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Abstract

This dissertation considers optimization problems arising from machine learning and commu-
nication, and devises efficient algorithms by exploiting submodular and sparse optimization
techniques.

The first subject of this dissertation is submodular function maximization over the inte-
ger lattice. Maximizing a monotone submodular set function has been extensively studied in
machine learning, social science, and related areas, since it encompasses a variety of problems
considered in these areas and efficient greedy algorithms are available. However, we often face
real scenarios that are beyond these existing models based on submodular set functions. For
example, the existing models cannot capture the budget allocation problem in which we have
to decide how much budget should be set aside. In this dissertation, we overcome this funda-
mental limitation of the existing models by exploiting submodularity over the integer lattice.
We demonstrate that our new framework can naturally and concisely capture these difficult real
scenarios, and provide efficient approximation algorithms for various constraints. In addition
to theoretical guarantees, we conduct numerical experiments to establish practical efficiency of
our model and algorithms.

Then we move on matrix completion problems. Roughly speaking, matrix completion prob-
lems are to determine missing entries in a given partial matrix under some criteria. Our first
result is a new algorithm for constructing a multicast code for a wireless network using max-
rank matrix completion. In the main ingredient of our algorithm, we employ the theory of
mixed matrices, matroids, and submodular optimization. Second, we propose a new problem,
the low-rank basis problem for a matrix subspace. Originally this problem comes from com-
binatorial optimization, but it turns out that this problem has various applications, including
image separation and data compression. We present an efficient heuristic algorithm for this
problem, using matroid theory and sparse optimization.

The last subject of this dissertation is compressed sensing. The main goal of compressed
sensing is to recover a high-dimensional sparse signal from a few linear measurements. While the
problem setup is quite simple, compressed sensing has been widely applied to machine learning,
statistics, and signal processing. In this dissertation, we consider stable signal recovery in
compressed sensing and show that the sum-of-squares method yields a new polynomial time
recovery method for Rademacher sensing matrices. Our result sheds light on the power of
sum-of-squares method on nonconvex problem arising from compressed sensing.
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Chapter 1

Introduction

This dissertation deals with various optimization problems arising from machine learning and
communication: monotone submodular function maximization, matrix completion, and com-
pressed sensing.

1.1 Monotone Submodular Function Maximization

Submodular functions are set functions often referred as “discrete analogue of convex functions”.
Submodular functions have been studied in the area of combinatorial optimization from 70’s
and there is a large body of work for submodular function minimization (see Fujishige [66],
Schrijver [146], and references therein). Besides the celebrated results on submodular function
minimization, maximization of a submodular functions had been paid less attention, since sub-
modular function maximization is NP-hard and the known applications had been only facility
location [102] and sensor placement [100] for a long time. However, in 2003, Kempe, Kleinberg,
and Tardos [97] showed that the spread of influence among a social network can be modeled
as maximization of a monotone submodular function, and provided a simple approximation
algorithm for a problem of marketing decision called the influence maximization. Their paper
sparked a lot of following works not only in the area of social networks but also in document
summarization [111], [112], sensor placement [105], and computational advertisement [5]. The
theoretical computer science community was also influenced by their paper and various new
ideas and algorithms [13], [31], [43] for submodular function maximization were introduced.
Now monotone submodular function maximization is widely known as a general and powerful
framework in machine learning and related areas.

The beginning of studies of submodular function maximization dates back to the seminal
work [128]–[130] of Nemhauser, Wolsey, and Fisher in 70’s. They showed that a simple greedy
algorithm achieves (1− 1/e)-approximation for maximization of a monotone submodular func-
tion subject to a cardinality constraint. The approximation factor 1− 1/e cannot be improved
in both the oracle model [130] without any condition, and the explicit function model [61] if
P 6= NP. The greedy algorithm of Nemhauser, Wolsey, and Fisher [130] is simple enough to
run in very large datasets and finds an (almost) optimal solution empirically. Algorithms for
a cardinality constraint are still intensively studied, e.g., further speeding up [13], [123], [170],
distributed algorithms [20], [122], and online algorithms [158].

For more complicated constraints such as a knapsack constraint and a matroid constraint,
Nemhauser, Wolsey, and Fisher [130] showed that their simple greedy algorithm cannot achieve
optimal approximation factor. Later, Sviridenko [159] showed that a greedy algorithm com-
bined with partial enumeration achieves (1 − 1/e)-approximation for a knapsack constraint,
which requires O(n5) function value computations. For a matroid constraint, Calinescu et
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al. [31] provided a continuous greedy algorithm with pipage rounding, which achieves (1− 1/e)-
approximation in polynomial time. The continuous greedy algorithm has been further inves-
tigated by Vondrák and his coauthors, and turns out to be a general framework for various
constraints [13], [43], [166].

Limitation of Existing Models A submodular function is usually defined as a set function
over a ground set S, or equivalently, as a function over {0, 1}S . However, we often face a real-
world setting that cannot be captured by the set function models. Let us give two examples.

Optimal Budget Allocation. A typical situation arises in the optimal budget allocation prob-
lem [5]. In this problem, we want to allocate a certain amount of budget among ad sources
to maximize the number of influenced customers. The main difficulty is that we have to
decide how much budget should be set aside for each ad source, rather than just deciding
whether to use an ad source or not. Therefore, the optimal budget allocation problem is
beyond the existing models based on submodular set functions.

Sensor Placement. For another example, let us consider the following sensor placement sce-
nario. Suppose that we have several types of sensors with various energy levels. We assume
a simple trade-off between information gain and cost. Sensors of a high energy level can
collect a considerable amount of information, but we have to pay a high cost for placing
them. Sensors of a low energy level can be placed at a low cost, but they can only gather
limited information. Again, we want to decide which type of sensors should be placed at
each spot, and hence set functions cannot capture the problem.

Contribution We overcome this fundamental limit of the previous models by extending them
using submodularity over the integer lattice. This dissertation provides a generalization of the
classical monotone submodular function maximization, namely, monotone submodular function
maximization over the integer lattice, and presents efficient approximation algorithms. In our
model, a function is defined on the integer lattice ZS+. It turns out that our generalized model
can formulate not only the problems mentioned above but also other real scenarios.

In Chapter 3, we present a formal description of the budget allocation problem and the
generalized sensor placement, and give detailed motivation and technical overview of our re-
sults. Two main concepts of submodularity over the integer lattice, lattice submodularity and
diminishing return submodularity (DR-submodularity) play key roles in our model.

In Chapter 4, we devise approximation algorithms for monotone submodular maximization
over the integer lattice subject to the three constraints: a cardinality constraint, a polymatroid
constraint, and a knapsack constraint. Our algorithms combine technical tools and ideas from
the literature of monotone submodular (set) function maximization: decreasing threshold [13],
the continuous greedy method [31], and rounding algorithms [43].

Chapter 5 is devoted to another submodular optimization problem, the submodular cover
problem [173]. The submodular cover is a somewhat “dual” problem to the monotone submod-
ular function maximization, but a similar greedy algorithm also works and various machine
learning models were proposed based on the problem. We attempt to generalize the submodu-
lar cover into the integer lattice version, which we call the diminishing return submodular cover
problem. We present a bicriteria approximation algorithm for this generalized submodular cover.
Furthermore, we conduct numerical experiments using real and synthetic datasets, establishing
practical efficiency of our algorithm.
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1.2 Matrix Completion

The matrix completion is the following problem: For a given matrix which contains variables in
its entries, find values for the variables so that the resulting matrix has a desired property, such
as max-rank, low-rank, positive semidefinite, etc. Surprisingly, this simple problem encompasses
many problems in various areas, e.g., maximum matching in general graphs [115], multicast with
network coding [80], and recommendation systems [3].

The matrix completion problems live in a boundary of the two optimization worlds, combina-
torial optimization and continuous optimization. For max-rank matrix completion, Lovász [115]
proved that a simple randomized algorithm finds a solution if the underlying field is sufficiently
large. This algorithm yields a surprisingly simple randomized algorithm for the graph matching
problem using the Tutte matrix [165]. Based on the combinatorial structure of matrices with in-
determinates, efficient deterministic algorithms were developed for various cases: mixed matrix
completion [70], [80], matrix completion by rank-one matrices [89], [152], mixed skew-symmetric
matrices [152].

On the other hand, convex relaxation methods have been central approaches for low-rank
matrix completion (over the reals). Candès and Recht [33] showed that instead of minimizing
the rank function, minimizing the nuclear norm is an efficient and powerful method for various
settings. The nuclear norm is the convex envelope of the rank function and efficiently minimized
by algorithms in convex optimization, e.g., alternating minimization [30]. These algorithms are
fast and scalable, and applied to a large-scale recommendation system [3].

Contribution In Chapter 7, we show that mixed matrix completion [80] can be used for
designing a faster multicast algorithm in a linear deterministic relay network. A linear deter-
ministic relay network is a model of wireless communication introduced by Avestimehr, Diggavi
and Tse [11] to study the capacity of a wireless information channel. We improve the time com-
plexity of the previous multicast algorithm of Yadzi and Savari [175], by exploiting simultaneous
mixed matrix completion of Harvey, Karger, and Murota [80].

Chapter 8 introduces a new problem, the low-rank basis problem. This problem is motivated
by further extension of a class of matrices admitting a deterministic max-rank completion algo-
rithm. Interestingly, it turns out that the low-rank basis problem has applications for dictionary
learning and connections to matroids and tensor decompositions. For this problem, we provide
a heuristic greedy algorithm and verify its performance by various numerical experiments. Our
algorithm employs ideas from low-rank matrix completion such as the nuclear norm relaxation.
Also, we provide some convergence analysis of our algorithm.

1.3 Compressed Sensing

Compressed sensing is a rapidly emerging field of signal processing, machine learning, and com-
munication. The motivation of compressed sensing is the following: in the real-world setting,
measurements are usually high dimensional data, while the complexity of the underlying gen-
erating model is very small. Mathematically, the most basic set up of compressed sensing is as
follows: given y = Ax ∈ Rm, where x ∈ Rn and m � n, can we reconstruct a signal x? At
the first sight, it seems impossible; a linear equation y = Ax has infinitely many solutions since
m < n. However, this is not the case if we a priori know that x is sparse, i.e., most entries
are zero. Candès, Romburg, and Tao [34], and Dohono [53] showed that if the measurement
matrix A satisfies a certain technical condition (such as the null space property or the restricted
isometry property), one can efficiently reconstruct the original signal x. They also showed that
random measurement matrix satisfies these technical conditions with high probability. After
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their groundbreaking papers, compressed sensing has been widely applied to statistics, magnetic
resonance image (MRI), lowrank matrix completion, etc.

`1 minimization (also known as the basis pursuit) [44] is the most basic and important
reconstruction algorithm. The method is surprisingly simple; it returns a minimizer z of the `1
norm subject to Az = y. This optimization can be done by linear programming and hence `1
minimization is a polynomial time reconstruction scheme. Under reasonable condition on the
measurement matrix, `1 minimization can reconstruct the original signal. In many real-world
applications, the original signal is not exactly sparse but close to a sparse signal. Candès,
Romburg, and Tao [35] showed that `1 minimization is also able to (approximately) reconstruct
the original signal even in such a case.

`1 minimization were generalized to nonconvex compressed sensing [46], [106]. In nonconvex
compressed sensing, we use the `q-quasi norm (where 0 < q < 1) instead of the `1-norm.
Therefore the method is called the `q minimization. It was shown that the `q minimization
can reconstruct the original signal from samples fewer than `1 minimization. Also any sparse
signal can be reconstructed by suitable linear measurements y = Ax by `q minimization for
some small q. However, nonconvex compressed sensing has a big drawback; the optimization
problem we have to solve is noncovex and therefore we are often suffered from local minima.
For general A and x, `q minimization is NP-hard [119], [127].

Contribution We show that for some class of measurement matrices, nonconvex compressed
sensing can be done in polynomial time, by exploiting the sum of squares (SoS) method [107],
[131], [136], [150]. The SoS method (also known as the Lassere-SoS hierarchy) is a relaxation
approach for polynomial optimization problem (POP), based on the semidefinite programming
(SDP) and deep results on real algebraic geometry. Although POP is nonconvex programming
in general, the SoS method often yields a (near) optimal solution. Our work sheds light on
the power of the SoS method in nonconvex compressed sensing. The details of our work are
described in Chapter 10.

1.4 Organization of This Thesis

Figure 1.1 illustrates the structure of this dissertation.

1

2 3 4

5

6 7

8

9 10

11

Figure 1.1: The dependence structure of chapters.

Chapters 2–5 are devoted to monotone submodular optimization over the integer lattice.
The main results of this part are developing new machine learning models with submodularity
over the integer lattice and designing approximation algorithms for various formulations. The
first two chapters (Chapters 2 and 3) of this part reviews the theory of submodular functions
and matroids, existing models in machine learning, and algorithms for monotone submodular
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optimization. By investing budget allocation problem, we show the limitation of the existing
models and are led to generalized models with submodularity over the integer lattice. Chapter
3 also presents a summary of our algorithmic results on our novel framework. The following
two chapters (Chapters 4 and 5) describes technical details of our algorithms.

Chapters 6–8 deal with the matrix completion. This part heavily depends on linear algebraic
techniques, such as mixed matrices, SVD, and various sparse optimization techniques. Chapter
6 contains a brief review on matrix completion. Chapters 7 and 8 are devoted to multicast
algorithm in LDRN and low-rank basis problem, respectively.

In Chapters 9 and 10, we discuss the last subject, compressed sensing. First we make a tech-
nical review on compressed sensing in Chapter 9. Then we present our nonconvex compressed
sensing algorithm via the SoS method in Chapter 10.

Finally we conclude this dissertation in Chapter 11, noting several open problems.

1.4.1 Publications Contained in This Dissertation

The contents of this dissertation are based on the following publications.

• T. Soma, N. Kakimura, K. Inaba, and K. Kawarabayashi, “Optimal Budget Allocation:
Theoretical Guarantee and Efficient Algorithm,” in Proceedings of the 31st International
Conference of Machine Learning (ICML), 2014 (Chapter 3).

• T. Soma and Y. Yoshida, “Maximizing Submodular Functions with the Diminishing Re-
turn Property over the Integer Lattice,” in Integer Programming and Combinatorial Op-
timization (IPCO), 2016, to appear (Chapters 3 and 4).

• T. Soma and Y. Yoshida, “A Generalization of Submodular Cover via the Diminishing
Return Property on the Integer Lattice,” in Advances on Neural Information Processing
Systems (NIPS), 2015, pp. 847–855 (Chapter 5).

• T. Soma, “Multicasting in Linear Deterministic Relay Network by Matrix Completion,”
IEEE Transactions on Information Theory, vol. 62, no. 2, pp. 870–875, 2016 (Chapter 7).

• Y. Nakatsukasa, T. Soma, and A. Uschmajew, “Finding a low-rank basis in a matrix
subspace,” ArXiv Preprint, 37 pages, 2015 (Chapter 8).

• T. Soma and Y. Yoshida, “Non-Convex Compressed Sensing with the Sum-of-Squares
Method,” in Proceedings of the 27th Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), 2016, pp. 570–579 (Chapter 10).

1.5 Notation

We denote the set of complex numbers, reals, integers, and natural numbers by C, R, Z, and N,
respectively. Also we denote a field by F. The set of nonnegative reals and integers are denoted
by R+ and Z+, respectively. For n ∈ N, [n] represents the set {1, 2, . . . , n}. For a subset X of
a ground set S and s ∈ S \ X, we denote X ∪ {s} by X ∪ s. Similarly, for s ∈ X, we denote
X \ {s} by X \ s.

We use italic letters for scalars and matrices, e.g., a, b, c ∈ R and A,B,C ∈ Rm×n. We use
bold italic letters for vectors, e.g., x,y ∈ Rn. We denote the ith entry of a vector x ∈ Rn by
x(i). The ith standard unit vector is denoted by ei; i.e., ei(i) = 1 and ei(j) = 0 (j 6= i). The
zero vector is denoted by 0 and the all-one vector is denoted by 1. For a finite set S, FS denotes
the set of |S|-dimensional vectors over F whose entries are indexed by S. For X ⊆ S and x ∈ FS ,
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we denote x(X) :=
∑
i∈X x(i). Similarly, we denote x[X] be the subvector of x whose entries

are indexed by X. We denote the characteristic vector of X by 1X ; i.e., 1X :=
∑
i∈X ei. For

v ∈ Rn and X ⊆ [n], we define a vector vX :=
∑
i∈X x(i)ei.

For 0 < p < ∞, the `p norm of x ∈ Rn is defined as ‖x‖p :=
(∑

i∈[n]|x(i)|p
)1/p

. The `∞
norm of x is ‖x‖∞ := maxi∈[n]|x(i)|. The `0 norm of x is the number of nonzero entries of x.
The vector inner product is denoted by x>y or 〈x,y〉. The support of a vector x is denoted by
supp(x) = {i ∈ [n] : x(i) 6= 0}. Similarly, the positive and negative supports of x are defined as
supp+(x) = {i ∈ [n] : x(i) > 0} and supp−(x) = {i ∈ [n] : x(i) < 0}, respectively.

For a matrix A ∈ Fm×n, the (i, j)-entry of A is denoted by Aij . Similarly for vectors, we
write A ∈ FS×T for finite sets S and T to denote that A is a |S| × |T | matrix whose rows and
columns are indexed by S and T , respectively. For nonempty sets X ⊆ S and Y ⊆ T , A[X,Y ]
denotes the submatrix of A whose rows and columns are indexed by X and Y , respectively.

The trace of A ∈ Fn×n is defined by tr(A) :=
∑
i∈[n]Aii. The transpose of A is denoted by

A>. The Frobenius norm of A ∈ Rm×n is defined as ‖A‖F :=
√

tr(A>A). The largest singular
value of A is denoted by σmax(A).

For a function f : 2S → R, X ⊆ S, and s ∈ S, we define f(s | X) := f(X ∪ s) − f(X).
Similarly, for a function f : ZS → R, and x,y ∈ ZS , we define f(y | x) := f(x+y)−f(x). Any
vector x ∈ ZS+ can be regarded as the multiset in which each s ∈ S is contained x(s) times. We
denote this multiset by {x}. We abuse several set operations for multisets. For arbitrary two
multisets {x} and {y}, we define {x} \ {y} as the multiset such that each s ∈ S is contained
max{x(s)− y(s), 0} times. For a multiset {x}, we define |{x}| := x(S).

We denote the expectation of a random variable Z by E[Z]. We drop the parentheses and
write EZ if the argument is clear from the context. If we need to specify a distribution D, we
write EZ∼D Z. The probability of an event E is denoted by Pr(E).

The base of the natural logarithm is denoted by e.

Pseudocode

Throughout this dissertation, we use the following convention for pseudocode description of
algorithms, which is mostly taken from the Python programming language.

• The block structure is represented by indent. We do not use the “end” keywords such as
endif and endfor.

• Also we drop do keyword in the for and while statements. Alternatively we simply use
a colon. Similarly, we drop then keyword in the if statement.
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Chapter 2

Submodular Functions, Matroids,
and Polymatroids

This chapter provides a high-level overview on submodular functions, matroids, and polyma-
troids. The readers who are familiar with these subjects can skip this chapter and proceed to
Chapter 3 directly.

2.1 Submodular Functions

In this section, we briefly summarize the theory of submodular functions. For more details,
refer to monographs [66], [103].

Let S be a finite set. A set function f : 2S → R is called a submodular function if

f(X) + f(Y ) ≥ f(X ∪ Y ) + f(X ∩ Y ) (2.1)

for any X,Y ⊆ S. A supermodular function is a set function f such that −f is submodular.
If a set function is both submodular and supermodular, it is called a modular function. A set
function f : 2S → R is said to be monotone if f(X) ≤ f(Y ) whenever X ⊆ Y ⊆ S.

An equivalent and more intuitive definition for submodularity is by the diminishing return
property:

f(X ∪ s)− f(X) ≥ f(Y ∪ s)− f(Y ) (2.2)

for all X ⊆ Y and s ∈ S \ Y . The following slightly simpler form is sometimes useful:

f(X ∪ s)− f(X) ≥ f(X ∪ {s, t})− f(X ∪ t) (2.3)

for all X ⊆ S and distinct s, t ∈ S \X.

Example 2.1.1 (Coverage Function). Let G = (S, T ;E) be a bipartite graph. For X ⊆ S, let
Γ(X) be the set of neighbors of S; i.e., Γ(X) = {t ∈ T : t is connected to some s ∈ X}. Then
f(X) = |Γ(X)| is a monotone submodular function.

Example 2.1.2 (Cut Function). Let G = (V,E) be an undirected graph. For X ⊆ V , let f(X)
be the number of edges such that exactly one of its endpoint is in X. Then f is a submodular
function. Furthermore, f is symmetric; i.e., f(X) = f(V \X) for any X.

Example 2.1.3 (Entropy Function). Let Z = [Z1, . . . , Zn]> be an n-dimensional discrete
random variable. For X ⊆ [n], define f(X) as the joint entropy of Zi (i ∈ X); i.e., f(X) =
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H(ZX), where H is the Shannon entropy function. We define f(∅) = 0. Fujishige [65] showed
that f is a monotone submodular function. It is interesting to ask if an arbitrary monotone
submodular function f (with f(∅) = 0) can be constructed as above. Indeed this was an open
problem in information theory and disproved by Zhang and Yeung [176].

Example 2.1.4 (Influence Function [97]). Let G = (V,A) be a digraph. Assume that each
arc uv ∈ A has a probability puv. Let us consider the following spreading process. First we
pick a subset X ⊆ V called a feed set and all the vertices in X become active in time 0. Once
a vertex u becomes active in time t, then u will activate each of its neighbor v independently
with probability puv. If u succeeds, v becomes active in time t+ 1. If u fails, u will never try to
activate v in the subsequent rounds. Let f(X) be the expected number of active vertices after
time t = n, with an initial feed set X. Then f is a monotone submodular function.

2.1.1 Extensions of Submodular Function

A set function f : 2S → R can be regarded as a boolean function f : {0, 1}S → R via the
natural corresponding between a subset X ⊆ S and its characteristic vector 1X . There are
several canonical ways to extend a set function f : 2S → R to a real function f : [0, 1]S → R.
We review two useful extensions: the Lovász extension and the multilinear extension.

Lovász Extension The Lovász extension is defined via correlated rounding of a fractional
vector x ∈ [0, 1]S . For θ ∈ [0, 1] and x ∈ [0, 1]S , let Lθ(x) = {s ∈ S : x(s) ≥ θ}. The Lovász
extension f̂ : [0, 1]S → R of f : 2S → R is defined as

f̂(x) = Eθ∼[0,1][f(Lθ(x))], (2.4)

where θ is drawn from the uniform distribution over the interval [0, 1]. The Lovász extension
can be evaluated efficiently. Let us fix x ∈ [0, 1]S and sort the elements of S as x(s1) ≥ x(s2) ≥
· · · ≥ x(sn), where n = |S|. Then

f̂(x) = (1− x(s1))f(∅) +
n−1∑
i=1

(x(si)− x(si+1))f({s1, . . . , si}) + x(sn)f(S). (2.5)

The following fundamental relation between submodularity of f and convexity of its Lovász
extension f̂ is due to Lovász [116].

Theorem 2.1.5 (Lovász [116]). A set function f : 2S → R is submodular if and only if its
Lovász extension f̂ is convex.

Multilinear Extension The multilinear extension is another canonical extension of a set
function, which has played a central role in submodular function maximization. For x ∈ [0, 1]S ,
let R(x) be a random set in which each s ∈ S is independently contained with probability x(s).
The multilinear extension F : [0, 1]S → R of f : {0, 1}S → R is given by

F (x) = E[f(R(x))] =
∑
X⊆S

f(X)
∏
s∈X

x(s)
∏
s/∈X

(1− x(s)). (2.6)

Note that since the sum contains 2n terms, one cannot (efficiently) compute the exact value
of F (x), unless f is a very specific function such as a coverage function. However, one can
compute an approximate value by iteratively sampling R(x). As in the Lovász extension, the
following relation between submodularity of f and (directional) convexity of F holds.
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(a) The Lovász extension
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Figure 2.1: The two extensions for a monotone submodular function f : 2S → R, where
S = {1, 2}, f(∅) = 0, f(1) = 0.8, f(2) = 0.9, and f(S) = 1. A path above the diagonal segment
is drawn in a dotted line.

Theorem 2.1.6 (Calinescu et al. [31]). Let f : 2S → R be a set function and F : [0, 1]S → R
be its multilinear extension.

1. If f is monotone, then ∂F
∂xi
≥ 0 for any i ∈ S.

2. If f is submodular, then ∂2F
∂xi∂xj

≤ 0 for distinct i, j ∈ S.

3. Suppose that f is monotone and submodular. For x ∈ [0, 1]S and v ≥ 0, let φ(t) =
F (x + tv). Then φ(t) is a concave function.

2.1.2 Submodular Function Minimization

Minimization of a submodular function has been a central problem in combinatorial optimiza-
tion. Historically, the first polynomial time algorithm was due to Grötschel, Lovász, and Schri-
jver [77] in 1980s, via the Lovász extension and the ellipsoid method. Combinatorial algorithms
for submodular function minimization were independently devised by Iwata, Fleicher, and Fu-
jishige [91], and Schrijver [145] around 2000.

The Fujishige-Wolfe minimum norm point algorithm [66] also solves submodular function
minimization and has been recognized as the fastest practical method, though not being proved
as a polynomial time algorithm. Recently, Jegelka, Lin, and Bilmes [95] improved the Fujishige-
Wolfe algorithm to a scalable and efficient algorithm for large scale datasets.

The submodular function minimization has served as a building block in various algorithms:
pipage rounding in matroid polytope [31], finding a flow in polylinking system [72], etc. For
further details of submodular function minimization, refer to a survey [90] and a monograph [12].

2.2 Matroids and Polymatroids

In this section, we make a quick review on matroids and polymatroids.
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2.2.1 Matroids

A matroid is one of the central objects in combinatorial optimization, introduced by Whit-
ney [172]. Let I be a family of subsets of a finite set S. The pair (S, I) is called a matroid if
the following three conditions hold:

(I1) ∅ ∈ I.

(I2) If I ∈ I and I ′ ⊆ I, then I ′ ∈ I.

(I3) For arbitrary members I1 and I2 of I with |I1| < |I2|, there exists an element i ∈ I2 \ I1
such that I1 ∪ i ∈ I.

For a matroid (S, I), we call S the ground set and a member of I an independent set.
We will see several examples of matroids.

Example 2.2.1 (Free Matroid). The family of all the subsets in S trivially satisfies the above
axioms. This matroid is called the free matroid on S.

Example 2.2.2 (Uniform Matroid). The family of subsets in S of size at most k also satisfies
the above axioms. This matroid is called the uniform matroid on S with rank k.

Example 2.2.3 (Partition Matroid). Assume that the ground set S is partitioned into S1, . . . , Sm.
Let k1, . . . , km be nonnegative integers. Define I to be the family of subsets intersecting Si in
at most ki elements for i = 1, . . . ,m; i.e., I = {I ⊆ S : |I ∩ Si| ≤ ki (i = 1, . . . ,m)}. Matroids
obtained in this way are called partition matroids.

Example 2.2.4 (Linear Matroid). Let S be the set of column indices of a matrix A. A subset
I ⊆ S is said to be independent if column vectors of A indexed by I are linearly independent.
Let I denote the family of independent sets. Then (S, I) is a matroid called the linear matroid
or the vector matroid of a matrix A, which we denote by M[A]. One can easily check that the
matroids mentioned above are special cases of linear matroids.

Rank function The rank of a subset X of S is the maximum size of an independent set
contained in X. The function r : 2S → Z+ that returns the rank of each subset is called the
rank function of a matroid (S, I). The rank function r satisfies the following properties:

(R1) 0 ≤ r(X) ≤ |X| for an arbitrary subset X.

(R2) r is monotone.

(R3) r is submodular.

In fact, matroids can be characterized by the rank function; i.e., if a function r : 2S → Z+
satisfies the above conditions (R1) to (R3), then the pair of set S and the family I := {I ⊆ S :
r(I) = |I|} forms a matroid.

Bases of a matroid Another characterization of matroids is in terms of bases. Let (S, I)
be a matroid with the rank function r. An independent set B is called a base if r(B) = r(S).
Equivalently, B is a base if it is a maximal independent set. Bases of a matroid admit the
following exchanging property:

(BM) For arbitrary bases B1 and B2 and for i ∈ B1 \B2, there exists an element j ∈ B2 \B1
such that (B1 \ i) ∪ j is a base.

