
博士論文

Privacy-Preserving Crowdsourcing
(プライバシ保護クラウドソーシング)

Hiroshi Kajino
(梶野 洸)

Copyright c⃝ 2015, Hiroshi Kajino.

Abstract

Crowdsourcing is an idea in which requesters outsource tasks to unspecified
workers via the Web. A basic procedure can be described using the following
three steps. In the assignment step, a crowdsourcing platform matches tasks
and workers, employing either a push-type or pull-type assignment strategy.
The push-type assignment strategy uses the platform to assign tasks to ap-
propriate workers based on the features of the workers and tasks (e.g., skills,
preferences of tasks, and minimum wages), while the pull-type assignment
requires workers to choose tasks they like. In the request step, each requester
sends a job instruction and task instances (e.g., audio files in case of an au-
dio transcription task) to the allocated workers. Finally, in the delivery step,
each worker, having processed the assigned task, sends the results back to
the requester. Crowdsourcing provides requesters with easy access to a huge
pool of workers and enables workers to work much more flexibly than in the
traditional labor market. These unique advantages have led to a number of
real applications and businesses as well as new research opportunities such
as human computation.

Despite its revolutionary power, it is often pointed out that using crowd-
sourcing entails several risks including the risk of poor quality task results.
Among others, this thesis focuses on the privacy risks. Although the pri-
vacy risks in crowdsourcing have been pointed out in diverse domains, little
has been investigated until now. Toward establishing a research basis for
privacy-preserving crowdsourcing, this thesis addresses the following two re-
search questions:

∙ What types of privacy risks are present in crowdsourcing?

∙ How can we measure and control the privacy risks in crowdsourcing?

To answer the first research question, we carefully examine the three steps
of crowdsourcing and discover that four types of data can lead to privacy
issues: features (the assignment step), job instruction and task instances (the
request step), and task results (the delivery step). Further, by analyzing the
applicability of existing privacy preservation strategies, we find that some

3

types of data cannot be handled by the existing approaches, highlighting the
novelty of privacy-preserving crowdsourcing research.

Given this finding, we develop the following three solutions to answer the
second research question.

(1) Privacy Preservation in the Assignment Step
We present a privacy-preserving task assignment (PTA) protocol, which
computes an optimal task assignment, keeping the features of the work-
ers and tasks private. Observing that our task assignment problem can
be reduced to the maximum flow problem, the PTA protocol constructs
an instance of the maximum flow problem and solves it by harnessing
the push-relabel algorithm, both in a privacy-preserving way. Because
the PTA protocol significantly decreases the number of workers who
receive instructions and instances compared to the standard pull-type
task assignment, our protocol also reduces the privacy risks associated
with them. We evaluate the computation overhead induced by cryp-
tography and discuss relaxation methods to reduce it.

(2) Privacy Preservation in the Request Step
We present the utility-privacy trade-off analyzer (UPTA), which en-
ables us to evaluate the trade-off between the utility and privacy of
an instance-privacy-preserving (IPP) protocol. Because an instance is
used to perform a task as well as to extract the sensitive information
contained within it, an IPP protocol in general has to sacrifice utility
for privacy. Therefore, it is essential to quantify the trade-off in or-
der to research instance-privacy preservation. The idea of UPTA is to
model the task execution and privacy invasion as sampling of a task
result and sensitive value from probability distributions. We estimate
the models using crowdsourcing and apply divergence-based measures
to the estimated models in order to quantify utility and privacy. As
a case study of UPTA, we develop an instance-clipping (IC) protocol
and analyze its properties. The IC protocol submits a task with clipped
instances of a fixed size. We discuss the performance of the IC protocol
as well as the validity of UPTA in the experiments.

(3) Privacy Preservation in the Delivery Step
We present a worker-private latent class (WPLC) protocol, which al-
lows a requester to receive task results without compromising the pri-
vacy of the workers associated with the task results. The key obser-
vation is that a requester often aggregates results to produce quality-
controlled results, which are no longer associated with any worker. The

4

WPLC protocol simulates the aggregation procedure using cryptogra-
phy to output quality-controlled results without disclosing the results
of each worker. We discuss the validity of WPLC by evaluating the dis-
advantages induced by cryptography, including its computation time.

5

6

Acknowledgments

I would like to express my great gratitude to both of my PhD advisers, Pro-
fessor Hisashi Kashima and Professor Kenji Yamanishi. Professor Hisashi
Kashima supported my doctoral research with perseverance and insightful
instruction. His advice on research strategy has always inspired me to de-
liberate on my research topics. Professor Kenji Yamanishi took over the
mentorship when Professor Kashima moved to Kyoto University. He has
provided me with great support and the environment to accomplish my re-
search.

I would like to thank all of my thesis committee members, including Pro-
fessor Noboru Kunihiro, Professor Hiroshi Nakagawa, Professor Jun Sakuma,
and both my PhD advisers. Their insightful and valuable comments have
surely contributed to the improvement of this thesis.

I would like to thank all of the researchers who have collaborated with me
on my doctoral research, including Professor Hiromi Arai, Professor Yukino
Baba, and Professor Jun Sakuma. The fruitful comments from experts in hu-
man computation, crowdsourcing, privacy-preserving data mining, and cryp-
tography have always enhanced the quality of this research. I would also
like to thank my mentors at IBM Research Ireland including Dr. Akihiro
Kishimoto, Dr. Adi Botea, Dr. Elizabeth Daly, and Dr. Spyros Kotoulas.
Although the paper we wrote is not included in this thesis, our intense dis-
cussions and their patient advice regarding the paper were of great help when
forming my research philosophy and improving my writing skills.

Finally, I would like to thank my family for their many years of support.

7

8

Contents

1 Introduction 17
1.1 Rise of Crowdsourcing . 17
1.2 Applications of Crowdsourcing 18

1.2.1 Microtask Marketplace 18
1.2.2 Macrotask Marketplace 19
1.2.3 Personal Crowdsourcing 19
1.2.4 Mobile Crowdsourcing 20
1.2.5 Citizen Science . 20

1.3 Risks in Crowdsourcing . 21
1.3.1 Quality Risk . 21
1.3.2 Unethical Abuse Risk 22
1.3.3 Privacy Risk . 23

1.4 Research Questions . 24
1.5 Privacy Risk Analysis . 25

1.5.1 Two Approaches to Privacy Preservation 25
1.5.2 Crowdsourcing Model 27
1.5.3 Analysis . 30

1.6 Solutions . 32
1.6.1 Privacy-Preserving Task Assignment (Chapter 3) . . . 33
1.6.2 Instance-Privacy Preservation (Chapter 4) 33
1.6.3 Worker-Privacy Preservation (Chapter 5) 33

1.7 Roadmap . 34

2 Preliminaries 35
2.1 Notation . 35
2.2 Public-Key Encryption . 35

2.2.1 Public-Key Encryption Scheme 36
2.2.2 Security . 37

2.3 Paillier Cryptosystem . 39
2.3.1 Overview . 39
2.3.2 Properties . 42

9

2.3.3 Correctness of the Paillier Cryptosystem 43
2.3.4 Security . 47
2.3.5 Computation Time . 49

2.4 Privacy Assumptions in Crowdsourcing 50

3 Privacy-Preserving Task Assignment 53
3.1 Introduction . 53
3.2 Private Task Assignment Problem 55

3.2.1 Crowdsourcing Model 55
3.2.2 Problem Setting . 58

3.3 Solution in a Non-Private Setting 58
3.3.1 Maximum Flow Problem 59
3.3.2 Reduction to a Maximum Flow Problem 59
3.3.3 Push-Relabel Algorithm 61

3.4 Cryptographic Building Blocks 63
3.4.1 Data Structure . 64
3.4.2 Conditional Test . 64
3.4.3 Computation Time . 67

3.5 Private Task Assignment (PTA) Protocol 68
3.5.1 Initialization . 70
3.5.2 Private Network Construction 70
3.5.3 Private Push-Relabel Protocol 73
3.5.4 Security . 77

3.6 Computation Time of PTA and Acceleration Methods 78
3.6.1 Computation Time of PTA 78
3.6.2 Acceleration Techniques 79

3.7 Summary and Future Work 83

4 Instance-Privacy Preservation 87
4.1 Introduction . 87
4.2 Crowdsourcing Model . 89

4.2.1 Task Execution . 89
4.2.2 Privacy Invasion . 90
4.2.3 Validity of the Models 90

4.3 Utility-Privacy Trade-Off Analyzer (UPTA) 91
4.3.1 Instance-Privacy-Preserving (IPP) Protocol 91
4.3.2 Task Information Loss 92
4.3.3 Privacy Information Gain 92
4.3.4 Empirical Estimation 93
4.3.5 Properties . 94
4.3.6 Breaking the Trade-Off 95

10

4.4 Instance Clipping Protocol . 96
4.4.1 Task Assumption: Array-Labeling Task 97
4.4.2 Main Protocol . 98
4.4.3 Applicability . 98

4.5 Experiments . 100
4.5.1 Task and Privacy Definitions and Dataset 100
4.5.2 Experimental Setting 102
4.5.3 Utility-Privacy Trade-Off 105
4.5.4 Consistency of UPTA with Standard Measures 108

4.6 Summary and Future Work 110

5 Worker-Privacy Preservation 113
5.1 Introduction . 113
5.2 Quality Control Problem . 115

5.2.1 Problem Setting . 115
5.2.2 Latent Class Method 116

5.3 Worker-Private Quality Control Problem 118
5.3.1 Problem Setting . 118
5.3.2 Worker-Private Latent Class Protocol 119
5.3.3 Discussion . 122

5.4 Security Proofs of the Protocols 122
5.4.1 Statement of the Theorem 122
5.4.2 Proof . 123

5.5 Experiments . 126
5.5.1 Experiments on Approximation Accuracy 126
5.5.2 Experiment on Computational Efficiency 130

5.6 Summary and Future Work 132

6 Related Work 133
6.1 Privacy Preservation in Crowdsourcing 133

6.1.1 Privacy Preservation in Task Assignment 133
6.1.2 Instance Privacy . 135
6.1.3 Privacy Preservation for Workers 137

6.2 Crowdsourcing . 139
6.2.1 Quality Control . 139
6.2.2 Task Assignment . 142

6.3 Privacy Preservation . 145
6.3.1 Privacy-Preserving Graph Protocols 145
6.3.2 Privacy-Preserving Data Mining 147

11

7 Conclusion and Future Directions 149
7.1 Conclusion . 149
7.2 Future Directions . 152

A Privacy-Preserving Task Assignment 167
A.1 Justification for the Maximum Flow Formulation 167
A.2 Security Proofs . 168

A.2.1 Security Proof of the Conditional Test 168
A.2.2 Security Proof of PTA 170

A.3 Analysis of the Push-Relabel Algorithm on the Assignment
Network . 172

B Worker-Privacy Preservation 177
B.1 Extensions to Multi-Class and Real-Valued Labels 177

B.1.1 Multi-Class Labels . 177
B.1.2 Real-Valued Labels . 178

12

List of Figures

1.1 Illustration of typical data processing procedures. 25
1.2 Perturbation approach to privacy preservation. 26
1.3 Cryptographic approach to privacy preservation. 26
1.4 Entities in crowdsourcing. 28
1.5 Overview of a crowdsourcing routine. 28

3.1 Illustration of task feasibility. 56
3.2 Network representation of the task assignment problem instance. 60
3.3 Approximation ratio of the early-stopping approach. 82

4.1 Illustration of a non-privacy-preserving (NPP) protocol and
an instance-privacy preserving (IPP) protocol. 91

4.2 Illustration of the IC protocol. 97
4.3 Conversion from a head detection task to an array-labeling task.101
4.4 Interface for the head detection task. 103
4.5 Combination of multiple sub-arrays. 104
4.6 Interface for the simulated privacy invasion task. 105
4.7 Task information loss scores for different clipping window sizes. 106
4.8 Privacy information gain scores for different clipping window

sizes. 106
4.9 Precision, recall, and the F-measure scores for different win-

dow sizes. 111
4.10 Estimated ability parameters of the workers. 112

5.1 Illustrative model of crowdsourcing and our protocol. 114
5.2 Performance comparison on the synthetic dataset. 128
5.3 Relative errors of the model parameters of the LC method and

those of the WPLC protocol. 131
5.4 Number of iterations required by the LC method and the

WPLC protocol to converge. 131

13

14

List of Tables

1.1 Four data processing procedures in crowdsourcing with privacy
risks. 30

2.1 Computation time of basic operations of the Paillier cryptosys-
tem. 50

3.1 Private inputs and outputs of the conditional test COND. . . . 64
3.2 Truth table of the conditional test in case of (a) 𝑐 > 0 and (b)

𝑐 ≤ 0. The private output of the operator depends only on 𝑐,
and is independent of permutation 𝜎. 66

3.3 Computation time of the cryptographic building blocks of PTA. 67
3.4 Private inputs and outputs of PTA. 69
3.5 Private inputs and outputs of the initialization of PTA. 70
3.6 Private inputs and outputs of the private network construction. 71
3.7 Truth table of (𝑟𝑖,𝑑 − 𝑠𝑗,𝑑) · 𝑟𝑖,𝑑. 73
3.8 Private inputs and outputs of the private push-relabel protocol. 75

4.1 Scores of the task information loss and privacy information
gain (𝜏 = 0.01) and the profit of the requester. 107

5.1 Performance comparison on the real dataset. 127

6.1 Comparison of PTA and the existing studies. 134
6.2 Comparison of our study (the IC protocol and UPTA) and the

existing studies. 135
6.3 Comparison of WPLC protocol and the existing studies. . . . 138
6.4 Existing approaches to homogeneous task assignment. 143

15

16

Chapter 1

Introduction

1.1 Rise of Crowdsourcing
With the spread of the Internet, we have witnessed a variety of changes in
our daily lives, including electric commerce, blogs, and social networks, to
name a few. Online shopping enables anyone to be an owner of a shop and
a customer to obtain a number of choices; blogs provide users with a means
of transmitting their opinions and viewers with multiple perspectives. The
Internet offers every person an opportunity to freely communicate with other
people all over the world, which enables these innovations to happen.

The labor market is being faced thanks to such a drastic change with
the rise of crowdsourcing. The term crowdsourcing was originally invented
by Jeff Howe and Mark Robinson, and the idea became widely known be-
cause of Howe’s article published in Wired magazine (Howe, 2006a), stating
that several organizations were beginning to investigate the power of crowds.
They outsourced part of their tasks requiring professional work to a large
network of unspecified people at low cost. For example, a project director
of a museum decided to use iStock,1 the pioneer of microstock photography,
instead of traditional stock agencies to reduce the royalty fee. Another exam-
ple leveraged the diversity of crowds. InnoCentive2 manages a crowd-based
R&D platform in which firms post scientific problems and solvers from di-
verse disciplines attack them with the aim of incentive fees. Summarizing
these examples, Howe defined crowdsourcing (Howe, 2006b) as,

“the act of a company or institution taking a function once per-
formed by employees and outsourcing it to an undefined (and gen-
erally large) network of people in the form of an open call.”

1http://www.istockphoto.com
2http://www.innocentive.com

17

http://www.istockphoto.com
http://www.innocentive.com

The essential feature of crowdsourcing that distinguishes it from the tradi-
tional labor market is that requesters3 obtain easy access to a huge workforce
pool consisting of diverse individuals. A survey about the demographics of
Amazon Mechanical Turk, a general-purposed crowdsourcing marketplace,
revealed its diversity in age, education, nationality, and so on (Ipeirotis,
2010b,a).4 The diverse and large workforce pool contributes to the reduc-
tion of both financial and time costs and helps facilitate tasks that are diffi-
cult to solve using a small group. For example, some workers participate in
crowdsourcing in their spare time, and others live in a cheap country, which
enables affordably priced crowdsourcing. Moreover, tasks can be processed
in a highly parallel manner, and thus, a requester can acquire the result of a
task much faster than previously possible.

1.2 Applications of Crowdsourcing

A number of crowdsourcing applications have emerged in a wide variety of
domains to address problems previously unsolvable without it. We review five
different classes of crowdsourcing to demonstrate the impact of crowdsourcing
on diverse fields.

1.2.1 Microtask Marketplace

One of the most famous examples of crowdsourcing is microtask marketplaces
such as Amazon Mechanical Turk5 and CrowdFlower.6 These marketplaces
mainly deal in microtasks, which anyone without special skills can complete
within a few minutes, e.g., object classification, content generation, question-
naires, and transcription. A microtask marketplace enables us to request a
number of tasks to a crowd quite easily at low cost. In some marketplaces,
even a computer program can access enormous human resources through
APIs. Workers are motivated by monetary rewards, and the prices paid in
such marketplaces are relatively low; fewer than 15% of tasks reward USD 1
or more in Mechanical Turk (Ipeirotis, 2010a). As a result, we are now able
to construct a large-scale dataset for computer vision (Deng et al., 2009) that
could not be constructed without crowdsourcing. In addition, as a worker,

3We call employers who outsource tasks requesters and employees who process tasks
workers in this thesis.

4The latest demographics are available at http://www.mturk-tracker.com/.
5https://www.mturk.com/mturk/welcome
6http://www.crowdflower.com

18

http://www.mturk-tracker.com/
https://www.mturk.com/mturk/welcome
http://www.crowdflower.com

we can earn money within a small amount of spare time from anywhere on
Earth, which drastically changes our working styles.

1.2.2 Macrotask Marketplace

Another variant of crowdsourcing marketplaces is a macrotask marketplace
or a freelance marketplace such as Lancers7 and Upwork,8 which was previ-
ously known as oDesk. They mainly deal in macrotasks, which require some
expertise for completion, e.g., programming, translation, design, and writ-
ing. Workers in this marketplace are motivated by much higher monetary
rewards than those in the microtask marketplace because of its specialty.
Macrotask marketplaces provide a direct channel for general tasks between
requesters and workers. Workers can easily work as individual freelancers,
and requesters are given an easy way to find appropriate workers who can
perform their specialized tasks. As a result, requesters can outsource even a
professional task faster and more cheaply than in the traditional labor mar-
ket. Workers are able to start and grow their own business in a macrotask
marketplace by gaining credit with requesters and proving their skills with
official tests provided by the marketplaces. For example, Upwork provides
skill tests for workers to certify their profession. Such achievements increase
the chances that a skilled worker will receive well-paid orders.

1.2.3 Personal Crowdsourcing

Aside from the previous two types of crowdsourcing, most of the other crowd-
sourcing applications manage their own platforms for their particular tasks.
ESP Game (von Ahn and Dabbish, 2004) collects annotations on images,
reCAPTCHA (von Ahn et al., 2008) asks workers to transcribe scanned doc-
uments, Foldit (Cooper et al., 2010) makes use of workers’ intuition to derive
the structure of proteins, and Wikipedia9 constructs a free-access online en-
cyclopedia. Personal crowdsourcing often devises a task design to motivate
workers to perform tasks without monetary reward. One approach to moti-
vating workers is gamification, i.e., task processing is converted into the form
of a computer game, and workers take part in crowdsourcing for fun. As a
result, requesters can process a number of tasks in a short time without any
cost if it succeeds.

7http://www.lancers.co.jp
8https://www.upwork.com
9https://www.wikipedia.org

19

http://www.lancers.co.jp
https://www.upwork.com
https://www.wikipedia.org

1.2.4 Mobile Crowdsourcing

Mobile crowdsourcing is different from the others in that it makes use of
workers’ mobile devices such as smartphones for task processing. A typical
example is crowdsensing (Ganti et al., 2011), which aims to collect sens-
ing data from mobile device users. Ganti et al. (2011) classify applications
of crowdsensing into three categories: environmental, infrastructural, and
social applications. An environmental deployment of crowdsensing uses a
crowd to monitor aspects of the environment such as air pollution or water
level. For example, Kim et al. (2011) presented a system called Creek Watch,
which asks workers to collect information about waterways for monitoring,
including the GPS location, a photo, and observations of water level, flow
rate, and trash in the water. An infrastructural application monitors pub-
lic infrastructure. Shah et al. (2011) developed a system in which workers
can report criminal incidents along with location information, and users can
search for a safe route by specifying the origin and destination. Schnitzler
et al. (2014) utilized crowdsourcing to check the traffic status of places where
sensors return inconsistent results. A social application, which is somewhat
different from typical crowdsourcing, sets up a platform to share individuals’
data, e.g., exercise data or diet data, with other participants to motivate
themselves. In summary, a crowdsensing platform aggregates data usually
belonging to individuals to achieve large-scale sensing at low cost, which is
difficult to achieve without the idea of crowdsourcing. These crowdsourc-
ing services mainly rely on the voluntary contributions of workers who are
concerned about the sensing results.

Another example of mobile crowdsourcing is errand crowdsourcing such
as TaskRabbit.10 TaskRabbit manages a marketplace for errands such as
cleaning, shopping, delivery, moving help, and handyman tasks. Because the
tasks are closely tied with their locations, a task recommendation function
is often implemented.

1.2.5 Citizen Science

Citizen science is the application of crowdsourcing to scientific research. It
involves nonprofessional individuals in scientific procedures. Most of them
are volunteer-based projects, and workers are often motivated by their desire
to contribute to science. With citizen science, scientists are able to analyze
a large quantity of data that have been untouched because of a workforce
shortage.

10https://taskrabbit.com

20

https://taskrabbit.com

An early successful example of citizen science is Foldit (Cooper et al.,
2010), which aims to fold proteins into a better structure with the help
of the crowd. Foldit converts the process of folding proteins into a puzzle
game in order to motivate workers. Top-ranked players in Foldit have been
shown to outperform the performance of existing computer algorithms, which
demonstrates the massive power of crowds. GalaxyZoo (Lintott et al., 2008)
is another successful citizen science project. It asks workers to classify huge
numbers of images of galaxies, which astronomers by themselves cannot af-
ford to analyze. It has achieved such success that eight million classifications
were made in ten days (Clery, 2011). A survey about the motivations of
citizen scientists in GalaxyZoo (Jordan Raddick et al., 2013) reveals that a
large number of them are motivated by their desire to contribute to science,
which is a unique motivation among a number of crowdsourcing applications.

1.3 Risks in Crowdsourcing

As we have seen, crowdsourcing has been applied to diverse domains in or-
der to make the impossible possible. As a consequence, many people from
different fields can enjoy the advantages of crowdsourcing to realize a num-
ber of services that could not exist without it. However, we cannot dismiss
disadvantages that are inherent to crowdsourcing and which the traditional
labor market does not have. In this section, we illustrate three main risks
in crowdsourcing and briefly review the existing research approaches to ad-
dressing them.

1.3.1 Quality Risk

One of the well-known risks is that the quality of task results varies depending
on individual workers. Even the earliest crowdsourcing article reported a
comment by one anonymous requester that “I think half of the people signed
up are trying to pull a scam” (Howe, 2006a). In addition, one of the earliest
adopters of crowdsourcing in natural language processing noticed that the
reliability of the results depended on the workers (Snow et al., 2008).

The quality issue has three main causes. First, some workers called
spammers intentionally return meaningless results to requesters to earn easy
money. Some spammers use a computer bot to automatically generate un-
informative results. Second, some workers, although they do not intend to
trick the system, are not skilled enough to produce a high-quality result that
meets the requirements of a requester. In addition, when a part of the task
description is not clearly stated, workers often return results that are totally

21

different from the requester’s true intention, which is another cause of poor
quality results.

In the machine learning and data mining communities, extensive re-
search has been conducted to address the quality issue by extracting infor-
mative results from redundantly collected results, which is called quality con-
trol (Lease, 2011). A common approach is an unsupervised learning method;
we model the workers’ processes of generating results from unobservable true
results and use the model to aggregate multiple labels assigned to each in-
stance into one label. This approach originally dates back to research that
aggregates diagnoses by multiple doctors with different abilities (Dawid and
Skene, 1979). This approach is valid when a majority of the workers are
reliable. The detailed survey on this research topic appears in Section 6.2.1.

1.3.2 Unethical Abuse Risk

Unethical tasks are often posted to crowdsourcing marketplaces. For exam-
ple, there exists a task asking workers to create multiple accounts on a web
service and transfer the account information to the requester. Harris (2011)
illustrates the following three examples of such unethical tasks.

The first example is review manipulation. Review sites such as Ama-
zon.com and TripAdvisor have substantial influence on customers’ decision
making, and firms are sometimes tempted to post fake reviews by themselves.
Crowdsourcing is used as a means to request such fake review writing (Lai
et al., 2010). The New York Times reported that a task to write a positive
review for a dentist was posted on Amazon Mechanical Turk, and a task to
write a negative review was also found on Fiverr.com (Segal, 2011). These
examples suggest that fake review writing tasks do exist in crowdsourcing
marketplaces, and their purposes are not only to increase the reputation of
the requesters, but also to criticize their competitors.

The second and third examples are surveillance and information gather-
ing. These examples use crowdsourcing to collect information on a target
person in the case of surveillance and secret information such as passwords
and credit card numbers in the case of information gathering. Lasecki et al.
(2014) showed that a non-negligible number of workers in Mechanical Turk
were willing to engage in a task to extract a card number from a photograph,
even if the task was apparently malicious. This research suggests that crowd-
sourcing has outlaw workers who will perform whatever task being posed to
them.

A promising research direction to avoid the unethical abuse risk is to
eliminate unethical tasks by machine learning techniques (Baba et al., 2014).
Their approach was to learn a classifier discriminating improper tasks from

22

proper tasks using task descriptions together with the requester information,
and they showed that it achieves satisfactory performance. In addition, they
employed workers to check posted tasks in order to reduce the cost of experts
patrolling the platform. By defining properness and improperness according
to the terms and conditions of a crowdsourcing service, the unethical abuse
risks described here can be addressed.

1.3.3 Privacy Risk

The third risk, which is the main topic of this thesis, is privacy. Noting
that the traditional labor market has been handling a great deal of sensitive
information in its daily routine, a crowdsourcing-based labor market also
has to deal with various sensitive information. Such information can be
protected by contracts and the law in the traditional labor market; however,
this approach is unrealistic in a crowdsourcing setting because workers and
requesters are transient and they usually are not required to sign contracts
to retain the convenience of crowdsourcing.

An example of the privacy risk is crowdsourced Closed-Circuit Televi-
sion (CCTV) surveillance. Its real deployment, called Internet eyes, uti-
lizes crowdsourced labor to detect shoplifters; workers are allowed to view
CCTV camera feeds and are encouraged to detect crimes for a monetary
reward (Trottier, 2014). While this service successfully addresses the human
resource issue of continuous surveillance of abundant CCTVs, it potentially
brings about a privacy issue. A crowdsourced CCTV surveillance service
broadcasts a shopping scene of innocent customers to unspecified crowd work-
ers, which itself is distressing to the customers. In addition, it may induce
discrimination; for example, customers who are often racially-discriminated
against may more often be caught than those who are not by workers who
are not trained properly. After its beta release in 2010, a dispute over pri-
vacy concerns was triggered. A shop owner called Jinx Hundal abandoned
Internet Eyes after receiving a number of complaints (Big Brother Watch,
2011b). Big Brother Watch, a campaign group for privacy and civil liberties,
warns that Internet Eyes in the UK accepts workers in countries who are
not bounded by UK data protection and privacy laws (Big Brother Watch,
2011a), which suggests that workers from such countries can freely use the
sensitive data, even in a malicious way.

Another example is the mobile crowdsourcing introduced in Section 1.2.4.
Workers in mobile crowdsourcing are often asked to provide their location
information as part of the task result and in order to assign tasks efficiently;
workers far from the location specified by a task will not be appropriate for
the task. However, location information is considered to be one of the most

23

sensitive information about an individual, and therefore, transferring it to
other people can easily induce privacy issues. In fact, a number of research
groups have pointed out the privacy risk of mobile crowdsourcing (e.g., Wang
et al. (2013); Yang et al. (2015)).

Despite these privacy concerns, little has been systematically investigated
regarding privacy in crowdsourcing. In the research on mobile crowdsourcing,
a series of works (Kazemi and Shahabi, 2012b,a, 2011; To et al., 2014) has dis-
cussed the privacy issues involved in the geographical task assignment. Other
than the research on mobile crowdsourcing, few independent studies (Little
and Sun, 2011; Varshney, 2012) have been conducted on the privacy issues
in crowdsourcing before the studies contained in this thesis (Kajino et al.,
2014a,b, 2015).

1.4 Research Questions
Of the risks enumerated in Section 1.3, we focus on the privacy risk in this
thesis. While the quality and unethical abuse risks have been studied by
many research groups and promising clues to their solutions are present, only
a small part of the privacy risk has been clarified, despite its significance.
In order to shed light on the privacy risk and establish the research basis
for privacy-preserving crowdsourcing (PPCS), we propose the following two
research questions:

∙ What types of privacy risks are present in crowdsourcing?
It is essential to clarify the privacy risks to better understand the pri-
vacy concerns that lies behind the process of crowdsourcing. The focus
of the existing PPCS studies is to develop a solution to a specific privacy
issue in crowdsourcing, rather than to understand the whole picture of
privacy risk. In this light, we summarize the privacy risks that can
occur in crowdsourcing. Further, by examining the applicability of ex-
isting privacy preservation methods to each privacy risk, we highlight
the novelty of PPCS against the existing privacy preservation research.

∙ How can we measure and control the privacy risks in crowdsourcing?
For each privacy concern, we aim to develop an individual solution to
preserve privacy as well as a measure to quantify the privacy risk. As
we see later, each privacy risk has different properties, which hinders
us from applying a single solution to all privacy issues. Therefore, we
are obliged to tailor a privacy preservation method as well as a privacy
guarantee for each privacy issue considering its unique property, which
boils down to technical challenges.

24

Processor

Human

Machine

or�

Dataset Output

Specified

Unspecified

or�

Personal identifier�
Sensitive value�

Figure 1.1: Illustration of typical data processing procedures. We assume
that the dataset is made up of multiple records, each of which is an associ-
ation of a personal identifier and a sensitive value. The dataset is processed
by either a human or a machine to generate an output, which may not be
specified. The existing privacy preservation research assumes that the pro-
cessor is a machine, whereas the PPCS research deals with the case in which
with a human processor is used, which is a new research area.

1.5 Privacy Risk Analysis
This section provides the answer to the first research question by identifying
the privacy risks in crowdsourcing and clarifying the relationship between
PPCS and the existing research on privacy preservation.

We first introduce two major approaches to preserving privacy and point
out that two properties of a data processing procedure, the processor and
output, play an important role in the selection of an appropriate privacy
preservation approach. We then abstract crowdsourcing procedures into a
simple model to specify the data processing procedures within it and discuss
the possible privacy risks associated with them. Finally, we examine the two
properties of the data processing procedures in crowdsourcing to discuss the
relationship between PPCS and the existing privacy preservation research.

1.5.1 Two Approaches to Privacy Preservation

The research on privacy preservation aims to preserve privacy associated with
data while maintaining its utility. The basic strategy for privacy preserva-
tion is to specify the data processing procedure and choose an appropriate

25

Dataset

Private Public

Perturbed value�

Figure 1.2: The perturbation approach publishes a perturbed dataset, in
which the sensitive values are perturbed. It is appropriate if the output is
unspecified.

Dataset

Private Public

Output

Cryptographic

computation�

Figure 1.3: The cryptographic approach simulates the machinery computa-
tion of the output relying on cryptography and publishes the output only. It
is preferable if the output is specified.

26

approach depending on its properties. Figure 1.1 depicts typical data pro-
cessing procedures; given a possibly sensitive dataset, the processor (human
or machine) processes the dataset to generate the output, which is either
specified or not. The existing privacy preservation research assumes the pro-
cessor to be a machine, while the output is allowed to be either specified or
not.

There are two main approaches11 to preserving privacy. The first ap-
proach is a perturbation approach (Figure 1.2), which perturbs the sensitive
values in the dataset so that it satisfies some privacy criterion and publishes
the perturbed dataset. This approach is suitable when the output is unspec-
ified ; given the perturbed dataset, it is possible to apply any computation to
the dataset to obtain the output the user wants. The second approach is a
cryptographic approach (Figure 1.3), which simulates the prescribed compu-
tation using cryptography to derive the output while still keeping the dataset
private. This approach is feasible only when the output is specified. The ad-
vantage of the cryptographic approach over the perturbation approach is
that it can compute the output exactly; the perturbation approach cannot
compute the exact output because of the perturbation. The disadvantage of
the cryptographic approach is its computation time; encryption, decryption,
and key generation require additional computation time.

In summary, the existing research on privacy preservation focuses on the
case where the processor is a machine and the output is either specified or not.
Because both cryptographic and perturbation approaches have advantages
and disadvantages, it is important to choose suitable approaches depending
on the situation.

1.5.2 Crowdsourcing Model

The crowdsourcing procedure is defined by the set of entities participating
in it and the communication between them. We first introduce the entities
who contribute to crowdsourcing and then describe a typical crowdsourcing
routine.

11Anonymization (i.e., removing the personal identifiers and making the sensitive values
public) is one of the easiest solutions. However, anonymization by itself is not enough to
preserve privacy. The risk of linking attacks has been discussed since Sweeney (2002)
pointed out the risk.

27

Platform� Worker�

W�

Requester�

R�

Figure 1.4: Entities in crowdsourcing.

R�

R�

R�

W�

W�

W�

Send

features�

R�

R�

R�

W�

W�

W�

Compute

task assignment�

(a) The platform collects features of
the requesters and workers and com-
putes a task assignment accordingly.

R�

R�

R�

W�

W�

W�

R�

R�

R�

W�

W�

W�

Job instructions�

Task results

Instances�

(b) Each requester sends the job in-
structions and task instances to the
assigned workers.

R�

R�

R�

W�

W�

W�

R�

R�

R�

W�

W�

W�

Job instructions�

Task results

Instances�

(c) Each worker, having processed the
tasks, sends back the task results to
the requesters.

Figure 1.5: Overview of a crowdsourcing routine.

28

Entities

As shown in Figure 1.4, crowdsourcing consists of three types of entities:12

requester, worker, and platform.
A requester uses crowdsourcing to have his/her task processed, which is

made up of a job instruction and multiple instances. For example, if a task
is an English-German translation task, a job instruction will be a text such
as “Please translate the English sentence shown below into German,” and an
instance corresponds to an English sentence to be translated.

A worker participates in crowdsourcing to perform tasks and sends the
results back to requesters in exchange for a reward. For example, if a worker
is assigned a translation task from English to German, the worker receives
a job instruction and the English sentences (instances) from the requester,
translates them into German sentences as instructed, and sends them back
to the requester to be rewarded.

A platform manages the crowdsourcing service, and it mainly fulfills the
following two roles. First, the platform works as a hub of communication.
Any pair of entities are allowed to communicate with each other only via the
platform. Both requesters and workers benefit from this service because most
of the procedures necessary in a labor market can be completed by commu-
nicating only with the platform, including the task request, delivery of task
results, and payment. Second, it manages a task assignment service between
workers and tasks. There are two possible approaches to task assignment
services: push-type and pull-type strategies. In a pull-type strategy (which
is also called an open-call strategy), the platform provides a list of available
tasks to workers, and workers pull the tasks they like. In a push-type strat-
egy, the platform computes a task assignment based on the features of the
workers and tasks and pushes the tasks to the appropriate workers.

In this thesis, we adopt the push-type task assignment for the following
two reasons. The first reason is efficiency. Because some professional tasks
and location-based tasks require special features of workers, the global task
assignment is an effective way to increase the throughput of crowdsourcing.
The second reason is security. The push-type assignment can significantly
reduce the number of workers who browse instructions and instances of tasks
compared to the pull-type assignment; in the pull-type assignment, all the
workers are able to browse all the tasks, whereas in the push-type assign-
ment, only the allocated workers can browse them. Because the instructions
and instances also induce privacy risks, as discussed later, the push-type
assignment is preferable to the pull-type assignment.

12We exchangeably call an entity a party, following the convention used in computer
security.

29

Table 1.1: Four data processing procedures in crowdsourcing with privacy
risks. Although the procedure for processing task results is generally un-
specified, it is common that a requester applies a quality control method to
them.

Data Step Processor Output Our Solution
Feature Assignment Machine Assignment Chap. 3

Instruction Request Human Result Chap. 3
Instance Request Human Result Chaps. 3 & 4
Result Delivery Unspecified Unspecified —

Machine
Quality-controlled

result Chap. 5

Crowdsourcing Routine

The crowdsourcing routine is made up of three steps: assignment, request,
and delivery. We adopt this abstraction for crowdsourcing throughout this
dissertation. The details are specified when necessary.

Step 1: Assignment (Figure 1.5a)
The platform collects the features of the workers and tasks, and com-
putes the task assignment maximizing the throughput based on the
features. The features of a worker include the skills s/he has, his/her
current location, minimum wage, and working hours, for example. The
features of a task include the corresponding properties the task requires
to be completed.

Step 2: Request (Figure 1.5b)
Each requester sends the job instruction and instances to the allocated
workers via the platform.

Step 3: Delivery (Figure 1.5c)
Each worker, receiving multiple tasks, completes each task to generate
the results by processing the instances following each job instruction.
Then, s/he sends the results back to the respective requesters via the
platform. If the requester confirms the delivered results, the worker is
rewarded.

1.5.3 Analysis

We specify the four data processing procedures of crowdsourcing and discuss
the privacy risks associated with them as well as the applicability of the

30

existing privacy preservation strategies. We also classify the existing PPCS
studies into the four categories to clarify the current research progress of
PPCS. The analysis in this section is summarized in Table 1.1.

Assignment Step

In the assignment step, both workers and requesters are asked to send their
features to the platform so that it can compute the task assignment. The
features of workers can be used to identify them, infer sensitive informa-
tion about them, physically harass them using the location information, and
unfairly treat them by excessively favoring highly-skilled and hardworking
workers. The features of tasks can also be used to identify the requesters
and reveal the contents of the tasks. Therefore, the features of both workers
and tasks are sensitive.

The features are processed by a machine to compute the task assign-
ment (i.e., the output is specified). Therefore, it is possible to compute the
task assignment without invading privacy using a cryptographic approach.

The privacy issues in task assignment have been discussed mostly in the
research area of spatial crowdsourcing (Kazemi and Shahabi, 2011, 2012b;
To et al., 2014). Their concern is the leakage of worker location information,
and they resort to perturbation approaches to preserve this privacy.

Request Step

In the request step, each requester sends his/her job instruction along with
the task instances, both of which can cause privacy troubles. A job instruc-
tion leaks the intention of the requester, which can be the future direction of
his/her business. In addition, it can leak the identity of the requester if the
task is highly specialized. For example, a worker may be able to infer the
future direction of a real business firm. In addition, instances can leak a sub-
stantial amount of sensitive information to the worker who processes them.
For example, consider a task to transcribe audio recordings of business meet-
ings, where a single audio recording corresponds to an instance. The content
of such a recording can be confidential information of the requester or a third
party. Many other tasks involve instances containing sensitive information,
such as a task to digitize handwritten texts or to detect objects in images.
Therefore, both job instructions and instances are sensitive.

Both job instructions and instances are processed by humans with the
aim of completing the tasks (i.e., the output is specified). Because the exist-
ing privacy preservation methods cannot handle a procedure with a human
processor, neither of the privacy preservation methods is appropriate. Al-

31

though it is possible to apply the perturbation approach heuristically, there
are no guarantees on utility and privacy, which hinders us from putting it
into practice.

The privacy issues of instances have been discussed in the community of
human-computer interaction. Little and Sun (2011) focused on transcribing
a medical chart with privacy guarantees. By decomposing a medical chart
into forms using a template, it is possible to transcribe it without privacy
invasion. The privacy issues of job instructions have never been discussed in
the research community.

Delivery Step

In the delivery step, each worker, having finished the tasks, returns the results
of the tasks to the corresponding requesters. In the case of a location-based
task, a result contains the location information of the worker, which itself is
sensitive information. Furthermore, even if the result itself is not sensitive,
it is possible to infer the features of workers from the results by probabilistic
inference; it is already common to infer the ability of workers even from binary
labels in order to eliminate low-ability workers. These inferred features can
be used to identify and harm the workers. Therefore, not only the location
information but even simple labels can lead to privacy invasion.

The data processing procedure of the results is in general unspecified,
that is, both the processor and the output are unspecified. Therefore, it is
not possible to apply the existing privacy preservation methods. However,
with careful observation on crowdsourcing, we notice that in some cases, task
results are processed by a machine for the purpose of quality control (i.e.,
the output is specified). In this special case, the cryptographic approach is
appropriate.

The privacy issues of results have been discussed in participatory sens-
ing (Cornelius et al., 2008; Huang et al., 2009; Hu and Shahabi, 2010; Put-
taswamy et al., 2010; Hu and Shahabi, 2010). Their concern is that the
location information of workers can leak from the results, and they resort to
a perturbation approach or anonymization for privacy preservation.

1.6 Solutions

As we stated in the previous section, there are four types of data that can
trigger their own privacy risks, and they are associated with heterogeneous
data processing procedures, some of which cannot be handled by the existing
privacy preservation methods. We tackle these privacy risks with the follow-

32

ing three solutions. Table 1.1 summarizes the correspondence between the
data and solutions.

1.6.1 Privacy-Preserving Task Assignment (Chapter 3)

We present a privacy-preserving task assignment that executes a push-type
assignment without revealing the features of either the workers or requesters.
It alleviates the privacy risks associated with features as well as instructions
and instances compared to the standard pull-type task assignment, as dis-
cussed above. Noting that the output is specified in the feature process-
ing procedure, we employ the cryptographic approach for privacy preserva-
tion rather than the perturbation approach that the existing studies employ.
In specific, we formalize the task assignment problem as a maximum flow
problem, and develop a privacy-preserving push-relabel algorithm using the
Paillier cryptosystem (Paillier, 1999) to obtain an optimal task assignment
without disclosing the features of either the workers or requesters.

1.6.2 Instance-Privacy Preservation (Chapter 4)

We present a utility-privacy trade-off analyzer (UPTA) and a case study of
the analysis on an instance-clipping (IC) protocol. UPTA evaluates the util-
ity and privacy of the instance-privacy preserving (IPP) protocols, given the
definitions of a task and privacy. Because a worker performs the task and at
the same time invades privacy in an IPP protocol, it is necessary to quantify
both utility and privacy, taking the participation of human processors into
account. Our idea for quantification is to model both the task execution and
privacy invasion processes as sampling of a result and sensitive value from
probability distributions. These models can be empirically estimated using
crowdsourcing, and given these models, divergence-based measures can be
computed. As a case study of UPTA, we develop the IC protocol and in-
vestigate its properties. The IC protocol is a generalization of the method
proposed by Little and Sun (2011). It clips instances with a fixed-size window
and hands the clipped instances to workers for task execution while hinder-
ing privacy invasion. We apply UPTA to analyze the properties of the IC
protocol and to determine the clipping window size. We further study the
validity of our performance measures theoretically and empirically.

