaster

is notified of K and L1, ..., LN . On each round t = 1, ..., T , if the round is the start of a

period, the forecaster selects an arm. If not, he or she uses the same arm as the previous

round. We denote the selected arm at round t as It. After selecting an arm, the forecaster

receives the reward X̂I(t)(t) ∼ PIt .

The goal of the forecaster is to minimize the (cumulative) regret

Reg(T ) = µ∗T −
K∑
i=1

µiTi(T ),

where µi = E[Pi], µ∗ is maxi µi, and Ti(T ) is the number of rounds arm i was selected in T

rounds. For the ease of discussion, we assume the optimal arm i∗ = arg max
i

µi is unique.

We also use the gap ∆i = µ∗−µi and the minimum nonzero gap ∆ = mini∈{1,...,K},i ̸=i∗ ∆i.

By the definition above, selecting suboptimal arm i increases the regret by ∆i and that

can be considered as a loss.

Remark 12. Multi-armed bandit with lock-up periods L1, ..., LN ,
∑

n Ln = T is more

difficult than T -round stochastic bandit, where the forecaster can switch arms for every

round. The consistency-based argument of the regret lower bound for the stochastic bandit

problem also holds for the one in the lock-up bandit problem with the same number of

rounds.

4.2.1 Round-wise notation and period-wise notation

Throughout this chapter, we use t as a variable representing a round and n as a variable

representing a period. We use i as a variable representing an arm. For example, the

number of rounds the arm i was selected in T rounds is denoted as follows.

Ti(T ) =

T∑
t=1

1{It = i},

where 1{A} is 1 if A is true and 0 otherwise. As the forecaster must select one arm during

a period, we can denote In to represent the arm selected in period n. Also, we use the

notation Ti(L1, ..., LN ) for the number of draws to explicitly denote the lock-up periods

*2 Generalization to any finite support [a, b] with a, b ∈ R is easy.
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L1, . . . , LN . Namely,

Ti(L1, ..., LN ) =
N∑

n=1

Ln1{In = i}.

4.2.2 Period ordering

In lock-up bandit, the order of periods matters. Remember the length of first period is

denoted as L1 and that of the second is L2 , etc. For example, the lock-up bandit problem

with L1, ..., L9 = 1, L10 = 10 is much easier than the one with L1 = 10, L2, ..., L10 = 1.

This is because in the former problem the forecaster can select the arm at period 10 based

on the reward information in periods 1, ..., 9 while in the latter one there is no information

at the first period and no way to avoid 10 round losses. On the other hand, the size of

the lock-up periods is also of great interest. We use parentheses to denote size-sorted

periods: “(1)” indicates arg max
n

Ln and “(2)” indicates the second largest, etc. L(1) is

also denoted as Lmax.

4.2.3 Related work

Multi-armed bandit problems have been extensively studied in the area of the machine

learning and the operations research due to their simplicity and wide applications. The

stochastic multi-armed bandit problem, in which the rewards of arms are drawn from

some distributions, has attracted much attention. UCB1 [Auer et al., 2002a] is an efficient

algorithm and is widely used.

Interesting problems that pose restrictions on forecaster’s selection have been investi-

gated. The bandit problem with switching costs is extensively studied. In this problem,

the switching of arms generates a certain amount of loss, and the forecaster is motivated to

stay with the current decision. For further details, see [Jun, 2004, Mahajan and Teneket-

zis, 2008, Guha and Munagala, 2009]. Note that, the switching cost is a soft constraint

in the sense that the algorithm can switch the arm by paying some cost. However, in the

examples explained in Section 4.1, changing an arm is difficult no matter how much cost

the algorithm pays. In other words, the constraint is rather hard: the lock-up restriction

in this thesis is motivated by this fact.

Motivated by experimental design settings, many papers considered a two-phase bandit

problem, where the forecaster can select the arms freely in the experimental phase but

must commit to a single arm in the terminal phase. Colton [1963] is the one of the

oldest papers on this problem, and an extensive list of the studies on this problem can

be found in Berry and Fristedt [1985]. Committing bandit [Bui et al., 2011] is one of the

modern versions of the two-phase bandit problem. Three settings were investigated in Bui

et al. [2011] for the length of the experimental phase. For two of the three settings, the

forecaster can extend the experimental phase with a certain amount of cost, and the main
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result of the paper is the algorithms for finding the optimal time to end the experimental

phase. For the third setting*3, the experimental phase has a fixed length Ne, and they

showed optimal algorithm up to a constant factor. The third setting is equal to lock-up

bandit with periods L1, ..., LNe = 1 and LNe+1 = T −Ne + 1. Our lock-up bandit can be

considered as a generalization of these two-phase bandit problems: it does not separate the

experimentation phase and commitment phase. Algorithms for lock-up bandit problem is

applicable to any sizes lock-up periods restriction.

Lock-up bandit is also related to the best arm identification problem with fixed budget

[aud]. In the best arm identification problem, the task of the forecaster is to find the best

arm (optimal arm) among K arms. There is a fixed test period, and immediately after

the end of the test period the forecaster outputs a “recommendation” arm he believes is

the best. In the test period, the forecaster can select the arm at each round freely and

receives the rewards. The test period has a fixed length d and the forecaster is evaluated

based on the probability that the recommendation arm he selects corresponds to the real

best arm. This setting is equal to the lock-up bandit with L1, ..., Ld = 1 and Ld+1 →∞:

When the last period is sufficiently large, the regret in the test period is negligible.

4.3 Conversion from Stochastic Bandit Algorithms

There have been extensive study on the stochastic bandit and many algorithms have

been proposed. Stochastic bandit algorithms assume that, at every round the forecaster

can choose an arm freely. However, once the choice is restricted, it is not clear how to

determine the next arm. In this section, we discuss the simple conversion from stochastic

bandit algorithms into lock-up bandit algorithms. We also show that the converted UCB’s

regret is O(log T + Lmax).

Proposition 4.3.1. (Conversion from stochastic bandit algorithms to lock-up bandit

algorithms)

Let A be a stochastic bandit algorithm. In the following, we define an algorithm A′ for

the lock-up bandit that uses A as an internal algorithm. On one hand, if each round is

the start of the lock-up period, A′ invokes A and receives an arm. Then uses the arm as

A’s selection. On the other hand, if the round is not the start of the lock-up period, A′

selects the same arm as the last round. In this case, invoke A and discard its selection.

After receiving a reward, A′ feeds A the selection and reward tuple (It, X̂I(t)(t)). A learns

from the reward tuple as if it were selected by itself.

It is true that the conversion above is not promised to be applicable for all algorithms

in stochastic bandit*4. However, most algorithms, including confidence bound based al-

*3 The authors called it a “hard experimentation deadline setting.”
*4 For example, for algorithms that maintain lists and select the next arms from the lists, the conversion
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gorithms (UCB1, UCB-Tuned [Auer et al., 2002a], UCB-E [aud], UCB-V [Audibert et al.,

2009], MOSS [Audibert and Bubeck, 2009], KL-UCB [Garivier and Cappé, 2011], etc.),

and ϵn-greedy can be converted into lock-up bandit algorithms with the above procedure.

We denote converted algorithms using primes. For example, UCB1 and ϵn-greedy con-

verted are UCB1′ and ϵn-greedy
′. Remember that our main concern is the regret in

lock-up bandit.

Theorem 13. (Regret upper bound of UCB1′) The regret of UCB1′ in lock-up bandit is

upper bounded as

E[Reg(L1, ..., LN )] ≤
∑
i ̸=i∗

{
8 log T

∆i
+ Lmax∆i

(
1 +

π2

3

)}
.

Proof sketch: the proof is the extension of the one in Auer et al. [2002a] to the lock-up

bandit. The base theorem relies on the fact that the probability of suboptimal arm i

played after Ti(t) ≥ ⌈(8 log T )/∆2
i ⌉ is sufficiently low and its sum is loosely bounded by

π2/3. In lock-up bandit, there are two main changes,

(1) (8 log T )/∆2
i is replaced with (8 log T )/∆2

i+(Lmax−1). The number of arms selected

before Ti(t) ≥ (8 log T )/∆2
i is upper bounded by this quantity.

(2) π2/3 is multiplied by Lmax.

The full proof is presented in Section 4.7.

Theorem 13 indicates that, the regret of UCB1′ is bounded by O(log T +Lmax) for any

list of lock-up periods L1, ..., LN ,
∑

n Ln = T . When Lmax is small compared with log T ,

UCB1′ achieves O(log T ) regret. Since the optimal regret bound in the lock-up bandit

is logarithmic (c.f. Remark 12), the bound is optimal up to a constant factor. However,

when there are some periods that are bigger than the order of log T , the regret in the

periods matters. In the next section, we propose a meta-algorithm to reduce the regrets

in large periods.

4.4 How to Reduce Regret in Large Periods

In this section, we propose BaR, a general meta-algorithm for reducing regrets in large

periods.

4.4.1 Minimizing regret in large periods

In the lock-up bandit problem, an algorithm cannot change the arm during a lock-up

period. If an algorithm selects a suboptimal arm i at the start of round n, the regret

is increased by ∆iLn. For this reason, we want to avoid choosing a suboptimal arm

above is not directly applicable.
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at the start of large periods. The notion of simple regret introduced by Bubeck et al.

[2009] describes the minimum possible regret in a specific round. They proposed a pure

exploration bandit problem. In this problem, at each round the algorithm selects an arm

and receives a reward. After receiving the reward, the algorithm outputs an additional

arm: the recommendation arm. At a certain round the game ends, and the algorithm is

evaluated based on the quality of the recommendation arm. The goal with the algorithm

is to minimize the simple regret, or the one-time regret of the recommendation arm. In

summary, the pure exploration bandit problem is the same framework as the stochastic

bandit problem except for the existence of the recommendation arm and the goal. In terms

of the exploration and the exploitation trade-off, recommendation arm is an exploitation-

only arm. The simple regret describes the best possible accuracy of the recommendation

arm. In contrast with the simple regret, the sum of rewards during the game is called

a cumulative regret, which is the quantity to optimize in the stochastic bandit. We

denote the cumulative regrets as Reg(T ) and the simple regret as reg(T ) (in the period-

wise notation, Reg(L1, ..., LN ) and reg(L1, ..., LN ), respectively). Interestingly, there is a

trade-off between the two regrets.

Theorem 14. (Cumulative regret and simple regret trade-off [Bubeck et al., 2009]) For

any bandit algorithm and any function ξ = ξ(t), if there exists some constant C and the

allocation algorithm satisfies

E[Reg(T )] ≤ Cξ(T ),

for all Bernoulli reward distributions {P1, ..., PK}, then the simple regret of any recom-

mendation strategies based on the bandit algorithm has the following lower bound: there

exists a constant D and

E[reg(T )] ≥ ∆

2
exp (−Dξ(T )).

An intuitive explanation of Theorem 14 is as follows: the minimum possible simple

regret for a round is determined by the cumulative regret to that point. Bubeck et al.

[2009] proposed three natural recommendation algorithms: Empirical Best Arm (EBA),

Most Played Arm (MPA) and Empirical Distribution of Plays (EDP). We use EBA, which

recommends the arm of the best empirical mean, throughout this chapter.

4.4.2 BaR meta-algorithm

Good algorithms of the multi-armed bandit problem balance exploration and exploita-

tion and result in O(log T ) expected cumulative regret. If there are lock-up periods, this

balance is perturbed by O(Lmax). If the value of exploration becomes large (i.e., a sub-

optimal arm is chosen at the start of the largest period (Lmax ≫ log T ) ), it is difficult

to restore the optimal balance of exploration and exploitation. The main idea of the

BaR meta-algorithm (Algorithm 7) is using the recommendation arms as its selection



56 Chapter 4 Multi-armed Bandit Problem with Lock-up Periods

Algorithm 7 BaR meta-algorithm

Require: K arms, L1, ..., LN , Nr ∈ N, and base algorithm A
1: for n ∈ 1, ..., N do

2: if n ∈ {(1), ..., (Nr)} then
3: use the recommendation arm ψ (EBA arm)

4: select arm In = ψ

5: receive reward X until the period ends. The reward information is discarded.

6: else

7: invokes A to query for the arm selection ϕ

8: select arm In = ϕ

9: receive reward X and feed A with the reward tuple (In, X) until the period ends.

10: end if

11: end for

Use Balancing Arm

Use Recommendation Arm

......

BaR's

strategy

A's 

viewpoint

Recommendation requested

Sequential Learning

......
blocks: blocks:

Fig. 4.2. BaR meta-algorithm. Two large periods are assigned to the recommendation

set.

at large periods to avoid choosing suboptimal arms. This meta-algorithm uses a base

lock-up bandit algorithm, which we denote as A. Before the start of BaR, we decide the

recommendation set {(1), ..., (Nr)}, or the top-Nr subset of the lock-up periods sorted by

size. If each period is in the recommendation set, the algorithm queries A for the recom-

mendation arm and uses it as the selection. A is not notified of the reward information.

Otherwise, the algorithm works as a wrapper of A. From the viewpoint of A, it seems as

if the periods in the recommendation set were banished (Figure 4.2). The regret of BaR

can be derived from A’s cumulative and simple regrets.

Remark 15. (Regret of [BaR, A]) If BaR is run with the recommendation set

{(1), ..., (Nr)}, the regret is denoted by the base algorithm’s cumulative and simple regret
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as,

Reg(L1, ..., LN ) =

Regbase(L1, ..., LN \ L(1), ..., L(Nr)) +

Nr∑
n=1

L(n)regbase(L1, . . . , L(n)−1 \ {(1), ..., (Nr)}),

where, the first term of RHS is the cumulative regret of A run in the environment

where {(1), ..., (Nr)} are removed. Also, in the second term of RHS, L1, . . . , L(n)−1 \
{(1), ..., (Nr)} denotes the list of periods before the period (n) and not in {(1), ..., (Nr)} .
For example, suppose N = 100 and the recommendation set {(1), ..., (Nr)} is {(1), (2)} =
{50, 100}. The cumulative regret is defined as the regret of the base algorithm run at

the lock-up periods 1, ..., 49, 51, ..., 99. The sum of simple regret is 50’s simple regret

after periods 1, ..., 49 and period 100’s simple regret after periods 1, ..., 49, 51, ..., 99. The

BaR meta-algorithm decomposes the regrets into the cumulative and the simple ones.

The cumulative regret is dependent upon the maximum size of the periods (Theorem

13). By removing large periods, we can reduce the maximum size of the periods. Also,

the recommendation is the best method for selecting the optimal arm. Therefore, it can

minimize the regret generated from the simple regret part.

Our next concern is how to estimate the cumulative and simple regrets of base al-

gorithms. In Section 4.3, we defined the uniform upper bound of a cumulative regret of

UCB1′. However, we have not introduced any simple regret so far. In the next subsection,

we describe UCB-E and discuss its regret.

4.4.3 UCB-E

UCB-E was introduced by aud as an explorative algorithm for stochastic bandit. It uses√
a/Ti(t) as the confidence bound. In the fixed horizon bandit game (i.e. T is known), the

algorithm is flexible. When we set a = 2 log T , we obtain exactly the same the cumulative

regret upper bound as UCB1 and can choose a large value to obtain a better simple regret

bound. We convert UCB-E by using the Proposition procedure 4.3.1 to obtain UCB-E′.

Theorem 16. (Regret upper bound of UCB-E′) If UCB-E′ is run with parameter a ≥
2 log T , it satisfies

E[Reg(L1, ..., LN )] ≤
∑
i ̸=i∗

{
4a

∆i
+∆iLmax

(
1 +

π2

3

)}
.

The proof is very similar to Theorem 13. The proof is presented in Section 4.7.

Theorem 17. (Simple regret upper bound of UCB-E′) If UCB-E′ is run with parameter

0 < a ≤ 25
36

T−KLmax

H1
then it satisfies

E[reg(L1, ..., LN )] ≤ 2TK exp

(
−2a

25

)
,
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Fig. 4.3. Experimental results. Experiments 1 and 2 show regret as function of maximum

period size. Experiments 3 and 4 show regret before/after application of BaR.

where, H1 =
∑

i ̸=i∗ 1/∆
2
i + 1/∆2.

Proof Sketch: the proof relies on the fact that the empirical mean rarely deviates from

the thin confidence bound (1/5)
√
a/Ti(t). It holds in all a ≤ 25(T − KLmax)/(36H1),

even in the existence of lock-up periods. The full proof is presented in Section 4.7.

4.5 Experiments

We conducted two sets of experiments to support the theoretical results in the previous

two sections.

(1) In Section 4.3, we proposed a simple conversion from a stochastic bandit algorithm
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to a lock-up bandit algorithm. The converted algorithm’s regret is linearly dependent

upon the maximum period size. In the first set of experiments (Experiments 1 and 2), we

studied the dependency between the maximum period size and a regret.

(2) In Section 4.4, we proposed the BaR meta-algorithm, which reduces the regret in

large periods. In the second set of experiments (Experiments 3 and 4), we conducted a

before/after analysis of BaR.

4.5.1 Experimental settings

All experiments involved ten-armed lock-up bandits with T = 10000. The rewards of

arms were Bernoulli distributions with means

(µ1, ..., µ10) = (0.1, 0.05, 0.05, 0.05, 0.02, 0.02, 0.02, 0.01, 0.01, 0.01).

Settings of Experiments 1 and 2

The algorithms we used were UCB-E′ [aud] with parameter a = 2 log T , a = 1/2 log T ,

ϵn-greedy
′ [Auer et al., 2002a] with parameters (c, d) = (0.15, 0.1), MOSS′ [Audibert and

Bubeck, 2009], KL-UCB′ [Garivier and Cappé, 2011] with parameter c = 0, and UCB-

Tuned′ [Auer et al., 2002a]. We do not intend to argue which algorithm is better*5.

We showed the regret as a function of maximum period size S (*6). In all experiments,

for each value of S we show an averaged regret over 10,000 different runs. For each run,

the lock-up periods in the experiments were randomly generated as follows. Until the

total number of rounds reached T (i.e.,
∑

n Ln < T ), we appended a new period of size

{1, ..., S} with the same probability (Experiments 1) or the probability proportional to

the inverse of size (Experiments 2). The last period was decreased to satisfy
∑

n Ln = T .

Settings of Experiments 3 and 4

In the second set of experiments (Experiments 3 and 4), we showed the regret as a

function of rounds. The algorithms we used were UCB-E′ with parameter a = 1/2 log T

(Experiment 3) and ϵn-greedy
′ with parameters (c, d) = (0.15, 0.1) (Experiment 4). In

both experiments, the regrets were averaged over 10,000 different runs. In each run, the

periods were generated as follows. For the first 2,000 rounds there were no lock-up periods

(i.e., L1, ..., L2000 = 1). From rounds 2,001 to 10,000, the periods were generated randomly

as follows. Until the sum of the periods reached 10,000, we appended a new period of

size {1, ..., 1000} with the probability proportional to the inverse of size. We compared

the base algorithm (UCB-E′ and ϵn-greedy
′) before and after application of BaR. We

also show the regret of the base algorithm run with no lock-up period (= the stochastic

*5 The parameters in ϵn-greedy′ were chosen to be empirically good (c.f. Section 4 in [Auer et al.,

2002a]). Therefore, it was no surprise ϵn-greedy′ performed better than UCB-E′.
*6 S is the maximum period size to be possibly generated. Lmax, the maximum period size to be

actually generated, is smaller than or equal to S.
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bandit), which is much easier than the lock-up bandit. As for the recommendation set,

we used all periods larger than 400.

4.5.2 Experimental results and discussions

Results of Experiments 1 and 2

Figure 4.3 is the results of the experiments. In Experiments 1 and 2, we observed linear

relation between the maximum period size and the regret for all algorithms. Note that,

between Experiments 1 and 2, the number of large periods differed greatly. In Experiment

2, large periods had a small probability (inverse to its size) to be generated compared with

Experiment 1; however, the results of Experiments 1 and 2 look very much alike. This

fact supports that the regret in lock-up bandit is dependent upon the size of the maximum

periods.

Results of Experiments 3 and 4

Experiments 3 and 4 showed the effect of BaR. In both experiments, using BaR makes

the regret significantly smaller. In Experiments 3, the results of [BaR, UCB-E′] were even

better than those of the base algorithm in the standard bandit game. This is surprising

because the bandit problem with lock-up periods is much more difficult than the standard

bandit problem. This can be explained as follows. The regret of UCB-E′ is higher than

that of ϵn-greedy
′. This means that UCB-E′ does more exploration than it should and

there is some room for exploitation.number of recommendation periods In the Experiments

4, the regret of [BaR, ϵn-greedy
′] was higher than that of no lock-ups, which is natural.

This results are not specific to UCB-E and ϵn-greedy. We also conducted experiments with

many state-of-the-art algorithms (KL-UCB [Garivier and Cappé, 2011], MOSS [Audibert

and Bubeck, 2009] and UCB-Tuned [Auer et al., 2002a]) and obtained similar results.

Discussions

The use of the BaR meta-algorithm effectively reduces regret for the following reason.

When T is large, the ratio of exploration to exploitation is small (i.e. O(log T/T ) → 0).

Therefore, if the forecaster does more exploration than it should do, restoring the optimal

balance is virtually impossible. Conversely, if it does less exploration is smaller than it

should, restoring the optimal balance is relatively easy. This is why BaR, which increases

exploitation during the large lock-up periods, works well.

4.6 Conclusion and Future Works

We proposed and studied a bandit problem with a lock-up period restriction, which is

expected to model the practical scenarios that naturally arise when we apply stochastic

bandit to real problems. We studied how the exploration and exploitation balance is
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perturbed by lock-up restrictions and proposed methods to recover the balance. For

further understanding of related problems, better bounds for the simple regret is of great

interest. Contrary to the cumulative regret, the simple regret is less known. In our theory,

the simple regret is important and finer bound preferred.