Conversely, if a nonempty family B satisfies the property (BM), then the family I := {I ⊆ S :
I is contained in some member of B} is an independent set family of a matroid.
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Matroid polytope A matroid polytope is one of the landmarks in polyhedral combinatorics.
For a matroid M = (S, I), the matroid polytope P (M) is the convex full of characteristic
vectors of independent sets; i.e., P (M) = conv{1I ∈ RS : I ∈ I}. Similarly, the base polytope
B(M) is the convex full of characteristic vectors of bases. Edmonds [57] proved that a matroid
polytope can be written as P (M) = {x ∈ RS+ : x(X) ≤ r(X) (X ⊆ S)} and B(M) = {x ∈
P (M) : x(S) = r(S)}.

The (strong) matroid polytope membership problem is the following task. Given x ∈ [0, 1]S
and matroid M, decide x ∈ P (M), and if so, represent x as a convex combination of vertices
in P (M). Tardos, Tovey, and Trick [162] proved that the matroid polytope membership can be
solved in O(n8) time, based on the algorithm of Cunningham [50].

2.2.2 Polymatroids

A polymatroid is a generalization of a matroid polytope. Let ρ : 2S → Z+ be a monotone
submodular set function with ρ(∅) = 0. The (integral) polymatroid associated with ρ is the
polytope P = P (ρ) = {x ∈ RS+ : x(X) ≤ ρ(X) (X ⊆ S)}, and ρ is called the rank function of
P . The base polytope of a polymatroid P is defined as B := {x ∈ P : x(S) = ρ(S)}. The set of
integral points in B satisfies the following simultaneous exchange property:

(BP±) For any x,y ∈ B ∩ ZS+ and s ∈ supp+(x− y), there exists t ∈ supp+(y − x) such that
x− es + et ∈ B ∩ ZS+ and y + es − et ∈ B ∩ ZS+.

The following lemma can be derived by the simultaneous exchange property.

Lemma 2.2.5. Let x,y ∈ B∩ZS+ and I(x) := {(s, i) : s ∈ supp+(x), 1 ≤ i ≤ x(s)}. Then there
exists a map φ : I(x) → supp+(y) such that x − es + eφ(s,i) ∈ B ∩ ZS+ for each s ∈ supp+(x)
and 1 ≤ i ≤ x(s), and that y =

∑
(s,i)∈I(x) eφ(s,i).

Proof. Induction on |{x} \ {y}|. If |{x} \ {y}| = 0, then φ(s, i) := s satisfies the condition. Let
us assume that |{x} \ {y}| > 0. Let us fix s ∈ supp+(x − y) arbitrarily. By the simultaneous
exchange property, we can find t ∈ supp+(y−x) such that x− es + et ∈ B ∩ZS+ and y′ := y +
es−et ∈ B ∩ZS+. By the induction hypothesis, one can obtain φ′ : I(x)→ supp+(y′) satisfying
the conditions. The desired φ can be obtained by extending φ′ as φ′(s, y(s) + 1) := t.

Tight Sets and Exchange Capacity For a vector x in a polymatroid P (ρ), a subset X ⊆ S
is said to be tight (with respect to x) if x(X) = ρ(X). The family of tight sets forms a
distributive lattice; i.e., for arbitrary tight sets X and Y , X ∪Y and X ∩Y are also tight. This
could be easily verified via the submodularity of ρ:

x(X) + x(Y ) = ρ(X) + ρ(Y ) ≥ ρ(X ∪ Y ) + ρ(X ∩ Y ) ≥ x(X ∪ Y ) + x(X ∩ Y ).

The exchange capacity of x and i, j ∈ S is defined as

ĉ(x, i, j) = max{α ≥ 0 : x + α(ei − ej) ∈ P (ρ)}.

Note that the exchange capacity can be computed by minimizing ρ(X)−x(X) over {X ⊆ S \j :
i ∈ X}, which can be done by submodular function minimization.

Greedy Algorithm on Polymatroid Let us consider the following problem

minimize w>x

subject to x ∈ P (ρ),
(2.7)
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where w ∈ RS and P (ρ) is a polymatroid on S. Edmonds [57] presented the greedy algorithm
for this problem, which works as follows. Let us assume that S = {s1, . . . , sn} with w(s1) ≤
w(s2) ≤ · · · ≤ w(sn). Define Si = {s1, . . . , si} (i = 1, . . . , n) and S0 = ∅. The greedy algorithm
returns a vector x ∈ RS such that

x(si) = ρ(Si)− ρ(Si−1) (i = 1, . . . , n).

Edmonds [57] proved that x is an optimal solution of this problem. We note that maximization
can be also solved in a similar manner. Therefore, optimization of a linear function on a
polymatroid can be solved in O(n logn) time, provided that function values can be computed
in O(1) time.
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Chapter 3

Submodularity over the Integer
Lattice and Budget Allocation

In this chapter, we present our novel framework, namely, monotone submodular function op-
timization over the integer lattice. First we review models and algorithms in the literature in
Section 3.1. Then we introduce the budget allocation problem and point out that these existing
models based on set functions cannot capture this problem in Section 3.2. To overcome this
issue, in Section 3.3, we try to generalize the previous models using submodularity over the
integer lattice and show that the budget allocation problem can be viewed as maximization of
monotone submodular functions over the integer lattice. In Section 3.4, we present the details
of our framework and an overview of algorithmic results. We then show that our framework is
able to capture not only the original budget allocation problem but also its variants, generalized
sensor placement, and text summarization allowing multiple choices. We conclude this chapter
with useful facts on submodular functions over the integer lattice in Section 3.5.

3.1 Monotone Submodular Optimization: Literature Overview

In the last decade, optimization of a submodular function has attracted particular interest in the
machine learning community. One reason of this is that many real-world models naturally admit
the diminishing return property. For example, document summarization [111], [112], influence
maximization in viral marketing [97], object detection [45], [153], and sensor placement [105]
can be described with the concept of submodularity, and efficient algorithms have been devised
by exploiting submodularity.

Roughly speaking, a variety of proposed models in machine learning boil down to one of the
following two problems.

Problem 3.1.1 (Monotone Submodular Function Maximization [130]). Given: a monotone
submodular function f : 2S → R+ with f(∅) = 0 and a family F ⊆ 2S .

maximize f(X)
subject to X ∈ F

Problem 3.1.2 (Submodular Cover [173]). Given: monotone submodular functions c, f :
2S → R+ with c(∅) = f(∅) = 0 and α > 0.

minimize c(X)
subject to f(X) ≥ α
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In the submodular function maximization, the following classes of a family F are particularly
important from a both theoretical and practical perspective.

Cardinality Constraint F = {X : |X| ≤ k} for a given k ∈ Z+.

Matroid Constraint F is the family of independent sets of a given matroid M.

Knapsack Constraint F = {X : w(X) ≤ 1} for a given weight vector w ∈ RS+.

Note that a cardinality constraint is a common special case of a matroid constraint and a
knapsack constraint.

Intuitively, F represents a feasibility constraint and f(X) measures “quality” of solution
X. Similarly, c(X) represents the cost of a solution. In monotone submodular function maxi-
mization, we are to find X of maximum quality satisfying the constraint X ∈ F . On the other
hand, the objective of submodular cover is to find X of minimum cost with the worst quality
guarantee α. This intuition is illustrated by investigating the following three examples, each of
which is an existing machine learning model.

Example 3.1.3 (Influence Maximization [97]). Let us recall the influence function in Example
2.1.4. Kempe, Kleinberg, and Tardos [97] considered the following marketing problem called
influence maximization. In this problem, we want to promote new products in a social network.
Precisely, a social network is a graph whose vertices are customers. We can distribute products
to a set X of initial feed customers for free, expecting that other customers will be influenced
by the spreading process described in Example 2.1.4. Since we do not want to give products
for many people, it is natural to pose a constraint on the number of free products. The task
of problem is to maximize the expected number of active customers under constraint |X| ≤ k.
This problem boils down to monotone submodular function maximization.

One also can consider another scenario. We want to activate at least α customers on average,
while minimizing the number of free items. Then this problem is a instance of submodular cover
(with c(X) = |X|).

Example 3.1.4 (Document Summarization [111], [112]). The task of document summarization
is to choose a small set of sentences that summarizes the original document well. Lin and
Bilmes [111], [112] proposed various document summarization models and we will review one
of them. Let S be a set of sentences in a given document and ai,j ≥ 0 be the similarity of two
sentences i, j ∈ S. Let fi : 2S → R+ be a set function defined by fi(X) =

∑
j∈X ai,j . Finally

define f : 2S → R+ by f(X) =
∑
i∈S min{fi(X), γ}, where γ > 0 is a parameter. Then f is a

monotone submodular function. Intuitively, f measures how well a summary X captures the
entire document and the parameter γ prevents that a specific sentences is captured too much.

What is a cost of a summary? The most natural cost is the total length of a summary; i.e,
the sum of lengths of sentences in a summary. Thus the task is finding a summary X with,
say, at most 300 words, that maximizes the “quality” f(X). This setting could be formulated
as monotone submodular function maximization subject to a knapsack constraint, in which the
cost of each sentence equals its length.

Example 3.1.5 (Sensor Placement [104]). Let us consider the following sensor placement in a
water network. We are given a set of sensors S in a water network. We are also given a set E
of possible random scenarios of pollution. In each scenario, pollution starts at some place s ∈ S
at time 0, and gradually spreads out as time goes. We can activate sensors, and if pollution
reaches to an active sensor then we can detect the pollution. Let us denote the detection time
of a sensor s in a scenario e by z(s, e) and let z∞ = max

e∈E,s∈S
z(s, e). The task is to minimize the
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average detection time over all the pollution scenario using at most k sensors. This boils down
to submodular maximization in which the objective function is

f(X) = Ee∈E [z∞ −min
s∈X

z(s, e)]

for a set X of active sensors.

The following two classic problems are also included as special cases.

Example 3.1.6 (Maximum Coverage). Monotone submodular function maximization encom-
passes maximum coverage. To see this, let f be a coverage function associated with a bipartite
graph G = (S, T ;E). The maximum coverage problem is to find a set X ⊆ S of size at most
k with neighbor of maximum size. Since f is monotone and submodular (see Example 2.1.1),
maximum coverage is a special case of monotone submodular function maximization (subject
to a cardinality constraint).

Example 3.1.7 (Set Cover). As its name suggests, submodular cover generalizes set cover. Let
f and G = (S, T ;E) be the same as in the previous example. The task of set cover is to find a
set of X ⊆ S of minimum size such that Γ(X) = T . One can see that the set cover is a special
case of submodular cover with c(X) = |X| and α = |T |.

In this dissertation, we assume that a submodular function is given via an evaluation oracle,
unless explicitly stated otherwise.

3.1.1 Monotone Submodular Function Maximization

We review standard methods for monotone submodular function maximization.

Cardinality Constraint Nemhauser and Wolsey [128] proposed that the greedy algorithm
for a cardinality constraint. The algorithm is extremely simple. We start with X = ∅. As long
as |X| < k we find an element of maximum marginal increase

s ∈ argmax
t∈S\X

f(t | X)

and updateX ← X∪s. They showed that this greedy algorithm achieves (1−1/e)-approximation.
Now we will follow their proof since the proof contains a “template” for obtaining (1 −

1/e)-approximation in monotone submodular function maximization in the simplest form. The
readers will find that this “template” appears in various form throughout this dissertation.
Let s1, . . . , sk be the elements chosen by the greedy algorithm in this order and define Xi :=
{s1, . . . , si} for i = 1, . . . , k. We also define X0 := ∅. Let us fix an optimal solution X∗ and
denote OPT := f(X∗).

The first step is to show a lower bound of the marginal gain in every iteration.

Lemma 3.1.8. For i = 1, . . . , k,

f(si | Xi−1) ≥ 1
k

(OPT− f(Xi−1)) . (3.1)
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Proof. Let us denote ` = |X∗ \Xi−1| and X∗ \Xi−1 = {s∗1, . . . , s∗`}. Then by monotonicity and
diminishing return property,

OPT− f(Xi−1) ≤ f(X∗ ∪Xi−1)− f(Xi−1) =
∑̀
j=1

f(s∗j | Xi−1 ∪ {s∗1, . . . , s∗j−1})

≤
∑̀
j=1

f(s∗j | Xi−1) (by the diminishing return)

≤
∑̀
j=1

f(si | Xi−1) (by the definition of si)

≤ kf(si | Xi−1). (since ` ≤ |X∗| ≤ k.)

Dividing the both sides by k finishes the proof.

Roughly speaking, once we get an inequality like (3.1), obtaining (1 − 1/e)-approximation
is a routine.

Lemma 3.1.9. For i = 0, . . . , k,

OPT− f(Xi) ≤
(

1− 1
k

)i
(OPT− f(X0)). (3.2)

Proof. If i = 0 the statement is trivial. If i > 0,

OPT− f(Xi) = OPT− f(Xi−1)− f(si | Xi−1)

≤ OPT− f(Xi−1)− 1
k

(OPT− f(Xi−1)) =
(

1− 1
k

)
(OPT− f(Xi−1)) ,

where the inequality follows from (3.1). Iterative applications of this complete the proof.

Since f(X0) = f(∅) = 0, (3.2) yields

f(Xk) ≥
[
1−

(
1− 1

k

)k]
OPT ≥ (1− 1/e) OPT,

where in the last inequality we use the well-known inequality 1 + x ≤ ex (x ∈ R). Thus the
output of the greedy algorithm, namely Xk, achieves (1− 1/e)-approximation.

Although the greedy algorithm of Nemhauser and Wolsey [128] looks quite simple, there
exists heuristic speeding up called lazy evaluation [121]. The lazy evaluation does not improve
the worst-case time complexity, but dramatically improves the running time in practice.

Algorithm 3.1 Greedy Algorithm for Cardinality Constraint [128] + Lazy Evaluation [121]
1: Initialize X ← ∅. Let Q be a max priority queue.
2: For each s ∈ S, let ∆(s)← f(s) and enqueue s with key ∆(s).
3: while |X| < k :
4: Dequeue an element s from Q, and let ∆(s)← f(s | X).
5: If ∆(s) ≥ maxt∈Q ∆(t), then update X ← X ∪ s. Otherwise, enqueue s again with key

∆(s).
6: return X
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Knapsack Constraint Sviridenko [159] proved that the following modified greedy algorithm
achieves (1 − 1/e)-approximation for a knapsack constraint. It starts with an initial feasible
solution X = X0. As long as w(X) < 1, we find an element maximizing the cost-gain ratio

s ∈ argmax
t∈S\X

f(t | X)
w(t) .

If w(X) + w(s) ≤ 1 then update X ← X ∪ s. Otherwise we remove s from the ground set S.
Obviously the performance of this algorithm depends on an initial solution X0. Sviri-

denko [159] showed that if we try every initial feasible solution X0 of cardinality at most
three, at least one initial solution gives (1− 1/e)-approximation. Since there exist O(n3) initial
solutions and each execution of greedy algorithm makes O(n2) queries to a value oracle, the
overall algorithm makes O(n5) queries.

Matroid Constraint Algorithms for matroid constraint are generally quite complicated.
Here we review the continuous greedy algorithm developed by Vondrák and his coauthors. At a
very high level, it solves the following relaxation problem:

maximize F (x)
subject to x ∈ P (M),

(3.3)

where F is the multilinear extension of f . Their algorithm actually find a point x in the matroid
base polytope B(M) such that F (x) is at least 1− 1/e times the optimal value of (3.3).

To this end, the algorithm generates a sequence {xt}t∈[0,1] inside the matroid polytope
P (M). Formally, the sequence {xt} is a solution of the following differential equation

dx

dt = argmax
v∈B(M)

〈∇F (x),v〉,

x0 = 0.

At any fixed time t ∈ [0, 1], one can evaluate the velocity vector by solving maxv∈B(M)〈∇F (xt),v〉,
which is easily done by Edmonds’ greedy algorithm. Calinescu et al. [31] showed that x1 satisfies
the condition mentioned above. Note that to obtain a “real” algorithm, we need to discretize
time steps and control numerical errors. Calinescu et al. [31] also provide such an algorithm,
which is quite complicated though.

Lastly, we have to convert a fractional solution x ∈ B(M) to an independent set X. This
task is called rounding and several algorithms are available. Here we review two rounding
algorithms: pipage rounding [31] and swap rounding [43].

The pipage rounding first computes the minimal tight set T (see Section 2.2) that contains at
least two fractional components i, j . Let x1 = x+ ĉ(x, i, j)(ei−ej) and x2 = x+ ĉ(x, j, i)(ej−
ei), where ĉ(x, ·, ·) is the exchange capacity (see Section 2.2). Let us express x = λx1+(1−λ)x2.
With probability λ, we replace x by x1 and otherwise by x2. By this update, either (i) x(i)
or x(j) becomes integral, or (ii) we find a new tight set T ′ (and repeat this with T ∩ T ′).
Computing the minimal tight set T and the exchange capacities requires submodular function
minimization. The overall algorithm can be implemented to run in O(n7) time.

On the other hand, the swap rounding is based on the simultaneous exchange property of
bases. In the swap rounding, we assume that a given fractional vector x is represented as a
convex combination of extreme points; i.e., we know that x =

∑k
i=1 λi1Bi , where Bi is a base

of M. This can be done by solving matroid polytope membership. In fact, many algorithms
maintain x as such a convex combination and in such a case we can simply skip this step. For
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the sake of simplicity, we assume that k = 2 in what follows, but a general case can be treated
by repeating the algorithm for k = 2. We first find i ∈ B1 \B2 and j ∈ B2 \B1 such that both
B′1 := (B1 \ i) ∪ j and B′2 := (B2 \ j) ∪ i are bases. Then we replace Bi by B′1 with probability
λ2/(λ1 + λ2) and otherwise replace B2 by B′2. Repeating yields a single base B = B1 = B2,
and the algorithm outputs B. The algorithm runs in O(n8) time including finding a convex
combination and O(n3) time without finding a convex combination.

Approximation Hardness The factor 1 − 1/e cannot be improved even for a cardinality
constraint. Nemhauser, Wolsey, and Fisher [129] proved that any algorithm that invokes poly-
nomially many queries to a value oracle of f cannot achieve an approximation ratio better than
1− 1/e. For an explicitly represented submodular function, Feige [61] proved that the approxi-
mation factor of 1− 1/e cannot be improved even for maximum coverage unless P = NP.

3.1.2 Submodular Cover

Greedy Algorithm Submodular cover was introduced by Wolsey [173] as a generalization
of set cover. He described a greedy algorithm for c(X) = |X|. Later, Wan et al. [167] provided
an approximation algorithm for a general integral c and f .

The idea of their algorithms is similar to the algorithm of Sviridenko [159] for monotone
submodular maximization subject to a knapsack constraint. We initialize X = ∅. As long as
c(X) < α, we find an element maximizing the cost-gain ratio

s ∈ argmax
t∈S\X

f(t | X)
c(t | X) .

Then update X ← X ∪ s. Wolsey [173] showed that if c(X) = |X|, this greedy algorithm yields
(1 + log d

β )-approximation, where d = maxs f(s) is the maximum value of f over all singletons,
and β = min{f(s | X) : X ⊆ S, s ∈ S, f(s | X) > 0} is the minimum value of the positive
increments of f in the feasible region. Wan et al. [167] proved that the greedy algorithm achieves
ρH(d)-approximation, where

ρ = min
X∗:an optimal solution

∑
s∈X∗ c(s)
c(X∗) (3.4)

is the curvature of c and H(d) = 1 + 1/2 + · · · + 1/d is the dth harmonic number. Note that
Wan et al. [167] considered the case in which c and f are integer valued, thus β ≥ 1.

Approximation Hardness For set cover, we cannot obtain o(log|T |)-approximation unless
NP ⊆ DTIME(nO(log logn)) [61]. The approximation ratio of the above greedy algorithm matches
this ratio, since we have d ≤ |T | and β ≥ 1 for set cover.

3.2 Optimal Budget Allocation: Motivating Problem

The aforementioned submodular models are based on the submodularity of a set function, a
function defined on 2S . However, we often encounter problems that cannot be captured by a
set function. Let us give a motivating example, optimal budget allocation problem [5].

In this problem, we want to allocate a given amount of budget among ad sources to maximize
the number of “influenced” customers. We model relation between ad sources and customers
as a bipartite graph G = (S, T ;E) in which S is the set of ad sources, T is the population of
customers, and E is an edge set. An edge between an ad source s and a customer t indicates
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that s may influence t with some probability that depends on the budget allocated to s. Each
source node s has a capacity c(s) ∈ Z+ and probabilities p(i)

s ∈ [0, 1] for i = 1, . . . , c(s). Each
source node s will be allocated a budget b(s) ∈ {0, 1, . . . , c(s)} such that

∑
s∈S b(s) ≤ B, where

B ∈ Z+ denotes a total budget. If a source node s is allocated a budget of b(s), the node s
makes b(s) independent trials to activate each neighboring target node t. The probability that
t is activated by s in the ith trial is p(i)

s . That is, the probability that t becomes active is

1−
∏

s∈Γ(t)

b(s)∏
i=1

(1− p(i)
s ), (3.5)

where Γ(t) denotes the set of source nodes that is adjacent to t. The objective of this model
is to distribute the budget among the source nodes respecting the capacities of nodes, and to
maximize the expected number of target nodes that become active.

Problem 3.2.1 (Optimal Budget Allocation [5]). Given: a bipartite graph G = (S, T ;E), a
capacity vector c ∈ ZS+, probabilities p(i)

s (i = 1, . . . , c(s)) for each s ∈ S, and a total budget
B ∈ Z+.

maximize
∑
t∈T

1−
∏

s∈Γ(t)

b(s)∏
i=1

(1− p(i)
s )


subject to 0 ≤ b ≤ c, b(S) ≤ B, b ∈ ZS+.

In this problem, we have to decide how much budget should be set aside for each ad source,
and hence set functions cannot capture the problem.

3.3 Beyond Set Functions: Submodularity over the Integer Lat-
tice

The optimal budget allocation problem prompts us to generalize the submodularity and the
diminishing return property to functions defined on the integer lattice ZS+.

The most natural generalization of the diminishing return property to a function f : ZS+ →
R+ is the following inequality:

f(x + es)− f(x) ≥ f(y + es)− f(y) (3.6)

for x ≤ y and s ∈ S. If f satisfies (3.6), then f also satisfies the following lattice submodular
inequality:

f(x) + f(y) ≥ f(x ∨ y) + f(x ∧ y) (3.7)

for all x,y ∈ ZS+, where ∨ and ∧ are the coordinate-wise max and min operations, respectively.
While the submodularity and the diminishing return property are equivalent for set functions,
this is not the case for functions over the integer lattice; the diminishing return property (3.6)
is stronger than the lattice submodular inequality (3.7). We say that f is lattice submodular if
f satisfies (3.7), and if f further satisfies (3.6) we say that f is diminishing return submodular
(DR-submodular for short).
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Remark 3.3.1. Note that our definitions of submodularity on the integer lattice are not new.
Indeed, the lattice submodularity is a special case of submodularity on a distributive lattice [66].
Also, it is not surprising that DR-submodular functions were also studied in various areas, due
to its similarity to diminishing return property. In economics, Milgrom and Strulovici [120]
discussed functions defined over the integer lattice, which they call “multi-unit valuations”, and
argued lattice submodularity and coordinate-wise concavity. DR-submodular functions include
M\-concave functions in discrete convex analysis [124]. Shioura [149] studied maximization of
M\-concave functions subject to certain constraints. Perhaps, the work most related to our
interest here is one of Kaparalov, Post, and Vondrák [96], in which they call DR-submodular
functions “diminishing return functions”. They used DR-submodularity for proving approxima-
tion hardness for another submodular optimization problem and did not discuss maximization.

One can also define DR-submodular functions as lattice submodular functions with coordinate-
wise concavity. We say a function f : ZS+ → R to be coordinate-wise concave if

f(x + 2es)− f(x + es) ≤ f(x + es)− f(x) (3.8)

for each s ∈ S.

Lemma 3.3.2. A function f : ZS → R is DR-submodular if and only if f is lattice submodular
and coordinate-wise concave.

Proof. (If part) Let us assume that f is lattice submodular and coordinate-wise concave. Let
us take x and y with x ≤ y, and fix s ∈ S. We can write y = x +

∑
t∈S+ ktet, where

S+ := supp+(y − x) and kt := y(t)− x(t) for each t ∈ S+. If s 6∈ S+, then

f(x + es) + f(y)
≥ f((x + es) ∨ y) + f((x + es) ∧ y) (by the lattice submodularity)
= f(y + es) + f(x), (since x ≤ y and s 6∈ S+)

which implies f(x + es)− f(x) ≥ f(y + es)− f(y).
If s ∈ S+, we have

f(x + es)− f(x)
≥ f(x + kses + es)− f(x + kses) (by the coordinate-wise concavity)

≥ f

x +
∑
t∈S+

ktet + es

− f
x +

∑
t∈S+

ktet

 (by the lattice submodularity)

= f(y + es)− f(y).

(Only if part) Since the coordinate-wise concavity is immediate, we will show the lattice
submodularity. Let us take x and y arbitrary, and let us write y = x ∧ y +

∑l
i=1 kiesi , where

s1, . . . , sl are all the elements in supp+(y−x) and ki := y(si)− x(si) for i = 1, . . . , l. Then, we
have x ∨ y = x +

∑l
i=1 kiesi . Using the DR-submodularity repeatedly, we obtain

f

x +
j∑
i=1

kiesi

− f
x +

j−1∑
i=1

kiesi

 ≤ f
x ∧ y +

j∑
i=1

kiesi

− f
x ∧ y +

j−1∑
i=1

kiesi


for j = 1, . . . , l. Summing up these inequalities yields f(x∨y)− f(x) ≤ f(y)− f(x∧y), which
is the lattice submodular inequality.
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3.3.1 Submodularity in Optimal Budget Allocation

Let us go back to optimal budget allocation. We first show that the objective function of optimal
budget allocation satisfies the lattice submodularity.

Lemma 3.3.3. The objective function of optimal budget allocation satisfies the lattice submod-
ularity.

Proof. Let us define

gt(b) =
∏

s∈Γ(t)

b(s)∏
i=1

(1− p(i)
s )

for each t ∈ T . Since the objective function equals
∑
t∈T (1 − gt(x)), it suffices to show gt is

lattice supermodular. Let

α := gt(x ∧ y), β := gt(x)
α

, γ := gt(y)
α

.

We can easily check that α, β, γ ∈ [0, 1] and gt(x ∨ y) = αβγ. Then we obtain

gt(x ∨ y) + gt(x ∧ y)− gt(x)− gt(y) = α(βγ + 1− β − γ) = α(1− β)(1− γ) ≥ 0.

In more realistic scenario, we may assume that the influence probabilities are nonincreasing;
i.e., for each s ∈ S, we have p(1)

s ≥ p
(2)
s ≥ · · · ≥ p

(c(s))
s . The property captures the real-world

phenomena of marketing. In the budget allocation model, multiple trials to customers can be
viewed as discrete-time steps. Thus it is natural to decrease effectiveness of an advertisement
with time.

Lemma 3.3.4. If the influence probabilities are nonincreasing, then the objective function is
DR-submodular.

Proof. By Lemmas 3.3.2 and 3.3.3, it suffices to show the coordinate-wise concavity. Simple
algebra yields that

f(x + es)− f(x) = p(x(s)+1)
s

∑
t∈Γ(s)

∏
v∈Γ(t)

x(v)∏
i=1

(1− p(i)
v ),

f(x + 2es)− f(x + es) = (1− p(x(s)+1)
s )p(x(s)+2)

s

∑
t∈Γ(s)

∏
v∈Γ(t)

x(v)∏
i=1

(1− p(i)
v ).

Let α :=
∑
t∈Γ(s)

∏
v∈Γ(t)

∏x(v)
i=1 (1− p(i)

v ) for simplicity of notations. Then we have

f(x + es)− f(x)− (f(x + 2es)− f(x + es))
= p(x(s)+1)

s α− p(x(s)+2)
s (1− p(x(s)+1)

s )α

≥ α(p(x(s)+2)
s − p(x(s)+2)

s (1− p(x(s)+2)
s )) (since p(x(s)+2)

s ≤ p(x(s)+1)
s )

= α(p(x(s)+2)
s )2 ≥ 0

Note that the objective function in budget allocation is not DR-submodular in general. For
example, if p(1)

s = 0 and p
(2)
s = 1 for some s ∈ S with nonzero out-degree, it holds that

f(2es)− f(es) > f(es)− f(0),

which violates the DR-submodularity (3.6).
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3.4 Our Framework

In this dissertation, we consider the following generalized problems of monotone submodular
function generalization and submodular cover.