1.6.3 Worker-Privacy Preservation (Chapter 5)

We present a worker-private latent class (WPLC) protocol, which preserves
the sensitive information contained in results. Noticing that in some cases,

33

results are processed by a quality control method and that its output is
much less sensitive than the original results, our idea is to simulate the qual-
ity control method using cryptography, i.e., to aggregate the multiple results
acquired from multiple workers into one synthetic result and deliver the ag-
gregated results to the requester. In specific, we develop a privacy-preserving
variant of the latent class method (Dawid and Skene, 1979) using the Pail-
lier cryptosystem. The security of the protocol is guaranteed such that it is
impossible to infer any original result from the aggregated results.

1.7 Roadmap
This thesis is organized into a preliminary chapter (Chapter 2), three main
research results (Chapters 3, 4, and 5), related work (Chapter 6), and the
conclusion (Chapter 7).

In Chapter 2, we introduce the notation we use throughout this disser-
tation, the Paillier cryptosystem, which is used in Chapters 3 and 5, and
the privacy assumptions in crowdsourcing. We then present the research re-
sults of this thesis in three chapters. Chapter 3 addresses the privacy issues
in task assignment, which is under the review of Knowledge and Informa-
tion Systems (Kajino et al., 2015). Chapter 4 addresses the privacy issues
in task submission, which was published and presented in the proceedings
of the Second AAAI Conference on Human Computation and Crowdsourc-
ing (Kajino et al., 2014b). Chapter 5 addresses the privacy issues in result
collection from workers, which was published in Data Mining and Knowledge
Discovery (Kajino et al., 2014a) and was presented at the Seventh European
Machine Learning and Data Mining Conference in 2014.

34

Chapter 2

Preliminaries

This chapter defines the basic notation and cryptographic techniques we use
in this dissertation. We first define the notation commonly used throughout
this dissertation. Then, we introduce a cryptographic approach to preserving
privacy. In specific, we introduce the notion of public-key encryption and its
security and the Paillier cryptosystem (Paillier, 1999), which is used as a
cryptographic building block in our protocols. Finally, we introduce privacy
assumptions of our crowdsourcing model that define the behavior of each
entity in a protocol.

2.1 Notation

We summarize the notation we use commonly in this thesis.
Let Z+ be the set of non-negative integers, and let Z𝑛 := {0, . . . , 𝑛 − 1}

for any 𝑛 ≥ 1. Let [𝐾] = {1, 2, . . . , 𝐾} (𝐾 ≥ 1). Given vector x ∈ R𝐷,
𝑥𝑑 (𝑑 ∈ [𝐷]) denotes the 𝑑-th dimension of vector x. Given a set of real
numbers {𝑎𝑖,𝑗 | 𝑖 ∈ [𝐼], 𝑗 ∈ [𝐽]}, let

[︀
𝑎𝑖,𝑗
]︀
𝑖∈[𝐼],𝑗∈[𝐽] be an 𝐼 × 𝐽 matrix whose

(𝑖, 𝑗) element corresponds to 𝑎𝑖,𝑗. A multiset is defined as a set whose elements
may be duplicated. Let {𝑎}𝑏 denotes a multiset consisting of 𝑏 duplicated
elements of 𝑎.

2.2 Public-Key Encryption

We introduce a basic notion of public-key encryption and its security in this
section. A large part of this section is extracted from a textbook on modern
cryptography (Katz and Lindell, 2007), otherwise indicated.

35

2.2.1 Public-Key Encryption Scheme

Let us consider a two-party setting for simplicity, in which we have a sender
and a receiver, and the sender wants to send a message to the receiver in
a private way. A simple cryptographic solution is to use a secret key; the
two parties share a secret key and use it for both encryption and decryption.
However, this can be infeasible in many realistic settings, because it requires
that the two parties must share the secret key somehow, e.g., by physically
gathering at a private room.

A public-key encryption scheme successfully addresses the key sharing
issue by generating a public key for encryption and a secret key1 for decryp-
tion. The key idea is that encryption requires the public key only, whereas
decryption requires the secret key. If a receiver distributes a public key and
keeps a secret key private, a sender obtaining the public key can encrypt his
message, and only the receiver holding the secret key can decrypt and read
the message. We give the definition of a public-key encryption scheme in Def-
inition 2.1. We especially utilize a variation of public-key encryption schemes
called the Paillier cryptosystem (Paillier, 1999), which will be introduced in
Section 2.3.

Definition 2.1 (Public-key encryption scheme). A public-key encryption
scheme is a tuple of probabilistic polynomial-time algorithms Π = (Gen,Enc,Dec)
satisfying the following four conditions:

1. Key generation
Algorithm Gen takes as input a security parameter 1𝑛 and outputs a
pair of keys (pk, sk), where pk is the public key, and sk is the secret key.

2. Encryption
Algorithm Enc takes as input the public key pk and a message 𝑚 from a
pre-defined plaintext space, and outputs a ciphertext 𝑐. This process is
written as 𝑐← Encpk(𝑚). Note that encryption may entail randomness,
i.e., a ciphertext may change at every time of encryption.

3. Decryption
Algorithm Dec takes as input the secret key sk and a ciphertext 𝑐, and
outputs a message 𝑚 or a special symbol ⊥ denoting failure. Assum-
ing that decryption is deterministic, this process is written as 𝑚 :=
Decsk(𝑐).

4. Relationship between Encryption and Decryption
For every 𝑛, every (pk, sk) generated by Gen(1𝑛), and every message 𝑚

1We use the term, a secret key, instead of a private key.

36

in the plaintext space, it holds that

Decsk(Encpk(𝑚)) = 𝑚.

A typical scenario is as follows. A receiver, setting the security parame-
ter, generates a pair of keys (pk, sk) and distributes the public key pk while
keeping sk secret. A sender who wants to send a message 𝑚 to the receiver
uses the public key pk and the encryption function Enc to generate a cipher-
text 𝑐, and send it to the receiver. The receiver uses the secret key sk and
the decryption function Dec to decrypt the ciphertext 𝑐 to obtain the original
message 𝑚. If decryption without the secret key is hard, this process does
not leak any information of the message to the third party eavesdropping the
communication.

2.2.2 Security

We then discuss how to guarantee the security of a cryptosystem. A public-
key encryption basically relies on the computational security; we initially
make an assumption that some low-level problem, such as factoring the
product of two large prime numbers, is hard to solve, and the security of
the cryptosystem is theoretically guaranteed by reducing an attack on it to
solving the low-level problem. In order to give a rigorous definition, we rely
on the asymptotic approach, where a cryptosystem is defined to be secure if
the probability that an efficient adversary succeeds in decryption is asymp-
totically negligible as the security parameter 𝑛 increases. The goal of this
section is to define this security notion rigorously.

First, we define a model of an adversary, who tries to break the encryption
to read the original message. The model consists of its computation power
and its attacking process.

The computation power of an adversary is assumed that it can run only a
probabilistic algorithm in time polynomial in 𝑛. This assumption is necessary
for computational security, because the security relies on the computational
difficulty of a low-level problem that is difficult to solve in polynomial time,
but is solvable in exponential time.

The definition of its attacking process has some options reflecting the
strength of security. In this thesis, we consider the chosen-plaintext at-
tack (CPA) only. The chosen-plaintext attack is modeled by the CPA in-
distinguishability experiment PubKcpa

𝒜,Π(𝑛) (Protocol 2.1), which is performed
by an adversary 𝒜 and a challenger 𝒞. The CPA indistinguishability experi-
ment is a realistic setting in that the adversary has as much information as
possible, i.e., the public key and the pair of messages in plaintext. Intuitively,

37

Protocol 2.1 CPA indistinguishability experiment PubKcpa
𝒜,Π(𝑛).

Parties: Adversary 𝒜 and challenger 𝒞.
Input: Security parameter 𝑛 and cryptosystem Π.
1: Challenger 𝒞 runs Gen(1𝑛) to obtain a pair of keys (pk, sk).
2: Adversary 𝒜 is given the public key pk and oracle access to Encpk(·).

Adversary 𝒜 generates a pair of messages 𝑚0,𝑚1 with the same bit from
the plaintext space, and sends them to challenger 𝒞.

3: Challenger 𝒞 generates a uniformly random bit 𝑏 ∈ {0, 1}, and encrypts
message 𝑚𝑏 to generate 𝑐 ← Encpk(𝑚𝑏). Challenger 𝒞 sends the cipher-
text to adversary 𝒜.

4: Adversary 𝒜 guesses whether 𝑚𝑏 = 𝑚0 or 𝑚𝑏 = 𝑚1, and sends his/her
guess bit 𝑏′ to challenger 𝒞.

5: Challenger 𝒞 outputs 1 if 𝑏′ = 𝑏 and 0 otherwise, which is the output of
the experiment.

if the adversary cannot make a correct guess even if s/he knows the original
messages, then the cryptosystem is defined as secure.

Then, given the adversary model defined above, we provide the asymp-
totic statement of the security in Definition 2.2. A cryptosystem satisfying
Definition 2.2 is referred as IND-CPA. In order to allow some tolerance, a
negligible function (Definition 2.3) is used.

Definition 2.2 (IND-CPA). Public-key encryption scheme Π = (Gen,Enc,Dec)
has indistinguishable encryptions under chosen-plaintext attacks (or is CPA
secure) if for all probabilistic polynomial-time adversaries 𝒜, there exists a
negligible function negl such that

Pr[PubKcpa
𝒜,Π(𝑛) = 1] ≤ 1

2
+ negl(𝑛).

Definition 2.3 (Negligible function). A function 𝑓 is negligible if for every
polynomial function 𝑝(·), there exists an integer 𝑁 such that for all integers
𝑛 > 𝑁 , 𝑓(𝑛) < 1

𝑝(𝑛)
holds.

Although Definition 2.2 deals with a single encryption setting where the
adversary can use a pair of single messages, 𝑚0 and 𝑚1, it can be shown that
an IND-CPA cryptosystem is secure under the multiple encryptions setting
where the adversary generate a pair of multiple messages, (𝑚1

0, . . . ,𝑚
𝑡
0) and

(𝑚1
1, . . . ,𝑚

𝑡
1) (Theorem 10.10 (Katz and Lindell, 2007)).

IND-CPA implies that a party cannot distinguish between ciphertexts of
sensitive information and ciphertexts of random values. In this thesis, we

38

define a party learns nothing after executing a protocol if s/he only obtains
a sequence of uniformly random variables and ciphertexts that are IND-CPA
during the protocol.

2.3 Paillier Cryptosystem

The Paillier cryptosystem (Paillier, 1999) is known as a probabilistic public-
key encryption scheme with the additive homomorphic property. We use the
Paillier cryptosystem as a building block to preserve privacy; in Chapter 3,
the Paillier cryptosystem is used to encrypt all the information of the re-
questers and workers, and in Chapter 5, the Paillier cryptosystem encrypts
task results generated by the workers.

We first give a brief overview of the Paillier cryptosystem in Section 2.3.1
and its properties in Section 2.3.2. Then, for completeness, we review the
correctness of the encryption and decryption algorithms and its security in
Sections 2.3.3 and 2.3.4. Finally, we provide experimental results on the
computation time of basic operations of the Paillier cryptosystem in Sec-
tion 2.3.5.

2.3.1 Overview

We describe the overview of the Paillier cryptosystem by illustrating the key
generation, encryption, and decryption algorithms. A party who encrypts a
plaintext is called an encryptor, and a party who decrypts a ciphertext is
called an decryptor.

Notation

Let 𝑁 = 𝑝𝑞 where 𝑝 and 𝑞 are large primes. Let gcd(𝑎, 𝑏) and lcm(𝑎, 𝑏) be
the greatest common divisor and the least common multiple of two integers
𝑎 and 𝑏, respectively. For example, gcd(4, 6) = 2 and lcm(4, 6) = 12. Let
Z𝑁 := {0, . . . , 𝑁 − 1} and Z*

𝑁 := {𝑧 ∈ Z𝑁 | gcd(𝑧,𝑁) = 1}.

Key Generation

The cryptosystem first generates a pair consisting of a public key and a secret
key (pk, sk) as follows:

1. Generate two large prime numbers 𝑝 and 𝑞.

2. Generate secret key sk as sk = 𝜆 (= lcm(𝑝− 1, 𝑞 − 1)).

39

3. Generate public key pk = (𝑁, 𝑔), where 𝑁 = 𝑝𝑞 and 𝑔 is a uniformly
random sampling from Z*

𝑁2 such that the order of 𝑔 is a nonzero mul-
tiple of 𝑁 .

The public key, which is used for both encryption and decryption, is shared
among all the parties, whereas the secret key, which is necessary for decryp-
tion, is privately held by the decryptor. Note that conventionally 𝑔 is set as
𝑁 + 1 for simplicity, whose order is proven to be 𝑁 . This does not ruin the
security of the Paillier cryptosystem because the security does not depend
on 𝑔 but only on 𝑁 .

Encryption

Let us denote a plaintext by 𝑚 ∈ Z𝑁 . The encryption algorithm generates
a ciphertext of 𝑚, which behaves as a uniformly random variable over Z*

𝑁2 .
The algorithm proceeds as follows:

1. The encryptor generates a uniformly random variable 𝑟 ∈ Z*
𝑁 .

2. The encryptor computes 𝑐 = Encpk(𝑚; 𝑟) = 𝑔𝑚𝑟𝑁 mod 𝑁2.

As proven in Section 2.3.4, the Paillier cryptosystem is IND-CPA under some
assumptions, i.e., any party who does not have the secret key learns nothing
about the plaintext from the ciphertext. Note that ciphertext 𝑐 depends on
both plaintext 𝑚 and random variable 𝑟, which is randomly chosen every
time the encryptor encrypts. Therefore, ciphertexts of the same plaintext do
not necessarily take the same value, which prevents a party from learning
that two ciphertexts come from the same plaintext. Note also that, in the
remainder of this paper, we often omit random variable 𝑟 and public key pk,
and we denote the encryption of plaintext 𝑚 by Enc(𝑚).

Decryption

Given ciphertext 𝑐 ∈ Z*
𝑁2 , public key pk = (𝑁, 𝑔), and secret key sk = 𝜆,

the decryption algorithm outputs plaintext 𝑚 ∈ Z𝑁 of the ciphertext. The
algorithm proceeds as follows:

1. The decryptor computes

𝑚 =
𝐿(𝑐𝜆 mod 𝑁2)

𝐿(𝑔𝜆 mod 𝑁2)
mod 𝑁,

where 𝐿(𝑢) :=
𝑢− 1

𝑁
.

40

Computational Example

For better understanding of the Paillier cryptosystem, we provide a compu-
tation example. Let (𝑝, 𝑞) = (3, 5) and 𝑁 = 𝑝𝑞 = 15. Then,

Z𝑁 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14},
Z*

𝑁 = {1, 2, 4, 7, 8, 11, 13, 14},
Z*

𝑁2 = {1, 2, 4, 7, 8, 11, 13, 14, 16, 17, 19, 22, 23, 26, 28, 29, 31, 32...}.

Let the public key be pk = (𝑁, 𝑔) = (15, 16), where the order of 𝑔 ∈ Z*
𝑁2

should be a nonzero multiple of 𝑁 . 𝑔 = 16 satisfies the condition because
1615 = 1 mod 225 holds, and 16𝑚 ̸= 1 mod 225 for all 𝑚 ∈ {1, 2, . . . , 14}.
For example, 𝑔 = 19 is not appropriate because 1910 = 1 mod 225, i.e., the
order of 19 is 10. The secret key is sk = 𝜆 = lcm(𝑝−1, 𝑞−1) = lcm(2, 4) = 4.
Let the plaintext be 𝑚 = 10. Generating a random variable 𝑟 = 8 from Z*

𝑁 ,
the encryptor computes the ciphertext as

𝑐 = Encpk(𝑚; 𝑟)

= 𝑔𝑚𝑟𝑁 mod 𝑁2

= 1610 · 815 mod 225

= 38685626227668133590597632 mod 225

= 182 ∈ Z*
𝑁2 .

The decryption algorithm results in the following computation:

𝑚 =
𝐿(𝑐𝜆 mod 𝑁2)

𝐿(𝑔𝜆 mod 𝑁2)
mod 𝑁

=
𝐿(1824 mod 225)

𝐿(164 mod 225)
mod 15

=
𝐿(151)

𝐿(61)
mod 15

=
(151− 1)/15

(61− 1)/15
mod 15

=
10

4
mod 15

= 10 · 4 mod 15 = 10,

which corresponds to the original plaintext. In the above computation, we
use 4 · 4 = 1 mod 15, which implies 4−1 = 4 mod 15.

41

2.3.2 Properties

We enumerate several properties of the Paillier cryptosystem, which we utilize
to design protocols.

Probabilistic Public-key Encryption

Any party who does not have the secret key learns nothing about the plain-
text from the ciphertext mainly because of the following three reasons. First,
since the Paillier cryptosystem is proven to be IND-CPA under some assump-
tions, decryption without the secret key is computationally hard. Therefore,
the plaintext cannot be obtained from the ciphertext without the secret key.
Second, since the Paillier cryptosystem employs a probabilistic encryption
scheme, even if two encryptors encrypt the same plaintext, the resultant
ciphertexts usually take different values if they choose different random vari-
ables 𝑟1 and 𝑟2 for encryption. Third, from the property of a public key
cryptosystem, accumulating multiple ciphertexts does not provide any infor-
mation about the plaintexts.

Additive Homomorphic Property

In addition to the probabilistic public-key encryption properties, the Paillier
cryptosystem has the additive homomorphic property; the addition of two en-
crypted plaintexts can be computed without decryption. Given Encpk(𝑚1; 𝑟1)
and Encpk(𝑚2; 𝑟2), Encpk(𝑚1 + 𝑚2; 𝑟) can be computed as

Encpk(𝑚1 + 𝑚2; 𝑟) = Encpk(𝑚1; 𝑟1) · Encpk(𝑚2; 𝑟2) mod 𝑁2,

where 𝑟 is uniformly distributed if either 𝑟1 or 𝑟2 is uniformly distributed.
This can be confirmed by the following basic arithmetic:

Encpk(𝑚1; 𝑟1) · Encpk(𝑚2; 𝑟2) mod 𝑁2

=𝑔𝑚1𝑟𝑁1 · 𝑔𝑚2𝑟𝑁2 mod 𝑁2

=𝑔𝑚1+𝑚2 · (𝑟1𝑟2)𝑁 mod 𝑁2

=Encpk(𝑚1 + 𝑚2 mod 𝑁 ; 𝑟1𝑟2 mod 𝑁),

where 𝑟1𝑟2 distributes uniformly over Z*
𝑁2 (see, Lemma 2.1 below). Subtrac-

tion can also be implemented. Given a ciphertext of plaintext 𝑚, 𝑐 = 𝑔𝑚𝑟𝑁 ,
it is easy to compute 𝑐−1 ∈ Z⋆

𝑁2 by the Euclidean algorithm; the algorithm
can find integers 𝑥 and 𝑦 such that 𝑐𝑥+𝑁2𝑦 = 1, which implies that 𝑥 is the
inverse of 𝑐 in Z⋆

𝑁2 . Noticing that

𝑐 · 𝑐−1 = 1 = 𝑔01𝑁

42

holds in the space of ciphertexts,

𝑚 + Dec(𝑐−1) = 0

must hold in the space of plaintexts, which indicates that multiplying 𝑐−1

in the space of ciphertexts corresponds to the subtraction of 𝑚 in the space
of plaintexts. Negative values can also be handled by shifting the plaintext
space appropriately.

Lemma 2.1 (Lemma 10.18 (Katz and Lindell, 2007)). Let G be a finite
group with operation ·, and let 𝑚 ∈ 𝐺 be an arbitrary element of 𝐺. If we
choose uniformly random element 𝑔 ← 𝐺 and set 𝑔′ := 𝑚 · 𝑔, 𝑔′ distributes
uniform-randomly over 𝐺, i.e.,

Pr[𝑚 · 𝑔 = 𝑔] = 1/|𝐺|

holds for any 𝑔 ∈ 𝐺.

Proof. Let 𝑔 ∈ 𝐺 be a fixed arbitrary element of 𝐺. Then,

Pr[𝑚 · 𝑔 = 𝑔] = Pr[𝑔 = 𝑚−1 · 𝑔]

holds where the probability is taken over the distribution of 𝑔. Since 𝑔 is
uniform-randomly distributed over 𝐺, Pr[𝑔 = 𝑚−1 · 𝑔] = 1/|𝐺| holds for any
fixed 𝑔 ∈ 𝐺, which concludes the proof.

2.3.3 Correctness of the Paillier Cryptosystem

We explain the correctness of the encryption and decryption algorithms of the
Paillier cryptosystem by showing that (i) the encryption function is bijective,
and (ii) the decryption function correctly recovers the original plaintext.

Basic Properties of Z*
𝑚

We state several important properties of Z*
𝑚. To do so, we first introduce

two number theoretic functions: Euler’s totient function 𝜑 (Definition 2.4)
and Carmichael’s function 𝜆 (Definition 2.5).

Definition 2.4 (Euler’s totient function). Let 𝜑(𝑥) be Euler’s totient func-
tion that counts the positive integers less than or equal to 𝑥 that are relatively
prime to 𝑥.

Definition 2.5 (Carmichael’s function). Let 𝜆(𝑥) be Carmichael’s function,
which is defined as the smallest positive integer 𝑚 such that 𝑎𝑚 = 1 mod 𝑥
for every integer 𝑎 that is coprime to 𝑥.

43

In our case where 𝑁 = 𝑝𝑞 (𝑝 and 𝑞 are odd prime numbers), 𝜑(𝑁) =
(𝑝 − 1)(𝑞 − 1) and 𝜆(𝑁) = lcm(𝑝 − 1, 𝑞 − 1), which are consequences of
Carmichael’s theorem. Noticing that 𝜆(𝑁2) = 𝑁𝜆(𝑁), the definition of
Carmichael’s function implies that for any 𝑤 ∈ Z*

𝑁2 ,

𝑤𝜆(𝑁) = 1 mod 𝑁, 𝑤𝑁𝜆(𝑁) = 1 mod 𝑁2 (2.1)

hold. In the following, we simply denote 𝜆(𝑁) by 𝜆.
Then, we summarize important properties of Z*

𝑚 below:

(a) |Z*
𝑚| = 𝜑(𝑚),

(b) Z*
𝑚 forms a group together with multiplication,

(c) Z*
𝑚 ⊂ Z*

𝑚2 .

The first statement as to the number of elements in Z*
𝑚 is self-evident from the

definition of Euler’s totient function (Definition 2.4). The second statement
that Z*

𝑚 forms a group can be proven by utilizing the fact that two integers
𝑎 and 𝑏 are coprime if and only if there exist two integers 𝑥 and 𝑦 such that
𝑎𝑥+𝑏𝑦 = 1. The third statement holds because any element in Z*

𝑚 is coprime
to 𝑚 by definition, which implies that it is also coprime to 𝑚2.

(i) Bijectivity of the Encryption Function

Now we are able to prove that the encryption function is bijective. We
first re-introduce the encryption function using a different notation, ℰ𝑔(𝑚, 𝑟)
with parameter 𝑔 in Definition 2.6, and define a set of valid parameters
ℬ1 in Definition 2.7 that plays an important role to make the encryption
function bijective from (𝑚, 𝑟) to a ciphertext 𝑐. Note that as we saw in the
computational example, ℬ1 (Z*

𝑁2 holds, because the order of some 𝑏 ∈ Z*
𝑁2

may be smaller than 𝑁 .

Definition 2.6 (Encryption function). Let 𝑚 be a plaintext and 𝑟 be a ran-
dom variable. For 𝑔 ∈ Z*

𝑁2, we define the encryption function ℰ𝑔 : Z𝑁×Z*
𝑁 →

Z*
𝑁2 as ℰ𝑔(𝑚, 𝑟) = 𝑔𝑚𝑟𝑁 mod 𝑁2.

Definition 2.7 (Base set). For 𝑁 = 𝑝𝑞, the base set ℬ1 ⊂ Z*
𝑁2 is defined as

ℬ1 = {𝑏 ∈ Z*
𝑁2 | ord(𝑏) = 𝑁},

where ord(𝑏) (𝑏 ∈ Z*
𝑁2) denotes the order of 𝑏, i.e., the smallest positive

integer 𝑚 such that 𝑏𝑚 = 1 mod 𝑁2.

Then, Lemma 2.2 states the bijectivity of the encryption function.

44

Lemma 2.2 (Lemma 3 (Paillier, 1999)). If the order of 𝑔 ∈ Z*
𝑁2 is a nonzero

multiple of 𝑁 , then ℰ𝑔 is bijective.

Proof. We first show that Z𝑁 × Z*
𝑁 and Z*

𝑁2 have the same number of el-
ements, 𝑁𝜑(𝑁). This holds because |Z𝑁 × Z*

𝑁 | = 𝑁𝜑(𝑁) and |Z*
𝑁2 | =

𝜑(𝑁2) = 𝑁𝜑(𝑁) hold. Then, we only have to prove that ℰ𝑔 is injective, i.e.,

∀(𝑚1, 𝑟1), (𝑚2, 𝑟2) ∈ Z𝑁 × Z*
𝑁 ,

(𝑚1, 𝑟1) ̸= (𝑚2, 𝑟2) =⇒ ℰ𝑔(𝑚1; 𝑟1) ̸= ℰ𝑔(𝑚2; 𝑟2)

holds.
Suppose that 𝑔𝑚1𝑟𝑁1 = 𝑔𝑚2𝑟𝑁2 mod 𝑁2 holds. By taking the 𝜆-th power

of the both sides and combining it with Equation (2.1), we obtain

𝑔𝜆·(𝑚1−𝑚2) = 1 mod 𝑁2.

The assumption that the order of 𝑔 is a nonzero multiple of 𝑁 and the fact
that gcd(𝜆,𝑁) = 1 imply that 𝑚1 −𝑚2 is a non-zero multiple of 𝑁 . Since
𝑚1 and 𝑚2 are elements of Z𝑁 , 𝑚1 = 𝑚2 must hold.

As for 𝑟1 and 𝑟2, we have 𝑟𝑁1 = 𝑟𝑁2 mod 𝑁 by applying 𝑚1 = 𝑚2. Since
𝑓(𝑟) = 𝑟𝑁 mod 𝑁 is bijective, the above equation has the unique solution
𝑟1 = 𝑟2 (see, Corollary 7.17 (Katz and Lindell, 2007)).

In summary, we have proven that 𝑔𝑚1𝑟𝑛1 = 𝑔𝑚2𝑟𝑛2 mod 𝑁2 implies 𝑚1 =
𝑚2 and 𝑟1 = 𝑟2, i.e., ℰ𝑔 is injective, which concludes the proof.

(ii) Correctness of the Decryption Function

We show that the decryption process successfully recovers the original plain-
text using the bijectivity of the encryption function; the inverse function of
it can be well-defined as the 𝑁 -th residuosity class (Definition 2.8).

Definition 2.8 (𝑁 -th residuosity class). For 𝑐 ∈ Z*
𝑁2, the 𝑁-th residuosity

class of 𝑐 with respect to 𝑔 ∈ ℬ1 is defined as the unique integer 𝑚 ∈ Z𝑁 for
which there exists 𝑟 ∈ Z*

𝑁 such that

ℰ𝑔(𝑚, 𝑟) = 𝑐.

We denote the 𝑁-th residuosity class of 𝑐 with respect to 𝑔 by [𝑐]𝑔, i.e.,
ℰ𝑔([𝑐]𝑔, 𝑟) = 𝑐 for some 𝑟 ∈ Z*

𝑁 .

The 𝑁 -th residuosity class has the following formulae (Lemma 2.3, Corol-
lary 2.1, and Lemma 2.4), which are used for decryption. Lemma 2.3 and
Corollary 2.1 state the change-of-base formulae, and Lemma 2.4 states a
formula of function 𝐿 used in decryption.

45

Lemma 2.3. For any 𝑐 ∈ Z*
𝑁2 and 𝑔1, 𝑔2 ∈ ℬ1,

[𝑐]𝑔1 = [𝑐]𝑔2 [𝑔2]𝑔1 mod 𝑁.

Proof. Given that the encryption function is bijective, for (𝑔1, 𝑐), (𝑔2, 𝑐), and
(𝑔1, 𝑔2), there respectively exist 𝑟1, 𝑟2, and 𝑟3 such that

ℰ𝑔1([𝑐]𝑔1 , 𝑟1) = 𝑔
[𝑐]𝑔1
1 𝑟𝑁1 mod 𝑁2 = 𝑐, (2.2)

ℰ𝑔2([𝑐]𝑔2 , 𝑟2) = 𝑔
[𝑐]𝑔2
2 𝑟𝑁2 mod 𝑁2 = 𝑐, (2.3)

ℰ𝑔1([𝑔2]𝑔1 , 𝑟3) = 𝑔
[𝑔2]𝑔1
1 𝑟𝑁3 mod 𝑁2 = 𝑔2. (2.4)

From Equation (2.4), we obtain

𝑔
[𝑐]𝑔2
2 mod 𝑁2 =

(︁
𝑔
[𝑔2]𝑔1
1 𝑟𝑁3

)︁[𝑐]𝑔2
mod 𝑁2

= 𝑔
[𝑔2]𝑔1 [𝑐]𝑔2
1 𝑟𝑁3 mod 𝑁2

= ℰ𝑔1([𝑔2]𝑔1 [𝑐]𝑔2 mod 𝑁, 𝑟3),

where we use the fact that the order of 𝑔1 ∈ ℬ1 is 𝑁 . By combining this with
Equations (2.2) and (2.3), we obtain

𝑐 = ℰ𝑔2([𝑐]𝑔2 , 𝑟2)
= 𝑔

[𝑐]𝑔2 [𝑔2]𝑔1
1 𝑟𝑁3 𝑟

𝑁
2 mod 𝑁2

= ℰ𝑔1([𝑐]𝑔2 [𝑔2]𝑔1 mod 𝑁, 𝑟2𝑟3 mod 𝑁)

= ℰ𝑔1([𝑐]𝑔1 , 𝑟1).

The last two lines of above equations and the bijectivity of the encryption
function indicate that [𝑐]𝑔1 = [𝑔2]𝑔1 [𝑐]𝑔2 mod 𝑁 , which concludes the proof.

Corollary 2.1. For any 𝑔1, 𝑔2 ∈ ℬ1, [𝑔1]𝑔2 = [𝑔2]
−1
𝑔1

.

Proof. By setting 𝑐 = 𝑔1 in Lemma 2.3, we have

[𝑔1]𝑔1 = [𝑔2]𝑔1 [𝑔1]𝑔2 mod 𝑁.

Noticing ℰ𝑔1(1, 1) = 𝑔111𝑁 = 𝑔1, we have [𝑔1]𝑔1 = 1, which concludes the
statement.

Lemma 2.4. For any 𝑐 ∈ Z*
𝑁2, 𝐿(𝑐𝜆 mod 𝑁2) = 𝜆[𝑐]1+𝑁 mod 𝑁 .

46

Proof. Since 𝑐 ∈ Z*
𝑁2 and 1 + 𝑁 ∈ ℬ1, there exist 𝑚 (= [𝑐]1+𝑁) ∈ Z𝑁 and

𝑟 ∈ Z*
𝑁 such that

(1 + 𝑁)𝑚𝑟𝑁 = 𝑐 mod 𝑁2

hold. By taking the 𝜆-th power of the above equation, we have

𝑐𝜆 = (1 + 𝑁)𝑚𝜆𝑟𝑁𝜆 mod 𝑁2

= (1 + 𝑁)𝑚𝜆 mod 𝑁2

= 1 + 𝑁𝑚𝜆 mod 𝑁2,

which yields the statement in Lemma 2.4.

By using these formulae, the decryption process works as follows:

𝐿(𝑐𝜆 mod 𝑁2)

𝐿(𝑔𝜆 mod 𝑁2)
mod 𝑁 =

𝜆[𝑐]1+𝑁

𝜆[𝑔]1+𝑁

mod 𝑁 (Lemma 2.4)

=
[𝑐]1+𝑁

[𝑔]1+𝑁

mod 𝑁

= [𝑐]1+𝑁 [1 + 𝑁]𝑔 mod 𝑁 (Corollary 2.1)

= [𝑐]𝑔 mod 𝑁 (Lemma 2.3).

This shows that the decryption process can recover the original plaintext by
using the public key pk = (𝑁, 𝑔) and the secret key sk = 𝜆.

2.3.4 Security

The security of the Paillier cryptosystem relies on the intractability hypothe-
sis of the Composite Residuosity Class Problem, which is called the Decisional
Composite Residuosity Assumption (DCRA). DCRA roughly states that it
is hard to decide a presented element is the 𝑁 -th residue or not, where the
𝑁 -th residuosity is defined as Definition 2.9.

Definition 2.9 (𝑁 -th residuosity). A number 𝑧 ∈ Z*
𝑁2 is said to be an 𝑁-th

residue modulo 𝑁2 if there exists a number 𝑦 ∈ Z*
𝑁2 such that

𝑧 = 𝑦𝑁 mod 𝑁2.

We define an adversary 𝒜(𝑁, 𝑟) assumed in DCRA as follows. Let 𝑛 be a
security parameter, and let 𝑁 = 𝑝𝑞 where 𝑝 and 𝑞 are 𝑛-bit odd primes. The
adversary is given 𝑁 and a random 𝑟, which can be either a random over
Z*

𝑁2 (i.e., 𝑟 ← Z*
𝑁2) or the 𝑁 -th power of a random over Z*

𝑁2 (i.e., 𝑟 = 𝑟′𝑁

47

mod 𝑁2 where 𝑟′ ← Z*
𝑁2). The adversary is allowed to use any probabilistic

polynomial-time algorithm to guess whether 𝑟 is the 𝑁 -th residuosity or not.
The output of the adversary is 1 if the adversary guesses that 𝑟 is the 𝑁 -th
residuosity, and 0 otherwise.

Let GenModulus be a polynomial-time algorithm that, given a security
parameter 𝑛, outputs (𝑁, 𝑝, 𝑞) where 𝑁 = 𝑝𝑞, and 𝑝 and 𝑞 are 𝑛-bit odd
primes except with probability negligible in 𝑛. Then, DCRA is stated as
Conjecture 2.1.

Conjecture 2.1 (Decisional composite residuosity assumption (DCRA)).
Let 𝑁 be generated by GenModulus(1𝑛). The decisional composite residuosity
assumption is that for all probabilistic polynomial-time algorithms 𝒜, there
exists a negligible function negl such that⃒⃒

Pr[𝒜(𝑁, 𝑟𝑁 mod 𝑁2) = 1]− Pr[𝒜(𝑁, 𝑟) = 1]
⃒⃒
≤ negl(𝑛),

where the probability is taken over the experiment in which (𝑁, 𝑝, 𝑞) is gen-
erated by GenModulus(1𝑛), and a random 𝑟 ← Z*

𝑁2 is chosen.

Given DCRA, the security of the Paillier cryptosystem is stated in The-
orem 2.1.

Theorem 2.1 (Security of the Paillier cryptosystem). Assuming that DCRA
holds, the Paillier cryptosystem is IND-CPA.

Proof. Let 𝑛 be a security parameter, let Π = (Gen,Enc,Dec) be the Paillier
cryptosystem, let 𝒜 be any probabilistic polynomial-time adversary, and let
PubKcpa

𝒜,Π(𝑛) be a CPA indistinguishability experiment associated with the
Paillier cryptosystem. Let us consider the following experiment 𝐷(𝑁, 𝑦).

1. Challenger 𝒞 runs GenModulus(𝑛) to obtain (𝑁, 𝑝, 𝑞), and sets pk =
(𝑁,𝑁 + 1).

2. Adversary 𝒜 is given the public key pk, and oracle access to Encpk(·).
Adversary 𝒜 generates a pair of messages 𝑚0 and 𝑚1 from Z𝑁 , and
sends them to challenger 𝒞.

3. Challenger 𝒞 chooses a uniformly-random bit 𝑏 ∈ {0, 1}, sets

𝑐 := (1 + 𝑁)𝑚𝑏 · 𝑦 mod 𝑁2,

and sends 𝑐 to adversary 𝒜.

4. Adversary 𝒜 guesses whether 𝑚𝑏 = 𝑚0 or 𝑚𝑏 = 𝑚1 without knowing
the random bit 𝑏, and sends his/her guess bit 𝑏′ ∈ {0, 1} to challenger 𝒞.

48

5. Challenger 𝒞 outputs 1 if 𝑏′ = 𝑏, and 0 otherwise, which is the output
of the experiment.

We analyze the experiment in two cases where (i) 𝑦 is the 𝑁 -th power of a
random over Z*

𝑁2 or (ii) 𝑦 is a random over Z*
𝑁2 .

(i) 𝑦 is the 𝑁 -th power of a random from Z*
𝑁2

Let 𝑦 = 𝑟𝑁 mod 𝑁2 where 𝑟 ← Z*
𝑁2 . Since the view of adversary 𝒜 is

the same as the adversary in the CPA indistinguishability experiment
of the Paillier cryptosystem, it holds that

Pr[𝐷(𝑁, 𝑟𝑁) = 1] = Pr[PubKcpa
𝒜,Π(𝑛) = 1].

(ii) 𝑦 is a random from Z*
𝑁2

Since 𝑦 is uniform-randomly distributed in Z*
𝑁2 , the challenge cipher-

text 𝑐 = (1 + 𝑁)𝑚𝑏 · 𝑦 mod 𝑁2 is also uniform-randomly distributed
in Z*

𝑁2 , independent of 𝑚𝑏 (see, Lemma 2.1). Therefore, adversary 𝒜
cannot but guess the bit uniform-randomly, i.e.,

Pr[𝐷(𝑁, 𝑦) = 1] =
1

2

holds.

Since DCRA states that for all probabilistic polynomial-time algorithms
𝒜′, there exists a negligible function negl satisfying⃒⃒

Pr[𝒜′(𝑁, 𝑟𝑁 mod 𝑁2) = 1]− Pr[𝒜′(𝑁, 𝑟) = 1]
⃒⃒
≤ negl(𝑛),

the probabilistic polynomial-time algorithm 𝐷 must also satisfy the inequal-
ity above, implying that⃒⃒

Pr[𝐷(𝑁, 𝑟𝑁 mod 𝑁2) = 1]− Pr[𝐷(𝑁, 𝑟) = 1]
⃒⃒

=

⃒⃒⃒⃒
Pr[PubKcpa

𝒜,Π(𝑛) = 1]− 1

2

⃒⃒⃒⃒
≤negl(𝑛),

which concludes the proof.

2.3.5 Computation Time

Finally, we empirically examine the computation time for atomic crypto-
graphic operations of the Paillier cryptosystem: key generation, encryption,

49

Table 2.1: Computation time of basic operations of the Paillier cryptosystem.

Time [ms]
Key generation 𝑇keygen 45.2

Encryption 𝑇enc 10.14
Decryption 𝑇dec 9.63
Addition 𝑇add 0.01

Subtraction 𝑇sub 0.52

decryption, secure addition, and secure subtraction. We implemented the
Paillier cryptosystem in Java 1.8.0_45 and ran the algorithms on a Mac lap-
top with 2.6 GHz Intel Core i5 and 8 GB 1600 MHz DDR3 memory. We fix
the key length2 𝑘 = 1024 bits. We repeatedly execute the algorithms 100
times and report their mean values. The experimental results are summa-
rized in Table 2.1. These results will be used in Chapters 3 and 5 to estimate
the computation time of the protocols presented therein. Since the compu-
tation time of addition is much smaller than the other operations, we ignore
it in the computation time estimation.

2.4 Privacy Assumptions in Crowdsourcing

We conclude the preliminary section by defining the behavior of the entities
during executing a protocol and discussing the validity of the assumptions.

We assume that all entities (the platform, requesters, and workers) are
semi-honest and non-collusive, i.e., they follow a protocol and do not share
their records they obtain during the protocol, but they may try to infer other
entities’ sensitive information using their own records. We also assume that
all the communication channels are encrypted to ensure that an attacker
cannot eavesdrop the communication between any pair of entities.

The semi-honest assumption is reasonable assuming that the main pur-
pose of all the entities using crowdsourcing complies with the model defined
in Section 1.5.2. If an entity did not follow the protocol, the result of a
protocol would be meaningless, which would be inconvenient for all of those
involved. For example, in Chapter 3, the result of a protocol is a task as-
signment, and if some entity does not follow the protocol, the resultant task
assignment can be infeasible. In Chapter 4, the result of a protocol is task re-
sults. If task results are corrupted, the requester does not benefit from them
at all, and workers will not be able to receive the reward. In Chapter 5, the

2In our case, the key length corresponds to the bit length of prime numbers 𝑝 and 𝑞.

50

result of a protocol is a set of aggregated labels, which can be corrupted if
some entity does not follow the protocol. As a result, the requester cannot
obtain his/her target, the platform can lose faith from other entities, and
workers will not be rewarded.

The non-collusion assumption can be validated as follows. The platform
does not collude to any other entities because if the platform would try to
collude, but fail, the platform would develop a bad reputation that would
spread to all the entities, and the platform would suffer from it severely.
Other two entities cannot collude if they do not know each other in reality,
because the communication between them is defined by a software performing
a protocol, and no direct communication path exists. We believe it is also
possible to prevent two entities from sharing their information by engineering
a software to run a protocol.

51

52

Chapter 3

Privacy-Preserving Task
Assignment

3.1 Introduction

Many existing platforms are currently dealing with simple tasks, which do not
require workers to have special features such as skills and other attributes,
Recently, there has been growing interest in how to crowdsource feature-
dependent tasks, which can only be processed only by workers with specific
features. For example, an English-French translation task requires both En-
glish and French skills. As another example, let us consider a task involving
reporting whether an indicated building has any damage after a disaster. In
this case, it would be difficult for a worker far from the building to complete
the task, whereas a worker based closer to the building would be able to
perform the task (in this example, the worker’s location corresponds to the
feature). Since feature-dependent tasks include a number of practical tasks,
an increasing number of studies have been conducted to enable us to handle
such tasks to be easily processed via crowdsourcing.

One of the vital challenges a crowdsourcing platform specializing in feature-
dependent tasks needs to overcome is to improve the throughput of the plat-
form. The current practice of using open call assignments is not appropriate
for this purpose in that a worker with a special skill may choose a sim-
ple task; thus a feature-dependent task requiring this worker’s skill remains
unassigned, which can be a sub-optimal assignment. An obvious approach
to addressing this issue would be to compute optimal task assignment based
on the feature sets of the workers and the feature requirements of the tasks.
A platform with such knowledge would be able to globally maximize the
throughput of its crowdsourcing system.