4.7 Proofs

In this section, we prove the theorems in this chapter. The overall goal with the proofs

is to show that the existing bounds in stochastic bandit also holds even in the existence

of lock-up periods.

4.7.1 Array-UCB

The proofs of the cumulative regrets in UCB1 and UCB-E rely on the same bound. To

avoid redundancy, we define Array-UCB, the generalization of UCB1 and UCB-E.

Definition 1. (Array-UCB) Let µ̂i,s be the empirical mean reward of arm i with s

samples. Array-UCB with a real-valued function a = a(t) is defined as the confidence

bound based algorithm with the following index of each arm:

µ̂i,s +

√
a(t)

s
. (4.1)

At each round t, the forecaster selects the arm of the maximum index

When a(t) = 2 log t, Array-UCB is equal to UCB1. When a(t) = a (constant), Array-

UCB is equal to UCB-E.

4.7.2 Proofs of Theorem 13 and Theorem 16

In this subsection, we prove Theorems 13 and 16, the uniform cumulative regret of

UCB1′ and UCB-E′. We convert Array-UCB to an algorithm for lock-up bandit with the

procedure of Proposition 4.3.1. We call the converted algorithm Array-UCB′.

Theorem 18. For Array-UCB′ with a(t) ≥ 2 log t, the cumulative regret in the lock-up

bandit problem is upper bounded as

E[Reg(L1, ..., LN )] ≤
∑
i ̸=i∗

{
4amax

∆i
+∆iLmax

(
1 +

π

3

)}
,

where amax = maxt∈{1,...,T} a(t).

Theorems 13 and 16 are directly derived as the specialization of Theorem 18 with

a(t) = 2 log t and a(t) = a ≥ 2 log T .

Proof of Theorem 18. The proof is based on Proof 1 in Auer et al. [2002a]. The base proof

is on UCB1 in the stochastic bandit. We extend this proof in two respects. First, the
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UCB1 index is generalized to the Array-UCB index (Equation (4.1)). Second, we take

lock-up periods into consideration.

We upper bound Ti(T ), the number of rounds suboptimal arm i is pulled in T rounds.

Let ct,s =
√
a(t)/s. Remember (sn, fn) tuple means the start and end round of the period

n. We use both the period-wise notation with symbol n and round-wise notation with

symbol t (c.f. Section 4.2.1).

Ti(L1, ..., LN ) =
N∑

n=1

Ln1{In = i}

= (l + Lmax − 1) +
N∑

n=K+1

Ln1{In = i, Ti(sn − 1) ≥ l}, (4.2)

where the transformation at (4.2) comes from the fact that Ti is at most l + Lmax − 1

at the first period after Ti exceeds or equals l. The condition i is selected at n ≥ 2 is

transformed as follows.

1{In = i} ≤ 1{µ̂i∗,Ti∗ (sn−1) + csn−1,Ti∗ (sn−1) ≤ µ̂i,Ti(sn−1) + csn−1,Ti(sn−1)}

≤ 1{ min
0<t1<sn

µ̂i∗,t1 + csn−1,t1 ≤ max
l<t2<sn

µ̂i,t2 + csn−1,t2}

≤
sn−1∑
t1=1

sn−1∑
t2=1

1{µ̂i∗,t1 + csn−1,t1 ≤ µ̂i,t2 + csn−1,t2}. (4.3)

The condition µ̂i∗,t1 + csn−1,t1 ≤ µ̂i,t2 + csn−1,t2 in (4.3) implies that at least one of the

following three conditions must hold.

µ̂i∗,t1 ≤ µ∗ −

√
a(sn − 1)

t1
, (4.4)

µ̂i,t2 ≥ µi +

√
a(sn − 1)

t2
, (4.5)

µ∗ < µi + 2

√
a(sn − 1)

t2
. (4.6)

Now, we bound the probabilities of inequalities (4.4), (4.5), and (4.6). First, (4.6) never

occurs when t2 ≥ ⌈ 4amax

∆2
i
⌉. The probability of (4.4) is upper bounded as

P[(4.4) is true] = P

µ̂i∗(t1) ≤ µ∗ −

√
a(sn − 1)

t1


≤ P

µ̂i∗,t1 ≤ µ∗ −

√
2 log (sn − 1)

t1

 (4.7)

≤ exp (−4 log (sn − 1)) ≤ (sn − 1)
−4
, (4.8)
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where we use the assumption a(t) > 2 log t at (4.7) and the Hoeffding’s inequality at (4.8).

By using the same arguments, we obtain the same bound for (4.5). By using inequalities

(4.2), (4.3) and (4.8), we obtain

E[Ti(N)] ≤
(⌈

4amax

∆2
i

⌉
+ Lmax − 1

)
+

sn−1∑
t1=1

sn−1∑
t2=1

1

{
µ̂i∗,t1 + csn−1,t1 ≤ µ̂i,t2 + csn−1,t2 , t2 ≥

(⌈
4amax

∆2
i

⌉
+ Lmax − 1

)}
≤
(⌈

4amax

∆2
i

⌉
+ Lmax − 1

)
+

N∑
n=K+1

sn−1∑
t1=1

sn−1∑
t2=1

Ls

{
P[((4.4) is true)] + P[((4.5) is true)]

}

≤
(
4amax

∆2
i

+ Lmax

)
+ Lmax

N∑
n=K+1

sn−1∑
t1=1

sn−1∑
t2=1

(2(sn − 1)
−4

)

≤
(
4amax

∆2
i

+ Lmax

)
+ Lmax

∞∑
t=1

(2t−2)

≤
(
4amax

∆2
i

+ Lmax

)
+ Lmax ·

π2

3
=

4amax

∆2
i

+ Lmax

(
1 +

π2

3

)
.

4.7.3 Proof of Theorem 17

Proof of Theorem 17. We extend Theorem 1 in aud to lock-up bandit. Consider an event

ξ =

{
∀i ∈ {1, ...,K}, t ∈ {1, ..., T}, |µ̂i,t − µi| <

1

5

√
a

t

}
.

By using the Hoeffding’s inequality for each event and the union bound over rounds and

arms, we have P(ξ) ≥ 1− 2TK exp (−2a
25 ). Indeed, the event is the sufficient condition for

that the empirically optimal arm corresponds to the truly optimal arm, as shown in the

following argument. Assume that ξ holds. It is enough to prove that

1

5

√
a

Ti(T )
≤ ∆i

2
, ∀i ∈ {1, ...,K},

or equivalently

Ti(T ) ≥
4

25

a

∆2
i

.

First, we prove the upper bound of the number of the suboptimal arms pulled, namely

Ti(t) ≤
36

25

a

∆2
i

+ Lmax, ∀i ̸= i∗. (4.9)

Since the algorithm can select an arm only at the start of each lock-up period, we use

induction based on each period. Namely, we show (4.9) is true at the end of any periods.
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Remember, we denote the start and end of the lock-up period n as (sn, fn). We also

denote the UCB-E index as Bi,s = µ̂i,s +
√
a/s. Obviously the inequality holds when

n = 1. We now assume the inequality is true at the end of period n − 1. If In ̸= i,

Ti(fn) = Ti(fn−1) and the inequality still holds at the end of period n. On the other

hand, if In = i then it means Bi,Ti(sn−1) ≥ Bi∗,Ti∗ (sn−1). Since event ξ holds, we have

Bi∗,Ti∗ (sn−1) ≥ µ∗ and Bi,Ti(sn−1) ≤ µi +
6
5

√
a

Ti(sn−1) . Summing up these conditions,

we obtain 6
5

√
a

Ti(sn−1) ≥ ∆i. The arm i is chosen during the lock-up period n. Since

fn − (sn − 1) = Ln ≤ Lmax, (4.9) still holds.

Next, we prove the lower bound of suboptimal arms selected

Ti(t) ≥
4

25
min

(
a

∆2
i

,
25

36
(Ti∗(t)− Lmax)

)
, ∀i ̸= i∗. (4.10)

We also use induction based on each lock-up period. We assume (4.10) holds at the end of

period n−1. Then, at period n , if Bi,Ti(sn−1) > Bi∗,Ti∗ (sn−1), then Ti∗ does not increase,

so it still holds. On the other hand, in the case of Bi,Ti(sn−1) ≤ Bi∗,Ti∗ (sn−1), Ti∗ might

increase. Since we are assuming event ξ,

µ∗ +
6

5

√
a

Ti∗(sn − 1)
≥ Bi∗,Ti∗ (sn−1) ≥ Bi,Ti(sn−1) ≥ µi +

4

5

√
a

Ti(sn − 1)
,

which gives

Ti(sn − 1) ≥ 16

25

a(
∆i +

6
5

√
a

Ti∗ (sn−1)

)2 .

By using u + v ≤ 2max (u, v), Ti(fn) = Ti(sn − 1), and Ti∗(fn) ≥ Ti∗(sn − 1) + Lmax,

(4.10) holds at the end of period n. From (4.10), we only have to show that, for all i ̸= i∗

25

36
(Ti∗(T )− Lmax) ≥

a

∆2
i

.

By using (4.9), we obtain

Ti∗(T )− Lmax = T − Lmax −
∑
i ̸=i∗

Ti(T ) ≥ T −KLmax −
36

25
a
∑
i ̸=i∗

∆−2
i ≥ 36

25
a∆−2,

where, we use the assumption of the theorem, 36
25H1a ≥ T −KLmax in the last inequality.



65

Chapter 5

Asymptotically Optimal Exploration

and Exploitation in Multiple-play

Multi-armed Bandit Problem

In this chapter, we discuss a multiple-play multi-armed bandit problem in which several

arms are selected at each round. We propose multiple-play Thompson sampling (MP-TS)

algorithm, an extension of Thompson sampling (TS) to the multiple-play MAB problem,

and analyze its regret. We prove that MP-TS for binary rewards has a regret upper bound

that matches the asymptotic regret lower bound provided by Anantharam et al. [1987].

A set of computer simulations was also conducted, which compared MP-TS with state-

of-the-art algorithms. We also propose a modification of MP-TS, which is shown to have

better empirical performance*1. The notation in this chapter is summarized in Table 5.1.

5.1 Motivation

Up to the previous chapter, we have specifically dealt with the bandit problem in which

an arm is selected and drawn at each round. Let us call this problem single-play (SP)

bandit. While the SP bandit problem is indisputably important as a canonical problem,

in many practical situations multiple entities corresponding to arms are selected at each

round. We call the bandit problem in which several arms can be selected multiple-play

(MP) bandit. Examples of the situations that can be modeled as an MP bandit problem

include the followings.

• Example 1 (placement of online advertisements): a website has several slots

where advertisements can be placed. Based on each user’s query, there is a set

of candidates of relevant advertisements from which websites can select to display.

*1 The contents of this chapter were published in Komiyama et al. [2015b].
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Table. 5.1. Notation used in Chapter 5.

1{A} := 1 if A is true and 0 otherwise.

K := Number of the arms.

[K] := {1, 2, . . . ,K}.
L := Number of the selections at each round.

T := Number of the rounds.

I(t) := Set of the arms that is selected in round t.

X̂i(t) := Reward of arm i at round t.

µi := Expected reward of arm i. In this chapter we assume µ1 > µ2 >

· · · > µK .

ν := (µL−1 + µL)/2.

µ
(−)
L := µL − δ.
µ
(+)
i := µi + δ.

µ̂i(t) := Empirical mean reward of arm i at round t.

µ̃i(t) := Posterior sample of arm i at round t.

µ̃∗(t) := The L-th largest posterior sample among {µ̃i(t)}.
µ̃∗∗
\i,j(t) := The (L−1)-th largest posterior sample at round t except for arms

i and j.

∆i,j := µj − µi.

Ni(t) :=
∑t−1

t′=1 1{i ∈ I(t′)}.
N suf

i (T ) := log T/d(µ
(+)
i , µ

(−)
L ).

d(p, q) := The KL divergence between Bernoulli distributions: p log (p/q) +

(1− p) log ((1− p)/(1− q)).

The effectiveness of advertisements varies: some advertisements are more appeal-

ing to the user than others. With the standard model in online advertising, it is

assumed that each advertisement is associated with a click-through rate (CTR),

which is the number of clicks per view. Since websites receive revenue from clicks

on advertisements, it is natural to maximize it, which can be considered as an in-

stance of an MP-MAB problem in which advertisements and clicks correspond to

arms and rewards, respectively.

• Example 2 (channel selection in cognitive radio networks [Huang et al.,

2008]): a cognitive radio is an adaptive scheme for allocating channels, such as

wireless network spectrums. There are two kinds of users: primary and secondary.

Unlike primary users, secondary users do not have primary access to a channel but

can take advantage of the vacancies in primary access and opportunistically exploit

instantaneous spectrum availability when primary users are idle. However, the

availabilities of channels are not easily known. Usually, secondary users have access
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to multiple channels. They can enhance their communication efficiency by adap-

tively estimating the availability statistics of the channels, which can be considered

as an MP bandit problem in which channels and the permission of communication

are arms and rewards, respectively.

There have been several studies on the MP bandit problem. Anantharam et al. [1987]

derived an asymptotic lower bound on the regret for this problem and proposed an algo-

rithm with a matching regret bound. Because their algorithm requires certain statistics

that are difficult to compute, efficiently computable MP bandit algorithms have also been

extensively studied. Chen et al. [2013] extended a UCB-based algorithm to a multiple-

play case with combinatorial rewards and Gopalan et al. [2014] extended TS to a wide

class of problems. Although both papers provide a logarithmic regret bound, the leading

constant of these regret bounds do not match the lower bound. Therefore, it is unknown

whether an asymptotically optimal regret bound for the MP bandit problem is achievable

by using a computationally efficient algorithm. Note also that, there is recently another

line of work called semi-bandits [Neu and Bartók, 2013, Wen et al., 2015] in which a subset

of the arms are selected in each round.

The main difficulty in analyzing the MP bandit problem lies in the fact that the regret

depends on the combinatorial structure of arm draws. More specifically, an algorithm

with an asymptotically optimal bound on the number of draws of suboptimal arms does

not always ensure the optimal regret unlike the SP bandit problem.

Contribution: our contributions are as follows.

• TS-based algorithm for the MP bandit problem and its optimal regret

bound: the first and main contribution of this chapter is an extension of TS to the

multiple-play case, which we call MP-TS. We prove that MP-TS for binary rewards

has an asymptotically optimal regret bound.

• Novel analysis technique: to solve the difficulty in the combinatorial structure

of the MP bandit problem, we show that the independence of posterior samples

among arms in TS is a key property for suppressing the number of simultaneous

draws of several suboptimal arms, and the use of this property eventually leads to

the optimal regret bound.

• Experimental comparison among MP bandit algorithms: we compare MP-

TS with other algorithms, and confirm its efficiency. We also propose an empirical

improvement of MP-TS (IMP-TS) motivated by analyzes on the regret structure

of the MP bandit problem. We confirm that IMP-TS improves the performance of

MP-TS without increasing computational complexity.
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5.2 Problem Setup

Let there be K arms. Each arm i ∈ [K] := {1, 2, . . . ,K} is associated with a probability

distribution Pi = Bernoulli(µi), µi ∈ (0, 1). At each round t = 1, 2, . . . , T , the forecaster

selects a set of L < K arms I(t), then receives the rewards of the selected arms. The

reward X̂i(t) of each selected arm i is i.i.d. samples from Pi. Let Ni(t) be the number of

draws of arm i before round t (i.e., Ni(t) =
∑t−1

t′=1 1{i ∈ I(t′)}, where 1{A} = 1 if event

A holds and = 0 otherwise.), and µ̂i(t) be the empirical mean of the rewards of arm i at

the beginning of round t. The forecaster is interested in maximizing the sum of rewards

over drawn arms. For simplicity, we assume that all arms have distinct expected rewards

(i.e., µi ̸= µj for any i ̸= j). We discuss the case in which µi = µj for some i and j in

Section 5.9. Without loss of generality, we assume µ1 > µ2 > µ3 > · · · > µK . Of course,

algorithms do not exploit this ordering. We define optimal arms as top-L arms (i.e., arms

[L]), and suboptimal arms as the others (i.e., arms [K] \ [L]). The regret, which is the

expected loss of the forecaster, is defined as

Reg(T ) =
T∑

t=1

∑
i∈[L]

µi −
∑

i∈I(t)

µi

 .

The expectation of regret E[Reg(T )] is used to measure the performance of an algorithm.

5.3 Regret Bounds

In this section we introduce the known lower bounds of the regret for the SP bandit

and MP bandit problems and discuss the relation between them.

5.3.1 Regret bound for SP bandit problem

The SP bandit problem, which has been thoroughly studied in the fields of statistics and

machine learning, is a special case of the MP bandit problem with L = 1. As we discussed

in Section 2.3.2, the asymptotic regret lower bound in the SP bandit problem was given

by Lai and Robbins [1985]. They proved that, for any strongly consistent algorithm (i.e.,

algorithms with subpolynomial regret for any set of arms), there exists a lower bound

E[Ni(T + 1)] ≥
(
1− o(1)
d(µi, µ1)

)
log T, (5.1)

where d(p, q) = p log (p/q)+(1−p) log ((1− p)/(1− q)) is the KL divergence between two

Bernoulli distributions with expectation p and q. Note that when arm i is drawn, the
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regret increases by ∆i,1 and the regret is written as

E[Reg(T )] =
∑
i ̸=1

Ni(T + 1)∆i,1, (5.2)

where ∆i,j = µj − µi. Therefore, inequality (5.1) directly leads to the regret lower bound

E[Reg(T )] ≥
∑
i ̸=1

(
(1− o(1))∆i,1

d(µi, µ1)

)
log T. (5.3)

One may think that applying the techniques of the SP bandit problem would directly

yield an optimal bound for a more general MP bandit problem. However, this is not the

case. In short, the difficulty in analyzing the regret on the MP bandit problem arises

from the fact that the optimal bound on the number of suboptimal arm draws does not

directly lead to the optimal regret. From this point forward, we focus on the MP bandit

problem in which L is not restricted to one.

5.3.2 Extension to MP bandit problem

The asymptotic regret lower bound in the MP bandit problem, which is the general-

ization of inequality (5.3), was provided by Anantharam et al. [1987]. They first proved

that, for any strongly consistent algorithm and suboptimal arm i, the number of arm i

draws is lower-bounded as

E[Ni(T + 1)] ≥
(

1− o(1)
d(µi, µL)

)
log T. (5.4)

Unlike in the SP bandit problem, the regret in the MP bandit problem is not uniquely

determined by the number of suboptimal arm draws. As illustrated in Figure 5.1, the

regret is dependent on the combinatorial structure of arm draws.

Recall that a regret increase at each round is the gap of expected rewards between

the optimal arms and that of the selected arms. When a suboptimal arm is selected,

one optimal arm is excluded from I(t) instead of the suboptimal arm. Let the selected

suboptimal arm and excluded optimal arm be i and j, respectively. Then, we lose expected

reward µj − µi. Namely, the loss in the expected reward at each round is given by∑
j∈[L]

µj −
∑

i∈I(t)

µi =
∑

j∈[L]\I(t)

µj −
∑

i∈I(t)\[L]

µi (5.5)

≥
∑

i∈I(t)\[L]

(µL − µi),

where we used the fact µj ≥ µL for any optimal arm j. From this relation, the regret is
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optimal arms

suboptimal arms

Game 1 Game 2

A MP-MAB instance with K=4, L=2
µ1=0.10
µ2=0.09
µ3=0.08
µ4=0.07

t=1     I(1) = {1, 2}          I(1) = {1, 3}
           (r(1) = 0)               (r(1)=0.01)
t=2     I(2) = {3, 4}          I(2) = {1, 4}
           (r(2) = 0.04)          (r(2)=0.02)

          Regret(2)=0.04      Regret(2)=0.03

Fig. 5.1. Two bandit games with the same set of arms. r(t) is defined as the increase

in the regret at round t. In both games 1 and 2, we have the same number of

suboptimal arm draws (N3(2) = N4(2) = 1). However, the regret in games 1

and 2 are different.

expressed as

Reg(T ) ≥
T∑

t=1

∑
i∈I(t)\[L]

(µL − µi)

=
∑

i∈[K]\[L]

(µL − µi)Ni(T + 1) (5.6)

which, combined with (5.4), leads to the regret lower bound by Anantharam et al. [1987]

that any strongly consistent algorithm satisfies

E[Reg(T )] ≥
∑

i∈[K]\[L]

(1− o(1))∆i,L

d(µi, µL)
log T. (5.7)

5.3.3 Necessary condition for an optimal algorithm

In Sections 5.3.1 and 5.3.2, we saw that the derivations of the regret bounds are anal-

ogous between the SP bandit and MP bandit problems. However, there is a difference in

the relation between the regret and Ni(T ), the number of draws of suboptimal arms, is

given as equation (5.2) in the SP bandit problem, whereas it is given as inequality (5.6) in

the MP bandit problem. This means that, an algorithm achieving the asymptotic lower

bound (5.4) on Ni(T ) does not always achieve the asymptotic regret bound (5.7).