Problem 3.4.1 (Monotone Submodular Function Maximization over the Integer Lattice).
Given: a monotone lattice submodular or DR-submodular function f : ZS+ → R+ (with
f(0) = 0), c ∈ ZS+, and F ⊆ RS+. .

maximize f(x)
subject to x ∈ [0, c]Z ∩ F,

where [0, c]Z = {x ∈ ZS : 0 ≤ x ≤ c}

Problem 3.4.2 (Diminishing Return Submodular Cover (DR-Submodular Cover for short)).
Given: a subadditive function c : ZS+ → R+ with c(0) = 0, a DR-submodular function f :
ZS+ → R+ with f(0) = 0, r ∈ ZS+, and α > 0.

minimize c(x)
subject to f(x) ≥ α,0 ≤ x ≤ r1.

As in the set version of monotone submodular function maximization, we consider the fol-
lowing three constraints:

Cardinality Constraint F = {x ∈ RS : x(S) ≤ r} for a given r ∈ Z+.

Polymatroid Constraint F is a polymatroid P .

Knapsack Constraint F = {x ∈ RS+ : w>x ≤ 1} for a given weight vector w ∈ RS+.

By Lemma 3.3.3, optimal budget allocation problem is a special case of a cardinality con-
straint. A knapsack constraint enables us to consider more realistic scenario, for example, the
budget allocation in which the unit costs of each ad source varies. This scenario is useful for
allocating budget among ad sources of different scales, e.g., TV, newspaper, and online banner
ads.

Before investigating machine learning problems boiling down to our framework, we summa-
rize algorithmic aspects of monotone submodular optimization over the integer lattice below.

Our Algorithms for monotone submodular function maximization over the integer
lattice Table 3.1 summarizes our algorithmic contributions for monotone submodular function
maximization over the integer lattice.

Table 3.1: Our algorithms for monotone submodular function maximization over the integer
lattice

DR-submodular lattice submodular
cardinality 1− 1/e− ε (polytime, deterministic) 1− 1/e− ε (polytime, deterministic)

polymatroid 1− 1/e− ε (polytime, expectation) open
knapsack 1− 1/e− ε (polytime, expectation) 1− 1/e (pseudopolytime, deterministic)

For the case in which f is DR-submodular (the first column), we devise polynomial time
approximation algorithms for all the three constraints. For the case in which f is lattice sub-
modular (the second column), we design a polynomial time approximation algorithm for a
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cardinality constraint and a pseudopolynomial time approximation algorithm for a knapsack
constraint. All the algorithms achieve approximation factor of 1 − 1/e or 1 − 1/e − ε for any
constant ε > 0. Some algorithms are deterministic (indicated by “deterministic” in Table 3.1);
i.e., they always return a feasible solution whose objective value is at least 1−1/e or 1−1/e− ε
fraction of the optimal value. Some algorithms only achieves approximation in expectation
(indicated by “expectation” in Table 3.1); i.e., their output is a random feasible vector whose
expected objective value is at least the guaranteed fraction of the optimal value.

Our Algorithm for DR-submodular cover On the other hand, we design a polynomial
time bicriteria-approximation algorithm for DR-submodular cover. More precisely, our algo-
rithm takes the additional parameters 0 < ε, δ < 1. The output x ∈ ZS+ of our algorithm
is guaranteed to satisfy that c(x) is at most (1 + 3ε)ρ

(
1 + log d

β

)
times the optimum and

f(x) ≥ (1−δ)α, where ρ is the curvature of c (see Section 5.1 for the definition), d = maxs f(es)
is the maximum value of f over all the standard unit vectors, and β is the minimum value of
the positive increments of f in the feasible region.

3.4.1 Budget Allocation Problem with a Competitor

Submodularity over the integer lattice enables us to extend the budget allocation problem
with nonuniform costs to the two-player case. In the model, there is a competitor against an
advertiser. The competitor allocates his/her budget to S in advance, and will try to influence
target nodes at the same time as the advertiser’s trials. Under this situation, the advertiser
aims at allocating a budget to source nodes to maximize the expected number of target nodes
influenced by his/her trials. We suppose that the trials of the two players are made in a discrete
time step: At each time step i, first the competitor makes the ith trial, and then the advertiser
makes the ith trial. The trials will be repeated until both budget allocations run out.

Thus each target node t of T has the following three states: inactive, positively active (influenced
by an advertiser), and negatively active (influenced by a competitor). Since an advertiser is a
follower, we assume that it has a chance to activate positively both an inactive node and a
negatively activated node. Note that when a node is already influenced by the competitor, the
probability to activate it should be smaller than one to activate an inactive node. In contrast,
we suppose that the competitor can activate an inactive node, but not a positively active node.
Thus the model is progressive with respect to positively active nodes.

More specifically, the model is defined as follows. For a bipartite graph G = (S, T ;E), an
advertiser is given a capacity c(s), a cost w(s) and two probabilities p(i)

s and q(i)
s with q(i)

s ≤ p(i)
s

for i = 1, . . . , c(s) for each s ∈ S. In addition, a competitor has already allocated his budget
to source nodes, which is denoted by b̃(s) for each source node s ∈ S. The competitor also
has probabilities p̃(i)

s for i = 1, . . . , b̃(s) for each s in S. The probability that t is activated by
s in the ith trial depends on the status of t as follows. If t is inactive, then the probabilities
that t is positively/negatively activated are p(i)

s and p̃
(i)
s , respectively. If t is already negatively

active, then the probability that t is positively activated is q(i)
s . In this setting, we aim at

maximizing the expected number of positively active nodes. For t ∈ T and k with 1 ≤ k ≤
1 + maxs∈S b̃(s), let Et,k be the event that t becomes negatively active in the kth trial (when
k = 1+maxs∈Γ(t) b̃(s), Et,k means the event that t never become negatively active). Conditioned
on Et,k, the probability that t becomes positively active is

ft,k(b) = 1−
∏

s∈Γ(t)

min{b(s),k−1}∏
i=1

(
1− p(i)

s

) b(s)∏
i=k

(
1− q(i)

s

)
.
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The probability that t becomes positively active equals
∑
k λt,kft,k(b), where λt,k := Pr(Et,k).

Therefore, the expected number of positively active nodes, denoted by f(b), is equal to
∑
t∈T

∑
k λt,kft,k(b).

Similarly to Lemma 3.3.3, ft,k is monotone and lattice submodular for any t and k. Since f is a
nonnegative linear combination of ft,k’s, f is also monotone and lattice submodular. Thus this
problem can be reduced to the monotone submodular function maximization over the integer
lattice.

3.4.2 Generalized Sensor Placement Model

We can also generalize the existing submodular models in machine learning in a similar way.
Here we describe a generalization of a sensor placement model in Example 3.1.5. Suppose that
we have several types of sensors with various energy levels, say, 0, . . . , r. Let us denote x(s) the
energy level of a sensor s and x ∈ ZS+ be the corresponding integral vector. In this generalized
model, a sensor may fail to detect pollution. Precisely, when the pollution reaches a sensor s,
the probability that we can detect it is 1 − (1− p)x(s), where p ∈ [0, 1]. In other words, by
spending unit energy, we obtain an extra chance of detecting the pollution with probability p.
For each event e ∈ E, let se be the first sensor where the pollution is detected in that injection
event. Note that se is a random variable. Then, we define f : ZS+ → R+ as follows:

f(x) = Ee∈E Ese [z∞ − z(se, e)],

where z(se, e) is defined as z∞ when there is no sensor that managed to detect the pollution.

Lemma 3.4.3. The function f : ZS+ → R+ is DR-submodular.

Proof. Let us define fe : ZS+ → R+ as fe = Ese [z∞ − z(se, e)]. It suffices to show that fe is
DR-submodular since f = Ee∈E fe.

Let S̃ be the set obtained by copying each sensor s ∈ S exactly r times, and consider the
function f̃e : 2S̃ → R+ given by f̃(X) = f(xX), where xX ∈ ZS+ be the integral vector such
that xX(s) is the number of copies of s contained in X.

Then, we can regard f̃(X) for X ⊆ S̃ as the expected cost when each sensor s ∈ X tries
to detect the pollution independently. Note that we have f(x) = f̃(Xx), where Xx ⊆ S̃
contains x(s) copies of each sensor s ∈ S. We note that f̃ satisfies the submodularity for
set functions (see Example 3.1.5). Hence for s ∈ S and x ≤ y with y(s) ≤ r − 1, we have
f(x + es)− f(x) = f̃(Xx+es)− f̃(Xx) ≥ f̃(Xy+es)− f̃(Xy) = f(y + es)− f(y), which implies
the DR-submodularity of f .

3.4.3 Other Applications

We now present generalizations other than the budget allocation problems and sensor placement.
Our framework can naturally extend various applications using submodular set functions into
ones allowing multiple choices.

Maximum Coverage Let us first see that our framework includes a generalization of the
maximum coverage problem (Example 3.1.6). Here consider covering functions pj : Z+ →
2T (j = 1, . . . ,m), each of which is monotone, and we would like to maximize the number of
the elements covered by pj ’s, i.e., | ∪mj=1 pj(x(j))|, subject to x(S) ≤ k. Note that the covering
function pj corresponds to the situation where choosing j multiple times makes the covered set
larger. This problem clearly generalizes the maximum coverage problem, which corresponds
to the case when we can only choose each pj at most once. It is not difficult to see that the
objective function is a monotone lattice submodular function.
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Text Summarization We now extend the text summarization model (see Example 3.1.4) to
the one that incorporates “confidence” of sentences, i.e., we can choose a sentence in various
confidence level like “low”, “mid” or “high” rather than just choose or not. As in the maximum
coverage, let us introduce a monotone covering function pj for each sentence j. Then the
objective function of the extended model is defined to be the total credit f(x) =

∑
ci, where

the sum is taken over concept i covered by ∪jpj(x(j)) and ci is coverage of a concept i. Again,
this objective function is a monotone lattice submodular function.

Facility Location We are given a set S of facilities, and we aim at deciding how large facilities
are opened up in order to serve a set of m customers, where we represent scale of facilities as
integers 0, 1, . . . , c (“0” means we do not open a facility). If we open up a facility j of scale x(j),
then it provides service of value pi,j(x(j)) to customer i, where pi,j : Z+ → R (j = 1, . . . ,m) is
a given monotone function. We suppose that each customer chooses the opened facility with
highest value. That is, when we assign x(j) to each facility j, the total value provided to all
customers is given by f(x) =

∑m
i=1 maxj∈S pi,j(x(j)). It turns out f is monotone and lattice

submodular.

3.5 Facts on Submodular Function over the Integer Lattice

3.5.1 Useful Lemmas

We review some useful lemmas on submodular function over the integer lattice.

Lemma 3.5.1 (weak diminishing return). A function f : ZS → R is monotone and lattice
submodular if and only if

f(x ∨ kes)− f(x) ≥ f(y ∨ kes)− f(y), (3.9)

for arbitrary s ∈ S, k ∈ Z+, x and y with x ≤ y.

Proof. Suppose that f is monotone and lattice submodular. If k ≤ x(s) then both sides are 0.
If x(s) < k ≤ y(s) then the inequality (3.9) is equivalent to f(x ∨ kes) − f(x) ≥ 0, which is
valid by monotonicity. Lastly, if k > y(s) then we have

f(x ∨ kes) + f(y) ≥ f(y ∨ kes) + f(x ∧ y(s)es) (by lattice submodularity)
≥ f(y ∨ kes) + f(x), (by monotonicity)

which directly implies (3.9).
Conversely, assume that f satisfies the weak diminishing return property (3.9). To see the

monotonicity, it suffices to show f(x∨kes) ≥ f(x) for any x ∈ ZS , k ∈ Z+ and s ∈ S. However,
from the weak diminishing return property (3.9), we have f(x ∨ kes) − f(x) ≥ f((x ∨ kes) ∨
kes)− f(x ∨ kes) = 0.

Now we turn to the lattice submodularity. Let x,y ∈ ZS be vectors. We will show f(x ∨
y) − f(x) ≤ f(y) − f(x ∧ y), which implies the lattice submodularity. We can assume that
supp+(y−x) 6= ∅, otherwise the lattice submodularity is trivial. Suppose that supp+(y−x) =
{s1, . . . , s`}. Let x0 = x and recursively define xi := xi−1 ∨ y(si)esi (i = 1, . . . , `). Note that
x` = x ∨ y. By the weak diminishing return property (3.9),

f(xi−1 ∨ y(si)esi)− f(xi−1) ≤ f((xi−1 ∧ y) ∨ y(si)esi)− f(xi−1 ∧ y)

for i = 1, . . . , `. Since (xi−1 ∧ y) ∨ y(si)esi = xi ∧ y,

f(xi)− f(xi−1) ≤ f(xi ∧ y)− f(xi−1 ∧ y) (i = 1, . . . , `).
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Summing up these inequalities, we obtain

f(x`)− f(x0) ≤ f(x` ∧ y)− f(x0 ∧ y).

Putting x0 = x and x` = x ∨ y completes the proof.

Lemma 3.5.2. Let f be a lattice submodular function. For arbitrary x and y, we have

f(x ∨ y) ≤ f(x) +
∑

s∈supp+(y−x)
(f(x ∨ y(s)es)− f(x)) . (3.10)

Proof. We prove this lemma by induction on the size of supp+(y − x). If |supp+(y − x)| = 0,
that is, x ∨ y = x, then (3.10) is trivial. Suppose that there is an index s ∈ supp+(y − x). We
define y′ = y − y(s)es. Then y = y′ ∨ y(s)es and y′ ∧ y(s)es = 0. By lattice submodularity of
x ∨ y′ and x ∨ y(s)es,

f(x ∨ y′) + f(x ∨ y(s)es) ≥ f(x ∨ y) + f((x ∨ y′) ∧ (x ∨ y(s)es)).

Since
(x ∨ y′) ∧ (x ∨ y(s)es) = x ∨ (y′ ∧ y(s)es) = x ∨ 0 = x,

the above inequality implies that

f(x ∨ y′) + f(x ∨ y(s)es)− f(x) ≥ f(x ∨ y).

Therefore, applying the induction hypothesis to x and y′, we obtain (3.10).

Lemma 3.5.3. For a DR-submodular function f ,

f(x ∨ y) ≤ f(x) +
∑

s∈{y}\{x}
f(es | x) (3.11)

for arbitrary x,y ∈ ZS, where {y}\{x} is the multiset such that i ∈ S is contained max{y(i)−
x(i), 0} times.

Proof. By Lemma 3.3.2, f is lattice submodular and coordinate-wise concave. For s ∈ supp+(y−
x), f(x ∨ y(s)es)− f(x) ≤ (y(s)− x(s))f(es | x) by coordinate-wise concavity. Then (3.11) is
immediate from (3.10).

3.5.2 Reducibility of DR-submodular Functions

Lastly we note that a DR-submodular function (defined in a bounded region) can be reduced to
a submodular set function on an extended ground set. Let f : [0, r1]Z → R be a DR-submodular
function. For each s ∈ S, create r copies of s and let S̃ be the set of these copies. For X ⊆ S̃,
define xX ∈ ZS+ be the integral vector such that xX(s) is the number of copies of s contained
in X̃. Then, f̃(X) := f(xX) is a submodular set function.

Via this reduction, one can apply approximation algorithms for monotone submodular func-
tion maximization and submodular cover, if all the functions involved are DR-submodular. This
naive reduction is sometimes useful, but it has a big drawback; the cardinality of S̃ is r|S|, which
is pseudopolynomial in r. Therefore, the resulting algorithms are only pseudopolynomial time
algorithms. Furthermore, this naive reduction does not work for lattice-submodular functions.
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Chapter 4

Monotone Submodular Function
Maximization over the Integer
Lattice

4.1 Overview of this Chapter

In this chapter, we present approximation algorithms for monotone submodular function max-
imization: Given a monotone lattice submodular or DR-submodular function f : ZS+ → R+
(with f(0) = 0), c ∈ ZS+, and F ⊆ RS+,

maximize f(x)
subject to x ∈ [0, c]Z ∩ F.

A technical overview of this chapter is as follows, where n = |S|.

Cardinality Constraint for DR-Submodular Function (Section 4.2): The objective is
to maximize f(x) subject to 0 ≤ x ≤ c and x(S) ≤ r, where f is monotone DR-submodular,
c ∈ ZS+, and r ∈ Z+. We design a deterministic (1 − 1/e − ε)-approximation algorithm whose
running time is O(nε log ‖c‖∞ log r

ε ).

Cardinality Constraint for Lattice Submodular Function (Section 4.3): For cardi-
nality constraints, we also show a (1− 1/e− ε)-approximation algorithm for a monotone lattice
submodular function f . This algorithm runs in O( n

ε2 log ‖c‖∞ log r
ε log τ) time, where τ is the

ratio of the maximum value of f to the minimum positive value of f .

Polymatroid Constraint for DR-Submodular Function (Section 4.4): The objective
is to maximize f(x) subject to x ∈ P ∩ ZS+, where f is monotone DR-submodular and P is a
polymatroid given via an independence oracle. Our algorithm runs in Õ(n3

ε5 log2 r + n8) time,
where r is the maximum value of x(S) for x ∈ P .

Knapsack Constraint for DR-Submodular Function (Section 4.5): The objective is
to maximize f(x) subject to a single knapsack constraint w>x ≤ 1, where f is monotone DR-
submodular and w ∈ RS+. We devise an approximation algorithm with Õ( n2

ε18 log 1
w )(1

ε )
O(1/ε8)

running time, which is the first polynomial time algorithm for this problem.

27



Knapsack Constraint for Lattice-Submodular Function (Section 4.6): Also for a
lattice submodular function f , we devise a (1− 1/e)-approximation algorithm for this problem.
The running time is O(‖c‖5∞n4), a pseudopolynomial in c.

4.1.1 Technical Contribution

Although our algorithms share some ideas with the algorithms of [13], [43], we achieve several
improvements as well as new ideas, mainly due to the essential difference between set functions
and functions over the integer lattice.

Binary Search in the Greedy Phase: In most previous algorithms, the greedy step works
as follows; find the direction of maximum marginal gain and move the current solution along the
direction with a unit step size. However, it turns out that a naive adaptation of this greedy step
in the integer lattice only gives a pseudo-polynomial time algorithm. To circumvent this issue,
we perform a binary search to determine the step size in the greedy phase. Combined with the
decreasing threshold framework, this technique reduces the time complexity significantly.

New Continuous Extensions: To carry out the continuous greedy algorithm, we need a
continuous extension of functions over the integer lattice. Note that the multilinear extension
cannot be directly used since the domain of the multilinear extension is only the hypercube
[0, 1]S . In this chapter, we propose two different kinds of new continuous extensions of a
function over the integer lattice, one of which is for polymatroid constraints and the other is for
knapsack constraints. These continuous extensions have similar properties to the multilinear
extension when f is DR-submodular, and are carefully designed so that we can round fractional
solutions without violating polymatroid or knapsack constraints. To the best of our knowledge,
these continuous extensions in RS+ have not been known.

Rounding without violating polymatroid and knapsack constraints: It is non-trivial
how to round fractional solutions in RS+ without violating polymatroid or knapsack constraints.
For polymatroid constraints, we show that the rounding can be reduced to rounding in a ma-
troid polytope, and therefore we can use existing rounding methods for a matroid polytope.
For knapsack constraints, we design a new simple rounding method based on our continuous
extension.

4.1.2 Related Work

Generalized forms of submodularity have been studied in various contexts. Fujishige [66] dis-
cusses submodular functions over a distributive lattice and its related polyhedra. In the theory
of discrete convex analysis by Murota [124], a subclass of submodular functions over the integer
lattice is considered. The maximization problem also has been studied for variants of sub-
modular functions. Shioura [149] investigates the maximization of discrete convex functions.
Although the present work focuses on monotone submodular functions, there are a large body
of work on maximization of non-monotone submodular functions [26]–[28], [62]. Gottschalk and
Peis [74] provided a 1/3-approximation algorithm for maximizing a lattice submodular function
over (bounded) integer lattice. Recently, bisubmodular functions and k-submodular functions,
other generalizations of submodular functions, have been studied, and approximation algorithms
for maximizing these functions can be found in [92], [151], [168].
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Algorithm 4.1 For DR-Submodular Function Subject to Cardinality Constraint
Input: f : ZS+ → R+, c ∈ ZS+, r ∈ Z+, and ε > 0.
Output: y ∈ ZS+.

1: y ← 0.
2: d← maxs∈S f(es).
3: for (θ = d; θ ≥ ε

rd; θ ← θ(1− ε)) :
4: for each s ∈ S :
5: Find maximum k ≤ min{c(s)− y(s), r− y(S)} with f(kes | y) ≥ kθ by binary search.
6: if such k exists :
7: y ← y + kes
8: return y.

4.1.3 Preliminaries

In this chapter, we use the following form of Chernoff bound.

Lemma 4.1.1 (Relative+Additive Chernoff’s bound [13]). Let Z1, . . . , Zm be independent ran-
dom variables such that for each i, Zi ∈ [0, 1]. Let Z = 1

m

∑
Zi and µ = E[Z]. Let 0 ≤ α < 1

and β ≥ 0. Then

Pr(Z > (1 + α)µ+ β) ≤ exp
(
−1

3mαβ
)
,

Pr(Z < (1− α)µ− β) ≤ exp
(
−1

2mαβ
)
.

4.2 Cardinality Constraint for DR-Submodular Function

We start with the case of a DR-submodular function. Let f : ZS+ → R+ be a monotone
DR-submodular function. Let c ∈ ZS+ and r ∈ Z+. We want to maximize f(x) under the
constraints 0 ≤ x ≤ c and x(S) ≤ r. The pseudocode description of our algorithm is shown in
Algorithm 4.1.

Note that one can find the maximum k such that f(kes | y) ≥ kθ by binary search, because
f(kes|y)

k is nonincreasing with respect to k due to the DR-submodularity.

Remark 4.2.1. If c = 1, we can drop the binary search from Algorithm 4.1. Actually the
resulting algorithm coincides with the algorithm of [13] for a cardinality constraint.

Lemma 4.2.2. Let x∗ be an optimal solution. When adding kes to the current solution y in
Line 7, the average gain satisfies the following.

f(kes | y)
k

≥ 1− ε
r

∑
t∈{x∗}−{y}

f(et | y)

Proof. Due to DR-submodularity, the marginal values can only decrease as we add elements.
If we are adding a vector kes and the current threshold value is θ, then it implies the following
inequalities:

Claim 4.2.3. f(kes | y) ≥ kθ, and f(et | y) ≤ θ
1−ε for any t ∈ {x∗} − {y}.

Proof. The first inequality is trivial. The second inequality is also trivial by the DR-submodularity
if θ = d. Thus we assume that θ < d, i.e., there was at least one threshold update. Let
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t ∈ {x∗} − {y}, k′ be the increment of tth entry in the previous threshold (i.e., θ
1−ε), and y′ be

the variable y at the moment. Suppose that f(et | y) > θ
1−ε . Then f((k′ + 1)et | y′) ≥ f(et |

y) + f(k′et | y′) > θ
1−ε + k′θ

1−ε = (k′+1)θ
1−ε , which contradicts the fact that k′ is the largest value

with f(k′et | y′) ≥ k′θ
1−ε .

The above inequalities imply that f(kes|y)
k ≥ (1− ε)f(et | y) for each t ∈ {x∗}−{y}. Taking

the average over these inequalities we get

f(kes | y)
k

≥ 1− ε
|{x∗} − {y}|

∑
t∈{x∗}−{y}

f(et | y) ≥ 1− ε
r

∑
t∈{x∗}−{y}

f(et | y)

Theorem 4.2.4. Algorithm 4.1 achieves the approximation ratio of 1−1/e−ε in O(nε log ‖c‖∞ log r
ε )

time.

Proof. Let y be the output of the algorithm. Without loss of generality, we can assume that
y(S) = r. Otherwise, consider a modified version of the algorithm in which the threshold is
updated until y(S) = r. Let y′ be the output of this modified algorithm. Since marginal gain
of increasing any coordinate of y by one is at most εdr , we have f(y′) − f(y) ≤ εd ≤ εOPT.
Therefore, if y′ is a (1− 1/e− ε)-approximate solution, then y is a (1− 1/e− 2ε)-approximate
solution.

Let yi be the vector after i steps. Let kiesi be the vector added in the ith step. That is,
yi =

∑i
j=1 kjesj . By Lemma 4.2.2, we have

f(ki+1esi+1 | yi)
ki+1

≥ 1− ε
r

∑
t∈{x∗}−{yi}

f(et | yi).

By the diminishing return property,
∑
t∈{x∗}−{yi} f(et | yi) ≥ f(x∗∨yi)−f(yi) holds. Therefore

by monotonicity, we have

f(yi+1)− f(yi) = f(ki+1esi+1 | yi) ≥
(1− ε)ki+1

r
(f(x∗ ∨ yi)− f(yi))

≥ (1− ε)ki+1
r

(OPT− f(yi)).

Hence, we can show by induction that

f(y) ≥
(

1−
∏
i

(
1− (1− ε)ki

r

))
OPT.

Since

∏
i

(
1− (1− ε)ki

r

)
≤
∏
i

exp
(
−(1− ε)ki

r

)
= exp

(
−(1− ε)

r

∑
i

ki

)
= e−(1−ε) ≤ 1

e + ε,

we obtain (1− 1/e− ε)-approximation.

4.3 Cardinality Constraint for Lattice Submodular Function

We now consider the case of a lattice submodular function. Let f : ZS+ → R+ be a monotone
lattice submodular function, c ∈ ZS+, and r ∈ Z+. We want to maximize f(x) under the
constraints 0 ≤ x ≤ c and x(S) ≤ r.
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Algorithm 4.2
Input: f : ZS+ → R+, s ∈ S, θ > 0, kmax ∈ Z+, ε > 0.
Output: 0 ≤ k ≤ kmax or fail.

1: Find kmin with 0 ≤ kmin ≤ kmax such that f(kmines) > 0 by binary search.
2: if no such kmin exists then fail.
3: for (h = f(kmaxes); h ≥ (1− ε)f(kmines); h = (1− ε)h) :
4: Find the smallest k with kmin ≤ k ≤ kmax such that f(kes) ≥ h by binary search.
5: if f(kes) ≥ (1− ε)kθ :
6: return k
7: fail.

The main issue is that we cannot find k such that f(kχe | x) ≥ kθ by naive binary search
anymore. However, we can find k such that f(kχe | x) ≥ (1−ε)kθ in polynomial time (if exists).
The idea is guessing the value of f(kχe) by iteratively decreasing the threshold and checking
whether the desired k exists by binary search. See Algorithm 4.2 for the details.

Lemma 4.3.1. Algorithm 4.2 satisfies the following:

(1) Suppose that there exists 0 ≤ k∗ ≤ kmax such that f(k∗es) ≥ k∗θ. Then, Algorithm 4.2
returns k with kmin ≤ k ≤ kmax such that f(kes) ≥ (1− ε)kθ.

(2) Suppose that Algorithm 4.2 outputs 0 ≤ k ≤ kmax. Then, we have f(k′es) < max
{
f(kes)

1−ε , k
′θ
}

for any k < k′ ≤ kmax.
(3) If Algorithm 4.2 does not fail, then the output k satisfies f(kes) ≥ (1− ε)kθ.

(4) Let kmin = min{k | f(kes) > 0}. Then, Algorithm 4.2 runs in O
(

1
ε log f(kmaxes)

f(kmines) · log kmax
)

time. If no such kmin exists, then Algorithm 4.2 runs in O(log kmax) time.

Proof. (1) Let H := {(1− ε)`f(kmaxes) : ` ∈ Z+, (1− ε)`f(kmaxes) ≥ (1− ε)f(kmines)}. Let h∗
be the (unique) element in H such that h∗ ≤ f(k∗es) < h∗

1−ε . Let k be the minimum integer such
that f(kes) ≥ h∗. Then, we have k ≤ k∗ and f(k∗es) < f(kes)

1−ε . Thus kθ ≤ k∗θ ≤ f(k∗es) ≤
f(kes)

1−ε , which means that (1− ε)kθ ≤ f(kes).
(2) Let h and h′ be the unique elements in H such that h ≤ f(kes) < h

1−ε and h′ ≤ f(k′es) <
h′

1−ε , respectively. Note that h ≤ h′. If h = h′ then f(k′es) ≤ f(kes)
1−ε . If h < h′, let k1 be the

minimum k1 such that f(k1es) ≥ h′. Then f(k′es)
k′ ≤ f(k1es)

(1−ε)k1
< θ, where the last inequality

follows from the fact k1 is examined by the algorithm before k.
(3) and (4) are obvious.