53

In this study, we first point out the privacy issues affecting both the work-
ers and requesters in the task assignment strategy mentioned above. Workers
are requested to report their skills such as language abilities and program-
ming skills as well as their attributes such as their locations, minimum wages,
and working hours, and they may even have to disclose additional informa-
tion of a more personal nature. These features can be used to identify the
workers, infer sensitive information about them, expose them to physical
danger by revealing their location information, and introduce unfairness by
excessively favoring highly skilled and hardworking workers. Furthermore,
the privacy of requesters will also be compromised. Requesters have to report
the corresponding feature requirements, which can be used to identify them
and to reveal the contents of their tasks. Although several previous studies
have investigated privacy issues surrounding task assignments (Kazemi and
Shahabi, 2011, 2012b; To et al., 2014), their applicability is limited because
(i) they focus on location-based tasks and (ii) they aim to preserve the pri-
vacy of workers only. This indicates the need for the development of a task
assignment system for general tasks in which the privacy of both workers and
requesters is preserved.

We address the privacy issues by developing a private task assignment (PTA)
protocol. We set our goal at maximizing the number of feasible tasks with-
out asking each entity to disclose their features. We first note that the task
assignment problem without privacy requirements is reduced to a maximum
flow problem. Given this observation, PTA first constructs an assignment
network in which a maximum flow coincides with an optimal assignment.
Then, PTA computes the maximum flow on the assignment network to derive
the optimal task assignment. We utilize the Paillier cryptosystem (Paillier,
1999) to execute these two steps in a private way. Based on the security
offered by the Paillier cryptosystem, after execution of PTA, the platform
learns the optimal task assignment only, whereas none of the other entities
learn anything.

PTA has three main advantages compared to the previous approaches.
First, PTA outputs an optimal assignment without sacrificing the privacy
guarantee because it employs a cryptographic approach, rather than a per-
turbation approach (Kazemi and Shahabi, 2011, 2012a; To et al., 2014), to
guarantee privacy preservation. Therefore, we do not have to be concerned
about the privacy-utility trade-off of the perturbation approaches. Second,
PTA provides a practical cryptographic role assignment strategy. Although
most of the existing cryptographic studies do not specify how to assign roles,
we devise a general strategy to prepare the parties who play the roles so as to
elaborate the ability of PTA to be practical in crowdsourcing. The key idea is
to crowdsource some of the cryptographic roles of PTA without compromis-

54

ing any privacy. Third, we dedicate a privacy-preserving maximum flow part
of PTA specifically to task assignment setting, which is theoretically proven
to run eight times faster than the existing privacy-preserving maximum flow
protocol (Aly et al., 2013).

In summary, this research makes three main contributions. First, we point
out the privacy issues of both workers and requesters in a crowdsourcing task
assignment environment. Second, we develop a cryptographic solution called
PTA in which neither privacy nor accuracy is sacrificed. Third, we provide
a general strategy to assign cryptographic roles, which are mandatory to
deploy PTA in a real setting.

3.2 Private Task Assignment Problem

We first specify our crowdsourcing model based on the abstraction of crowd-
sourcing introduced in Section 1.5.2 and then formulate the private task
assignment problem, which is our main concern.

3.2.1 Crowdsourcing Model

Entities

As described in Section 1.5.2, our model consists of three types of entities:
requesters, workers, and a platform. We provide details about them that are
not described in Section 1.5.2 in the following paragraphs.

A requester uses crowdsourcing to have a task processed, which consists
of a job instruction and multiple instances. Assume for simplicity that each
requester submits one task, i.e., each task is associated with one requester.
Let 𝒯 = {𝑡𝑖 | 𝑖 ∈ [𝐼]} be a set of tasks, where 𝑡𝑖 is a task ID. We abuse
the notation to represent the requester who has task 𝑡𝑖 as requester 𝑡𝑖. In
Figure 3.1, task 𝑡1 is an English-German translation task, and task 𝑡2 is an
English-French translation task, in which an instance corresponds to an En-
glish text. We further assume that requester 𝑡𝑖 has two parameters: require-
ment vector r𝑖 ∈ {0, 1}𝐷 (𝐷 ≥ 1) and capacity 𝐿𝑖 ∈ Z+. The 𝑑-th dimension
of r𝑖 indicates whether task 𝑡𝑖 requires feature 𝑑 for completion (𝑟𝑖,𝑑 = 1) or
not (𝑟𝑖,𝑑 = 0). In Figure 3.1, dimensions 1, 2, and 3 are the requirements
of the English, French, and German skills, respectively. Since task 𝑡1 is an
English-German translation task, r1 =

[︀
1 0 1

]︀
holds. Capacity 𝐿𝑖 is the

number of instances of task 𝑡𝑖, indicating that the requester is willing to pro-
cess 𝐿𝑖 instances. Let us denote the set of all the parameters of the tasks by
𝒫𝒯 = {(𝑡𝑖, r𝑖, 𝐿𝑖) | 𝑖 ∈ [𝐼]}.

55

Worker w1�

W� Task t1�

r1
T=�

1 � English skill

0 � French skill

1 � German skill�

Task t2�

r2
T=�

1
1
0�

s1T=�
1
0
1�

can

perform�

cannot

perform�

Figure 3.1: Illustration of task feasibility. Worker 𝑤1 with both English
and German skills can complete task 𝑡1, but cannot complete task 𝑡2, which
requires French skills.

A worker performs the assigned tasks in exchange for reward. For exam-
ple, if a worker is assigned the translation task from English to German, the
worker receives English sentences from the requester, translates them into
German sentences, and sends them back to the requester to be rewarded.
Let 𝒲 = {𝑤𝑗 | 𝑗 ∈ [𝐽]} be a set of workers, where 𝑤𝑗 is a worker ID. As-
sume that each worker 𝑤𝑗 is associated with two parameters: feature vector
s𝑗 ∈ {0, 1}𝐷 and capacity 𝑀𝑗 ∈ Z+. The 𝑑-th element of s𝑗 indicates whether
worker 𝑤𝑗 has feature 𝑑 (𝑠𝑗,𝑑 = 1) or not (𝑠𝑗,𝑑 = 0). In Figure 3.1, worker
𝑤1 is fluent in English and German, but is not familiar with French. Note
that requirement and feature vectors share the semantics of each dimension.
For example, the first dimension of both vectors indicates the English skill
in Figure 3.1. Capacity 𝑀𝑗 is the maximum number of tasks that the worker
can afford to accept. Let us denote the set of parameters of all the workers
by 𝒫𝒲 = {(𝑤𝑗, s𝑗,𝑀𝑗) | 𝑗 ∈ [𝐽]}.

Task Feasibility

Task feasibility is defined by the parameters of the tasks and the workers.
We assume that worker 𝑤𝑗 can complete task 𝑡𝑖 if s𝑗 ≥ r𝑖 holds element-wise
and if capacity conditions hold. In Figure 3.1, worker 𝑤1 can complete task
𝑡1, but cannot complete task 𝑡2, because worker 𝑤1 does not have the French
skill. Definition 3.1 gives the definitions of a task assignment and a feasible
task assignment.

Definition 3.1 (Task assignment). Task assignment of size 𝐾 is defined as
a multiset 𝒜 := {(𝑤𝑗𝑘 , 𝑡𝑖𝑘) | 𝑘 ∈ [𝐾], 𝑖𝑘 ∈ [𝐼], 𝑗𝑘 ∈ [𝐽]}. If 𝒜 satisfies

56

1. |{𝑘 | 𝑖𝑘 = 𝑖}| ≤ 𝐿𝑖 for all 𝑖 ∈ [𝐼],

2. |{𝑘 | 𝑗𝑘 = 𝑗}| ≤𝑀𝑗 for all 𝑗 ∈ [𝐽],

3. s𝑗𝑘 ≥ r𝑖𝑘 for all 𝑘 ∈ [𝐾],

then the task assignment is referred to as a feasible task assignment.

Non-binary and Missing Features

Here we discuss how we enable our model to address non-binary and missing
features.

Non-binary features. Non-binary features can largely be converted into
binary features. We demonstrate this by converting two popular non-binary
features into binary features.

(i) A real number
Some may be willing to represent a feature by a real number instead
of a binary number to represent the degree of expertise. For example,
since a language skill can be measured by assigning a score based on a
test, this demands the use of real numbers for features. Let us denote
the degree of a skill of worker 𝑤𝑗 by 𝑥𝑗 ∈ [0, 1]. Then, quantizing [0, 1]
into multiple bins (four bins in this example), the continuous skill can
be represented as follows:

𝑠𝑗,1 = 1 if 𝑥𝑗 ∈ [0, 1.0],

𝑠𝑗,2 = 1 if 𝑥𝑗 ∈ [0.25, 1.0],

𝑠𝑗,3 = 1 if 𝑥𝑗 ∈ [0.5, 1.0],

𝑠𝑗,4 = 1 if 𝑥𝑗 ∈ [0.75, 1.0].

For example, a worker with skill 𝑥𝑗 = 0.7 sets his/her feature vector
s𝑗 =

[︀
1 1 1 0

]︀
. A requester 𝑟𝑖 who wants to hire a worker with skill

𝑥𝑗 ≥ 0.5 only has to set his/her requirement vector as[︀
𝑟𝑖,1 𝑟𝑖,2 𝑟𝑖,3 𝑟𝑖,4

]︀
=
[︀
0 0 1 0

]︀
.

(ii) Location information
The location information can also be encoded into binary features by
quantization. Assume that a target area (e.g., a country and a city)
is divided into 𝑁 districts. Then, by assigning the 𝑑-th dimension of

57

the feature vector to the 𝑑-th district, the feature vector of worker 𝑤𝑗

is composed as

𝑠𝑗,𝑑 = 1 if worker 𝑤𝑗 can go to the 𝑑-th district for work (∀𝑑 ∈ [𝑁]).

A requester 𝑟𝑖 who is willing to submit a task associated with the 𝑙-th
district only has to set his/her requirement vector as

𝑟𝑖,𝑑 =

{︃
1 if 𝑑 = 𝑙,

0 if 𝑑 ̸= 𝑙.

Missing features. Although a real crowdsourcing platform such as Up-
work provides us with an explicit feature representation of a worker’s skills,
the list of displayed skills may be incomplete, either in part or in total. One
approach to overcoming such incomplete or missing features is to estimate
them using workers’ work histories. Given results returned by multiple work-
ers processing the same task, a series of quality control methods (Dawid and
Skene, 1979; Whitehill et al., 2009; Welinder et al., 2010; Lease, 2011) al-
low us to infer the ability of each worker to carry out the task, 𝑥𝑗. Among a
number of quality control methods, a method developed by Kajino et al. (Ka-
jino et al., 2014a) is appropriate for this purpose because it can execute the
above inference privately. By applying the conversion technique above, the
estimated real-valued ability can be represented by a binary feature vector.

3.2.2 Problem Setting

A private task assignment problem (Problem 3.1) aims to obtain a maximum
feasible assignment without revealing the parameters of each worker and
requester under the privacy assumptions in crowdsourcing (Section 2.4). A
task assignment problem refers to the same problem setting without the
privacy requirements.

Problem 3.1 (Private task assignment problem). Given 𝒫𝒯 and 𝒫𝒲 , the
private task assignment problem entails obtaining a maximum feasible as-
signment between tasks and workers without allowing any entity to infer the
parameters of the others, under the privacy assumptions in Section 2.4.

3.3 Solution in a Non-Private Setting
In this section, we present a solution to the task assignment problem, a non-
privacy-preserving variant of our problem setting. Our approach reduces the

58

task assignment problem to a maximum flow problem and solves it by apply-
ing the push-relabel algorithm (Goldberg and Tarjan, 1988). The solution
described in this section is used as a basis for developing PTA.

3.3.1 Maximum Flow Problem

Let 𝑁 = (𝑉,𝐸,𝐶) be a network, where 𝑉 is a set of vertices including source
𝑠 and sink 𝑡, 𝐸 is a set of directed edges, and 𝐶 is a set of capacities. Capacity
𝑐𝑢,𝑣 ∈ Z+ is the upper limit of a flow from 𝑢 to 𝑣 (𝑢, 𝑣 ∈ 𝑉). If (𝑢, 𝑣) /∈ 𝐸,
we set 𝑐𝑢,𝑣 = 0. A flow on a network is defined as Definition 3.2. Note that
we consider an integer flow in this chapter.

Definition 3.2 (Flow). Flow 𝐹 on network 𝑁 = (𝑉,𝐸,𝐶) is a set of integers
{𝑓𝑢,𝑣 ∈ Z+ | (𝑢, 𝑣) ∈ 𝑉 × 𝑉 } satisfying the following conditions:

1. 𝑓𝑢,𝑣 ≤ 𝑐𝑢,𝑣, ∀(𝑢, 𝑣) ∈ 𝑉 × 𝑉 ,

2. 𝑓𝑢,𝑣 = −𝑓𝑣,𝑢, ∀(𝑢, 𝑣) ∈ 𝑉 × 𝑉 ,

3.
∑︀

𝑢:(𝑢,𝑣)∈𝐸 𝑓𝑢,𝑣 =
∑︀

𝑢:(𝑣,𝑢)∈𝐸 𝑓𝑣,𝑢, ∀𝑣 ∈ 𝑉 ∖{𝑠, 𝑡}.

The value of flow 𝐹 is defined as |𝐹 | = ∑︀𝑣:(𝑠,𝑣)∈𝐸 𝑓𝑠,𝑣.

Then, the maximum flow problem is defined as Problem 3.2.

Problem 3.2 (Maximum flow problem). Given network 𝑁 , the maximum
flow problem is to obtain flow 𝐹 whose value is maximal.

3.3.2 Reduction to a Maximum Flow Problem

We reduce the task assignment problem to a maximum flow problem by
constructing assignment network 𝑁 = (𝑉,𝐸,𝐶) such that a maximum flow
on 𝑁 coincides with a maximum task assignment. The following three steps
describe how to construct an assignment network given an instance of the
task assignment problem (𝒫𝒯 ,𝒫𝒲).

1. Let the set of vertices be 𝑉 := {𝑠, 𝑡} ∪ 𝒯 ∪ 𝒲 , where 𝑠 is the source
and 𝑡 is the sink.

2. Let the set of edges be 𝐸 = 𝐸1 ∪ 𝐸2 ∪ 𝐸3, in which we define

𝐸1 := {(𝑠, 𝑤𝑗) | 𝑤𝑗 ∈ 𝒲},
𝐸2 := {(𝑤𝑗, 𝑡𝑖) | 𝑤𝑗 ∈ 𝒲 , 𝑡𝑖 ∈ 𝒯 },
𝐸3 := {(𝑡𝑖, 𝑡) | 𝑡𝑖 ∈ 𝒯 }.

59

5�
5�

5�
0�

1 (=L1)�

1 (=L2)�

5 (=L3)�

5 (=M1)�

2 (=M2)�

s� t�
0�

5�

Worker w1
s1 = [1 1 0]�

W�

Worker w2
s1 = [1 0 1]�

W�

Task t1
r1 = [1 0 0]�

Task t2
r2 = [0 1 0]�

Task t3
r3 = [0 0 1]�

Figure 3.2: Network representation of the task assignment problem instance,
which we refer to as an assignment network.

3. We set the capacity of each edge (𝑠, 𝑤𝑗) ∈ 𝐸1 as 𝑐𝑠,𝑤𝑗
:= 𝑀𝑗, the

capacity of each edge (𝑤𝑗, 𝑡𝑖) ∈ 𝐸2 as

𝑐𝑤𝑗 ,𝑡𝑖 :=

{︃
𝑀⊤ (s𝑗 ≥ r𝑖),

0 (s𝑗 < r𝑖),

where 𝑀⊤ = max{max𝑖∈[𝐼] 𝐿𝑖,max𝑗∈[𝐽] 𝑀𝑗}, and the capacity of each
edge (𝑡𝑖, 𝑡) ∈ 𝐸3 is 𝑐𝑡𝑖,𝑡 := 𝐿𝑖. Let the set of all the capacities be 𝐶.

Figure 3.2 illustrates the assignment network construction. Suppose that
there are three tasks 𝒯 = {𝑡1, 𝑡2, 𝑡3} with the following parameters,

r1 =
[︀
1 0 0

]︀
, r2 =

[︀
0 1 0

]︀
, r3 =

[︀
0 0 1

]︀
, (𝐿1, 𝐿2, 𝐿3) = (1, 1, 5),

and that there are two workers𝒲 = {𝑤1, 𝑤2} with the following parameters,

s1 =
[︀
1 1 0

]︀
, s2 =

[︀
1 0 1

]︀
, (𝑀1,𝑀2) = (5, 2).

We first set edges from source 𝑠 to workers 𝑤1 and 𝑤2 with capacities 𝑀1

and 𝑀2, respectively. Then, we set edges from each worker to each task with
capacity 𝑀⊤ (= 5) if the worker has all the features required by the task;
otherwise, the capacity is set to 0. Finally, we set edges from tasks 𝑡1, 𝑡2,
and 𝑡3 to sink 𝑡 with capacities 𝐿1, 𝐿2, and 𝐿3, respectively.

60

Algorithm 3.1 Extracting an assignment from a flow.
Input: integer flow 𝐹 .
Output: assignment 𝒜.
1: 𝒜 ← ∅
2: for each 𝑤𝑗 ∈ 𝒲 and 𝑡𝑖 ∈ 𝒯 do
3: if 𝑓𝑤𝑗 ,𝑡𝑖 > 0 then
4: 𝒜 ← 𝒜∪ {(𝑤𝑗, 𝑡𝑖)}𝑓𝑤𝑗,𝑡𝑖

5: end if
6: end for
7: return 𝒜

A maximum assignment of (𝒫𝒯 ,𝒫𝒲) can be derived from a maximum
flow 𝐹 ⋆ on the corresponding assignment network using Algorithm 3.1. Propo-
sition 3.1 claims the correspondence. The proof of Proposition 3.1 appears
in Appendix A.1.

Proposition 3.1. Given a problem instance of the task assignment problem
(𝒫𝒯 ,𝒫𝒲), the corresponding assignment network 𝑁 , and a maximum flow
𝐹 ⋆ on 𝑁 , a solution to the task assignment problem is given by transforming
the maximum flow into a feasible assignment using Algorithm 3.1.

3.3.3 Push-Relabel Algorithm

The push-relabel algorithm (Goldberg and Tarjan, 1988) is a variant of max-
imum flow algorithms. It serves as an essential building block of our private
task assignment protocol. The push-relabel protocol updates two variables,
a preflow and heights, using the push and relabel operations. We first intro-
duce these internal variables and operations, and then, describe the generic
push-relabel algorithm.

Internal Variables

A preflow (Definition 3.3) is a relaxed flow in which for each vertex, the total
flow into the vertex can exceed the total flow out of the vertex.

Definition 3.3 (Preflow). Preflow 𝐹 on network 𝑁 = (𝑉,𝐸,𝐶) is a set of
integers {𝑓𝑢,𝑣 ∈ Z+ | (𝑢, 𝑣) ∈ 𝑉 ×𝑉 } satisfying the following three conditions:

1. 𝑓𝑢,𝑣 ≤ 𝑐𝑢,𝑣, ∀(𝑢, 𝑣) ∈ 𝑉 × 𝑉 ,

2. 𝑓𝑢,𝑣 = −𝑓𝑣,𝑢, ∀(𝑢, 𝑣) ∈ 𝑉 × 𝑉 ,

61

Operation 3.2 Push(𝑣, 𝑤).
1: if 𝑣 is active, (𝑣, 𝑤) ∈ 𝐸𝐹 , and ℎ𝑤 = ℎ𝑣 − 1 then
2: 𝛿 ← min{𝑒𝑣, 𝑐𝑣,𝑤 − 𝑓𝑣,𝑤}.
3: 𝑓𝑣,𝑤 ← 𝑓𝑣,𝑤 + 𝛿, 𝑓𝑤,𝑣 ← 𝑓𝑤,𝑣 − 𝛿, 𝑒𝑣 ← 𝑒𝑣 − 𝛿, and 𝑒𝑤 ← 𝑒𝑤 + 𝛿.
4: end if

3.
∑︀

𝑢:(𝑢,𝑣)∈𝐸 𝑓𝑢,𝑣 ≥
∑︀

𝑢:(𝑣,𝑢)∈𝐸 𝑓𝑣,𝑢, ∀𝑣 ∈ 𝑉 ∖{𝑠, 𝑡}.

Excess 𝑒𝑣 of vertex 𝑣 ∈ 𝑉 is the amount of overflow at vertex 𝑣, i.e.,

𝑒𝑣 :=
∑︁

𝑢∈𝑉 ∖{𝑣}

𝑓𝑢,𝑣.

A set of excesses is denoted by e ∈ Z|𝑉 |
+ . If 𝐹 is a preflow, 𝑒𝑣 ≥ 0 holds for

every vertex 𝑣 ∈ 𝑉 ∖{𝑠}. Vertex 𝑣 ∈ 𝑉 ∖{𝑠, 𝑡} is active if 𝑒𝑣 > 0, indicating
vertex 𝑣 is overflowing. Edge (𝑢, 𝑣) ∈ 𝑉 ×𝑉 is residual if 𝑐𝑢,𝑣−𝑓𝑢,𝑣 > 0. The
set of residual edges is denoted by 𝐸𝐹 .

Height ℎ𝑣 of vertex 𝑣 ∈ 𝑉 is a non-negative integer label, managing the
applicability of push and relabel operations. A set of heights is denoted by
h ∈ Z|𝑉 |

+ . Heights on network 𝑁 with preflow 𝐹 are valid if they satisfy the
following three conditions:

1. ℎ𝑢 ≤ ℎ𝑣 + 1 for each residual edge (𝑢, 𝑣) ∈ 𝐸𝐹 ,

2. ℎ𝑠 = |𝑉 |,

3. ℎ𝑡 = 0.

While in operation, the algorithm maintains the heights such that they are
valid. Intuitively, the valid heights retain approximate distances to the sink
or source. If ℎ𝑣 < |𝑉 |, ℎ𝑣 is a lower bound on the distance from 𝑣 to the
sink in the residual network, and if ℎ𝑣 ≥ |𝑉 |, ℎ𝑣 − |𝑉 | is a lower bound on
the distance from 𝑣 to the source in the residual network. The algorithm
harnesses the heights to distribute the overflow on an active vertex to the
neighboring vertex that seems to be the closest to the sink or the source.

Push and Relabel Operations

A push operation Push(𝑣, 𝑤) (𝑣, 𝑤 ∈ 𝑉) transfers the overflow on vertex 𝑣
to vertex 𝑤 as much as possible. Since it transfers the overflow on vertex 𝑣,
vertex 𝑣 must be active (𝑒𝑣 > 0), and edge (𝑣, 𝑤) must be residual (𝑐𝑣,𝑤 −
𝑓𝑣,𝑤 > 0). In addition, the height condition, ℎ𝑤 = ℎ𝑣 − 1, must be satisfied;

62

Operation 3.3 Relabel(𝑣).
1: if 𝑣 is active, and ℎ𝑣 ≤ ℎ𝑤 holds for all 𝑤 ∈ 𝑉 such that (𝑣, 𝑤) ∈ 𝐸𝐹

then
2: ℎ𝑣 ← min{ℎ𝑤 + 1 | (𝑣, 𝑤) ∈ 𝐸𝐹}
3: end if

the algorithm tries to transfer the overflow to the source or the sink through
the shortest path. Such vertex 𝑤 is expected to be the shortest because the
validity of the heights ensures that vertex 𝑢 such that ℎ𝑢 < ℎ𝑣 − 1 does not
exist. Operation 3.2 describes the push operation.

A relabel operation Relabel(𝑣) (𝑣 ∈ 𝑉) increases the height of vertex 𝑣 as
much as possible when the push operation cannot be applied to the vertex
because of the height condition. Application of the relabel operation requires
vertex 𝑣 to be active and that for all residual edges (𝑣, 𝑤) ∈ 𝐸𝐹 , ℎ𝑣 ≤ ℎ𝑤

holds. Operation 3.3 describes the relabel operation.

Generic Algorithm

The generic push-relabel algorithm first initializes the preflow and the heights
as

𝑓𝑠,𝑣 ← 𝑐𝑠,𝑣, 𝑓𝑣,𝑠 ← −𝑐𝑣,𝑠 (∀𝑣 ∈ 𝑉),

𝑓𝑢,𝑣 ← 0 (∀𝑢, 𝑣 ∈ 𝑉 ∖{𝑠}),
ℎ𝑠 ← |𝑉 |, ℎ𝑣 ← 0 (∀𝑣 ∈ 𝑉 ∖{𝑠}),

and initializes the excess using the preflow. It then repeatedly applies the
push and relabel operations in an arbitrary order until there exists no active
vertex. The resultant preflow is proven to be a maximum flow (Goldberg
and Tarjan, 1988).

3.4 Cryptographic Building Blocks

Next, we introduce cryptographic building blocks of PTA. All the cryp-
tographic building blocks are based on the Paillier cryptosystem (Paillier,
1999), which has been introduced in Section 2.3. In order to implement PTA,
we newly develop a conditional test, which executes an if-else statement of
the algorithm in a privacy-preserving way.

63

Table 3.1: Private inputs and outputs of the conditional test COND.

Party Private input Private output
Decryptor sk –

Operator Enc(𝑚1), Enc(𝑚2), Enc(𝑐)
Enc(𝑚1) if 𝑐 > 0,

Enc(𝑚2) otherwise.
Mixer – –

3.4.1 Data Structure

An encrypted network (Definition 3.4) stores the encryption of a network and
a flow using two matrices of size |𝑉 |×|𝑉 |. In particular, the encryption of an
assignment network with a flow is called an encrypted assignment network. It
represents the topological structure of a network by the capacities of edges; a
zero-capacity edge indicates that the edge does not exist. Therefore, without
the secret key, it neither leaks any information about the structure of the
network nor about its capacities, except for the size of the network.

Definition 3.4 (Encrypted network). Encrypted network Enc(𝑁) is defined
as Enc(𝑁) := (Enc(C),Enc(F)), where Enc(C) :=

[︀
Enc(𝑐𝑢,𝑣)

]︀
𝑢,𝑣∈𝑉 , and Enc(F) :=[︀

Enc(𝑓𝑢,𝑣)
]︀
𝑢,𝑣∈𝑉 are encryptions of the capacities and flow.

3.4.2 Conditional Test

We present a conditional test as a key sub-protocol of PTA, which outputs
one of two ciphertexts based on the encrypted condition without leaking any
information. Table 3.1 summarizes the parties and their private inputs and
outputs. Assume that there are three parties, an operator, a decryptor, and
a mixer. The operator has three ciphertexts Enc(𝑚1), Enc(𝑚2), and Enc(𝑐),
and only the decryptor retains the secret key. The private output of the
operator after executing the conditional test is

COND(Enc(𝑚1),Enc(𝑚2),Enc(𝑐)) =

{︃
Enc(𝑚1) (𝑐 > 0),

Enc(𝑚2) (𝑐 ≤ 0).

The conditional test can be used to implement a min protocol MIN:

MIN(Enc(𝑚1),Enc(𝑚2)) =

{︃
Enc(𝑚2) (𝑚1 > 𝑚2),

Enc(𝑚1) (𝑚1 ≤ 𝑚2).

The operator only has to set Enc(𝑐) := Enc(𝑚2 −𝑚1) in the conditional test
protocol. A max protocol MAX can be defined similarly. These protocols can

64

be extended to multiple ciphertexts {Enc(𝑚1), . . . ,Enc(𝑚𝑙)}; the parties only
have to repeat the protocol 𝑙 − 1 times.

In the following, we first review an inequality test protocol (Golle, 2006),
which serves as a building block of COND, before presenting the detailed
protocol of COND. Then, the correctness and security of COND are discussed.

Building Block: Inequality Test

The inequality test protocol INEQ (Golle, 2006) is executed by two parties:
the operator and the decryptor. The private input of the operator consists
of two ciphertexts Enc(𝑚1) and Enc(𝑚2), and that of the decryptor is secret
key sk. We assume that they know that both plaintexts satisfy 0 ≤ 𝑚1,𝑚2 ≤
𝐿− 1 for some 𝐿 > 0. The private output of the operator is defined as

INEQ(Enc(𝑚1),Enc(𝑚2)) =

{︃
1 (𝑚1 > 𝑚2),

0 (𝑚1 ≤ 𝑚2).

We review the procedure of INEQ intuitively. First, the operator creates
an ordered set 𝑆 = {Enc(𝑠𝜎(1)(𝑚𝜋(1)−𝑚𝜋(2)−𝜎(1))), . . . ,Enc(𝑠𝜎(𝐿−1)(𝑚𝜋(1)−
𝑚𝜋(2) − 𝜎(𝐿 − 1)))} using random permutations 𝜎 : [𝐿 − 1] → [𝐿 − 1] and
𝜋 : [2]→ [2] and uniformly random variables {𝑠𝑖}𝐿−1

𝑖=1 chosen by the operator.
Second, the operator sends 𝑆 to the decryptor, and the decryptor decrypts
the ciphertexts. If 𝑚𝜋(1) > 𝑚𝜋(2) holds, the decryptor obtains one 0 and 𝐿−2
uniformly random variables from the decryptions; otherwise, the decryptor
obtains 𝐿−1 uniformly random variables. The decryptor sends 1 to the oper-
ator if the decryptor obtains one 0; otherwise, s/he sends 0, and the operator
computes his/her private output by using the message from the decryptor
and 𝜋. After execution of the protocol, the decryptor learns nothing, and
the operator only learns whether 𝑚1 > 𝑚2.

Note that the inequality test protocol is grounded on the equality test
protocol EQTEST (Jakobsson and Schnorr, 1999; Lipmaa, 2003), which en-
ables the parties to determine whether 𝑚1 = 𝑚2 holds without leaking any
other information. By modifying the message sent by the operator in INEQ
with Enc(𝑠(𝑚1 − 𝑚2)), the parties learn whether 𝑚1 = 𝑚2. Since the in-
equality test protocol can be seen as 𝐿 − 1 repetitions of the equality test
protocol, we employ the equality test protocol to estimate the computation
time of the inequality test protocol in Section 3.4.3.

Protocol

The conditional test is implemented based on the inequality test as follows.

65

Table 3.2: Truth table of the conditional test in case of (a) 𝑐 > 0 and
(b) 𝑐 ≤ 0. The private output of the operator depends only on 𝑐, and is
independent of permutation 𝜎.

(a) 𝑐 > 0

(𝜎(1), 𝜎(2)) = (1, 2) (𝜎(1), 𝜎(2)) = (2, 1)

𝑎 1 0
Private output
of the operator

Enc(𝑚𝜎(1); 𝑟
′
𝜎(1),1)

= Enc(𝑚1)

Enc(𝑚𝜎(1); 𝑟
′
𝜎(2),1)

= Enc(𝑚1)

(b) 𝑐 ≤ 0

(𝜎(1), 𝜎(2)) = (1, 2) (𝜎(1), 𝜎(2)) = (2, 1)

𝑎 0 1
Private output
of the operator

Enc(𝑚𝜎(1); 𝑟
′
𝜎(2),1)

= Enc(𝑚2)

Enc(𝑚𝜎(1); 𝑟
′
𝜎(1),1)

= Enc(𝑚2)

1. The operator creates an ordered set 𝑆 of two vectors as follows and
sends 𝑆 to the mixer:

𝑆 =
{︀[︀

Enc(𝑚1; 𝑟1,1) Enc(𝑙1; 𝑟1,2)
]︀
,
[︀
Enc(𝑚2; 𝑟2,1) Enc(𝑙2; 𝑟2,2)

]︀}︀
,

where 𝑙1 = 2𝑐− 1, 𝑙2 = 0.

2. The mixer, receiving 𝑆, creates a shuffled and re-encrypted ordered set
𝑆 ′ as follows and sends 𝑆 ′ to the operator:

𝑆 ′ =
{︀[︀

Enc(𝑚𝜎(1); 𝑟
′
𝜎(1),1) Enc(𝑙𝜎(1); 𝑟

′
𝜎(1),2)

]︀
,[︀

Enc(𝑚𝜎(2); 𝑟
′
𝜎(2),1) Enc(𝑙𝜎(2); 𝑟

′
𝜎(2),2)

]︀}︀
,

where 𝜎 : [2]→ [2] is a random permutation.

3. The operator and decryptor compute

𝑎← INEQ
(︀
Enc(𝑙𝜎(1); 𝑟

′
𝜎(1),2),Enc(𝑙𝜎(2); 𝑟

′
𝜎(2),2)

)︀
.

4. The operator keeps Enc(𝑚𝜎(1); 𝑟
′
𝜎(1),1) if 𝑎 = 1 and keeps Enc(𝑚𝜎(2); 𝑟

′
𝜎(2),1)

if 𝑎 = 0, which is the private output of the operator.

66

Table 3.3: Computation time of the cryptographic building blocks of PTA. 𝐿
is the maximum of a plaintext, i.e., a plaintext 𝑚 must satisfy 0 ≤ 𝑚 ≤ 𝐿−1.

Time [ms]
Equality test 𝑇EQTEST 19.98
Inequality test 𝑇INEQ 19.98(𝐿− 1)

Conditional test 𝑇COND 40.56 + 19.98(𝐿− 1)
Min 𝑇MIN 41.08 + 19.98(𝐿− 1)

Correctness and Security

The correctness of the protocol can be validated by referring to Table 3.2. The
security of the protocol is stated as Proposition 3.2 based on the privacy defi-
nition in cryptography (Goldreich, 2004). Its proof is given in Appendix A.2.

Proposition 3.2 (Security of the conditional test). Let 𝑓COND be a function-
ality whose inputs and outputs are defined as in Table 3.1. Assume that the
Paillier cryptosystem is secure, i.e., the DCR assumption holds. Then, the
conditional test protocol COND privately computes 𝑓COND. In addition, the
operator cannot distinguish his/her private output from a random ciphertext.

3.4.3 Computation Time

We finally conclude this section by providing the computation time of the
cryptographic building blocks, i.e., EQTEST, INEQ, COND, and MIN. Since
all of the building blocks depend on EQTEST and the basic operations of the
Paillier cryptosystem, we first measure the computation time of EQTEST,
and then, estimate the computation time of the other operations based on the
computation time of EQTEST and the basic operations shown in Table 2.1.
The results are summarized in Table 3.3.

Equality Test (EQTEST)

EQTEST receives two ciphertexts as its input and outputs whether they
encrypt the same plaintext or not. The empirical estimate of its computation
time is

𝑇EQTEST = 19.98 ms,

which was evaluated in the same setting as Section 2.3.5.

67

Inequality Test (INEQ)

INEQ receives two ciphertexts and one plaintext 𝐿 restricting the range of
plaintexts and outputs which ciphertext is larger in the plaintext space.
Given the computation time of EQTEST, we are able to estimate that of
INEQ as

𝑇INEQ = (𝐿− 1)𝑇EQTEST

= 19.98(𝐿− 1) ms,

because INEQ executes EQTEST 𝐿− 1 times.

Conditional Test (COND)

COND receives three ciphertexts Enc(𝑚1), Enc(𝑚2), and Enc(𝑐) and out-
puts either Enc(𝑚1) or Enc(𝑚2) depending on whether 𝑐 > 0 or not. Since
COND consists of four encryptions (for re-encryption) and one INEQ, the
computation time of COND is estimated as

𝑇COND = 4𝑇enc + 𝑇INEQ

= 40.56 + 19.98(𝐿− 1) ms.

Min (MIN)

MIN receives two ciphertexts and outputs the smaller one, which is imple-
mented with COND. The computation time is estimated as

𝑇MIN = 𝑇COND + 𝑇sub

= 41.08 + 19.98(𝐿− 1) ms.

3.5 Private Task Assignment (PTA) Protocol
We present our private task assignment (PTA) protocol, which solves Prob-
lem 3.1. Table 3.4 summarizes the private inputs and outputs. PTA consists
of three parts.

1. The cryptosystem is initialized by the platform (who serves as a de-
cryptor), and two cryptographic roles, an operator and a mixer, are
recruited using crowdsourcing (Section 3.5.1).

2. The encrypted assignment network is constructed by all the parties (Sec-
tion 3.5.2).

68

Table 3.4: Private inputs and outputs of PTA.

Party Private input Private output
Requester 𝑡𝑖 r𝑖, 𝐿𝑖 –
Worker 𝑤𝑗 s𝑗, 𝑀𝑗 –

Decryptor (=platform) sk a maximum assignment 𝒜⋆

Operator – –
Mixer – –

3. The operator, the mixer, and the platform run a private push-relabel
protocol to obtain a maximum flow, and the platform extracts a max-
imum task assignment from the maximum flow (Section 3.5.3).

Sections 3.5.1, 3.5.2, and 3.5.3 present the detailed protocols as well as the
correctness of them, and Section 3.5.4 presents the security of the protocol.

Technical Contributions. Our protocol has three main technical contri-
butions.

First, PTA is theoretically guaranteed to output an optimal task assign-
ment to the crowdsourcing platform without any privacy invasion by making
full use of cryptography. On the other hand, the existing task assignment
methods for spatial crowdsourcing (Kazemi and Shahabi, 2011, 2012b; To
et al., 2014) rely on perturbation approaches, and therefore, they do not
usually output an optimal task assignment and/or preserve privacy perfectly.

Second, we invented a general strategy to assign cryptographic roles using
crowdsourcing, taking the security of it into consideration. As a result, most
of the entities are allowed to be offline in the main protocol. Contrary to this,
a standard cryptographic study often dismisses such an assignment of roles
despite its importance, because it is not easy to design the role assignment
such that the semi-honest and non-collusive assumptions are reasonable.

Third, we theoretically prove that the private push-relabel part of PTA is
eight times faster compared to the existing method (Aly et al., 2013), which
is intended for general networks. The key idea is that PTA specializes in an
assignment network only, rather than in general networks.

These contributions highlight the unique advantages of our protocol over
existing task assignment protocols and the existing private push-relabel pro-
tocol.

69

Table 3.5: Private inputs and outputs of the initialization of PTA.

Party Private input Private output
Requester 𝑡𝑖 r𝑖, 𝐿𝑖 r𝑖, Enc(r𝑖), Enc(𝐿𝑖)
Worker 𝑤𝑗 s𝑗, 𝑀𝑗 Enc(s𝑗), Enc(𝑀𝑗)

Decryptor (=platform) sk –
Operator – –

Mixer – –

3.5.1 Initialization

The first part of PTA assigns three cryptographic roles, a decryptor, an op-
erator, and a mixer, and sets up the Paillier cryptosystem.

Cryptographic Role Assignment

We first present our strategy to recruit the three cryptographic roles. The
decryptor is responsible for setting up the Paillier cryptosystem and decryp-
tion. We assign the decryptor to the platform, because the decryptor, who
holds the secret key, should be assigned to the most reliable entity. The op-
erator is responsible for most of the computation in PTA except decryption,
and the mixer executes the conditional test protocol with the operator. We
assign these two roles to workers via crowdsourcing. Because workers are as-
sumed not to be able to communicate with each other, crowdsourcing these
two roles does not violate the non-collusion assumption. In addition, since
the computation is performed automatically by a computer program, it is
quite unlikely that these entities would act in an adversarial way.

Protocol

The private inputs and outputs of the parties are summarized in Table 3.5.
Given the cryptographic role assignment, the decryptor generates the keys
(pk, sk) and broadcasts the public key pk to all the entities while keeping
the secret key sk. Each entity encrypts his/her parameters to generate
(Enc(s𝑗),Enc(𝑀𝑗)) for worker 𝑤𝑗 and (Enc(r𝑖),Enc(𝐿𝑖)) for requester 𝑡𝑖.

3.5.2 Private Network Construction

The second part of PTA constructs an encrypted assignment network.

70

Table 3.6: Private inputs and outputs of the private network construction.

Party Private input Private output
Requester 𝑡𝑖 r𝑖, Enc(r𝑖), Enc(𝐿𝑖) –
Worker 𝑤𝑗 Enc(s𝑗), Enc(𝑀𝑗) –
Decryptor sk –

Operator –
(Enc(C),Enc(F)),
(Enc(h),Enc(e))

Mixer – –

Protocol

The private inputs and outputs are summarized in Table 3.6. Steps 1, 2, and
3 construct the left, right, and middle parts, respectively, of the assignment
network in Figure 3.2.

Step 0: Initialization
Let 𝑉 = {𝑠, 𝑡} ∪ 𝒲 ∪ 𝒯 . The operator initializes the encrypted as-
signment network and the internal variables of the push-relabel algo-
rithm as Enc(C) ← [Enc(0)]𝑣,𝑤∈𝑉 , Enc(F) ← [Enc(0)]𝑣,𝑤∈𝑉 , Enc(h) ←
[Enc(0)]𝑣∈𝑉 , and Enc(e)← [Enc(0)]𝑣∈𝑉 .

Step 1: Edges from source 𝑠 to workers 𝒲
The first step is to set edges from source 𝑠 to each worker 𝑤𝑗. The
encrypted edges from source 𝑠 to workers 𝒲 can be computed by each
worker 𝑤𝑗 independently. Each worker 𝑤𝑗 sends Enc(𝑀𝑗) to the oper-
ator, and the operator updates the encrypted capacity of edge (𝑠, 𝑤𝑗)
as

Enc(𝑐𝑠,𝑤𝑗
)← Enc(𝑀𝑗) (∀𝑤𝑗 ∈ 𝒲).

Step 2: Edges from tasks 𝒯 to sink 𝑡
The second step is to set edges from each task 𝑡𝑖 to sink 𝑡. The en-
crypted edges from tasks 𝒯 to sink 𝑡 can be computed by each requester
𝑡𝑖 independently. Each requester 𝑡𝑖 sends Enc(𝐿𝑖) to the operator, and
the operator updates the encrypted capacity of edge (𝑡𝑖, 𝑡) as

Enc(𝑐𝑡𝑖,𝑡)← Enc(𝐿𝑖) (∀𝑡𝑖 ∈ 𝒯).

Step 3: Edges from workers 𝒲 to tasks 𝒯
The third step is to set edges from each worker 𝑤𝑗 to each task 𝑡𝑖.
This step requires the cooperation of the workers and the requesters.

71

We employ the following lemma to compute the capacity in a privacy-
preserving way. The proof is provided in Section 3.5.2.

Lemma 3.1. Given a skill vector s𝑗 ∈ {0, 1}𝐷 of worker 𝑤𝑗 and a
requirement vector r𝑖 ∈ {0, 1}𝐷 of task 𝑡𝑖, the value ‖r𝑖‖22− s𝑗 · r𝑖 equals
the number of features that worker 𝑤𝑗 does not have, but are required
by task 𝑡𝑖.