When suboptimal arm i is selected, one of the optimal arms is pushed out instead of

arm i, and the regret increases by the difference between the expected rewards of these

two arms. The best scenario is that, arm L, which is the optimal arm with the smallest

expected reward, is almost always the arm pushed out instead of a suboptimal arm. For
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Algorithm 8 Multiple-play Thompson sampling (MP-TS) for binary rewards

Input: # of armsK, # of selection L

for i = 1, 2, . . . ,K do

Ai, Bi = 1, 1

end for

t← 1.

for t = 1, 2, . . . , T do

for i = 1, 2, . . . ,K do

µ̃i(t) ∼ Beta(Ai, Bi)

end for

I(t) = top-L arms ranked by µ̃i(t).

for i ∈ I(t) do
if X̂i(t) = 1 then

Ai ← Ai + 1

else

Bi ← Bi + 1

end if

end for

end for

this scenario to occur, it is necessary to ensure that at most one suboptimal arm is drawn

for almost all rounds because, if two suboptimal arms are selected, at least one arm in

[L− 1] is pushed out.

In the next section, we propose an extension of TS to the MP bandit problem, and

explain that it has a crucial property for suppressing this simultaneous draw of two sub-

optimal arms.

Remark: Corollary 1 of Gopalan et al. [2014] shows the achievability of the bound in the

RHS of (5.4) on the number of draws of suboptimal arms. Whereas this does not lead

to an asymptotically optimal regret bound as discussed above, they originally derived in

Theorem 1 an O(log T ) bound on the number of each suboptimal action (that is, each

combination of arms including suboptimal ones) for a more general setting of MP bandit.

Thus, we can directly use this bound to derive a better regret bound. However, to show the

optimality in the sense of regret it is necessary to prove that there are at most o(log T )

rounds such that an arm in [L − 1] is pushed out. Therefore, it still requires further

discussion to derive the optimal regret bound of TS. Note also that the regret bound by

Gopalan et al. [2014] is restricted to the case that the prior has a finite support and the

true parameter is in the support, and thus their analysis requires some approximation

scheme for dealing Bernoulli rewards.
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5.4 Multiple-play Thompson Sampling Algorithm

Algorithm 8 is our MP-TS algorithm. While TS for single-play selects the top-1 arm

based on a posterior sample µ̃i(t), MP-TS selects the top-L arms ranked by the posterior

sample µ̃i(t). Like Kaufmann et al. [2012] and Agrawal and Goyal [2013a], we set the

uniform prior on each arm.

In Section 5.3.3, we discussed that the necessary condition to achieve the optimal regret

bound is to suppress the simultaneous draws of two or more suboptimal arms, which

characterizes the difficulty of the MP bandit problem.

Note that it is easy to extend other asymptotically optimal SP bandit algorithms, such

as KL-UCB, to the MP bandit problem. Nevertheless, we were not able to prove the

optimality of these algorithms for the MP bandit problem though the achievability of the

bound (5.4) on Ni(T ) is easily proved, and the simulation results in Section 5.7 also imply

their achievability of the regret bound. This is because TS has quite a plausible property

to suppress simultaneous draws as we discuss below.

Before the exact statement in the next section, we give an intuition for the natural ex-

tension of TS can have an asymptotically optimal regret bound in the MP bandit problem.

Roughly speaking, a bandit algorithm with a logarithmic regret draws a suboptimal arm

with probability O(1/t) at the t-th round, which amounts to O(
∑T

t=1 1/t) = O(log T ) re-

gret. Thus, two suboptimal arms are drawn at the same round with probability O(1/t2),

which amounts to O(
∑T

t=1 1/t
2) = O(1) total simultaneous draws, provided that each

suboptimal arm is selected independently.

In TS, the score µ̃i(t) for the choice of arms is generated randomly at each round from the

posterior independently between each arm, which enables us to bound simultaneous draws

as the above intuition. On the other hand, in KL-UCB (or in other index algorithms),

the UCB score for the choice of arms is deterministic given the past results of rewards,

which means that the scores of suboptimal arms may behave quite similarly in the worst

case on the past rewards.

5.5 Asymptotically Optimal Regret Bound

In this section, we state the main theoretical result (Theorem 19). The analysis that

leads to this theorem is discussed in Section 5.6.
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Theorem 19. (Regret upper bound of MP-TS) For any sufficiently small ϵ1 > 0, ϵ2 > 0,

the regret of MP-TS is upper-bounded as

E[Reg(T )] ≤
∑

i∈[K]\[L]

(
(1 + ϵ1)∆i,L log T

d(µi, µL)

)
+ Ca(ϵ1, µ1, µ2, . . . , µK) + Cb(T, ϵ2, µ1, µ2, . . . , µK),

where, Ca = Ca(ϵ1, µ1, µ2, . . . , µK) is a constant independent on T and is O(ϵ−2
1 ) when

we regard {µi}Ki=1 as constants. The value Cb = Cb(T, ϵ2, µ1, µ2, . . . , µK) is a function of

T , which, by choosing proper ϵ2, grows at a rate of O(log log T ).

By letting ϵ1 = O((log T )−1/3) we obtain

E[Reg(T )] ≤
∑

i∈[K]\[L]

∆i,L log T

d(µi, µL)
+O((log T )2/3) (5.8)

and we see that MP-TS achieves the asymptotic bound in (5.7).

Expected regret and high-probability regret: Anantharam et al. [1987] originally

derived a regret lower bound in a stronger form than (5.7) such that for any ϵ > 0, the

regret of a strongly consistent algorithm is lower-bounded as

lim
T→∞

Pr

Reg(T )
log T

≥
∑

i∈[K]\[L]

(1− ϵ)∆i,L

d(µi, µL)

 = 1.

Combining this with (5.8) we can easily see that MP-TS satisfies

lim
T→∞

Pr

Reg(T )
log T

≤
∑

i∈[K]\[L]

(1 + ϵ)∆i,L

d(µi, µL)

 = 1, (5.9)

that is, MP-TS is also asymptotically optimal in the sense of high probability. Since an

algorithm satisfying (5.9) is not always asymptotically optimal in the sense of expectation,

our result, an expected asymptotically optimal regret bound, is also stronger in this sense

than the high-probability bound by Gopalan et al. [2014].

5.6 Regret Analysis

We first define some additional notation that are useful for our analysis in Section 5.6.1

then analyze the regret bound in Section 5.6.2. The proofs of all the lemmas, except for

Lemma 20, are given in the Appendix.

5.6.1 Additional notation

Let µ
(−)
L = µL − δ and µ

(+)
i = µi + δ for δ > 0 and i ∈ [K] \ [L]. We assume δ to

be sufficiently small such that µ
(−)
L ∈ (µL+1, µL) and µ

(+)
i ∈ (µi, µL). We also define
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N suf
i (T ) = log T

d(µ
(+)
i ,µ

(−)
L )

. Intuitively, N suf
i (T ) is the sufficient number of explorations to

make sure that arm i is not as good as arm L.

Events: let max
(m)
i∈S ai denote the m-th largest element of {ai}i∈S ∈ R|S|, that is,

maxi∈S
(m)ai = maxS′⊂S:|S′|=m mini∈S′ ai. We define µ̃∗(t) = max

(L)
i∈[K] µ̃i(t) as the L-th

largest posterior sample at round t (i.e., the minimum posterior sample among the selected

arms), and µ̃∗∗
\i,j(t) = max

(L−1)
k∈[K]\{i,j} µ̃k(t) as the (L − 1)-th largest posterior sample at

round t except for arms i and j. Moreover, let ν = µL−1+µL

2 . Let us define the following

events.

Ai(t) = {i ∈ I(t)},

B(t) = {µ̃∗(t) ≥ µ(−)
L },

Ci(t) =
∩

j∈[K]\([L−1]∪{i})

{µ̃∗∗
\i,j(t) ≥ ν},

Di(t) = {Ni(t) < N suf
i (T )}.

Event Ai(t) states that arm i is sampled at round t, and Di(t) states that arm i has

not been sampled sufficiently yet. The complements of B(t) and Ci(t) are related to the

underestimation of optimal arms. Since the optimal arms are sampled sufficiently, Bc(t)

or Cci (t) should not occur very frequently.

5.6.2 Proof of Theorem 19

We first decompose the regret to the contribution of each arm. Recall that, the regret

increase by drawing suboptimal arm i is determined by the optimal arm excluded in the

selection set I(t). Formally, for suboptimal arm i, let

∆i(t) =

(maxj∈[L]\I(t) µj)− µi if I(t) ̸= [L],

0 otherwise,
(5.10)

and

Regi(T ) =
T∑

t=1

1{i ∈ I(t)}∆i(t).

From inequality (5.5) the following inequality is easily derived

Reg(T ) ≤
∑

i∈[K]\[L]

Regi(T ).

We next decompose Regi(T ) into several terms by using events A–D. After giving bounds

for these terms, we finally give the total regret bound, which proves Theorem 19. Note

that, in bounding the deviation of Bernoulli means and Beta posteriors in the Appendix,

our analysis borrowed some techniques developed in the context of the SP bandit problem,

mostly from Agrawal and Goyal [2013a], and some from Honda and Takemura [2014].
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Lemma 20. The regret by drawing suboptimal arm i > L is decomposed as

Regi(T ) ≤
T∑

t=1

1{Bc(t)}︸ ︷︷ ︸
(A)

+

T∑
t=1

1{Ai(t), Cci (t)}︸ ︷︷ ︸
(B)

+
∑

j∈[K]\([L−1]∪{i})

T∑
t=1

1{Ai(t), Ci(t),Di(t),Aj(t)}︸ ︷︷ ︸
(C)

+
T∑

t=1

1{Ai(t),B(t),Dc
i (t)}︸ ︷︷ ︸

(D)

+N suf
i (T )∆i,L,

where, for example, {A,B} abbreviates {A ∩ B}.

Roughly speaking,

• Term (A) corresponds to the case in which, some of the optimal arms are under-

estimated.

• Term (B) corresponds to the case in which, arm i is selected and some of the arms

in [L− 1] are under-estimated.

• Term (C) corresponds to the case in which, arm i ∈ [K] \ [L] and j ∈
[K] \ ([L− 1] ∪ {i}) are simultaneously drawn. In particular, term (C) is

unique in the MP bandit problem that causes additional regret increase, and

in analyzing this term we fully use the fact that the samples of the posterior

distributions on the arms are independent of each other.

• Term (D) corresponds to the case in which, arm i is selected after it is sufficiently

explored.

Proof of Lemma 20. The contribution of suboptimal arm i to the regret is decomposed as

follows. By using the fact ∆i(t) ≤ 1 and the following decomposition of an event

Ai(t) ⊂ Bc(t) ∪ {Ai(t), Cci (t)} ∪ {Ai(t),B(t), Ci(t)}

⊂ Bc(t) ∪ {Ai(t), Cci (t)} ∪ {Ai(t),B(t),Dc
i (t)} ∪ {Ai(t), Ci(t),Di(t)},

we have

Regi(T ) =

T∑
t=1

1{Ai(t)}∆i(t)

≤
T∑

t=1

1{Bc(t)}+
T∑

t=1

1{Ai(t), Cci (t)}

+

T∑
t=1

1{Ai(t),B(t),Dc
i (t)}+

T∑
t=1

1{Ai(t), Ci(t),Di(t)}∆i(t). (5.11)
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Recall that ∆i(t) is defined as (5.10). At each round, when L and all suboptimal arms,

except for i, are not selected, then I(t) = {1, 2, . . . , L− 1, i}; ∆i(t) = ∆i,L. Therefore,

T∑
t=1

1{Ai(t), Ci(t),Di(t)}∆i(t)

≤
T∑

t=1

1{Ai(t), Ci(t),Di(t)}∆i,L +

T∑
t=1

1{Ai(t), Ci(t),Di(t),
∪

j∈[K]\([L−1]∪{i})

Aj(t)}

≤
T∑

t=1

1{Ai(t),Di(t)}∆i,L +
∑

j∈[K]\([L−1]∪{i})

T∑
t=1

1{Ai(t), Ci(t),Di(t),Aj(t)}

≤ N suf
i (T )∆i,L +

∑
j∈[K]\([L−1]∪{i})

T∑
t=1

1{Ai(t), Ci(t),Di(t),Aj(t)}. (5.12)

Summarizing (5.11) and (5.12) completes the proof.

The following lemma bounds terms (A)–(D).

Lemma 21. (Bounds on individual terms) Let ϵ2 > 0 be arbitrary. For sufficiently small

δ and ϵ2, the four terms are bounded in expectation as

E[(A)] = O

(
1

(µL − µ(−)
L )2

)
= O

(
1

δ2

)
, (5.13)

E[(B)] = O(log log T ), (5.14)

E[(C)] ≤
∑

j∈[K]\([L−1]∪{i})

(
ϵ2 + 4T−

ϵ2∆2
L,L−1
8

)
log T

d(µi, µL)
+O(1),

and (5.15)

E[(D)] ≤ 2 +
1

d(µ
(+)
i , µi)

= O

(
1

δ2

)
. (5.16)

The proof of Lemma 21 is in Section 5.11.2. Moreover, the following lemma bounds

term (C) by choosing a proper value of ϵ2.

Lemma 22. (Evaluation of ϵ2-dependent factor) By choosing an O((log log T )/ log T )

value of ϵ2, we obtain E[(C)] = O(log log T ).

The proof of Lemma 22 is in Section 5.11.3. Now it suffices to evaluate N suf
i (T ) =

log T

d(µ
(+)
i ,µ

(−)
L )

to complete the proof. From the convexity of KL divergence there exists a

constant ci = ci(µi, µL) > 0 such that

d(µ
(+)
i , µ

(−)
L ) = d(µi + δ, µL − δ) ≥ (1− ciδ)d(µi, µL)
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and therefore

E[Reg(T )]≤
∑

i∈[K]\[L]

E[Regi(T )] ≤
∑

i∈[K]\[L]

E

[
T∑

t=1

1{Ai(t)}∆i(t)

]

≤
∑

i∈[K]\[L]

{
E [(A) + (B) + (C) + (D)] +N suf

i (T )∆i,L

}
≤
∑

i∈[K]\[L]

∆i,L log T

(1− ciδ)d(µi, µL)︸ ︷︷ ︸
main term

+O

(
1

δ2

)
︸ ︷︷ ︸

Ca

+O(log log T )︸ ︷︷ ︸
Cb

.

Since (1− ciδ)−1 ≤ 1+2ciδ for ciδ ≤ 1/2, we complete the proof of Theorem 19 by letting

ϵ1 < 1/2 and δ = ϵ1/maxi∈[K]\[L] ci = Θ(ϵ1).

5.7 Experiment

We ran a series of computer simulations*2 to clarify the empirical properties MP-TS.

The simulations involved the following three scenarios. In Scenarios 1 and 2, we used fixed

arms similar to that of Garivier and Cappé [2011], and Scenario 3 is based on a click log

dataset of advertisements on a commercial search engine.

Algorithms: the simulations involved MP-TS, Exp3.M [Uchiya et al., 2010], CUCB

[Chen et al., 2013], and MP-KL-UCB. Exp3.M is a state-of-the-art adversarial bandit

algorithm for the MP bandit problem*3. The learning rate γ of Exp3.M is set in accordance

with Corollary 1 of Uchiya et al. [2010]. Note that the CUCB algorithm in the MP bandit

problem at each round draws the top-L arms of the UCB indices µ̂i+
√

(3 log t)/(2Ni(t)).

MP-KL-UCB is the algorithm that selects the top-L arms in accordance with the KL-UCB

index supq∈[µ̂i(t),1] {q|Ni(t)d(µ̂i(t), q) ≤ log t}.
Scenario 1 (5-armed bandits): the simulations include 5 Bernoulli arms with

{µ1, . . . , µ5} = {0.7, 0.6, 0.5, 0.4, 0.3}, and L = 2.

Scenario 2 (20-armed bandits): the simulations include 20 Bernoulli arms with

µ1 = 0.15, µ2 = 0.12, µ3 = 0.10, µi = 0.05 for i ∈ {4, 5, . . . , 12}, µi = 0.03 for i ∈
{13, 14, . . . , 20}, and L = 3.

Scenario 3 (many-armed bandits, online advertisement based CTRs): we

conducted another set of experiments with arms whose expectations were based on the

dataset provided for KDD Cup*4 2012 track 2. The dataset involves a click log on soso.com

(a large-scale search engine serviced by Tencent), which is composed of 149 million impres-

sions (view of advertisements). We processed the data as follows. First, we excluded users

of abnormally high click probability (i.e., users who had more than 1, 000 impressions and

*2 The source code of the simulations is available at https://github.com/jkomiyama/multiplaybanditlib.
*3 Note that, Exp3.M is designed for the adversarial setting in which the rewards of arms are not

necessarily i.i.d.
*4 https://www.kddcup2012.org/



78 Chapter 5 Asymptotically Optimal Exploration and Exploitation in Multiple-play Multi-armed Bandit Problem

100 101 102 103 104 105

t: round

0

50

100

150

200

250

300

R
(t)

:
re

gr
et

Lower Bound
MP-TS
MP-KL-UCB
CUCB
Exp3.M

(a) Scenario 1
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(b) Scenario 2
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(c) Scenario 3

Fig. 5.2. Regret-round plots of algorithms. The regret in Scenarios 1 and 2 are averaged

over 10, 000 runs, and the regret in Scenario 3 is averaged over 1, 000 runs.

“Lower Bound” is the leading Ω(log T ) term of the RHS of inequality (5.7). We

do not show Lower Bound in Scenario 3 because the coefficient of the bound

can sometimes be quite large (i.e., in some runs, 1/d(µL+1, µL) is large).

more than 0.1 click probability) from the log. We also excluded minor advertisements

(ads) that had less than 5, 000 impressions. There are a wide variety of ads on a search

engine (e.g., ”rental cars”, ”music”, etc.) and randomly picking ads from a search engine

should yield a set of irrelevant ads. To address this issue, we selected popular queries that

had more than 104 impressions and more than 50 ads that appeared on the query. As a

result, 80 queries were obtained. The number of ads associated with each query ranged

from 50 to 105, and the average click-through rate (CTR, the probability that the ad is

clicked) of an ad on each query ranged from 1.15% to 6.86%. After that, each ad was

converted into a Bernoulli arm with its expectations corresponding to the CTR of the ad.

At the beginning of each run, one of the queries was randomly selected, and the bandit
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simulation with the arms corresponding to the query and L = 3 is then conducted. This

scenario was more difficult than the first two scenarios in the sense that 1) a larger number

of arms were involved and 2) the reward gap among arms was very small.

The simulation results are shown in Figure 5.2. In all scenarios, the tendency is the

same: our proposed MP-TS performs significantly better than the other algorithms. MP-

KL-UCB is not as good as MP-TS, but clearly better than CUCB and Exp3.M. While it is

unclear whether the slope of the regret of MP-KL-UCB converges to the asymptotic bound

or not, the slope of the regret of TS quickly approaches the asymptotic lower bound.

5.7.1 Improvement of MP-TS based on the empirical means
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Fig. 5.3. Before/after comparison of MP-TS. All settings (except for algorithms) are the

same as that of Scenario 3.

We now introduce an improved version of MP-TS (IMP-TS). In the theoretical analysis

of the MP bandit problem, we observed that an extra loss arises when multiple suboptimal

arms are drawn at the same round. Based on this observation, the new algorithm selects

L − 1 arms on the basis of empirical averages and selects the last arm on the basis of

TS to avoid simultaneous draws of suboptimal arms. In other words, this algorithm is

further aimed to minimize the regret by purely exploiting the knowledge in the top-(L−1)
arms; thus, limiting the exploration to only one arm. One might fear that this increase in

exploitation could devastate the balance between exploration and exploitation. Although

we provide no regret bound for the improved version of the algorithm, we expect that

this algorithm will also achieve the asymptotic bound for the following reason. When

we restrict the exploration to one arm, the number of opportunities for an arm to be

explored may decrease, say, from T to T/L. Still, T/L opportunities are sufficient since

O(log(T/L)) = O(log T ). In fact, the algorithm proposed by Anantharam et al. [1987]

achieves the asymptotic bound even though L − 1 arms are selected based on empirical

means as in IMP-TS. Similarly, we define an improved version of MP-KL-UCB (IMP-

KL-UCB) for selecting the first L − 1 arms on the basis of empirical averages. The

before/after analysis of this improvement is shown in Figure 5.3. One sees that, (i) MP-TS
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still performs better than IMP-KL-UCB, and (ii) IMP-TS reduces the regret throughout

the rounds. In particular, when the number of the rounds is small (T ∼ 103–104), the

advantage of IMP-TS is large.

5.8 Discussion

We extended TS to the multiple-play setting and proved its asymptotic optimality

in terms of the regret. We considered the case in which the total reward is linear to the

individual rewards of selected arms. The analysis here fully uses the independent property

of posterior samples and paves the way to obtain a tight analysis on the multiple-play

regret that depends on the combinatorial structure of arm selection. We now point out

two promising directions for future work.

• Position-dependent factors for online advertising: it is well-known that the

CTR of an ad is dependent on its position. Taking the position-dependent factor

into consideration changes the MP bandit problem from the L-set selection problem

to the L-sequence selection problem in which the position of L arms matters. For

the starting point, we consider an extension of MP-TS for the cascade model Kempe

and Mahdian [2008], Aggarwal et al. [2008] that corrects position-dependent bias

in Section 5.10.

• Non-Bernoulli distributions for general problems: for the ease of argument,

we exclusively consider the binary rewards. The analysis by Korda et al. [2013] is

useful in extending our result to the case of the 1-d exponential families of rewards.

Moreover, extending our result to multi-parameter reward distributions Burnetas

and Katehakis [1996], Honda and Takemura [2014] is interesting.
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5.9 Cases of Several Arms Having the Same Expectation

Up to now, we have assumed that all arms have distinct expectations. Here, we consider

cases in which some arms have the same expectations. Without loss of generality, we

assume µ1 ≥ µ2 ≥, . . . ,≥ µK . Let us call arms with a larger expectation than µL “strictly

optimal” arms, arms with the same expectation as µL “marginal” arms, and arms with

a smaller expectation than µL “strictly suboptimal” arms. Each arm is either strictly

optimal, marginal, or strictly suboptimal.