Basically replacing the binary search in Algorithm 4.1 with Algorithm 4.2 yields the same ap-
proximation guarantee. The pseudocode description of our algorithm for maximizing monotone
lattice submodular functions under a cardinality constraint is shown in Algorithm 4.3.

Let θi be θ in the ith iteration of the outer loop. Let ki,s be k when handling s ∈ S in the
ith iteration of the outer loop. Let yi,s be the vector y right before adding the vector ki,ses. For
notational simplicity, we define y0,s = 0 and k0,s = 0 for all s ∈ S. Let ∆i,s = (x∗ − yi,s) ∨ 0.
The following lemma essentially shows that we have f(∆i,s(a)ea | yi,s) ≤∆i,s(a)θi for any i ∈ N
and s, a ∈ S, which is a crucial property to guarantee the approximation ratio of Algorithm 4.3,
except that we have several small error terms.

Lemma 4.3.2. For any i ∈ N and s, a ∈ S, we have

f(∆i,s(a)ea | yi,s) ≤ max
{ ε

1− εf(ki−1,aea | yi−1,a),
(
εki−1,a + ∆i,s(a)

) θi
1− ε

}
.
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Algorithm 4.3 For Lattice Submodular Function Subject to Cardinality Constraint
Input: f : ZS+ → R+, c ∈ ZS+, r ∈ Z+, ε > 0.
Output: y ∈ ZS+.

1: y ← 0.
2: dmax ← maxs∈S f(c(s)es).
3: for (θ = dmax; θ ≥ ε

rdmax; θ ← θ(1− ε)) :
4: for each s ∈ S :
5: Invoke Algorithm 4.2 with f(· | y), s, θ, min{c(s)− y(s), r − y(S)}, and ε.
6: if Algorithm 4.2 outputs k ∈ Z+ :
7: y ← y + kes
8: return y.

Proof. We define ∆ = ∆i,s, k′ = ki−1,a, y = yi,a, y′ = yi−1,a, and θ′ = θi−1 for notational
simplicity. We assume ∆(a) > 0 as otherwise the statement is trivial. From (2) and (3) of
Lemma 4.3.1, we have

f((k′ + ∆(a))ea | y′) ≤ max
{f(k′ea | y′)

1− ε , (k′ + ∆(a))θ′
}
.

Since f((k′ + ∆(a))ea | y′) ≥ f(∆(a)ea | y) + f(k′ea | y′) holds from lattice submodularity, it
follows that

f(∆(a)ea | y) ≤ max
{ ε

1− εf(k′ea | y′), (k′ + ∆(a))θ′ − f(k′ea | y′)
}
.

Since f(k′ea | y′) ≥ (1− ε)k′θ′ from (1) of Lemma 4.3.1, we obtain the claim.

By taking the sum over all a ∈ S, we have the following:

Corollary 4.3.3.

f(ki,ses | yi,s) ≥
(1− ε)2ki,s

(1 + ε)r
(∑
a∈S

f(∆i,s(a)ea | yi,s)−
ε

1− εf(yi,s)
)

Proof. Note that for any i ∈ N and s ∈ S, we have f(ki,ses | yi,s) ≥ (1 − ε)ki,sθi from (1) of
Lemma 4.3.1. Hence, by summing up the inequality of Lemma 4.3.2 over all a ∈ S, we obtain

∑
a∈S

f(∆i,s(a)ea | yi,s) ≤
∑
a∈S

(
εki−1,a + ∆i,s(a)

) θi
1− ε +

∑
a∈S

ε

1− εf(ki−1,aea | yi−1,a)

≤ (1 + ε)r θi
1− ε + ε

1− εf(yi,s)

≤ (1 + ε)r
(1− ε)2ki,s

f(ki,ses | yi,s) + ε

1− εf(yi,s).

We get the claim by rearranging the inequality.

Theorem 4.3.4. Algorithm 4.3 achieves an approximation ratio of 1−1
e−O(ε) in O( n

ε2 log ‖c‖∞ log r
ε log τ)

time, where

τ = maxs∈S f(c(s)es)
min{f(x) : 0 ≤ x ≤ c, f(x) > 0} . (4.1)
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Proof. Let y be the final output of Algorithm 4.3. We can assume that y(S) = r. To see
this, consider the modified algorithm in which θ is updated until y(S) = r. The output y′

of this modified algorithm satisfies y′(S) = r. By a similar argument as above, we can show
that

∑
a∈E f((y′ − y)(a)ea | y) ≤ (1 + ε)r θmin

1−ε + ε
1−εf(y), where θmin = ε

rdmax. This yields
f(y′) ≤ (1 + O(ε))f(y) + O(ε)OPT. Hence it suffices to show that y′ gives (1 − 1/e − ε)-
approximation.

Let α = (1−ε)2

1+ε and β = ε
1−ε . By Corollary 4.3.3 and lattice submodularity of f ,

f(ki,ses | yi,s) ≥
αki,s
r

(∑
a∈S

f(∆i,s(a)ea | yi,s)− βf(yi)
)

≥ αki,s
r

(
f(x∗ ∨ yi,s)− f(yi,s)− βf(yi,s)

)
≥ αki,s

r

(
OPT− (1 + β)f(yi,s)

)
≥ α(1 + β)ki,s

r

(
ÕPT− f(yi,s)

)
= (1−O(ε))ki,s

r

(
ÕPT− f(yi,s)

)
,

where ÕPT = OPT/(1 + β) = (1 − ε)OPT. As before, we can show that f(y) ≥ (1 − 1/e −
O(ε))ÕPT = (1− 1/e−O(ε))OPT. The analysis of time complexity is straightforward.

4.4 Polymatroid Constraint for DR-Submodular Function

Let P be a polymatroid with a ground set S and the rank function ρ : 2S → Z+. The objective
is to maximize f(x) subject to x ∈ P ∩ ZS . In what follows, we denote ρ(S) by r. We assume
that P is contained in the interval [0, c] := {x ∈ RS+ : 0 ≤ x ≤ c}.

4.4.1 Continuous Extension for Polymatroid Constraints

For x ∈ RS , let bxc denote the vector obtained by rounding down each entry of x. For
a ∈ R, let 〈a〉 denote the fractional part of a, that is, 〈a〉 := a − bac. For x ∈ RS , we define
C(x) := {y ∈ RS | bxc ≤ y ≤ bxc+ 1} as the hypercube x belongs to.

For x ∈ RS , we define D(x) as the distribution from which we sample x̄ such that x̄(s) =
bx(s)c with probability 1 − 〈x(s)〉 and x̄(s) = dx(s)e with probability 〈x(s)〉, for each s ∈ S.
We define the continuous extension F : RS+ → R+ of f : ZS+ → R+ as follows. For each x ∈ RS+,
we define

F (x) := Ex̄∼D(x)[f(x̄)] =
∑
X⊆S

f(bxc+ 1X)
∏
i∈X
〈x(i)〉

∏
i 6∈X

(1− 〈x(i)〉). (4.2)

We call this type of continuous extensions the continuous extension for polymatroid constraints.
Note that F is obtained by gluing the multilinear extension of f restricted to each hypercube.
If f : {0, 1}S → R+ is a monotone submodular function, then it is known that its multilinear
extension is monotone and concave along positive directions. We can show similar properties
for the continuous extension of a function f : ZS+ → R+ if f is monotone and DR-submodular.

Lemma 4.4.1. For a monotone DR-submodular function f , the continuous extension F for the
polymatroid constraint is a nondecreasing concave function along any line of direction d ≥ 0.

To prove this, we need the following useful fact from convex analysis.
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Lemma 4.4.2 (Rockafellar [141], Theorem 24.2). Let g : R → R be a nonincreasing function
and a ∈ R. Then

f(x) :=
∫ x

a
g(t)dt

is a concave function.

We will use the following notation from [141]; For a function φ : R → R and a ∈ R, let us
define

φ′+(a) := lim
ε↓0

φ(a)− φ(a+ ε)
ε

and φ′−(a) := lim
ε↑0

φ(a)− φ(a+ ε)
ε

,

if the limits exist. For a multivariable function F : RS → R, ∇+F and ∇−F are defined in
similar manner.

Proof of Lemma 4.4.1. Let p ∈ RS+ and φ(ξ) := f(p + ξd) for ξ ≥ 0. To show that φ is a
nondecreasing concave function, we will find a nonincreasing nonnegative function g such that
φ(ξ) = φ(0) +

∫ ξ
0 g(t)dt. Note that if φ is differentiable for all ξ ≥ 0, then g := φ′ satisfies the

condition. However, φ may be nondifferentiable at ξ if p + ξd contains an integral entry.
Let us denote x := p + ξ0d and suppose that x(i) ∈ Z for some i. Then one can check that

φ′−(ξ0) = (∇F−|ξ0)>d and φ′+(ξ0) = (∇F+|ξ0)>d. For each j,

∇F−(j)|ξ0 =
∑

X:i 6∈X
(f(bxc − ei + 1X+i)− f(bxc − ei + 1X))

∏
j∈X
〈x(j)〉

∏
j 6∈X,j 6=i

(1− 〈x(j)〉),

∇F+(j)|ξ0 =
∑

X:i 6∈X
(f(bxc+ 1X+i)− f(bxc+ 1X))

∏
j∈X
〈x(j)〉

∏
j 6∈X,j 6=i

(1− 〈x(j)〉).

On the other hand, from the diminishing return property, we have

f(bxc − ei + 1X+i)− f(bxc − ei + 1X) ≥ f(bxc+ 1X+i)− f(bxc+ 1X).

Since d ≥ 0, we have φ′−(ξ0) ≥ φ′+(ξ0).
Let g : R+ → R be an arbitrary function such that φ′−(ξ) ≥ g(ξ) ≥ φ′+(ξ) for ξ ≥ 0. Note

that g(ξ) = φ′(ξ) if φ is differentiable at ξ. Then g is nondecreasing and nonnegative. Since
g(ξ) = φ′(ξ) almost everywhere, we have φ(ξ) = φ(0) +

∫ ξ
0 g(t)dt. The lemma now directly

follows from the nonnegativity of g and Lemma 4.4.2.

4.4.2 Continuous Greedy Algorithm for Polymatroid Constraint

In this section, we describe our algorithm for the polymatroid constraint, whose pseudocode
description is presented in Algorithm 4.6. For a continuous extension F for polymatroid con-
straints and x,y ∈ RS+, we define F (x | y) = F (x + y)− F (y).

Proposition 4.4.3. If x ∈ ZS+, then F (x | y) = Ez∼D(y)[f(x | z)].

Proof. F (x | y) = Ez∼D(x+y)[f(z)]−Ez∼D(y)[f(z)] = Ez∼D(y)[f(x | z)].

At a high level, our algorithm produces a sequence x0 = 0, . . . ,x1/ε in P . Given xt,
Decreasing-Threshold determines an update direction yt (here our continuous extension F comes
into play), and we update as xt+1 := xt + εyt. Finally, we perform a rounding algorithm to the
fractional solution x1/ε and obtain an integral solution x̄.

Given x ∈ RS+, s ∈ S, and θ ∈ R+, Algorithm 4.4 performs binary search to find the largest
k such that F (kes | x) ≥ θ. However, since we can only estimate the value of F (·) in polynomial
time, the output k of Algorithm 4.4 satisfies the following weaker conditions:
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Algorithm 4.4
Input: f : ZS+ → R+, x ∈ RS+, s ∈ S, θ ∈ R+, α, β, δ ∈ (0, 1), kmax ∈ Z+
Output: k ∈ Z+.

1: `← 1, u← kmax.
2: while ` < u :
3: m = b `+u2 c.
4: F̃ (mes | x) ← Estimates of F (mes | x) by averaging O

(
log(kmax/δ)

αβ

)
random samples,

respectively.
5: if F̃ (mes | x) ≥ mθ :
6: `← m+ 1.
7: else
8: u← m.
9: k ← `− 1.

10: return k.

Algorithm 4.5 Decreasing-Threshold
Input: f : ZS+ → R+, x ∈ RS+, ε ∈ [0, 1], P ⊆ RS+.
Output: A vector y ∈ P ∩ ZS+.

1: y ← 0.
2: r ← max{z(S) | z ∈ P}.
3: d← maxs∈S f(es).
4: N ← the solution to N = ndlog1/1−ε

N
ε e. Note that N = O(nε log n

ε ).
5: for (θ = d; θ ≥ εd

N ; θ ← θ(1− ε)) :
6: for all s ∈ S :
7: Invoke Algorithm 4.4 to find maximum 0 ≤ k ≤ kmax such that F̃ (kes | x + εy) ≥ kθ,

where kmax = max{y + kes ∈ P}, with additive error α4.5, multiplicative error β4.5,
and failure probability δ4.5.

8: if such k exists :
9: y ← y + kes.

10: return y.

Lemma 4.4.4. Algorithm 4.4 satisfies the following properties:

(1) Suppose that Algorithm 4.4 outputs k ∈ Z+. Then, with probability at least 1− δ,

F (kes | x) ≥ (1−α)kθ−βf(kes) and F ((k+1)es | x) < (1+α)(k+1)θ+βf((k+1)es).

(2) Suppose that Algorithm 4.4 outputs k ∈ Z+. Then, with probability at least 1− δ, for any
k < k′ ≤ kmax,

F (k′es | x) < (1 + α)k′θ + βf(kmaxes).

(3) Algorithm 4.4 runs in O
(
log kmax · log kmax/δ

αβ

)
time.

Proof. (1) For k ∈ Z, let ∆m = F (mes | x) = Ez∼D(x)[f(mes | z)] and ∆̃m be its estimation.
Note that 0 ≤ f(mes | z) ≤ f(mes) for any z in the support of D(x). By Lemma 4.1.1 and the
union bound, with probability at least 1− δ, we have

|∆̃m −∆m| ≤ αsm + βf(mes).
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Algorithm 4.6 Polymatroid Constraint
Input: f : ZS+ → R+, P ⊆ RS+.
Output: A vector x̄ ∈ P ∩ ZS+.

1: x← 0.
2: for (t← 1; t ≤ b1

ε c; t← t+ 1) :
3: y ← Decreasing-Threshold(f,x, ε, P ).
4: x← x + εy.
5: x̄← Rounding(x, P ).
6: return x̄.

for every estimation in the process. In what follows, we suppose this happens.
Suppose ∆m < (1−α)(mθ−βf(mes)). Then, ∆̃m < mθ and we reach Line 8. On the other

hand, Suppose ∆m ≥ (1 + α)(mθ + βf(mes)). Then, ∆̃m ≥ mθ and we reach Line 6. Hence
after the while loop we must have

∆`−1 ≥ (1− α)((`− 1)θ − βf((`− 1)es)) ≥ (1− α)(`− 1)θ − βf((`− 1)es)
∆` < (1 + α)(`θ + βf(`es)) ≤ (1 + α)`θ + βf(`es)),

which implies (1).
(2) holds because of (1) and the concavity of F , and (3) is obvious.

Lemma 4.4.5. Let x∗ be an optimal solution. Given a fractional solution x, Decreasing-
Threshold produces a new fractional solution y such that x′ := x + y satisfies

F (x′)− F (x) ≥ ε((1− 5ε)f(x∗)− F (x′))

with probability at least 1− ε/3.

Proof. We choose α4.5 = ε, β4.5 = ε
N(n+1) , and δ4.5 = ε

3N . With probability at least 1− ε/3, all
the binary searches succeed. In what follows, we assume this has happened.

Assume for now that Decreasing-Threshold returns y with y(S) = r. If not, we add dummy
elements of value 0 so that y(S) = r. Let yi be the vector y after the ith update in the execution
of Decreasing-Threshold. Let bi and ki be the element of S and the step size chosen in the ith
update, respectively; i.e., yi = yi−1 + kiebi . Applying Lemma 2.2.5 to y and x∗, we obtain
a mapping φ : I(y) → supp+(x∗). Let b∗i,j := φ(bi,yi−1(bi) + j) for j = 1, . . . , ki. Then, by
construction, yi−1 − ebi + eb∗i,j ∈ P for j = 1, . . . , ki.

For each i, let θi be the threshold used in the ith update and let xi = x + yi. By (1) of
Lemma 4.4.4, we have F (kiebi | xi−1) ≥ (1− ε)kiθi − β4.5f(kiebi)− εd

N , where the last term εd
N

comes from the case that bi is a dummy element.
For each i and s ∈ S, we define k∗i,s ∈ Z+ as the number of times that s appeared in the

sequence b∗i,1, . . . , b
∗
i,ki

. When the vector kiebi is added, any s ∈ S have been an candidate
element when the threshold was θi−1. Thus by (2) of Lemma 4.4.4, we have for each s ∈ S,

F (k∗i,ses | xi−1) ≤ (1 + ε)k∗i,sθi−1 + β4.5f(kmaxes) ≤
k∗i,s

(1− ε)2 θi + β4.5f(kmaxes).

Rephrasing this yields

θi ≥
(1− ε)2

k∗i,s
(F (k∗i,ses | xi−1)− β4.5f(kmaxes)).
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By averaging on s ∈ S, we have

θi ≥
(1− ε)2

ki

∑
s

(F (k∗i,ses | xi−1)− β4.5f(kmaxes)).

Combining these inequalities and the fact that f(x∗) ≥ d, we get

F (kiebi | xi−1) ≥ (1− ε)3∑
s

(F (k∗i,ses | xi−1)− β4.5f(kmaxes))− β4.5f(kiebi)−
εd

N

= (1− ε)3∑
s

F (k∗i,ses | xi−1)− β4.5
(
f(kiebi) +

∑
s

f(kmaxes)
)
− εd

N

≥ (1− ε)3∑
s

F (k∗i,ses | xi−1)− β4.5
(
f(x∗) +

∑
s

f(x∗)
)
− εd

N

≥ (1− ε)3∑
s

F (k∗i,ses | xi−1)− 2ε
N
f(x∗)

Since F is concave along non-negative directions, we have for any ε > 0

F (εkiebi | xi−1) ≥ ε(1− ε)3∑
s

F (k∗i,ses | xi−1)− 2ε2

N
f(x∗). (4.3)

Using the above inequality and the fact that N is an upper bound on the total number of
updates, we bound the improvement at each time step as follows:

F (x′)− F (x) =
∑
i

(F (x + εyi)− F (x + εyi−1)) =
∑
i

F (εkiebi | xi−1)

≥
∑
i

(
ε(1− ε)3∑

s

F (k∗i,ses | xi−1)− 2ε2

N
f(x∗)

)

= ε(1− ε)3∑
i

∑
s

Ez∼D(xi−1)[f(z + k∗i,ses)− f(z)]−
∑
i

2ε2

N
f(x∗)

= ε(1− ε)3∑
i

∑
s

Ez∼D(xi−1)[f(z + k∗i,ses)− f(z)]− 2ε2f(x∗)

≥ ε(1− ε)3 Ez∼D(x′)[f(z ∨ x∗)− f(z)]− 2ε2f(x∗) (from DR-submodularity)
≥ ε((1− 5ε)f(x∗)− F (x′)). (from monotonicity)

Lemma 4.4.6. Decreasing-Threshold runs in time O(n2N
ε3 log n

ε log r log rN
ε ).

Proof. Algorithm 4.4 takes O(nN
ε2 log r log rN

ε ) time. The outer loop iterates for O(1
ε log n

ε )
times, while the inner loop contains the execution of Algorithm 4.4 for n times.

Claim 4.4.7. In the end of Algorithm 4.6, we have F (x) ≥ (1−1/e−O(ε))OPT with probability
at least 2/3 in O(n3

ε5 log3 n
ε log2 r) time.

Proof. Define Ω := (1−5ε)f(x∗) = (1−5ε)OPT. Let xt be the variable x after the tth iteration.
Substituting this in the result of Lemma 4.4.5, we get

F (xt+1)− F (xt) ≥ ε(Ω− F (xt+1)).
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Rephrasing the equation we get

Ω− F (xt+1) ≤ Ω− F (xt)
1 + ε

.

Now applying induction to this equation, we obtain

Ω− F (xt) ≤ Ω
(1 + ε)t .

Substituting t = 1/ε and rewriting the equation we get the desired approximation ratio:

F (x) ≥
(

1− 1
(1 + ε)1/ε

)
Ω ≥ (1− 1/e)(1− 5ε)OPT = (1− 1/e−O(ε))OPT.

The time complexity is O(n2N
ε4 log n

ε log r log rN
ε ) = O(n3

ε5 log3 n
ε log2 r).

4.4.3 Rounding

We need a rounding procedure that takes a real vector x as the input and returns an integral
vector x̄ such that E[f(x̄)] ≥ F (x). There are several rounding algorithm in the {0, 1}S case
(see Section 3.1.1). However, generalizing these rounding algorithms over integer lattice is a
nontrivial task. Here, we show that rounding in the integer lattice can be reduced to rounding
in the {0, 1}S case.

Suppose that we have a fractional solution x. The following lemma implies that we can
round x by considering the corresponding matroid polytope.

Lemma 4.4.8. For x ∈ P , P ∩ C(x) is a translation of a matroid polytope.

Proof. Let us consider a polytope P ′ := {〈z〉 : z ∈ P ∩ C(x)}. We can check that P ′ can be
obtained by translating P ∩ C(x) by −bxc and restricting to [0, 1]S . Therefore, P ′ = {z ∈
[0, 1]S : z(X) ≤ ρ′(X) ∀X ⊆ S}, where ρ′(X) := minY⊆X{(ρ−bxc)(Y ) + 1(S \Y )}. Then we
can show that ρ′ is the rank function of a matroid by checking the axiom.

The independence oracle of the corresponding matroid is just the independence oracle of P
restricted to C(x). Thus, the pipage rounding algorithm for P ′ yields an integral solution x̄
with E[f(x̄)] ≥ F (x) in strongly polynomial time.

Slightly faster rounding can be achieved by swap rounding. Swap rounding requires that
the given fractional solution x is represented by a convex combination of extreme points of
the matroid polytope. In our setting, we can represent x as a convex combination of extreme
points of P ∩ C(x), using the algorithm of Cunningham [50]. Then we run the swap rounding
algorithm for the convex combination and P∩C(x). The running time of this rounding algorithm
is dominated by the complexity of finding a convex combination for x, which is O(n8) time.

Theorem 4.4.9. Algorithm 4.6 finds an (1 − 1/e − ε)-approximate solution (in expectation)
with high probability in Õ(n3

ε5 log2 r + n8) time.

4.5 Knapsack Constrant for DR-Submodular Function

In this section, we give an efficient algorithm for the submodular function maximization over
the integer lattice under knapsack constraints. The main difficulty of this case is that we cannot
obtain a feasible solution by applying the swap rounding or the pipage rounding to a fractional
solution of the multilinear extension considered in Section 4.4. To overcome this issue, we
introduce another multilinear extension in Section 4.5.1. Then, we describe our continuous
greedy algorithm using this extension in Section 4.5.2.
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4.5.1 Multilinear extension for knapsack constraints

Let X : I → RS+ be a multiset of vectors (indexed by a set I). We say that X is a multi-
vector if, for every i ∈ I, X(i) is of the form kes, where k ∈ R+ and s ∈ S. For J ⊆ I, let
X(J) :=

∑
j∈J X(j) ∈ RS+. Let p ∈ [0, 1]I . Then we define

Fp(X) =
∑
J⊆I

∏
i∈J

p(i)
∏
i 6∈J

(1− p(i))f(X(J)). (4.4)

In this section, ⊕ denotes the concatenation. In our setting, we often consider Fp for p = ε1,
i.e, each element of X is independently sampled in the same probability ε. In this case, we
will use the shorthand notation Fε(X) := Fε1(X). In addition, we define Fε(kes | X) :=
Fε(X ⊕ kes) − Fε(X). Also, we define F⊕1

ε (kes | X) := Fε1⊕1(X ⊕ kes) − Fε(X), where ε1
corresponds to X and 1 corresponds to kes. For a multi-vector X and a vector w ∈ RS , we
define w(X) =

∑
kes∈X kw(s) as the sum of weights of vectors in X.

Lemma 4.5.1. Let f : ZS+ → R+ be a monotone DR-submodular function. Fix a multi-vector
X : I → ZS+. Then, the function Fp(X), as a function of p, is a monotone concave function
along any line of direction d ≥ 0.

Proof. The proof is exactly the same as Lemma 4.4.1 and we omit.

Lemma 4.5.2. Let f : ZS+ → R+ be a monotone DR-submodular function. Then,

Fε(Y |X) ≥ Fε(Y |X ⊕X ′)

for any multi-vectors X, X ′, and Y .

Proof. Obvious from the DR-submodularity of f .

We denote by Rp(X) the (random) vector X(J), where J is obtained by independently
adding i with probability p(i) for each i ∈ I. Note that Fp(X) = E[f(Rp(X))]. We can see
Rp(X) as a randomized rounding of X.

For a partition Π = {I1, . . . , Ik} of I and a vector p with p(Ii) ≤ 1 for each i ∈ [k], we
introduce another randomized rounding Up(X; Π) as follows. Namely, we define Up(X; Π) as
the vector

∑
i∈[k] X(Ji), where Ji = {j} with probability p(j) for each j ∈ Ii and Ji = ∅ with

probability 1− p(Ii). The rounding Up(X; Π) is as well as Rp(X):

Lemma 4.5.3. Let f : ZS → R+ be a monotone DR-submodular function. Let Π and p as
above. Then, for any multi-vector X : I → RS+,

E[f(Up(X; Π))] ≥ Fp(X).

Proof. Let r = Rp(X) and u = Up(X; Π).
We proceed by induction on k. First, assume that k = 1 and I = I1. Then,

Fp(X) = E[f(r)] =
∑
J⊆I1

Pr[J is chosen]f(X(J))

≤
∑
J⊆I1

Pr[J is chosen]
∑
j∈J

f(X(j)) (by the DR-submodularity of f)

=
∑
j∈I1

Pr
J

[j ∈ J ]f(X(j)) =
∑
j∈I1

p(j)f(X(j)) = E[f(u)]
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Now let k > 1. We define r′ = rI1∪···∪Ik−1 and r′′ = rIk . Define u′ and u′′ similarly. Then,

E[f(u)] = E[f(u′) + f(u′′ | u′)] ≥ E[f(u′) + f(r′′ | u′)] = E[f(u′ + r′′)]

using the base case for f(· | u′) on Ik. Then,

E[f(u′ + r′′)] = E[f(r′′) + f(u′ | r′′)] ≥ E[f(r′′) + f(r′ | r′′)] = E[f(r)]

using the induction hypothesis for f(· | r′′) on I1 ∪ · · · ∪ Ik−1.

4.5.2 Algorithm

We now describe the sketch of our algorithm for knapsack constraints. Let x∗ be an optimal
solution. We call an item s small if it satisfies

• x∗(s)f(es) ≤ ε6OPT and

• w(s) ≤ ε4.

(In order to obtain the upper bound on the number of copies to be included, we only need an
estimate for OPT. So we can discretize the values in between maxs∈S f(es)

w(s) and nmaxs∈S f(es)
w(s)

into logn
ε values and check each one of them.) Other items are called large. Let ` ≤ 1

ε6 + 1
ε4 =

O( 1
ε6 ) be the number of large items. Let us decompose x∗ = x∗L + x∗

L
where L ⊆ S is the set of

large items.
Our overall approach is a variation of the continuous greedy method. However, we deal with

large items and small items separately. This is because, when there are large items, we cannot
round a fractional solution to a feasible solution without losing significantly in the approximation
ratio. To get around this issue, we guess value sets taken by these large sets.

In Section 4.5.3, we describe the subroutine for handling small items, and then we give the
entire algorithm in Section 4.5.4.

4.5.3 Subroutine for handling small items

We give a sketch of the subroutine for handling small items. For notational simplicity, this
subroutine is called at each time step, and it updates the current multi-vector X by adding a
multi-vector S consisting of vectors in RS+ with the following properties.

• Fε(S |X) ≥ ε(1−O(ε))F⊕1
ε (x∗

L
|X),

• w(S) ≤ w>x∗
L

.