Then, the capacity of (𝑤𝑗, 𝑡𝑖) can be computed as follows. First, the
parties compute Enc(𝑀⊤) using MAX. Second, each worker 𝑤𝑗 sends
Enc(s𝑗) to all the requesters.1 Third, each requester 𝑡𝑖, upon receiving
{Enc(s𝑗)}𝑗∈[𝐽], computes

Enc(‖r𝑖‖22 − s𝑗 · r𝑖) =
𝐷∏︁

𝑑=1

Enc(𝑟2𝑖,𝑑) ·
𝐷∏︁

𝑑=1

Enc(𝑠𝑗,𝑑)
−𝑟𝑖,𝑑 (3.1)

for each 𝑗 ∈ [𝐽], and sends them to the operator.2 Finally, for each
𝑤𝑗 ∈ 𝒲 and 𝑡𝑖 ∈ 𝒯 , the operator, decryptor, and mixer update capacity
𝑐𝑤𝑗 ,𝑡𝑖 as

Enc(𝑐𝑤𝑗 ,𝑡𝑖)← COND(Enc(0),Enc(𝑀⊤),Enc(‖r𝑖‖22 − s𝑗 · r𝑖)). (3.2)

After these three steps, the operator initializes the encrypted internal
variables of the push-relabel algorithm, Enc(F), Enc(e), and Enc(h) as

Enc(𝑓𝑠,𝑣)← Enc(𝑐𝑠,𝑣), Enc(𝑒𝑣)← Enc(𝑐𝑠,𝑣) (∀𝑣 ∈ 𝑉 ∖{𝑠}),
Enc(ℎ𝑠)← Enc(|𝑉 |), Enc(ℎ𝑡)← Enc(0),

Enc(ℎ𝑤𝑗
)← Enc(2) (∀𝑤𝑗 ∈ 𝒲), Enc(ℎ𝑡𝑖)← Enc(1) (∀𝑡𝑖 ∈ 𝒯).

Correctness

We prove the correctness of the private network construction. Because
Steps 1 and 2 set edges 𝐸1 and 𝐸3, respectively, of the encrypted assign-
ment network in an obvious way, we only validate Step 3, which sets edges
𝐸2 of the encrypted assignment network. First, we prove Lemma 3.1 in the
following.

1Subsequent to this procedure, the workers are permitted to go offline.
2Subsequent to this procedure, the requesters may also go offline.

72

Table 3.7: Truth table of (𝑟𝑖,𝑑 − 𝑠𝑗,𝑑) · 𝑟𝑖,𝑑.

𝑠𝑗,𝑑 = 0 𝑠𝑗,𝑑 = 1

𝑟𝑖,𝑑 = 0 0 0
𝑟𝑖,𝑑 = 1 1 0

Proof of Lemma 3.1. Given that

‖r𝑖‖22 − s𝑗 · r𝑖 = (r𝑖 − s𝑗) · r𝑖 =
𝐷∑︁

𝑑=1

(𝑟𝑖,𝑑 − 𝑠𝑗,𝑑) · 𝑟𝑖,𝑑, (3.3)

we only have to evaluate the summand of Equation (3.3). The truth table
of the summand (Table 3.7) shows that the summand equals 1 if and only if
worker 𝑤𝑗 does not have the 𝑑-th feature whereas task 𝑡𝑖 requires it. There-
fore, ‖r‖22 − s · r equals the number of skills that the worker does not have,
but the task requires.

The validation of Step 3 finishes by showing that a requester can com-
pute Equation (3.1) and that Equation (3.2) correctly sets capacity 𝑐𝑤𝑗 ,𝑡𝑖 .
Requester 𝑡𝑖 can compute Equation (3.1) because s/he has plaintext r𝑖 and ci-
phertexts {Enc(s𝑗)}𝑗∈[𝐽]. In Equation (3.2), 𝑐𝑤𝑗 ,𝑡𝑖 is set to 0 if ‖r𝑖‖22−s𝑗 ·r𝑖 > 0,
i.e., worker 𝑤𝑗 cannot complete task 𝑡𝑖, and 𝑐𝑤𝑗 ,𝑡𝐼 is set to 𝑀⊤ if worker 𝑤𝑗

can complete task 𝑡𝑖. Therefore, the private network construction is proven
to be correct.

3.5.3 Private Push-Relabel Protocol

Our private push-relabel protocol is executed by the decryptor, operator, and
mixer to compute an encrypted maximum flow based on the push-relabel
algorithm. We first introduce two techniques to convert the push-relabel
algorithm to preserve privacy, and then present building blocks of the private
push-relabel protocol. Finally, we present the main protocol as well as its
correctness.

Two Techniques to Convert Algorithms to Preserve Privacy

We present two techniques to compile push and relabel operations to be
private.

The first technique is to introduce null operations. In the original op-
erations, the operation halts if any of the applicability conditions (e.g., 𝑣
is active) does not hold; otherwise, the operation proceeds. However, this

73

branch leaks substantial information. For example, if the push operation
from vertex 𝑣 to vertex 𝑤 does not halt, it indicates that there exists edge
(𝑣, 𝑤), vertex 𝑣 is active, and so on. We avoid such information leakage by
performing a null operation if applicability conditions do not hold. In spe-
cific, if the applicability conditions do not hold, our private push protocol
sends Enc(0) flow to a neighboring vertex, and our private relabel protocol
increases the height by Enc(0).

The second technique is to replace the if-else structure by COND. In
detail, the following if-else statement combined with the null operation tech-
nique,
1: if 𝑎 > 0 then
2: 𝑏← 𝑐
3: else
4: 𝑏← 𝑏
5: end if

can be made private using COND as
1: Enc(𝑏)← COND(Enc(𝑐),Enc(𝑏),Enc(𝑎)).

Building Blocks

Here, we present the building blocks of the private push-relabel protocol,
referred to as the private push protocol and private relabel protocol.

The private push protocol Push𝑝(𝑣, 𝑤) (Protocol 3.4) executes the push
operation Push(𝑣, 𝑤) (Operation 3.2) in a privacy-preserving way. Line 2
computes the temporary flow value from vertex 𝑣 to 𝑤, Enc(𝑓 ′), assuming
that the applicability conditions hold. Then, following the techniques intro-
duced above, line 3 updates Enc(𝑓𝑣,𝑤) to Enc(𝑓 ′) or keeps Enc(𝑓𝑣,𝑤) depending
on the height condition ℎ𝑣 = ℎ𝑤 + 1. Note that other applicability condi-
tions, 𝑒𝑣 > 0 and (𝑣, 𝑤) ∈ 𝐸𝐹 , can be disregarded; if either one of them
or neither of them hold, 𝑓 ′ = 𝑓𝑣,𝑤 also holds, which coincides with the null
push operation. Finally, line 4 updates other variables Enc(𝑓𝑤,𝑣), Enc(𝑒𝑣),
and Enc(𝑒𝑤).

The private relabel protocol Relabel𝑝(𝑣) (Protocol 3.5) executes the rela-
bel operation Relabel(𝑣) (Operation 3.3) in a privacy-preserving way. Lines
1–6 compute the temporary height of vertex 𝑣, Enc(ℎ′

𝑣), assuming the appli-
cability conditions hold. We compute Enc(ℎ′

𝑣) by creating a set of encrypted
heights, 𝑆𝑣, such that MIN(𝑆𝑣) = Enc(ℎ′

𝑣) holds. We make use of the fact
that 0 ≤ ℎ𝑣 ≤ |𝑉 | + 2 always holds for all 𝑣 ∈ 𝑉 in case of assignment
networks (see Lemma A.1 in Appendix A.3). For each vertex 𝑤 ∈ 𝒲 ∪ {𝑡},
the protocol adds Enc(ℎ𝑤 + 1) to 𝑆𝑣 if (𝑣, 𝑤) ∈ 𝐸𝐹 , and adds Enc(|𝑉 | + 3)

74

Protocol 3.4 Push𝑝(𝑣, 𝑤).
Parties: operator, decryptor, and mixer.
1: Operator sets Enc(𝑓old)← Enc(𝑓𝑣,𝑤).
2: Parties compute Enc(𝑓 ′) as

Enc(𝑓 ′)← MIN(Enc(𝑐𝑣,𝑤),Enc(𝑓𝑣,𝑤 + 𝑒𝑣)).

3: Parties compute

Enc(𝑓 ′′)← COND(Enc(𝑓𝑣,𝑤),Enc(𝑓 ′),Enc(ℎ𝑣 − ℎ𝑤 − 1)),

Enc(𝑓𝑣,𝑤)← COND(Enc(𝑓𝑣,𝑤),Enc(𝑓 ′′),Enc(ℎ𝑤 − ℎ𝑣 + 1)).

4: Operator updates

Enc(𝑒𝑣)← Enc(𝑒𝑣 − 𝑓𝑣,𝑤 + 𝑓old),

Enc(𝑒𝑤)← Enc(𝑒𝑤 + 𝑓𝑣,𝑤 − 𝑓old),

Enc(𝑓𝑤,𝑣)← Enc(−𝑓𝑣,𝑤).

Table 3.8: Private inputs and outputs of the private push-relabel protocol.

Party Private input Private output
Decryptor sk 𝒜⋆

Operator (Enc(C),Enc(F)), (Enc(h),Enc(e)) –
Mixer – –

otherwise; adding Enc(|𝑉 |+ 3) to 𝑆𝑣 does not have any influence on the out-
put of MIN(𝑆𝑣). After computing the temporal height Enc(ℎ′

𝑣), line 7 checks
the applicability conditions to update Enc(ℎ𝑣). The first operation rejects
the update unless 𝑒𝑣 > 0, and the second operation rejects the update unless
ℎ𝑣 + 1 ≤ ℎ′

𝑣, i.e., unless ℎ𝑣 ≤ ℎ𝑤 for all 𝑤 ∈ 𝑉 such that (𝑣, 𝑤) ∈ 𝐸𝐹 .

Main Protocol

Protocol 3.6 describes the main protocol of our private push-relabel protocol.
Table 3.8 summarizes the private inputs and outputs.

First, the operator shuffles the order of 𝒲 and 𝒯 arbitrarily. Then,
the parties sequentially choose worker 𝑤𝑗 ∈ 𝒲 according to the order of 𝒲 ,
apply the private relabel protocol to 𝑤𝑗, apply the private push protocol from
worker 𝑤𝑗 to source 𝑠, and apply the private push protocol from worker 𝑤𝑗 to
each task 𝑡𝑖 ∈ 𝒯 . Then, the parties sequentially choose task 𝑡𝑖 ∈ 𝒯 according

75

Protocol 3.5 Relabel𝑝(𝑣).
Parties: operator, decryptor, and mixer.
1: Operator initializes set 𝑆𝑣 ← ∅.
2: for each 𝑤 ∈ 𝒲 ∪ {𝑡} do
3: Parties compute Enc(ℎ′) as

COND(Enc(ℎ𝑤 + 1),Enc(|𝑉 |+ 3),Enc(𝑐𝑣,𝑤 − 𝑓𝑣,𝑤)).

4: Operator updates 𝑆𝑣 ← 𝑆𝑣 ∪ {Enc(ℎ′)}.
5: end for
6: Parties compute Enc(ℎ′

𝑣)← MIN(𝑆𝑣).
7: Parties compute Enc(ℎ𝑣) as

Enc(ℎ′′
𝑣)← COND(Enc(ℎ′

𝑣),Enc(ℎ𝑣),Enc(𝑒𝑣)),

Enc(ℎ𝑣)← COND(Enc(ℎ𝑣),Enc(ℎ′′
𝑣),Enc(ℎ𝑣 − ℎ′′

𝑣 + 1)).

to the order of 𝒯 , apply the private relabel protocol to 𝑡𝑖, apply the private
push protocol from task 𝑡𝑖 to sink 𝑡, and apply the private push protocol
from task 𝑡𝑖 to each worker 𝑤𝑗 ∈ 𝒲 . The protocol stops after repeating the
above procedures

𝐾 = |𝒲||𝒯 |
(︂⌈︂ |𝑉 | − 1

2

⌉︂
+ 1

)︂
(|𝑉 |+ 2) + |𝒲|(2|𝑉 |+ 1) + |𝒯 |(2|𝑉 |+ 3)

times regardless of the input network. Finally, the operator sends Enc(F) to
the platform, and the platform extracts an assignment from it.

Correctness

We prove the correctness of our private push-relabel protocol. As the private
push and relabel protocols are essentially the same as the original operations,
we only have to prove that the number of iterations 𝐾 in Protocol 3.6 is
sufficient for convergence.

We derive the sufficient number of iterations by first evaluating the upper
bounds on the numbers of push and relabel operations on assignment net-
works. Taking advantage of the structure of assignment networks, we derive
new upper bounds in Corollaries A.1 and A.2 that are tighter than those
proved by Goldberg and Tarjan (Goldberg and Tarjan, 1988) for general net-
works. Corollary A.1 states that the upper bound on the number of relabel

76

operations is

|𝒲|(|𝑉 | − 1) + |𝒯 |(|𝑉 |+ 1).

Corollary A.2 states that the upper bound on the number of push operations
is

(|𝑉 |+ 2)

[︂
|𝒲||𝒯 |

(︂⌈︂ |𝑉 | − 1

2

⌉︂
+ 1

)︂
+ |𝒲|+ |𝒯 |

]︂
.

Given these corollaries, 𝐾 iterations are sufficient to obtain a maximum flow,
because at each iteration, if maximum flow is not achieved, there exists at
least one vertex to which either the non-null push or relabel operation is
applicable (see Lemma 2.1 (Goldberg and Tarjan, 1988)).

The number of iterations required by PTA is much smaller than that of
the existing protocol (Aly et al., 2013), which requires

(2|𝑉 | − 1)(|𝑉 | − 2) + 2|𝑉 ||𝐸|+ 4|𝑉 |2|𝐸|

iterations in the main loop of Protocol 3.6. Comparing the coefficient of the
leading terms, |𝑉 |2|𝐸|, the existing one has 4, whereas our protocol has 1/2,
indicating that our protocol is eight times faster.

3.5.4 Security

This section discusses the security of PTA based on the cryptographic defini-
tion (Goldreich, 2004). Given the functionality of PTA described in Table 3.4,
the security is stated as Theorem 3.1.

Theorem 3.1 (Security of PTA). Let 𝑓PTA be a functionality whose inputs
and outputs are defined as Table 3.4. PTA privately computes 𝑓PTA.

PTA consists of three parts; thus, we employ the following lemmata, each
of which states the security of each individual part.

Lemma 3.2 (Security of the initialization). Let 𝑓init be a functionality whose
inputs and outputs are defined as Table 3.5. The initialization of PTA pri-
vately computes 𝑓init.

Lemma 3.3 (Security of private network construction (PNC)). Let 𝑓PNC

be a functionality whose inputs and outputs are defined as Table 3.6. The
private network construction privately computes 𝑓PNC.

Lemma 3.4 (Security of private push-relabel (PPR) protocol). Let 𝑓PPR be a
functionality whose inputs and outputs are defined as Table 3.8. The private
push-relabel protocol privately computes 𝑓PPR.

77

Given these lemmata, it is straightforward to prove Theorem 3.1 because
the private outputs of the initialization and PNC are ciphertexts that do not
leak any information without the secret key. The proofs of the lemmata are
provided in Appendix A.2.2.

3.6 Computation Time of PTA and Accelera-
tion Methods

Finally, we conclude this section by making an estimate of the computation
time of PTA and discuss several acceleration methods.

3.6.1 Computation Time of PTA

We evaluate the cryptographic computational overhead of PTA, which domi-
nates the computation time of the whole procedure. We utilize the estimates
shown in Tables 2.1 and 3.3. Our evaluation of the computation time de-
pends on the range of the plaintext space 𝐿, the number of features 𝐷, and
the number of workers and tasks, |𝒲| and |𝒯 |. In the following, we substitute
all of these parameters by 100 for clarification purposes.

Initialization

The initialization step involves one key generation and (𝐷 + 1)(|𝒲| + |𝒯 |)
encryptions. Therefore, the computation time required by the initialization
step is

𝑇init = 𝑇keygen + (𝐷 + 1)(|𝒲|+ |𝒯 |)𝑇enc

= 207 seconds ≈ 3.5 minutes.

Private Network Construction

The private network construction involves |𝒲||𝒯 | operations of COND and
2|𝑉 |2 + 2|𝑉 | encryptions. Therefore, the computation time required by the
private network construction is

𝑇PNC = |𝒲||𝒯 |𝑇COND + (2|𝑉 |2 + 2|𝑉 |)𝑇enc

= 2.10× 104 seconds ≈ 5.83 hours.

78

Private Push-Relabel Protocol

The private push-relabel protocol consists of the private push and private re-
label protocols. We first estimate the computation time of these components
individually.

∙ Private Push Protocol (Push𝑝(𝑣, 𝑤))
The private push protocol consists of one MIN, five subtraction oper-
ations, and two COND operations. Therefore, the computation time
is

𝑇Push = 𝑇MIN + 2𝑇COND + 5𝑇sub

= 6.06 seconds.

∙ Private Relabel Protocol (Relabel𝑝(𝑣))
The private relabel protocol consists of |𝒲|+ 3 COND, |𝒲| MIN, and
|𝒲|+ 2 subtract operations. Therefore, the computation time is

𝑇Relabel = (|𝒲|+ 3)𝑇COND + |𝒲|𝑇MIN + (|𝒲|+ 2)𝑇sub

= 4.10× 102 seconds ≈ 7 minutes.

Then, we estimate the computation time of the private push-relabel pro-
tocol in total. One iteration of the private push-relabel protocol consists of
2|𝒲||𝒯 |+ |𝒲|+ |𝒯 | (= 20200) push operations and |𝒲|+ |𝒯 | (= 200) relabel
operations. Therefore, one iteration of PTA requires 2.04×105 seconds, which
approximately equals 57 hours. Since the number of iterations required by
the private push-relabel protocol is 𝐾 = 2.08× 108 times, the private push-
relabel protocol requires 4.24× 1013 seconds ≈ 1.34× 104 centuries.

3.6.2 Acceleration Techniques

As we have seen in the previous section, the full computation of the private
push-relabel protocol is infeasible. This section discusses two approaches to
accelerating the protocol: (i) to reduce the computation time of one iteration
and (ii) to reduce the number of iterations.

Reduction of the Computation Time of One Iteration

The computation time of one iteration of the private push-relabel protocol
can be reduced by introducing parallel computing. Because we recruit cryp-
tographic roles using crowdsourcing, the number of parties in the protocol is
highly-scalable. Considering that the decryptor (i.e., the platform) is likely

79

to have much computational power, it is possible to parallelize the conditional
test protocol itself into multiple parties and execute it multiple times at the
same time. In the following, we discuss these two ideas of parallelization.

The first idea is to parallelize the inequality test in the conditional test
protocol. Assume that the decryptor has multiple CPUs and we have the
same number of operators. The parallel conditional test protocol is defined as
follows. Each of the operators independently creates each part of the ordered
set 𝑆 and sends it to the representative operator. The representative operator
constructs 𝑆 and sends it to the decryptor. Finally, the decryptor decrypts
each encryption in 𝑆 using the multiple CPUs in parallel and returns bit 𝑎
to the operator. For example, if we have ten CPUs and ten operators, the
computation time of the parallel conditional test protocol will be

𝑇COND = 1.98× 102 ms.

The second idea is to execute the conditional test protocol multiple times
at the same time. Assume that we have multiple sets of parties. Then,
lines 2–5 of Protocol 3.5 can be independently computed by multiple sets of
parties. In addition, the min protocol (line 6) can be computed in parallel
using the divide-and-conquer approach. For example, if we have ten sets of
parties, the computation time of the private relabel protocol will be

𝑇Relabel = 11𝑇COND + 15𝑇MIN + 12𝑇sub.

By combining these two ideas, the computation time of the private push
and private relabel protocols with 100 CPUs, 100 operators, and 10 mixers
will be

𝑇Push = 𝑇MIN + 2𝑇COND + 5𝑇sub = 5.97× 102 ms,

𝑇Relabel = 11𝑇COND + 15𝑇MIN + 2𝑇sub = 5.16 seconds,

and the computation time of one iteration of the private push-relabel protocol
will be 218 minutes.

Reduction of the Number of Iterations

The number of iterations can be reduced by means of the following two ideas.
The first idea is to examine the convergence of the push-relabel protocol at
the end of every iteration (between lines 16 and 17 in Protocol 3.6), allowing
a little breach of privacy. The convergence is examined by executing the
following inequality test:

INEQ

⎛⎝Enc

⎛⎝∑︁
𝑤𝑗∈𝒲

𝑒𝑤𝑗
+
∑︁
𝑡𝑖∈𝒯

𝑒𝑡𝑖

⎞⎠ ,Enc(0)

⎞⎠ .

80

The push-relabel protocol converges if and only if the output is 0. Note
that the encryption of the sum of excesses can be easily computed by the
operator. The second idea is to halt the protocol earlier than 𝐾 iterations.
After halting, the platform can obtain a feasible assignment by executing
Protocol 3.7.

Both ideas are rooted in the expectation that the number of iterations
required for convergence is actually much smaller than the upper bound
on it, 𝐾. We experimentally validate this expectation by examining the
approximation ratio3 at each iteration on randomly generated assignment
networks; our ideas are validated if the approximation ratio approaches 1.0
much earlier than 𝐾.

The experimental procedure is as follows. We first set the size of an
assignment network as (|𝒲|, |𝒯 |) = (100, 100) or (|𝒲|, |𝒯 |) = (500, 500) and
generate a random assignment network as follows:

1. For each worker 𝑤𝑗, we draw 𝑀𝑗 from Uniform([100]).

2. For each task 𝑡𝑖, we draw 𝐿𝑖 from Uniform([100]).

3. For each worker 𝑤𝑗 and task 𝑡𝑖, we set edge (𝑤𝑗, 𝑡𝑖) with probability
0.6.

Then, we execute the push-relabel protocol and examine the size of the fea-
sible assignment at each iteration. We repeat this procedure 1, 000 times to
compute the mean and standard deviation of the approximation ratio at each
iteration.

Figure 3.3 shows the experimental results. It suggests that 30 iterations
are sufficient to obtain the maximum flow if |𝒲| = |𝒯 | = 100 and 100 iter-
ations if |𝒲| = |𝒯 | = 500, both of which are significantly smaller than 𝐾.
In addition, the small standard deviations imply that this result does not
much depend on the realization of the random assignment network, which
suggests that preliminary experiments with synthetic data enable us to guess
the number of iterations necessary for convergence. Based on the experimen-
tal results, we conclude that both of our ideas are effective solutions to make
PTA feasible.

By combining the parallization and early-stopping techniques, the 4.5-day
computation of PTA will be enough to obtain an optimal task assignment
for the network with |𝒲| = |𝒯 | = 100.

3Letting 𝑂 be the size of the task assignment given by an approximation algorithm
and letting 𝑂⋆ be that given by the exact algorithm, the approximation ratio is defined
as 𝑂/𝑂⋆.

81

20 40 60 80 100
#(iterations)

0.0

0.2

0.4

0.6

0.8

1.0

A
pp

ro
xi

m
at

io
n

ra
tio

(a) |𝒲| = |𝒯 | = 100.

20 40 60 80 100
#(iterations)

0.0

0.2

0.4

0.6

0.8

1.0

A
pp

ro
xi

m
at

io
n

ra
tio

(b) |𝒲| = |𝒯 | = 500.

Figure 3.3: Approximation ratio at each iteration. The 𝑥- and 𝑦-axes corre-
spond to the number of iterations and the approximation ratio, respectively.
The error bars represent the standard deviations.

82

3.7 Summary and Future Work
We point out the privacy issues affecting both workers and requesters in
crowdsourcing task assignment. Assigning tasks to appropriate workers ne-
cessitates collecting the features of the tasks as well as those of the work-
ers, whose privacy may be invaded. We present a private task assignment
protocol that outputs an optimal assignment while preserving their privacy.
Noting that the task assignment problem can be reduced to the maximum
flow problem, our protocol first constructs a network whose maximum flow
coincides with an optimal assignment, and then computes a maximum flow
on the network, both of which are executed in a privacy-preserving way. Af-
ter the execution of our protocol, the crowdsourcing platform only learns the
optimal assignment, whereas none of the other parties learn anything.

An interesting direction for future work would be to incorporate a more
sophisticated task assignment algorithm. For example, Bragg et al. 2014
have introduced a probabilistic crowdsourcing model in which workers return
correct answers with a probability proportional to their skills. In this model,
the objective function differs from ours, in that it requires another algorithm
to be made private to compute an optimal assignment.

Another promising research direction would be to integrate our protocol
with other privacy-preserving crowdsourcing protocols. For example, the
research in Chapter 5 provides a privacy-preserving method to estimate skills
of workers in crowdsourcing, which can be used as feature vectors of workers
in our setting.

83

Protocol 3.6 Push-Relabel𝑝(Enc(𝑁)).
Parties: operator, decryptor, and mixer.
Private output of platform: maximum task assignment 𝒜⋆.
1: Operator shuffles the order of workers and tasks 𝒲 , 𝒯 and sets

𝐾 ← |𝒲||𝒯 |
(︂⌈︂ |𝑉 | − 1

2

⌉︂
+ 1

)︂
(|𝑉 |+ 2) + |𝒲|(2|𝑉 |+ 1) + |𝒯 |(2|𝑉 |+ 3).

2: for 𝑘 = 1, . . . , 𝐾 do ◁ Main loop of our private push-relabel protocol.
3: for each 𝑤𝑗 ∈ 𝒲 do
4: Parties execute Relabel𝑝(𝑤𝑗).
5: Parties execute Push𝑝(𝑤𝑗, 𝑠).
6: for each 𝑡𝑖 ∈ 𝒯 do
7: Parties execute Push𝑝(𝑤𝑗, 𝑡𝑖).
8: end for
9: end for

10: for each 𝑡𝑖 ∈ 𝒯 do
11: Parties execute Relabel𝑝(𝑡𝑖).
12: Parties execute Push𝑝(𝑡𝑖, 𝑡).
13: for each 𝑤𝑗 ∈ 𝒲 do
14: Parties execute Push𝑝(𝑡𝑖, 𝑤𝑗).
15: end for
16: end for
17: end for
18: Operator sends Enc(F) to platform.
19: Platform initializes 𝒜⋆ ← ∅. ◁ Extract an assignment from the flow.
20: for each edge (𝑤𝑗, 𝑡𝑖) ∈ 𝒲 × 𝒯 do
21: Platform decrypts Enc(𝑓𝑤𝑗 ,𝑡𝑖).
22: Platform updates 𝒜⋆ ← 𝒜⋆ ∪ {(𝑤𝑗, 𝑡𝑖)}𝑓𝑤𝑗,𝑡𝑖 .
23: end for

84

Protocol 3.7 Post-processing for the early-stopping approach
Parties: operator, decryptor, and mixer.
Private output of platform: feasible task assignment 𝒜⋆.
1: for each 𝑡𝑖 ∈ 𝒯 do ◁ Convert an assignment to be feasible.
2: for each 𝑤𝑗 ∈ 𝒲 do
3: Operator sets Enc(𝑓old)← Enc(𝑓𝑡𝑖,𝑤𝑗

).
4: Parties compute Enc(𝑓 ′) as

Enc(𝑓 ′)← MIN(Enc(𝑐𝑡𝑖,𝑤𝑗
),Enc(𝑓𝑡𝑖,𝑤𝑗

+ 𝑒𝑡𝑖)).

5: Operator updates

Enc(𝑒𝑡𝑖)← Enc(𝑒𝑡𝑖 − 𝑓𝑡𝑖,𝑤𝑗
+ 𝑓old),

Enc(𝑒𝑤𝑗
)← Enc(𝑒𝑤𝑗

+ 𝑓𝑡𝑖,𝑤𝑗
− 𝑓old),

Enc(𝑓𝑤𝑗 ,𝑡𝑖)← Enc(−𝑓𝑡𝑖,𝑤𝑗
).

6: end for
7: end for
8: Operator sends Enc(F) to platform.
9: Platform initializes 𝒜⋆ ← ∅. ◁ Extract an assignment.

10: for each edge (𝑤𝑗, 𝑡𝑖) ∈ 𝒲 × 𝒯 do
11: Platform decrypts Enc(𝑓𝑤𝑗 ,𝑡𝑖).
12: Platform updates 𝒜⋆ ← 𝒜⋆ ∪ {(𝑤𝑗, 𝑡𝑖)}𝑓𝑤𝑗,𝑡𝑖 .
13: end for

85

86

Chapter 4

Instance-Privacy Preservation

4.1 Introduction
Crowdsourcing entails the invasion of instance privacy1 as pointed out in
Section 1.5.3. A worker must access task instances in order to complete a
task, which enables the worker to extract sensitive information from them.
For example, consider a task to transcribe audio recordings of business meet-
ings, where an audio recording corresponds to an instance. The content
of such a recording includes confidential information of companies. Besides
this example, there exist many other tasks whose instances contain sensitive
information, such as a task to digitize hand-written texts and a task to de-
tect objects in images. Therefore, there is a strong demand on developing a
method to submit tasks with instance-privacy preserved.

There are two research lines to cope with instance privacy: theoretical and
practical studies. Varshney (2012) studied a theoretical aspect of instance-
privacy, aiming to establish a mathematical model of the random perturba-
tion approach. Little and Sun (2011) proposed a practical protocol tailored
for a human OCR task, whose objective is to digitize handwritten medical
forms. They leverage a template of a medical form to decompose each form
into items such as a name, an address, and a medical history. This decom-
position prevents a worker from linking a personal identifier (e.g., name) and
its property (e.g., medical history).

To summarize the existing work, a general and practical instance-privacy-
preserving (IPP) protocol2 is still underexplored, and a lack of performance
measures for IPP protocols hinders us from investigating generally-applicable

1Instance privacy is defined as a state that sensitive information contained in an in-
stance is not revealed.

2An IPP protocol poses preprocessed instances to workers so as to preserve instance
privacy whilst enabling a worker to perform a task on instances.

87

IPP protocols. Since privacy preservation usually comes at a price of utility,
the quantification of the trade-off between them is essential to examine the
applicability of an IPP protocol to a specific pair of a task and a privacy defi-
nition, to tune parameters of it, and to compare the performance of multiple
IPP protocols. However, there exists no performance evaluation scheme for
IPP protocols in a crowdsourcing setting, as far as we know. To this end, we
set our research goal to develop a practical performance measure for an IPP
protocol.

The main difficulty in quantifying utility and privacy of IPP protocols
is that any algorithm evaluating them must incorporate humans in it. In a
crowdsourcing setting, instances are used to generate results as specified by a
task instruction, and only a human can execute the task and invade instance
privacy. Since the output is specified, the utility should be measured by the
quality of results, which requires responses by humans. Further, the invasion
of instance privacy is also performed only by humans, and therefore, the
intervention of humans is inevitable. In this light, the performance evaluation
of IPP protocols requires responses from workers, which makes it impossible
to employ existing evaluation algorithms.

In this chapter, we present an utility-privacy trade-off analyzer (UPTA)
for IPP protocols. Given an IPP protocol, a set of instances, and the defini-
tions of a task and privacy, UPTA measures the utility and the privacy of the
IPP protocol. The utility is quantified by the quality degradation of results
after applying an IPP protocol, and the privacy is quantified by the amount
of the sensitive information contained in instances preprocessed by the IPP
protocol. Our main idea is to model the task execution and the privacy
invasion as sampling of a result and sensitive information from probability
distributions. The models can be empirically estimated by simulating the
task execution and the privacy invasion using a real crowdsourcing platform.
Given the models, we are able to quantify both utility and privacy using
divergence-based measures such as the Kullback-Leibler divergence.

As a case study of UPTA, we investigate the properties of an instance
clipping (IC) protocol, employing a task to detect heads in an image and
defining the activity of a person in an image as instance privacy. The IC
protocol is a generalization of the protocols developed by Little and Sun
(2011). It preserves instance privacy by clipping instances with a window
of a fixed size. We design two experiments to demonstrate the effectiveness
and validity of UTA. The first experiment applies UPTA to investigate the
properties of the IC protocol. The experimental result shows that the IC
protocol can preserve privacy without much degrading the quality of results.
In specific, it reduces the amount of information leakage to 0.6 times of
that without privacy preservation while the quality loss of applying the IC

88

Protocol 4.1 Crowdsourcing with privacy invasion.
Input: instance 𝑖.
Output of a requester: result 𝑟.
Output of a worker: sensitive information 𝑠.
1: The requester submits a task with instance 𝑖.
2: A worker samples result 𝑟 from 𝑝𝑡(𝑅 | 𝐼 = 𝑖).
3: The worker returns result 𝑟 to the requester.
4: The worker extracts sensitive information 𝑠 from 𝑝𝑝(𝑆 | 𝐼 = 𝑖).

protocol is 1.1 times of that without the IC protocol. We further discuss how
to determine the parameter of the IC protocol. In the second experiment, we
examine the validity of UPTA by comparing the utility computed by UPTA
and standard measures that can be computed in this special case. Since both
scores have similar trends including outlier-like behavior, we conclude that
the score provided by UPTA is valid.

4.2 Crowdsourcing Model

We specify the crowdsourcing model used in this chapter based on the ab-
straction of crowdsourcing introduced in Section 1.5.2. At the initial state,
a requester has instance 𝑖 ∈ ℐ and is willing to obtain result 𝑟 ∈ ℛ of per-
forming a task on instance 𝑖, where ℐ and ℛ are sets of possible instances
and results, respectively. For example, when a task is to give yes if an im-
age contains a face, and no otherwise, the image corresponds to an instance,
and the label {yes/no} corresponds to a result. The task request procedure
in crowdsourcing is modeled as Protocol 4.1. The protocol starts when the
requester submits a task with instance 𝑖 ∈ ℐ (line 1 in Protocol 4.1). It in-
volves the following two processes: task execution and privacy invasion, each
of which is described in the following sections.

4.2.1 Task Execution

The worker, receiving instance 𝑖, performs the task on instance 𝑖 to generate
result 𝑟 and returns the result to the requester (lines 2 and 3 in Protocol 4.1).
This process is modeled by the task execution model (Definition 4.1). Let
us represent a task by a conditional probability distribution over the set of
results given an instance, 𝑝𝑡(𝑅 | 𝐼), which we call a task execution model.3

3We use capital letters for random variables and the corresponding lowercase letters
for realizations of them.

89

Then, the task execution process given instance 𝑖 is modeled as sampling
from 𝑝𝑡(𝑅 | 𝐼 = 𝑖). We assume that only a human can sample results from
the model.

Definition 4.1 (Task execution model). Let instance 𝐼 and result 𝑅 be ran-
dom variables whose ranges are ℐ and ℛ. Let us represent a task by a condi-
tional probability distribution 𝑝𝑡(𝑅 | 𝐼), which we call a task execution model.
Then, the execution of the task given instance 𝑖 ∈ ℐ is modeled as sampling
from 𝑝𝑡(𝑅 | 𝐼 = 𝑖).

4.2.2 Privacy Invasion

Aside from the task execution, the worker extracts sensitive information from
the instance (line 4 in Protocol 4.1). Assuming that the definition of sensitive
information is given, let us denote a set of possible sensitive values as 𝒮 and
a sensitive value of instance 𝑖 as 𝑠 ∈ 𝒮. For example, if an instance is an
image, 𝒮 may correspond to a set of possible actions that the person in the
image is engaged in. Noticing that privacy invasion can be interpreted as task
execution by regarding a sensitive value as a result, this process is modeled
as shown in Definition 4.2 in the same way as Definition 4.1.

Definition 4.2 (Privacy invasion model). Let instance 𝐼 and sensitive value
𝑆 be random variables whose ranges are ℐ and 𝒮. Let us represent a privacy
invasion by a conditional probability distribution 𝑝𝑝(𝑆 | 𝐼), which we call a
privacy invasion model. Then, the privacy invasion given instance 𝑖 ∈ ℐ is
modeled as sampling from 𝑝𝑝(𝑆 | 𝐼 = 𝑖).

4.2.3 Validity of the Models

Modeling the process as sampling from a probability distribution is justified
considering that the quality of a result varies depending on the ability of the
worker and the difficulty of the instance, as often stated in the literature of
the quality control problem in crowdsourcing (Lease, 2011). We introduce a
probability distribution to capture the uncertainty. Furthermore, our model
is essential in case of a subjective task such as a questionnaire task, which
does not necessarily have a single ground truth.

Our model is more general than standard probabilistic models of task
execution, e.g., the model proposed by Dawid and Skene (1979), in that the
details of a process such as the ability of a worker are not explicitly modeled.
Since the performance measures introduced in the next section are built based
on our models, the generality is indispensable so as to keep the applicability
of our performance measures.

90

W�

W�

Input� NPP protocol� Output�

Input� IPP protocol� Output�

Head�
Running�

Head�
Fishing�

Figure 4.1: Illustration of a non-privacy-preserving (NPP) protocol and an
instance-privacy preserving (IPP) protocol. Both protocols share the input
and outputs (a label framed by solid lines is a result, and that framed by
broken lines is a sensitive value). The IPP protocol involves preprocessing of
an instance to preserve instance privacy (clipping, in this case), which alters
both task execution and privacy invasion models.

4.3 Utility-Privacy Trade-Off Analyzer (UPTA)

We present our framework called the utility-privacy trade-off analyzer (UPTA),
which evaluates the performance on both utility and privacy of an instance-
privacy-preserving (IPP) protocol. Given an IPP protocol and the defini-
tions of a task and privacy, UPTA computes the quality degradation of a
result (utility) and the amount of information leakage (privacy).

4.3.1 Instance-Privacy-Preserving (IPP) Protocol

The standard crowdsourcing process we have introduced in Protocol 4.1 takes
an instance 𝑖 ∈ ℐ as its input and outputs a result 𝑟 ∈ ℛ and a sensitive
value 𝑠 ∈ 𝒮. We call Protocol 4.1 a non-privacy-preserving (NPP) protocol to
emphasize that it is ignorant of the instance-privacy problem. An instance-
privacy preserving (IPP) protocol has the same input and output with the
NPP protocol as shown in Figure 4.1. Due to the instance-privacy-preserving
function in the IPP protocol (clipping, in Figure 4.1), it has different task
execution and privacy invasion models from those of the NPP protocol. In
the following, the privacy invasion model and task execution model of an

91

NPP protocol are denoted by 𝑝𝑡(𝑅 | 𝐼) and 𝑝𝑝(𝑆 | 𝐼), and those of an IPP
protocol are denoted by 𝑝′𝑡(𝑅 | 𝐼; 𝜃) and 𝑝′𝑝(𝑆 | 𝐼; 𝜃), where 𝜃 ∈ Θ represents
the parameter of the IPP protocol.

4.3.2 Task Information Loss

A task information loss (Definition 4.3) quantifies the quality by measuring
how much the quality of a result degrades when we apply the IPP protocol
instead of the NPP protocol. A small task information loss indicates that
the task performance is preserved even after applying a privacy preservation
technique.

Definition 4.3 (Task information loss). Given a task execution model of the
NPP protocol 𝑝𝑡(𝑅 | 𝐼) and that of the IPP protocol 𝑝′𝑡(𝑅 | 𝐼; 𝜃), the task
information loss is defined as

𝐿𝑡(𝑝𝑡, 𝑝
′
𝑡) := E𝑝(𝐼)[KL(𝑝𝑡(𝑅 | 𝐼) ‖ 𝑝′𝑡(𝑅 | 𝐼; 𝜃))],

where KL(𝑝 ‖ 𝑞) is the KL divergence of 𝑞 from 𝑝, and 𝑝(𝐼) is a probability
distribution over ℐ.

The task information loss has two main advantages over standard mea-
sures such as precision, recall, and accuracy scores. First, the task informa-
tion loss can be applied to various types of task results with little modifi-
cation. A task result can be either a multi-class label, an integer, or a real
number depending on a task definition. The task information loss can be
calculated for them simply by changing the probability distributions. On
contrary, a standard measure is basically task-specific, and therefore, it is
not applicable generally. Second, the task information loss can be applied
to even a subjective task, for example, a survey task whose objective is to
collect subjective opinions of people. On contrary, standard measures can-
not be applied to a subjective task because the ground truths for subjective
opinions cannot be defined.

4.3.3 Privacy Information Gain

A privacy information gain (Definition 4.4) quantifies the privacy by mea-
suring how much sensitive information can be extracted from instances when
the IPP protocol is used. It captures the uninformativeness of an instance
posed to a worker in the IPP protocol. A small privacy information gain
indicates that the instance and the sensitive value are almost independent,
and therefore, the sensitive information cannot be learned from the instance.

92

Definition 4.4 (Privacy information gain). Given a privacy invasion model
of the IPP protocol 𝑝′𝑝(𝑆 | 𝐼; 𝜃), the privacy information gain is defined as

𝐿𝑝(𝑝
′
𝑝) := E𝑝(𝐼)[KL(𝑝′𝑝(𝑆 | 𝐼; 𝜃) ‖ 𝑝′𝑝(𝑆; 𝜃))],

which is the mutual information of 𝑆 and 𝐼.

The privacy information gain is the first criterion to evaluate the amount
of privacy leakage in a crowdsourcing setting, to the best of our knowledge.
The standard measures are not suitable for this purpose, because they con-
sider that privacy is preserved even when a worker extracts an incorrect
sensitive value from an instance, implying that they do not satisfy the un-
informativeness principle (Machanavajjhala et al., 2007), which is used in
privacy preserving data publishing (Fung et al., 2010). The uninformative
principle roughly states that published data should give little additional in-
formation beyond the background knowledge of an attacker. The privacy in-
formation gain reflects this principle by employing the mutual information.
The privacy information gain can penalize the case when workers extract
an incorrect sensitive value from an instance; a malicious worker can harm
others using even an incorrect sensitive value.

4.3.4 Empirical Estimation

These performance measures can be estimated empirically. We apply the
plug-in estimation using the empirical estimation of probability distributions.
For each instance 𝑖, we repeatedly execute the protocol 𝑀 times to obtain 𝑀
samples {𝑟(𝑚)}𝑚∈[𝑀] from 𝑝𝑡(𝑅 | 𝐼 = 𝑖). Then, for each instance 𝑖 and result
𝑟, we calculate an empirical estimation of 𝑝𝑡(𝑅 | 𝐼 = 𝑖) using an additive
smoothing as

𝑝𝑡(𝑅 = 𝑟 | 𝐼 = 𝑖) ∝
⃒⃒{︀
𝑚 ∈ [𝑀] | 𝑟 = 𝑟(𝑚)

}︀⃒⃒
+ 𝜏, (4.1)

where 𝜏 (> 0) is a smoothing parameter. Given a set of instances at hand
{𝑖1, . . . , 𝑖𝑁}, the distribution over a set of possible instances 𝑝(𝐼) is estimated
as

𝑝(𝐼) =
1

𝑁

𝑁∑︁
𝑛=1

I [𝐼 = 𝑖𝑛] . (4.2)

Other probability distributions can also be empirically calculated in the same
way.

93

4.3.5 Properties

Assume that a requester has an option to use an IPP protocol to have his/her
task processed or not to use it with the task remaining unprocessed. If s/he
uses the IPP protocol, s/he will acquire a certain amount of utility from
task results, and at the same time, will suffer some loss because of privacy
invasion by workers. In this section, we estimate both quantities based on the
task information loss and privacy information gain, showing that minimizing
the task information loss implies maximizing the lower-bound of the utility
and minimizing the privacy information gain implies minimizing the upper-
bound of the privacy loss. Since these statements hold for any utility and
loss functions, which are often unknown to the requester, our performance
measures are useful proxies valid for various purposes.