Case 1: assume that all strictly optimal arms are distinct, that there is only one marginal

arm, and that there are several strictly suboptimal arms with the same expectation. In

this case, the regret bound of Theorem 19 holds because our analysis deals with each

suboptimal arm separately.

Case 2: assume that there is only one marginal arm, that all strictly suboptimal arms are

distinct, and that there are several strictly optimal arms with the same expectation. The

regret bound also holds in this case since there is a gap between each strictly suboptimal

arm and each strictly optimal arm.

Case 3: assume that all strictly optimal arms and strictly suboptimal arms are distinct

and that there are several marginal arms with the same expectation. Unfortunately,

we were unable to perform a meaningful analysis in this case. Intuitively, as stated by

Agrawal and Goyal [2012] for the SP bandit, adding an additional marginal arm appears

to require some extra exploration, which slightly increases the regret. However, the regret

structure is more complex than the SP bandit because several marginal arms can be drawn

simultaneously.

In summary, our Theorem 19 holds when the marginal arm is distinct. That is, µ1 ≥
µ2 ≥ · · · ≥ µL−1 > µL > µL+1 ≥ · · · ≥ µK .

5.10 Cascade Model and Position-dependent MP Bandit

Problem

Up to now, we assumed that the rewards of arms are independently and identically

drawn from individual distributions. In this section, we relax this assumption and consider

a wider class of the MP bandit problem. Remember that, one of our primary applications

is multiple advertisement placement in the online advertising problem (c.f., Example 1).

In this section, we interchangeably use the terms an advertisement (ad) and an arm. It

is known that the CTR of an ad depends on the environment where the ad is placed,

especially on the position of the ad. Among several models that explain this dependency

on the position, the model that explains human behavior and agrees well with real data
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Algorithm 9 Bias-Corrected Multiple-play Thompson sampling (BC-MP-TS) for binary

rewards
Input: # of armsK, # of positionsL, discount factors {γl(i)}
for i = 1, 2, . . . ,K do

Ai, Ni ← 1, 2

end for

t← 1.

for t = 1, 2 . . . , T do

for i = 1, 2, . . . ,K do

Bi ← max (Ni −Ai, 1)

µ̃i(t) ∼ Beta(Ai, Bi)

end for

Select Il(t) (l = 1, . . . , L) in accordance with Section 5.10.2.

for l ∈ 1, 2, . . . , L do

if X̂i(t) = 1 then

Ai ← Ai + 1

end if

Ni ← Ni +
∏l

l′=2 γl′(Il′−1(t))

end for

end for

[Craswell et al., 2008] is the cascade model [Kempe and Mahdian, 2008, Aggarwal et al.,

2008], with which it is assumed that the user scans the ads from top to bottom. Following

Gatti et al. [2012], we define the discount factor γl(i) for l ≥ 2 as the probability that a

user observing ad i in position l− 1 will observe the ad in the next position. Namely, the

MP bandit problem with a discount factor is defined as a MP bandit problem in which the

arm at position l yields reward 1 with probability
(∏l

l′=2 γl′(Il′−1(t))
)
µIl(t), where Il(t)

be the arm placed at the l-th position at round t. Note that, when we set γl(i) = 1 for

any position l ∈ [L] and ad i, this model is reduced to the model we have considered up

to the previous section. In this case, the order of the L arms does not matter. Whereas,

under a position-dependent discount factor smaller than 1, the order of L arms matters:

the problem is not the selection of an L-set of arms, but an L-sequence of arms.

5.10.1 Thompson sampling for cascade model

In the cascade model, there is some probability that the arm at position l > 1 is not

drawn. The probability that the arm at position l is drawn,
∏l

l′=2 γl′(Il′−1(t)), can be

considered as the effective number of the draws at position i. MP-TS (Algorithm 8) keeps

Ai and Bi, which respectively correspond to the number of rewards 1 and 0. The number
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of draws on the arm i is Ni = Ai +Bi. When we consider the cascade model, we need to

take the effective number of draw into consideration. We introduce Bias-corrected MP-TS

(BC-MP-TS, Algorithm 9). The crux of BC-MP-TS is that, for each arm that is selected,

Ni should be increased not by 1, but by the effective number of draw for each position.

Note that, when γl(i) = 1, BC-MP-TS is essentially the same as MP-TS.

5.10.2 Optimal arm selection and the regret

In general discount factor γl(i), even if we have perfect information over the expectation

of all arms {µi}Ki=1, the computation of the optimal sequence of L-arms at each round t

(optimal arm selection) appears to be computationally intractable whenK is large because

we need to search all the possible allocation of K ads over L positions. Kempe and

Mahdian [2008] proposed a polynomial-time approximation of the optimal arm selection.

We can obtain the arm selection strategy for BC-MP-TS by using this approximation

algorithm as an oracle and plugging {µ̃i(t)}Li=1 as estimated expected rewards.

Ad-independent discount factor: when the discount factor is independent of the ad

at that position (i.e., γl(i) = γl), the optimal arm selection is easy: just select µl (i.e., l-th

optimal arm) on the l-th position. We define the arm selection strategy of BC-MP-TS as

placing the arm of the l-th largest µ̃i (i.e., Il(t) = max
(l)
i∈[K] µ̃i) on the l-th position.

Regret: naturally, the regret per round is defined as the difference between the expected

reward of the optimal arm selection and that of an algorithm. Namely,

Reg(T ) =

T∑
t=1

L∑
l=1

(
l∏

l′=2

γl′(Iopt(l
′−1))µIopt(l)−

l∏
l′=2

γl′(Il′−1(t))︸ ︷︷ ︸
effective number of draw at position l

×µIl(t)

)
,

where (Iopt(1), . . . , Iopt(L)) is the optimal arm selection. In the case of the ad-independent

discount factor, we conjecture that the asymptotic regret lower bound should be identical

to the case of no-discount factor that we have analyzed (i.e., inequality (5.7)). Although

we do not prove any regret bound for this cascade model, the conjecture is supported

by the fact that (i) by identifying the top-L arm we immediately obtain the optimal

arm selection, (ii) algorithms should require log T/d(µi, µL) number of effective draws to

convince that suboptimal arm i > L is not as good as arm L, and (iii) the best situation

is that the simultaneous draw of several optimal arms rarely occurs: arm L is pushed out

instead of arm i, and the regret increase per an effective draw is µL − µi. In the case of

the general discount factor, the problem is subtler because a slight difference in {µi} can
change the optimal arm selection.
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Fig. 5.4. Simulation with a discount factor. Lower Bound is the leading Ω(log T ) term of

the RHS of inequality (5.7), which we have conjectured to be the lower bound

for the cascade model with the ad-independent discount factor in Section 5.10.2.

The regret is averaged over 10, 000 runs.

5.10.3 Experiment of cascade model

This simulation adapts the cascade model and involves a constant discount factor

γl(i) = 0.7 for any position and arm. There are 9 Bernoulli arms with µ1 = 0.24, µ2 =

0.21, . . . , µ9 = 0.00 and L = 3. In this case the optimal arm selection strategy is to choose

{I1(t), I2(t), I3(t)} = {µ1, µ2, µ3} (c.f., Section 5.10.2). The regret of the algorithms is

shown in 5.4. On one hand, MP-TS failed to have a small regret due to its ignorance

to the discount factors. On the other hand, the slope of BC-MP-TS quickly approaches

the conjectured Lower Bound, which is empirical evidence of the ability of BC-MP-TS to

correct the position-dependent bias.

5.11 Proofs

5.11.1 Lemmas

Lemma 23. (Lemma 2 in Agrawal and Goyal [2013a]) Let k ∈ [K], n ≥ 0 and x <

µk. Let µ̂k,n be the empirical average of n samples from Bernoulli(µk). Let pk,n(x) =

1 − F beta
µ̂k,nn+1,(1−µ̂k,n)n+1(y) be the probability that the posterior sample from the Beta

distribution with its parameter µ̂k,nn+1, (1− µ̂k,n)n+1 exceeds x. Then, its average over
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runs is bounded as

E
[

1

pk,n(x)

]
≤



1 + 3
∆k(x)

(n < 8/∆k(x))

1 + Θ

(
e−∆k(x)

2n/2 + 1
(n+1)∆k(x)2

e−Dk(x)n

+ 1

e∆k(x)2n/4−1

)
(n ≥ 8/∆k(x)),

where ∆k(x) = µk − x,Dk(x) = d(x, µk).

In the proof of Lemma 21 we use the following Lemmas 24, 25, and 26 several times.

Lemma 24 is essentially the combination of the existing techniques of Agrawal and Goyal

[2013a] and Honda and Takemura [2014]. Lemmas 25 and 26 are also existing techniques

that appear in several previous analyses in Bayesian bandits with Bernoulli arms.

Lemma 24. Let k ∈ [K], z < µk be arbitrary, S(t), T (t), and U(t) be events such that

(i) if {µ̃k(t) ≥ z}, S(t), and T (t) occurred then the arm k is drawn at round t,

(ii) µ̃k(t), S(t) and T (t) are mutually independent given {µ̂i(t)}Ki=1 and {Ni(t)}Ki=1.

(iii) The event U(t) is deterministic given {µ̂i(t)}Ki=1 and {Ni(t)}Ki=1.

(iv) Given {µ̂i(t)}Ki=1 and {Ni(t)}Ki=1 such that U(t) holds, T (t) occurs with probability

at least q > 0.

Then

E

[
T∑

t=1

1{µ̃k(t) < z,S(t),U(t), Nk(t) < Nc}

]
= O

(
1

q(µk − z)2

)
+Nc

1− q
q

.

In particular, by setting T (t) and U(t) the trivial events that always hold (q = 1), we

obtain the following inequality:

E

[
T∑

t=1

1{µ̃k(t) < z,S(t)}

]
= O

(
1

(µk − z)2

)
. (5.17)

Proof. First we have

T∑
t=1

1{µ̃k(t) < z,S(t),U(t), Nk(t) < Nc}

≤
Nc∑
n=0

T∑
t=1

1{µ̃k(t) < z,S(t),U(t), Nk(t) = n}

≤
Nc∑
n=0

T∑
m=1

1

[
m ≤

T∑
t=1

1{µ̃k(t) < z,S(t),U(t), Nk(t) = n}

]
.

(5.18)

Here note that the event

m ≤
T∑

t=1

1{µ̃k(t) < z,S(t),U(t), Nk(t) = n}
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implies that the event

{S(t),U(t), Nk(t) = n} (5.19)

occurred for at least m rounds and {µ̃k(t) < z} or T c(t) occurred for the first m rounds

such that (5.19) occurred. Thus, by using the mutual independence of {µ̃k(t) < z}, S(t),
and T (t), we have

Pr

[
m ≤

T∑
t=1

1{µ̃k(t) < z,S(t),U(t), Nk(t) = n}

∣∣∣∣∣µ̂k,n

]
≤ (1− pk,n(z)q)m (5.20)

and therefore

E

[
T∑

t=1

1{µ̃k(t) < z,S(t),U(t), Nk(t) < Nc}

∣∣∣∣∣µ̂k,n

]
≤

Nc∑
n=0

T∑
m=1

(1−pk,n(z)q)m (by (5.18) and (5.20))

≤
Nc∑
n=0

1− pk,n(z)q
pk,n(z)q

=
1

q

T−1∑
n=0

(
1

pk,n(z)
− 1

)
+Nc

1− q
q

.

By using Lemma 23, we obtain

E

[
T−1∑
n=0

(
1

pk,n(z)
− 1

)]

≤ 24

∆k(z)2
+

T−1∑
n=⌈8/∆k(z)⌉

O

(
e−∆k(z)

2n/2 +
e−Dk(z)n

(n+ 1)∆k(z)2
+

1

e∆k(z)2n/4 − 1

)
.

(5.21)

By using the fact that Dk(z) = d(z, µk) = Ω(1/(µk− z)2) (from the Pinsker’s inequality),

it is easy to verify that the RHS of (5.21) is O(1/(µk − z)2). By using these facts, we

finally obtain

E

[
T∑

t=1

1{µ̃k(t) < z,S(t),U(t), Nk(t) < Nc}

]
≤ 1

q
E

[
T−1∑
n=0

(
1

pk,n(z)
− 1

)]
+Nc

1− q
q

= O

(
1

q(µk − z)2

)
+Nc

1− q
q

,

which concludes the proof of the lemma.

Lemma 25. (Deviation of empirical averages, Agrawal and Goyal [2013a, Appendix B.1])

Let k ∈ [K] and z > µk be arbitrary. Then,

E

[ ∞∑
t=0

1{Ak(t), µ̂k(t) > z}

]
< 1 +

1

d(z, µk)
.

Lemma 26. (Deviation of Beta posteriors) Let k ∈ [K], x1, x2 ∈ [0, 1] be arbitrary values

such that x1 > x2, and n ≥ 1. Then,

P(µ̃k(t) ≥ x1|µ̂k(t) ≤ x2, Nk(t) = n) ≤ exp (−d(x2, x1)n).
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Proof. Note that, this lemma is essentially the same as the first display in Agrawal and

Goyal [2013a, Appendix B.2]. While Agrawal and Goyal [2013a] provide a bound for

Nk(t) > n, the bound in our lemma is for Nk(t) = n. For the sake of rigor, we write the

proof here.

P(µ̃j(t) ≥ x1|µ̂j(t) ≤ x2, Nj(t) = n)

= P
(
µ̃ ∼ Beta(µ̂j(t)n+ 1, (1− µ̂j(t))n+ 1), µ̃ ≥ x1

∣∣∣∣µ̂j(t) ≤ x2
)

= 1− F beta
x2n+1,(1−x2)n+1(x1)

= FB
n+1,x1

(x2n)

(by the Beta-Binomial equality)

≤ FB
n,x1

(x2n) ≤ exp (−d(x2, x1)n)

(by the Chernoff bound).

5.11.2 Proof of Lemma 21

Evaluation of term (A):

Proof. Here, we prove inequality (5.13). Recall that

(A) =

T∑
t=1

1{Bc(t)} =
T∑

t=1

1{µ̃∗(t) < µ
(−)
L }.

Since µ̃∗(t) is the L-th largest posterior sample among arms at round t, µ̃∗(t) < µ
(−)
L

implies that, there exists at least one arm in [L] with its posterior sample smaller than

µ
(−)
L . Namely,

{µ̃∗(t) < µ
(−)
L } ⊂

∪
k∈[L]

{µ̃k(t) < µ
(−)
L },

and therefore

{µ̃∗(t) < µ
(−)
L }

=
∪

k∈[L]

{µ̃k(t) < µ
(−)
L , µ̃∗(t) < µ

(−)
L }

=
∪

k∈[L]

{µ̃k(t) < µ
(−)
L ,max

j∈[L]

(L)µ̃j(t) < µ
(−)
L }

⊂
∪

k∈[L]

{µ̃k(t) < µ
(−)
L , max

j∈[L]\{k}
(L)µ̃j(t) < µ

(−)
L }.
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By using the union bound, we obtain

1{µ̃∗(t) < µ
(−)
L } ≤

∑
k∈[L]

1{µ̃k(t) < µ
(−)
L , max

j∈[L]\{k}
(L)µ̃j(t) < µ

(−)
L }.

Note that the event max
(L)
j∈[L]\{k} µ̃j(t) < µ

(−)
L satisfies the condition for the event S(t) in

(5.17) in Lemma 24 with z := µ
(−)
L . Therefore we obtain from Lemma 24 that

E

[
T∑

t=1

1{µ̃∗(t) < µ
(−)
L }

]
= O

(
1

(µk − µ(−)
L )2

)
= O

(
1

(µL − µ(−)
L )2

)
,

which concludes the proof of inequality (5.13).

Evaluation of term (B):

Proof. Here, we prove inequality (5.14). We have,

(B) =
T∑

t=1

1{Ai(t), Cci (t)}

=
T∑

t=1

1

 ∪
j∈[K]\([L−1]∪{i})

{Ai(t), µ̃
∗∗
\i,j(t) < ν}


=

T∑
t=1

∑
j∈[K]\([L−1]∪{i})

1
{
Ai(t), µ̃

∗∗
\i,j(t) < ν

}

=
T∑

t=1

∑
j∈[K]\([L−1]∪{i})

{
1 {Ai(t), µ̂i(t) > µL}+ 1

{
Ai(t), µ̂i(t) ≤ µL, µ̃

∗∗
\i,j(t) < ν

}}
.

(5.22)

In the following, we bound the first and the second terms in the inner sum of the last line

of (5.22). From Lemma 25, the first term of (5.22) is bounded as

E

[
T∑

t=1

1 {Ai(t), µ̂i(t) > µL}

]
≤ 1 +

1

d(µL, µi)
= O(1).

On the other hand, the second term of (5.22) is transformed as

T∑
t=1

1
{
Ai(t), µ̂i(t) ≤ µL, µ̃

∗∗
\i,j(t) < ν

}
≤ log log T

d(µL, ν)
+

T∑
t=1

1

{
Ai(t), Ni(t) >

log log T

d(µL, ν)
, µ̂i(t) ≤ µL, µ̃

∗∗
\i,j(t) < ν

}

≤ log log T

d(µL, ν)
+

T∑
t=1

1

{
Ni(t) >

log log T

d(µL, ν)
, µ̂i(t) ≤ µL, µ̃

∗∗
\i,j(t) < ν

}
.

Since µ̃∗∗
\i,j(t) is the (L − 1)-th largest posterior sample among arms except for arms i

and j, µ̃∗∗
\i,j(t) < ν indicates that, the number of arms excluding i and j with posterior
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samples larger than or equal to ν is at most L−2, and thus at least one arm among [L−1]

has its posterior smaller than ν. Namely,

{µ̃∗∗
\i,j(t) < ν} = { max

l∈[K]\{i,j}
(L−1)µ̃l(t) < ν}

=
∪

k∈[L−1]

{µ̃k(t) < ν, max
l∈[K]\{i,j}

(L−1)µ̃l(t) < ν}

⊂
∪

k∈[L−1]

{µ̃k(t) < ν, max
l∈[K]\{i,j,k}

(L−1)µ̃l(t) < ν}.

By using this, we have

T∑
t=1

1

{
Ni(t) >

log log T

d(µL, ν)
, µ̂i(t) ≤ µL, µ̃

∗∗
\i,j(t) < ν

}

≤
T∑

t=1

∑
k∈[L−1]

1
{
Ni(t) >

log log T

d(µL, ν)
, µ̂i(t) ≤ µL, µ̃k(t) < ν, max

l∈[K]\{i,j,k}
(L−1)µ̃l(t) < ν

}
.

Moreover, let ν2 = (ν + µL)/2 = (µL−1 + 3µL)/4. For k ∈ [L − 1], µk > ν > ν2 > µL

and

P{µ̃k(t) < ν,Nk(t) ≥
log T

2(ν − ν2)2
}

≤
T∑

n= log T

2(ν−ν2)2

P{µ̃k(t) < ν,Nk(t) = n}

≤
T∑

n= log T

2(ν−ν2)2

P{µ̃k(t) < ν, µ̂k(t) > ν2, Nk(t) = n}+
T∑

n= log T

2(ν−ν2)2

P{µ̂k(t) ≤ ν2, Nk(t) = n}

≤
T∑

n= log T

2(ν−ν2)2

e−d(ν2,ν)n +
T∑

n= log T

2(ν−ν2)2

P{µ̂k(t) ≤ ν2, Nk(t) = n} (by Lemma 26)

≤
T∑

n= log T

2(ν−ν2)2

e−d(ν2,ν)n +
T∑

n= log T

2(ν−ν2)2

e−d(ν2,µk)n (by Chernoff bound)

= O(1/T ) (by (µk − ν2) > (ν − ν2) and Pinsker’s inequality)
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and thus

T∑
t=1

∑
k∈[L−1]

1
{
Ni(t) >

(log T )2/3

d(µL, ν)
, µ̂i(t) ≤ µL, µ̃k(t) < ν, max

l∈[K]\{i,j,k}
(L−1)µ̃l(t) < ν

}

≤
T∑

t=1

∑
k∈[L−1]

1
{
Ni(t)>

(log T )2/3

d(µL, ν)
, Nk(t)<

log T

2(ν − ν2)2
, µ̂i(t)≤µL, µ̃k(t)<ν, max

l∈[K]\{i,j,k}
(L−1)µ̃l(t)<ν

}

+
T∑

t=1

∑
k∈[L−1]

1
{
µ̃k(t) < ν,Nk(t) ≥

log T

2(ν − ν2)2
}

≤
T∑

t=1

∑
k∈[L−1]

1
{
Ni(t)>

(log T )2/3

d(µL, ν)
, Nk(t)<

log T

2(ν − ν2)2
, µ̂i(t)≤µL, µ̃k(t)<ν, max

l∈[K]\{i,j,k}
(L−1)µ̃l(t)<ν

}
+O(1).

Here, z := ν, S(t) := {max
(L−1)
l∈[K]\{i,j,k} µ̃l(t) < ν}, T (t) := {µ̃i(t) ≤ ν}, and U(t) :=

{µ̂i(t) ≤ µL} satisfy the conditions in Lemma 24. Under U(t), T (t) holds with probability

at least

1− exp

(
−d(µL, ν)

(
log log T

d(µL, ν)

))
= 1− (log T )−1

by Lemma 26. Therefore, by using Lemma 24 with Nc = log T/(2(ν − ν2)2), we obtain

E

[
T∑

t=1

1
{
Ni(t) >

log log T

d(µL, ν)
, Nk(t) <

log T

2(ν − ν2)2
, µ̂i(t) ≤ µL, µ̃k(t) < ν, max

l∈[K]\{i,j,k}
(L−1)µ̃l(t) < ν

}]

≤ O
(

1

(1− (log T )−1)(µk − ν)2

)
+O

(
(log T )−1

1− (log T )−1

log T

2(ν − ν2)2

)
= O(1). (5.23)

From (5.23) and the union bound over k ∈ [L− 1], the second term of (5.22) is O(1). In

summary, term (B) is O(log log T ) in expectation.