At a high level, by iteratively decreasing a threshold θ by multiplicative factor of 1 − ε, we
add elements if its (estimated) marginal value / weight ratio is higher than θ. We stop the
process, when the total marginal value is sufficiently large compared to the guess value gsmall
of εF⊕1

ε (x∗
L
| X), which is sent to the subroutine. A formal implementation can be found in

Algorithm 4.7. The parameters β and δ mean that an additive error of βf(x∗) is allowed and
the algorithm must succeed with probability at least 1− δ, respectively. We choose parameters
α4.7 = O(ε), β4.7 = O(βε), and δ4.7 = O( δ

n log1+ε(n/β4.7)) = O( εδ
n log(n/βε)) in Algorithm 4.7, which

are determined later.
We use the following binary search algorithm. We omit the algorithm description as it is

almost the same as Algorithm 4.4.
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Lemma 4.5.4. Let X ′ be a multi-vector, s ∈ S, and α, β, δ ∈ (0, 1). By querying O(n log(1/w(s)) log(1/δ)
αβ )

times to f , we can find k ∈ Z+ such that

F⊕1
ε (kes |X ′)

w(s) ≥ (1− α)kθ − βf(x∗)
nw(s) .

F⊕1
ε ((k + 1)es |X ′)

w(s) < (1 + α)(k + 1)θ + βf(x∗)
nw(s) .

with probability at least 1− δ.

Algorithm 4.7 Small-Items
Input: A multi-vector X, a guess marginal value gsmall, and β, δ ∈ (0, 1).
Output: A multi-vector S.

1: Let S be the empty multi-vector.
2: d← maxs∈S f(es)

w(s)
3: for (θ = d; θ ≥ β4.7d

n ; θ ← (1− ε)θ) :
4: for each small item s :
5: Perform binary search (Lemma 4.5.4) to find maximum k such that F⊕1

ε (kes|X⊕S)
w(s) ≥ kθ

and kf(es) ≤ βεf(x∗) with multiplicative error α4.7, additive error β4.7f(x∗)
n , and the

failure probability at most δ4.7.
6: if such k exists :
7: S ← S ⊕ kes.
8: F̃ε(S |X)← the guessed value of Fε(S |X) with multiplicative error α4.7 and additive

error β4.7f(x∗)
n .

9: if F̃ε(S |X) ≥ (1− 10ε)gsmall :
10: return S.
11: return S.

Lemma 4.5.5. Suppose (1 + ε)gsmall ≥ εF⊕1
ε (x∗

L
| X) ≥ gsmall and gsmall ≥ βf(x∗). With

probability at least 1− δ/2, Algorithm 4.7 returns S such that w(S) ≤ w>x∗
L

.

Proof. For the notational simplicity, we denote gsmall by g.
From the choice of δ, all the binary searches and the estimation of the marginal values

succeed with probability at least 1 − δ by the union bound. In what follows, we assume this
happens.

We first observe an upper bound on Fε(S | X). Note that, by the stopping condition, we
stop when F̃ε(S |X) ≥ (1− 10ε)g. Hence, F̃ε(S |X) ≤ (1− 10ε)g+ βεf(x∗) ≤ (1− 9ε)g. Now
we have that

Fε(S |X) ≤ (1 + α4.7)F̃ε(S |X) + β4.7f(x∗)
n

≤ (1 +O(ε))(1− 9ε)g +O(εg) ≤ (1− 8ε)g

by choosing the hidden constants in α4.7 and β4.7 small enough.
Now we prove w(S) ≤ w>x∗

L
. Assume for contrary that w(S) > w>x∗

L
. Then, we will show

that Fε(XS |X) ≥ (1− 3ε)g, which is a contradiction.
Let {k1es1 , . . . , k`es`} be the sequence of vectors in the order they are chosen and X ′ =

X ⊕ S. Suppose x∗
L

is of the form
∑m
i=1 es∗i , where s∗1, . . . , s∗m are in the order of decreasing

F⊕1
ε (es∗i |X

′)/w(s∗i ). Note that the same element can appear twice or more. For 0 < ζ < w>x∗
L

,
let N(ζ) := min{j :

∑j
i=1 kiw(si) ≥ ζ} and M(ζ) = min{j :

∑j
i=1w(s∗i ) ≥ ζ}. Also, let Xi
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be the multi-vector obtained by concatenating ks1es1 , . . . , ksiesi to X. Note that X0 = X and
X` = X ′.

Suppose that (kN(ζ), sN(ζ)) is chosen at some step. Let F̃ε denote the estimate done during
performing the binary search. Since some element from {s∗1, . . . , s∗M(ζ)} is not chosen in the
previous step, that is, when θ was larger by the factor of 1

1−ε , we have that

F̃⊕1
ε (kN(ζ)esN(ζ) |XN(ζ)−1)

w(sN(ζ))
≥ kN(ζ)θ,

F̃⊕1
ε (es∗

M(ζ)
|XN(ζ)−1)

w(s∗M(ζ))
<

θ

1− ε .

By Lemma 4.5.4, this implies

F⊕1
ε (kN(ζ)esN(ζ) |XN(ζ)−1)

w(sN(ζ))
≥ (1− α4.7)kN(ζ)θ −

β4.7f(x∗)
nw(sN(ζ))

.

F⊕1
ε (es∗

M(ζ)
|XN(ζ)−1)

w(s∗M(ζ))
< (1 + α4.7) θ

1− ε + β4.7f(x∗)
nw(s∗M(ζ))

.

Hence we have for all ζ that

F⊕1
ε (kN(ζ)esN(ζ) |XN(ζ)−1)

kN(ζ)w(sN(ζ))
≥ (1− ε)(1− α4.7)

1 + α4.7

F⊕1
ε (es∗

M(ζ)
|XN(ζ)−1)− β4.7f(x∗)/n
w(s∗M(ζ))

− β4.7f(x∗)
nkN(ζ)w(sN(ζ))

≥ (1− ε)(1− α4.7)
1 + α4.7

F⊕1
ε (es∗

M(ζ)
|X ′)− β4.7f(x∗)/n
w(s∗M(ζ))

− β4.7f(x∗)
nkN(ζ)w(sN(ζ))

.

Now we can bound the total gain from S.

Fε(S |X) =
∑̀
i=1

Fε(ksiesi |Xi−1)

≥ ε
∑̀
i=1

F⊕1
ε (ksiesi |Xi−1) (By the concavity of F )

≥ ε
∫ w(S)

0

F⊕1
ε (kN(ζ)esN(ζ) |XN(ζ)−1)

kN(ζ)w(sN(ζ))
dζ

≥ ε
∫ w>x∗

L

0

(1− ε)(1− α4.7)
1 + α4.7

F⊕1
ε (es∗

M(ζ)
| x′)− β4.7f(x∗)/n
w(s∗M(ζ))

− β4.7f(x∗)
nkN(ζ)w(sN(ζ))

dζ

≥ ε(1− ε)(1− α4.7)
1 + α4.7

m∑
i=1

F⊕1
ε (es∗i |X

′)− 2β4.7εf(x∗)

≥ ε(1− ε)(1− α4.7)
1 + α4.7

F⊕1
ε (x∗

L
|X ′)− 2β4.7εf(x∗) (By the DR-submodularity of f)

≥ (1− ε)(1− α4.7)
1 + α4.7

[
g − ε(Fε(X ′)− Fε(X))

]
− 2β4.7ε

β
g.

By the choice of α4.7 and β4.7, we get Fε(X ′)−Fε(X) ≥ (1−3ε)g, which is a contradiction.

Lemma 4.5.6. Suppose (1 + ε)gsmall ≥ εF⊕1
ε (x∗

L
| X) ≥ gsmall and gsmall ≥ βf(x∗). With

probability at least 1− δ/2, Algorithm 4.7 returns S such that Fε(S |X) ≥ (1−O(ε))gsmall.
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Proof. Similarly to the proof of Lemma 4.5.5, we assume that all the binary searches and the
estimation of the marginal values have succeeded.

Recall that w(s) ≤ ε4 for all small item s. Hence, if we run Algorithm 4.7 ignoring the
stopping condition (Line 9), either w(XS) ≥ 1− ε4 holds or

F⊕1
ε (es |X ⊕ S)

w(s) <
(1 + α4.7)β4.7d

n
+ β4.7f(x∗)

n

holds for all s ∈ S.
Suppose that the former case happens. In this case, we can use a similar argument to

the proof of Lemma 4.5.5. There, we have assumed that w(S) > w>x∗
L

. Here, we have
w(S) ≥ 1− ε4 ≥ w>x∗

L
− ε4. Regarding that F⊕1

ε (es∗
M(ζ)
|X ′) is a decreasing function of ζ, we

have that Fε(S |X) ≥ (1− 3ε)gsmall.
Suppose that the latter case happens. In this case, the total loss caused by ignoring subse-

quent items is at most∑
s∈S

(1 + α4.7)β4.7d+ β4.7f(x∗)
n

≤ O(βεd+ βεf(x∗)) = O(εgsmall).

Hence, we have Fε(XS |X) ≥ (1− 3ε)gsmall −O(εgsmall) = (1−O(ε))gsmall.

Lemma 4.5.7. The running time of Algorithm 4.7 is O( n2

βε3 log n
βε log n log(n/βε)

εδ log 1
mins w(s)).

Proof. The running time is dominated by the time for performing binary searches. The number
of binary searches is n log1+ε

n
β4.7

= O(nε log n
βε). Each binary search takes

n

α4.7β4.7
log n

δ4.7
log 1

minsw(s) = O

(
n2

βε2
log n log(n/βε)

εδ
log 1

minsw(s)

)

time. Hence, the lemma holds.

4.5.4 Complete algorithm

Now we describe the complete algorithm for knapsack constraints (Algorithm 4.8). First, it
guesses a set of values and sends it to Guessing-Continuous-Greedy (Algorithm 4.9). Algo-
rithm 4.9 at each time step finds step sizes and large items (k1, s1), (k2, s2), . . . , (k`, s`) and
a multi-vector S consisting of small items, and then update the current solution X by concate-
nating these items. Finally, Algorithm 4.9 rounds the obtained multi-vector X using Rounding
(Algorithm 4.10), which will be explained in Section 4.5.4.

To guarantee the approximation ratio, the items chosen by Algorithm 4.9 at each time step
should satisfy the following properties.

• F⊕1
ε (kiesi |X) ≥ (1− o(1))F⊕1

ε (x∗ |X)− o(f(x∗)).
• kiw(si) ≤ k∗iw(s∗i ) (Recall that x∗L =

∑`
i=1 k

∗
i es∗i ).

• Fε(S |X) ≥ ε(1− o(1))F⊕1
ε (x∗

L
|X)− o(f(x∗)).

• w(XS) ≤ w>x∗
L

We can achieve the latter two properties by using the algorithm described in Section 4.5.3.
We want to take a set of small items and k large items from different domains so that we

can apply Lemma 4.5.3 later. To this end, we let S0, S1, . . . , S` be copies of the item set S, and
consider a function f ′ : ZS0∪···∪S`

+ → R+ defined as f ′(x0, . . . ,x`) = f(x0 + · · ·+ x`). We show
that various properties of f are preserved in f ′.
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Algorithm 4.8 Knapsack Constraint
Input: f : ZS+ → R+, weight vector w ∈ RS+.
Output: A vector x ∈ ZS+ satisfying w>x ≤ 1.

1: d← max
s∈S

f(es)
w(s) .

2: GuessSet← {d, (1− ε)d, (1− ε)2d, . . . , β4.8d} ∪ {0}.
3: TimeSet← {1, 2, . . . , 1/ε}.
4: X = ∅.
5: for all G = {g(t)

1 , g
(t)
2 , . . . , g

(t)
` , g

(t)
small ∈ GuessSet | t ∈ Time-Set} :

6: x← Guessing-Continuous-Greedy(f,w, G)
7: X ← X ∪ {x}.
8: return max

x∈X
f(x).

Lemma 4.5.8. Suppose f : ZS+ → R+ is a monotone DR-submodular function. Let f ′ be the
function defined as above. Then, f ′ is a monotone DR-submodular function.

Proof. We prove the case that the domain of f ′ is ZS1∪S2
+ . The general case is achieved by

induction on the number of copies of S. The monotonicity of f ′ is clear.
For the DR-submodularity, let xi,yi ∈ ZSi+ be vectors such that xi ≤ yi for i = 1, 2. Let us

take s ∈ S1. Then, we have

f ′(x1 + es,x2)− f ′(x1,x2) = f(x1 + es + x2)− f(x1 + x2)
≥ f(y1 + es + y2)− f(y1 + y2) (By the DR-submodularity of f)
= f ′(y1 + es,y2)− f ′(y1,y2)

The case of s ∈ S2 can be handled similarly.

Lemma 4.5.9. For a some set G of guess values, Algorithm 4.9 computes a multi-vector X
such that Fε(X) ≥ (1− 1/e−O(ε))f(x∗) with probability at least 5

6 .

Proof. We will determine G later. Suppose that, for this particular G, every binary search in
Algorithm 4.9 and the call of Small-Items have succeeded. By setting δ4.9 = ε

6`n = O( ε7n ), this
happens with probability at least 5

6 by the union bound. Let F̃ε(·) denote the estimation of
Fε(·) calculated when performing the binary searches.

Let Xt be the multi-vector at the end of time step t. We want to show the following.

Claim 4.5.10. For some choice of G, we have

Fε(Xt+1)− Fε(Xt) ≥ ε(1−O(ε))(f(x∗)− Fε(Xt+1))−O(ε2f(x∗)).

for every t.

Proof. Fix t, and we write X ′ = Xt+1 and X = Xt. For i ∈ [`], define Xi = X ⊕
⊕i

j=1 kjesj .
For each step, suppose that we have chosen gi as the largest value in the Guess-Set smaller than
F̃⊕1
ε (k∗i es∗i |Xi−1). Then, we have the following two properties.

• F̃⊕1
ε (kiesi |Xi−1) ≥ gi ≥ (1− ε)F̃⊕1

ε (kiesi |Xi−1)− β4.8d. This implies

F⊕1
ε (kiesi |Xi−1) ≥ (1− ε)(1− α4.9)

(1 + α4.9) F⊕1
ε (k∗i es∗i |Xi−1))− β4.8d− 2β4.9f(x∗).
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Algorithm 4.9 Guessing-Continuous-Greedy
Input: f : ZS+ → R+, weight vector w ∈ RS+, a set of guess values G
Output: An integral vector z ∈ ZS+

1: S0, S1, . . . , S` ← S (Duplicate the items)
2: Define f ′ : ZS0∪S1∪···∪S`

+ → R+ as f ′(x0,x1, . . . ,x`) = f(x0 +
∑`
i=1 xi).

3: Let Fε be the continuous extension (4.4) of f ′.
4: X ← an empty multi-vector.
5: for (t← 1; t ≤ 1

ε ; t← t+ 1) :
6: for i = 1, . . . , ` :
7: For each s ∈ Si, perform binary search (Lemma 4.5.4) to find minimum ks such that

F⊕1
ε (kses |X)/w(s) ≥ g(t)

i with multiplicative error α4.9, additive error β4.9f(x∗)/w(s)
and failure probability δ4.9.

8: s← argmin{ksw(s) : s ∈ Si}.
9: X ←X ⊕ kses.

10: S ← Small-Items(f ′,X, g
(t)
0 ) with additive error β4.9f(x∗) and failure probability δ4.9.

11: X ←X ⊕ S.
12: z ← Rounding(X, ε1).
13: if w>z > 1 :
14: z ← 0.
15: return z.

• ksiw(si) ≤ k∗iw(s∗i ). This is because k∗i es∗i should have been a candidate item when
choosing kiesi as F̃⊕1

ε (ksiesi |Xi−1) ≥ gi.

Suppose that we have chosen g0 so that (1 + ε)g0 ≥ εF⊕1
ε (x∗

L
| X) ≥ g0. By Lemma 4.5.6, it

holds that

• Fε(S |X`) ≥ ε(1−O(ε))F⊕1
ε (x∗

L
|X`)− β4.9f(x∗).

• w(S) ≤ w>x∗
L

For this choice of g, we can bound the increase at each time step as follows.

Fε(X ′)− Fε(X)

=
∑̀
i=1

Fε(kiesi |Xi) + Fε(X ′)− Fε(X`)

≥ ε
∑̀
i=1

F⊕1
ε (kiesi |Xi−1) + Fε(X ′)− Fε(X`) (By Lemma 4.5.1)

≥ ε(1− ε)(1− α4.9)
(1 + α4.9)

∑̀
i=1

(
F⊕1
ε (k∗i s∗i |Xi−1)− β4.8d− 2β4.9f(x∗)

)
+ ε(1−O(ε))F⊕1

ε (x∗
L
|X`)− β4.9f(x∗)

≥ ε(1− ε)(1− α4.9)
(1 + α4.9)

∑̀
i=1

(
F⊕1
ε (k∗i s∗i |X ′ ⊕ x∗

L
)
)

+ ε(1−O(ε))F⊕1
ε (x∗

L
|X ′)− β4.8`d− β4.9(2`+ 1)f(x∗)

(By Lemma 4.5.2)

≥ ε(1− ε)(1− α4.9)
(1 + α4.9) F⊕1

ε (x∗L |X ′ ⊕ x∗
L

) + ε(1−O(ε))F⊕1
ε (x∗

L
|X ′)− β4.8`d− β4.9(2`+ 1)f(x∗)

≥ ε(1−O(ε)− 2α4.9)F⊕1
ε (x∗ |X ′)− β4.8`d− β4.9(2`+ 1)f(x∗)

≥ ε(1−O(ε)− 2α4.9)(f(x∗)− Fε(X ′))− β4.8`d− β4.9(2`+ 1)f(x∗).
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By choosing α4.9 = O(ε) and β4.8 = β4.9 = O( ε2` ), this quantity is at least ε(1− O(ε))(f(x∗)−
Fε(X ′))−O(ε2f(x∗)).

Now we proceed similarly to the analysis of continuous greedy for the polymatroid constraint.
Rephrasing the inequality in the claim above we get

(1− ε′)f(x∗)− Fε(Xt+1) ≤ (1− ε′)f(x∗)− Fε(Xt)
1 + ε(1−O(ε)) .

for a certain ε′ = O(ε). Then, by induction we can prove

(1− ε′)f(x∗)− Fε(Xt) ≤
( 1

(1 + ε(1−O(ε))t)

)
(1− ε′)f(x∗).

Substituting t = 1/ε and rephrasing once again,

Fε(X1/ε) ≥ (1− 1
e −O(ε))(1− ε′)f(x∗) = (1− 1

e −O(ε))f(x∗).

Lemma 4.5.11. The running time of Algorithm 4.8 is O( n2

ε18 log3 n
ε log 1

mins w(s))(1
ε )
O(1/ε8).

Proof. The number of choices for t and G is 1
ε · (log1+ε(β4.8))` = (1

ε )
O(1/ε8). The running time

of Algorithm 4.7 is

O

(
`

ε

n2

β4.9ε3
log n

β4.9ε
log n log(n/β4.9ε)

εδ4.9
log 1

minsw(s)

)
= O

(
n2

ε18 log3 n

ε
log 1

minsw(s)

)

. The total number of queries to f caused by the binary search is

O

(
n`

ε

1
α4.9β4.9

log 1
δ4.9

log 1
minsw(s)

)
= O

(
n

ε16 log n
ε

log 1
minsw(s)

)
Hence, the lemma holds.

Rounding

In this subsection we show how to convert a multi-vector produced in Algorithm 4.9 to an
integral vector.

At time t, suppose that (k(t)
i , sti) is chosen for i ∈ [`]. Let Xt

L =
⊕
kiesi and XL =

⊕
t Xt

L.
Let St be the multi-vector obtained by Guessing-Continuous-Greedy at time t and XL =

⊕
t St.

We restrict our attention to the multi-vector X corresponding to the set of guess values G for
which we have the following properties.

• Fε(X) ≥ (1− 1/e−O(ε))f(x∗).

• For each time t and each i ∈ [`], we have k(t)
i w(sti) ≤ k∗iw(s∗i ).

• For each time t we have that w(St) ≤ w>x∗
L

.

Our rounding method is described in Algorithm 4.10. Basically, we apply Lemma 4.5.3 to
XL and the independent rounding to S.

Lemma 4.5.12. Algorithm 4.10 rounds a multi-vector X to a vector z ∈ ZS+ such that
E[f(z)] ≥ (1−O(ε))Fε(X).
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Algorithm 4.10 Rounding
Input: A multi-vector X = XL ⊕XL

Output: A vector z ∈ ZS+ satisfying w>z ≤ 1 and E[f(z)] ≥ (1−O(ε))Fε(X)
zL ← Uε(1−ε)(XL; Π)
zL ← 0.
for kes ∈XL :

if kw(s) ≤ ε3w(S \ L) :
Add kes to zL with probability ε(1− ε).

z = zL + zL.
return z.

Proof. Let X ′
L

consist of all kes ∈ S such that kw(s) ≤ ε3w(XL). Let X ′′
L

be the rest, that is,
X ′
L
⊕X ′′

L
= XL. First let us relate the value of X = XL ⊕XL to that of X ′ = X ′

L
⊕XL.

Fε(X ′) = Fε(X ′L ⊕XL) = E[f(Rε(X ′L ⊕XL)] ≥ E[f(Rε(XL ⊕XL))]−E[f(Rε(X ′′L))]

≥ Fε(XL ⊕XL)− ε
∑

kes∈X′′S

f(kes) ≥ Fε(X)− ε max
kes∈X′′S

f(kes)
∑

kes∈X′′S

1

≥ Fε(X)− ε7f(x∗) 1
ε3
≥ Fε(X)− ε4f(x∗) ≥ (1− ε)Fε(X).

Next we note that we get z by selecting exactly one random item from each Si, and sampling
independently from SL. Hence, we have

E[f(z)] ≥ E[f(Uε(1−ε)(XL; Π) | Rε(1−ε)(X ′L))] + E[f(Rε(1−ε)(X ′L))]
≥ E[f(Rε(1−ε)(XL) | Rε(1−ε)(X ′L))] + E[f(Rε(1−ε)(X ′L))] (By Lemma 4.5.3)
≥ Fε(1−ε)(X ′) ≥ (1− ε)Fε(X ′) ≥ (1−O(ε))Fε(X).

Lemma 4.5.13. Algorithm 4.10 rounds a multi-vector X to a vector z ∈ ZS+ such that w>z ≤ 1
with probability at least 5

6 .

Proof. Let u be a vector sampled from Uε(1−ε)(XL; Π). Then, u contains at most one element
from the set {k(t)

i esti}t∈[ 1
ε
] for each i ∈ [`]. Hence, we have w>u ≤ w>x∗L.

Let r′ε(1−ε) be sampled from Rε(1−ε)(X ′L). Then it is enough to prove that with high prob-
ability w>r′ε(1−ε) ≤ w>x∗

L
. Let rε(1−ε) and rε be sampled from Rε(1−ε)(X ′L) and Rε(X ′L),

respectively. Then we have

E[w>r′ε(1−ε)] = (1− ε) E[w>rε(1−ε)] ≤ (1− ε) E[w>rε] ≤ (1− ε)w(S \ L) ≤ (1− ε)w>x∗
L

Additionally we have that for each kes ∈ X ′
L

, we have that kw(s) ≤ ε3w(S \ L) ≤ ε3w>x∗
L

.
Hence, we can bound the probability that w>r′ε(1−ε) > w>x∗

L
by a simple Chernoff bound to

show this happens with very low probability.

Combining Lemmas 4.5.9 and 4.5.13, we obtain the following.

Theorem 4.5.14. Algorithm 4.8 outputs a (1− 1/e−O(ε))-approximate feasible solution with
probability at least 2

3 .
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Algorithm 4.11
Input: a feasible solution x0

1: Let x := x0.
2: Let Q := {(s, k) : s ∈ S and 1 ≤ k ≤ c(s)− x(s)}.
3: while w>x < 1 and Q 6= ∅ :
4: Find s and k maximizing f(kes|x)

kw(s) among (s, k) ∈ Q.
5: if w · b+ w(s)k ≤ 1 :
6: Let x(s) := x(s) + k.
7: Remove all pairs (s, l) such that x(s) + l > c(s) from Q.
8: else
9: Remove (s, k) from Q.

10: return x

4.6 Knapsack Constrant for Lattice Submodular Function

We now describe our approximation algorithm for maximizing a monotone lattice submodular
function subject to a knapsack constraint. In our algorithm, we first enumerate every feasible
solution x0 such that |supp+(x0)| ≤ 3. The number of such solutions is O(‖c‖3∞|S|3). For
each feasible solution x0, the algorithm increases each component of x0 in Algorithm 4.11, and
obtains a feasible solution x. Finally, the algorithm returns the best one among the obtained
solutions. Since Algorithm 4.11 requires O(‖c‖2∞|S|) time, the total complexity is O(‖c‖5∞|S|4).

Remarks Let us leave some remarks on our algorithm. Although the worst case complexity
of our algorithm is quite expensive, Algorithm 4.11 can be accelerated using a “lazy evaluation”
technique given in [121], and thus it runs more efficiently in practice. Also, there is another
approach to reduce the time complexity at the expense of a good approximation ratio. We
can apply ideas similar to those for maximizing a submodular set function to make practical
simpler algorithms with somewhat worse approximation factors [111]. For example, as in [5], if
we enumerate solutions with only one positive support before performing Algorithm 4.11, then
we can find a 1−1/e

2 -approximate solution in O(‖c‖2∞|S|2) time.

Theorem 4.6.1. For monotone lattice submodular function maximization subject to a knapsack
constraint, we can find a (1− 1/e)-approximate solution in O(‖c‖5∞|S|4) time.

Let x∗ be an optimal solution for a given instance of the problem. We first examine properties
of Algorithm 4.11 that hold for arbitrary x0. We then show that there exists some x0 in the
enumeration step such that Algorithm 4.11 returns x with f(x) ≥ (1−1/e)f(x∗), which proves
Theorem 4.6.1.

Let us fix an initial solution x0, and analyze behavior of Algorithm 4.11 with input x0. We
denote by xi the tentative solution x at the beginning of the ith iteration and denote by si and
ki s and k chosen in the ith iteration, respectively. Assume that Algorithm 4.11 first has not
updated the tentative solution x in the Lth trial. Equivalently, let L be the minimum number
such that xL = xL+1 and xi < xi+1 for i = 1, . . . , L − 1. Note that if such a situation never
happens during the execution of Algorithm 4.11, define L to be the number of iterations.

Lemma 4.6.2. Without loss of generality, we may assume that x(sL) + kL ≤ x∗(sL).

Proof. Suppose that x(sL) + kL > x∗(sL). Let us consider a modified instance in which the
capacity of sL is decreased to x(sL)+kL−1. The optimal value is unchanged by this modification
because x∗ is still feasible and optimal. Furthermore, Algorithm 4.11 returns the same solution
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(with respect to same x0). Thus it suffices to analyze the algorithm in the modified instance.
Repeating this argument completes the proof of this lemma.

Consider the ith iteration of the algorithm. For simplicity, we denote

∆i = f(kiesi | x), δi = ∆i

kiw(si)
, wi = w(si).

Note that f(xi) = f(x0) +
∑i−1
j=1 ∆i for i = 1, . . . , L. Let B′ := 1−w>x0.

Lemma 4.6.3. For i = 1, . . . , L, we have ∆i ≥
wiki
B′

(f(x∗)− f(xi)) .

Proof. Let us denote xi ∨ x∗ = xi +
∑
αses, where the sum is taken over s in supp+(x∗ − xi)

and αs := x∗(s) − xi(s). Since xi ∨ x∗(s)es = xi + αses for each s ∈ supp+(x∗ − xi), (3.10)
implies

f(xi ∨ x∗) ≤ f(xi) +
∑

s∈supp+(x∗−xi)
(f(xi + αses)− f(xi))

≤ f(xi) +
∑

s∈supp+(x∗−xi)
w(s)αsδi,

where the last inequality follows from the fact that (f(xi + kes) − f(xi))/(w(s)k) ≤ δi for all
s ∈ S and k. Since

∑
w(s)αs is at most B′ and f(x∗) ≤ f(xi ∨ x∗) by the monotonicity of f ,

it holds that f(x∗) ≤ f(xi) + δiB
′. Therefore, we obtain δi ≥ (f(x∗)− f(xi))/B′.

Applying Lemma 4.6.3 repeatedly, we have the following lemmas.

Lemma 4.6.4. For i = 1, . . . , L, we have

f(x∗)− f(xi) ≤ (f(x∗)− f(x0)) ·
i∏

j=1

(
1− wjkj/B′

)
.