Assume that there exists a utility function 𝑈𝑡(𝑅, 𝐼) (> 0), which encodes
the utility the requester obtains when the result of processing instance 𝐼 is
𝑅. Then, the expected utility of using the IPP protocol is defined as

E𝑝(𝐼)E𝑝′𝑡(𝑅|𝐼;𝜃) [𝑈𝑡(𝑅, 𝐼)] . (4.3)

Equation (4.3) is lower-bounded as follows:

E𝑝(𝐼)E𝑝′𝑡(𝑅|𝐼;𝜃) [𝑈𝑡(𝑅, 𝐼)]

=E𝑝(𝐼)E𝑝𝑡(𝑅|𝐼)

[︂
𝑈𝑡(𝑅, 𝐼)

𝑝′𝑡(𝑅 | 𝐼; 𝜃)

𝑝𝑡(𝑅 | 𝐼)

]︂
=E𝑝(𝐼)E𝑝𝑡(𝑅|𝐼)

[︂
exp

(︂
log

(︂
𝑈𝑡(𝑅, 𝐼)

𝑝′𝑡(𝑅 | 𝐼; 𝜃)

𝑝𝑡(𝑅 | 𝐼)

)︂)︂]︂
≥ exp

(︂
E𝑝(𝐼)E𝑝𝑡(𝑅|𝐼)

[︂
log

(︂
𝑈𝑡(𝑅, 𝐼)

𝑝′𝑡(𝑅 | 𝐼; 𝜃)

𝑝𝑡(𝑅 | 𝐼)

)︂]︂)︂
= exp

(︀
E𝑝(𝐼)E𝑝𝑡(𝑅|𝐼) [log𝑈𝑡(𝑅, 𝐼)]

)︀
· 𝑒−𝐿𝑡(𝑝𝑡(𝑅|𝐼),𝑝′𝑡(𝑅|𝐼;𝜃)),

which implies that, for any utility function, minimizing the task information
loss by tweaking 𝜃 indirectly maximizes the utility.

In a similar way, assume that there exists a privacy loss function 𝑈𝑝(𝑆, 𝐼) (>
0), which encodes the loss to the requester when workers disclose that the
sensitive information of instance 𝐼 is 𝑆. The expected additional privacy loss
the requester suffers by using the IPP protocol is

E𝑝(𝐼)E𝑝′𝑝(𝑆|𝐼;𝜃) [𝑈𝑝(𝑆, 𝐼)]− E𝑝(𝐼)E𝑝′𝑝(𝑆;𝜃) [𝑈𝑝(𝑆, 𝐼)] , (4.4)

assuming that workers have the background knowledge of the sensitive infor-

94

mation 𝑝′𝑝(𝑆; 𝜃). Equation (4.4) is upper-bounded as follows:

E𝑝(𝐼)E𝑝′𝑝(𝑆|𝐼;𝜃) [𝑈𝑝(𝑆, 𝐼)]− E𝑝(𝐼)E𝑝′𝑝(𝑆;𝜃) [𝑈𝑝(𝑆, 𝐼)]

=
∑︁
𝑆,𝐼

𝑝′𝑝(𝑆 | 𝐼; 𝜃)𝑝(𝐼)

(︂
1− 𝑝′𝑝(𝑆; 𝜃)𝑝(𝐼)

𝑝′𝑝(𝑆 | 𝐼; 𝜃)𝑝(𝐼)

)︂
𝑈𝑝(𝑆, 𝐼)

≤max
𝑆,𝐼

𝑈𝑝(𝑆, 𝐼)− exp
(︁
E𝑝′𝑝(𝑆|𝐼;𝜃)𝑝(𝐼) [log𝑈𝑝(𝑆, 𝐼)]

)︁
𝑒−𝐿𝑝(𝑝′𝑝)

≤max
𝑆,𝐼

𝑈𝑝(𝑆, 𝐼)−
(︂

min
𝑆,𝐼

𝑈𝑝(𝑆, 𝐼)

)︂
𝑒−𝐿𝑝(𝑝′𝑝),

which implies that minimizing the privacy information gain indirectly mini-
mizes the additional privacy loss the requester undergoes.

4.3.6 Breaking the Trade-Off

Given a set of IPP protocols (including protocols with different parameters),
it is often a serious problem to determine the protocol we use. This sec-
tion discusses how to use UPTA to break the trade-off and choose the best
one. Among a number of approaches to breaking the trade-off, we especially
focus on one of the simplest approaches called a threshold-based approach,
which minimizes a privacy risk while preserving a utility loss within a cer-
tain threshold. We introduce several formulations of the threshold-based
approach based on UPTA.

The basic formulation is to solve the following optimization problem:

minimize𝜃∈Θ 𝐿𝑝(𝑝
′
𝑝(𝑆, 𝐼; 𝜃))

subject to 𝐿𝑡(𝑝𝑡(𝑅 | 𝐼), 𝑝′𝑡(𝑅 | 𝐼; 𝜃)) ≤ 𝐿𝑡,
(4.5)

where we denote the maximum tolerable task information loss given by the
requester by 𝐿𝑡. This formulation allows us to obtain the best parameter
𝜃⋆1 that is not dependent on the definitions of the utility and privacy loss
functions, 𝑈𝑡(𝑅, 𝐼) and 𝑈𝑝(𝑆, 𝐼).

Another formulation is to incorporate the utility function 𝑈𝑡(𝑅, 𝐼) the
requester has, which boils down to the following optimization problem:

minimize𝜃∈Θ 𝐿𝑝(𝑝
′
𝑝(𝑆, 𝐼; 𝜃))

subject to E𝑝(𝐼)E𝑝𝑡(𝑅|𝐼) [𝑈𝑡(𝑅, 𝐼)]− E𝑝(𝐼)E𝑝′𝑡(𝑅|𝐼;𝜃) [𝑈𝑡(𝑅, 𝐼)] ≤ 𝑈𝑡,
(4.6)

where we denote the maximum tolerable task information loss given by the
requester by 𝑈𝑡. The optimization problem (4.6) is advantageous to the
optimization problem (4.5) when the requester has a solid definition of the

95

utility function. Further, if the requester is familiar with the utility function
rather than the task information loss, the formulation (4.6) is easier for the
requester to determine the threshold 𝑈𝑡 than 𝐿𝑡. Note that it is possible to
substitute the expected utility by its lower-bound, which leads to the first
optimization problem. This substitution provides an easy way to set the
maximum tolerable task information loss 𝐿𝑡 from 𝑈𝑡.

In addition to the threshold-based approach, it is possible to select the
protocol by optimizing the profit of the requester:

maximize𝜃∈Θ E𝑝(𝐼)E𝑝′𝑡(𝑅|𝐼;𝜃) [𝑈𝑡(𝑅, 𝐼)]

−
(︁
E𝑝(𝐼)E𝑝′𝑝(𝑆|𝐼;𝜃) [𝑈𝑝(𝑆, 𝐼)]− E𝑝(𝐼)E𝑝′𝑝(𝑆;𝜃) [𝑈𝑝(𝑆, 𝐼)]

)︁
.

(4.7)

Considering that the objective function (4.7) is lower-bounded by

exp
(︀
E𝑝(𝐼)E𝑝𝑡(𝑅|𝐼) [log𝑈𝑡(𝑅, 𝐼)]

)︀
· 𝑒−𝐿𝑡(𝑝𝑡(𝑅|𝐼),𝑝′𝑡(𝑅|𝐼;𝜃))

−
(︂

max
𝑆,𝐼

𝑈𝑝(𝑆, 𝐼)−
(︂

min
𝑆,𝐼

𝑈𝑝(𝑆, 𝐼)

)︂
𝑒−𝐿𝑝(𝑝′𝑝)

)︂
,

(4.8)

it is also possible to substitute the objective function (4.7) by the lower-
bound (4.8).

The use of lower-bounds has two advantages. First, the lower-bounds have
much fewer parameters than the original objective functions, and therefore,
it is easy for the requester to configure the parameters. Second, we are
able to estimate the objective function just given the task information loss
and privacy information gain. This advantage allows the requester to select
the IPP protocols preliminarily given the task information loss and privacy
information gain other researchers have computed.

4.4 Instance Clipping Protocol

We present an instance clipping (IC) protocol, which is used in a case study
of UPTA. The IC protocol preserves instance privacy by clipping an instance
with a fixed-size window, instead of relying on a blank template (Little and
Sun, 2011). In this sense, the IC protocol is regarded as a generalization
of the method proposed by Little and Sun (2011). Figure 4.2 illustrates
the IC protocol along with the terminology we use. This section gives the
formal description of the IC protocol as well as the qualitative analysis of the
protocol, which will be examined in the experiment using UPTA.

96

Task: A[η] contains

a head or not?

Instance I = (A, η)�
Sub-instances�

A[η]�

Apply a clipping function�

C/2�

C�

Clipping window�

C/2�

Array� Target

window�

Figure 4.2: Illustration of the IC protocol. (Left) An instance consists of a
pair of array 𝐴 and target window 𝜂. A worker is asked to check whether
𝐴[𝜂] (the rectangle framed by magenta broken lines) contains a head or not.
(Middle) Given instance 𝐼 = (𝐴, 𝜂), a clipping window of size 𝐶 (a rectangle
framed by blue dotted lines) is moved in steps of 𝐶/2 so long as the clipping
window contains the target window. A clipping function clips the instance
with each clipping window to generate sub-instances. (Right) All the sub-
instances are used to submit a task.

4.4.1 Task Assumption: Array-Labeling Task

The target task of the IC protocol is an array-labeling task: a task to examine
whether part of an array indicated by a window satisfies a particular condition
or not. A number of tasks belong to this class of tasks, including a task to
transcribe an audio recording, a task to detect objects in an image, and a
task to digitize hand-written documents. As an illustration, Figure 4.2 (left)
depicts a task to detect human heads in an image.

In the following, we give the formal definition of the array-labeling task.
We assume that an instance 𝑖 = (𝐴, 𝜂) consists of a 𝐷-dimensional array 𝐴
and a window 𝜂 on the array, which is defined as a set of indices of the array.
We call 𝐴 an array and 𝜂 a target window. We further assume that a result
𝑅 is a label on the sub-array 𝐴[𝜂], where 𝐴[𝜂] denotes the sub-array clipped
by 𝜂. In Figure 4.2 (left), an array corresponds to an image, a target window
to a specific region of the image (the rectangle framed by magenta broken
lines), and a result to a label indicating whether 𝐴[𝜂] contains a head or not.

97

4.4.2 Main Protocol

The IC protocol receives an instance (𝐴, 𝜂) as an input and outputs a set
of results. It first clips the instance using a clipping function to generate
multiple sub-instances as shown in Figure 4.2. Then, it asks multiple workers
to perform the task on the sub-instances. Finally, it outputs the results
obtained from the workers. In the following, we first define the clipping
function, and then, describe the protocol in details.

A clipping function, given instance 𝑖 = (𝐴, 𝜂) and a clipping window of
size 𝐶, generates a sub-instance by clipping the instance with the clipping
window. Definition 4.5 formalizes the notion of the clipping function. We
require that the clipping window includes the target window 𝜂.

Definition 4.5 (Clipping function). Given instance 𝑖 = (𝐴, 𝜂), and a clip-
ping window 𝜔 such that 𝜔 ⊇ 𝜂, a clipping function 𝜑(𝑖;𝜔) is defined as

𝜑(𝑖;𝜔) := (𝐴[𝜔], 𝜂) (=: 𝑖[𝜔]).

We call 𝐴[𝜔] a sub-array and 𝑖[𝜔] = (𝐴[𝜔], 𝜂) a sub-instance.

Then, the IC protocol is described as shown in Protocol 4.2. At the ini-
tial state, a requester has instance 𝑖 = (𝐴, 𝜂) and fixes the window size to 𝐶
pixels. First, a clipping window of 𝐶 pixels is moved over array 𝐴 in steps of
𝐶/2 pixels, and the clipping function is applied when clipping window 𝜔 con-
tains target window 𝜂, generating sub-instances (lines 1–6 in Protocol 4.2).
Then, the requester submits the task using all of the sub-instances, and work-
ers process them as well as extract sensitive values from them (line 7–12).
Finally, the requester, receiving the results from the workers, regards all of
them as the sample from the task execution model (line 14).

We move the clipping window in steps of 𝐶/2 so as to ensure that the
resultant sub-instances have overlapped areas. Figure 4.2 (right) shows that
all the sub-instances have overlaps around the target window; without them,
a target object can be divided into two sub-instances, which can degrade the
task performance severely. For example, in a head detection task, a head can
be divided into two without overlaps, from which it is difficult to recognize
that there exists a head.

4.4.3 Applicability

We discuss the applicability of the IC protocol from a qualitative point of
view. We first provide the general guideline showing when the IC protocol
works, and then, we review several examples to which the IC protocol is
suitable.

98

Protocol 4.2 Instance Clipping (IC) Protocol.
Inputs: instance 𝑖 = (𝐴, 𝜂) and the size of a clipping window 𝐶.
Output of a requester: a set of results.
Output of a worker: sensitive information.
1: Ω𝐶 ← ∅. ◁ Initialize a set of valid clipping windows.
2: for clipping window 𝜔 defined in steps of 𝐶/2 do
3: if 𝜔 ⊇ 𝜂 then
4: Ω𝐶 ← Ω𝐶 ∪ {𝜔}.
5: end if
6: end for
7: The requester submits the task with the sub-instances {𝑖[𝜔] | 𝜔 ∈ Ω𝐶}.
8: for 𝜔 ∈ Ω𝐶 do
9: A worker is randomly selected from a pool of workers.

10: The worker samples 𝑟(𝜔) from 𝑝𝑡(𝑅 | 𝐼 = 𝑖[𝜔]).
11: The worker returns 𝑟(𝜔) to the requester.
12: The worker extracts a sensitive value 𝑠(𝜔) from 𝑝𝑝(𝑆 | 𝐼 = 𝑖[𝜔]).
13: end for
14: The requester regards

{︀
𝑟(𝜔)
}︀
𝜔∈Ω𝐶

as samples from 𝑝′𝑡(𝑅 | 𝐼 = 𝑖;𝐶).
15: The workers regard

{︀
𝑠(𝜔)
}︀
𝜔∈Ω𝐶

as samples from 𝑝′𝑝(𝑆 | 𝐼 = 𝑖;𝐶).

General Guideline

From the qualitative analysis on the IC protocol, we arrive at the hypothesis
that the locality of task and privacy definitions plays an important role in
the performance of the IC protocol.

The locality of a task is defined as the size of the part of an array that is
necessary to perform the task with satisfactory quality. For example, a task
to detect a small object in an image is local because a worker can detect it
even if s/he is shown an image clipped around the object, while a task to
summarize a text is global because a worker has to check the whole sequence
of the text. The locality of a privacy is defined similarly. If a face in an image
is defined as sensitive information, the privacy definition is local because a
small part of the image can leak it; if the sensitive information is the abstract
of a meeting recorded in an audio file, the privacy definition is global because
a worker has to check the entire sequence of the audio file.

Our hypothesis on the performance of the IC protocol is that the IC pro-
tocol is suitable to a pair of a local task and a global privacy definition. Since
the IC protocol clips an instance using a small window, the task needs to be
local so as not to degrade the task performance. The privacy definition needs
to be global in order to preserve instance privacy; otherwise, the sensitive

99

information can be extracted even from a clipped instance. This hypothesis
is validated quantitatively in the experiment using UPTA.

Examples

We give three examples for which the IC protocol is suitable according to the
previous hypothesis. The first example is a task to detect a head in an image.
Sensitive information can be defined as the association between a person in
an image and his/her context including location, activities, and companions.
The task is local because the area of a head is usually small compared to
the size of the whole image. On contrary, the privacy definition is not local
because the association of a person and his/her context often requires a large
part of an image to infer compared to the head detection task. Therefore,
the task and privacy definitions will be suitable to the IC protocol. We use
this example in the experiment.

The second example is a task to transcribe an audio recording of a meet-
ing, and the third one is a task to digitize a handwritten document. Sensitive
information is the abstract of the meeting or the document, which cannot
easily be inferred from a local part of the recording or the scanned image.
On contrary, the task can be performed even with a clipped array (a segment
of an audio file or a document) if it contains at least a few words.

4.5 Experiments
We conduct two experiments using a real crowdsourcing platform to demon-
strate the effectiveness of UPTA. We employ the head detection task and
define the activity of a person as instance privacy, and we execute the IC
protocol on this pair of task and privacy definitions. The first experiment
applies UPTA to analyze the properties of the IC protocol. The second ex-
periment investigates the consistency of UPTA with standard performance
measures to validate the performance measures of UPTA.

4.5.1 Task and Privacy Definitions and Dataset

We employ a dataset, a task, and a privacy definition to which the IC protocol
is suitable according to the general guideline provided in the previous section.

Dataset

We use the Stanford 40 Action Dataset (Yao et al., 2011), which contains
images of humans performing actions belonging to forty classes. We selected

100

S pixels�

Figure 4.3: Conversion from a head detection task to an array-labeling task.
An image is discretized into blocks of 𝑆 × 𝑆 pixels as depicted by the black
lattice. Then, an array-labeling version of the task is, given the image, to
check whether each block contains a head or not (each block of the lattice
corresponds to a target window 𝜂).

ten classes: cooking, fishing, running, throwing_frisby, watching_TV,
feeding_a_horse, playing_guitar, texting_message, using_a_computer,
and writing_on_a_book. For each class, we selected fifty images in which
all the humans were engaged in the same action specified by the class name.
In total, we selected 500 pairs of images and action labels and used them for
the experiment. All the images were resized to fit in 500× 500 pixels. Note
that all the photographs in this chapter are borrowed from this dataset.

Task Definition

We employ a head detection task, a task to detect areas containing human
heads in a given image. In order to apply the IC protocol, we convert the
head detection task into an array-labeling task as follows. First, we divide
an image into blocks of 𝑆×𝑆 pixels as shown in Figure 4.3, where blocks are
illustrated by lattices of black lines.4 Then, we create a set of array-labeling
tasks by regarding each block as a target window. The resultant task is, given

4We set 𝑆 = 25 pixels.

101

an image and a target window (one 𝑆×𝑆 pixels block of the lattice), to judge
whether the target window contains a human head (𝑅 = 1) or not (𝑅 = 0).

Privacy Definition

We define the sensitive information as the association between a human and
his/her action. By assuming that a human is identifiable by his/her head, the
instance privacy is preserved when a worker cannot infer the action context
from a sub-array that contains a head. For example, if the worker cannot infer
the action context running from an image containing a head of a running
woman, then the instance privacy is preserved.

4.5.2 Experimental Setting

This section describes the detailed computation procedures of the task infor-
mation loss and the privacy information gain.

Task Execution

The computation of the task information loss requires the execution of both
the IC protocol and the corresponding NPP protocol. We executed the head
detection task through the NPP protocol and the IC protocol with different
parameters.

The IC protocol was executed with the interface shown in Figure 4.4. The
image posed to a worker was composed by combining multiple sub-arrays of
𝐶 × 𝐶 pixels so that the size of the image was roughly 500 × 500 pixels as
shown in Figure 4.5. The labels acquired from the worker are regarded as the
outputs of the IC protocol. We allocated one worker per composed image,
and therefore, large part of images were labeled by four workers.5 A reward
of 0.5 yen was given for the completion on a task with a composed image.
We repeated this procedure, varying 𝐶 from 50 pixels to 300 pixels in steps
of 50 pixels.

We executed the NPP protocol with the interface shown in Figure 4.4,
replacing the composed image with the image shown in Figure 4.3. A worker
is instructed to select all the blocks of 𝑆 × 𝑆 pixels by clicking them. The
labels acquired from the worker are regarded as the outputs of the NPP
protocol. We allocated one worker per image and gave a reward of one yen
per image.

The task information loss was estimated empirically using two smooth-
ing parameters, 𝜏 = 0.1 and 0.01. For each 𝐶 ∈ {50, 100, . . . , 300}, we

5As shown in Figure 4.2 (right), each instance generates four sub-instances in general.

102

Figure 4.4: Interface for the head detection task used in a real crowdsourcing
platform. The job instruction is as follows. (1) Click all the blocks containing
a head or part of it to turn them into red. If you misclick a block, click it
again to unselect it. The definition of a head is part of a human body above a
neck, including accessories such as a cap and glasses, hair, and ears. (2) If
you finish the task, press the green button “finish”. (3) Copy the text shown
in the text box below, and paste it to the text box in a crowdsourcing platform.
The third step is arranged because the platform does not allow the use of
JavaScript; the interface is put on our server, and the platform is used only
for recruiting workers and collecting results.

103

S pixels�

C pixels�

Sub-array�

Figure 4.5: We combine multiple sub-arrays of 𝐶 × 𝐶 pixels to execute the
IC protocol at low cost. A worker is instructed to select all the blocks of
𝑆 × 𝑆 pixels that contain (part of) a head by clicking them.

calculated the task information loss using all the results following Equa-
tions (4.1) and (4.2).

Privacy Invasion

The computation of the privacy information gain requires the execution of
the IC protocol only. We simulated the privacy invasion procedure using
ten-choice questions with the interface shown in Figure 4.6. A worker is
shown a sub-array of 𝐶 ×𝐶 pixels as well as ten choices of the action labels
and is asked to assign an appropriate label to the sub-array. For each action
label, we randomly chose twenty-five sub-arrays from the sub-arrays that
were judged to contain a head in the previous experiment; in total, we had
250 sub-instances. We assigned fifty workers to each question. A reward of
0.2 yen was given to a worker for answering one question. We repeated the
procedure above, varying 𝐶 from 50 pixels to 300 pixels in steps of 50 pixels.

The privacy information gain was empirically estimated using two smooth-
ing parameters, 𝜏 = 0.1 and 0.01. For each 𝐶 ∈ {50, 100, . . . , 300}, we
calculated the privacy information gain using all the results following Equa-
tions (4.1) and (4.2), where we substitute 𝑝′𝑝(𝑆) by

𝑝′𝑝(𝑆) = E𝑝(𝐼)[𝑝
′
𝑝(𝑆 | 𝐼)].

104

Figure 4.6: Interface for the simulated privacy invasion task used in a real
crowdsourcing platform. The job instruction is as follows. Select the most
appropriate action from the drop-down list that the human in the image is
engaged in. If the image should not contain any part of a human, then leave
the list untouched. We basically accept all the task results except for obviously
dishonest results.

4.5.3 Utility-Privacy Trade-Off

The first experiment analyzes the trade-off between utility and privacy of the
IC protocol to investigate the applicability of it and discusses the parameter
selection of it based on UPTA.

Utility and Privacy

Figures 4.7 and 4.8 respectively show the task information loss scores and
the privacy information gain scores on different clipping window sizes 𝐶 ∈
{50, 100, . . . , 300}. We have three findings from this result.

First, different smoothing parameters result in different scores for both
cases, they show the same trend across the two parameters. Therefore, we

105

50 100 150 200 250 300
C: clipping window size [pixels]

0.05

0.10

0.15

0.20

0.25

T
a
sk

in
fo

rm
a
ti

o
n

lo
ss

[b
it

s]
τ = 0.01

τ = 0.1

Figure 4.7: Task information loss scores for different clipping window sizes.
The 𝑥-axis corresponds to the clipping window size, and the 𝑦-axis to the
task information loss.

50 100 150 200 250 300
C: clipping window size [pixels]

1.0

1.5

2.0

2.5

3.0

3.5

P
ri

v
a
cy

in
fo

rm
a
ti

o
n

g
a
in

[b
it

s]

τ = 0.01

τ = 0.1

Figure 4.8: Privacy information gain scores for different clipping window
sizes. The 𝑥-axis corresponds to the clipping window size, and the 𝑦-axis to
the privacy information gain.

106

Table 4.1: Scores of the task information loss and privacy infor-
mation gain (𝜏 = 0.01) and the profit of the requester. Let
𝑈̃𝑡 := exp(E𝑝(𝐼)E𝑝𝑡(𝑅|𝐼)[log𝑈𝑡(𝑅, 𝐼)]), 𝑈𝑝 := max𝑆,𝐼 𝑈𝑝(𝑆, 𝐼), and 𝑈𝑝 :=

min𝑆,𝐼 𝑈𝑝(𝑆, 𝐼).

𝐶 [pixels]

Task
info.
loss [bits]

Privacy
info.
gain [bits] Profit (4.8)

50 0.211 1.21 0.864𝑈̃𝑡 + 0.432𝑈𝑝 − 𝑈𝑝

100 0.0932 1.88 0.937𝑈̃𝑡 + 0.272𝑈𝑝 − 𝑈𝑝

150 0.0755 2.48 0.949𝑈̃𝑡 + 0.179𝑈𝑝 − 𝑈𝑝

200 0.769 2.81 0.948𝑈̃𝑡 + 0.143𝑈𝑝 − 𝑈𝑝

250 0.0625 2.98 0.958𝑈̃𝑡 + 0.127𝑈𝑝 − 𝑈𝑝

300 0.0639 3.04 0.957𝑈̃𝑡 + 0.122𝑈𝑝 − 𝑈𝑝

conclude that the smoothing parameter does not have much impact on the
trend of the scores. Second, as 𝐶 increases, the task information loss de-
creases almost monotonically, and the privacy information gain increases
monotonically. This matches intuition; both the task execution and privacy
invasion become easier for larger sub-instances. This observation supports
the validity of UPTA. Note that the outlier value of the task information
loss at 𝐶 = 200 pixels is caused by one outlier worker, which is analyzed in
Section 4.5.4. Finally, we observe that the task information loss is almost the
same when 𝐶 is larger than 100 pixels, while the privacy information gain
increases gradually as we increase 𝐶. In specific, in case of 𝜏 = 0.01, the task
information loss at 𝐶 = 100 pixels is only 1.1 times larger than the score at
𝐶 = 300 pixels, while the privacy information gain at 𝐶 = 100 pixels is 0.6
times larger than the score at 𝐶 = 300 pixels. Therefore, we conclude that
the IC protocol can preserve the utility while preserving instance-privacy.

Parameter Selection

We provide a use case of UPTA to select the clipping window size 𝐶. For
simplicity, we select it by maximizing the lower-bound of the profit (4.8).
Table 4.1 summarizes the scores of the task information loss and privacy
information gain when 𝜏 = 0.01 as well as the profit scores. If we sub-
stitute (𝑈𝑡, 𝑈𝑝, 𝑈𝑝) = (1, 0.2, 2), setting 𝐶 = 100 pixels achieves the best
profit −1.01, if we substitute (𝑈𝑡, 𝑈𝑝, 𝑈𝑝) = (1, 0.5, 2), setting 𝐶 = 50 pixels
achieves the best profit −0.92, and if we substitute (𝑈𝑡, 𝑈𝑝, 𝑈𝑝) = (1, 0.01, 2)

107

setting 𝐶 = 250 pixels achieves the best profit −1.04. Although the results
are different when we use different utility and privacy loss functions, we ob-
serve that the profit is one effective criterion to determine the parameter of
the IPP protocol.

4.5.4 Consistency of UPTA with Standard Measures

The second experiment examines the consistency of the task information
loss with standard measures, i.e., precision, recall, and the F-measure. If the
standard measures show a similar tendency to the task information loss, we
can validate the task information loss. Note that, although we can apply the
standard measures for a binary array-labeling task, we have to devise other
measures for other tasks, and it is sometimes impossible to apply standard
measures especially in case of a subjective task. In addition, the privacy
information gain has no alternative. Therefore, this experiment does not
devalue the performance measures of UPTA.

Analytic Method

For each 𝐶 ∈ {50, 100, . . . , 300}, we first aggregated multiple labels given to
each instance, and then, computed precision, recall, and the F-measure on
the aggregated labels of all the instances, regarding the results of the NPP
protocol as the ground truths.

We used three popular label aggregation methods. Letting us denote a
label given by worker 𝑗 to instance 𝑖 by 𝑟𝑖,𝑗 ∈ {0, 1} and an aggregated label
of instance 𝑖 by 𝑟𝑖 ∈ {0, 1}, we describe the aggregation procedure of multiple
labels {𝑟𝑖,𝑗}𝑗∈𝒥 into 𝑟𝑖.

(i) OR method
Multiple labels are aggregated by taking their logical disjunction. The
aggregated label is 1 if there exists at least one label 1 in the multiple
labels and 0 if all the labels are 0:

𝑟𝑖 =

{︃
1 if

∑︀
𝑗∈𝒥 𝑟𝑖,𝑗 ̸= 0,

0 otherwise.

(ii) Majority Voting (MV) method
Multiple labels are aggregated by majority vote, where ties are broken

108

uniformly randomly:

𝑟𝑖 =

⎧⎪⎨⎪⎩
1 if 1

|𝒥 |
∑︀

𝑗∈𝒥 𝑟𝑖,𝑗 >
1
2
,

0 if 1
|𝒥 |
∑︀

𝑗∈𝒥 𝑟𝑖,𝑗 <
1
2
,

Bernoulli
(︀
1
2

)︀
otherwise.

(iii) Latent Class (LC) method
The LC method is commonly used for the purpose of quality control
in crowdsourcing (Dawid and Skene, 1979). It aggregates the labels
by a weighted majority voting strategy based on the ability of each
worker; a label given by a low-ability worker has less influence on the
aggregation than a label given by a high-ability worker. The detailed
algorithm will be reviewed in Section 5.2.2.

Result

Figure 4.9 shows the standard measures on different clipping window sizes
𝐶 ∈ {50, 100, . . . , 300}. First, we notice that the trends of the scores of
the standard measures are the same as those of the task information loss
shown in Figure 4.7 in that (i) the score is almost the same when 𝐶 is larger
than 100 pixels (OR, MV, LC), and (ii) the score at 𝐶 = 200 pixels is an
outlier (OR, MV). Therefore, we conclude that the task information loss is
consistent with the standard measures, which supports the validity of its use.

Then, we investigated the precision score failure at 𝐶 = 200 pixels when
we apply the OR and MV methods. We find that the failure is caused by the
ability of the workers. Figure 4.10 shows the estimated ability parameters
of workers in the LC method. The right frame in Figure 4.10 shows the
probability of each worker assigning label 1 when the estimated true label is
1, which is related to the recall scores. We denote the probability of worker 𝑗
by 𝛼𝑗. The middle frame shows the probability of each worker assigning label
0 when the estimated true label is 0, which is related to the precision scores.
We denote the probability of worker 𝑗 by 𝛽𝑗. In the middle frame, while
the ability parameters of most of the workers are high, the ability of worker
19 is quite low at 𝐶 = 200 pixels. Considering that the number of labels 0
is much bigger than the number of labels 1 in this task, worker 19 gave a
significant amount of labels 1 to sub-instances that should have been labeled
0. Therefore, we conclude that the failure is caused by the low precision
of worker 19. The LC method does not suffer from worker 19 because it
aggregates labels taking the ability of the workers into account, while the
other methods cannot handle them, which leads to the results.

109

4.6 Summary and Future Work
This chapter has discussed the issue of instance privacy in crowdsourcing
and has introduced the utility-privacy trade-off analyzer (UPTA), which en-
ables us to evaluate the performance of an instance-privacy preserving (IPP)
protocol. Our idea to quantify the utility and privacy is to model the task
execution and privacy invasion as sampling from respective probability dis-
tributions. The models can be empirically estimated by using crowdsourcing,
and once we have estimated the models, we are able to compute divergence-
based performance measures. As a case study, we have applied UPTA to the
instance clipping (IC) protocol and have investigated the properties of the IC
protocol and UPTA. The experimental results show that the IC protocol can
balance the utility-privacy trade-off and UPTA is consistent with existing
performance measures, which validates the formulation of UPTA.

An interesting research direction is to extend the IC protocol. It is pos-
sible to replace the clipping function with any instance transformation func-
tion, which transforms an instance to preserve privacy. For example, a func-
tion to add noise on an instance or that to blur an image instance will be
suitable. It is also possible to select the clipping window size adaptively.
For example, a protocol starts with a small clipping window and expands as
necessary until workers can perform tasks.

110

50 100 150 200 250 300
C: clipping window size [pixels]

0.70

0.75

0.80

0.85

0.90

0.95

1.00

P
re

ci
si

o
n

OR method

MV method

LC method

50 100 150 200 250 300
C: clipping window size [pixels]

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
e
ca

ll

OR method

MV method

LC method

50 100 150 200 250 300
C: clipping window size [pixels]

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

F
-m

e
a
su

re

OR method

MV method

LC method

Figure 4.9: Precision (left), recall (middle), and the F-measure
scores (right) for different window sizes. The 𝑥-axis corresponds to the
clipping window size, and the 𝑦-axis to each score.

111

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131

C
=

5
0

C
=

1
0
0

C
=

1
5
0

C
=

2
0
0

C
=

2
5
0

C
=

3
0
0

C
=

5
0

C
=

1
0
0

C
=

1
5
0

C
=

2
0
0

C
=

2
5
0

C
=

3
0
0

α
j
,
β
j

=
0

α
j
,
β
j

=
0
.5

α
j
,
β
j

=
1
.0

Figure 4.10: Estimated ability pa-
rameters of the workers. The right
and mid frames show the ability pa-
rameters of each worker 𝛼𝑗 and 𝛽𝑗.
The 𝑥-axis corresponds to a result
with a particular window size 𝐶, the
𝑦-axis corresponds to worker IDs 𝑗,
and each element corresponds to the
value of 𝛼𝑗 (right) or 𝛽𝑗 (middle) at
each 𝐶. The left frame shows a col-
ormap. The white elements indicate
that the worker did not perform the
tasks.

112

Chapter 5

Worker-Privacy Preservation

5.1 Introduction

The quality of a task result is one of the central issues in crowdsourcing. The
quality is not guaranteed because workers may not be skilled at the task or
the task design is poor. Figure 5.1 depicts a small example of such results,
where three workers were engaged in the same image labeling task. Worker
𝑤1 gave the correct labels, whereas worker 𝑤2 sometimes failed, and worker
𝑤3 seemed to return non-informative labels because all the labels given by
worker 𝑤3 were the same. To make full use of crowdsourcing, it is necessary
to cope with the variable quality of task results.

A basic approach to the quality issue is to collect multiple redundant
labels from different workers as shown in Figure 5.1 and infer the true labels
by aggregating them (Sheng et al., 2008; Dawid and Skene, 1979). One of
the most popular methods is the latent class method (LC method) (Dawid
and Skene, 1979), where the true labels are estimated by inferring the model
of labeling processes of workers. They model a worker equipped with ability
parameters such that the worker outputs the true label with probability
proportional to the ability parameters. The true labels are inferred using the
EM algorithm in a form of weighted majority voting based on each worker’s
ability. In other words, by using the LC method, not only the true labels
but also the abilities of workers can be estimated.

We first point out that this procedure can lead to invade the privacy of
workers; the results returned from workers can be used to infer the attributes
of workers, which can be sensitive information about them. If workers recog-
nize that their privacy is at risk, some workers will be reluctant to participate
in crowdsourcing, which severely damages the continuation of crowdsourcing.
In order to clarify this risk, let us illustrate three examples of the privacy

113

Worker w1�

W�

Requester�

R�

Worker w2�

W�

Worker w3�

W�

Yes� Yes� Yes�Instance 1�

Yes� No� Yes�Instance 2�

No� No� Yes�Instance 3�

Task:

instance = bird ?

Platform�

Figure 5.1: Illustrative model of crowdsourcing and our protocol. We assume
an image labeling task. Each column in the table shows labels given by
each worker to the images, which do not necessarily agree with unobservable
ground truths. The lines between entities indicate feasible communication
in crowdsourcing. We develop a protocol where a requester can estimate the
true labels by communicating with each worker who secretly holds his own
labels via the platform.

invasion. The first example is a location-based task where workers are asked
to submit location information of specific objects. For example, AED41 asks
workers to submit the locations of automated external defibrillators (AEDs)
in order to create a location map of AEDs. Such location data possibly reveal
the trajectory of each worker, and therefore, the privacy of workers can be
invaded. The second example is a questionnaire task where workers are asked
to fill in questionnaires. Crowdsourcing allows us to cut down the efforts and
monetary and time costs to recruit many participants. The raw data contain
much personal information, and thus, the privacy of workers will be invaded.
Although a single answer of questionnaires contains little personal informa-
tion, combining simple information can sometimes identify people uniquely as
pointed out in the field of privacy-preserving data mining (Sweeney, 2002).

1http://www.aed4.eu/

114

http://www.aed4.eu/

The last example is a volunteer task (or a non-paid task) such as that in
Galaxy Zoo and AED4, which is a popular form of crowdsourcing. In such a
task, some workers will feel uncomfortable to sacrifice their privacy without
any reward. These examples clearly show that the privacy of workers can
be invaded from the raw results returned from the workers. Addressing the
privacy issue can encourage more workers to participate in crowdsourcing
who could not participate because of these privacy problems. Therefore, it
is important to preserve the privacy of workers.

A main research challenge is how to resolve the conflicting demands of
requesters and workers. As stated above, workers wish to avoid from handing
their results to requesters; requesters wish to receive the results from workers.
Our observation aiming to address this dilemma is that requesters do not
necessarily have to know the raw results; it is sufficient for them to know
aggregated results of high quality. Based on this observation, our idea to
confront the research challenge is to develop a privacy-preserving variant of
a quality control method. If a requester can obtain aggregated results for all
the instances without letting any entity know the raw results, it will satisfy
both conflicting requirements of requesters and workers.

In this chapter, we first formalize the research challenge above to define a
worker-private quality control problem, whose goal is that a requester infers
the true labels whilst preserving the privacy of workers. Then, we present
our solution called a worker-private latent class protocol (WPLC protocol).
The WPLC protocol allows workers to keep their labels and ability param-
eters private, which prevents privacy invasion. The key ideas of the WPLC
protocol are twofold: decentralization of computation and introduction of
secure computation. By taking workers into computation and introducing
secure computation, a requester can infer the true labels while workers can
hide their labels. To validate the WPLC protocol, we provide a theoreti-
cal guarantee of its security and investigate its computational efficiency and
accuracy experimentally.

5.2 Quality Control Problem

We first define a quality control problem and review an existing method
called the latent class method (Dawid and Skene, 1979).

5.2.1 Problem Setting

We introduce the notation we use in this chapter and then, we define the
quality control problem in Problem 5.1.

115

We assume that participants in crowdsourcing consist of a single requester
and 𝐽 workers for simplicity. We also assume that the requester submits a
binary labeling task, where a task is to give a binary label to an instance. The
requester has a set of task instances ℐ := {1, . . . , |ℐ|} and is willing to know
the true label 𝑦𝑖 ∈ {0, 1} for each instance 𝑖 ∈ ℐ. Let 𝒴⋆ = {𝑦𝑖 | 𝑖 ∈ ℐ} be a
set of the true labels, which is unknown to both the requester and workers.

Each worker 𝑗 ∈ {1, . . . , |𝒥 |}(=: 𝒥) gives an unreliable label 𝑦𝑖,𝑗 ∈
{0, 1,⊥} to each instance 𝑖, which we call a crowd label. For convenience,
we introduce a label ⊥; 𝑦𝑖,𝑗 = ⊥ indicates that worker 𝑗 does not give a label
to instance 𝑖. We can assume that each worker gives labels including ⊥ to
all the instances. We call label ⊥ a null label and labels {0, 1} valid labels
in this chapter. Since a crowd label is unreliable, 𝑦𝑖,𝑗 = 𝑦𝑖 does not always
hold for valid labels. Let 𝒴 = {𝑦𝑖,𝑗 | 𝑖 ∈ ℐ, 𝑗 ∈ 𝒥 } be the set of all the crowd
labels.

Then, the quality control problem is defined as Problem 5.1, where the
requester aims to infer the true labels from the crowd labels 𝒴 collected from
workers.

Problem 5.1 (Quality control problem). Assume that the requester has
crowd labels 𝒴. The goal of the quality control problem is that the requester
infers the true labels 𝒴⋆ from the crowd labels 𝒴 correctly.

Note that this problem setting can be extended to deal with multi-class
or real-valued labels. For simplicity, we focus on the binary labeling task,
and the extensions are described in Appendix B.1.

5.2.2 Latent Class Method

We review the LC method (Dawid and Skene, 1979), which is a standard
method for Problem 5.1. The LC method employs an unsupervised algorithm
to aggregate multiple labels given to each instance by taking the ability of a
worker into account, and outputs the aggregated labels as the estimates of
the true labels.

Latent Class Model

We first introduce a latent class model, which the LC method assumes in
order to aggregate crowd labels. The LC model assumes that the unreliability
of crowd labels comes from on the ability of the worker who produces the
labels. The crowd labels 𝒴 are assume to be generated by the following
model. Each instance 𝑖 ∈ ℐ has the single unobservable true label 𝑦𝑖. Each

116

worker 𝑗 ∈ 𝒥 independently gives label 𝑦𝑖,𝑗 to instance 𝑖 according to

𝛼𝑗 = 𝑝(𝑦𝑖,𝑗 = 1 | 𝑦𝑖 = 1; 𝜃𝑗), 𝛽𝑗 = 𝑝(𝑦𝑖,𝑗 = 0 | 𝑦𝑖 = 0; 𝜃𝑗),

where let 𝜃𝑗 = {𝛼𝑗, 𝛽𝑗} be the ability parameters of worker 𝑗. It is also
assumed that for each instance 𝑖 ∈ ℐ, 𝑦𝑖 is generated according to

𝑝(𝑦𝑖; 𝑝) = 𝑝𝑦𝑖 · (1− 𝑝)1−𝑦𝑖 .

Let Θ = {𝑝} ∪ {𝜃𝑗 | 𝑗 ∈ 𝒥 } be the set of all the model parameters.

EM Algorithm for Inference

The LC method employs an EM algorithm to estimate the model parameters
Θ as well as the latent variables {𝑦𝑖 | 𝑖 ∈ ℐ}. It repeats an expectation-
step (E-step) and a maximization-step (M-step) alternately until conver-
gence. Intuitively, the E-step updates the true labels using majority voting
weighted by estimated ability parameters of the workers, and the M-step up-
dates the ability parameters of the workers using the true labels. Repeating
these two steps is proven to increase the likelihood function (Dempster et al.,
1977), which validates the use of the EM algorithm. Each step is described
in the following.

E-step: for each 𝑖 ∈ ℐ, update 𝜇𝑖 = 𝑝(𝑦𝑖 = 1|𝒴 ; Θ) as

𝜇𝑖 ←
𝑝𝑎𝑖

𝑝𝑎𝑖 + (1− 𝑝)𝑏𝑖
,

where 𝑎𝑖 =
∏︁

𝑗:𝑦𝑖,𝑗 ̸=⊥

𝛼
𝑦𝑖,𝑗
𝑗 (1− 𝛼𝑗)

1−𝑦𝑖,𝑗 and 𝑏𝑖 =
∏︁

𝑗:𝑦𝑖,𝑗 ̸=⊥

𝛽
1−𝑦𝑖,𝑗
𝑗 (1− 𝛽𝑗)

𝑦𝑖,𝑗 .