Evaluation of term (C):

Proof. Here, we prove inequality (5.15). Recall that,

(C) =
∑

j∈[K]\([L−1]∪{i})

T∑
t=1

1{Ai(t),Aj(t), Ci(t),Di(t)}.

Remember that ν2 = (ν+µL)/2 = (µL−1+3µL)/4. Note that, we defined ν and ν2 such

that µL−1 > ν > ν2 > µL, O(µL−1−ν) = O(ν−ν2) = O(ν2−µL) = O(µL−1−µL) = O(1)
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as a function of T . Then,

T∑
t=1

1{Ai(t),Aj(t), Ci(t),Di(t)}

=
T∑

t=1

1{Ai(t),Aj(t), Ci(t),Di(t), µ̂j(t) > ν2}+
T∑

t=1

1{Ai(t),Aj(t), Ci(t),Di(t), µ̂j(t) ≤ ν2}

≤
T∑

t=1

1{Aj(t), µ̂j(t) > ν2}+
T∑

t=1

1{Ai(t),Aj(t), Ci(t),Di(t), µ̂j(t) ≤ ν2}.

(5.24)

By using Lemma 25 with z := ν2, the first term in (5.24) is bounded as

E

[
T∑

t=1

1{Aj(t), µ̂j(t) > ν2}

]
≤ 1 +

1

d(ν2, µj)

= O

(
1

(ν2 − µj)2

)
= O

(
1

(µL−1 − µL)2

)
= O(1).

We now bound the second term in (5.24). Let C′i,j(t) = {µ̃∗∗
\i,j(t) ≥ ν} ⊃ Ci(t). Let

Ej(t) = {Nj(t) ≥ ϵ2 log T}. We have,

T∑
t=1

1{Ai(t),Aj(t), Ci(t),Di(t), µ̂j(t) ≤ ν2}

≤
T∑

t=1

1{Ai(t),Aj(t), C′i,j(t),Di(t), µ̂j(t) ≤ ν2}

≤ ϵ2 log T +
T∑

t=1

1{Ai(t),Aj(t), C′i,j(t),Di(t), µ̂j(t) ≤ ν2, Ej(t)}.

≤ ϵ2 log T +

Nsuf
i (T )−1∑
n=0

T∑
t=1

1{Ai(t),Aj(t), C′i,j(t), Ni(t) = n, µ̂j(t) ≤ ν2, Ej(t)}.

In the following, we bound

T∑
t=1

1{Ai(t),Aj(t), C′i,j(t), Ni(t) = n, µ̂j(t) ≤ ν2, Ej(t)}. (5.25)

Note that, (5.25) is at most 1 since {Ai(t), Ni(t) = n} occurs at most once. Let τ be the

first round (if exists) at which {C′i,j(t), µ̃∗∗
\i,j(t) ≤ µ̃i(t),Ai(t), Ni(t) = n} is satisfied. It is

necessary that {µ̃j(τ) ≥ µ̃∗∗
\i,j(τ)} for (5.25) to be 1: this is because, (i) both µ̃i(τ) and

µ̃j(τ) need to be larger than µ̃∗∗
\i,j(τ) for the simultaneous draw of arms i and j, (ii) and

if µ̃j(τ) < µ̃∗∗
\i,j(τ) then arm i is drawn and thus {Ni(t) = n} is never satisfied after t > τ .

Here,

P{µ̃j(τ) ≥ µ̃∗∗
\i,j(τ), µ̃

∗∗
\i,j(τ) ≥ ν, µ̂j(τ) ≤ ν2} ≤ exp (−d(ν2, ν)Nj(τ)),
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by Lemma 26. Therefore, we have

E

[
T∑

t=1

1{Ai(t),Aj(t), Ci(t), Ni(t) = n, µ̂j(t) ≤ ν2}

]
≤ exp (−d(ν2, ν)ϵ2 log T ) = T−ϵ2d(ν2,ν).

In summary, the second term in (5.24) is bounded as

E

[
T∑

t=1

1{Ai(t),Aj(t), Ci(t),Di(t), µ̂j(t) ≤ ν2}

]
≤ ϵ2 log T +N suf

i (T )T−ϵ2d(ν2,ν)

≤
(
ϵ2 +

4T−ϵ2d(ν2,ν)

d(µi, µL)

)
log T (by (1 + δ)2 < 4),

and thus,

E[(C)]

≤
∑

j∈[K]\([L−1]∪{i})

((
ϵ2 + 4T−ϵ2d(ν2,ν)

)
log T

d(µi, µL)

)
+O(1)

≤
∑

j∈[K]\([L−1]∪{i})


(
ϵ2 + 4T−ϵ2∆

2
L,L−1/8

)
log T

d(µi, µL)

+O(1),

where we used the fact that d(ν2, ν) ≥ 2(ν − ν2)2 = 2 × ((µL−1 − µL)/4)
2 in the last

transformation.

Evaluation of term (D):

Proof. Here, we prove inequality (5.16). We first divide term (D) into two subterms as

E[(D)] = E

[
T∑

t=1

1{Ai(t),B(t), Ni(t) ≥ N suf
i (T )}

]

≤ E

[
T∑

t=1

1{Ai(t),B(t), µ̂i(t) > µ
(+)
i , Ni(t) ≥ N suf

i (T )}

]

+ E

[
T∑

t=1

1{Ai(t),B(t), µ̂i(t) ≤ µ(+)
i , Ni(t) ≥ N suf

i (T )}

]
. (5.26)

On one hand, the first term in (5.26) is bounded as

E

[
T∑

t=1

1{Ai(t),B(t), µ̂i(t) > µ
(+)
i , Ni(t) ≥ N suf

i (T )}

]

≤ E

[
T∑

t=1

1{Ai(t), µ̂i(t) > µ
(+)
i }

]

≤ 1 +
1

d(µ
(+)
i , µi)

(by Lemma 25).
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On the other hand, each component of the second term of (5.26) is bounded as

E
[
1[Ai(t),B(t), µ̂i(t) ≤ µ(+)

i , Ni(t) ≥ N suf
i (T )]

]
≤ E

[
1[µ̃i(t) ≥ µ(−)

L , µ̂i(t) ≤ µ(+)
i , Ni(t) ≥ N suf

i (T )]
]

= E
[
E
[
1[µ̃i(t) ≥ µ(−)

L , µ̂i(t) ≤ µ(+)
i , Ni(t) ≥ N suf

i (T )]
∣∣µ̂i(t), Ni(t)

]]
≤ E

[
E
[
1[µ̂i(t) ≤ µ(+)

i , Ni(t) ≥ N suf
i (T )]

P[µ̃i(t) ≥ µ(−)
L |µ̂i(t), Ni(t)]

∣∣µ̂i(t), Ni(t)
]]

≤ E
[
E
[
exp(−d(µ(+)

i , µ
(−)
L )N suf

i (T ))
∣∣∣µ̂i(t), Ni(t)

]]
(by Lemma 26)

= exp (−d(µ(+)
i , µ

(−)
L )N suf

i (T ))

= T−1 (by the definition of N suf
i (T )), (5.27)

where we used the fact E[X] = E[E[X|Y ]] for any random variables X and Y . Putting

(5.26)–(5.27) together we obtain

E[(D)] ≤ 1 +
1

d(µ
(+)
i , µi)

+
T∑

t=1

T−1,

from which the inequality (5.16) follows.

5.11.3 Proof of Lemma 22

It suffices to prove that for any a, b > 0

inf
ϵ2>0

{
T−aϵ2

b
+ ϵ2

}
= O

(
log log T

log T

)
.

By letting ϵ2 = (log log T )/(a log T ), we have

inf
ϵ2>0

{
T−aϵ2

b
+ ϵ2

}
= inf

ϵ2>0

{
e−aϵ2 log T

b
+ ϵ2

}
≤ e− log log T

b
+

log log T

a log T

=
1

b log T
+

log log T

a log T

= O

(
log log T

log T

)
and the proof is completed.
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Chapter 6

Regret Lower Bound and

Asymptotically Optimal Algorithm in

Dueling Bandit Problem

In this chapter, we study the dueling bandit problem, a variation of the standard

stochastic bandit problem where the feedback is limited to relative comparisons of a pair

of arms. We introduce an asymptotic regret lower bound that is based on the informa-

tion divergence. An algorithm that is inspired by the Deterministic Minimum Empirical

Divergence algorithm is proposed, and its regret is analyzed. The proposed algorithm is

found to be the first one with a regret upper bound that matches the lower bound. Ex-

perimental comparisons of dueling bandit algorithms show that the proposed algorithm

significantly outperforms existing ones*1. The notation in this chapter is summarized in

Table 6.1.

6.1 Motivation

In the multi-armed bandit problem, the availability of reward feedback from the selected

arm is assumed. While it is desirable to obtain such a direct feedback from an arm, in

some practical cases such direct feedback is not available. In this chapter, we consider a

version of the standard stochastic bandit problem called the dueling bandit problem [Yue

et al., 2009], in which the forecaster receives relative feedback, which specifies which of

two arms is preferred. Although the dueling bandit problem was originally motivated by

information retrieval applications, learning under relative feedback is universal to many

fields, such as recommender systems [Gemmis et al., 2009], graphical design [Brochu et al.,

2010], and natural language processing [Zaidan and Callison-Burch, 2011], which involve

*1 The contents of this chapter were published in Komiyama et al. [2015a].
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Table. 6.1. Notation used in Chapter 6.

1{A} := 1 if A is true and 0 otherwise.

K := Number of the arms.

[K] := {1, 2, . . . ,K}.
T := Number of the rounds.

(l(t),m(t)) := Pair of arms that is selected in round t.

X̂l(t),m(t)(t) := Feedback: which of (l(t),m(t)) is preferred.

µi,j := Probability that arm i is preferred to arm j.

∆i,j := µi,j − 1/2.

r(t) := (∆1,l(t) +∆1,m(t))/2.

Ni,j(t) := Number of comparison between i and j:
∑t−1

t′=1(1{l(t′) =

i,m(t′) = j}+ 1{l(t′) = j,m(t′) = i}).
µ̂i,j(t) := Empirical estimate of µi,j : (

∑t−1
t′=1(1{l(t′) = i,m(t′) =

j, X̂l(t′),m(t′)(t
′) = 1} + 1{l(t′) = j,m(t′) = i, X̂l(t′),m(t′)(t

′) =

0}))/Ni,j(t).

Oi := {j|j ∈ [K], µi,j < 1/2}.
b⋆(i) := arg min

j∈Oi

∆1,i+∆1,j

d(µi,j ,1/2)
.

Ôi(t) := {j|j ∈ [K] \ {i}, µ̂i,j(t) ≤ 1/2}.
b̂⋆(i) := Estimated b⋆(i) (see Algorithms 10 and 12).

d(p, q) := The KL divergence between Bernoulli distributions: p log (p/q) +

(1− p) log ((1− p)/(1− q)).
d+(p, q) := d(p, q) if p < q and 0 otherwise.

D̂i(t) := Empirical divergence:
∑

j∈Ôi(t)
Ni,j(t)d(µ̂i,j(t), 1/2).

i∗(t) := arg min
i∈[K]

D̂i(t).

D̂∗(t) := D̂i∗(t)(t).

f(K) := A non-negative function (see Algorithm 10).

explicit or implicit feedback provided by humans.

Related work: we briefly discuss the literature of the K-armed dueling bandit problem.

The problem involves a preference matrix M = {µi,j} ∈ RK×K , whose ij entry µi,j

corresponds to the probability that arm i is preferred to arm j.

Most algorithms assume that the preference matrix has certain properties. Interleaved

Filter (IF) [Yue et al., 2012] and Beat the Mean Bandit (BTM) [Yue and Joachims, 2011],

early algorithms proposed for solving the dueling bandit problem, require the arms to be

totally ordered, that is, i ≻ j ⇔ µi,j > 1/2. Moreover, IF assumes stochastic transitivity :

for any triple (i, j, k) with i ≻ j ≻ k, µi,k ≥ max {µi,j , µj,k}. Unfortunately, stochastic

transitivity does not hold in many real-world settings [Yue and Joachims, 2011]. BTM
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relaxes this assumption by introducing relaxed stochastic transitivity : there exists γ ≥ 1

such that for all pairs (j, k) with 1 ≻ j ≻ k, γµ1,k ≥ max {µ1,j , µj,k} holds. The drawback
of BTM is that it requires the explicit value of γ on which the performance of the algorithm

depends. Urvoy et al. [2013] considered a wide class of sequential learning problems with

bandit feedback that includes the dueling bandit problem. They proposed the Sensitivity

Analysis of VAriables for Generic Exploration (SAVAGE) algorithm, which empirically

outperforms IF and BTM for moderate K. Among the several versions of SAVAGE, the

one called Condorcet SAVAGEmakes the Condorcet assumption and performed the best in

their experiment. The Condorcet assumption is that there is a unique arm that is superior

to the others. Unlike the two transitivity assumptions, the Condorcet assumption does

not require the arms to be totally ordered and is less restrictive. IF, BTM, and SAVAGE

either explicitly require the number of rounds T , or implicitly require T to determine the

confidence level δ.

Recently, an algorithm called Relative Upper Confidence Bound (RUCB) [Zoghi et al.,

2014b] was proven to have an O(K log T ) regret bound under the Condorcet assumption.

RUCB is based on the upper confidence bound index [Lai and Robbins, 1985, Agrawal,

1995b, Auer et al., 2002a] that is widely used in the field of bandit problems. RUCB is

horizonless: it does not require T beforehand and runs for any duration. Zoghi et al. [2015]

extended RUCB into the mergeRUCB algorithm under the Condorcet assumption as well

as the assumption that a portion of the preference matrix is informative (i.e., different

from 1/2). They reported that mergeRUCB outperformed RUCB when K was large.

Ailon et al. [2014] proposed three algorithms named Doubler, MultiSBM, and Sparring.

MultiSBM is endowed with an O(K log T ) regret bound and Sparring was reported to

outperform IF and BTM in their simulation. These algorithms assume that the pairwise

feedback is generated from the non-observable utilities of the selected arms. The existence

of the utility distributions associated with individual arms restricts the structure of the

preference matrix.

In summary, most algorithms either has O(K2 log T ) regret under the Condorcet as-

sumption (SAVAGE) or require additional assumptions to achieve O(K log T ) regret (IF,

BTM, MultiSBM, and mergeRUCB). To the best of our knowledge, RUCB is the only

algorithm with an O(K log T ) regret bound*2. The main difficulty of the dueling bandit

problem lies in that, there are K − 1 candidates of actions to test “how good” each arm

i is. A naive use of the confidence bound requires every pair of arms to be compared

O(log T ) times and yields an O(K2 log T ) regret bound.

Contribution: in this chapter, we propose an algorithm called Relative Minimum Empir-

ical Divergence (RMED). The result here contributes to our understanding of the dueling

bandit problem in the following three respects.

*2 Zoghi et al. [2013] first proposed RUCB with an O(K2 log T ) regret bound and later modified it by

adding a randomization procedure to assure O(K log T ) regret in Zoghi et al. [2014b].
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• The asymptotical regret lower bound: some studies (e.g., Yue et al. [2012])

have shown that the K-armed dueling bandit problem has a Ω(K log T ) regret lower

bound. In this chapter, we further analyze this lower bound to obtain the optimal

constant factor for models satisfying the Condorcet assumption. Furthermore, we

show that the lower bound is the same under the total order assumption. This

means that asymptotically optimal algorithms under the Condorcet assumption

also achieve a lower bound of regret under the total order assumption even though

such algorithms do not know that the arms are totally ordered.

• An asymptotically optimal algorithm: the regret of RMED is not only

O(K log T ), but also optimal in the sense that its constant factor matches the

asymptotic lower bound under the Condorcet assumption. RMED is the first

asymptotically optimal algorithm in the study of the dueling bandit problem.

• Empirical performance assessment: the performance of RMED is extensively

evaluated by using five datasets: two synthetic datasets, one including preference

data, and two including ranker evaluations in the information retrieval domain.

6.2 Problem Setup

The K-armed dueling bandit problem involves K arms that are indexed as [K] =

{1, 2, . . . ,K}. Let M ∈ RK×K be a preference matrix whose ij entry µi,j corresponds

to the probability that arm i is preferred to arm j. At each round t = 1, 2, . . . , T , the

forecaster selects a pair of arms (l(t),m(t)) ∈ [K]2, then receives a relative feedback

X̂l(t),m(t)(t) ∼ Bernoulli(µl(t),m(t)) that indicates which of (l(t),m(t)) is preferred. By

definition, µi,j = 1− µj,i holds for any i, j ∈ [K] and µi,i = 1/2.

Let Ni,j(t) be the number of comparisons of pair (i, j) and µ̂i,j(t) be the empirical esti-

mate of µi,j at round t. In building statistics by using the feedback, we treat pairs without

taking their order into consideration. Therefore, for i ̸= j, Ni,j(t) =
∑t−1

t′=1(1{l(t′) =

i,m(t′) = j} + 1{l(t′) = j,m(t′) = i}) and µ̂i,j(t) = (
∑t−1

t′=1(1{l(t′) = i,m(t′) =

j, X̂l(t′),m(t′)(t
′) = 1} + 1{l(t′) = j,m(t′) = i, X̂l(t′),m(t′)(t

′) = 0}))/Ni,j(t). For j ̸= i,

let Ni>j(t) be the number of times i is preferred over j. Then, µ̂i,j(t) = Ni>j(t)/Ni,j(t),

where we set 0/0 = 1/2 here. Let µ̂i,i(t) = 1/2.

Throughout this chapter, we will assume that the preference matrix has a Condorcet

winner [Urvoy et al., 2013]. Here we call an arm i the Condorcet winner if µi,j > 1/2 for

any j ∈ [K] \ {i}. Without loss of generality, we will assume that arm 1 is the Condorcet

winner. The set of preference matrices which have a Condorcet winner is denoted byMC.

We also define the set of preference matrices satisfying the total order by Mo ⊂ MC;

that is, the relation i ≺ j ⇔ µi,j < 1/2 induces a total order iff {µi,j} ∈ Mo.

Let ∆i,j = µi,j − 1/2. We define the regret per round as r(t) = (∆1,i + ∆1,j)/2

when the pair (i, j) is compared. The expectation of the cumulative regret, E[Reg(T )] =
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E
[∑T

t=1 r(t)
]
is used to measure the performance of an algorithm. The regret increases

at each round unless the selected pair is (l(t),m(t)) = (1, 1).

6.2.1 Regret lower bound in the dueling bandit problem

In this section we provide an asymptotic regret lower bound when T → ∞. Let the

superiors of arm i be a set Oi = {j|j ∈ [K], µi,j < 1/2}, that is, the set of arms that is

preferred to i on average. The essence of the dueling bandit problem is how to eliminate

each arm i ∈ [K] \ {1} by making sure that arm i is not the Condorcet winner. To do so,

the algorithm uses some of the arms in Oi and compares i with them.

A dueling bandit algorithm is strongly consistent for model M ⊂ MC iff it has

E[Reg(T )] = o(T a) regret for any a > 0 and any M ∈M. The following lemma is on the

number of comparisons of suboptimal arm pairs.

Lemma 27. (The asymptotic lower bound on the number of suboptimal arm draws) (i)

Let an arm i ∈ [K] \ {1} and preference matrix M ∈MC be arbitrary. Given any strongly

consistent algorithm for modelMC, we have

E

∑
j∈Oi

d(µi,j , 1/2)Ni,j(T )

 ≥ (1− o(1)) log T, (6.1)

where d(p, q) = p log p
q +(1−p) log 1−p

1−q is the KL divergence between two Bernoulli distri-

butions with parameters p and q. (ii) Furthermore, inequality (6.1) holds for any M ∈Mo

given any strongly consistent algorithm forMo.

Lemma 27 states that, for arbitrary arm j ∈ Oi, an algorithm needs to make

log T/d(µi,j , 1/2) comparisons between arms i and j to be convinced that arm i is inferior

to arm j and thus i is not the Condorcet winner. Since the regret increase per round

of comparing arm i with j is (∆1,i + ∆1,j)/2, eliminating arm i by comparing it with j

incurs a regret of
(∆1,i +∆1,j) log T

2d(µi,j , 1/2)
. (6.2)

Therefore, the total regret is bounded from below by comparing each arm i with an arm

j that minimizes (6.2), and the regret lower bound is formalized in the following theorem.

Theorem 28. (The asymptotic regret lower bound) (i) Let the preference matrix M ∈
MC be arbitrary. For any strongly consistent algorithm for modelMC,

lim inf
T→∞

E[Reg(T )]
log T

≥
∑

i∈[K]\{1}

min
j∈Oi

∆1,i +∆1,j

2d(µi,j , 1/2)
(6.3)

holds. (ii) Furthermore, inequality (6.3) holds for any M ∈ Mo given any strongly con-

sistent algorithm forMo.
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The proof of Lemma 27 and Theorem 28 can be found in Section 6.8. The proof of

Lemma 27 is similar to that of Lai and Robbins [1985] (c.f., Section 2.3.2) for the standard

multi-armed bandit problem but differs in the following point that is characteristic to the

dueling bandit. To achieve a small regret in the dueling bandit, it is necessary to compare

the arm i with itself if i is the Condorcet winner. However, we trivially know that

µi,i = 1/2 without sampling and such a comparison yields no information to distinguish

possible preference matrices. We can avoid this difficulty by evaluating Ni,j and Ni,i in

different ways.