Proof. We prove this lemma by induction on i. For i = 1, then the inequality holds because
∆1 ≥ w1k1(f(x∗)− f(x0))/B′ by Lemma 4.6.3. For i > 1, we have

f(x∗)− f(x0)−
i∑

j=1
∆j = f(x∗)− f(x0)−

i−1∑
j=1

∆j −∆i

≤ f(x∗)− f(x0)−
i−1∑
j=1

∆j −
wiki
B′

f(x∗)− f(x0)−
i−1∑
j=1

∆j

 (by Lemma 4.6.3)

=
(

1− wiki
B′

)f(x∗)− f(x0)−
i−1∑
j=1

∆j


≤
(

1− wiki
B′

)
· (f(x∗)− f(x0)) ·

i−1∏
j=1

(
1− wjkj

B′

)
, (by the induction hypothesis)

which completes the proof.

Lemma 4.6.5. It holds that f(x∗)− f(xi) ≤ (f(x∗)− f(x0))/e.
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Proof. We have

L∏
i=1

(
1− wiki

B′

)
≤ exp

(
−

L∑
i=1

wiki
B′

)
≤ 1

e , (4.5)

where the last inequality follows the fact that
∑L
i=1wiki ≥ B′. Combining this fact and Lemma

4.6.4 completes the proof.

We now move to proving that the greedy procedure returns a (1−1/e)-approximate solution
for some x0 in the enumeration step. If the optimal solution x∗ satisfies |supp+(x∗)| ≤ 3, it
can be found in the enumeration step. Therefore, we assume that all the optimal solutions have
more than three positive components. Let s∗1, s∗2, s∗3 be elements in S satisfying:

s∗i ∈ argmax
s∈S\{s∗1,...,s

∗
i−1}

f
(
x∗(s)es | ∨i−1

j=1x
∗(s∗j )es∗j

)
for i = 1, 2, 3. Since the size of the support of x∗ is more than three, such s∗1, s

∗
2 and s∗3 clearly

exist.

Lemma 4.6.6. For the feasible solution x0 with the support {s∗1, s∗2, s∗3} satisfying x0(s∗i ) =
x∗(s∗i ) for 1 ≤ i ≤ 3, we have ∆L ≤ f(x0)/3.

Proof. It follows that ∆L = f(kLesL) − f(xL) ≤ f(xL ∨ x∗(sL)esL) − f(xL) since xL(sL) +
kL ≤ x∗(sL). By Lemma 3.5.1, ∆L is at most f(x∗(sL)esL) − f(0) = f(x∗(sL)esL), and
hence ∆L ≤ f(x∗(s∗1)es∗1) by the choice of s∗1. Similarly, by the choices of s∗2 and s∗3, we have
∆L ≤ f(x∗(s∗2)es∗2 | x

∗(s∗1)es∗1) and ∆L ≤ f(x∗(s∗3)es∗3 | x
∗(s∗1)es∗1 + x∗(s∗2)es∗2). Adding these

inequalities, we obtain ∆L ≤ f(x0)/3.

We are now ready to prove Theorem 4.6.1. Since f(x) ≥ f(x0) +
∑L
i=1 ∆i −∆L, Lemmas

4.6.5 and 4.6.6 imply that

f(x) ≥ (1− 1/3)f(x0) + (1− 1/e)(f(x∗)− f(x0))
≥ (1− 1/e)f(x∗)

for the initial solution x0 described in Lemma 4.6.6. This completes the proof of Theorem 4.6.1.
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Chapter 5

The Diminishing Return
Submodular Cover Problem

In this chapter, we consider the following generalization of the submodular cover problem for
set functions: Given a monotone DR-submodular function f : ZS+ → R+, a subadditive function
c : ZS+ → R+, α > 0, and r ∈ Z+, we are to

minimize c(x) subject to f(x) ≥ α, 0 ≤ x ≤ r1, (5.1)

where we say that c is subadditive if c(x + y) ≤ c(x) + c(y) for all x,y ∈ ZS+. We call
problem (5.1) the DR-submodular cover problem.

For the problem (5.1), we devise a bicriteria approximation algorithm based on the decreas-
ing threshold technique of [13]. More precisely, our algorithm takes the additional parameters
0 < ε, δ < 1. The output x ∈ ZS+ of our algorithm is guaranteed to satisfy that c(x) is at most
(1 + 3ε)ρ

(
1 + log d

β

)
times the optimum and f(x) ≥ (1− δ)α, where ρ is the curvature of c (see

Section 5.1 for the definition), d = maxs f(es) is the maximum value of f over all standard unit
vectors, and β is the minimum value of the positive increments of f in the feasible region.

Running Time (dependency on r): An important feature of our algorithm is that the
running time depends on the bit length of r only polynomially whereas the naive reduction
algorithms depend on it exponentially as mentioned above. More precisely, the running time
of our algorithm is O(nε log nrcmax

δcmin
log r), which is polynomial in the input size, whereas the

naive algorithm is only psuedo-polynomial time algorithm. In fact, our experiments using real
and synthetic datasets show that our algorithm is considerably faster than naive algorithms.
Furthermore, in terms of the objective value (that is, the cost of the output), our algorithm also
exhibits comparable performance.

Approximation Guarantee: Our approximation guarantee on the cost is almost tight. Note
that the DR submodular cover problem (5.1) includes the set cover problem, in which we
are given a collection of sets, and we want to find a minimum number of sets that covers
all the elements. In our context, S corresponds to the collection of sets, the cost c is the
number of chosen sets, and f is the number of covered elements. It is known that we cannot
obtain an o(logm)-approximation unless NP ⊆ DTIME(nO(log logn)), where m is the number of
elements [61]. However, since for the set cover problem we have ρ = 1, d = O(m), and β = 1,
our approximation guarantee is O(logm).
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Related Work Our result can be compared with several results in the literature for the sub-
modular cover problem for set functions. It is shown by Wolsey [173] that if c(X) = |X|, a
simple greedy algorithm yields (1 + log d

β )-approximation, which coincides with our approxima-
tion ratio except for the (1 + 3ε) factor. Note that ρ = 1 when c(X) = |X|, or more generally,
when c is modular. Recently, Wan et al. [167] discussed a slightly different setting, in which c is
also submodular and both f and c are integer valued. They proved that the greedy algorithm
achieves ρH(d)-approximation, where H(d) = 1 + 1/2 + · · ·+ 1/d is the dth harmonic number.
Again, their ratio asymptotically coincides with our approximation ratio (Note that β ≥ 1 when
f is integer valued).

We note that the submodular cover problem and the submodular maximization problem are
somewhat dual to each other. Indeed, Iyer and Bilmes [93] showed that a bicriteria algorithm
of one of these problems yields a bicriteria algorithm for the other. We note that our result is
not implied by the results of previous chapters via the duality of [93].

5.1 Algorithm for the DR-submodular Cover

Recall the DR-submodular cover problem (5.1). Let f : ZS+ → R+ be a monotone DR-
submodular function and let c : ZS+ → R+ be a subadditive cost function. The objective is
to minimize c(x) subject to f(x) ≥ α and 0 ≤ x ≤ r1, where α > 0 and r ∈ Z+ are the
given constants. Without loss of generality, we can assume that max{f(x) : 0 ≤ x ≤ r1} = α
(otherwise, we can consider f̂(x) := min{f(x), α} instead of f). Furthermore, we can assume
c(x) > 0 for any x ∈ ZS+.

A pseudocode description of our algorithm is presented in Algorithm 5.1. The algorithm
can be viewed as a modified version of the greedy algorithm and works as follows: We start
with the initial solution x = 0 and increase each coordinate of x gradually. To determine the
amount of increments, the algorithm maintains a threshold θ that is initialized to be sufficiently
large enough. For each s ∈ S, the algorithm finds the largest integer step size 0 < k ≤ r − x(s)
such that the marginal cost-gain ratio f(kes|x)

kc(es) is above the threshold θ. If such k exists, the
algorithm updates x to x + kes. After repeating this for each s ∈ S, the algorithm decreases
the threshold θ by a factor of (1− ε). If x becomes feasible, the algorithm returns the current
x. Even if x does not become feasible, the final x satisfies f(x) ≥ (1− δ)α if we iterate until θ
gets sufficiently small.

Algorithm 5.1 Decreasing Threshold for the DR-Submodular Cover Problem
Input: f : ZS+ → R+, c : ZS+ → R+, r ∈ N, α > 0, ε > 0, δ > 0.
Output: 0 ≤ x ≤ r1 such that f(x) ≥ α.

1: x← 0, d← max
s∈S

f(es), cmin ← min
s∈S

c(es), cmax ← max
s∈S

c(es)

2: for (θ = d
cmin

; θ ≥ δ
ncmaxr

d; θ ← θ(1− ε)) :
3: for all s ∈ S :
4: Find maximum integer 0 < k ≤ r − x(s) such that f(kes|x)

kc(es) ≥ θ with binary search.
5: if such k exists :
6: x← x + kes
7: if f(x) ≥ α :
8: Break the outer for loop.
9: return x

Before we claim the theorem, we need to define several parameters on f and c. Let β :=
min{f(es | x) : s ∈ S,x ∈ ZS+, f(es | x) > 0} and d := maxs f(es). Let cmax := maxs c(es) and
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cmin := mins c(es). Define the curvature of c to be

ρ := min
x∗:optimal solution

∑
s∈{x∗} c(es)
c(x∗) . (5.2)

Definition 5.1.1. For γ ≥ 1 and 0 < δ < 1, a vector x ∈ ZS+ is a (γ, δ)-bicriteria approximate
solution if c(x) ≤ γ · c(x∗), f(x) ≥ (1− δ)α, and 0 ≤ x ≤ r1.

Our main theorem is described below.

Theorem 5.1.2. Algorithm 5.1 outputs a
(
(1 + 3ε)ρ

(
1 + log d

β

)
, δ
)

-bicriteria approximate so-

lution in O
(
n
ε log nrcmax

δcmin
log r

)
time.

First, we introduce a notation. Let us assume that x is updated L times in the algorithm.
Let xi be the variable x after the ith update (i = 0, . . . , L). Note that x0 = 0 and xL is the
final output of the algorithm. Let si ∈ S and ki ∈ Z+ be the pair used in the ith update for
i = 1, . . . , L; that is, xi = xi−1 + kiesi for i = 1, . . . , L. Let µ0 := 0 and µi := kic(esi )

f(kiesi |xi−1) for
i = 1, . . . , L. Let µ̂0 := 0 and µ̂i := θ−1

i for i = 1, . . . , L, where θi is the threshold value on
the ith update. Note that µ̂i−1 ≤ µ̂i for i = 1, . . . , L. Let x∗ be an optimal solution such that
ρ · c(x∗) =

∑
s∈{x∗} c(es).

We regard that in the ith update, the elements of {x∗} are charged by the value of µi(f(es |
xi−1)− f(es | xi)). Then, the total charge on {x∗} is defined as

T (x, f) :=
∑

s∈{x∗}

L∑
i=1

µi(f(es | xi−1)− f(es | xi)).

Claim 5.1.3. Let us fix 1 ≤ i ≤ L arbitrary and let θ be the threshold value on the ith update.
Then, we have

f(kiesi | xi−1)
kic(esi)

≥ θ and f(es | xi−1)
c(es)

≤ θ

1− ε (s ∈ S).

Proof. The first inequality is immediate from the fact that (ki, si) is chosen by the algorithm.
For the second inequality, if θ = d/cmin then it is trivial. Thus, we can assume θ < d/cmin;
that is, there were at least one threshold update. Suppose to the contrary that f(es|xi−1)

c(es) > θ
1−ε

for some s ∈ S. Let k be the chosen step size for the previous update on the sth component
and let x′ be the variable x at that time. Then, f((k + 1)es | x′) ≥ f(kes | x′) + f(es | x) >
θ

1−εkc(es) + θ
1−εc(es) = θ

1−ε(k + 1)c(es), which contradicts the choice of k.

Eliminating θ from the inequalities in Claim 5.1.3, we obtain

kic(esi)
f(kiesi | xi−1) ≤

1
1− ε

c(es)
f(es | xi−1) (i = 1, . . . , L, s ∈ S) (5.3)

Furthermore, we have µi ≤ µ̂i ≤ 1
1−εµi for i = 1, . . . , L.

Claim 5.1.4. c(x) ≤ 1
1−εT (x, f).
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Proof.

c(x) ≤
L∑
i=1

kic(esi) (since c is subadditive)

=
L∑
i=1

µif(kiesi | xi−1) =
L∑
i=1

µi(f(xi)− f(xi−1))

≤
L∑
i=1

µ̂i(f(xi)− f(xi−1))

=
L∑
i=1

µ̂i(f(x∗)− f(xi−1))−
L∑
i=1

µ̂i(f(x∗)− f(xi))

=
L∑
i=1

µ̂i(f(x∗)− f(xi−1))−
L∑
i=1

µ̂i−1(f(x∗)− f(xi−1))

(since µ̂0 = 0 and f(x∗) = f(xL))

=
L∑
i=1

(µ̂i − µ̂i−1)(f(x∗)− f(xi−1)) ≤
L∑
i=1

(µ̂i − µ̂i−1)
∑

s∈{x∗}
f(es | xi−1)

=
L∑
i=1

(µ̂i − µ̂i−1)
∑

s∈{x∗}
f(es | xi−1) =

∑
s∈{x∗}

L∑
i=1

(µ̂i − µ̂i−1)f(es | xi−1)

=
∑

s∈{x∗}

( L∑
i=1

µ̂if(es | xi−1)−
L∑
i=1

µ̂i−1f(es | xi−1)
)

=
∑

s∈{x∗}

L∑
i=1

µ̂i
(
f(es | xi−1)− f(es | xi)

)
(since µ̂0 = 0 and f(x∗) = f(xL))

= (1− ε)−1T (x, f) (since µ̂i ≤ (1− ε)−1µi)

Claim 5.1.5. For each s ∈ {x∗}, the total charge on s is at most 1
1−ε(1 + log(d/β))c(es).

Proof. Let us fix s ∈ {x∗} and let l be the minimum i such that f(es | xi) = 0. By (5.3), we
have

µi = kic(esi)
f(kiesi | xi−1) ≤

1
1− ε ·

c(es)
f(es | xi−1) . (i = 1, . . . , l)

Then, we have

L∑
i=1

µi(f(es | xi−1)− f(es | xi)) =
l−1∑
i=1

µi(f(es | xi−1)− f(es | xi)) + µlf(es | xl−1)

≤ 1
1− εc(es)

(l−1∑
i=1

(f(es | xi−1)− f(es | xi))
f(es | xi−1) + f(es | xl−1)

f(es | xl−1)
)

≤ 1
1− εc(es)

(
1 +

l−1∑
i=1

(
1− f(es | xi)

f(es | xi−1)
))

≤ 1
1− εc(es)

(
1 +

l−1∑
i=1

log f(es | xi−1)
f(es | xi)

)
(since 1− 1/x ≤ log x for x ≥ 1)
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= 1
1− εc(es)

(
1 + log f(es | x0)

f(es | xl−1)
)
≤ 1

1− ε
(
1 + log d

β

)
c(es)

Proof of Theorem 5.1.2. Combining these claims, we have

c(x) ≤ 1
1− ε · T (x, f) ≤ 1

(1− ε)2 ·
(

1 + log d
β

)
·
∑

s∈{x∗}
c(es) ≤ (1 + 3ε) ·

(
1 + log d

β

)
· ρc(x∗).

Thus, x is an approximate solution with the desired ratio.
Let us see that x approximately satisfies the constraint; that is, f(x) ≥ (1 − δ)α. We

will now consider a slightly modified version of the algorithm; in the modified algorithm, the
threshold is updated until f(x) = α. Let x′ be the output of the modified algorithm. Then, we
have

f(x′)− f(x) ≤
∑

s∈{x′}
f(es | x) ≤

∑
s∈{x′}

δc(es)
cmaxnr

d ≤ δd ≤ δα

The second inequality holds since c(es) ≤ cmax and |{x′}| ≤ nr. Therefore, f(x) ≥ f(x′)−δα =
(1− δ)α.

5.2 Discussion

Integer-valued Case. Let us make a simple remark on the case that f is integer valued.
Without loss of generality, we can assume α ∈ Z+. Then, Algorithm 5.1 always returns a
feasible solution for any 0 < δ < 1/α. Therefore, our algorithm can be easily modified to an
approximation algorithm if f is integer valued.

Definition of Curvature. Several authors [93], [160] use a different notion of curvature called
the total curvature, whose natural extension for a function over the integer lattice is as follows:
The total curvature κ of c : ZS+ → R+ is defined as κ := 1−mins∈S c(es|r1−es)

c(es) . Note that κ = 0 if
c is modular, while ρ = 1 if c is modular. For example, Iyer and Bilmes [93] devised a bicriteria
approximation algorithm whose approximation guarantee is roughly O((1− κ)−1 log β

d ).
Let us investigate the relation between ρ and κ for DR-submodular functions. One can show

that 1 − κ ≤ ρ ≤ (1 − κ)−1, which means that our bound in terms of ρ is tighter than one in
terms of (1− κ)−1.

Lemma 5.2.1. Let c : Z+ → R+ be a DR-submodular function, and let ρ and κ be the curvature
and the total curvature of c, respectively. Then, we have 1− κ ≤ ρ ≤ (1− κ)−1.

Fact 5.2.2. For a1, b1, a2, b2, . . . , an, bn > 0, a1+a2+···+an
b1+b2+···+bn ≥ min

{
a1
b1
, a2
b2
, . . . , anbn

}
.

Proof. Let x∗ be the optimal solution of the submodular cover problem that attains the mini-
mum of (5.2)

ρ =
∑
s∈{x∗} c(es)
c(x∗)

≥
∑
s∈{x∗} c(es | r1− es)∑

s∈{x∗} c(es)
(since c(es) ≥ c(es | r1− es) and c(x∗) ≤

∑
s∈{x∗} c(es))

≥ min
s∈{x∗}

c(es | r1− es)
c(es)

(by Fact 5.2.2)

≥ min
s∈S

c(es | r1− es)
c(es)

= 1− κ.
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On the other hand, let x∗ = es1 + · · ·+ esk , where s1, . . . , sk are the elements of the support of
x∗, xi := es1 + · · ·+ esi (i = 1, . . . , k), and x0 := 0. Similar argument shows that

1
ρ

= c(x∗)∑
s∈{x∗} c(es)

=
∑k
i=1 c(esi | xi−1)∑
s∈{x∗} c(es)

≥
∑k
i=1 c(esi | r1− esi)∑

s∈{x∗} c(es)
(since xi−1 ≤ r1− esi)

=
∑
s∈{x∗} c(es | r1− es)∑

s∈{x∗} c(es)
≥ 1− κ.

Thus ρ−1 ≥ 1− κ, which is equivalent to ρ ≤ (1− κ)−1.

Lazy Evaluation. We finally note that we can combine the lazy evaluation technique [121],
which significantly reduces runtime in practice, with our algorithm. Specifically, we first push
all the elements in S to a max-based priority queue. Here, the key of an element s ∈ S is f(es)

c(es) .
Then the inner loop of Algorithm 5.1 is modified as follows: Instead of checking all the elements
in S, we pop elements whose keys are at least θ. For each popped element s ∈ S, we find k
such that 0 < k ≤ r − x(s) with f(kes|x)

kc(es) ≥ θ with binary search. If there is such k, we update
x with x + kes. Finally, we push s again with the key f(es|x)

c(es) if x(s) < r.
The correctness of this technique is obvious because of the DR-submodularity of f . In

particular, the key of each element s ∈ S in the queue is always at least f(es|x)
c(es) , where x is the

current vector. Hence, we never miss s ∈ S with f(kes|x)
kc(es) ≥ θ.

5.3 Experiments

In the rest of this chapter, we show several experimental results of our method.

5.3.1 Experimental Setting

We conducted experiments on a Linux server with an Intel Xeon E5-2690 (2.90 GHz) processor
and 256 GB of main memory. The experiments required, at most, 4 GB of memory. All the
algorithms were implemented in C++ and compiled with g++ 4.6.3.

In our experiments, the cost function c : ZS+ → R+ is always chosen as c(x) = ‖x‖1 :=∑
s∈S x(s). Let f : ZS+ → R+ be a submodular function and α be the worst quality guarantee.

We implemented the following four methods:

• Decreasing-threshold is our method with the lazy evaluation technique. We chose δ = 0.01
as stated otherwise.

• Greedy is a method in which, starting from x = 0, we iteratively increment x(s) for s ∈ S
that maximizes f(x + es) − f(x) until we get f(x) ≥ α. We also implemented the lazy
evaluation technique [108].

• Degree is a method in which we assign x(s) a value proportional to the marginal f(es)−
f(0), where ‖x‖1 is determined by binary search so that f(x) ≥ α. Precisely speaking,
x(s) is approximately proportional to the marginal since x(s) must be an integer.
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• Uniform is a method that returns k1 for minimum k ∈ Z+ such that f(k1) ≥ α.

We use the following real-world and synthetic datasets to confirm the accuracy and efficiency
of our method against other methods. We set r = 100, 000 for both problems.

Sensor placement. Our first experiment is the generalized sensor placement scenario de-
scribed in Example 3.1.5 and Section 3.4.2 with a real-world dataset. We used a dataset ac-
quired by running simulations on a 129-vertex sensor network used in Battle of the Water Sensor
Networks (BWSN) [134]. We used the “bwsn-utilities” [163] program to simulate 3000 random
injection events to this network for a duration of 96 hours. Let S and E be the set of the 129
sensors in the network and the set of the 3000 events, respectively. For each sensor s ∈ S and
event e ∈ E, a value z(s, e) is provided, which denotes the time, in minutes, the pollution has
reached s after the injection time.1

We define a function f : ZS+ → R+ as follows: Let x ∈ ZS+ be a vector, where we regard
x(s) as the energy level of the sensor s. Suppose that when the pollution reaches a sensor s,
the probability that we can detect it is 1 − (1− p)x(s), where p = 0.0001. In other words, by
spending unit energy, we obtain an extra chance of detecting the pollution with probability p.
For each event e ∈ E, let se be the first sensor where the pollution is detected in that injection
event. Note that se is a random variable. Let z∞ = max

e∈E,s∈S
z(s, e). Then, we define f as follows:

f(x) = Ee∈E Ese [z∞ − z(se, e)],

where z(se, e) is defined as z∞ when there is no sensor that managed to detect the pollution.
Intuitively speaking, Ese [z∞ − z(se, e)] expresses how much time we managed to save in the
event e on average. Then, we take the average over all the events. A similar function was also
used in [108] to measure the performance of a sensor allocation although they only considered
the case p = 1. This corresponds to the case that by spending unit energy at a sensor s, we
can always detect the pollution that has reached s. We note that f(x) is DR-submodular (see
Lemma 3.4.3 for the proof).

Budget allocation problem. In order to observe the behavior of our algorithm for large-
scale instances, we created a synthetic instance of the budget allocation problem (see Section
3.2) as follows: The instance can be represented as a bipartite graph (S, T ;E), where S is a set
of 5,000 vertices and T is a set of 50,000 vertices. We regard a vertex in S as an ad source, and a
vertex in T as a person. Then, we fix the degrees of vertices in S so that their distribution obeys
the power law of γ := 2.5; that is, the fraction of ad sources with out-degree d is proportional
to d−γ . For a vertex s ∈ S of the supposed degree d, we choose d vertices in T uniformly at
random and connect them to s with edges. We define a function f : ZS+ → R+ as

f(x) =
∑
t∈T

(
1−

∏
s∈Γ(t)

(1− p)x(s)
)
, (5.4)

where Γ(t) is the set of vertices connected to t and p = 0.0001. Here, we suppose that, by
investing a unit cost to an ad source s ∈ S, we have an extra chance of influencing a person
t ∈ T with s ∈ Γ(t) with probability p. Then, f(x) can be seen as the expected number of
people influenced by ad sources. By Lemma 3.3.4, f is a monotone DR-submodular function.

1Although three other values are provided, they showed similar empirical results and we omit them.
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Figure 5.2: Runtime

5.3.2 Experimental Results

Figure 5.1 illustrates the obtained objective value ‖x‖1 for various choices of the worst quality
guarantee α on each dataset. We chose ε = 0.01 in Decreasing threshold. We can observe
that Decreasing threshold attains almost the same objective value as Greedy, and it outperforms
Degree and Uniform.

Figure 5.2 illustrates the runtime for various choices of the worst quality guarantee α on
each dataset. We chose ε = 0.01 in Decreasing threshold. We can observe that the runtime
growth of Decreasing threshold is significantly slower than that of Greedy.

Figures 5.3a and 5.3b show the relative increase of the objective value and the runtime,
respectively, of our method against Greedy on the BWSN dataset. We can observe that the
relative increase of the objective value gets smaller as α increases. This phenomenon can be
well explained by considering the extreme case that α = max f(r1). In this case, we need
to choose x = r1 anyway in order to achieve the worst quality guarantee, and the order of
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increasing coordinates of x does not matter. Also, we can see that the empirical runtime grows
as a function of 1

ε , which matches our theoretical bound.
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Chapter 6

Introduction to Matrix Completion

This chapter provides a literature overview on matrices with indeterminates and matrix com-
pletion.

6.1 Matrices with Indeterminates and Matrix Subspace

Let F be a field and x1, . . . , xd be indeterminates. A matrix with indeterminates over F is a
matrix whose entry is a multilinear polynomial in x1, . . . , xd over F. A matrix is said to be
generic if the set of its nonzero entries are algebraically independent over F.

In the most of previous work on matrices with indeterminates and this dissertation, entries
of a matrix with indeterminates are linear polynomials, i.e., polynomials of degree at most
one. Such a matrix with indeterminates can be written as B0 + x1B1 + · · · + xdBd, where
B0, B1, . . . , Bd ∈ Fm×n are coefficient matrices. If B0 = O, it can be regarded as a matrix
subspace in Fm×n

M = span{B1, . . . , Bd} := {α1B1 + · · ·+ αdBd : α1, . . . , αd ∈ F}.

Example 6.1.1 (Edmonds Matrix [56]). Let G = (S, T ;E) be a bipartite graph. The Edmonds
matrix of G is an S × T matrix A with entries

Aij =
{
xij if ij ∈ E,
0 otherwise,

where xij (ij ∈ E) are independent indeterminates. Edmonds [56] proved that the rank of the
Edmonds matrix equal to the size of maximum matching in G.

Example 6.1.2 (Mixed Matrix [125]). The mixed matrix was introduced by Murota and
Iri [126], for system analysis of electric circuits. Formally, a mixed matrix over F is a ma-
trix A = Q + T , where Q is a constant matrix over F and T is a generic matrix. One can
easily see that an Edmonds matrix is a special case of a mixed matrix. Mixed matrices admit
elegant combinatorial structures in terms of matroids (for more details, see a monograph of
Murota [125]).

Example 6.1.3 (Tutte Matrix [165]). The Tutte matrix was introduced by Tutte [165] to study
the maximum matching problem. Let G = (V,E) be a simple graph, i.e., a graph without self-
loops and multiple edges. The Tutte matrix of G is a V × V skew-symmetric matrix T such
that

Tij =


xij if ij ∈ E and i > j,
−xij if ij ∈ E and j > i,
0 otherwise,

60



where xij (ij ∈ E, i > j) are independent indeterminates. Tutte [165] proved that the size of a
maximum matching in G equals to the half of the rank of the Tutte matrix T . Note that this
theorem of Tutte [165] was proved before Edmonds [56].

6.2 Max-Rank Matrix Completion

Let A be a matrix with indeterminates over F. The task of max-rank matrix completion is to
find a value assignment for the indeterminates that maximizes the rank of the resulting matrix.

6.2.1 Lovász’s Randomized Algorithm

Lovász [115] presented a randomized algorithm for max-rank matrix completion. Originally
his algorithm was described for the Tutte matrix but is applicable to arbitrary matrices with
indeterminates. The idea of Lovász’s algorithm is extremely simple; just pick random values
from F and substitute them to the indeterminates. He showed that this randomized algorithm
yields a solution with high probability if the size of F is sufficiently large. At the heart of his
analysis lies the following Schwartz-Zippel lemma.

Lemma 6.2.1 (The Schwartz-Zippel Lemma [147], [178]). Let p ∈ F[x1, . . . , xd] be a nonzero
polynomial of degree k and U ⊆ F be a finite set. If we choose α1, . . . , αd from U uniformly at
random, then we have

Pr(p(α1, . . . , αd) = 0) ≤ k

|U |
. (6.1)

Let A be a given matrix with indeterminates of size n × n. Applying the Schwartz-Zippel
lemma for the determinant of A, we can see that the success probability of Lovász’s randomized
algorithm is at least 1/2, if we take U ⊆ F with |U | ≥ 2 deg detA. Especially if we use Lovász’s
randomized algorithm to the Tutte matrix, we obtain a very simple randomized algorithm for
maximum matching in a general graph.