M-step: update 𝑝 as

𝑝← 1

|ℐ|
∑︁
𝑖∈ℐ

𝜇𝑖,

and for each 𝑗 ∈ 𝒥 , update the ability parameters 𝛼𝑗 and 𝛽𝑗 as

𝛼𝑗 ←
∑︀

𝑖:𝑦𝑖,𝑗 ̸=⊥ 𝜇𝑖𝑦𝑖,𝑗∑︀
𝑖:𝑦𝑖,𝑗 ̸=⊥ 𝜇𝑖

and 𝛽𝑗 ←
∑︀

𝑖:𝑦𝑖,𝑗 ̸=⊥(1− 𝜇𝑖)(1− 𝑦𝑖,𝑗)∑︀
𝑖:𝑦𝑖,𝑗 ̸=⊥(1− 𝜇𝑖)

.

These update rules are derived so that the parameters maximize the
𝑄-function shown below:

𝑄(Θ) =
∑︁
𝑖∈ℐ

[𝜇𝑖 log 𝑝𝑎𝑖 + (1− 𝜇𝑖) log(1− 𝑝)𝑏𝑖] . (5.1)

117

We consider that the algorithm converges if

|𝑄(Θ(𝑡+1))−𝑄(Θ(𝑡))|/|𝑄(Θ(𝑡+1))| < 10−8

holds, where Θ(𝑡) is the set of the parameters obtained in the 𝑡-th iteration.
The time complexity of both the E-step and the M-step is 𝑂(𝐼𝐽).

5.3 Worker-Private Quality Control Problem
We present our problem setting called a worker-private quality control prob-
lem in Section 5.3.1 by introducing privacy requirements into the quality
control problem. Then, we present our solution to the worker-private quality
control problem called a worker-private latent class (WPLC) protocol in Sec-
tion 5.3.2, which implements the LC method using cryptographic operations.

5.3.1 Problem Setting

We specify the privacy requirement that is necessary to preserve workers’
privacy. Our observation is that the issues of worker privacy do not hap-
pen if each worker stores his/her labels secretly and none of the parties can
obtain labels of other parties. Based on this observation, we define the pri-
vacy requirement called worker privacy and the worker-private quality control
problem as Definition 5.1 and Problem 5.2, respectively. In Problem 5.2, val-
ues associated with a worker include the crowd labels given by the worker
and the ability parameters if one uses the LC method.
Definition 5.1 (Worker-private). Assume that worker 𝑗 secretly stores value
𝑣𝑗. If the requester and the workers except for worker 𝑗 cannot determine 𝑣𝑗
uniquely, then value 𝑣𝑗 is worker-private.
Problem 5.2 (Worker-private quality control problem). Assume that each
worker 𝑗 ∈ 𝒥 has his/her labels {𝑦𝑖,𝑗 | 𝑖 ∈ ℐ} secretly. The worker-private
quality control problem is that the requester infers the true labels 𝒴⋆ from
crowd labels 𝒴 while keeping all the values associated with the workers worker-
private.

The definition of worker-privacy is closely related to the privacy definition
employed in query auditing (Nabar et al., 2008). Informally, query auditing
attempts to prevent disclosures of private data from the public statistics of
the data such as the mean and a maximum. The definition of disclosure
called full disclosure describes the situation where a private value is deter-
mined uniquely from the statistics. This definition is related to our privacy
definition, because a label is worker-private if and only if the label is not fully
disclosed.

118

5.3.2 Worker-Private Latent Class Protocol

We present a worker-private latent class protocol (WPLC protocol) as a
solution to the worker-private quality control problem (Problem 5.2). It
executes the EM algorithm for the LC model in a privacy-preserving way;
thus workers do not have to disclose their private values to the others. We
first introduce the WPLC protocol, the main protocol in this research, in
Section 5.3.2, and then we introduce a secure sum protocol, which is used as
a sub-protocol in the main protocol, in Section 5.3.2.

Main Protocol

The WPLC protocol (Protocol 5.1) executes the EM algorithm of the LC
method in a privacy-preserving way and finally outputs the posterior proba-
bility distribution of the unobservable true labels. The parties of it are the
workers, the platform, and the requester.

The update rule of the WPLC protocol is basically the same as the original
inference algorithm of the LC method except for the use of the secure sum
protocol. The E-step (lines 8–9) is interpreted as the sum of the crowd labels
weighted by the ability parameters of the workers. Since each summand is
a secret value of each worker, the parties rely on the secure sum protocol
to compute the summation without disclosing the secret values. The M-
step (lines 15–16) is to estimate the ability parameters of each worker using
the current estimates of the true labels. Since the true labels are public
information in the protocol, each worker independently update his/her ability
parameters.

The main idea for privacy preservation is twofold: introduction of the
secure sum protocol in the E-step and participation of workers in the both
steps. Both ideas are necessary to preserve worker privacy. Participation of
workers is necessary because the requester cannot access crowd labels without
it. The secure sum protocol is also necessary because the platform can get
crowd labels 𝒴 in the second line of Protocol 5.1 without the secure sum pro-
tocol. Moreover, the platform can also acquire the parameters {𝜃𝑗 | 𝑗 ∈ 𝒥 } in
the eighth line by using the crowd labels obtained in the second line. There-
fore, we conclude that both ideas are essential to preserve worker-privacy. In
Section 5.4, we prove that the crowd labels and the ability parameters are
kept worker private after execution of the WPLC protocol.

The WPLC protocol can be extended to deal with a multi-class label and
a real-valued label. We describe the update rules in Appendix B.1.

119

Protocol 5.1 Worker-Private Latent Class Protocol.
Parties: platform, requester, and workers 𝒥 .
Public input: public key pk
Public output: {𝜇(𝑡)

𝑖 | 𝑖 ∈ ℐ} and 𝑝(𝑡) for all 𝑡 ∈ N.
Private inputs:

∙ Platform: list of workers 𝒥 .

∙ Requester: secret key sk.

∙ Worker 𝑗: his/her crowd labels {𝑦𝑖,𝑗 | 𝑖 ∈ ℐ}.

Private outputs:

∙ Requester: {(𝑎(𝑡)𝑖 , 𝑏
(𝑡)
𝑖)}𝑖∈ℐ for all 𝑡 ∈ N.

∙ Worker 𝑗: (𝛼
(𝑡)
𝑗 , 𝛽

(𝑡)
𝑗) for all 𝑡 ∈ N.

1: Requester updates 𝑡← 0 and broadcasts it.
2: For each 𝑖 ∈ ℐ, parties calculate the followings using Protocol 5.2:

𝜇
(𝑑)
𝑖 =

∑︁
𝑗∈𝒥

I[𝑦𝑖,𝑗 ̸= ⊥] and 𝜇
(𝑛)
𝑖 =

∑︁
𝑗∈𝒥

I[𝑦𝑖,𝑗 ̸= ⊥]𝑦𝑖,𝑗

3: Requester calculates 𝜇
(𝑡)
𝑖 =

𝜇
(𝑛)
𝑖

𝜇
(𝑑)
𝑖

and broadcasts {𝜇(𝑡)
𝑖 | 𝑖 ∈ ℐ}.

4: repeat
5: Requester updates 𝑝(𝑡) ← 1

|ℐ|
∑︀

𝑖∈ℐ 𝜇
(𝑡)
𝑖 .

6: Each worker 𝑗 ∈ 𝒥 updates

𝛼
(𝑡)
𝑗 ←

∑︀
𝑖:𝑦𝑖,𝑗 ̸=⊥ 𝜇

(𝑡)
𝑖 𝑦𝑖,𝑗∑︀

𝑖:𝑦𝑖,𝑗 ̸=⊥ 𝜇
(𝑡)
𝑖

, 𝛽
(𝑡)
𝑗 ←

∑︀
𝑖:𝑦𝑖,𝑗 ̸=⊥(1− 𝜇

(𝑡)
𝑖)(1− 𝑦𝑖,𝑗)∑︀

𝑖:𝑦𝑖,𝑗 ̸=⊥(1− 𝜇
(𝑡)
𝑖)

.

7: Requester broadcasts 𝑡← 𝑡 + 1.
8: For each 𝑖 ∈ ℐ, parties calculate the followings using Protocol 5.2:

log 𝑎
(𝑡)
𝑖 ←

∑︁
𝑗∈𝒥

I[𝑦𝑖,𝑗 ̸= ⊥]
(︁
𝑦𝑖,𝑗 log𝛼

(𝑡−1)
𝑗 + (1− 𝑦𝑖,𝑗) log(1− 𝛼

(𝑡−1)
𝑗)

)︁
,

log 𝑏
(𝑡)
𝑖 ←

∑︁
𝑗∈𝒥

I[𝑦𝑖,𝑗 ̸= ⊥]
(︁

(1− 𝑦𝑖,𝑗) log 𝛽
(𝑡−1)
𝑗 + 𝑦𝑖,𝑗 log(1− 𝛽

(𝑡−1)
𝑗)

)︁
,

9: Requester broadcasts 𝜇
(𝑡)
𝑖 ←

𝑝(𝑡−1)𝑎
(𝑡)
𝑖

𝑝(𝑡−1)𝑎
(𝑡)
𝑖 +(1−𝑝(𝑡−1))𝑏

(𝑡)
𝑖

for each 𝑖 ∈ ℐ.
10: Requester calculates the 𝑄-function 𝑄(𝑡) using Equation (5.1).
11: until |𝑄(𝑡) −𝑄(𝑡−1)|/|𝑄(𝑡)| < 𝜖

120

Protocol 5.2 Secure Sum Protocol.
Parties: platform, requester, and workers 𝒥 .
Public input: Large integer 𝐿 ∈ Z𝑁 , rounding function 𝑟 : R → Z+, and
public key pk.
Private inputs:

∙ Platform: list of workers 𝒥 .

∙ Requester: secret key sk.

∙ Worker 𝑗: value 𝑣𝑗 ∈ R.

Private outputs:

∙ Requester: approximated sum of the values
∑︀

𝑗∈𝒥 𝑣𝑗.

1: Each worker 𝑗 ∈ 𝒥 encrypts 𝑐𝑗 ← Enc(𝑟(𝑣𝑗𝐿)).
2: Each worker 𝑗 ∈ 𝒥 sends 𝑐𝑗 to the platform.
3: The platform calculates

𝜒←
∏︁
𝑗∈𝒥

𝑐𝑗

(︃
= Enc

(︃∑︁
𝑗∈𝒥

𝑣𝑗𝐿

)︃)︃
.

4: The platform sends 𝜒 to the requester.
5: The requester decrypts 𝜒 to obtain approximation of

∑︀
𝑗∈𝒥 𝑣𝑗.

Secure Sum Protocol

We present a secure sum protocol (Protocol 5.2) that allows the requester
to obtain the sum of values workers have secretly. The parties of it consist
of the workers, the platform, and the requester. At the beginning, each
worker 𝑗 secretly hold his/her value 𝑣𝑗. Each worker 𝑗 rounds it into an
integer as 𝑟(𝑣𝑗𝐿), where 𝑟 : R→ Z+ is a rounding function, and 𝐿 is a large
integer called an approximation parameter. Then, s/he encrypts and sends
it to the platform. The platform serves as an intermediate node between
the requester and the workers and performs the summation of the encrypted
values received from the workers. The requester has a pair of public and
secret keys (pk, sk) and performs decryption of the encrypted sum received
from the platform. Finally, only the requester obtains the summation of all
the values of the workers.

121

5.3.3 Discussion

Drawbacks

The WPLC protocol has two drawbacks compared to the LC method: numer-
ical errors and computation time. Numerical errors are inevitable because of
the rounding function in the secure sum protocol. In Section 5.5.1, we eval-
uate how the rounding has an effect on the performance of the WPLC pro-
tocol and how we can control it by adjusting the approximation parameter.
The WPLC protocol requires more computation time than the LC method
because of communication between parties, key generation, and encryption
and decryption of messages. We examine the cryptographic overhead in Sec-
tion 5.5.2 to show that the computation finishes in practical computation
time. Communication cost is not examined because it heavily depends on
the communication environment.

Exclusion of Spam Workers

One may have a concern that preserving worker privacy makes it impossible
to exclude spam workers. We believe that a software to execute the protocol
provided by a crowdsourcing platform can help us exclude spam workers
with minimum worker privacy invasion. It is possible that the worker-side
software by itself reports to the crowdsourcing platform that the worker is a
spam worker if the worker’s ability is lower than a certain threshold. This
allows the crowdsourcing platform to ban the worker’s account, which helps
to increase the reliability. This solution invades little worker privacy; the
requester does not obtain any information about the labels and the ability
parameters of the workers, and the crowdsourcing platform only learns that
the ability of the worker is lower than a certain threshold.

5.4 Security Proofs of the Protocols

We prove the security of the WPLC protocol in Theorem 5.1 and the security
of the secure sum protocol in Lemma 5.1. The theorem states that crowd
labels are kept worker-private after the execution of the WPLC protocol.

5.4.1 Statement of the Theorem

We borrow the privacy assumptions made in Section 2.4. Then, Theorem 5.1
is described as follows.

122

Theorem 5.1 (Security of the WPLC protocol). For any 𝑖 ∈ ℐ, we assume
that the set of labels given to instance 𝑖 consists of at least two null labels and
at least two valid labels. Under the privacy assumptions in Section 2.4, after
the execution of the WPLC protocol, any party cannot determine any private
label 𝑦𝑖,𝑗 uniquely, and therefore, the crowd labels are worker-private.

The first assumption in Theorem 5.1 is not strong. In most cases, a
requester determines the number of redundant labels to one instance be-
forehand (typically, three labels per instance), and a number of workers are
engaged in the task. As a result, the set of labels given to one instance
consists of |𝒥 | − 3 null labels and three valid labels with large |𝒥 |.

5.4.2 Proof

We prove Theorem 5.1 using the security of the secure sum protocol, stated
in Lemma 5.1. We first give the statement of the lemma along with its proof,
and then, we prove the theorem.

Lemma 5.1 (Security of the secure sum protocol). Let |𝒥 | ≥ 3. Under
the privacy assumptions in Section 2.4, after the execution of the secure sum
protocol, the requester learns nothing but the sum, and the platform and the
workers learn nothing.

Proof of Lemma 5.1. We prove the lemma by examining the information
each entity obtains.

(i) Worker 𝑗 (∈ 𝒥)
Since worker 𝑗 does not receive any additional information but sends
a ciphertext during the protocol, worker 𝑗 learns nothing after the
execution of the protocol.

(ii) Platform
The additional information the platform receives during the protocol is
ciphertexts {𝑐𝑗 | 𝑗 ∈ 𝒥 } from all the workers. Since these ciphertexts
are encrypted using the Paillier cryptosystem, which is IND-CPA, the
platform learns nothing from them.

(iii) Requester
The additional information the requester receives during the protocol
is the encrypted sum 𝜒 and its decryption. Therefore, the requester
learns nothing but the encrypted sum.

These discussions complete the proof of Lemma 5.1.

123

The lemma helps us to specify the additional information each entity
obtains during the main protocol. The idea of the proof is that even if an
entity has an estimate of private information, the entity can come up with
another estimate, which implies that the entity cannot uniquely determine
the private information. In other words, we prove that there does not exist
a function from the information each entity has to a private label, which we
call a privacy invading function in this proof.

Proof of Theorem 5.1. For each entity, we first examine the information s/he
has after the execution of the protocol, which corresponds to his/her private
input and output and the public output. Then, we show that there does not
exist a privacy invading function that uniquely determines private informa-
tion.

Let us first specify the public output of the protocol. Let us denote the
number of iterations to converge by 𝑇 . The public output is{︁

𝜇
(𝑡)
𝑖 | 𝑖 ∈ ℐ, 𝑡 ∈ {0, . . . , 𝑇}

}︁
. (5.2)

Since {𝑝(𝑡)𝑖 | 𝑖 ∈ ℐ, 𝑡 ∈ {0, . . . , 𝑇}} can be calculated given the public output,
we ignore them in the following.

(i) Requester
The private input of the requester is the secret key sk, and the private
output is

𝜇
(𝑑)
𝑖 =

∑︁
𝑗∈𝒥

I[𝑦𝑖,𝑗 ̸= ⊥], 𝜇
(𝑛)
𝑖 =

∑︁
𝑗∈𝒥

I[𝑦𝑖,𝑗 ̸= ⊥]𝑦𝑖,𝑗

for each 𝑖 ∈ ℐ and

log 𝑎
(𝑡)
𝑖 =

∑︁
𝑗∈𝒥

I[𝑦𝑖,𝑗 ̸= ⊥]
(︁
𝑦𝑖,𝑗 log𝛼

(𝑡−1)
𝑗 + (1− 𝑦𝑖,𝑗) log(1− 𝛼

(𝑡−1)
𝑗)

)︁
,

log 𝑏
(𝑡)
𝑖 =

∑︁
𝑗∈𝒥

I[𝑦𝑖,𝑗 ̸= ⊥]
(︁

(1− 𝑦𝑖,𝑗) log 𝛽
(𝑡−1)
𝑗 + 𝑦𝑖,𝑗 log(1− 𝛽

(𝑡−1)
𝑗)

)︁
for all 𝑡 ∈ {1, . . . , 𝑇} and 𝑖 ∈ ℐ. We ignore the public output because
it can be computed using the private output of the requester.

Assume that the requester had a privacy invading function from these
values to the private label 𝑦𝑖′,𝑗′ for arbitrary 𝑖′ ∈ ℐ and 𝑗′ ∈ 𝒥 . From
the assumption of Theorem 5.1, there exists 𝑗′′ ∈ 𝒥 ∖{𝑗′} such that
𝑦𝑖′,𝑗′ ̸= 𝑦𝑖′,𝑗′′ holds. Let us construct another set of crowd labels 𝒴 =

124

{𝑦𝑖,𝑗 | 𝑖 ∈ ℐ, 𝑗 ∈ 𝒥 } by permuting 𝑗′ and 𝑗′′ in the original set of crowd
labels as follows:

𝑦𝑖,𝑗 =

⎧⎨⎩
𝑦𝑖,𝑗 (𝑖 ̸= 𝑖′ or 𝑗 ̸= 𝑗′, 𝑗′′),
𝑦𝑖,𝑗′ (𝑖 = 𝑖′ and 𝑗 = 𝑗′′),
𝑦𝑖,𝑗′′ (𝑖 = 𝑖′ and 𝑗 = 𝑗′).

Notice that the values of the information the requester has are the
same between 𝒴 and 𝒴 . Therefore, the output of the privacy invading
function on the permuted set should be the same as that on the original
set, i.e., 𝑦𝑖′,𝑗′ . However, from the definition of the privacy invading
function, it should output the private label to instance 𝑖′ given by
worker 𝑗′, i.e., 𝑦𝑖′,𝑗′ (̸= 𝑦𝑖′,𝑗′), which is a contradiction. Therefore, the
requester cannot determine any private label uniquely.

(ii) Worker 𝑗⋆ (∈ 𝒥)
The information worker 𝑗⋆ has is the public output (Equation (5.2))
and the private input of worker 𝑗⋆, i.e., the sets of his/her crowd labels
and ability parameters:

{𝑦𝑖,𝑗⋆ | 𝑖 ∈ ℐ},{︁
𝛼
(𝑡)
𝑗⋆ , 𝛽

(𝑡)
𝑗⋆ | 𝑡 ∈ {0, . . . , 𝑇}

}︁
.

Assume that worker 𝑗⋆ had a privacy invading function from these
values to the private label 𝑦𝑖′,𝑗′ for arbitrary 𝑖′ ∈ ℐ and 𝑗′ ∈ 𝒥 ∖{𝑗⋆}.
From the assumption of Theorem 5.1, there exists 𝑗′′ ∈ 𝒥 ∖{𝑗′, 𝑗⋆} such
that 𝑦𝑖′,𝑗′ ̸= 𝑦𝑖′,𝑗′′ holds. Then, in the same way as the case with the
requester, we are able to leads to a contradiction, and therefore, any
worker cannot determine any private label uniquely.

(iii) Platform
The private input of the platform is a set of workers participating in the
protocol 𝒥 . In this case, we can prove that a privacy invading function
does not exist in the same way as the requester case by constructing
another set of crowd labels. Since the permuted set does not change the
information the platform has, there comes the contradiction. Therefore,
the platform cannot determine any private label uniquely.

These discussions prove that any private label cannot be determined.

125

5.5 Experiments

The performance of the WPLC protocol can be different from that of the
LC method in computation time and accuracy as discussed in Section 5.3.3.
We have conducted two experiments, each of which examines the accuracy
degradation (Section 5.5.1) and the computation overhead (Section 5.5.2)
compared to the LC method, to show that the WPLC protocol is practical
in a real environment.

5.5.1 Experiments on Approximation Accuracy

The WPLC protocol executes the LC method approximately, because it in-
volves a rounding operation in the secure sum protocol. We investigate the
approximation accuracy using both synthetic and real datasets to show that
it does not ruin the aggregated results.

Datasets

Synthetic Dataset. We use the LC model to generate synthetic datasets
in the following procedure. First, for all 𝑖 ∈ ℐ, we generate the true labels
𝑦𝑖 from the Bernoulli distribution with its parameter 𝑝 = 0.5. Then, for
all 𝑖 ∈ ℐ and 𝑗 ∈ 𝒥 , we generate crowd labels given by worker 𝑗 from two
Bernoulli distributions with their parameters 𝛼𝑗 and 𝛽𝑗. The parameters of
the synthetic dataset are the number of instances 𝐼, the number of workers
𝐽 , and the ability parameters {𝛼𝑗 | 𝑗 ∈ 𝒥 } and {𝛽𝑗 | 𝑗 ∈ 𝒥 }.

Real Dataset. We employ the Duchenne Smiles Dataset (Whitehill et al.,
2009) as a real dataset. The task was to give each face image a label whether
the smile on the image was a duchenne one (enjoyment smile) or a non-
duchenne one. The images (or instances in our paper) have the ground truth
labels that were given by experts. The number of images 𝐼 is 159, and 58 out
of the 159 images contain Duchenne smiles according to the ground truths.
In total, 20 workers gave labels, and 3, 513 crowd labels were collected, where
1, 804 out of the 3, 513 crowd labels were duchenne labels.

Experimental Settings

To understand the approximation accuracy, we examined (i) the accuracy
of the aggregated labels compared to the ground truth labels and (ii) the
relative errors of model parameters obtained by using the WPLC protocol
and the LC method.

126

Table 5.1: Performance comparison on the real dataset. The performance of
the WPLC protocol was not affected by 𝐿.

MV method LC method WPLC protocol
0.752 0.761 0.761

(i) Accuracy of the Aggregated Labels. We examine the accuracy of
the aggregated labels against the ground truth labels, varying the parameters
of datasets and the approximation parameter 𝐿, which controls the approx-
imation accuracy of the WPLC protocol. The effect of the approximation
parameter 𝐿 is examined on both synthetic and real datasets, and the effect
of the parameters of datasets is examined on synthetic datasets, because the
parameters cannot be altered in the real dataset. The detailed parameters
of the synthetic datasets are described in the captions of Figure 5.2, where
we use the notation 𝛼𝑘:𝑙 = 𝛼⋆ to denote 𝛼𝑘 = 𝛼𝑘+1 = · · · = 𝛼𝑙−1 = 𝛼⋆.

The performance is measured by the accuracy, i.e., the percentage of the
aggregated labels that agree with the ground truth labels. For both the
LC method and the WPLC protocol, we estimate the aggregated label of
instance 𝑖 as 𝑦𝑖 = 1 if 𝜇𝑖 > 0.5, and 𝑦𝑖 = 0 otherwise. For comparison, we
also test the majority voting (MV) method, which is also easily made secure
by our secure sum protocol. For the experiments using synthetic datasets, we
repeat experiments 100 times to obtain the mean and the standard deviation
of the accuracy.

(ii) Relative Errors of Parameters. We compare the relative errors of
the model parameters of the WPLC protocol and the LC method on the real
dataset, varying the approximation parameter 𝐿 as 100, 101, . . . , 1014. Let us
denote a parameter of the LC method by vector x and the corresponding
parameter of the WPLC protocol by vector x̃. Then, we define the relative
error of the parameter as ‖ log x − log x̃‖/‖ log x‖. We examine the relative
errors of 𝛼 = [𝛼1, . . . , 𝛼𝐽], 𝛽 = [𝛽1, . . . , 𝛽𝐽], 𝜇 = [𝜇1, . . . , 𝜇𝐼], and 𝑝.

Results

(i) Accuracy of the Aggregated Labels. The results on the synthetic
datasets are shown in Figures 5.2a–5.2f, and those on the real dataset are
shown in Table 5.1. We have three findings from the results.

First, Figure 5.2a and Table 5.1 show that the performance of the WPLC
protocol was almost the same as that of the LC method if the approximation
parameter 𝐿 was larger than 𝐿 = 10. In specific, Table 5.1 shows that

127

100 101 102 103 104 105

L: approximation parameter

0.89

0.90

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

A
cc

ur
ac

y

MV method

LC method

WPLC protocol

(a) Fixing 𝐼 = 100, 𝐽 = 10, 𝛼 = 𝛽 = 0.75,
and varying 𝐿 = 100, 101, . . . , 105.

0 20 40 60 80 100

J : #(workers)

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

A
cc

ur
ac

y

MV method

LC method

WPLC protocol

(b) Fixing 𝐼 = 100, 𝛼 = 𝛽 = 0.6, 𝐿 = 100
and varying 𝐽 = 10, 20, . . . , 100.

0.5 0.6 0.7 0.8 0.9 1.0
α0:J = β0:J : ability parameters

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

ur
ac

y

MV method

LC method

WPLC protocol

(c) Fixing 𝐼 = 100, 𝐽 = 10, 𝐿 = 100 and
varying 𝛼0:𝐽 = 𝛽0:𝐽 = 0.5, 0.55, . . . , 1.0.

0.0 0.2 0.4 0.6 0.8 1.0
r: ratio of spammers

0.4

0.5

0.6

0.7

0.8

0.9

1.0
A

cc
ur

ac
y

MV method

LC method

WPLC protocol

(d) Fixing 𝐽 = 10, 𝐿 = 100, 𝛼0:𝑟𝐽 = 𝛽0:𝑟𝐽 =
0.5, 𝛼𝑟𝐽:𝐽 = 𝛽𝑟𝐽:𝐽 = 0.8 and varying 𝑟 =
0, 0.1, . . . , 1.0.

20 40 60 80 100 120 140 160 180 200

I: #(instances)

0.94

0.95

0.96

0.97

0.98

0.99

1.00

A
cc

ur
ac

y

MV method

LC method

WPLC protocol

(e) Fixing 𝐽 = 10, 𝐿 = 100, 𝛼0:𝐽 = 𝛽0:𝐽 =
0.8 and varying 𝐼 = 25, 50, . . . , 200.

20 40 60 80 100 120 140 160 180 200

I: #(instances)

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

A
cc

ur
ac

y

MV method

LC method

WPLC protocol

(f) Fixing 𝐽 = 10, 𝐿 = 100, 𝛼0:3 = 𝛽0:3 =
0.5, 𝛼3:10 = 𝛽3:10 = 0.8 and varying 𝐼 =
25, 50, . . . , 200.

Figure 5.2: Performance comparison on the synthetic dataset. The parameter
setting for each figure is given in the caption of it. The error bars show
standard deviations.

128

rounding in secure sum had little effect on the performance in practice. From
these results, we conclude that the accuracy of the aggregated labels are not
affected by the approximation parameter if appropriately chosen.

Second, Figures 5.2b–5.2f show that the performance of the LC method
and that of the WPLC protocol are not influenced by the parameters of the
dataset if 𝐿 = 100. Therefore, together with the first finding, we conclude
that the performance of the WPLC protocol with 𝐿 (> 100) is the same as
that of the LC method.

Finally, Figures 5.2b–5.2f and Table 5.1 highlight the performance char-
acteristics of the MV method and the LC-type methods, i.e., the LC method
and the WPLC protocol. The LC-type methods perform better than the MV
method in Table 5.1 and Figures 5.2d and 5.2f, when the ability parameters of
the workers are heterogeneous. The performance is the same in Figure 5.2e,
when the workers are highly skilled. The MV method is better than the LC-
type methods in Figures 5.2b and 5.2c, when the ability parameters of the
workers are relatively low and homogeneous. From these results, we conclude
that the LC-type methods are preferable to the MV method when the work-
ers have diverse expertise. Since workers in a real crowdsourcing platform
actually have diverse expertise, the LC-type methods perform better than
the MV method as shown in Table 5.1, which supports the extension of the
LC method, not the MV method.

From these studies, we conclude that the rounding operation in the proto-
col has little effect on the performance if we set the approximation parameter
𝐿 reasonably large and that the extension of the LC method is preferred to
the MV method considering the performance on real crowdsourcing.

(ii) Relative Errors of Parameters. The results on the real dataset
are shown in Figure 5.3. The relative errors decrease as the approximation
parameter 𝐿 increases, which implies that we can decrease the errors as small
as necessary. Therefore, we conclude that the relative errors of the model
parameters are not problematic if we set the approximation parameter 𝐿
sufficiently large.

One may notice that the relative error of log 𝜇 do not decrease drastically
if the approximation parameter 𝐿 is smaller than 107. This is partly due
to the difference in the number of iterations. The number of iterations for
the algorithms to converge is shown in Figure 5.4. We can observe that the
number of iterations of the WPLC protocol is different from that of the LC
method when the approximation parameter 𝐿 is smaller than 107, which is
expected to have influence on the relative error. When the approximation
parameter 𝐿 is too small, small changes in the ability parameters are not

129

reflected to the posterior probabilities {𝜇𝑖 | 𝑖 ∈ ℐ} in the E-step due to
rounding, which will cause the small number of iterations of the WPLC
protocol.

5.5.2 Experiment on Computational Efficiency

We examine the computational efficiency of the WPLC protocol. As stated
in Section 5.3.3, the WPLC protocol requires more computation time than
the LC method because the WPLC protocol requires communication be-
tween parties, key generation, and encryption and decryption of messages.
We experimentally evaluate cryptographic computation time to investigate
whether the WPLC protocol is practical in real crowdsourcing.

Experimental Setting

We evaluate the computation time of key generation and the overhead caused
by cryptographic operations in the WPLC protocol based on the computa-
tion time of basic operations shown in Table 2.1. The computation overhead
of one iteration of the WPLC protocol depends on the number of instances 𝐼
and the number of workers 𝐽 . One iteration of the WPLC protocol consists
of 2𝐼 secure sum operations, and one iteration of the secure sum protocol
consists of 𝐽 encryptions, 𝐽 − 1 secure addition operations, and one decryp-
tion. Therefore, the computation overhead of one iteration of the WPLC
protocol is estimated as

2𝐼(𝐽𝑇enc + 𝑇dec + (𝐽 − 1)𝑇add),

where 𝑇enc, 𝑇add, and 𝑇dec correspond to the computation times of encryption,
secure addition, and decryption.

Results

The computation time of key generation was 45.2 ms, and the computation
overhead of one update of the WPLC protocol was estimated using the results
in Table 2.1 as

2𝐼(10.14𝐽 + 9.63 + 0.01(𝐽 − 1)),

For example, assuming that the numbers of instances and workers are 𝐼 =
𝐽 = 100, the overhead will be about 205 seconds. Considering that the parties
only have to put their computers on and do not have to be involved in the
protocol, this computation in exchange for worker privacy will be tolerable.

130

100 101 102 103 104 105 106 107 108 109 10101011101210131014

L: approximation parameter

10−16

10−14

10−12

10−10

10−8

10−6

10−4

10−2

100

R
el

at
iv

e
er

ro
r

logα⋆

log β⋆

log p⋆

logµ⋆

Figure 5.3: Relative errors of the model parameters of the LC method and
those of the WPLC protocol (𝐿 versus the relative errors).

100 101 102 103 104 105 106 107 108 109 10101011101210131014

L: approximation parameter

6

8

10

12

14

16

18

#(
it

er
at

io
ns

)

LC method

WPLC protocol

Figure 5.4: Number of iterations required by the LC method and the WPLC
protocol to converge (𝐿 versus the number of iterations).

131

Furthermore, considering that each worker performs encryption in a parallel
manner in the secure sum protocol, the actual computation time will be
significantly lower than the above estimate. In summary, we conclude that
the computation overhead incurred by the Paillier cryptosystem is practically
acceptable in consideration of the privacy guarantee for workers.

5.6 Summary and Future Work
This chapter has discussed the issue of worker privacy in crowdsourcing and
has introduced a basic idea to preserve worker privacy. Observing that the
label aggregation by a quality control method can detach personal identifiers
from the results, our solution called the worker-private latent class protocol
is to secretly aggregate results based on the update rules of the latent class
method and hand the aggregated results to the requester. We theoretically
prove the security of our protocol, guaranteeing that the re-identification
of a worker is impossible. In addition, we have empirically evaluated the
performance of our protocol compared to the original latent class method.
The experimental results show that our protocol achieves the same accuracy
as the latent class method if we employ a sufficiently large approximation
parameter and that the computational overhead caused by the cryptographic
operations is tolerable in exchange for the privacy guarantee.

An interesting research direction is to learn a classifier directly from crowd
labels with preserving worker privacy. Raykar et al. (2010) experimentally
show that it is better to learn a classifier directly from crowd labels than to
infer the aggregated labels first and to learn a classifier from the aggregated
labels. Therefore, if the requester is willing to acquire a classifier using the
crowd labels, such a protocol will be desirable to the requester.

132

Chapter 6

Related Work

This chapter discusses work related to this dissertation. We first discuss the
work related to privacy preservation in crowdsourcing and clarify the contri-
butions of this dissertation in Section 6.1. We then widen the scope of related
work to review the existing work of two distinct research areas, crowdsourcing
and privacy preservation, in Sections 6.2 and 6.3, respectively, and we state
the relationships between this dissertation and these two different research
areas. The latter two sections will help readers to grasp the contributions of
this dissertation to these two popular research areas.

6.1 Privacy Preservation in Crowdsourcing

We review the privacy preservation research for crowdsourcing in this section.
Because our dissertation consists of three main topics, we provide the related
work and clarify our contributions for each topic.

6.1.1 Privacy Preservation in Task Assignment

This section reviews the work related to privacy preservation in task assign-
ment (Chapter 3). Table 6.1 briefly compares our protocol with the existing
protocols.

Privacy issues in task assignment have been mostly discussed in the con-
text of spatial crowdsourcing, which deals with tasks that cannot be com-
pleted without traveling to specific locations. Examples of such spatial tasks
include tasks to collect pictures of specific locations, tasks to collect as many
points of interest as possible, tasks to report traffic information, and errand
tasks. Task assignment for spatial tasks requires workers and requesters to
disclose their locations and the locations of points of interest, respectively,

133

Table 6.1: Comparison of PTA and the existing studies. Most of the existing
studies focus on preserving the locations of workers, while our PTA preserves
the features of both workers and tasks, including the locations.

Target Approach

Kazemi and Shahabi (2011)
Locations of

workers Perturbation

To et al. (2014)
Locations of

workers Perturbation

PTA (Chapter 3)
Features of

workers and tasks Cryptography

to a crowdsourcing platform, which can invade their privacy. Therefore, it is
necessary to develop a privacy-preserving task assignment system for spatial
crowdsourcing.

One of the pioneering studies in this literature was conducted by Kazemi
and Shahabi (2011), who specifically focus on participatory sensing. Partic-
ipatory sensing is a variant of spatial crowdsourcing that leverages mobile
devices equipped with sensors for large-scale sensing. Their main concern
is that a worker has to disclose his/her location information to the assign-
ment server when s/he queries a task. They hence proposed PiRi, which
addresses the privacy issue by relying on a P2P technique to compute spa-
tially 𝑘-anonymized queries posed by workers to the assignment server. The
subsequent work (Kazemi and Shahabi, 2012b) deals with the trust issue in
addition to the privacy issue. Because workers in crowdsourcing are untrust-
worthy, the data provided by workers are not always correct. They therefore
extended PiRi to cope with the trust issue by assigning a single task to
multiple workers to obtain redundant data.

To et al. (2014) employed differential privacy (Dwork, 2006) as a privacy
guarantee instead of the 𝑘-anonymity-based privacy guarantee. Their solu-
tion is to utilize a cellular service provider that already has trust relationships
with workers. In their framework, the cellular service provider sanitizes and
releases the location data of workers according to the differential privacy
criterion, and spatial crowdsourcing platforms assign tasks based on the san-
itized location data. To et al. (2015) followed up this research by developing
an interactive visualization and tuning toolbox for their framework. Their
toolbox helps users to tune several parameters of their framework such as
those for differential privacy and a selection of geocasting strategies.

In summary, the existing studies preserve workers’ privacy by adding an
appropriate amount of noise to these workers’ locations, e.g., according to
the differential privacy criterion (Dwork, 2006) or a spatial 𝑘-anonymity cri-

134

Table 6.2: Comparison of our study (the IC protocol and UPTA) and the
existing studies. Our study, resigning the perfect privacy preservation, is able
to preserve instance privacy on more general instances than medical charts,
and thus, UPTA is necessary that quantifies both utility and privacy. UPTA
guarantees the privacy not by the accuracy but by an information-theoretic
measure that is based on the uninformative principle.

Target Privacy guarantee
Little and Sun (2011) Medical chart Perfect
Lasecki et al. (2015a) Video Accuracy
Lasecki et al. (2015b) Array Accuracy

IC protocol
(Chapter 4) Array UPTA

terion. There are three main differences between their studies and ours.
First, they do not take the privacy of requesters into account, whereas our
problem setting takes the privacy of the requesters into account in addition
to that of workers. As some requesters, e.g., those who using crowdsourcing
for business purposes, are willing to conceal the details of their tasks, it is
strongly desirable to preserve their privacy. Second, they resort to pertur-
bation approaches to preserving privacy at the cost of accuracy, whereas our
method follows a cryptographic approach that preserves privacy without sac-
rificing accuracy. Third, their methods specialize in spatial tasks, whereas
our method considers features of a more general nature pertaining to tasks
and workers, including skills, locations, wages, and working hours. These
differences clearly emphasize the contributions of our work in the research
area of privacy-preserving task assignment in crowdsourcing.

6.1.2 Instance Privacy

This section reviews the work related to instance privacy (Chapter 4). Ta-
ble 6.2 briefly compares our study with other existing studies.

Instance privacy concerns the risk of information extraction from an in-
stance that is handed to workers along with a job instruction. For exam-
ple, in an audio transcription task, an audio recording corresponds to an
instance, and it may contain sensitive information if it is a recording of a
business meeting. Because crowdsourcing involves untrustworthy workers by
its nature, how to preserve instance privacy in crowdsourcing is an essential
research challenge.

Research to preserve instance privacy in crowdsourcing has been con-

135

ducted in the human-computer-interaction and human computation commu-
nities. The existing studies can be grouped into three types: (i) practical
studies developing a privacy-preserving protocol for a specific problem set-
ting, (ii) theoretical studies analyzing the trade-off that emerges when in-
stance privacy is preserved, and (iii) studies pointing out and warning about
the risk of instance privacy. Our study resides in the first and second groups.

(i) Practical Studies

A pioneering practical study was conducted by Little and Sun (2011), who
developed a privacy-preserving human OCR system for medical charts. They
make use of a blank template of the medical chart to decompose the chart
into items, which prevents workers from associating a personal identifier (e.g.,
a name) with attributes (e.g., a disease). Although it is a popular idea to
decompose documents into fragments for task requests (von Ahn et al., 2008;
Chen et al., 2012), this work applied the idea to privacy preservation for the
first time.

Another practical study was conducted by Lasecki et al. (2015a,b) after
the publication of our work (Kajino et al., 2014b). Lasecki et al. (2015a)
developed a privacy-preserving behavioral video coding method and analyzed
the trade-off between utility and privacy. Behavioral video coding is a video
annotation task that identifies specific events and their time of occurrence.
In this task, a video clip corresponds to an instance, which cannot be put on
a public website without any protection. Their idea is to blur the video so
that a worker cannot identify the person in the video.

Lasecki et al. (2015b) developed a method to filter sensitive information
contained in array-type instances given a natural language description of
what should be filtered. Their idea of privacy preservation is similar to the
IC protocol in that a small portion of an instance does not invade privacy
much and thus can be handed to workers. In fact, their method improves
the IC protocol by utilizing a pyramid workflow, which helps to overcome
the problem of the fixed-size clipping window. The pyramid workflow first
presents workers with small sub-instances and asks whether they contain
sensitive information or not. It then masks the original instances using the
responses from workers and repeats the same procedure with a larger clipping
window.

(ii) Theoretical Studies

A few studies have pursed the theoretical aspects of instance privacy. In
principle, privacy preservation comes at the cost of the quality of a result.

136

Therefore, it is a main subject of theoretical research to unravel the trade-off
between privacy and quality.

Varshney (2012) approached this problem by building a mathematical
model of a privacy preservation method using random perturbation. His pri-
vacy concern is that, even if we employ the random perturbation approach,
colluding workers can recover the original instance from multiple indepen-
dently and randomly perturbed instances. To this end, he theoretically in-
vestigated the trade-off between the quality of a result, privacy guarantee
under collusion, and cost.

Lasecki et al. (2015a) also investigated the trade-off issue using experi-
ments in a similar way to ours. They asked workers whether they were able
to identify the person in a blurred video from a set of candidates. Because
the identification accuracy drops quickly as the blur level increases while the
quality does not drop steeply, they concluded that their framework can bal-
ance the trade-off. Our approach to the trade-off analysis is different from
these two studies in that (1) we provide utility and privacy measures that
can be computed by experiments, unlike the work by Varshney (2012), and
(2) our privacy measure is more pessimistic than the measure proposed by
Lasecki et al. (2015a). Our privacy measure penalizes the false identification
case, in which the responses of workers are not correct but concentrate on one
choice. For example, even if all the responses of workers concentrate on Alice
in a privacy test for which the correct answer is Bob, we consider instance
privacy to be invaded because Alice could suffer from the false identification.

(iii) Risk Analysis

Finally, several studies have pointed out the risk of instance privacy. Harris
(2011) discussed several unethical uses of crowdsourcing, including infor-
mation extraction by workers. Lasecki et al. (2014) raised the problem of
information extraction by workers and experimentally showed that a non-
negligible number of workers are willing to be engaged in unethical tasks.
These studies present the risk that some workers could take part in unethical
tasks such as information extraction tasks, which could lead to an invasion
of instance privacy.

6.1.3 Privacy Preservation for Workers

This section reviews the work related to worker privacy (Chapter 5). Ta-
ble 6.3 briefly compares our study and the existing studies.

The issue of worker privacy is that the sensitive information of a worker
can be inferred from the results the worker produces. For example, the ability

137

Table 6.3: Comparison of WPLC protocol and the existing studies. Our
protocol can preserve the utility of a requester by simulating a quality control
method, while the existing studies sacrifice it.