6.3 RMED1 Algorithm

In this section, we first introduce the notion of empirical divergence. Then, on the basis

of the empirical divergence, we formulate the RMED1 algorithm.

6.3.1 Empirical divergence and likelihood function

In inequality (6.1) of Section 6.2.1, we have seen that
∑

j∈Oi
d(µi,j , 1/2)Ni,j(T ), the sum

of the divergence between µi,j and 1/2 multiplied by the number of comparisons between

i and j, is the characteristic value that defines the minimum number of comparisons.

The empirical estimate of this value is fundamentally useful for evaluating how unlikely

arm i is to be the Condorcet winner. Let the opponents of arm i at round t be the set

Ôi(t) = {j|j ∈ [K] \ {i}, µ̂i,j(t) ≤ 1/2}. Note that, unlike the superiors Oi, the opponents

Ôi(t) for each arm i are defined in terms of the empirical averages, and thus the algorithms

know who the opponents are. Let the empirical divergence be

D̂i(t) =
∑

j∈Ôi(t)

Ni,j(t)d(µ̂i,j(t), 1/2).

The value exp (−D̂i(t)) can be considered as the “likelihood” that arm i is the Condorcet

winner. Let i∗(t) = arg min
i∈[K]

D̂i(t) (ties are broken arbitrarily) and D̂∗(t) = D̂i∗(t)(t).

By definition, D̂∗(t) ≥ 0. RMED is inspired by the Deterministic Minimum Empirical

Divergence (DMED) algorithm [Honda and Takemura, 2010]. DMED, which is designed

for solving the standard multi-armed bandit problem, draws arms that may be the best

one with probability Ω(1/t), whereas RMED in the dueling bandit problem draws arms

that are likely to be the Condorcet winner with probability Ω(1/t). Namely, any arm i

that satisfies

Ji(t) = {D̂i(t)− D̂∗(t) ≤ log t+ f(K)}

is the candidate of the Condorcet winner and will be drawn soon. Here, f(K) can be any

non-negative function of K that is independent of t. The effect of f(K) is discussed in

Section 6.7. Algorithm 10 lists the main routine of RMED. There are several versions of
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Algorithm 10 Relative Minimum Empirical Divergence (RMED) Algorithm

1: Input: K arms, f(K) ≥ 0. α > 0 (RMED2FH, RMED2). T (RMED2FH).

2: L←

1 (RMED1, RMED2)

⌈α log log T ⌉ (RMED2FH)
.

3: Initial phase: draw each pair of arms L times. At the end of this phase, t =

L(K − 1)K/2.

4: if RMED2FH then

5: For each arm i ∈ [K], fix b̂⋆(i) by (6.5).

6: end if

7: LC , LR ← [K], LN ← ∅.
8: while t ≤ T do

9: if RMED2 then

10: Draw all pairs (i, j) until it reaches Ni,j(t) ≥ α log log t. t← t+ 1 for each draw.

11: end if

12: for l(t) ∈ LC in an arbitrarily fixed order do

13: Select m(t) by using

Algorithm 11 (RMED1)

Algorithm 12 (RMED2, RMED2FH)
.

14: Draw arm pair (l(t), m(t)).

15: LR ← LR \ {l(t)}.
16: LN ← LN ∪ {j} (without a duplicate) for any j /∈ LR such that Jj(t) holds.
17: t← t+ 1.

18: end for

19: LC , LR ← LN , LN ← ∅.
20: end while

RMED. First, we introduce RMED1. RMED1 initially compares all pairs once (initial

phase). Let Tinit = (K − 1)K/2 be the last round of the initial phase. From t = Tinit + 1,

it selects the arm by using a loop. LC = LC(t) is the set of arms in the current loop, and

LR = LR(t) ⊂ LC(t) is the remaining arms of LC that have not been drawn yet in the

current loop. LN = LN (t) is the set of arms that are going to be drawn in the next loop.

An arm i is put into LN when it satisfies {Ji(t)∩{i /∈ LR(t)}}. By definition, at least one

arm (i.e. i∗(t) at the end of the current loop) is put into LN in each loop. For arm l(t) in

the current loop, RMED1 selects m(t) (i.e. the comparison target of l(t)) determined by

Algorithm 11.

The following theorem, which is proven in Section 6.5, describes a regret bound of

RMED1.
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Algorithm 11 RMED1 subroutine for selecting m(t)

1: Ôl(t)(t)← {j ∈ [K] \ {l(t)}|µ̂l(t),j(t) ≤ 1/2}
2: if i∗(t) ∈ Ôl(t)(t) or Ôl(t)(t) = ∅ then
3: m(t)← i∗(t).

4: else

5: m(t)← arg min
j ̸=l(t)

µ̂l(t),j(t).

6: end if

Theorem 29. For any sufficiently small δ > 0, the regret of RMED1 is bounded as

E[Reg(T )] ≤
∑

i∈[K]\{1}

((1 + δ) log T + f(K))∆1,i

2d(µi,1, 1/2)
+O

(
K

δ2

)
,

when we view model parameters {µi,j}i,j∈[K] and K as constants that are independent of

T . Therefore, by letting δ = log−1/3 T , we obtain

E[Reg(T )] ≤
∑

i∈[K]\{1}

∆1,i log T

2d(µi,1, 1/2)
+O(K log2/3 T ).

as a function of T .

6.3.2 Gap between the constant factor of RMED1 and the lower bound

From the lower bound of Theorem 28, the O(K log T ) regret bound of RMED1 is optimal

up to a constant factor. Moreover, the constant factor matches the regret lower bound of

Theorem 28 if b⋆(i) = 1 for all i ∈ [K] \ {1} where

b⋆(i) = arg min
j∈Oi

∆1,i +∆1,j

d(µi,j , 1/2)
. (6.4)

Here we define d+(p, q) = d(p, q) if p < q and 0 otherwise, and x/0 = +∞. Note that,

there can be ties that minimize the RHS of (6.4). In that case, we may choose any of the

ties as b⋆(i) to eliminate arm i. For ease of explanation, we henceforth will assume that

b⋆(i) is unique, but our results can be easily extended to the case of ties.

We claim that b⋆(i) = 1 holds in many cases for the following mathematical and practical

reasons. (i) The regret of drawing a pair (i, j), j ̸= 1, is (∆1,i+∆1,j)/2, whereas it is simply

∆1,i/2 for the pair (i, 1). Thus, d+(µi,j , 1/2) has to be much larger than d+(µi,1, 1/2) in

order to satisfy b⋆(i) = j. (ii) The Condorcet winner usually wins over the other arms by a

large margin, and therefore, d+(µi,1, 1/2) ≥ d+(µi,j , 1/2). For example, in the preference

matrix of Example 1 (Table 6.2(a)), b⋆(3) = 1 as long as q < 0.79. Example 2 (Table

6.2(b)) is a preference matrix based on six retrieval functions in the full-text search engine
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of ArXiv.org [Yue and Joachims, 2011]*3. In Example 2, b⋆(i) = 1 holds for all i, even

though µ1,4 < µ2,4. In the case of a 16-ranker evaluation based on the Microsoft Learning

to Rank dataset (details are given in Section 6.4), occasionally b⋆(i) ̸= 1 occurs, but the

difference between the regrets of drawing arm 1 and b⋆(i) is fairly small (smaller than

1.2% on average). Nevertheless, there are some cases in which comparing arm i with 1 is

not a clever idea. Example 3 (Table 6.2(c)) is a toy example in which comparing arm i

with b⋆(i) ̸= 1 makes a large difference. In Example 3, it is clearly better to draw pairs

(2, 4), (3, 2) and (4, 3) to eliminate arms 2, 3, and 4, respectively. Accordingly, it is still

interesting to consider an algorithm that reduces regret by comparing arm i with b⋆(i).

Table. 6.2. Three preference matrices. In each example, the value at row i, column j is

µi,j .

1 2 3

1 0.5 0.7 0.7

2 0.3 0.5 q

3 0.3 1-q 0.5

(a) Example 1

1 2 3 4 5 6

1 0.50 0.55 0.55 0.54 0.61 0.61

2 0.45 0.50 0.55 0.55 0.58 0.60

3 0.45 0.45 0.50 0.54 0.51 0.56

4 0.46 0.45 0.46 0.50 0.54 0.50

5 0.39 0.42 0.49 0.46 0.50 0.51

6 0.39 0.40 0.44 0.50 0.49 0.50

(b) Example 2

1 2 3 4

1 0.5 0.6 0.6 0.6

2 0.4 0.5 0.9 0.1

3 0.4 0.1 0.5 0.9

4 0.4 0.9 0.1 0.5

(c) Example 3

6.3.3 RMED2 Algorithm

We here propose RMED2, which gracefully estimates b⋆(i) during a bandit game and

compares arm i with b⋆(i). RMED2 and RMED1 share the main routine (Algorithm 10).

The subroutine of RMED2 for selecting m(t) is shown in Algorithm 12. Unlike RMED1,

RMED2 keeps drawing pairs of arms (i, j) at least α log log t times (Line 10 in Algorithm

*3 In the original preference matrix of Yue and Joachims [2011], µ2,4 ̸= 1 − µ4,2. To satisfy µ2,4 =

1− µ4,2, we replaced µ2,4 and µ4,2 of the original with (µ2,4 − µ4,2 +1)/2 and (µ4,2 − µ2,4 +1)/2,

respectively.
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Algorithm 12 Subroutine for selecting m(t) in RMED2 and RMED2FH

1: if RMED2 then

2: Update b̂⋆(l(t)) by (6.5).

3: end if

4: Ôl(t)(t)← {j ∈ [K] \ {l(t)}|µ̂l(t),j(t) ≤ 1/2}.

5: if b̂⋆(l(t)) ∈ Ôl(t)(t) and

Nl(t),i∗(t)(t) ≥ Nl(t),̂b⋆(l(t))(t)/ log log t (RMED2)

Nl(t),i∗(t)(t) ≥ Nl(t),̂b⋆(l(t))(t)/ log log T (RMED2FH)

then

6: m(t)← b̂⋆(l(t)).

7: else

8: Select m(t) by using Algorithm 11.

9: end if

10). The regret of this exploration is insignificant since O(log log T ) = o(log T ). Once

all pairs have been explored more than α log log t times, RMED2 goes to the main loop.

RMED2 determines m(t) by using Algorithm 12 based on the estimate of b⋆(i) given by

b̂⋆(i) = arg min
j∈[K]\{i}

∆̂i∗(t),i + ∆̂i∗(t),j

d+(µ̂i,j(t), 1/2)
, (6.5)

where ties are broken arbitrarily, ∆̂i,j = 1/2 − µ̂i,j and we set x/0 = +∞. Intuitively,

RMED2 tries to select m(t) = b̂⋆(i) for most rounds, and occasionally explores i∗(t) in

order to reduce the regret increase when RMED2 fails to estimate the true b⋆(i) correctly.

6.3.4 RMED2FH algorithm

Although we believe that the regret of RMED2 is asymptotically optimal, the analy-

sis of RMED2 is a little bit complicated since it sometimes breaks the main loop and

explores from time to time. For ease of analysis, we here propose RMED2 Fixed Hori-

zon (RMED2FH, Algorithm 10 and 12), which is a “static” version of RMED2. Essen-

tially, RMED2 and RMED2FH have the same mechanism. The differences are that (i)

RMED2FH conducts an α log log T exploration in the initial phase. After the initial phase

(ii) b̂⋆(i) for each i is fixed throughout the game. Note that, unlike RMED1 and RMED2,

RMED2FH requires the number of rounds T beforehand to conduct the initial α log log T

draws of each pair. The following Theorem shows the regret of RMED2FH that matches

the lower bound of Theorem 28.
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Theorem 30. For any sufficiently small δ > 0, the regret of RMED2FH is bounded as

E[Reg(T )] ≤
∑

i∈[K]\{1}

(∆1,i +∆1,b⋆(i))((1 + δ) log T )

2d(µi,b⋆(i), 1/2)
+O(αK2 log log T )

+O

(
K log T

log log T

)
+O

(
K

δ2

)
,

when we view model parameters {µi,j}i,j∈[K] and K as constants that are independent of

T .

By setting δ = O((log T )−1/3) we obtain

E[Reg(T )] ≤
∑

i∈[K]\{1}

(∆1,i +∆1,b⋆(i)) log T

2d(µi,b⋆(i), 1/2)
+O(αK2 log log T ) +O

(
K log T

log log T

)
. (6.6)

Note that, the last two terms in the RHS of (6.6) are o(log T ). From Theorems 28 and

30 we see that (i) RMED2FH is asymptotically optimal under the Condorcet assumption

and (ii) the logarithmic term on the regret bound of RMED2FH cannot be improved even

if the arms are totally ordered and the forecaster knows of the existence of the total order.

The proof sketch of Theorem 30 is in Section 6.5.

6.4 Experimental Evaluation

To evaluate the empirical performance of RMED, we conducted simulations*4 with five

bandit datasets (preference matrices). The datasets are as follows:

Six rankers is the preference matrix based on the six retrieval functions in the full-text

search engine of ArXiv.org (Table 6.2(b)).

Cyclic is the artificial preference matrix shown in Table 6.2(c). This matrix is designed

so that the comparison of i with 1 is not optimal.

Arithmetic dataset involves eight arms with µi,j = 0.5+0.05(j−i) and has a total order.

Sushi dataset is based on the Sushi preference dataset [Kamishima, 2003] that contains

the preferences of 5, 000 Japanese users as regards 100 types of sushi. We extracted the

16 most popular types of sushi and converted them into arms with µi,j corresponding to

the ratio of users who prefer sushi i over j. The Condorcet winner is the mildly-fatty tuna

(chu-toro).

MSLR: we tested submatrices of a 136× 136 preference matrix from Zoghi et al. [2015],

which is derived from the Microsoft Learning to Rank (MSLR) dataset [Microsoft Re-

search, 2010, Qin et al., 2010] that consists of relevance information between queries and

documents with more than 30K queries. Zoghi et al. [2015] created a finite set of rankers,

each of which corresponds to a ranking feature in the base dataset. The value µi,j is

*4 The source code of the simulations is available at https://github.com/jkomiyama/duelingbanditlib.
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the probability that the ranker i beats ranker j based on the navigational click model

[Hofmann et al., 2013]. We randomly extracted K = 16, 64 rankers in our experiments

and made sub preference matrices. The probability that the Condorcet winner exists in

the subset of the rankers is high (more than 90%, c.f. Figure 1 in Zoghi et al. [2014a]),

and we excluded the relatively small case where the Condorcet winner does not exist.

A Condorcet winner exists in all datasets. In the experiments, the regrets of the algo-

rithms were averaged over 1, 000 runs (Six rankers, Cyclic, Arithmetic, and Sushi), or 100

runs (MSLR).

6.4.1 Comparison among algorithms

We compared the IF, BTM with γ = 1.2, RUCB with α = 0.51, Condorcet SAVAGE

with δ = 1/T , MultiSBM and Sparring with α = 3, and RMED algorithms. We set

f(K) = 0.3K1.01 for all RMED algorithms and set α = 3 for RMED2 and RMED2FH.

The effect of f(K) is studied in Section 6.7. Note that IF and BTM assume a total order

among arms, which is not the case with the Cyclic, Sushi, and MSLR datasets. MultiSBM

and Sparring assume the existence of the utility of each arm, which does not allow a cyclic

preference that appears in the Cyclic dataset.

Figure 6.1 plots the regrets of the algorithms. In all datasets RMED significantly

outperforms RUCB, the next best excluding the different versions of RMED. Notice that

the plots are on a base 10 log-log scale. In particular, regret of RMED1 is more than twice

smaller than RUCB on all datasets other than Cyclic, in which RMED2 performs much

better. Among the RMED algorithms, RMED1 outperforms RMED2 and RMED2FH on

all datasets except for Cyclic, in which comparing arm i ̸= 1 with arm 1 is inefficient.

RMED2 outperforms RMED2FH in the five of six datasets: this could be due to the fact

that RMED2FH does not update b̂⋆(i) for ease of analysis.

6.4.2 RMED and asymptotic bound

Figure 6.2 compares the regret of RMED with two asymptotic bounds. LB1 denotes the

regret bound of RMED1. TrueLB is the asymptotic regret lower bound given by Theorem

28.

RMED1 and RMED2: when T → ∞, the slope of RMED1 should converge to LB1,

and the ones of RMED2 and RMED2FH should converge to TrueLB. On Six rankers,

LB1 is exactly the same as TrueLB, and the slope of RMED1 converges to this TrueLB.

In Cyclic, the slope of RMED2 converges to TrueLB, whereas that of RMED1 converges

to LB1, from which we see that RMED2 is actually able to estimate b⋆(i) ̸= 1 correctly.

In MSLR K = 16, LB1 and TrueLB are very close (the difference is less than 1.2%), and

RMED1 and RMED2 converge to these lower bounds.

RMED2FH with different values of α: we also tested RMED2FH with several values
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of α. On the one hand, with α = 1, the initial phase of RMED2FH is too short to identify

b⋆(i); as a result it performs poorly on the Cyclic dataset. On the other hand, with

α = 10, the initial phase was too long, which incurs a practically non-negligible regret on

the MSLR K = 16 dataset. We also tested several values of parameter α in RMED2FH.

We omit plots of RMED2 with α = 1, 10 for the sake of readability, but we note that in

our datasets the performance of RMED2 is always better than or comparable with the

one of RMED2FH under the same choice of α, although the optimality of RMED2 is not

proved unlike RMED2FH.

6.5 Regret Analysis

This section provides two lemmas essential for the regret analysis of RMED algorithms

and proves the asymptotic optimality of RMED1 based on these lemmas. A proof sketch

on the optimal regret of RMED2FH is also given.

The crucial property of RMED is that, by constantly comparing arms with the oppo-

nents, the true Condorcet winner (arm 1) actually beats all the other arms with high

probability. Let

U(t) =
∩

i∈[K]\{1}

{µ̂1,i(t) > 1/2}.

Under U(t), µ̂i,1(t) = 1−µ̂1,i(t) < 1/2 for all i ∈ [K] \ {1}, and thus, D̂i(t) > 0. Therefore,

U(t) implies that i∗(t) = arg min
i∈[K]

D̂i(t) is unique with i∗(t) = 1 and D̂∗(t) = D̂1(t) = 0.

Lemma 31 below shows that the average number of rounds that Uc(t) occurs is constant

in T , where the superscript c denotes the complement.

Lemma 31. When RMED1 or RMED2FH is run, the following inequality holds:

E

[
T∑

t=Tinit+1

1{Uc(t)}

]
= O(eAK) = O(1),

where A = A({µi,j}) > 0 is a constant as a function of T .

Note that, since RMED2FH draws each pair ⌈α log log T ⌉ times in the initial phase, we

define Tinit = ⌈α log log T ⌉(K − 1)K/2 for RMED2FH. We give a proof of this lemma in

Section 6.9. Intuitively, this lemma can be proved from the facts that arm 1 is drawn

within roughly eD̂1(t) rounds and D̂1(t) is not very large with high probability.

Next, for i ∈ [K] \ {1} and j ∈ Oi, let

NSuf
i,j (δ) =

(1 + δ) log T + f(K)

d(µi,j , 1/2)
+ 1,

which is a sufficient number of comparisons of i with j to be convinced that the arm i is

not the Condorcet winner. The following lemma states that if pair (i, j) is drawn NSuf
i,j (δ)

times then i is rarely selected as l(t) again.
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Lemma 32. When RMED1 or RMED2FH is run, for i ∈ [K] \ {1}, j ∈ Oi,

E

[
T∑

t=Tinit+1

1{l(t) = i,Ni,j(t) ≥ NSuf
i,j (δ)}

]
= O

(
1

δ2

)
.

We prove this lemma in Section 6.10 based on the Chernoff bound.

Now we can derive the regret bound of RMED1 based on these lemmas.

Proof of Theorem 29: since U(t) implies m(t) = 1 in RMED1, the regret increase per

round can be decomposed as

r(t) = 1{Uc(t)}+
∑

i∈[K]\{1}

∆1,i

2
1{l(t) = i,m(t) = 1,U(t)}.

Using Lemmas 31 and 32, we obtain

E[Reg(T )] ≤ Tinit +
T∑

t=Tinit+1

[r(t)]

≤ K(K − 1)

2
+ E

[
T∑

t=Tinit+1

1{Uc(t)}

]

+
∑

i∈[K]\{1}

∆1,i

2

(
NSuf

i,1 (δ) +
T∑

t=1

1[l(t) = i,m(t) = 1, Ni,1(t) ≥ NSuf
i,1 (δ)]

)

≤ K(K − 1)

2
+O(1) +

∑
i∈[K]\{1}

∆1,i

2

(
NSuf

i,1 (δ) +O

(
1

δ2

)
+K

)
,

which immediately completes the proof of Theorem 29.

We also prove Theorem 30 on the optimality of RMED2FH based on Lemmas 31 and

32. Because the full proof in Section 6.11 is a little bit lengthy, here we give its brief

sketch.