6.2.2 Deterministic Algorithms for Max-Rank Matrix Completion

The Lovász’s algorithm requires that the field is sufficiently large and the algorithm can access
to random bits. One can naturally ask if we relax this restriction. Indeed this is possible for
some classes of matrices; i.e., some classes of matrices admit a deterministic polynomial-time
algorithm for max-rank completion over an arbitrary field. We review these classes in detail
below.

Mixed Matrix The first deterministic max-rank completion algorithm for a mixed matrix1

was presented by Geelen [70]. His algorithm takes O(n9) time and works only over a field of
size at least n, where n is the maximum of row and column size of a given matrix. Later an
O(n2.77) time algorithm for an arbitrary field was devised by Harvey, Karger, and Murota [80].
The detail of their algorithm will be described in Chapter 7.

1In the context of matrix completion, we assume that a given mixed matrix is one in which each entry
depends on at most one indeterminates. This is a somewhat technical requirement but does not matter in many
applications.
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Matrix Completion by Rank-one Matrices In this problem, a given matrix is in the form
of B0 +x1B1 + · · ·+xdBd, where B1, . . . , Bd are rank-one matrices. If B0 = O, this is equivalent
to find a matrix of maximum rank from a matrix subspace span{B1, . . . , Bd}. The case of
B0 = 0 was considered by Lovász [117], he showed that this case reduces to linear matroid
intersection and therefore this case can be deterministically solved in polynomial time. For
the general case, Ivanyos, Karpinski, and Saxena [89] devised a first deterministic polynomial-
time algorithm with O(n4.38d) running time. Later Soma [152] improved the running time to
O((n+d)2.77) by showing that this case boils down to max-rank matrix completion for a mixed
matrix.

Mixed Skew-Symmetric Matrices In this problem, a given matrix is a mixed skew-symmetric
matrix [125], a matrix A = Q + T , where Q is a constant skew-symmetric matrix and T is a
skew-symmetric matrix such that the variables Tij (Tij 6= 0, i > j) are algebraically independent
over F. Soma [152] presented a deterministic polynomial-time algorithm with O(n4) running
time.

Skew-Symmetric Matrix Completion by Rank-Two Skew-Symmetric Matrices This
problem is a skew-symmetric version of matrix completion by rank-one matrices. A given matrix
is in the form of B0+x1B1+· · ·+xdBd, where B0 is skew-symmetric and B1, . . . , Bd are rank-two
skew-symmetric matrices. Soma [152] showed that this problem can be reduced to max-rank
matrix completion for a mixed skew-symmetric matrix, as in matrix completion by rank-one
matrices.

6.2.3 Simultaneous Max-Rank Matrix Completion

Harvey, Karger, and Murota [80] introduced more general setting on max-rank matrix comple-
tion, namely, simultaneous max-rank matrix completion. In this generalized problem, we are
given a collection A of matrices with indeterminates rather than a single matrix. Note that we
allow that indeterminates can be shared by multiple matrices. The objective is to find a value
assignment of the indeterminates that maximizes the rank of every resulting matrix obtained
by substitution. In other words, the value assignment must be a solution of max-rank matrix
completion for every matrix in the collection. Interestingly, for the classes of matrices described
above admitting a deterministic polynomial-time algorithm, one can also solve the simultaneous
version, if |F| > |A| [80], [152].

6.2.4 Hardness of Max-Rank Matrix Completion

The hardness result of max-rank matrix completion was established by Harvey, Karger, and
Yekhanin [81]. They showed that finding a max-rank completion over the binary field F2 is
NP-hard if we allow indeterminates in a given matrix appears twice.

6.3 Low-Rank Matrix Completion

In low-rank matrix completion, we want to find values for indeterminates to minimize the rank of
the resulting matrix. In what follows we assume that F = R and that a given matrix is a mixed
matrix, since most of the existing work deals with such a case. Without loss of generality, we can
assume that each entry of a given mixed matrix is either a numeric value or an indeterminate.
Let us denote by Ω the set indices of numeric entries in a given matrix A. Low-rank matrix
completion can be formulated as follows.
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minimize rankX
subject to Xij = Aij (ij ∈ Ω)

(6.2)

Example 6.3.1 (The Netflix Problem [3]). The Netflix problem is a problem for predicting
users’ preferences using only a few samples. In this problem, we are given a dataset containing
each user’s ratings on movies. Since the number of movies is huge, a user does not give rating
on all the movies. The task is to predict unknown ratings with information of known ratings.
Naturally we can construct a data matrix whose row and column indices are users and movies,
respectively. Known and unknown ratings are numerical entries and indeterminates in the data
matrix, respectively.

If users’ ratings are uncorrelated at all, this problem is ill-posed. A reasonable assumption is
that users’ preferences depend on only a few hidden factors, e.g., theme, music, actors, directors,
etc. Mathematically this observation can be modeled as the low-rank assumption; i.e., the true
matrix A ∈ Rm×n of users’ ratings can be factored as A = UV , where U ∈ Rm×r, V ∈ Rr×n,
and r � m,n is the number of the hidden factors. Then this problem can be formulated as
low-rank matrix completion.

6.3.1 Nuclear Norm Relaxation

Although the problem (6.2) is NP-hard in general, there are many algorithms for (approxi-
mately) solving it. The nuclear norm relaxation is the most popular approach, whose idea is
replacing the rank function by its convex envelope, the nuclear norm. The convex relaxation of
(6.2) is given by

minimize ‖X‖∗
subject to Xij = Aij (ij ∈ Ω)

(6.3)

The nuclear norm relaxation was inspired by `1 minimization in compressed sending; indeed
we can view the nuclear norm heuristic as a matrix version of `1 minimization (see Chapter 9).
The nuclear norm convex relaxation has demonstrated its theoretical and practical usefulness
in matrix completion and other low-rank optimization tasks, and is nowadays accompanied by
an endless array of optimization algorithms; see, e.g., [7], [30], [33], [38], [113], [114], [139],
and [140] for a general overview.

Here, we review one of the most efficient algorithm due to Candés and Recht [33]. Their
algorithm actually tries to solve the following modification of (6.3).

minimize τ‖X‖∗ + 1
2‖X‖

2
F

subject to Xij = Aij (ij ∈ Ω),
(6.4)

where τ > 0 is a parameter. Compared to (6.3), the objective function in (6.4) is strongly
convex and thus (6.4) has the unique optimum. The key ingredient of their algorithm is the
use of the soft thresholding operator (also known as the shrinkage operator) Sτ [30]. Let X =
UΣV > be a singular value decomposition of a matrix X with Σ = diag(σ1, . . . , σrank(X)) and
σ1 ≥ · · · ≥ σrank(X) > 0. The value of Sτ (X) is defined as

Sτ (X) = USτ (Σ)V >, Sτ (Σ) = diag(σ1 − τ, . . . , σrank(X) − τ)+, (6.5)

where x+ := max(x, 0) and τ > 0 is a thresholding parameter. Candés and Recht [33] proved
that the thresholding operator for X yields the unique optimum of the following convex program.
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minimize
Y

τ‖Y ‖2∗ + 1
2‖Y −X‖

2
F , (6.6)

The algorithm of [33] starts with an arbitrary matrix X. Then apply the soft thresholding
operator (with approximate choice of τ): X ← Sτ (X). Since the new X may not be feasible,
we modify Xij ← Aij for each ij ∈ Ω, and repeat this. In [33], they reported various examples
that their algorithm effectively finds optimal solutions.

6.3.2 Random Matrix and Observation Model

How good is the convex relaxation (6.3) of (6.2)? Surprisingly, if Ω is a random set of fairly
large size and a given matrix satisfies some technical condition, (6.2) and its convex relaxation
(6.3) are indeed equivalent [33]. More precisely, they assume that an underlying (constant)
matrix M ∈ Rm×n is generated as follows:

M =
r∑
i=1

σiuiv
>
i , (6.7)

where {ui}ri=1 and {vi}ri=1 are uniformly drawn from the family of r orthogonal vectors in Rm
and Rn, respectively. Note that σ1, . . . , σr are arbitrary constants. The observation set Ω is
simply a uniformly random set over [m]× [n]; i.e., some entries in M are independently replaced
with indeterminates with some probability. Then they proved that if

|Ω| ≥ Cn5/4r logn (6.8)

then (6.3) has the unique solution that is M with high probability, where C is a global constant.
Similar results for other generating models and algorithms were established in [38], [94].
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Chapter 7

Faster Algorithm for Multicasting in
Linear Deterministic Relay Network

In this chapter, we provide a deterministic polynomial time algorithm for multicasting in a lin-
ear deterministic relay network, a wireless communication framework proposed by Avestimehr,
Diggavi and Tse [11]. The running time of our algorithm is faster than existing ones and matches
the current best complexity of unicast computations for each sink. Our approach is based on the
polylinking flow model of Goemans, Iwata and Zenklusen [72], and the mixed matrix completion
technique of Harvey, Karger and Murota [80].

7.1 Introduction

Determining the capacity of a wireless information channel is a longstanding open problem.
The difficulty comes from the two essential features of a wireless information channel: broadcast
and superposition. In wireless communication, signals are sent to multiple users in the network,
and superposition makes it hard to recover original signals. By these obstacles, even a simple
wireless channel, such as network with a single source, a single relay, and a single sink, has
not been fully characterized. This is in contrast to classic wired information channels, whose
capacity can be characterized by the celebrated Ford-Fulkerson max-flow min-cut theorem.

A linear deterministic relay network (LDRN) was introduced by Avestimehr, Diggavi and
Tse [11], to study the capacity of a wireless information channel. It captures the two main
features of wireless communication, and they showed that a linear deterministic relay network
approximates a wireless information channel with an additive constant factor. Furthermore,
the capacity of a linear deterministic relay network can be characterized in terms of “source-
destination cuts,” which generalize the concept of cuts in a wired network. Although the original
proof in [11] employed the probabilistic method and therefore the algorithmic aspects were not
studied, deterministic algorithms to compute the capacity have been developed subsequently
[6], [72].

Multicast algorithms in a linear deterministic relay network also have been developed. In
the multicast problem, we are to find a linear coding scheme that transmits a message from a
single source to desired multiple sinks in a network. Kim and Médard [98] showed that random
linear coding (over a sufficiently large field) yields a multicast scheme with high probability.
Ebrahimi and Fragouli [54], [55] presented the first deterministic multicast algorithm working
on an arbitrary linear deterministic relay network. The fastest known deterministic algorithm
was proposed by Yazdi and Savari [175]. The running time1 is O(dq((nr)3 log(nr) + n2r4)),

1 Although the running time stated in [175] is O(dq((nr)3 log(nr)+n2r3 +nr4)), the complexity analysis there
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where d is the number of sinks, q is the number of layers in the network, n is the maximum
number of nodes in each layer, and r is the capacity of a node. Their method uses an efficient
algorithm of Goemans, Iwata and Zenklusen [72] to compute a unicast flow for each sink, and
then determines a linear coding scheme with the unicast flow information. All of these multicast
algorithms assume that the field size is larger than the number of sinks.

7.1.1 Our Contribution

In this chapter, we develop a faster deterministic algorithm for constructing a multicast scheme
in a linear deterministic relay network. Using the unicast algorithm of Goemans, Iwata and
Zenklusen [72], our algorithm runs in O(dq(nr)3 log(nr)) time, while the running time of Yazdi
and Savari [175] is O(dq((nr)3 log(nr) + n2r4)). Our algorithm is optimal in the sense that the
simpler problem of unicast computations for d sinks already take O(dq(nr)3 log(nr)) time, as
long as we use the unicast algorithm of Goemans, Iwata and Zenklusen [72]. Note that by the
multicast theorem shown by Avestimehr, Diggavi and Tse [11], the unicast capacity for each
sink can be obtained immediately once we solve the multicast problem. Also, it is another
long-standing open problem to find a deterministic algorithm for computing multicast capacity
without finding individual unicast capacity, even for a wired directed network.

We also compare the running time excluding the complexity of unicast flow computations.
Our algorithm requires O(dqn3r3) time, while the algorithm of [175] requires O(dqn2r4) time.
In this comparison, our algorithm is faster than that of Yazdi and Savari when n = o(r).
Typically in practice, r is the number of bits exchanged between two nodes and therefore it can
be considerably greater than n, the maximum number of nodes in each layer.

While both Yazdi and Savari’s algorithm and ours use the same unicast algorithm of Goe-
mans, Iwata and Zenklusen [72], we achieve several technical improvements. The main differ-
ences of the present work are as follows:

• After finding a unicast flow for each sink, Yazdi and Savari’s algorithm determines a linear
coding scheme in a node-by-node manner, which increases the number of matrix operations
that have to be carried out. To reduce this complexity, we introduce a matrix completion
technique which enables us to determine a linear coding scheme of a layer at once.

• The method of Ebrahimi and Fragouli [54], [55] reduces multicasting in a linear deter-
ministic relay network to a modified network coding problem and then applies the matrix
completion technique to the modified problem. However, their approach does not consider
the layered structure of linear deterministic relay networks, and therefore needs to handle
a relatively large matrix. By exploiting the layered nature, we design an algorithm that
only needs to handle smaller matrices.

A wireless network is not necessarily layered in general. Avestimehr, Diggavi, and Tse [11]
showed that a general wireless network can be reduced to a layered network by considering the
time-expanded network. Our method can take the advantage of the structure of their reduction.
For example, the maximum number of nodes in each layer in the time-expanded network is
equal to the number of nodes in the original wireless network. Since the time complexity of
our algorithm depends on the maximum number of nodes in each layer, the increase of the
time complexity is quite moderate. Note that the total number of nodes in the time-expanded
network can be greatly increased through the reduction, and therefore the method of [54], [55]
can be inefficient. Furthermore, even applied for the time-expanded network, our method is

counts a matrix multiplication of an r × n matrix and an n × r matrix by O(nr), which is not generically true;
We adopt the standard O(nr2) complexity.
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still faster than Yazdi and Savari’s method if the node capacity is larger than the number of
nodes in the original wireless network.

7.1.2 Related Work

Combinatorial properties of linear deterministic relay networks have been studied in the litera-
ture. Goemans, Iwata and Zenklusen [72] studied more general flow model called a polylinking
network, and showed that a unicast flow in a polylinking network can be found by solving the
submodular flow problem [58]. Subsequently, Fujishige [67] slightly extended the polylinking
network model and showed that the extended flow model is equivalent to the neoflow prob-
lems [66], which include the submodular flow problem and other variants. Note that similar
results were obtained independently by Yazdi and Savari [174].

Connections between linear deterministic relay networks and network coding [4] were pointed
out by several authors. In the original paper of Avestimehr, Diggavi and Tse [11], it is shown
that the multicast capacity of a linear deterministic relay network equals the minimum unicast
capacity for each sink. This result can be compared to the famous result for the multicast
capacity achievable with network coding [4]. Ebrahimi and Fragouli [55] devised a multicast
algorithm for a linear deterministic relay network based on reduction to the modified network
coding problem, in which a network has nodes performing predetermined linear operation. Such
extended network coding problems were studied by Király and Kovács [99].

7.2 Preliminaries

This section provides a brief summary in mixed matrix theory and mixed matrix completion.
For further details of the mixed matrix theory, the reader is referred to the monograph of
Murota [125]. For the sake of simplicity, we introduce some notation. For a matrix A, we
denote by Row(A) the set of row indices of A. Similarly, we define Col(A) as the set of column
indices of A.

7.2.1 Mixed Matrix

Let F be a field. A matrix A is a mixed matrix if A = Q + T , where Q is a constant matrix
over F and T is a generic matrix (see Example 6.1.2). A mixed matrix A = Q + T is called a
layered mixed matrix, or, an LM-matrix for short, if the set of nonzero rows in Q and that in
T are disjoint. In other words, an LM-matrix is a mixed matrix in the form of A =

[
Q
T

]
. The

following is basic in the mixed matrix theory.

Lemma 7.2.1 (Murota [125]). For a square LM-matrix A =
[
Q
T

]
, let C := Col(A), RQ :=

Row(Q) and RT := Row(T ). Then A is nonsingular if and only if there exists a column subset
J ⊆ C such that both Q[RQ, C \ J ] and T [RT , J ] are nonsingular.

In fact, the set J described in the lemma can be found by solving the independent matching
problem [171], a generalization of bipartite matching. Formally, the independent matching
problem is defined as follows. Let G = (V +, V −;E) be a bipartite graph with vertex set V +∪̇V −
and edge set E. Let M+ and M− be matroids on V + and V −, respectively. A matching M in
G is said to be independent if the sets of vertices in V + and V − incident to M are independent
in M+ and in M−, respectively. The independent matching problem is to find an independent
matching of maximum size.

In the mixed matrix theory, the independent matching problem is often used in the following
form. Define a bipartite graph G = (V +, V −;E) with V + := CQ ∪̇RT and V − := C, where
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CQ is a copy of C = Col(A). Let E be the set {ij : i ∈ RT , j ∈ C and Tij 6= 0} ∪ {jQj :
jQ is the copy of j}. Define M+ to be the direct sum of the vector matroid of Q and the free
matroid on RT (see Example 2.2.1). Let M− be the free matroid on V −. Then, a matching
M is independent if and only if ∂+M ∩ CQ is an independent set in the vector matroid of Q,
where ∂+M is the set of vertices in V + incident to M . Then the set J described in Lemma
7.2.1 coincides with the set of vertices matched to RT by a maximum independent matching.

Conversely, if we have a column subset J ⊆ C such that both Q[RQ, C \J ] and T [RT , J ] are
nonsingular, the corresponding independent matching can be found as follows. Since T [RT , J ]
is nonsingular, G[RT ∪̇ J ] has a bipartite matching N such that J ⊆ ∂N , where G[RT ∪̇ J ] is the
subgraph of G induced by RT ∪̇ J . Then M := N ∪̇{jQj : j ∈ C \ J} is a maximum matching
in G and the set of vertices matched to RT by M coincides with J .

Example 7.2.2. The bipartite graph G corresponding to the LM-matrix

A =


1 0 1 0
0 1 −1 0
x y z 0
w 0 0 t

 (7.1)

is shown in Figure 7.1. An independent matching is shown in thick edges, and the corresponding
subset J ⊆ C is shown in a shaded box.

Figure 7.1: The corresponding bipartite graph of the LM-matrix A in Example 7.2.2.

7.2.2 Mixed Matrix Completion

Let us make a brief overview on simltaneous mixed matrix completion by Harvey, Karger,
and Murota [80]. In simultaneous mixed matrix completion, we are given a collection of mixed
matrices and some indeterminates may appear in more than one of these matrices. The objective
is to find a value assignment of the indeterminates that maximizes the rank of every resulting
matrix obtained by substitution.

For each mixed matrix A = Q + T in a collection, where we assume that A is an n × n
matrix for simplicity, we define the corresponding LM-matrix Ã by

Ã =
[
I Q
Z ZT

]
, (7.2)

where Z is a nonsingular diagonal matrix whose nonzero entries are independent indeterminates.
Note that rank Ã = n + rankA. Let M be a maximum independent matching in the bipartite
graph G corresponding to the LM-matrix Ã. Roughly speaking, the independent matching
M captures a combinatorial structure of the LM-matrix Ã. Harvey, Karger and Murota [80]
showed that we can determine a value of each indeterminate with clever use of the combinatorial
structure. The complexity of their algorithm is O(|A| · (IM(n) + kn2)) time, where IM(n) is the
complexity of solving the independent matching problem for a single mixed matrix and k is the
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number of indeterminates in A. For example, in a standard augmenting path algorithm for the
independent matching problem, we have IM(n) = O(n3 logn) [51].

Furthermore, this running time can be improved if the collection admits a certain structure.
A collection of mixed matrices is said to be column-compatible if the following condition holds:
for arbitrary two indeterminates, if some matrix contains them in the same column, then no
matrix in the collection contains them in distinct columns.

Theorem 7.2.3 (Harvey, Karger and Murota [80]). Let F be a field and let A be a column-
compatible collection of n × n mixed matrices. If |F| > |A|, then there exists a solution of
the simultaneous matrix completion for A and it can be found in O(|A| · (IM(n) + kn + n3))
time, where k is the number of indeterminates in A. Using a standard independent matching
algorithm, the algorithm can be implemented to run in O(|A| · n3 logn) time.

7.2.3 Cauchy-Binet Formula

The Cauchy-Binet formula describes the terms in the determinant of the product of two rect-
angular matrices.

Lemma 7.2.4 (Cauchy-Binet Formula). For an n × r matrix A and an r × n matrix B with
n ≤ r, we have

detAB =
∑

J :|J |=n
detA[R, J ] · detB[J,C], (7.3)

where R := Row(A), C := Col(B) and the sum is taken over all the subsets J of size n in
Col(A) = Row(B).

7.3 Flow Model

This section provides the flow model for multicast in a linear deterministic relay network. The
model is based on the linking network model of Goemans, Iwata and Zenklusen [72].

Figure 7.2: An example of a linear deterministic relay network

A linear deterministic relay network is a layered network with node set V = V1 ∪̇ . . . ∪̇Vq,
where Vi is the set of nodes in the ith layer for i = 1, . . . , q. Each node consists of r input
vertices and r output vertices, for some global constant r ∈ Z+. For each i, let Ii and Oi be the
set of all the inputs and the set of all the outputs in the layer Vi, respectively. We may assume
that the first layer V1 consists of a single node s called the source node.
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Signals are modeled as elements of a finite field F and are sent as follows. For each i, let
zi denote the vector consisting of signals at the inputs in the layer Vi and let yi+1 denote the
vector of signals received in the outputs of the next layer Vi+1. Then yi+1 is equal to Mizi,
where Mi is a given Oi+1 × Ii matrix over F representing a “connection” between Vi and Vi+1.
In the original paper [11] of a linear deterministic relay network, Mi is represented as a block
diagonal matrix of shift matrices. That is, for u ∈ Vi and v ∈ Vi+1, Mi[u, v] = Sr−nuv for some
integer nuv, where S is the following r × r matrix:

S =


0
1 0

1 0
. . . . . .

1 0

 . (7.4)

However, we consider more general settings in this chapter; i.e., we assume that Mi can be an
arbitrary matrix.

Let t be a node in the layer Vk. An s-t flow F in the linear deterministic network is a subset
of ∪qi=1(Oi ∪ Ii) such that:

1. For each node, the number of outputs contained in F is equal to the number of inputs
contained in F .

2. For each i = 1, . . . , k − 1, Mi[F ∩Oi+1, F ∩ Ii] is nonsingular.

3. The outputs of the sink t contains F ∩Ok.

The rate of an s-t flow F is the value |F ∩O1|.
The unicast problem in a linear deterministic relay network is a problem to find an s-t flow

for a single s-t pair. Goemans, Iwata and Zenklusen [72] showed that the unicast problem can
be solved with matroid partition.

Theorem 7.3.1 (Goemans, Iwata and Zenklusen [72]). An s-t flow in a linear deterministic
relay network can be found in O(q(nr)3 log(nr)) time, where q is the number of layers, n is the
maximum number of nodes in each layer, and r is the capacity of nodes.

In the paper of Goemans, Iwata and Zenklusen [72], a node can only send its receiving
signals. We cannot improve throughput by introducing linear coding operation in nodes in the
unicast problem. However, in the multicast problem, linear coding in node improves throughput,
in fact, we can achieve the maximum multicast throughput [11]. Thus it is natural to assume
that a node can send a linear combination of its receiving signals. Formally, for each i, the
input vector zi ∈ FIi is determined as zi = Xiyi, where yi is the output vector of layer Vi and
Xi is a block diagonal matrix each of whose block size is r. We can easily see that the output
vector yi+1 of the next layer Vi+1 is determined by yi+1 = MiXiyi.

The multicast problem in a linear deterministic relay network is defined as follows. Givens
are a linear deterministic relay network N and a set T of sink nodes in N . We consider the
source node s as an information source generating a message w ∈ Fr. The objective is to design
coding matrices X1, . . . , Xq−1 so that each sink t in T can decode w from its receiving signals
for an arbitrary w.

7.4 Algorithm

In this section, we describe a new algorithm for finding a multicast scheme in a linear determin-
istic relay network. For simplicity of description, we assume that there exists an s-t flow with
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rate r for each sink t. Let w ∈ Fr denote the message vector, T denote the set of sinks and let
d denote the number of sinks.

Our algorithm splits into two parts. In the first part, we compute an s-t flow Ft in the
linear deterministic relay network for each sink t in T . This part can be done efficiently using
the unicast algorithm of Goemans, Iwata and Zenklusen [72]. In the second part, we determine
linear coding coefficients from the first layer to the last layer. More precisely, we determine the
entries of the linear coding coefficients matrix Xi so that the following condition is satisfied: the
original message vector w can be recovered from subvector yi+1[Ft∩Oi+1] for each sink t. If we
can find X1, . . . , Xq−1 satisfying the condition, then they form a multicast coding scheme. To
see this, suppose that a sink t is in the kth layer Vk for some k. Then t can recover the original
message w because the set of output vertices of s contains Ft ∩Ok, if the condition holds. The
following lemma summarizes the above arguments.

Lemma 7.4.1. If |F| > d, there exist constant matrices X1, . . . , Xq−1 such that w can be
recovered from yi[Ft ∩Oi] for i = 1, . . . , q and for each t ∈ T .

We will prove the lemma by induction on i. For i = 1, w can be trivially recovered from
y1[Ft ∩ O1] = y1 because we have y1 = w and Ft ∩ O1 = O1. Suppose that i > 1; i.e.,
X1, . . . , Xi−1 are fixed. We will find a constant matrix Xi such that w can be recovered from
yi[Ft∩Oi]. At the moment, we do not know Xi, so we regard all the potentially nonzero entries
of Xi as independent indeterminates. To distinguish the constant coding matrix Xi, we denote
by Xi the matrix obtained by regarding all the potentially nonzero entries as independent
indeterminates. Equivalently, Xi is the generic block diagonal matrix such that each block
corresponds to a node in the ith layer and has no nonzero entry. In what follows, we will
find a suitable value assignment for the indeterminates in Xi. Let Pi be the matrix satisfying
that yi = Piw. By the induction hypothesis, Pi[Ft ∩ Oi, O1] is nonsingular. Since yi+1 =
MiXiyi = MiXiPiw, we can see that the original message w can be recovered from subvector
yi+1[Ft ∩Oi+1] if and only if Mi[Ft ∩Oi+1, Ii]XiPi is nonsingular.

Let At be the mixed matrix defined as follows:

At :=

 I O Pi
Xi I O
O Mi[Ft ∩Oi+1, Ii] O

 . (7.5)

The matrix At is nonsingular if and only if Mi[Ft∩Oi+1, Ii]XiPi is nonsingular, which can be
verified, for example, by the Gaussian elimination. Therefore, if there exists a value assignment
to the indeterminates of Xi such that At is nonsingular (after substitution) for each sink t,
then the lemma is proved. Finding such values for the indeterminates in Xi boils down to
simultaneous mixed matrix completion. In order to prove that there exists a solution for the
simultaneous matrix completion, we have to check that At is a nonsingular mixed matrix. From
the above observation, it suffices to show that Mi[Ft ∩Oi+1, Ii]XiPi is nonsingular.

Lemma 7.4.2. The matrix Mi[Ft∩Oi+1, Ii]XiPi is nonsingular; i.e., detMi[Ft∩Oi+1, Ii]XiPi
is a nonzero polynomial.

Proof. By the Cauchy-Binet formula (Lemma 7.2.4), we have

detMi[Ft ∩Oi+1, Ii]XiPi

=
∑

detMi[Ft ∩Oi+1, I] det Xi[I, J ] detPi[J,O1], (7.6)

where the sum is taken over all the subsets I ⊆ Ii and J ⊆ Oi with |I| = |J | = r. No
cancellation occurs among nonzero terms in the right-hand side because nonzero entries of Xi
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Algorithm 7.1 An algorithm for multicasting in a linear deterministic relay network
1: Compute an s-t flow Ft for each sink t ∈ T .
2: Set U := T and P1 := I.
3: for i = 1 to q :
4: Let Ai := {At : t ∈ U}.
5: Compute a solution of simultaneous mixed matrix completion for Ai.
6: Let Pi+1 := MiXiPi, where Xi is the substituted matrix according to the solution of

simultaneous matrix completion.
7: Remove each sink t from U if t is in the ith layer.

are independent indeterminates and distinct nonzero terms contain at least one distinct nonzero
entry from Xi. On the other hand, Mi[Ft∩Oi+1, Ft∩Ii] and Xi[Ft∩Ii, Ft∩Oi] are nonsingular
because Ft is a flow. Furthermore, Pi[Ft ∩ Oi, O1] is nonsingular by the inductive hypothesis.
Thus if we take I = Ft∩ Ii and J = Ft∩Oi, the corresponding term is nonzero, and this implies
that detMi[Ft ∩Oi+1, Ii]XiPi is a nonzero polynomial.