Target Approach
Cornelius et al. (2008)
Hu and Shahabi (2010) Location Anonymization

Puttaswamy et al. (2010)
Huang et al. (2009) Location Perturbation

WPLC protocol
(Chapter 5) Any label

Quality control
with cryptography

of a worker can be inferred by using the latent class method (Dawid and
Skene, 1979), and the trajectory of a worker can be inferred from the results of
a spatial crowdsourcing task. Although the importance of respecting worker
privacy has been mentioned (Bernstein et al., 2011), the issue of worker
privacy in a general task had been unsolved until our research was published.

In the context of participatory sensing, several studies deal with worker
privacy. A worker in participatory sensing serves as a sensor node that re-
ports their sensing results along with its location information. Even though
workers are anonymized on the platform, we can identify them using the
location information and resultant trajectory inferred from a collection of
the location information. There are two major approaches to preserving the
privacy of workers in participatory sensing. One approach is to keep the
anonymity of workers by detaching the identifier of a worker from their re-
sults through anonymous routing (Cornelius et al., 2008; Hu and Shahabi,
2010; Puttaswamy et al., 2010). Another approach is to perturb the location
information by adding noise or sanitization in order to satisfy some privacy
criterion such as 𝑘-anonymity (Huang et al., 2009).

Our study differs from these studies mainly in the following two points.
First, we develop a privacy-preserving aggregation method in the context of
quality control, and therefore, the aggregation improves the quality of results
the requester obtains while preserving worker privacy. On the contrary, these
studies mainly focus on privacy preservation without taking into account the
reliability of different workers. Second, our protocol can deal with binary,
multi-class, and real-valued results, while their methods focus on real-valued
location data only. These two differences highlight the contribution of our
study not only to crowdsourcing research but also to participatory sensing.

138

6.2 Crowdsourcing

We review the existing studies on crowdsourcing in the machine learning
and data mining communities. There are two major research topics: quality
control and task assignment. Because these two topics are related to our
research, we briefly summarize these two research topics to show the current
research directions.

6.2.1 Quality Control

Since the launch of Amazon Mechanical Turk, a general-purposed crowd-
sourcing marketplace, a number of research groups have been pursuing the
possibility of crowdsourcing for data annotation (Sheng et al., 2008; Snow
et al., 2008; Deng et al., 2009). Using crowdsourcing entails both advantages
and disadvantages. The advantage is that we can significantly reduce the
monetary and time costs of constructing a training dataset for supervised
learning. For example, in order to learn a classifier of texts, it is necessary to
annotate a number of texts for training the classifier. If we use crowdsourc-
ing for annotation, we can employ a number of workers to annotate the texts
in an extremely parallel manner at low cost. One successful example is the
ImageNet dataset (Deng et al., 2009), which is the state-of-the-art bench-
mark dataset for image classification. The disadvantage is that the quality
of annotation is not guaranteed. As pointed out at the very beginning of
crowdsourcing (Howe, 2006a), the quality of a result depends on the ability
and motivation of a worker, which is unknown to the requester. Therefore, a
number of studies have been conducted to address the quality control prob-
lem (Lease, 2011) to improve the quality of annotation in a statistical way.

One of the earliest studies was conducted on data mining (Sheng et al.,
2008) and natural language processing (Snow et al., 2008). Sheng et al. (2008)
proposed a repeated labeling strategy for the quality control problem. Their
basic strategy was to assign the same labeling task to multiple workers to
obtain redundant labels and aggregate them by majority voting to improve
the quality. Snow et al. (2008) used crowdsourcing for human linguistic
annotation and applied the latent class method (Dawid and Skene, 1979) to
improve the annotation quality. This approach aggregates multiple labels
considering the ability of each worker. Results produced by a low-ability
worker have less influence on aggregation than those produced by a high-
ability worker.

The subsequent research branches mainly into two directions: (i) the de-
velopment of a more sophisticated aggregation method for the simple labeling
task and (ii) the extension of the applicability of a quality control method to

139

various tasks. In this thesis, Chapters 4 and 5 are related to the research on
quality control. The research in Chapter 4 does not investigate the quality
control problem but applies the latent class method to improve the quality of
results while preserving instance privacy. The research in Chapter 5 follows
the first direction. The protocol presented there is a privacy-preserving vari-
ant of the latent class method. In the following, we review these two research
directions respectively.

(i) Quality Control for Multiple-Choice Tasks

This research direction has two sub-fields. Some researchers use more sophis-
ticated aggregation methods to improve the quality of aggregated results,
while others analyze the performance of quality control methods.

Improvement of quality. The basic framework of more sophisticated
methods is the same as that by Dawid and Skene (1979); the annotation
process of a worker is modeled as a noisy label generation process from the
latent true label, and multiple labels are aggregated by inferring the latent
true label in an unsupervised manner. There are three approaches to im-
proving the quality control method.

The first approach is to make the model more precise. Whitehill et al.
(2009) propose GLAD, which takes the difficulty of instances into considera-
tion in addition to the ability of workers. Welinder et al. (2010) introduced a
latent feature space into their model to better capture the behavior of work-
ers. In their model, each instance is mapped in the latent feature space, and
each worker is modeled as a linear classifier in the same space who generates
labels according to the classifier.

The second approach is to devise the objective function and optimization
algorithm. Liu et al. (2012) focused on the inference algorithm part of the
latent class method. They showed that we can improve the performance of
the latent class method by applying existing inference methods for graphical
models, including belief propagation and mean field approximation. In ad-
dition, they investigated the connections between their algorithms and the
existing inference algorithms, including the expectation-maximization (EM)
algorithm, majority voting algorithm, and message-passing-style algorithm
for quality control (Karger et al., 2011a). Zhou et al. (2012) proposed the
minimax entropy principle, which enables us to learn a more complex worker
model than the model of the latent class method.

The third approach is to incorporate auxiliary information. Mo et al.
(2013) incorporated the idea of transfer learning into the quality control
problem. They proposed a hierarchical Bayesian model, which considers the

140

characteristics of a worker that govern his/her performance in different tasks.
Ma et al. (2015) considered a question-and-answer task, where a worker is
given a question and is asked to choose the answer from multiple choices.
They assume that the reliability of a worker depends on the topic of the
question. They estimate the topic-wise reliability from both questions and
answers in order to improve the performance.

Analysis on performance. Another research line is to guarantee the per-
formance of the quality control methods. Because most quality control meth-
ods utilize inference algorithms on probabilistic models with latent variables,
it is relatively difficult to guarantee their performance. Karger et al. (2011a)
simplify the model of the latent class method and develop an iterative infer-
ence algorithm for the model inspired by belief propagation. They provide
asymptotic error bounds for the performance of the algorithm, which is the
first theoretical guarantee on the performance of a quality control method,
as far as we know. Li et al. (2013) proved finite-sample error bounds for
the performance of weighted majority voting under the latent class model.
Their error bounds are valid for any set of weights. Berend and Kontorovich
(2014) investigated the consistency of the Nitzan-Paroush weighted majority
voting rule, where a weight for each worker is defined as the log-odd of its
accuracy. Note that they assume that the accuracy parameters of workers, or
at least, their estimates are known. Zhang et al. (2014) proposed a provably
optimal two-stage algorithm for the latent class method (Dawid and Skene,
1979). The first step is to use a spectral method to estimate the parame-
ters roughly, and the second step is to refine the estimation using the EM
algorithm. The performance guarantee of their algorithm can be derived by
virtue of the global optimality of the spectral method.

(ii) Quality Control for Complex Tasks

Another research direction is to develop quality control methods to deal with
various types of task results beyond multiple choices.

Gomes et al. (2011) proposed a quality control method for clustering in
crowdsourcing. In their framework, workers are shown multiple instances
chosen from a large dataset and are asked to perform clustering on them.
The clustering results by multiple workers are then aggregated to obtain a
clustering result over the entire dataset. Lin et al. (2012) handled an open-
question task whose result is defined on an countably infinite set. They model
the answering process using the Chinese restaurant process to represent the
infinite variations of worker responses. Baba and Kashima (2013) proposed a
quality control method for general tasks whose results do not have any fixed

141

format. They ask multiple workers to grade the redundantly acquired results
and aggregate the scores to determine the best one. Chen et al. (2013), Yi
et al. (2013), and Matsui et al. (2014) tackled the quality control problem
on a ranking task, where a result corresponds to a ranking of objects. The
basic approach is to employ a probabilistic model of ranking given the true
ranking and modify the latent class method using the model. The goal of
Chen et al. (2013) and Matsui et al. (2014) was to infer one true ranking over
a set of objects, while the goal of Yi et al. (2013) was to infer a respective
ranking over a set of objects personalized for each user. Kajimura et al.
(2015) developed a quality control method for a task to collect points of
interest in a map. The challenge is that it is necessary to infer whether two
close points given by different workers indicate the same location or different
point of interests. Their approach is to perform clustering on all the points
to group points that indicate the same location, and then, to estimate the
reliability of each cluster to eliminate unreliable ones.

There are also machine learning specific problem settings. A typical prob-
lem setting is the quality control of a classifier learned from a crowd-generated
training dataset (Raykar et al., 2010; Dekel and Shamir, 2009; Yan et al.,
2010; Zheng et al., 2010; Yan et al., 2011; Wauthier and Jordan, 2011; Ka-
jino et al., 2012a,b; Liu et al., 2013; Lin et al., 2014). Directly learning a
classifier is expected to achieve better classification accuracy than learning
a classifier from a training dataset that is quality-controlled independently
from the classifier. This was experimentally validated by Raykar et al. (2010).
Another interesting machine learning specific problem setting is to learn a
kernel from crowds (Tamuz et al., 2011). In their framework, workers are
shown objects 𝑎, 𝑏, and 𝑐 and are asked, “Is object 𝑎 more similar to 𝑏 or to
𝑐?” They proposed an adaptive method to learn a kernel over all the objects
by sequentially selecting the triple (𝑎, 𝑏, 𝑐) based on the current estimate of
the kernel.

6.2.2 Task Assignment

Another major concern is how to design a task assignment algorithm in
crowdsourcing. The standard task assignment method is the open call strat-
egy, in which tasks are listed on web pages and workers choose and process
tasks they like. This strategy can lead to a sub-optimal assignment in terms
of accuracy and throughput. Accuracy can degrade because the open call
policy allows spam workers to process a number of tasks, and throughput
can degrade because a highly skilled worker may process tasks that do not
require any special skill, while highly specialized tasks remain unprocessed.
In addition, a survey on workers revealed that they were not satisfied with

142

Table 6.4: Existing approaches to homogeneous task assignment. Most deal
with an online setting, in which an algorithm sequentially assigns a task to
an appropriate worker.

Assignment approach
Donmez et al. (2009) Elimination of low-quality workers

Welinder and Perona (2010) Elimination of low-quality workers

Yan et al. (2011)
Pick a worker and an instance
(active learning formulation)

Tran-Thanh et al. (2014)
Pick a worker

(bandit formulation)
Karger et al. (2011a,b,c) Offline random assignment

the current open call system because they had to spend too much effort find-
ing appropriate tasks (Kittur et al., 2013). Therefore, it is imperative to
assign tasks to appropriate workers from a global perspective.

Homogeneous tasks. The earliest studies on task assignment focus on a
labeling task, whose goal is to construct a dataset, the quality of whose labels
is maximized within a fixed budget. The challenge of this problem setting is
that the ability of workers is unknown to the requester. These studies often
assume that the task is homogeneous, i.e., the quality depends on a single
ability. Table 6.4 summarizes the existing approaches to the homogeneous
task assignment.

One approach to task assignment is to eliminate low-quality workers from
a pool of workers. Donmez et al. (2009) proposed an active learning method
called IEThresh, which aims to learn a classifier by adaptively selecting both
an instance to be labeled and a set of workers whose labels are used to esti-
mate the true label for the instance. Welinder and Perona (2010) proposed an
online quality control method based on the latent class method, which aims
to infer the true labels at low cost by adaptively selecting both instances and
workers.

Another approach is to pick an appropriate worker based on a certain
criterion. Yan et al. (2011) proposed an active learning method that chooses
both an instance and a worker in an active learning manner. In detail, they
repeatedly pick the most uncertain instance and the most confident worker
for that instance based on the model. Tran-Thanh et al. (2014) formulated
the task assignment problem as a bounded multi-armed bandit problem in
which the workers correspond to the arms, charging different prices, and the
number of calls per worker is limited. They provided a regret analysis of
their algorithm.

143

A series of studies by Karger et al. (Karger et al., 2011a,b,c) aims to
minimize the cost whilst achieving a certain reliability of labels. Because
their model assumes that the ability of a worker is uniform across different
tasks, a random task assignment strategy is proven to be asymptotically
order-optimal, in terms of the budget necessary to achieve a given error rate.
To the best of our knowledge, this is the first theoretical work.

Heterogeneous tasks. Subsequent studies generalize the existing problem
settings to deal with general tasks that require workers to have special skills
to complete.

One of the pioneering studies in this research line was conducted by Sha-
haf and Horvitz (2010). They considered an offline task assignment problem
that allows workers to form teams to process tasks. They assume that pro-
cessing a task requires a team of workers to have a certain set of skills.

Most of the studies have been developed based on the idea of the multi-
armed bandit problem. Ho and Vaughan (2012) formulated the task assign-
ment problem as a bandit-like problem in which a worker exhibits different
abilities, which are unknown to the requester, on different tasks. They per-
formed theoretical competitive analysis of their online algorithm against the
optimal offline algorithm. Ho et al. (2013) considered the task assignment
problem in the context of the quality control problem with the goal of high-
quality label aggregation. This problem setting has two main difficulties.
Contrary to the work by Karger et al. (2011a), they assume that each worker
has heterogeneous skills depending on the tasks, which allows an adaptive
task assignment strategy to be more advantageous than a random task as-
signment. Furthermore, contrary to their previous work (Ho and Vaughan,
2012), the quality of a label cannot be evaluated immediately in this model.
They showed that their algorithm is near-optimal compared to an optimal of-
fline algorithm. Chen et al. (2013) rely on the finite-horizon Markov decision
process to formulate the task assignment problem. Their model is simpler
than those employed by Ho and Vaughan (2012) and Ho et al. (2013) in that
the correlation between a worker and task is not taken into account; the
quality of a label given by a worker depends individually on the ability of
the worker and the difficulty of the task. Abraham et al. (2013) formalized
the combination of the task assignment and quality control problems as a
bandit survey problem. The bandit survey problem focuses on inferring the
true result of a single task. Each worker is modeled as a probability distri-
bution over the possible multiple-choice results, and each worker advertises
a different cost. The goal of the problem is to minimize the total cost to
achieve the predefined error rate of the aggregated result of the task.

144

The most recent work in this literature was conducted by Bragg et al.
(2014) and discusses the issue of the existing sequential task routing, focusing
on parallel task routing rather than a sequential one. They point out that
the sequential task routing strategy is inappropriate in that keeping workers
waiting for task assignments leads to a bottleneck in the platform and makes
workers frustrated and demotivated, which should be avoided, especially in
a volunteer-based crowdsourcing platform. They developed algorithms for
both offline and online settings, exploiting the submodularity of the objective
function. They assume that the difficulty of tasks and the ability of workers
are known a priori.

Our study in Chapter 3 deals with the task assignment problem for gen-
eral tasks that requires workers to gain special skills in the same way as
the recent work. Our problem setting is different from the existing problem
settings in three ways. First, our goal is to investigate whether privacy can
be preserved in a task assignment problem while retaining the optimality of
the assignment; the existing ones aim to develop assignment strategies for
different crowdsourcing models. This difference makes our study unique in
this area. Second, we assume that the quality of a task result is determinis-
tic, while other studies assume that the quality is drawn from a probability
distribution. Because our objective is to investigate whether it is possible
to preserve privacy in task assignment, we employ a simpler crowdsourcing
model to avoid the difficulty of handling the uncertainty. Third, our algo-
rithm is a batch algorithm, while other studies propose an online algorithm.
We consider that it is impossible to preserve privacy in an online task as-
signment algorithm, because adaptively selecting workers requires estimating
their skills, which is private information.

6.3 Privacy Preservation

Finally, we briefly discuss the relationship of this thesis with the research on
privacy preservation. Because the research in this thesis applies the ideas of
privacy preservation for graph algorithms and data mining algorithms, we
review these research areas and discuss the novelty of our research.

6.3.1 Privacy-Preserving Graph Protocols

We review protocols that perform graph algorithms in a privacy-preserving
manner, which are related to privacy preservation in task assignment (Chap-
ter 3). To the best of our knowledge, only one study that investigated the
maximum flow problem has been reported (Aly et al., 2013). These re-

145

searchers developed privacy-preserving Edmonds-Karp and push-relabel pro-
tocols based on a cryptosystem that offers secure addition, multiplication,
and comparison. As instances of such a cryptosystem, they suggest to use
secret-sharing-based software such as SEPIA (Burkhart et al., 2010). Their
work differs from ours in three main respects. First, they assume that they
have an encrypted network as an input on which they compute a maximum
flow, whereas our protocol constructs it in a privacy-preserving manner from
scratch. Second, our maximum flow protocol results in speeding up the com-
putation time eight times by specializing in assignment networks, whereas
their protocol, applicable to general networks, is not optimized for assign-
ment networks. Third, they only provide an abstract protocol that does not
specify the cryptographic roles and the communication between them. Our
protocol is carefully tuned for practical applicability in the crowdsourcing
environment. In particular, we invented a generally applicable solution to
assign cryptographic roles using crowdsourcing. This addresses a typical is-
sue found in implementing a cryptographic protocol that there does not exist
an appropriate entity to perform the cryptographic role without invading the
privacy assumptions.

Furthermore, there are two main reasons why we developed the Paillier-
cryptosystem-based protocol rather than relying on the existing secret-sharing-
based implementation. The first reason is that the Paillier implementation
naturally induces proper load balancing among three parties. In our imple-
mentation, the platform, playing the role of the decryptor, mainly takes on
the computational burden of decryption, and the crowdsourced parties, who
may not have sufficient computing power, perform less heavy computation.
In contrast, a secret-sharing-based implementation usually requires all the
parties, including those recruited in crowdsourcing, to have the same com-
puting power, which is less realistic in our crowdsourcing setting. The second
reason is the security of the protocol in case of collusion. If PTA were to
be naively implemented using a secret-sharing scheme managed by the three
parties, all the sensitive information, including the feature vectors and the
requirement vectors, would leak in the case of collusion. In contrast, PTA,
which is implemented by the Paillier cryptosystem, would not fully leak the
sensitive information; even in the most pessimistic case, the colluding three
parties could only obtain the assignment network, from which the feature vec-
tors and the requirement vectors could not be fully recovered. For example,
it is difficult to extract the location information of each worker encoded in
the feature vectors from the assignment network, because the vectors whose
elements are permuted using the same permutation result in the same as-
signment network. These two reasons motivated us to implement PTA using
the Paillier cryptosystem rather than secret-qsharing schemes. Other graph

146

algorithms have been made private by several research groups: the stable
marriage algorithms (Golle, 2006; Teruya and Sakuma, 2013), shortest path
algorithms (Brickell and Shmatikov, 2005; Aly et al., 2013), and PageRank
and HITS algorithms (Sakuma and Kobayashi, 2009). We believe that it
is possible to develop a more efficient private task assignment protocol by
applying the ideas developed in previous research to accelerate the privacy-
preserving algorithms.

6.3.2 Privacy-Preserving Data Mining

The concept of privacy-preserving data mining was presented independently
by two groups (Agrawal and Srikant, 2000; Lindell and Pinkas, 2000) around
the same time. Its basic concept is to address privacy issues caused by data
mining algorithms. This research area is related to our research on worker
privacy (Chapter 5), because our solution is a privacy-preserving variant of
a data mining algorithm.

Among a number of studies in this area, our work is most closely related
to research that uses secure protocols to execute EM algorithms (Lin et al.,
2005; Yang et al., 2012). None of the existing techniques can be applied to
the crowdsourcing setting because they require cyclic communication among
parties, which is not practical in crowdsourcing. Moreover, none of the exist-
ing studies give formal theoretical guarantees of the security of the protocols.
Some of them only prove that the information obtained in one iteration of
the protocol does not invade privacy, while we prove that the information ob-
tained in all the iterations does not invade privacy. These two points indicate
the novelty of our work.

Our work is also related to secure multiparty aggregation, aiming to aggre-
gate private data to obtain some statistics. Burkhart et al. (2010) developed
SEPIA to realize the aggregation of private data of multiple parties based
on Shamir’s secret sharing (Shamir, 1979). This method is not suitable for
crowdsourcing because it requires communication among workers. If a worker
would like to communicate with another worker via the platform, the plat-
form could reconstruct all the secret information because of the properties of
secret sharing. Many other secure multiparty aggregation methods are also
not suitable for crowdsourcing for the same reasons.

147

148

Chapter 7

Conclusion and Future Directions

7.1 Conclusion
The main concern of this thesis is that the use of crowdsourcing gives rise
to privacy risks, which, except for several pioneering studies, have almost
been dismissed in the literature of crowdsourcing research. To shed light on
the privacy risks and establish the research field of PPCS, we formulated the
following two research questions to take the first step toward a systematic
treatment of privacy risks in crowdsourcing:

∙ What types of privacy risks are present in crowdsourcing?

∙ How can we measure and control the privacy risks in crowdsourcing?

To answer the first research question, we summarized the privacy risks
present in crowdsourcing and discussed the relationship between PPCS and
the existing privacy preservation research. Because a privacy risk basically
occurs along with data processing, we studied each of the data processing
procedures in crowdsourcing and its potential privacy risks. Further, to high-
light the novelty of PPCS over the existing privacy preservation research, we
explored whether the existing privacy preservation approaches are applicable
to PPCS. Noting that the applicability depends on the properties of a data
processing procedure, i.e., its processor (machine or human) and whether its
output is specified or not, we investigated the properties of each data pro-
cessing procedure in crowdsourcing. As a result, we found that four types of
data can cause privacy issues and that some of them cannot be handled by
the existing privacy preservation methods, which emphasizes the novelty of
PPCS. The findings are summarized as follows.

∙ Task assignment using the features of entities
If a platform employs a push-type assignment strategy rather than the

149

typical pull-type one, both workers and requesters must report their
features to the platform, with which the platform assigns tasks to ap-
propriate workers based on feature matching. These features include
sensitive information such as a skill set, the location, reward, and work-
ing hours. This data processing procedure is performed by a machine
with the aim of computing a task assignment, and therefore, it is pos-
sible to apply the cryptographic approach.

∙ Task processing using a job instruction and an instance
When a requester submits a task, s/he has to send two types of data to
workers, a job instruction and an instance. Because a job instruction
compiles what the requester intends, workers can infer, for example,
the future business direction of the requester and his/her identity from
it. An instance corresponds to an image, document, video, or audio
clip, for example, and it often contains sensitive information regarding
the requester and third parties. Both job instructions and instances are
processed by a human to produce a task result. These data processing
procedures cannot be handled by the existing approaches because the
processor is a human.

∙ Delivery of task results
After a worker finishes performing tasks, s/he sends results of the tasks
to the requesters. In a location-based task, a result itself is sensitive,
and even in other tasks, we can infer sensitive attributes of workers
from the data, including the ability. In general, the further task result
process is not fixed, and therefore, it is impossible to apply the existing
approaches. However, with careful observation, we notice that in many
cases, task results are processed by a machine to control their quality.
In such a case, a cryptographic approach is appropriate.

Given the privacy risk analysis above, we conducted three studies, ad-
dressing the privacy issues associated with the four types of data.

∙ PTA protocol (Chapter 3)
At the initial state of the PTA protocol, each entity keeps his/her fea-
tures secret. The PTA protocol leverages the Paillier cryptosystem to
compute an optimal task assignment whilst keeping the features secret.
Finally, only the platform knows the assignment for task routing.

With this protocol, the features of entities are kept as secret as possible.
Although the assignment leaks some information about the features, it
cannot be helped if tasks are to be routed to appropriate workers. In
addition to keeping features secret, the protocol limits the information

150

leakage from job instructions and instances compared to the leakage
incurred by the popular pull-type assignment strategy. The pull-type
strategy allows all the workers to browse job instructions and instances,
while our task assignment opens it only to those who are assigned to
the task.

∙ UPTA (Chapter 4)
Because a general IPP protocol sacrifices utility to preserve instance-
privacy, it is indispensable to evaluate the trade-off between them. We
developed UPTA, which enables us to evaluate the trade-off quantita-
tively. Our idea is to model the task execution and privacy invasion as
samplings from the respective probability distributions. Because the
models can be estimated using a real crowdsourcing platform, it is pos-
sible to compute divergence-based utility and privacy measures using
the estimated models.

As a case study, we examined the properties of an IC protocol. The
IC protocol, instead of submitting an original instance, clips the in-
stance and asks workers to perform the task on the clipped instances.
From the experimental results, we conclude that the IC protocol can
preserve instance privacy without notably degrading the quality for a
pair consisting of a local task and global privacy definition. We also
found that UPTA is consistent with standard performance measures,
which validates its use.

∙ WPLC protocol (Chapter 5)
At the initial state of the WPLC protocol, each worker keeps his/her
results secret. The WPLC protocol leverages the Paillier cryptosystem
to aggregate the results based on the update rule of the latent class
method with the results kept secret. Finally, the requester only knows
the aggregated results, from which the results of the workers cannot be
recovered.

By aggregating the results of multiple workers, a requester obtains one
result per instance that is not associated with any worker. Although
the aggregated results may still contain some sensitive information,
this cannot be helped because some information is indispensable for
delivering the results to the requester.

In summary, the conclusion of this thesis is the following. Privacy risks
in crowdsourcing are caused by four types of data that are associated with
heterogeneous data processing procedures. Some of the procedures have the

151

unique property that their data is processed by a human, which clearly dis-
tinguishes the PPCS research from the existing privacy preservation research.
By presenting three privacy-preserving methods, we have established a re-
search methodology for privacy-preserving crowdsourcing: to tailor a privacy
preservation method for each data, taking its characteristics into considera-
tion. Intensive research on this topic will surely end up achieving the end-
to-end privacy-preserving crowdsourcing, in which any entity can regulate
his/her sensitive information considering the trade-off between utility and
privacy.

7.2 Future Directions

Because the purpose of this thesis is to establish the research basis of privacy-
preserving crowdsourcing, a number of research opportunities are left for
further research. We close the thesis with discussion on a few of the future
directions from a global perspective.

First of all, as stated in the last section of each chapter, it is obviously
crucial to refine each of the protocols to decrease the computational burden
and privacy risk and increase their usability. In specific, for cryptography-
based protocols, algorithm speed-up is crucial for deploying the protocols in
real crowdsourcing services. It is also necessary to devise instance-privacy
preserving protocols tailored for each of a number of tasks and privacy defi-
nitions.

Another research direction is to develop a privacy-preservation method for
job instructions. Although the privacy concern associated with it has been
eased by the privacy-preserving task assignment protocol, a fundamental
solution is still required. The technical difficulty is that it is more difficult
to generalize job instructions than task instances. On one hand, most of the
task instances can be represented by arrays, which enables us to develop the
IC protocol; on the other hand, job instructions do not have any standard
form, which prevents us from inventing a generally-applicable solution.

It is also interesting to deliberate on jointly preserving multiple types of
data. For example, it is possible to preserve privacy on a job instruction,
task instance, and task result at the same time by appropriately converting
and decomposing a task. Jointly preserving privacy is expected to decrease
the burdens imposed by privacy preservation techniques.

Finally, it would be interesting to investigate the influence of privacy guar-
antees on the users of crowdsourcing. For example, it is possible to quantify
the effectiveness of introducing privacy-preserving functions by counting the
number of requesters and workers who are willing to participate in crowd-

152

sourcing if privacy is guaranteed. It is also appealing to examine its effect
on the motivation of workers. We believe that such investigations will open
up new research directions.

153

154

Bibliography

Ittai Abraham, Omar Alonso, Vasilis Kandylas, and Aleksandrs Slivkins.
Adaptive crowdsourcing algorithms for the bandit survey problem. In Pro-
ceedings of the 26th Annual Conference on Learning Theory, pages 882–
910, 2013.

Rakesh Agrawal and Ramakrishnan Srikant. Privacy-preserving data mining.
In Proceedings of the 2000 ACM SIGMOD International Conference on
Management of Data, pages 439–450, 2000.

Abdelrahaman Aly, Edouard Cuvelier, Sophie Mawet, Olivier Pereira, and
Mathieu Van Vyve. Securely solving simple combinatorial graph prob-
lems. In Proceedings of the 17th International Conference on Financial
Cryptography and Data Security, pages 239–257, 2013.

Yukino Baba and Hisashi Kashima. Statistical quality estimation for gen-
eral crowdsourcing tasks. In Proceedings of the 19th ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data Mining, pages
554–562, 2013.

Yukino Baba, Hisashi Kashima, Kei Kinoshita, Goushi Yamaguchi, and
Yosuke Akiyoshi. Leveraging non-expert crowdsourcing workers for im-
proper task detection in crowdsourcing marketplaces. Expert Systems with
Applications, 41(6):2678–2687, 2014.

Daniel Berend and Aryeh Kontorovich. Consistency of weighted majority
votes. In Advances in Neural Information Processing Systems 27, pages
3446–3454, 2014.

Michael Bernstein, Ed H. Chi, Lydia Chilton, Björn Hartmann, Aniket Kit-
tur, and Robert C. Miller. Crowdsourcing and human computation: sys-
tems, studies and platforms. In Proceedings of CHI 2011 Workshop on
Crowdsourcing and Human Computation, pages 53–56, 2011.

155

Big Brother Watch. New privacy concerns about Internet Eyes,
2011a. URL http://www.bigbrotherwatch.org.uk/2011/03/
new-privacy-concerns-about-internet-eyes/.

Big Brother Watch. Internet Eyes falls at the first hurdle,
2011b. URL http://www.bigbrotherwatch.org.uk/2011/03/
internet-eyes-falls-at-the-first-hurdle/.

Jonathan Bragg, Andrey Kolobov, Mausam, and Daniel S. Weld. Parallel
task routing for crowdsourcing. In Proceedings of the Second AAAI Con-
ference on Human Computation and Crowdsourcing, pages 11–21, 2014.

Justin Brickell and Vitaly Shmatikov. Privacy-preserving graph algorithms
in the semi-honest model. In Advances in Cryptology – ASIACRYPT 2005,
pages 236–252, 2005.

Martin Burkhart, Mario Strasser, Dilip Many, and Xenofontas Dimitropou-
los. SEPIA: privacy-preserving aggregation of multi-domain network
events and statistics. In Proceedings of the 19th USENIX Conference on
Security, pages 223–240, 2010.

Kuang Chen, Akshay Kannan, Yoriyasu Yano, Joseph M. Hellerstein, and
Tapan S. Parikh. Shreddr: pipelined paper digitization for low-resource
organizations. In Proceedings of the 2nd ACM Symposium on Computing
for Development, 2012.

Xi Chen, Paul N. Bennett, Kevyn Collins-Thompson, and Eric Horvitz. Pair-
wise ranking aggregation in a crowdsourced setting. In Proceedings of the
Sixth ACM International Conference on Web Search and Data Mining,
pages 193–202, 2013.

Daniel Clery. Galaxy Zoo volunteers share pain and glory of research. Science,
333(6039):173–175, 2011.

Seth Cooper, Firas Khatib, Adrien Treuille, Janos Barbero, Jeehyung Lee,
Michael Beenen, Andrew Leaver-Fay, David Baker, Zoran Popović, and
Foldit Players. Predicting protein structures with a multiplayer online
game. Nature, 466(7307):756–760, 2010.

Cory Cornelius, Apu Kapadia, David Kotz, Dan Peebles, Minho Shin, and
Nikos Triandopoulos. AnonySense: privacy-aware people-centric sensing.
In Proceedings of the 6th International Conference on Mobile Systems,
Applications, and Services, pages 211–224, 2008.

156

http://www.bigbrotherwatch.org.uk/2011/03/new-privacy-concerns-about-internet-eyes/
http://www.bigbrotherwatch.org.uk/2011/03/new-privacy-concerns-about-internet-eyes/
http://www.bigbrotherwatch.org.uk/2011/03/internet-eyes-falls-at-the-first-hurdle/
http://www.bigbrotherwatch.org.uk/2011/03/internet-eyes-falls-at-the-first-hurdle/

A. P. Dawid and A. M. Skene. Maximum likelihood estimation of observer
error-rates using the EM algorithm. Journal of the Royal Statistical Soci-
ety. Series C (Applied Statistics), 28(1):20–28, 1979.

Ofer Dekel and Ohad Shamir. Vox populi: collecting high-quality labels
from a crowd. In Proceedings of the 22nd Annual Conference on Learning
Theory, 2009.

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from
incomplete data via the EM algorithm. Journal of the Royal Statistical
Society. Series B (Methodological), 39(1):1–38, 1977.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Im-
ageNet: a large-scale hierarchical image database. In Proceedings of 2009
IEEE Conference on Computer Vision and Pattern Recognition, pages
248–255, 2009.

Pinar Donmez, Jaime G. Carbonell, and Jeff Schneider. Efficiently learning
the accuracy of labeling sources for selective sampling. In Proceedings of
the 15th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 259–268, 2009.

Cynthia Dwork. Differential privacy. In Proceedings of the 33rd International
Colloquium on Automata, Languages and Programming, pages 1–12, 2006.

Benjamin C. M. Fung, Ke Wang, Rui Chen, and Philip S. Yu. Privacy-
preserving data publishing. ACM Computing Surveys, 42(4):1–53, jun
2010.

Raghu Ganti, Fan Ye, and Hui Lei. Mobile crowdsensing: current state and
future challenges. IEEE Communications Magazine, 49(11):32–39, 2011.

Andrew V. Goldberg and Robert E. Tarjan. A new approach to the
maximum-flow problem. Journal of the ACM, 35(4):921–940, oct 1988.

Oded Goldreich. Foundations of cryptography: basic applications. Cambridge
University Press, 2004.

Philippe Golle. A private stable matching algorithm. In Proceeding of Fi-
nancial Cryptography and Data Security, pages 65–80, 2006.

Ryan Gomes, Peter Welinder, Andreas Krause, and Pietro Perona. Crowd-
clustering. In Advances in Neural Information Processing Systems 24,
pages 558–566, 2011.

157

Christopher G. Harris. Dirty deeds done dirty cheap: a darker side to crowd-
sourcing. In Proceedings of 2011 IEEE International Conference on Pri-
vacy, Security, Risk, and Trust, and IEEE International Conference on
Social Computing, pages 1314–1317, 2011.

Chien-ju Ho and Jennifer Wortman Vaughan. Online task assignment in
crowdsourcing markets. In Proceedings of the 26th AAAI Conference on
Artificial Intelligence, pages 45–51, 2012.

Chien-Ju Ho, Shahin Jabbari, and Jennifer Wortman Vaughan. Adaptive
task assignment for crowdsourced classification. In Proceedings of the 30th
International Conference on Machine Learning, pages 534–542, 2013.

Jeff Howe. The rise of crowdsourcing. Wired Magazine, (14.06), 2006a.

Jeff Howe. Crowdsourcing: a definition, 2006b. URL http://
crowdsourcing.typepad.com/cs/2006/06/crowdsourcing_a.html.

Ling Hu and Cyrus Shahabi. Privacy assurance in mobile sensing networks:
go beyond trusted servers. In Proceedings of 2010 8th IEEE Interna-
tional Conference on Pervasive Computing and Communications Work-
shops, pages 613–619, 2010.

Kuan Lun Huang, Salil S. Kanhere, and Wen Hu. Towards privacy-sensitive
participatory sensing. In Proceedings of 2009 IEEE International Confer-
ence on Pervasive Computing and Communications, pages 1–6, 2009.

Panagiotis G. Ipeirotis. Analyzing the amazon mechanical turk marketplace.
XRDS: Crossroads, The ACM Magazine for Students, 17(2):16–21, 2010a.

Panos Ipeirotis. Demographics of mechanical turk. 2010b.

Markus Jakobsson and Claus Peter Schnorr. Efficient oblivious proofs of
correct exponentiation. In Proceedings of Joint Working Conference on
Communications and Multimedia Security, pages 71–84, 1999.

M. Jordan Raddick, Georgia Bracey, Pamela L. Gay, Chris J. Lintott, Carie
Cardamone, Phil Murray, Kevin Schawinski, Alexander S. Szalay, and Jan
Vandenberg. Galaxy Zoo: motivations of citizen scientists. Astronomy
Education Review, 12(1):1–41, 2013.

Shunsuke Kajimura, Yukino Baba, Hiroshi Kajino, and Hisashi Kashima.
Quality control for crowdsourced POI collection. In Proceedings of the
19th Pacific-Asia Conference on Knowledge Discovery and Data Mining,
pages 255–267, 2015.

158

http://crowdsourcing.typepad.com/cs/2006/06/crowdsourcing_a.html
http://crowdsourcing.typepad.com/cs/2006/06/crowdsourcing_a.html

Hiroshi Kajino, Yuta Tsuboi, and Hisashi Kashima. A convex formulation
for learning from crowds. In Proceedings of the 26th AAAI Conference on
Artificial Intelligence, pages 73–79, 2012a.

Hiroshi Kajino, Yuta Tsuboi, Issei Sato, and Hisashi Kashima. Learning
from crowds and experts. In Proceedings of the 4th Human Computation
Workshop, pages 107–113, 2012b.

Hiroshi Kajino, Hiromi Arai, and Hisashi Kashima. Preserving worker pri-
vacy in crowdsourcing. Data Mining and Knowledge Discovery, 28(5):
1314–1335, 2014a.

Hiroshi Kajino, Yukino Baba, and Hisashi Kashima. Instance-privacy pre-
serving crowdsourcing. In Proceedings of the Second AAAI Conference on
Human Computation and Crowdsourcing, pages 96–103, 2014b.

Hiroshi Kajino, Hiromi Arai, Jun Sakuma, and Hisashi Kashima. Privacy-
preserving task assignment in crowdsourcing. Technical report, 2015.

David R. Karger, Sewoong Oh, and Devavrat Shah. Iterative learning for
reliable crowdsourcing systems. In Advances in Neural Information Pro-
cessing Systems 24, pages 1953–1961, 2011a.

David R. Karger, Sewoong Oh, and Devavrat Shah. Budget-optimal crowd-
sourcing using low-rank matrix approximations. In Proceedings of the 49th
Annual Allerton Conference on Communication, Control and Computing,
pages 284–291, 2011b.

David R. Karger, Sewoong Oh, and Devavrat Shah. Budget-optimal task allo-
cation for reliable crowdsourcing systems. Arxiv preprint arXiv:1110.3564,
pages 1–27, 2011c. URL http://arxiv.org/abs/1110.3564.

Jonathan Katz and Yehuda Lindell. Introduction to modern cryptography.
2007.

Leyla Kazemi and Cyrus Shahabi. A privacy-aware framework for participa-
tory sensing. ACM SIGKDD Explorations Newsletter, 13(1):43–51, 2011.

Leyla Kazemi and Cyrus Shahabi. Geocrowd: enabling query answering with
spatial crowdsourcing. In Proceedings of the 20th International Conference
on Advances in Geographic Information Systems, pages 189–198, 2012a.

Leyla Kazemi and Cyrus Shahabi. TAPAS: trustworthy privacy-aware par-
ticipatory sensing. Knowledge and Information Systems, 37(1):105–128,
2012b.

159

http://arxiv.org/abs/1110.3564

Sunyoung Kim, Christine Robson, Thomas Zimmerman, Jeff Pierce, and
Eben M. Haber. Creek watch: pairing usefulness and usability for success-
ful citizen science. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pages 2125–2134, 2011.

Aniket Kittur, Jeffrey V. Nickerson, Michael S. Bernstein, Elizabeth M. Ger-
ber, Aaron Shaw, John Zimmerman, Mattew Lease, and John J. Horton.
The future of crowd work. In Proceedings of the 2013 Conference on Com-
puter Supported Cooperative Work, pages 1301–1318, 2013.

C. L. Lai, K. Q. Xu, Raymond Y. K. Lau, Yuefeng Li, and Dawei Song. High-
order concept associations mining and inferential language modeling for
online review spam detection. In Proceedings of 2010 IEEE International
Conference on Data Mining Workshops, pages 1120–1127, 2010.

Walter S. Lasecki, Jaime Teevan, and Ece Kamar. Information extraction
and manipulation threats in crowd-powered systems. In Proceedings of the
2014 ACM Conference on Computer Supported Cooperative Work, pages
248–256, 2014.

Walter S. Lasecki, Mitchell Gordon, Winnie Leung, Ellen Lim, Jeffrey P.
Bigham, and Steven P. Dow. Exploring privacy and accuracy trade-offs
in crowdsourced behavioral video coding. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, pages 1945–1954,
2015a.

Walter S. Lasecki, Mitchell Gordon, Jaime Teevan, Ece Kamar, and Jeffrey P.
Bigham. Preserving privacy in crowd-powered systems. In Proceedings of
AAMAS 2015 Workshop on Human-Agent Interaction Design and Models,
2015b.

Matthew Lease. On quality control and machine learning in crowdsourcing.
In Proceedings of the Third Human Computation Workshop, pages 97–102,
2011.

Hongwei Li, Bin Yu, and Dengyong Zhou. Error rate analysis of labeling
by crowdsourcing. In Proceedings of International Conference on Machine
Learning 2013 Workshop: Machine Learning Meets Crowdsourcing, 2013.

Christopher H. Lin, Mausam, and Daniel S. Weld. Crowdsourcing control:
moving beyond multiple choice. In Proceedings of the 28th Conference on
Uncertainty in Artificial Intelligence, pages 491–500, 2012.

160

Christopher H. Lin, Mausam, and Daniel S. Weld. To re(label), or not to
re(label). In Proceedings of the Second AAAI Conference on Human Com-
putation and Crowdsourcing, 2014.

Xiaodong Lin, Chris Clifton, and Michael Zhu. Privacy-preserving cluster-
ing with distributed EM mixture modeling. Knowledge and Information
Systems, 8(1):68–81, 2005.

Yehuda Lindell and Benny Pinkas. Privacy preserving data mining. In Ad-
vances in Cryptology – CRYPTO 2000, pages 36–54, 2000.

Chris J. Lintott, Kevin Schawinski, Anze Slosar, Kate Land, Steven Bam-
ford, Daniel Thomas, M. Jordan Raddick, Robert C. Nichol, Alex Szalay,
Dan Andreescu, Phil Murray, and Jan Vandenberg. Galaxy Zoo: mor-
phologies derived from visual inspection of galaxies from the Sloan Digital
Sky Survey. Monthly Notices of the Royal Astronomical Society, 389(3):
1179–1189, 2008.

Helger Lipmaa. Verifiable homomorphic oblivious transfer and private equal-
ity test. In Advances in Cryptology – ASIACRYPT 2003, pages 416–433,
2003.

Greg Little and Yu-An Sun. Human OCR: insights from a complex human
computation process. In Proceedings of CHI 2011 Workshop on Crowd-
sourcing and Human Computation, pages 8–11, 2011.