Proof sketch of Theorem 30 (RMED2FH): similar to Theorem 29, we use the fact

that the Uc(t) does not occur very often (i.e., Lemma 31). Under U(t), we decompose the

regret into the contributions of each arm i ∈ [K] \ {1}. There exists C2 > 0 such that,

for each l(t) = i, (i) with probability 1−O((log T )−C2) RMED2FH successfully estimates

b̂⋆(i) = b⋆(i) and selects m(t) = b⋆(i) for most rounds. The optimal O(log T ) term comes

from the comparison of i and b⋆(i). Arm 1 is also drawn for O(log T/ log log T ) = o(log T )

times. On the other hand, (ii) with probabilityO((log T )−C2), RMED2FH fails to estimate

b⋆(i) correctly. By occasionally comparing arm i with arm 1, we can bound the regret

increase by O(log T log log T ). Since O((log T )−C2× log T log log T ) = o(log T ), this regret

does not affect the O(log T ) factor.
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6.6 Discussion

We proved the asymptotic regret lower bound in the dueling bandit problem. The

RMED algorithm is based on the likelihood that the arm is the Condorcet winner. RMED

is proven to have a matching regret upper bound. The empirical evaluation revealed that

RMED significantly outperforms the state-of-the-art algorithms. To conclude this chapter,

we mention the following directions of future work.

First, when a Condorcet winner does not necessarily exist, the Copeland bandits [Urvoy

et al., 2013] are a natural extension of our problem. Thus, seeking an effective algorithm

for solving this problem will be interesting. As is well known in the field of voting theory,

there are several other criteria of winners that are incompatible with the Condorcet /

Copeland bandits, such as the Borda winner [Urvoy et al., 2013]. Comparing several

criteria or developing an algorithm that outputs more than one of these winners should

be interesting directions of future work.

Second, another direction is sequential preference elicitation problems under relative

feedback that goes beyond the binary preference over pairs, such as multiscale feedback

and/or preferences among three or more items.
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Fig. 6.1. Regret-round log-log plots of algorithms.
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Fig. 6.2. Regret-round semilog plots of RMED compared with theoretical bounds. We

set f(K) = 0.3K1.01 for all algorithms, and α = 3 for RMED2.
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Fig. 6.3. Performance of RMED1 algorithm with several values of c. The plot shows the

regret at T = 107 in the MSLR dataset with K = 16, 32, 64, and 128.

6.7 Experiment: Dependence on f(K)

The event Uc(t) implies a failure in identifying the Condorcet winner (i.e., 1 ̸= i∗(t)).

Although E[
∑T

t=1 Uc(t)] = O(eAK) is a constant function of T for any non-negative f(K)

(see Lemma 31), this term is not negligible with large K. The introduction of f(K) =

K1+ϵ with ϵ > 0 can remedy this problem. Although we cannot prove, intuitively the term

can be exponentially small as O(eAK−f(K)) as the following argument. The exponential

term is related to how long does it takes to escape from the underestimation of arm 1,

which is exponential to the empirical divergence (Inequality (6.13)). Since log t− f(K) =

log (t/ef(K)), the t in (6.13) can be replaces by t/ef(K), which implies an exponentially

fast escape from the underestimated state. To practically evaluate the effect of f(K), we

set f(K) = cK1.01 and studied several values of c with the MSLR dataset (Figure 6.3).

In the case of c = 0, the regret for K = 128 becomes 100 times that for K = 16, which

implies that the exponential dependence O(eAK) may not be an artifact of the proof. On

the other hand, the results for c = 0.1, 0.3, and 1 indicate that this term can be much

improved by simply letting c be a small positive value.

6.8 Proofs on Regret Lower Bound

6.8.1 Proof of Lemma 27

Proof. Proof of Lemma 27

Let i ∈ [K] \ {1} be arbitrary and M = {µi,j} be an arbitrary preference matrix. We
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consider a modified preference matrix M ′ in which the probabilities related to arm i are

different from M . Let O′
i = {j|j ∈ [K], µi,j ≤ 1/2}, that is, O′

i = Oi ∪ {j|j ∈ [K], µi,j =

1/2}. For j ∈ O′
i, ij element of M ′ is µ′

i,j such that

d+(µi,j , µ
′
i,j) = d(µi,j , 1/2) + ϵ. (6.7)

Such a µ′
i,j > 1/2 uniquely exists for sufficiently small ϵ > 0 by the monotonicity and

continuity of the KL divergence. For j /∈ O′
i, let µ

′
i,j = µi,j . Note that, unlike the original

bandit problem, in the modified bandit problem the Condorcet winner is not arm 1 but

arm i. Moreover, if M ∈Mo then M ′ ∈Mo.

Notation: now, let X̂m
i,j ∈ {0, 1} be the result of m-th draw of the pair (i, j),

K̂Lj(nj) =

nj∑
m=1

log

(
X̂m

i,jµi,j + (1− X̂m
i,j)(1− µi,j)

X̂m
i,jµ

′
i,j + (1− X̂m

i,j)(1− µ′
i,j)

)
,

and K̂L({nj}j∈O′
i
) =

∑
j∈O′

i
K̂Lj(nj), and P′, E′ be the probability and the expectation

with respect to the modified bandit game. Let us define the events

D1 =

∑
j∈O′

i

Ni,j(T )d(µi,j , µ
′
i,j) < (1− ϵ) log T,Ni,i(T ) <

√
T

 ,

D2 =
{
K̂L({Ni,j(T )}j∈O′

i
) ≤

(
1− ϵ

2

)
log T

}
,

D12 = D1 ∩ D2,

D1\2 = D1 ∩ Dc
2.

First step (P{D12} = o(1)): we have,

P′

D12 ∩
∩

j1,j2∈[K]

{Nj1,j2(T ) = nj1,j2}


=

∫
D12∩

∩
j1,j2∈[K]{Nj1,j2 (T )=nj1,j2}

exp
(
−K̂L({Ni,j(T )}j∈O′

i
)
)
dP

≥ E

1
D12 ∩

∩
j1,j2∈[K]

{Nj1,j2(T ) = nj1,j2}

 exp
(
−
(
1− ϵ

2

)
log T

)
= T−(1−ϵ/2)P

D12 ∩
∩

j1,j2∈[K]

{Nj1,j2(T ) = nj1,j2}

 .

summing over a disjoint union of events {
∩

j1,j2∈[K]{Nj1,j2(T ) = nj1,j2}} for each j1, j2 ∈
N, we obtain

P′(D12) ≥ T−(1−ϵ/2)P(D12).
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By using this we have

P(D12) ≤ T (1−ϵ/2)P′(D12)

≤ T (1−ϵ/2)P′
{
Ni,i(T ) <

√
T
}

≤ T (1−ϵ/2)P′
{
T −Ni,i(T ) > T −

√
T
}

≤ T (1−ϵ/2)E′[T −Ni,i(T )]

T −
√
T

(by the Markov inequality). (6.8)

Since this algorithm is strongly consistent, E′[T −Ni,i(T )]→ o(T a) for any a > 0. There-

fore, the RHS of the last line of (6.8) is o(T a−ϵ/2), which, by choosing sufficiently small

a, converges to zero as T →∞. In summary, P{D12} = o(1).

Second step (P{D1\2} = o(1)): we have

P{D1\2}

= P

∑
j∈O′

i

Ni,j(T )d(µi,j , µ
′
i,j) < (1− ϵ) log T,Ni,i(T ) <

√
T ,
∑
j∈O′

i

K̂Lj(Ni,j(T )) >
(
1− ϵ

2

)
log T


≤ P

{
max

{nj}∈N|O′
i
|,
∑

j∈O′
i
njd(µi,j ,µ′

i,j)<(1−ϵ) log T

∑
j∈O′

i

K̂Lj(nj) >
(
1− ϵ

2

)
log T

}
.

Note that

max
1≤nj≤N

K̂Lj(nj) = max
1≤nj≤N

nj∑
m=1

log

(
X̂m

i,jµi,j + (1− X̂m
i,j)(1− µi,j)

X̂m
i,jµ

′
i,j + (1− X̂m

i,j)(1− µ′
i,j)

)
,

is the maximum of the sum of positive-mean random variables, and thus converges to is

average (c.f., Lemma 10.5 in Bubeck, 2010). Namely,

lim
N→∞

max
1≤nj≤N

K̂Lj(nj)

N
= d(µi,j , µ

′
i,j) a.s. (6.9)

Let δ > 0 be sufficiently small. We have,

max{nj}∈N|O′
i
|,
∑

j∈O′
i
njd(µi,j ,µ′

i,j)<(1−ϵ) log T

∑
j∈O′

i
K̂Lj(nj)

log T

≤
max{nj}∈N|O′

i
|,
∑

j∈O′
i
:nj>δ log T njd(µi,j ,µ′

i,j)<(1−ϵ) log T

∑
j∈O′

i
K̂Lj(nj)

log T
+

δK

minj∈O′
i
d(µi,j , µ′

i,j)
.

Combining this with the fact that (6.9) holds for any j, we have

lim sup
N→∞

max{nj}∈N|O′
i
|,
∑

j∈O′
i
:nj>δ log T njd(µi,j ,µ′

i,j)<(1−ϵ) log T

∑
j∈O′

i
K̂Lj(nj)

log T
≤ 1− ϵ a.s.,

and thus

lim sup
T→∞

max{nj}∈N|O′
i
|,
∑

j∈O′
i
njd(µi,j ,µ′

i,j)<(1−ϵ) log T

∑
j∈O′

i
K̂Lj(nj)

log T
≤ 1− ϵ+ µ̃(δ) a.s.

(6.10)
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By using the fact that (6.10) holds almost surely for any sufficiently small δ > 0 and

1− ϵ/2 > 1− ϵ, we have

P

 max
{nj}∈N|O′

i
|,
∑

j∈O′
i
njd(µi,j ,µ′

i,j)<(1−ϵ) log T

∑
j∈O′

i

K̂Lj(nj) >
(
1− ϵ

2

)
log T

 = o(1).

In summary, we obtain P
{
D1\2

}
= o(1).

Last step: we here have

D1 =

∑
j∈O′

i

Ni,j(T )d(µi,j , µ
′
i,j) < (1− ϵ) log T

 ∩ {Ni,i(T ) <
√
T
}

=

∑
j∈O′

i

Ni,j(T )(d(µi,j , 1/2) + ϵ) < (1− ϵ) log T

 ∩ {Ni,i(T ) <
√
T
}

(By (6.7))

⊇

∑
j∈O′

i

Ni,j(T )(d(µi,j , 1/2) + ϵ) +
(1− ϵ) log T√

T
Ni,i(T ) < (1− ϵ) log T

 ,

where we used the fact that {A < C} ∩ {B < C} ⊇ {A+B < C} for A,B > 0 in the last

line. Note that, by using the result of the previous steps, P{D1} = P{D12}+ P{D1\2} =
o(1). By using the complementary of this fact,

P

∑
j∈O′

i

Ni,j(T )(d(µi,j , 1/2) + ϵ) +
(1− ϵ) log T√

T
Ni,i(T ) ≥ (1− ϵ) log T

 ≥ P{Dc
1} = 1− o(1).

Using the Markov inequality yields

E

∑
j∈O′

i

Ni,j(T )(d(µi,j , 1/2) + ϵ) +
(1− ϵ) log T√

T
Ni,i(T )

 ≥ (1−ϵ)(1−o(1)) log T. (6.11)

Because E[Ni,i(T )] is subpolynomial as a function of T due to the consistency, the second

term in LHS of (6.11) is o(1) and thus negligible. Lemma 27 follows from the fact that

(6.11) holds for sufficiently small ϵ.
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6.8.2 Proof of Theorem 28

Proof. Proof of Theorem 28 We have

Reg(T ) =
1

2

∑
i∈[K]

∑
j∈[K]\{i}

∆1,i +∆1,j

2
Ni,j(T ) +

∑
i∈[K]

∆1,i +∆1,i

2
Ni,i(T )

≥
∑

i,j∈[K]:µi,j<1/2

∆1,i +∆1,j

2
Ni,j(T ) +

∑
i∈[K]

∆1,i +∆1,i

2
Ni,i(T )

≥
∑

i∈[K]\{1}

∑
j∈Oi

∆1,i +∆1,j

2
Ni,j(T )

=
∑

i∈[K]\{1}

∑
j∈Oi

∆1,i +∆1,j

2d(µi,j , 1/2)
d(µi,j , 1/2)Ni,j(T ).

Taking the expectation on both sides and using Lemma 27 yield

E[Reg(T )] ≥
∑

i∈[K]\{1}

min
j∈Oi

∆1,i +∆1,j

2d(µi,j , 1/2)
(1− o(1)) log T.

6.9 Proof of Lemma 31

Proof. Proof of Lemma 31

This lemma essentially states that, the expected number of the rounds in which arm

1 is underestimated is O(1). We show this by bounding the expected number of rounds

before arm 1 is compared, for each fixed set of {N1,s(t)} and summing over {N1,s(t)}.
This technique is inspired by Lemma 16 in Honda and Takemura [2010]. Note that

Uc(t) =
∪

S∈2[K]\{1}\{∅}

{∩
s∈S

{µ̂1,s(t) ≤ 1/2} ∩
∩
s/∈S

{µ̂1,s(t) > 1/2}

}
. (6.12)

Now we bound the number of rounds that the event∩
s∈S

{µ̂1,s(t) ≤ 1/2} ∩
∩
s/∈S

{µ̂1,s(t) > 1/2}

occurs. Let N be the set of non-zero natural numbers, ns ∈ N and xs ∈ [0, log 2] be

arbitrary for each s ∈ S. Let µ̂n
i,j be the empirical estimate of µi,j at n-th draw of pair

(i, j). If {µ̂ns
1,s ≤ 1/2, d+(µ̂ns

1,s, 1/2) = xs, N1,s(t) = ns} holds for s ∈ S and µ̂1,s(t) > 1/2

holds for s /∈ S then

D1(t) =
∑
s∈S

nsd
+(µ̂1,s(t), 1/2)
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and therefore J1(t) holds for any

t ≥ exp

(∑
s∈S

nsd
+(µ̂1,s(t), 1/2)

)
. (6.13)

If J1(t) occurs, then arm 1 is in LN of the next loop, and thus for some s ∈ S, N1,s is

incremented within K rounds. Therefore we have

T∑
t=Tinit+1

1

[∩
s∈S

{µ̂1,s(t) ≤ 1/2, N1,s(t) = ns} ∩
∩
s/∈S

{µ̂1,s(t) > 1/2}

]

≤ exp

(∑
s∈S

nsd
+(µ̂ns

1,s, 1/2)

)
+K.

Letting Ps(xs) = Pr[µ̂ns
1,s ≤ 1/2, d+(µ̂ns

1,s, 1/2) ≥ xs], we have

E

[
T∑

t=Tinit+1

1

[∩
s∈S

{µ̂1,s(t) ≤ 1/2, N1,s(t) = ns} ∩
∩
s/∈S

{µ̂1,s(t) > 1/2}

]]

=

∫
{xs}∈[0,log 2]|S|

(
exp

(∑
s∈S

nsxs

)
+K

)∏
s∈S

d(−Ps(xs))

= K
∏
s∈S

Ps(0) +
∏
s∈S

∫
xs∈[0,log 2]

ensxsd(−Ps(xs))

= K
∏
s∈S

Ps(0) +
∏
s∈S

(
[−ensxsPs(xs)]

log 2
0 +

∫
xs∈[0,log 2]

nse
nsxsPs(xs)dxs

)
(integration by parts)

≤ (1 +K)
∏
s∈S

Ps(0) +
∏
s∈S

∫
xs∈[0,log 2]

nse
nsxse−ns(xs+C1(µ1,s,1/2))dxs

(by the Chernoff bound and Fact 36, where C1(µ, µ2) = (µ− µ2)
2/(2µ(1− µ2)))

≤ (1 +K)
∏
s∈S

e−nsd(1/2,µ1,s) +
∏
s∈S

∫
xs∈[0,log 2]

nse
−nsC1(µ1,s,1/2)dxs

= (1 +K)
∏
s∈S

e−nsd(1/2,µ1,s) +
∏
s∈S

(log 2)nse
−nsC1(µ1,s,1/2). (6.14)

By summing (6.14) over {ns},

T∑
t=Tinit+1

P

[∩
s∈S

{µ̂1,s(t) ≤ 1/2} ∩
∩
s/∈S

{µ̂1,s(t) > 1/2}

]

≤
∑
· · ·
∑

{ns}∈N|S|

(
(1 +K)

∏
s∈S

e−nsd(1/2,µ1,s) +
∏
s∈S

(log 2)nse
−nsC1(µ1,s,1/2)

)

≤ (1 +K)
∏
s∈S

1

ed(1/2,µ1,s) − 1
+ (log 2)|S|

∏
s∈S

eC1(µ1,s,1/2)

(eC1(µ1,s,1/2) − 1)2
,
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where we used the fact that
∑∞

n=1 e
−nx = 1/(ex + 1) and

∑∞
n=1 ne

−nx = ex/(ex + 1)2.

Using (6.12) and the union bound over all S ∈ 2[K]\{1} \ {∅}, we obtain

E

[
T∑

t=Tinit+1

1{Uc(t)}

]

< (1 +K)
∏

s∈[K]\{1}

(
1 +

1

ed(1/2,µ1,s) − 1

)
+ (log 2)K−1

∏
s∈[K]\{1}

(
1 +

eC1(µ1,s,1/2)

(eC1(µ1,s,1/2) − 1)2

)
= O(eAK),

where A = log
{
maxs∈[K]\{1} max

(
1 + 1

ed(1/2,µ1,s)−1
, log 2

(
1 + eC1(µ1,s,1/2)

(eC1(µ1,s,1/2)−1)2

))}
.

6.10 Proof of Lemma 32

Proof. Proof of Lemma 32

Except for the first loop, arm i must put into LN before {l(t) = i}. For t ≥ Tinit+K+1

(i.e., after the first loop), let τ(t) < t be the round in the previous loop in which arm l(t)

is put into LN . In the round, Jl(t)(τ(t)) is satisfied. With this definition, for any two

rounds t1, t2 ≥ Tinit + K + 1 such that l(t1) = l(t2) = i, t1 ̸= t2 ⇒ τ(t1) ̸= τ(t2) holds

because τ(t1) and τ(t2) belong to different loops. By using τ(t), we obtain

T∑
t=Tinit+1

1[l(t) = i,Ni,j(t) ≥ NSuf
i,j (δ)]

≤ K +
T∑

t=Tinit+K+1

1[l(t) = i,Uc(τ(t))] +
T∑

t=Tinit+K+1

1[l(t) = i,U(τ(t)), Ni,j(t) ≥ NSuf
i,j (δ)]

≤ K +
T∑

t=Tinit+1

1[Uc(t)] +
T∑

t=Tinit+K+1

1[l(t) = i,U(τ(t)), Ni,j(t) ≥ NSuf
i,j (δ)].

Note that the expectation of term
∑T

t=Tinit+1 1[Uc(t)] is bounded by Lemma 31. Between

τ(t) and t, the only round in which pair (i, j) can be compared is the round of {l(t) = j}
that occurs at most once, and thus Ni,j(t)−Ni,j(τ(t)) ≤ 1. By using this fact, we obtain

T∑
t=Tinit+K+1

1[l(t) = i,U(τ(t)), Ni,j(t) ≥ NSuf
i,j (δ)]

≤
T∑

t=Tinit+K+1

1[l(t) = i,Ji(τ(t)),U(τ(t)), Ni,j(τ(t)) ≥ NSuf
i,j (δ)− 1]

≤
T∑

t=Tinit+1

1[Ji(t),U(t), Ni,j(t) ≥ NSuf
i,j (δ)− 1].
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We can bound this term via D̂i(t) as

T∑
t=Tinit+1

1[Ji(t),U(t), Ni,j(t) ≥ NSuf
i,j (δ)− 1]

≤
T∑

n=⌈NSuf
i,j (δ)−1⌉

1

[
T∪

t=Tinit+1

(
D̂j(t) ≤ log t+ f(K), Ni,j(t) = n

)]
(by U(t)⇒ D̂1(t) = 0)

≤
T∑

n=⌈NSuf
i,j (δ)−1⌉

1

[
T∪

t=Tinit+1

(
Ni,j(t) = n,Ni,j(t)d

+(µ̂n
i,j , 1/2) ≤ log t+ f(K)

)]

≤
T∑

n=⌈NSuf
i,j (δ)−1⌉

1
[
(NSuf

i,j (δ)− 1)d+(µ̂n
i,j , 1/2) ≤ log T + f(K)

]

≤
T∑

n=⌈NSuf
i,j (δ)−1⌉

1

[
d+(µ̂n

i,j , 1/2) ≤
d(µi,j , 1/2)

1 + δ

]
.

Therefore, by letting µ ∈ (1/2, µi,j) be a real number such that d(µ, 1/2) =
d(µi,j ,1/2)

1+δ ,

we obtain from the Chernoff bound and the monotonicity of d+(·, 1/2) that

E

[
T∑

t=Tinit+1

1[Ji(t),U(t), Ni,j(t) ≥ NSuf
i,j (δ)− 1]

]
≤

T∑
n=⌈NSuf

i,j (δ)−1⌉

P
[
d+(µ̂n

i,j , 1/2) ≤
d(µi,j , 1/2)

1 + δ

]

≤
T∑

n=⌈NSuf
i,j (δ)−1⌉

exp (−d(µ, µi,j)n)

≤ 1

exp (d(µ, µi,j))− 1
<

1

d(µ, µi,j)
.

From the Pinsker’s inequality it is easy to confirm that d(µ, µi,j) = Ω(δ2), which completes

the proof.

6.11 Optimal Regret Bound: Full Proof of Theorem 30

Proof. Proof of Theorem 30

Events: define

Ai =
∩

i,j∈[K]

{|µ̂⌈α log log T⌉
i,j − µi,j | < ∆suf

i }

for sufficiently small but fixed ∆suf
i > 0. It is easy to see from the condinuity of

d+(µi,j , 1/2) in µi,j that Ai implies b̂⋆(i) = b⋆(i) when we let ∆suf
i > 0 be sufficiently

small with respect to {µi,j}i,j∈[K]. Let also

Bi(t) = {µ̂i,b⋆(i)(t) < 1/2}.
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First step (regret decomposition): like RMED1, in RMED2FH E[U(t)] holds with

high probability (i.e., Lemma 31). In the following, we bound the regret under U(t): let

ri(t) = 1{l(t) = i,U(t)}r(t)

= 1{l(t) = i,U(t),Ai,Bi(t)}r(t)︸ ︷︷ ︸
(A)

+1{l(t) = i,U(t), {Ac
i ∪ Bc

i (t)}}r(t).︸ ︷︷ ︸
(B)

(6.15)

In the following, we first bound the terms (A) and (B), and then summarizing all terms

to prove Theorem 30.

Second step (bounding (A)): note that, {l(t) = i,U(t),Ai,Bi(t)} is a sufficient condi-

tion for b̂⋆(i) = b⋆(i) and b̂⋆(i) ∈ Ôi(t). Therefore,

T∑
t=Tinit+1

1{l(t) = i,U(t),Ai,Bi(t)}r(t)

≤
T∑

t=Tinit+1

1{l(t) = i,Ni,b⋆(i)(t) ≥ NSuf
i,b⋆(i)(δ)}+

∆1,i +∆1,b⋆(i)

2
NSuf

i,b⋆(i)(δ) +
∆1,i

2

NSuf
i,b⋆(i)(δ)

log log T
.

By applying Lemma 32 with j = b⋆(i), for sufficiently small δ > 0 we have

E

[
T∑

t=Tinit+1

1{l(t) = i,Ni,b⋆(i)(t) ≥ NSuf
i,b⋆(i)(δ)}

]
≤ O

(
1

δ2

)
.

In summary, term (A) is bounded as

E

[
T∑

t=Tinit+1

1{l(t) = i,U(t),Ai,Bi(t)}r(t)

]

≤
∆1,i +∆1,b⋆(i)

2
NSuf

i,b⋆(i)(δ) +O

(
log T

log log T

)
+O

(
1

δ2

)
. (6.16)

Third step (bounding (B)): now we consider the case {l(t) = i,U(t), {Ac
i ∪ Bc

i (t)}}.
Under this event b̂⋆(i) = b⋆(i) does not always hold but we can see that m(t) ∈ {b̂⋆(i), 1}
still holds. Furthermore, under this event arm b̂⋆(i) is selected as m(t) at most

(log log T )Ni,1(T ) + 1 times due to Line 12 of Algorithm 12. By using these facts, we
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have,

E

[
T∑

t=Tinit+1

1{l(t) = i,U(t), {Ac
i ∪ Bc

i (t)}}r(t)

]

≤ E

[
T∑

t=Tinit+1

1{l(t) = i,U(t), {Ac
i ∪

T∪
t′=Tinit+1

Bc
i (t

′)}}

]

≤ E

[
T∑

t=Tinit+1

1{l(t) = i,Ni,1(t) ≥ NSuf
i,1 (δ)}

]

+ P

{
Ac

i ∪
T∪

t′=Tinit+1

Bc
i (t

′)

}(
NSuf

i,1 (δ) log log T + 1 +NSuf
i,1 (δ)

)
≤ O

(
1

δ2

)
+ P

{
Ac

i ∪
T∪

t′=Tinit+1

Bc
i (t

′)

}
O
(
NSuf

i,1 (δ) log log T
)

(by Lemma 32).

The following lemma bounds P
{
Ac

i ∪
∪T

t′=Tinit+1 Bci (t′)
}
.

Lemma 33. For RMED2FH, there exists C2 = C2({µi,j},K, α) > 0 such that

P

{
Ac

i ∪
T∪

t=Tinit+1

Bc
i (t)

}
= O((log T )−C2).

In summary, term (B) is bounded as

E

[ ∑
t=Tinit+1

1{l(t) = i,U(t), {Ac
i ∪ Bci (t)}}r(t)

]

≤ O
(

1

δ2

)
+O

(
NSuf

i,1 (δ)(log T )−C2 log log T
)
. (6.17)
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Last step (regret bound):

E[Reg(T )] ≤ Tinit +
T∑

t=Tinit+1

P{Uc(t)}+
∑

i∈[K]\{1}

P{U(t), l(t) = i}ri(t)


≤ Tinit +

T∑
t=Tinit+1

O(1) +
∑

i∈[K]\{1}

P((A) + (B))

 (by Lemma 31 and inequality (6.15))

≤ O(αK2 log log T )

+
∑

i∈[K]\{1}

{
∆1,i +∆1,b⋆(i)

2
NSuf

i,b⋆(i)(δ) +O

(
log T

log log T

)

+O

(
1

δ2

)
+O

(
NSuf

i,1 (δ)(log T )−C2 log log T
)}

　 (by (6.16) and (6.17))

≤ O(αK2 log log T ) +O(1) +
∑

i∈[K]\{1}

(∆1,i +∆1,b⋆(i))((1 + δ) log T )

2d(µi,b⋆(i), 1/2)

+O

(
K log T

log log T

)
+O

(
K

δ2

)
+O

(
K(log T )1−C2 log log T

)
+O (Kf(K)) . (6.18)

Combining (6.18) with the fact that O
(
K(log T )1−C2 log log T

)
= o

(
K log T
log log T

)
completes

the proof.

6.11.1 Proof of Lemma 33

Proof. Proof of Lemma 33

We bound P{Ac
i} and P{

∪T
t=Tinit+1 Bc

i (t)} separately. On the one hand,

P{Ac
i} = P

 ∪
i,j∈[K]

|µ̂⌈α log log T⌉
i,j − µi,j | ≥ ∆suf

i

 ≤ ∑
i,j∈[K]

P{|µ̂⌈α log log T⌉
i,j − µi,j | ≥ ∆suf

i }

≤
∑

i,j∈[K]

2 exp (−2(∆suf
i )2α log log T ) (by the Chernoff bound and Pinsker’s inequality)

=
∑

i,j∈[K]

2 (log T )
−2(∆suf

i )2α
= 2K2 (log T )

−2(∆suf
i )2α

= O((log T )−Ca),
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where Ca = 2(∆suf
i )2α/K2 > 0. On the other hand,

P

{
T∪

t=Tinit+1

Bc
i (t)

}

= P

{
T∪

t=Tinit+1

µ̂i,b⋆(i)(t) < 1/2

}
≤ P

 ∞∪
n=⌈α log log T⌉

{Ni,b⋆(i)(t) = n, µ̂n
i,b⋆(i) < 1/2}


≤

∞∑
n=⌈α log log T⌉

P{Ni,b⋆(i)(t) = n, µ̂n
i,b⋆(i) < 1/2}

≤
∞∑

n=⌈α log log T⌉

exp (−d(1/2, µi,b⋆(i))n) (by the Chernoff bound)

≤ (log T )
−αd(1/2,µi,b⋆(i))

∞∑
n=0

exp (−d(1/2, µi,b⋆(i))n)

≤ (log T )
−αd(1/2,µi,b⋆(i))

(
1 +

1

d(1/2, µi,b⋆(i))− 1

)
= O((log T )−Cb),

where Cb = αd(1/2, µi,b⋆(i)) > 0. The proof is completed by letting C2 = min (Ca, Cb)

and taking the union bound of P{Ac
i} and P{

∪T
t=Tinit+1 Bc

i (t)}.
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Chapter 7

Conclusions and Future Work

In this section, we present our conclusions on the work that makes up this thesis and

discuss various extensions to the multi-armed bandit problem.

7.1 Concluding Remarks

In this thesis, we have discussed the multi-armed bandit problem and its extensions. In

particular, the framework of the problem was described in Chapter 2 and 3. The study

of the multi-armed bandit problem began in the statistics community, and the framework

of the stochastic bandit was established through the introduction of an asymptotic regret

lower bound for strongly consistent algorithms and an asymptotically optimal algorithm.

The regret, which gives a criterion for balancing exploration and exploitation, is written

in terms of the KL divergence between the true model and the other models in which

the optimal arm is different from the one of the true model. There are many algorithms

that are effective at solving the bandit problem. Among them, UCB, TS, and DMED are

known to have asymptotically optimal regret bounds.

The stochastic bandit problem is a simple yet extensible framework. Motivated by

its applications to web systems, we have rethought its three core notions: (i) sequential

selection of arms, (ii) the criterion of selection, and (iii) reward feedback: namely, we

have studied the lock-up restriction (Chapter 4), the multiple-play extension (Chapter

5), and the dueling extension (Chapter 6). We have shown that it is possible to balance

exploration and exploitation in these extensions.

7.2 Other Directions

In this chapter, we discuss some of the other extensions of the bandit problem. The

wide variety of extensions shows the flexibility of the bandit framework.
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7.2.1 Continuous bandit problems

One version of the bandit problem, which we call a continuous bandit problem, has an

infinite number of arms. Since the number of available samples is finite, we do not have

enough time to check an infinite number of arms, and thus, some structural assumptions

have to be placed on the arms. There is no unified solution to the continuous-armed

bandit problem since the structure of the arms varies among problems.

Most studies assume the arms have a metric structure. Some papers, such as Agrawal

[1995a], Kleinberg et al. [2008], Bubeck et al. [2011], and Magureanu et al. [2014], studied

the case where the expected reward is Lipschitz as a function of the arm space. The case

where the expected reward function is linear [Dani et al., 2008] or convex [Flaxman et al.,

2005] has also been studied. Recently, Bayesian optimization [Mockus, 1974, Snoek et al.,

2012], a global optimization over a continuous domain, has attracted increasing attention

in the machine learning community for its application to tuning the hyperparameters of

machine learning algorithms. In Bayesian optimization, the relation between arms and

the reward function is often modeled as a Gaussian process. At each round, the forecaster

selects a point in the Gaussian process and receives a (possibly noisy) observation of the

point. Bayesian optimization can be considered to be a continuous bandit problem where

the correlation between arms is represented by a Gaussian process.

Other than the metric structure, Yu and Mannor [2011] proposed a bandit problem

whose parameters are restricted to be unimodal with respect to the associated graph

structure. Furthermore, an optimal algorithm under the unimodal assumption has been

proposed [Combes and Proutiere, 2014]. Some studies (e.g., Bubeck et al. [2011]) have

generalized the metric-induced continuous bandit problems to a certain topological struc-

ture class.

In general, UCB, TS, and DMED can be extended to continuous bandit problems. Even

though the number of arms is infinite, the arms are mutually dependent, and thus explor-

ing the region of high uncertainty helps. Selecting an arm yields not only information on

the arm but also information on one of the arms that are close to the selected one.

7.2.2 Many-armed bandit problems

An (infinitely) many-armed bandit problem is a version of the multi-armed bandit prob-

lem in which the number of arms is large or infinite. Unlike the continuous bandits, this

setting does not assume there is any metric structure among the arms. If the number

of samples is finite, identifying the optimal arm is not possible given the large number

of arms. Interestingly, no-regret learning is possible given access to an infinite pool of

arms and given some assumption on the tail probability of the distribution of arms. The

stochastic many-armed bandit problem was first studied in a general setting by Mallows
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and Robbins [1964]. In particular, the case of the Bernoulli bandit was studied by Her-

schkorn et al. [1996]. They proposed an asymptotically no-regret algorithm in which

E[Reg(T )]/T → 0.

Later, Berry et al. [1997] proposed an algorithm with O(
√
T ) regret that is optimal up to

a leading constant factor. The constant factor in the case of a known time horizon T was

tightened by Bonald and Proutière [2013] to
√
2T . These studies assume the parameter

µi of a new arm is uniformly distributed over [0, 1]. In general, the regret depends on

the tail probability of the distribution of {µi} around its maximum. More general reward

settings were studied by Wang et al. [2008]. In such settings, David and Shimkin [2014]

studied the non-retainable case in which an algorithm must abandon an arm unless it is

immediately in use.

UCB, TS, and DMED are not directly applicable to the many-armed bandit problems.

Note that algorithms for the multi-armed bandit problems are designed to explore each

arm O(log T ) times. However, in a many-armed bandit problem, the number of rounds is

smaller than the number of arms, and thus it is not possible to search all arms extensively.

An algorithm for solving many-armed bandit problems needs to discard arms faster than

the confidence bound shrinks.

Here, we explain the idea of the two-target algorithm devised by Bonald and Proutière

[2013]. Let us consider a many-armed bandit problem with Bernoulli rewards. The param-

eter of each arm µi, i = 1, 2, . . . is also a random variable that is uniformly distributed

over [0, 1]. At each round t = 1, 2, . . . , the algorithm selects some arm I(t) ∈ N and

receives the corresponding reward X̂t ∼ Bernoulli(µI(t)). The regret is defined as

Reg(T ) = T −
T∑

t=1

X̂I(t)

because the optimal arm has an expectation of 1. The goal of the algorithm is to minimize

the expectation of the regret. The two-target algorithm with a known horizon T continues

exploring an arm until two targets l1 and l2 are reached. If they are reached, it exploits

the current arm until the end of the rounds. The first target quickly discards a bad

arm, and the second target carefully checks whether the arm is truly good or not. The

algorithm involves a parameter m ≥ 2, and the regret of the two-target algorithm with

l1 = ⌊(T/2)1/3⌋ and l2 = ⌊m(T/2)1/2⌋ is asymptotically bounded as

lim sup
T→+∞

E[Reg(T )]√
T

≤
√
2 +

1

m
√
2
,

which matches the lower bound as m→∞.

7.2.3 Monte Carlo Tree Search

Consider an abstract game, such as Chess or Go. At each round, the player whose

turn it is needs to decide the next move. In a game playing situation, the search space
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of the sequence of player moves can be represented as a tree. In a two-player game, the

child node of the root node (current state) is the current player’s move, and the child

of that node is the opponent’s move, and so on. The objective of a player is to find the

exact value of each next move in the current situation, which can be done by searching

the tree. Since the number of nodes of the tree grows exponentially with the depth of the

tree, searching over the entire space is computationally prohibitive, and we need to use an

ingenious algorithm to deal with this situation. The Monte Carlo tree search (MCTS) is

a search algorithm on a tree structure involving randomization. When searching the tree,

Upper Confidence Bound for Trees (UCT) [Kocsis and Szepesvári, 2006] selects the next

move on a node based on its UCB index. This idea works well in tree searches, and as a

result, many contemporary implementations of MCTS have been based on some variant

of UCT. MCTS is especially successful in computer Go. An extensive survey on this topic

is presented in Browne et al. [2012].

7.2.4 Use of contextual information

The contextual bandit problem [Langford and Zhang, 2007] is an extension of the stan-

dard multi-armed bandit that involves additional information. In this framework, the

algorithm is informed of the side information before it selects an arm. In particular, in

a content recommendation setting, the side information can be considered to be personal

information such as demographic data, which correlates with the preference about the

content.

Li et al. [2010] reported that the use of personal information as a context for news

article recommendation on the Yahoo! homepage can increase the click-through rate

of users by up to 12.5%. Agarwal et al. [2009] proposed a framework for bandit-based

web content optimization that addressed several practical issues, such as delays and non-

stationarities. Scott [2015] discussed the application of TS to web systems and proposed

several extensions including a contextual version. These papers do not include regret

analyses.

Technically, the stochastic analysis of contextual bandits is rather involved, because

the algorithm selects an arm after it receives the side information. A martingale analysis

based on the self-normalized bound [de la Peña et al., 2004] is often used in stochastic

analyses of contextual bandit problems [Rusmevichientong and Tsitsiklis, 2010, Abbasi-

Yadkori et al., 2011]. Alternatively, one can formalize the contextual bandit problems as

a variant of the adversarial bandit; in fact, the paper that coined the word “contextual

bandit” problem formalized it as a version of the adversarial bandit problem [Langford

and Zhang, 2007].
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7.2.5 Game theoretic framework

A major application of the multi-armed bandit problem is search engine advertising.

When a user makes a query, relevant advertisements (ads) are listed in the search engine,

which is called a broad-match procedure. The search engine chooses an ad among them

and displays it on the search results page. If the ad is clicked by the user, the correspond-

ing advertiser pays according to his/her bid, which is determined by the (generalized)

second price mechanism. For more details on search engine advertising, see a recent re-

view by Qin et al. [2014]. Given a user’s query, maximization of the search engine’s

revenue boils down to the standard multi-armed bandit problem. However, taking the

advertisers’ strategic bidding schedule into consideration, revenue maximization requires

a game-theoretic analysis. This is because the search engine needs to motivate advertisers

to bid truthfully in order to have a sound auction.

Truthful multi-armed bandit mechanisms [Babaioff et al., 2009] are a game-theoretic

extension of the multi-armed bandit problem that models social welfare maximization on

pay-per-click auctions with an unknown click-through rate. Babaioff et al. [2009] showed

that in regard to the strategic activity of the advertisers, the optimal balance between

the exploration and exploitation is different from the one of the standard stochastic ban-

dit problem. Devanur and Kakade [2009] considered a similar problem from the search

engine’s view: they considered the revenue maximization problem and showed that there

is some price that guarantees a strategy-proof mechanism that is robust to the strategic

bidding of the advertisers.

Xu et al. [2013] studied a two-stage framework that models revenue optimization in

search engine advertising. At the beginning, K advertisers submit bids b1, . . . , bK . The

first T1 rounds are for learning the click-through rates (i.e., exploration). At each round t

during this stage, an ad is selected by using a bandit algorithm. At the end of this stage,

the empirical click-through rate µ̂i of each arm is fixed. The remaining T2 round, called

the second price auction stage, is for exploitation. In this stage, the arm is fixed such that

arg max
i

biµ̂i, and the price per click is determined in accordance with the estimated second

price value. Xu et al. [2013] showed that an algorithm with a logarithmic exploration rate,

such as UCB1, will generate some bias that reduces the search engine’s revenue. Namely,

the expected revenue is smaller than the true second price. They proposed a simple bias-

removing technique as a remedy for this problem: instead of keeping one history of each

advertisement, one can keep two click-og histories by allocating two impressions at each

round. This procedure increases the search engine’s revenue even though the number of

the rounds in the first stage is halved.

Moreover, Hummel and McAfee [2014] studied a pay-per-click auction in which the click-

through rates of ads are unknown. They studied maximization of social welfare based on
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the assumption that the value of the ads is drawn from some probability distribution and

showed that the optimal exploration is O(1/Ni(t)
2), which is smaller than the amount of

exploration that is expected in the stochastic bandit formalization. Note that their model

involves a discount factor δ < 1, and thus strong consistency is not required.

7.2.6 Partial monitoring

Partial monitoring [Piccolboni and Schindelhauer, 2001, Bartók et al., 2011] is a wide

class of problems that encompasses the multi-armed bandit problem. This problem in-

volves actions and outcomes. At the beginning of each round, a learner selects an action

and receives a signal that gives partial information on a stochastic outcome. The reward is

a deterministic function of the selected action and the outcome, which, unlike the bandit

problem, is not disclosed to the learner. The goal of the learner is to maximize the cumu-

lative rewards over rounds. This problem is harder than the multi-armed bandit problem

in the sense that the reward cannot be uniquely determined by the feedback. One of the

seminal results on this problem is the classification of the distribution-independent regret,

the worst-case regret over the model parameters. Bartók et al. [2011] classified the partial

monitoring problems into four categories in terms of the distribution-independent regret:

a trivial problem with zero regret, an easy problem with Θ̃(
√
T ) regret*1, a hard problem

with Θ(T 2/3) regret, and a hopeless problem with Θ(T ) regret. This shows that the class

of partial monitoring problems is not limited to the bandit sort, but also includes larger

classes of interesting problems, such as dynamic pricing. Contrary to these developments,

not much is known on the distribution-dependent regret, which is the standard metric in

the bandit problem. The (distribution-dependent) regret lower bound in the stochastic

partial monitoring problem under strong consistency, which is an extension of the one in

the multi-armed bandit problem, was recently derived by Komiyama et al. [2015c]. They

also proposed PM-DMED, an asymptotically optimal algorithm for all learnable classes

of stochastic partial monitoring problems. The result is strong in the sense that it entails

an asymptotically optimal algorithm for solving the multi-armed bandit problem with bi-

nary rewards. One interesting direction for future work is to make the partial monitoring

problem scalable: it is usually the case that the number of outcomes is exponentially large

with respect to the number of actions. The existing algorithms for partial monitoring do

not scale well in this case.

*1 Note that Θ̃ ignores a polylog factor.
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Appendix A

Appendix

Fact 34. (Beta-Binomial equality) Let F beta
α,β (y) be the cdf of the beta distribution with

integer parameters α and β. Let FB
n,p(·) be the cdf of the binomial distribution with pa-

rameters n, p. Then,

F beta
α,β (y) = 1− FB

α+β−1,y(α− 1),

Fact 35. (The Pinsker’s inequality)

For p, q ∈ (0, 1), the KL divergence between two Bernoulli distributions is bounded as

d(p, q) ≥ 2(p− q)2.

Fact 36. (A minimum difference between divergences [Lemma 13 in Honda and Takemura,

2010])

For any µ and µ2 satisfying 0 < µ2 < µ < 1. Let C1(µ, µ2) = (µ−µ2)
2/(2µ(1−µ2)). Let

d(p, q) = p log (p/q) + (1− p) log ((1− p)/(1− q)). Then, for any µ3 ≤ µ2,

d(µ3, µ)− d(µ3, µ2) ≥ C1(µ, µ2) > 0.
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Sébastien Bubeck, Rémi Munos, and Gilles Stoltz. Pure Exploration in Multi-armed

Bandits Problems. In Proceedings of the 20th International Conference on Algorithmic

Learning Theory (ALT 2009), pages 23–37, 2009.

Sébastien Bubeck, Rémi Munos, Gilles Stoltz, and Csaba Szepesvári. X -Armed Bandits.
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