Qiang Liu, Jian Peng, and Alexander Ihler. Variational inference for crowd-
sourcing. In Advances in Neural Information Processing Systems 25, pages
701–709, 2012.

Zhiquan Liu, Luo Luo, and Wu-Jun Li. Robust crowdsourced learning. In
Proceedings of 2013 IEEE International Conference on Big Data, 2013.

Fenglong Ma, Yaliang Li, Qi Li, Minghui Qiu, Jing Gao, Shi Zhi, Lu Su,
Bo Zhao, Heng Ji, and Jiawei Han. FaitCrowd: fine grained truth dis-
covery for crowdsourced data aggregation. In Proceedings of the 21th
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pages 745–754, 2015.

Ashwin Machanavajjhala, Daniel Kifer, Johannes Gehrke, and Muthu-
ramakrishnan Venkitasubramaniam. 𝑙-diversity: privacy beyond 𝑘-
anonymity. ACM Transactions on Knowledge Discovery from Data, 1(1),
mar 2007.

161

Toshiko Matsui, Yukino Baba, Toshihiro Kamishima, and Hisashi Kashima.
Crowdordering. In Proceedings of the 18th Pacific-Asia Conference on
Knowledge Discovery and Data Mining, pages 336–347, 2014.

Kaixiang Mo, Erheng Zhong, and Qiang Yang. Cross-task crowdsourcing. In
Proceedings of the 19th ACM SIGKDD Conference on Knowledge Discov-
ery and Data Mining, pages 677–685, 2013.

Shubha U. Nabar, Krishnaram Kenthapadi, Nina Mishra, and Rajeev Mot-
wani. A survey of query auditing techniques for data privacy. In Privacy-
Preserving Data Mining: Models and Algorithms, pages 415–431. 2008.

Pascal Paillier. Public-key cryptosystems based on composite degree resid-
uosity classes. In Advances in Cryptology – EUROCRYPT 1999, pages
223–238, 1999.

Krishna P. N. Puttaswamy, Ranjita Bhagwan, and Venkata N. Padmanab-
han. Anonygator: privacy and integrity preserving data aggregation. In
Proceedings of the ACM/IFIP/USENIX 11th International Conference on
Middleware, pages 85–106, 2010.

Vikas C. Raykar, Shipeng Yu, Linda H. Zhao, Charles Florin, Luca Bogoni,
and Linda Moy. Learning from crowds. Journal of Machine Learning
Research, 11:1297–1322, 2010.

Jun Sakuma and Shigenobu Kobayashi. Link analysis for private weighted
graphs. In Proceedings of the 32nd International ACM SIGIR Conference
on Research and Development in Information Retrieval, pages 235–242,
2009.

François Schnitzler, Alexander Artikis, Matthias Weidlich, Ioannis Boutsis,
Thomas Liebig, Nico Piatkowski, Christian Bockermann, Katharina Morik,
Vana Kalogeraki, Jakub Marecek, Avigdor Gal, Shie Mannor, Dermot Ki-
nane, and Dimitrios Gunopulos. Heterogeneous stream processing and
crowdsourcing for urban traffic management: highlights. In Proceedings
of the 7th European Conference on Machine Learning and Principles and
Practice of Knowledge Discovery in Databases, pages 520–523, 2014.

David Segal. A rave, a pan, or just a fake?, 2011. URL http://www.nytimes.
com/2011/05/22/your-money/22haggler.html.

Sumit Shah, Fenye Bao, Chang-Tien Lu, and Ing-Ray Chen. CROWDSAFE:
crowd sourcing of crime incidents and safe routing on mobile devices. In

162

http://www.nytimes.com/2011/05/22/your-money/22haggler.html
http://www.nytimes.com/2011/05/22/your-money/22haggler.html

Proceedings of the 19th ACM SIGSPATIAL International Conference on
Advances in Geographic Information Systems, pages 521–524, 2011.

Dafna Shahaf and Eric Horvitz. Generalized task markets for human and
machine computation. In Proceedings of the 24th AAAI Conference on
Artificial Intelligence, pages 986–993, 2010.

Adi Shamir. How to share a secret. Communications of the ACM, 22(11):
612–613, 1979.

Victor S. Sheng, Foster Provost, and Panagiotis G. Ipeirotis. Get another
label? Improving data quality and data mining using multiple, noisy la-
belers. In Proceedings of the 14th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 614–622, 2008.

Rion Snow, Brendan O’Connor, Daniel Jurafsky, and Andrew Y. Ng. Cheap
and fast – but is it good? Evaluating non-expert annotations for natural
language tasks. In Proceedings of the Conference on Empirical Methods in
Natural Language Processing, pages 254–263, 2008.

Latanya Sweeney. 𝑘-anonymity: a model for protecting privacy. International
Journal of Uncertainty, Fuzziness and Knowledge-based Systems, 10(5):
557–570, 2002.

Omer Tamuz, Ce Liu, Serge Belongie, Ohad Shamir, and Adam Tauman
Kalai. Adaptively learning the crowd kernel. In Proceedings of the 28th
International Conference on Machine Learning, pages 673–680, 2011.

Tadanori Teruya and Jun Sakuma. Round-efficient private stable matching
from additive homomorphic encryption. In Proceedings of the 16th Infor-
mation Security Conference, 2013.

Hien To, Gabriel Ghinita, and Cyrus Shahabi. A framework for protecting
worker location privacy in spatial crowdsourcing. In Proceedings of the
VLDB Endowment, pages 919–930, 2014.

Hien To, Gabriel Ghinita, and Cyrus Shahabi. PrivGeoCrowd: a toolbox for
studying private spatial crowdsourcing. In Proceedings of 2015 IEEE 31st
International Conference on Data Engineering, pages 1404–1407, 2015.

Long Tran-Thanh, Sebastian Stein, Alex Rogers, and Nicholas R. Jennings.
Efficient crowdsourcing of unknown experts using bounded multi-armed
bandits. Artificial Intelligence, 214:89–111, 2014.

163

Daniel Trottier. Crowdsourcing CCTV surveillance on the Internet. Infor-
mation Communication & Society, 17(5):609–626, 2014.

Lav R. Varshney. Privacy and reliability in crowdsourcing service delivery.
In Proceedings of the 2012 Annual SRII Global Conference, pages 55–60,
2012.

Luis von Ahn and Laura Dabbish. Labeling images with a computer game. In
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, pages 319–326, 2004.

Luis von Ahn, Benjamin Maurer, Colin McMillen, David Abraham, and
Manuel Blum. reCAPTCHA: human-based character recognition via Web
security measures. Science, 321(5895):1465–1468, 2008.

Yang Wang, Yun Huang, and Claudia Louis. Towards a framework for
privacy-aware mobile crowdsourcing. In Proceedings of 2013 International
Conference on Social Computing, pages 454–459, 2013.

Fabian L. Wauthier and Michael I. Jordan. Bayesian bias mitigation for
crowdsourcing. In Advances in Neural Information Processing Systems 24,
pages 1800–1808, 2011.

Peter Welinder and Pietro Perona. Online crowdsourcing: rating annota-
tors and obtaining cost-effective labels. In Proceedings of Workshop on
Advancing Computer Vision with Humans in the Loop, pages 25–32, 2010.

Peter Welinder, Steve Branson, Serge Belongie, and Pietro Perona. The
multidimensional wisdom of crowds. In Advances in Neural Information
Processing Systems 23, pages 2424–2432, 2010.

Jacob Whitehill, Paul Ruvolo, Tingfan Wu, Jacob Bergsma, and Javier
Movellan. Whose vote should count more: optimal integration of labels
from labelers of unknown expertise. In Advances in Neural Information
Processing Systems 22, pages 2035–2043, 2009.

Yan Yan, Rómer Rosales, Glenn Fung, and Jennifer Dy. Modeling multiple
annotator expertise in the semi-supervised learning scenario. In Proceed-
ings of Conference on Uncertainty in Artificial Intelligence 2010, pages
674–682, 2010.

Yan Yan, Rómer Rosales, Glenn Fung, and Jennifer G. Dy. Active learn-
ing from crowds. In Proceedings of the 28th International Conference on
Machine Learning, pages 1161–1168, 2011.

164

Bin Yang, Issei Sato, and Hiroshi Nakagawa. Privacy-preserving EM algo-
rithm for clustering on social network. In Proceedings of the 16th Pacific-
Asia Conference on Knowledge Discovery and Data Mining, pages 542–
553, 2012.

Kan Yang, Kuan Zhang, Ju Ren, and Xuemin (Sherman) Shen. Security and
privacy in mobile crowdsourcing networks: challenges and opportunities.
IEEE Communications Magazine, 53(8):75–81, 2015.

Bangpeng Yao, Xiaoye Jiang, Aditya Khosla, Andy Lai Lin, Leonidas Guibas,
and Li Fei-Fei. Human action recognition by learning bases of action at-
tributes and parts. In Proceedings of 2011 IEEE International Conference
on Computer Vision, pages 1331–1338, 2011.

Jinfeng Yi, Rong Jin, Shaili Jain, and Anil K. Jain. Inferring users’ prefer-
ences from crowdsourced pairwise comparisons: a matrix completion ap-
proach. In Proceedings of the First AAAI Conference on Human Compu-
tation and Crowdsourcing, pages 207–215, 2013.

Yuchen Zhang, Xi Chen, Dengyong Zhou, and Michael I. Jordan. Spectral
methods meet EM: a provably optimal algorithm for crowdsourcing. In
Advances in Neural Information Processing Systems 27, pages 1260–1268,
2014.

Yaling Zheng, Stephen Scott, and Kun Deng. Active learning from multiple
noisy labelers with varied costs. In Proceedings of 2010 IEEE International
Conference on Data Mining, pages 639–648, 2010.

Dengyong Zhou, John C Platt, Sumit Basu, and Yi Mao. Learning from the
wisdom of crowds by minimax entropy. In Advances in Neural Information
Processing Systems 25, pages 2204–2212, 2012.

165

166

Appendix A

Privacy-Preserving Task
Assignment

A.1 Justification for the Maximum Flow For-
mulation

This section presents the proof of Proposition 3.1, which justifies the maxi-
mum flow formulation of the task assignment problem.

Proof of Proposition 3.1. We assume that there exists a maximum flow 𝐹 ⋆

on an assignment network 𝑁 and the corresponding feasible assignmentℳ⋆

is obtained by transforming 𝐹 ⋆ following Algorithm 3.1. We further assume
that there is a feasible assignment ℳ⋆⋆ whose size is strictly larger than
ℳ⋆, i.e., |ℳ⋆⋆| > |ℳ⋆|. We prove the proposition by contradiction; in the
following, we construct a flow from ℳ⋆⋆ whose value is strictly larger than
the value of 𝐹 ⋆, which contradicts with the assumption that 𝐹 ⋆ is a maximum
flow.

We construct a flow 𝐹 ⋆⋆ fromℳ⋆⋆ = {(𝑤𝑗⋆⋆𝑘
, 𝑡𝑖⋆⋆𝑘) | 𝑘 ∈ [|ℳ⋆⋆|]} as follows.

At initialization, we set 𝑓 ⋆⋆
𝑢,𝑣 = 0 for all (𝑢, 𝑣) ∈ 𝐸. For each 𝑘 ∈ [|ℳ⋆⋆|], we

update the flow as

𝑓 ⋆⋆
𝑠,𝑤𝑗⋆⋆

𝑘

← 𝑓 ⋆⋆
𝑠,𝑤𝑗⋆⋆

𝑘

+ 1,

𝑓 ⋆⋆
𝑤𝑗⋆⋆

𝑘
,𝑡𝑖⋆⋆

𝑘

← 𝑓 ⋆⋆
𝑤𝑗⋆⋆

𝑘
,𝑡𝑖⋆⋆

𝑘

+ 1,

𝑓 ⋆⋆
𝑡𝑖⋆⋆
𝑘

,𝑡 ← 𝑓 ⋆⋆
𝑡𝑖⋆⋆
𝑘

,𝑡 + 1.

It is easy to see that the resultant flow satisfies the flow conditions (Defini-
tion 3.2). Then, the value of 𝐹 ⋆⋆ is |ℳ⋆⋆|, which is strictly larger than the
value of 𝐹 ⋆, |ℳ⋆|. This contradicts the assumption that 𝐹 ⋆ is a maximum

167

flow. Therefore, the task assignment ℳ⋆ obtained from a maximum flow is
proven to be a maximum assignment.

A.2 Security Proofs

This section provides the security proofs of the protocols presented in this
paper. We first specify the view of each party during execution of a protocol,
i.e., all of the messages received from other parties, and then, provide a
simulator for the view using the input and output of the party. If a tuple
of the view and private output is computationally indistinguishable from a
tuple of the simulated view and private output, the party learns nothing after
executing the protocol.1

In the following, let us denote the view of requester 𝑡𝑖, worker 𝑤𝑗, the
decryptor, operator, and mixer during execution of a protocol Π by viewΠ

𝑡𝑖
,

viewΠ
𝑤𝑗

, viewΠ
dec, viewΠ

op, and viewΠ
mix, respectively, and the outputs by outputΠ𝑡𝑖 ,

outputΠ𝑤𝑗
, outputΠdec, outputΠop, and outputΠmix. Let us denote a simulation of a

variable 𝐴 by 𝐴. Given a set 𝐴, sampling of a uniformly random variable 𝑎
on 𝐴 is denoted by 𝑎← 𝐴.

A.2.1 Security Proof of the Conditional Test

This section provides the proof of Proposition 3.2, stating the security of the
conditional test.

Proof of Proposition 3.2. We specify the view of each party and construct a
simulator accordingly that outputs a computationally indistinguishable view.

(i) Decryptor
The view of the decryptor2 is viewCOND

dec = {Enc(𝑇), 𝑇}, where

𝑇 = {𝑠𝜎′(1)(𝑙𝜋∘𝜎(1) − 𝑙𝜋∘𝜎(2) − 𝜎′(1)),

𝑠𝜎′(2)(𝑙𝜋∘𝜎(1) − 𝑙𝜋∘𝜎(2) − 𝜎′(2)), . . . ,

𝑠𝜎′(𝐿−1)(𝑙𝜋∘𝜎(1) − 𝑙𝜋∘𝜎(2) − 𝜎′(𝐿− 1))},

random permutations 𝜎′ : [𝐿 − 1] → [𝐿 − 1] and 𝜋 : [2] → [2] and
random variables {𝑠𝑖}𝐿−1

𝑖=1 are secretly chosen by the operator during

1Since the output of our protocol and the output of the corresponding functionality are
identically distributed, we do not distinguish between them in the paper.

2Note that during the protocol the decryptor receives Enc(𝑇) only. We added 𝑇 to the
view because the decryptor has the secret key to decrypt Enc(𝑇).

168

INEQ, and random permutation 𝜎 : [2] → [2] is secretly chosen by the
mixer. 𝑇 is distributed according to

𝑇 =

{︃{︀
𝑡𝑖 ← Z*

𝑁2

}︀𝐿−1

𝑖=1
with probability 1

2
,{︀

𝑡𝜌(𝑖) ← Z*
𝑁2

}︀𝐿−2

𝑖=1
∪
{︀
𝑡𝜌(𝐿−1) = 0

}︀
with probability 1

2
,

where 𝜌 : [𝐿− 1]→ [𝐿− 1] is a random permutation.

Then, let us construct a simulator for it. 𝑇 can be perfectly simulated
by generating it according to the above distribution. Considering that
the decryptor outputs nothing, the decryptor learns nothing.

(ii) Operator
The view of the operator is viewCOND

op = {𝑆 ′, 𝑎}, where

𝑆 ′ =
{︁[︁

Enc
(︁
𝑚𝜎(1); 𝑟

′
𝜎(1),1

)︁
Enc

(︁
𝑙𝜎(1); 𝑟

′
𝜎(1),2

)︁]︁
,[︁

Enc
(︁
𝑚𝜎(2); 𝑟

′
𝜎(2),1

)︁
Enc

(︁
𝑙𝜎(2); 𝑟

′
𝜎(2),2

)︁]︁}︁
,

𝑎 = INEQ
(︀
Enc

(︀
𝑙𝜎(1); 𝑟

′
𝜎(1),2

)︀
,Enc

(︀
𝑙𝜎(2); 𝑟

′
𝜎(2),2

)︀)︀
.

Random variables 𝑟′1,1, 𝑟′1,2, 𝑟′2,1, and 𝑟′2,2 and random permutation 𝜎 :
[2]→ [2] are secretly chosen by the mixer.

Then, let us construct a simulator for it. Let us denote the private
output of the operator by 𝑐⋆. First, we generate a simulation of 𝑎, i.e.,
𝑎̃ by sampling it from the Bernoulli distribution with parameter 1/2.
We then generate 𝑆 ′ as follows:

𝑆 ′ =

⎧⎨⎩
{︁[︁

𝑐⋆ 𝑐1,2

]︁
,
[︁
𝑐2,1 𝑐2,2

]︁}︁
if 𝑎̃ = 1,{︁[︁

𝑐1,1 𝑐1,2

]︁
,
[︁
𝑐⋆ 𝑐2,2

]︁}︁
if 𝑎̃ = 0,

where 𝑐1,1, 𝑐1,2, 𝑐2,1, and 𝑐2,2 are randomly sampled from Z*
𝑁2 . 𝑎 and

𝑎̃ are identically distributed because 𝜎, which determines the value of
𝑎, is a random permutation on {1, 2} secretly chosen by the mixer.
({𝑆 ′, 𝑎}, 𝑐⋆) and ({𝑆 ′, 𝑎̃}, 𝑐⋆) are computationally indistinguishable be-
cause 𝑐⋆ in 𝑆 ′ and that in 𝑆 ′ are identically distributed, and other
elements in 𝑆 ′ are computationally indistinguishable from those in 𝑆 ′

due to the re-encryption and shuffle performed by the mixer. Therefore,
the operator learns nothing.

(iii) Mixer
The view of the mixer is viewCOND

mix = {𝑆}, and the mixer outputs noth-
ing. Since each element of 𝑆 is a ciphertext, 𝑆 is computationally

169

indistinguishable from uniformly random variables on Z*
𝑁2 . Therefore,

the mixer learns nothing.

Summarizing (i), (ii), and (iii), after execution of the conditional test, none
of the parties learn anything.

We further show that the private output of the operator cannot be dis-
tinguished from a random variable on Z*

𝑁2 . Since the elements in 𝑆 ′ are
encrypted and shuffled, they cannot be distinguished from random variables
on Z*

𝑁2 . The private output is one of the elements in 𝑆 ′, and therefore, it
is also computationally indistinguishable from a random variable on Z*

𝑁2 .
Therefore, the operator learns nothing from his/her private output.

A.2.2 Security Proof of PTA

This section presents the proofs of Lemmata 3.2, 3.3, and 3.4.

Proof of Lemma 3.2. The security of Lemma 3.2 is trivial given that no party
communicates with each other.

Proof of Lemma 3.3. Let us denote the private network construction proto-
col by PNC.

(i) Worker 𝑤𝑗

Since worker 𝑤𝑗 does not receive any message during the protocol,
worker 𝑤𝑗 learns nothing.

(ii) Requester 𝑡𝑖
The view of requester 𝑡𝑖 is viewPNC

𝑡𝑖
= {Enc (s𝑗)}𝑗∈[𝐽], and none of the

requesters output anything. Since each element of the view is computa-
tionally indistinguishable from a random ciphertext, requester 𝑡𝑖 learns
nothing.

(iii) Operator
The view of the operator is

viewPNC
op =

{︁
{Enc(𝐿𝑖)}𝑖∈[𝐼], {Enc(𝑀𝑗)}𝑗∈[𝐽],

{︀
Enc(‖r𝑖‖22 − s𝑗 · r𝑖)

}︀
𝑖∈[𝐼],𝑗∈[𝐽]

}︁
∪ viewCOND

op ∪ outputCOND
op ,

and the private output of the operator is

outputPNC
op = {(Enc(C),Enc(F)), (Enc(h),Enc(e))}.

170

Then, let us construct a simulator for the view. Since {Enc(𝐿𝑖)}𝑖∈[𝐼]
and {Enc(𝑀𝑗)}𝑗∈[𝐽] are contained in the output Enc(C), they can be
easily simulated. {Enc(‖r𝑖‖22 − s𝑗 · r𝑖)}𝑖∈[𝐼],𝑗∈[𝐽] is a set of ciphertexts
generated by requesters; therefore, it is computationally indistinguish-
able from a set of random ciphertexts. viewCOND

op and outputCOND
op are

computationally indistinguishable from random ciphertexts as shown
in Proposition 3.2. Therefore, the operator learns nothing.

(iv) Decryptor
The view of the decryptor is viewPNC

dec = viewCOND
dec , from which the de-

cryptor learns nothing as shown in Proposition 3.2.

(v) Mixer
The view of the mixer is viewPNC

mix = viewCOND
mix , from which the mixer

learns nothing as shown in Proposition 3.2.

Therefore, after the execution of PNC, none of the parties learn anything.

Proof of Lemma 3.4. Let us denote the private push-relabel protocol by PPR.

(i) Operator
The view of the operator consists of a fixed number of tuples of the view
and output of the conditional test protocol, because during PPR the
operator does not receive any message outside the conditional test. The
operator outputs nothing. Consider a simulator generating the same
number of random ciphertexts as the messages the operator receives
during the protocol. Proposition 3.2 guarantees that the output of
the simulator is computationally indistinguishable from the view, and
therefore, the operator learns nothing.

(ii) Decryptor
The view of the decryptor consists of the views of the conditional test
protocol and Enc(F), and the output is a maximum task assignment𝒜⋆.
Considering that the decryptor learns nothing from the conditional test
protocol and Enc(F) can be easily simulated from 𝒜⋆, the decryptor
learns nothing.

(iii) Mixer
The view of the mixer consists of a fixed number of the views of the
conditional test protocol. Therefore, the mixer learns nothing.

Therefore, after the execution of PPR, no party learns anything.

171

A.3 Analysis of the Push-Relabel Algorithm on
the Assignment Network

This section provides a new analysis of the push-relabel algorithm (Goldberg
and Tarjan, 1988), applied to the assignment network. We derive tighter
upper bounds on the numbers of push and relabel operations, leveraging the
structure of the assignment network. Corollaries A.1 and A.2 respectively
give upper bounds on the number of relabel and push operations.

First, we evaluate the upper bound on the number of relabel operations.
Since the number of relabel operations is closely related to the upper bounds
on heights, we analyze them in Lemma A.1.

Lemma A.1 (Upper bounds on heights). Let 𝑁 = (𝑉,𝐸,𝐶) be an assign-
ment network. After executing the push-relabel algorithm on 𝑁 , the height of
worker 𝑤𝑗 ∈ 𝒲 satisfies

ℎ𝑤𝑗
≤ |𝑉 |+ 1, (A.1)

and the height of task 𝑡𝑖 ∈ 𝒯 satisfies

ℎ𝑡𝑖 ≤ |𝑉 |+ 2. (A.2)

Proof. Since the heights are non-decreasing during the algorithm, we upper-
bound the heights when the push-relabel algorithm terminates. We first
analyze ℎ𝑤𝑗

for two cases:

(i) 𝑤𝑗 ∈ 𝒲 such that 0 ≤ 𝑓𝑠,𝑤𝑗
< 𝑐𝑠,𝑤𝑗

Given that 𝑓𝑠,𝑤𝑗
= 𝑐𝑠,𝑤𝑗

at the initial state, a push operation Push(𝑤𝑗, 𝑠)
was performed during the algorithm, which implies that the height of
𝑤𝑗 satisfied ℎ𝑤𝑗

= |𝑉 | + 1 at that time. Consider the last push op-
eration from vertex 𝑤𝑗 to source 𝑠. After the push operation, vertex
𝑤𝑗 went inactive, and no relabel operation was performed on vertex 𝑤𝑗

until the algorithm terminated. Therefore, in this case, ℎ𝑤𝑗
= |𝑉 | + 1

holds.

(ii) 𝑤𝑗 ∈ 𝒲 such that 𝑓𝑠,𝑤𝑗
= 𝑐𝑠,𝑤𝑗

Assume that ℎ𝑤𝑗
≥ |𝑉 | + 2, and we prove Inequality (A.1) by con-

tradiction. When the height of vertex 𝑤𝑗 became ℎ𝑤𝑗
≥ |𝑉 | + 2 by

a relabel operation, edge (𝑤𝑗, 𝑠) must not be residual, which implies
that the flows entering vertex 𝑤𝑗 equal 0. Consequently, vertex 𝑤𝑗 was
inactive when the relabel operation was performed, which violates the
applicability condition of the relabel operation. Therefore, in this case,
ℎ𝑤𝑗
≤ |𝑉 |+ 1 holds.

172

By combining these two cases, we obtain Inequality (A.1). We then analyze
ℎ𝑡𝑖 in two cases to prove Inequality (A.2):

(i) 𝑡𝑖 ∈ 𝒯 such that 0 ≤ 𝑓𝑡𝑖,𝑡 < 𝑐𝑡𝑖,𝑡
Assume that ℎ𝑡𝑖 ≥ 2, and we prove ℎ𝑡𝑖 ≤ 1 by contradiction. When
the height of vertex 𝑡𝑖 became ℎ𝑡𝑖 ≥ 2 by a relabel operation, edge
(𝑡𝑖, 𝑡) must not be residual, which implies that 𝑓𝑡𝑖,𝑡 = 𝑐𝑡𝑖,𝑡 holds. Since
flow 𝑓𝑡𝑖,𝑡 is non-decreasing while the algorithm is running, 𝑓𝑡𝑖,𝑡 = 𝑐𝑡𝑖,𝑡
still holds when the algorithm terminates, which is a contradiction.
Therefore, in this case, ℎ𝑡𝑖 ≤ 1 holds.

(ii) 𝑡𝑖 ∈ 𝒯 such that 𝑓𝑡𝑖,𝑡 = 𝑐𝑡𝑖,𝑡
Assume that ℎ𝑡𝑖 ≥ |𝑉 |+3, and we prove ℎ𝑡𝑖 ≤ |𝑉 |+2 by contradiction.
When the height of vertex 𝑡𝑖 became ℎ𝑡𝑖 ≥ |𝑉 |+3 by a relabel operation,
there must exist vertex 𝑤𝑗 such that ℎ𝑤𝑗

≥ |𝑉 | + 2, which contradicts
Inequality (A.1). Therefore, in this case, ℎ𝑡𝑖 ≤ |𝑉 |+ 2 holds.

By combining these two cases, we obtain Inequality (A.2).

Lemma A.1 induces the upper bound on the number of relabel operations
as shown in Corollary A.1.

Corollary A.1 (Upper bound on the number of relabel operations). Let 𝑁 =
(𝑉,𝐸,𝐶) be an assignment network. If the generic push-relabel algorithm
initializes the heights as

ℎ𝑠 = |𝑉 |, ℎ𝑤𝑗
= 2 (∀𝑤𝑗 ∈ 𝒲), ℎ𝑡𝑖 = 1 (∀𝑡𝑖 ∈ 𝒯), ℎ𝑡 = 0,

then, the number of relabel operations on 𝑁 is upper-bounded by

|𝒲|(|𝑉 | − 1) + |𝒯 |(|𝑉 |+ 1).

Proof. Noticing that a relabel operation increases the height by at least 1,
the number of relabel operations on each worker 𝑤𝑗 is at most |𝑉 | − 1, and
that on each task 𝑡𝑖 is at most |𝑉 |+1. Therefore, the total number of relabel
operations is at most |𝒲|(|𝑉 | − 1) + |𝒯 |(|𝑉 |+ 1).

We then evaluate the number of push operations. Following the proof
by Goldberg and Tarjan 1988, we evaluate the number of saturating push
operations and the number of non-saturating push operations, respectively,
in which Push(𝑣, 𝑤) is saturating if 𝑐𝑣,𝑤− 𝑓𝑣,𝑤 = 0 after the push operation,
and non-saturating otherwise. Lemmata A.2 and A.3 evaluate the number
of saturating and non-saturating push operations, respectively.

173

Lemma A.2 (Upper bound on the number of saturating push operations).
The number of saturating push operations on an assignment network is at
most

|𝒲||𝒯 |
(︂⌈︂ |𝑉 | − 1

2

⌉︂
+ 1

)︂
+ |𝒲|+ |𝒯 |.

Proof. We prove the lemma for three cases.

(i) Edge (𝑠, 𝑤𝑗) (𝑤𝑗 ∈ 𝒲)
At the initial state, the edge is saturated, i.e., 𝑓𝑠,𝑤𝑗

= 𝑐𝑠,𝑤𝑗
. Since flow

𝑓𝑠,𝑤𝑗
is non-increasing, the number of saturating pushes along the edge

is at most 1 (a push from vertex 𝑤𝑗 to source 𝑠).

(ii) Edge (𝑤𝑗, 𝑡𝑖) (𝑤𝑗 ∈ 𝒲 , 𝑡𝑖 ∈ 𝒯)
At the initial state, the edge is empty, i.e., 𝑓𝑤𝑗 ,𝑡𝑖 = 0, and the heights
satisfy ℎ𝑤𝑗

= 2 and ℎ𝑡𝑖 = 1. We first observe that a push from 𝑤𝑗

to 𝑡𝑖 cannot be a saturating push because capacity 𝑐𝑤𝑗 ,𝑡𝑖 is set so as
not to be saturated. Then, the first saturating push can occur after a
push from 𝑤𝑗 to 𝑡𝑖. After the push from 𝑤𝑗 to 𝑡𝑖, the height of vertex
𝑡𝑖 is relabeled to ℎ𝑡𝑖 = 3, thereby finally enabling the first saturating
push to occur. The second saturating push cannot be performed until
ℎ𝑤𝑗

increases to at least 4, there is a push from vertex 𝑤𝑗 to vertex 𝑡𝑖,
and ℎ𝑡𝑖 increases to at least 5. In other words, the height of vertex 𝑡𝑖
must increase by at least 2 to achieve a saturating push from 𝑡𝑖 to 𝑤𝑗.
Therefore, the number of saturating pushes along the edge is at most⌈︁
|𝑉 |−1

2

⌉︁
+ 1.

(iii) Edge (𝑡𝑖, 𝑡) (𝑡𝑖 ∈ 𝒯)
At the initial state, the edge is empty, i.e., 𝑓𝑡𝑖,𝑡 = 0. Since flow 𝑓𝑡𝑖,𝑡 is
non-decreasing, the number of saturating pushes along the edge is at
most 1 (a push from vertex 𝑡𝑖 to sink 𝑡).

By combining these three cases, we obtain the lemma.

Lemma A.3 (Upper bound on the number of non-saturating push oper-
ations). The number of non-saturating push operations on an assignment
network is at most

(|𝑉 |+ 1)

[︂
|𝒲||𝒯 |

(︂⌈︂ |𝑉 | − 1

2

⌉︂
+ 1

)︂
+ |𝒲|+ |𝒯 |

]︂
.

174

Proof. Let Φ =
∑︀

𝑣:active ℎ𝑣 be a potential function. At the beginning,
Φ = 2|𝒲| holds, and at the end, Φ = 0 holds. Since a non-saturating
push decreases Φ by at least 1, we evaluate the extent to which relabel and
saturating push operations increase the potential function.

First, we upper-bound the total increase in Φ caused by saturating pushes.
A saturating push between edge (𝑠, 𝑤𝑗) (𝑤𝑗 ∈ 𝒲) does not increase Φ, be-
cause a saturating push from vertex 𝑤𝑗 to source 𝑠, which does not nec-
essarily occur, decreases Φ by |𝑉 | + 1. A saturating push between edge
(𝑤𝑗, 𝑡𝑖) (𝑤𝑗 ∈ 𝒲 , 𝑡𝑖 ∈ 𝒯) increases Φ by at most |𝑉 |+ 1, because it activates
the tail vertex 𝑤𝑗 whose height is at most |𝑉 | + 1 (notice that only a push
from vertex 𝑡𝑖 to vertex 𝑤𝑗 can be a saturating push). A saturating push
between edge (𝑡𝑖, 𝑡) (𝑡𝑖 ∈ 𝒯) does not increase Φ, because sink 𝑡 cannot be
active from its definition. Therefore, the total increase in Φ due to saturating
pushes is at most

|𝒲||𝒯 |(|𝑉 |+ 1)

(︂⌈︂ |𝑉 | − 1

2

⌉︂
+ 1

)︂
.

The total increase in Φ due to relabeling operations is at most

|𝒲|(|𝑉 | − 1) + |𝒯 |(|𝑉 |+ 1).

Considering that a non-saturating push decreases Φ by at least 1, and
that Φ = 2|𝒲| at the beginning, and Φ = 0 at the end, the number of
non-saturating pushes is at most

|𝒲||𝒯 |(|𝑉 |+ 1)

(︂⌈︂ |𝑉 | − 1

2

⌉︂
+ 1

)︂
+ |𝒯 |(|𝑉 |+ 1) + |𝒲|(|𝑉 | − 1) + 2|𝒲|

=(|𝑉 |+ 1)

[︂
|𝒲||𝒯 |

(︂⌈︂ |𝑉 | − 1

2

⌉︂
+ 1

)︂
+ |𝒲|+ |𝒯 |

]︂
,

which proves the claim.

By combining Lemmata A.2 and A.3, we obtain an upper bound on the
number of push operations as follows.

Corollary A.2 (Upper bound on the number of push operations). Let 𝑁 =
(𝑉,𝐸,𝐶) be an assignment network. The upper bound of the number of push
operations on 𝑁 is

(|𝑉 |+ 2)

[︂
|𝒲||𝒯 |

(︂⌈︂ |𝑉 | − 1

2

⌉︂
+ 1

)︂
+ |𝒲|+ |𝒯 |

]︂
.

175

176

Appendix B

Worker-Privacy Preservation

B.1 Extensions to Multi-Class and Real-Valued
Labels

We introduce the detailed update rules of the LC method for multi-class
and real-valued labels, and then we explain how to extend the inference
algorithms to preserve worker privacy.

B.1.1 Multi-Class Labels

The LC method was originally proposed for multi-class labels by Dawid and
Skene (1979). Let us assume a task to give a 𝐾-class label (𝐾 ≥ 2). For
each 𝑖 ∈ ℐ and 𝑗 ∈ 𝒥 , a crowd label 𝑦𝑖,𝑗 ∈ {0, . . . , 𝐾− 1}(=: 𝒦) is generated
by the multinomial distribution

𝜋𝑗,𝑘,𝑙 = 𝑝(𝑦𝑖,𝑗 = 𝑘 | 𝑦𝑖 = 𝑙,Π𝑗),

where
∑︀

𝑘∈𝒦 𝜋𝑗,𝑘,𝑙 = 1 holds for all 𝑙 ∈ 𝒦, and we denote Π𝑗 = {𝜋𝑗,𝑘,𝑙 | 𝑘, 𝑙 ∈
𝒦}. For each 𝑖 ∈ ℐ, the true label 𝑦𝑖 ∈ 𝒦 is generated by

𝑝𝑙 = 𝑝(𝑦𝑖 = 𝑙),

where
∑︀

𝑙∈𝒦 𝑝𝑙 = 1 holds. The model parameters Π =
⋃︀

𝑗∈𝒥 Π𝑗 and {𝑝𝑙 | 𝑙 ∈
𝒦} and the posterior probabilities of the true labels 𝜇𝑖,𝑙 = 𝑝(𝑦𝑖 = 𝑙 | 𝒴 ,Π)
are estimated using the following EM algorithm.
E-step: for each 𝑖 ∈ ℐ, update {𝜇𝑖,𝑙 | 𝑙 ∈ 𝒦} as

𝜇𝑖,𝑙 =
𝑝𝑙𝜌𝑖,𝑙∑︀

𝑙′∈𝒦 𝑝𝑙′𝜌𝑖,𝑙′
,

where log 𝜌𝑖,𝑙 =
∑︁

𝑗:𝑦𝑖,𝑗 ̸=⊥

∑︁
𝑘∈𝒦

I(𝑦𝑖,𝑗 = 𝑘) log 𝜋𝑗,𝑘,𝑙.

177

M-step: for each 𝑗 ∈ 𝒥 , update Π𝑗 as

𝜋𝑗,𝑘,𝑙 =

∑︀
𝑖:𝑦𝑖,𝑗 ̸=⊥ 𝜇𝑖,𝑙I(𝑦𝑖,𝑗 = 𝑘)∑︀

𝑖:𝑦𝑖,𝑗 ̸=⊥ 𝜇𝑖,𝑙

,

and for each 𝑙 ∈ 𝒦, update 𝑝𝑙 as

𝑝𝑙 =
1

|ℐ|
∑︁
𝑖∈ℐ

𝜇𝑖,𝑙.

This algorithm can be extended to preserve worker privacy in the same
way as the EM algorithm for binary labels. In the E-step, the parties calcu-
late {log 𝜌𝑖,𝑙 | 𝑖 ∈ ℐ, 𝑙 ∈ 𝒦} using our secure sum protocol, and the requester
calculates and broadcasts {𝜇𝑖,𝑙 | 𝑖 ∈ ℐ, 𝑙 ∈ 𝒦}. In the M-step, each worker 𝑗
calculates {𝜋𝑗,𝑘,𝑙 | 𝑘, 𝑙 ∈ 𝒦}, and the requester calculates {𝑝𝑙 | 𝑙 ∈ 𝒦}.

B.1.2 Real-Valued Labels

Raykar et al. (2010) extend the LC method to deal with real-valued labels.
For each 𝑖 ∈ ℐ and 𝑗 ∈ 𝒥 , a crowd label 𝑦𝑖,𝑗 ∈ R is generated by the normal
distribution

𝑝(𝑦𝑖,𝑗 | 𝑦𝑖, 𝜏𝑗, 𝛾) = 𝒩 (𝑦𝑖,𝑗 | 𝑦𝑖, 1/𝜏𝑗 + 1/𝛾),

where 𝜏𝑗(> 0) is the precision parameter of the normal distribution, which
is interpreted as the ability of worker 𝑗, and 𝛾 works as regularization. Let
us denote 1/𝜆𝑗 := 1/𝜏𝑗 + 1/𝛾. Assuming that the crowd labels are generated
by this model, the true labels and the precision parameters are estimated by
the following EM-like algorithm.

E-step: for each 𝑖 ∈ ℐ, update the true label 𝑦𝑖 as

𝑦𝑖 =

∑︀
𝑗:𝑦𝑖,𝑗 ̸=⊥ 𝜆𝑗𝑦𝑖,𝑗∑︀
𝑗:𝑦𝑖,𝑗 ̸=⊥ 𝜆𝑗

.

M-step: for each 𝑗 ∈ 𝒥 , update 𝜆𝑗 by solving

1

𝜆𝑗

=
1

|{𝑖 ∈ ℐ | 𝑦𝑖,𝑗 ̸= ⊥}|
∑︁

𝑖:𝑦𝑖,𝑗 ̸=⊥

(𝑦𝑖,𝑗 − 𝑦𝑖)
2.

This algorithm can also be extended to preserve worker privacy. In the
E-step, the parties calculate {∑︀𝑗:𝑦𝑖,𝑗 ̸=⊥ 𝜆𝑗𝑦𝑖,𝑗,

∑︀
𝑗:𝑦𝑖,𝑗 ̸=⊥ 𝜆𝑗 | 𝑖 ∈ ℐ} using our

secure sum protocol, and the requester calculates and broadcasts {𝑦𝑖 | 𝑖 ∈ ℐ}.
In the M-step, each worker 𝑗 calculates 𝜆𝑗.

178

	Introduction
	Rise of Crowdsourcing
	Applications of Crowdsourcing
	Microtask Marketplace
	Macrotask Marketplace
	Personal Crowdsourcing
	Mobile Crowdsourcing
	Citizen Science

	Risks in Crowdsourcing
	Quality Risk
	Unethical Abuse Risk
	Privacy Risk

	Research Questions
	Privacy Risk Analysis
	Two Approaches to Privacy Preservation
	Crowdsourcing Model
	Analysis

	Solutions
	Privacy-Preserving Task Assignment (Chapter 3)
	Instance-Privacy Preservation (Chapter 4)
	Worker-Privacy Preservation (Chapter 5)

	Roadmap

	Preliminaries
	Notation
	Public-Key Encryption
	Public-Key Encryption Scheme
	Security

	Paillier Cryptosystem
	Overview
	Properties
	Correctness of the Paillier Cryptosystem
	Security
	Computation Time

	Privacy Assumptions in Crowdsourcing

	Privacy-Preserving Task Assignment
	Introduction
	Private Task Assignment Problem
	Crowdsourcing Model
	Problem Setting

	Solution in a Non-Private Setting
	Maximum Flow Problem
	Reduction to a Maximum Flow Problem
	Push-Relabel Algorithm

	Cryptographic Building Blocks
	Data Structure
	Conditional Test
	Computation Time

	Private Task Assignment (PTA) Protocol
	Initialization
	Private Network Construction
	Private Push-Relabel Protocol
	Security

	Computation Time of PTA and Acceleration Methods
	Computation Time of PTA
	Acceleration Techniques

	Summary and Future Work

	Instance-Privacy Preservation
	Introduction
	Crowdsourcing Model
	Task Execution
	Privacy Invasion
	Validity of the Models

	Utility-Privacy Trade-Off Analyzer (UPTA)
	Instance-Privacy-Preserving (IPP) Protocol
	Task Information Loss
	Privacy Information Gain
	Empirical Estimation
	Properties
	Breaking the Trade-Off

	Instance Clipping Protocol
	Task Assumption: Array-Labeling Task
	Main Protocol
	Applicability

	Experiments
	Task and Privacy Definitions and Dataset
	Experimental Setting
	Utility-Privacy Trade-Off
	Consistency of UPTA with Standard Measures

	Summary and Future Work

	Worker-Privacy Preservation
	Introduction
	Quality Control Problem
	Problem Setting
	Latent Class Method

	Worker-Private Quality Control Problem
	Problem Setting
	Worker-Private Latent Class Protocol
	Discussion

	Security Proofs of the Protocols
	Statement of the Theorem
	Proof

	Experiments
	Experiments on Approximation Accuracy
	Experiment on Computational Efficiency

	Summary and Future Work

	Related Work
	Privacy Preservation in Crowdsourcing
	Privacy Preservation in Task Assignment
	Instance Privacy
	Privacy Preservation for Workers

	Crowdsourcing
	Quality Control
	Task Assignment

	Privacy Preservation
	Privacy-Preserving Graph Protocols
	Privacy-Preserving Data Mining

	Conclusion and Future Directions
	Conclusion
	Future Directions

	Privacy-Preserving Task Assignment
	Justification for the Maximum Flow Formulation
	Security Proofs
	Security Proof of the Conditional Test
	Security Proof of PTA

	Analysis of the Push-Relabel Algorithm on the Assignment Network

	Worker-Privacy Preservation
	Extensions to Multi-Class and Real-Valued Labels
	Multi-Class Labels
	Real-Valued Labels