We are now ready to prove Lemma 7.4.1. Let Ai be the collection of mixed matrix At for
each sink t such that t is in Vj with j > i. Since |F| > d and each mixed matrix At is nonsingular,
there exists a value assignment for Xi such that every resulting matrix is nonsingular. Therefore,
w can be recovered from yi+1[Ft ∩Oi+1] for each t, which proves the lemma.

The above arguments provide an algorithm for finding a multicast encoding scheme, whose
pseudocode description is presented in Algorithm 7.1. Let us analyze the running time of the
algorithm. A unicast flow can be found in O(q(nr)3 log(nr)) time for each sink, by the algorithm
of Theorem 7.3.1. Using the simultaneous mixed matrix completion algorithm of Theorem 7.2.3,
linear encoding matrix Xi can be found in O(d(nr)3 log(nr)) time, for each layer i. Note that
the collection of At’s is column compatible since each indeterminate appears in exactly the same
column among At’s.

Theorem 7.4.3. If |F| > d, a multicast linear encoding scheme over F for a linear deterministic
relay network can be found in O(dq(nr)3 log(nr)) time, where d is the number of sinks, q is the
number of layers, n is the maximum number of nodes in each layer, and r is the capacity of a
node.

7.5 Complexity Excluding Unicast Computation

In this section, we estimate the complexity of our multicast algorithm excluding the complexity
of unicast computations. Of course, as we have argued in the previous section, we can find a
multicast encoding scheme by solving the simultaneous matrix completion repeatedly. However,
this straightforward algorithm requires O(dq(nr)3 log(nr)) time. In fact, using the unicast flow
information, we do not need to solve the independent matching problems in the simultaneous
matrix completion. More precisely, an independent matching associated with the matrix At
can be found in O(1) time. Therefore, if we know a unicast flow for each sink, we can skip the
computation of independent matching in the simultaneous matrix completion algorithm.

Let us transform the mixed matrix At into the following LM-matrix:

Ãt :=

 I O Pi
O Mi[Ft ∩Oi+1, Ii] O
ZXi Z O

 , (7.7)
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where Z is a nonsingular diagonal matrix whose nonzero entries are independent indeterminates.
Then At is nonsingular if and only if Ãt is nonsingular. We denote Ãt =

[
Q
S

]
as usual. Let us

denote RQ := Row(Q), RS := Row(S), and C := Col(Ãt). The proof of the following lemma is
almost same as that of Lemma 7.4.2.

Lemma 7.5.1. For an s-t flow Ft, put J := (Ft∩Oi)∪̇(Ii\Ft). Then Q[RQ, C \J ] and S[RS , J ]
are both nonsingular.

Let G be the bipartite graph G = (V +, V −;E) corresponding to the LM-matrix Ãt as defined
in Section 7.2.1. The subset J described in Lemma 7.2.1 corresponds to the set of vertices in
V + incident to some maximum independent matching, say M . Furthermore, we can find the
maximum independent matching M as follows. Observe that it is sufficient to find a maximum
matching in G[RS ∪̇ J ], where G[RS ∪̇ J ] is the subgraph of G induced by RS ∪̇ J . Since ZXi

is block diagonal and each block has no zero entries, G[RS ∪̇ J ] is the direct sum of complete
bipartite graphs. Thus we can find a maximum matching in G[RS ∪̇ J ] immediately.

Let us analyze the running time of our algorithm. For each i, the simultaneous matrix com-
pletion can be done in O(dn3r3) time by the algorithm of Theorem 7.2.3 because the collection
of At’s is column-compatible and we can consider that IM(n) = O(1). Computing Pi+1 can be
done in O(n2r3) time. In total, a linear coding scheme in the ith layer can be found in O(dn3r3)
time. Summing up i = 1 to q−1, we can find an entire linear coding scheme in O(qdn3r3) time.
Summarizing the above arguments, we have the following refinement of Theorem 7.4.3.

Theorem 7.5.2. If |F| > d, a multicast encoding scheme in a linear deterministic relay network
can be found in O(d ·UF(n, q, r)+qdn3r3) time if, where UF(n, q, r) is the complexity of unicast
computation for a single sink, d is the number of sinks, q is the number of layers, n is the
maximum number of nodes in each layer, and r is the capacity of nodes.

7.6 Concluding Remarks

We studied multicasting in a linear deterministic relay network. Using the simultaneous matrix
completion, we devised a new algorithm whose complexity matches to that of unicast com-
putations for each sinks. We also estimated the complexity of our algorithm excluding the
complexity of unicast computations.

The mixed matrix At used in our algorithm has certain structures; in particular, At is a
sparse matrix. In fact, the number of nonzero entries of At is O(nr2), while At has O(n2r2)
entries in total. However, our algorithm does not use the sparsity because Harvey, Karger
and Murota’s simultaneous mixed matrix completion algorithm is incompatible with sparsity.
A possible direction for future studies is to design an algorithm compatible with the sparsity
of the mixed matrix At. For example, can one design a faster algorithm which runs in O(d ·
UF(n, q, r) + qdn2r3) time?
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Chapter 8

The Low-Rank Basis Problem for a
Matrix Subspace

In this chapter, we consider the following problem, which we call the low-rank basis problem.
Let M be a matrix subspace in Rm×n of dimension d. The goal is to

minimize rank(X1) + · · ·+ rank(Xd)
subject to span{X1, . . . , Xd} =M.

(8.1)

As we will see below, this problem turns out to have various applications in machine learning,
signal processing, and matrix completion. We devise a practical heuristic algorithm for this
problem and verify its effectiveness with numerical experiments on synthetic and real data.

8.1 Introduction

Finding a succinct representation of a given object has been one of the central tasks in the
computer and data sciences. For vectors, sparsity (i.e., `0-norm) is a common measure of suc-
cinctness. For example, exploiting prior knowledge on sparsity of a model is now considered
crucial in machine learning and statistics [29]. Although the naive penalization of the `0-norm
easily makes the problem intractable, it turns out that exploiting the `1-norm as a regularizer
yields a tractable convex problem and performs very well in many settings [32], [37]. This phe-
nomenon is strongly related to compressed sensing, which shows under reasonable assumptions
that the `1-recovery almost always recovers a sparse solution for an undetermined linear system.
Since matrices are more complex objects, one may consider different criteria on succinctness
for matrices, namely the rank. Interestingly, a variety of concepts from sparse vector recovery
carry over to low-rank matrix recovery, for which the nuclear norm plays a role analogous to
the `1-norm for sparse vectors [59], [60].

Recently, the sparse vector problem has been studied by several authors [18], [79], [138],
[155]. In the sparse vector problem, we are given a linear subspace S in Rn, and the task
is to find the sparsest nonzero vector in S. The celebrated results for `1-regularization are
not directly applicable, and the sparse vector problem is less understood. The difficulty arises
from the nonzero constraints; a natural `1-relaxation only yields the trivial zero vector. Thus
the sparse vector problem is nonconvex in its own nature. A common approach is based on
the hypercontractivity, that is, optimizing the ratio of two different norms. An algorithm that
optimizes the `1/`∞-ratio is studied in [79], [155]. Optimization of the `4/`2-ratio was recently
considered by Barak, Kelner, and Steurer [18]. A closely related problem is the sparse basis
problem, in which we want to find a basis of S that minimizes the sum of the `0-norms. In
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addition to imposing the sparsity of vectors as in the sparse vector problem, a new difficulty
arises of controlling the linear independence of basis vectors in the sparse basis problem.

The low-rank basis problem (8.1) generalizes the sparse basis problem. To see this, it suffices
to identify Rn with the subspace of diagonal matrices in Rn×n. As a consequence, any result
on the low-rank basis problem (8.1) (including relaxations and algorithms) will apply to the
sparse basis problem with appropriate changes in notation (matrix nuclear norm for diagonal
matrices becomes `1-norm etc.). Conversely, some known results on the sparse basis problem
may generalize to the low-rank basis problem (8.1). An obvious but important example of this
logic concerns the complexity of the problem: It has been shown in Coleman and Pothen [49]
that even if one is given the minimum possible value for ‖x1‖0 + · · ·+ ‖xd‖0 in the sparse basis
problem, it is NP-hard to find a sparse basis. Thus the low-rank basis problem (8.1) is also
NP-hard in general.

A closely related (somewhat simpler) problem is the following low-rank matrix problem:

minimize rank(X)
subject to X ∈M, X 6= O.

(8.2)

This problem is a matrix counterpart of the sparse vector problem. Again, (8.2) is NP-hard [49],
even if M is spanned by diagonal matrices. Note that our problem (8.2) does not fall into the
framework of Cai, Candés, and Shen [30], in which algorithms have been developed for finding a
low-rank matrix X in an affine linear space described as A(X) = b (matrix completion problems
are of that type). In our case we have b = 0, but we are of course not looking for the zero
matrix, which is a trivial solution for (8.2). This requires an additional norm constraint, and
modifications to the algorithms in [30].

8.1.1 Our Contribution

We propose an alternating direction algorithm for the low-rank basis problem that does (i)
rank estimation, and (ii) obtains a low-rank basis. We also provide convergence analysis for
our algorithm. Our algorithm is based on a greedy process, whose use we fully justify. In each
greedy step we solve the low-rank matrix problem (8.2) in a certain subspace, and hence our
algorithm can also solve the low-rank matrix problem.

Our methods are iterative, and switch between the search of a good low-rank matrix and
the projection on the admissible set. The second step typically increases the rank again. The
solution would be a fixed point of such a procedure. We use two phases with different strategies
for the first step, i.e., finding a low-rank matrix.

In the first phase we find new low-rank guesses by applying the singular value shrinkage
operator (called soft thresholding) considered in Cai, Candés, and Shen [30]. In combination with
the subspace projection, this results in the matrix analog of the alternating direction algorithm
proposed very recently by Qu, Sun, and Wright [138] for finding sparse vectors in a subspace.
An additional difficulty, however, arises from the fact that we are required to find more than one
linearly independent low-rank matrix in the subspace. Also note that our algorithm adaptively
changes the thresholding parameter during its execution, which seems necessary for our matrix
problem, although [138] fixes the thresholding parameter before starting their algorithm. In our
experiments it turns out that the use of the shrinkage operator clearly outperforms alternative
operations, e.g., truncating singular values below some threshold, in that it finds matrices with
correct rank quite often, but that the distance to the subspaceM is too large. This is reasonable
as the only fixed points of soft thresholding operator are either zero, or, when combined with
normalization, matrices with identical nonzero singular values, e.g., rank-one matrices.

As we will treat the subspace constraint as non-negotiable, we will need further improvement.
We replace the shrinkage operator in the second phase by best approximation of the estimated
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rank (which we call hard thresholding). Combined with the projection onto the admissible set
M, this then delivers low-rank matrices in the subspace M astonishingly reliably (as we shall
see, this second phase is typically not needed when a rank-one basis exists).

Our convergence analysis in Section 8.4 provides further insights into the behavior of the
process, in particular the second phase.

8.1.2 Applications

We were originally motivated to consider the low-rank basis problem by applications in discrete
mathematics [78], [88], [117].

The Rank-One Basis Problem

An interesting and important subcase of the low-rank basis problem is the rank-one basis prob-
lem; in this problem, we are further promised that a given subspaceM is spanned by rank-one
matrices. The rank-one basis problem has been studied by several authors [78], [88] in the area
of theoretical computer science and discrete mathematics.

Their motivation comes from the following problem, which they call the Edmonds’ problem;
given a linear subspace M of m × n matrices, determine whether A contains a nonsingular
matrix. This problem is a decision problem version of max-rank matrix completion for matrices
without constant parts. A slightly generalized problem is to find an element of maximum
rank in M. As we have seen in Chapter 6, if the underlying field is sufficiently large, then
Lovász’s randomized algorithm solves the Edmonds’ problem. Also, deterministic algorithms
are known for special classes of matrix spaces, for example, matrix spaces spanned by rank-one
matrices [117] or rank-two skew-symmetric matrices [152]. In what follows, we call a basis of
M consisting of rank-one matrices a rank-one basis.

Gurvits [78] considered a more general setting, in which we know in advance that M has a
rank-one basis, but are not given the basis elements explicitly. Instead, we are given matrices
M1, . . . ,Md as a basis of M such that each Mk can be represented as a linear combination
of unknown rank-one matrices X` = a`b>` for ` = 1, . . . , d. If we can solve the rank-one
basis problem, then this settings can be reduced into the setting of [117]. However, Gurvits [78]
conjectured that rank-one basis problem is NP-hard in general, and he presented a deterministic
algorithm for such matrix spaces over R without such reduction. His algorithm was extended
for any finite field F with |F| > n in the very recent paper of Ivanyos et al [88].

Nevertheless, the task might be practically feasible within some numerical tolerance via
nonlinear optimization. For example, the rank-one basis problem has an interesting connection
to tensor decomposition: finding a rank-one basis for a d-dimensional matrix subspace amounts
to finding a CP decomposition (e.g., [101, Sec. 3]) of representation rank d for the third-order
tensor with slices Mk. For the latter task very efficient nonconvex optimization algorithm
like alternating least squares exist, which, however, typically come without any convergence
certificates. An alternative, less cheap, but exact method uses simultaneous diagonalization,
which are applicable when d ≤ min(m,n). Applying these methods will often be successful
when a rank-one basis exists, but fails if not. This tensor approach seems to have been overseen
in the discrete optimization community so far, and we explain it in Section 8.6.

Compression of SVD matrices

Low-rank matrices arise frequently in applications and a low-rank (approximate) decomposition
such as the SVD is often used to reduce the storage to represent the matrix A ∈ Rm×n: A ≈
UΣV >. Here Σ ∈ Rr×r where r is the rank. The memory requirement for storing the whole
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A is clearly mn, whereas U,Σ, V altogether require (m + n)r memory (we can dismiss Σ by
merging it into V ). Hence, the storage reduction factor is

(m+ n)r
mn

, (8.3)

so if the rank r is much smaller than min(m,n) then we achieve significant memory savings.
This is all well known, but here we go one step further and try to reduce the memory cost

for representing the matrices U, V . Note that the same idea of using a low-rank representation
is useless here, as these matrices have orthonormal columns and hence the singular values are
all ones.

The idea is the following: if we matricize the columns of U (or V ), those matrices might
have a low-rank structure. More commonly, there might exist a nonsingular matrix W ∈ Rr×r
such that the columns of UW have low-rank structure when matricized. We shall see that many
orthogonal matrices that arise in practice have this property. The question is, then, how do we
find such W and the resulting compressed representation of U? This problem boils down to the
low-rank basis problem, in which M is the linear subspace spanned by the matricized columns
of U .

To simplify the discussion here we assume m = s2 for an integer s (otherwise, e.g. when m is
prime, a remedy is to pad zeros to the bottom). Once we find an appropriate W for U ∈ Rs2×r,
we represent the matricization of each column as a low-rank (rank r̂) matrix Ur̂Σ̂Vr̂, which is
represented using 2sr̂ memory, totalling to 2srr̂ + r2 where r2 is for W . Since the original U
requires s2r memory with r � s2, this can significantly reduce the storage if r̂ � r.

When this is employed for both U and V the overall storage reduction for representing A
becomes

4srr̂ + r2

mn
. (8.4)

For example, when m = n, r = δm and r̂ = δ̂s for δ, δ � 1 this factor is

4δδ̂ + δ2, (8.5)

achieving a “squared” reduction factor compared with (8.3), which is about 2δ.
Of course, we can further reduce the memory by recursively matricizing the columns of Ur̂,

as long as it results in data compression.

Computing and Compressing an Exact Eigenvector of a Multiple Eigenvalue

Eigenvectors of a multiple eigenvalue are not unique, and those corresponding to near-multiple
eigenvalues generally cannot be computed to high accuracy. We shall show that it is nonetheless
sometimes possible to compute exact eigenvectors of near-multiple eigenvalues, if additional
property is present that the eigenvectors are low-rank when matricized. This comes with the
additional benefit of storage reduction, as discussed above. We describe more details and
experiments in Section 8.5.4.

8.2 The Abstract Greedy Algorithm for the Low-Rank Basis
Problem

As already mentioned, the low-rank basis problem (8.1) for a matrix subspace M is a general-
ization of the sparse basis problem for subspaces of Rn. In [49] it was shown that a solution to
the sparse basis problem can be in principle found using a greedy strategy. The same is true
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Algorithm 8.1 Greedy meta-algorithm for computing a low-rank basis
Input: Subspace M⊆ Rm×n of dimension d.
Output: Basis B = {X∗1 , . . . , X∗d} of M.

1: Initialize B = ∅.
2: for ` = 1, . . . , d :
3: Find X∗` ∈M of lowest possible rank such that B ∪ {X∗` } is linearly independent.
4: B ← B ∪ {X∗` }

for (8.1), as we will show next. The corresponding greedy algorithm is given as Algorithm 8.1.
Indeed, this algorithm can be understood as a greedy algorithm for an infinite matroid [135] of
finite rank. We can prove that Algorithm 8.1 finds a minimizer of (8.1), by adapting a standard
proof for greedy algorithms on finite matroids. Note that this fact does not imply that (8.1) is
tractable, since finding X∗` in the algorithm is a nontrivial task.

Lemma 8.2.1. Let X∗1 , . . . , X∗d denote matrices constructed by the greedy Algorithm 8.1. Then
for any 1 ≤ ` ≤ d and linearly independent set {X1, . . . , X`} ⊆ M with rank(X1) ≤ · · · ≤
rank(X`), it holds

rank(X∗i ) ≤ rank(Xi) for i = 1, . . . , `.

Proof. The proof is by induction. By the greedy property, X∗1 is a (nonzero) matrix of minimal
possible rank in M, i.e., rank(X∗1 ) ≤ rank(X1). For ` > 1, if rank(X`) < rank(X∗` ), then
rank(Xi) < rank(X∗` ) for all i = 1, . . . , `. But since one Xi must be linearly independent from
X∗1 , . . . , X

∗
`−1, this would contradict the choice of X∗` in the greedy algorithm.

We say a linearly independent set B` = {X̂1, . . . , X̂`} ⊆ M is of minimal rank, if

∑̀
i=1

rank(X̂i) = min
{∑̀
i=1

rank(Xi) : {X1, . . . , X`} ⊆ M is linearly independent
}
.

The following theorem is immediate from the previous lemma.

Theorem 8.2.2. Let X∗1 , . . . , X∗d denote matrices constructed by the greedy Algorithm 8.1, and
let B` = {X1, . . . , X`} ⊆ M be a linearly independent set with rank(X1) ≤ · · · ≤ rank(X`).
Then B` is of minimal rank if (and hence only if)

rank(Xi) = rank(X∗i ) for i = 1, . . . , `.

In particular, {X∗1 , . . . , X∗` } is of minimal rank.

A remarkable corollary is that the ranks of the elements in a basis of lowest rank are
essentially unique.

Corollary 8.2.3. The output B = {X∗1 , . . . , X∗d} of Algorithm 8.1 solves the low-rank basis
problem (8.1), that is, provides a basis for M of lowest possible rank. Any other basis of lowest
rank takes the same ranks rank(X∗` ) up to permutation.

8.3 Finding Low-Rank Bases via Thresholding and Projection

In this main section of this article, we propose an algorithm that tries to execute the abstract
greedy Algorithm 8.1 using iterative methods on relaxed formulations.
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The greedy algorithm suggests finding the matrices X1, . . . , Xd one after another, during
which we monitor the linear dependence when computing X` with respect to the previously
computed X1, . . . , X`−1, and apply some restart procedure when necessary. Alternatively, one
can try to find low-rank matrices X1, . . . , Xd ∈M in parallel, monitor their linear independence,
and reinitialize the ones with largest current ranks in case the basis becomes close to linearly
dependent. In both cases, the linear independence constraint, which substantially increases the
hardness of the problem, is in principle ignored as long as possible, and shifted into a restart
procedure. Therefore, we mainly focus on iterative methods to solve the problem (8.2) of finding
a single low-rank matrix X in M. The complete procedure for the low-rank basis problem will
be given afterwards in Section 8.3.3.

The first algorithm we consider for solving the low-rank basis problem (8.2) alternates be-
tween soft singular value thresholding (shrinkage) and projection onto the subspaceM, and will
be presented in the next subsection. We note that an analogous method for the corresponding
sparse vector problem of minimizing ‖x‖0 over x ∈ S, ‖x‖2 = 1 has been independently de-
rived in the very recent publication [138]. While our method shares some basic ideas with their
method, but we will introduce several new ideas such as rank estimation and hard thresholding
to deal with matrices rather than vectors.

8.3.1 Phase I: Estimating a Single Low-Rank Matrix via Soft Thresholding

The starting point is a further relaxation of (8.2): the rank function, that is, the number of
nonzero singular values, is replaced by the matrix nuclear norm ‖X‖∗, which equals the sum of
singular values. This leads to the problem

minimize ‖X‖∗
subject to X ∈M, and ‖X‖F = 1.

(8.6)

The relaxation from rank to nuclear norm can be motivated by the fact that in case a rank-
one solution exists, it will certainly be recovered by solving (8.6). For higher ranks, it is
less clear under which circumstances the nuclear norm provides an exact surrogate for the
rank function under the given spherical constraint. For an example of a space M spanned by
matrices of rank at most r for which the minimum in (8.6) is attained at a matrix of rank
larger than r, consider M1 = diag(1,−

√
ε,−
√
ε, 0, 0, 0, 0), M2 = diag(0, 1, 0,

√
ε,
√
ε, 0, 0), and

M3 = diag(0, 0, 1, 0, 0,
√
ε,
√
ε). Every linear combination involving at least two matrices has

at least rank four. So the Mi are the only matrices in their span of rank at most three.
After normalization w.r.t. the Frobenius norm, their nuclear norm equals ‖Mi‖∗/‖Mi‖F =
(1 + 2

√
ε)/
√

1 + 2ε = 1 + 2
√
ε+O(ε). But for ε small enough, the rank five matrix X = M1 −√

εM2−
√
εM3 = (1, 0, 0, ε, ε, ε, ε) has a smaller nuclear norm ‖X‖∗/‖X‖F = (1+4ε)/

√
1 + 4ε2 =

1 + 4ε+O(ε2) after normalization.

Soft Thresholding and Block Coordinate Descent

Nevertheless, such counterexamples are rather contrived, and we consider (8.6) a good surrogate
for (8.2) in the generic case. The problem is still very challenging due to the non-convex
constraint. In [138] a block coordinate descent (BCD) method has been proposed to minimize
the `1-norm of a vector on an Euclidean sphere in a subspace of Rn. As we explained above,
this problem is a special case of (8.6), and the algorithm can be generalized as follows.

Given a current guess X ∈M we are looking for a matrix Y of lower-rank in a neighborhood
if possible. For this task, we use the singular value shrinkage operator Sτ (see Chapter 6,
Sec 6.3). The rank of Y = Sτ (X) now equals the number of singular values σi larger than
τ . Note that even if the rank is not reduced the ratios of the singular values increase, since
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(σi − τ)/(σj − τ) > σi/σj for all (i, j) such that τ < σj < σi. Hence a successive application
of the shift operator will eventually remove all but the dominant singular value(s), even if the
iterates are normalized in between (without in-between normalization it of course removes all
singular values). This effect is not guaranteed when simply deleting singular values below the
threshold τ without shifting the others, as it would preserve the ratios of the remaining singular
values, and might result in no change at all if τ is too small. But even if this hard threshold was
chosen such that at least one singular value is always removed, we found through experiments
that this does not work as well in combination with projections onto a subspace M as the soft
thresholding.

The new matrix Y = Sτ (X) will typically not lie in M, nor will it be normalized w.r.t.
the Frobenius norm. Thus, introducing the orthogonal projector (w.r.t. the Frobenius inner
product) PM from Rm×n onto M, which is available given some basis M1, . . . ,Md of M, we
consider the fixed point iteration:

Y = Sτ (X), X = PM(Y )
‖PM(Y )‖F

. (8.7)

The projection PM is precomputed at the beginning and defined as MM> (only M is
stored), where M is the orthogonal factor of the thin QR decomposition [73, Sec. 5] of the
matrix [vec(M1), . . . , vec(Md)] ∈ Rmn×d, where the (not necessarily low-rank) matrices Mi span
M. It is used in the following way:

PM(Y ) = mat(MM> vec(Y )), (8.8)

To obtain the interpretation as BCD, we recall the fact that the shrinkage operation provides
the unique solution to the strictly convex problem

minimize
Y

τ‖Y ‖2∗ + 1
2‖Y −X‖

2
F , (8.9)

see [30]. Intuitively, (8.9) attempts to solve (8.6) in a neighborhood of the current guess X,
while ignoring the constraints. The parameter τ controls the balance between small nuclear
norm and locality: the larger it is the lower rank(Y ) becomes, but Y will be farther from X.
Taking τ small has the opposite effect. Indeed, the distance between X and Y is equal to

‖X − Y ‖2F =
∑
σi>τ

τ2 +
∑
σi≤τ

σ2
i .

As a result, we see that the formulas (8.7) represent the update rules when applying BCD
to the problem

minimize
X,Y

τ‖Y ‖∗ + 1
2‖Y −X‖

2
F

subject to X ∈M, and ‖X‖F = 1,

which can be seen as a penalty approach to approximately solving (8.6).

Algorithm with Adaptive Shift τ

The considerations are summarized in the following Algorithm 8.2. We repeat that it is more
or less analogous to the algorithm in [138]. However, a new feature is that the parameter τ is
chosen adaptively in every iteration.

The choice of the singular value shift τ in line 3 is made to achieve faster progress, and
motivated by the fact that a matrix X of Frobenius norm 1 has at least one singular value
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Algorithm 8.2 Phase I – Rank estimation
Input: Orthogonal projection PM on M; scalars δ,maxit, changeit > 0; initial guess X ∈M,

initialize r = n.
Output: X, Y , and r, where X = PM(Y ) ∈M, and Y is a matrix of low rank r which is close

to or in M.
1: for it = 1, . . . ,maxit :
2: X = UΣV > # singular value decomposition
3: τ = δ/

√
rank(X) # set singular value shift

4: Y ← Sτ (X) # shrinkage
5: r ← min(r, rank(Y )) # new rank estimate
6: X ← PM(Y ) # projection onto subspace
7: X ← X/‖X‖F # normalization
8: Terminate if r has not changed for changeit iterations.

below and one above 1/
√

rank(X), unless all singular values are the same. Therefore, the choice
of τ = 1/

√
rank(X) would always remove at least one singular value, but can also remove all

but the largest singular value in case the latter is very dominant. However, since the sought
low-rank matrix may happen to have almost identical singular values, it is important to choose
a less aggressive shift by multiplying with 0 < δ < 1. The value δ = 0.1 worked well in our
experiments. We should note that the value rank(X) is available at this point in the algorithm
since an SVD of X has been computed in the previous step anyway. In fact, in practice we used
the following slightly modified shift strategy: one first removes all singular values of X below
some threshold regarded as noise to obtain X̃ of rank s, and then chooses τ = δ‖X̃‖F /

√
s, to

achieve faster progress.
Of course, one can think of similar adaptive strategies such as τ ∼ ‖X‖∗/ rank(X) or

τ ∼ σrank(X). The choice τ = σ2 is equivalent to best rank-one approximation.

Choice of the initial guess Let us remark on the choice of the initial guess. As we shall see
later and can be easily guessed, with randomly generated initial X ∈ M, the output r is not
always the rank of the lowest-rank matrix inM. A simple way to improve the rank estimate is
to repeat Phase I with several initial matrices, and adopt the one that results in the smallest
rank. Another “good” initial guess seems to be the analogue of that suggested in [138], which
in our context is to take v> to be a row vector of a matrix of the current subspace and take
the initial guess to be X = PMv. A natural strategy is to take v> to be several rows with the
largest norms. This worked fine but not evidently better than random initial guesses, and we
therefore leave the issue of a good initial guess an open problem.

The Use as a Rank Estimator

In our experiments we observed that Algorithm 8.2 alone is often not capable of finding a low-
rank matrix in the subspace. Typically the two subsequences for Y and X in (8.7) produce two
different numerical limits: Y tends to a low-rank matrix which is close to, but not in the subspace
M; by contrast, the X are always in the subspace, but are typically not observed to converge to
a low-rank matrix. In fact, we can only have X = Y in (8.7) for rank-one matrices. Therefore,
in the general case, further improvement will be necessary (phase II below). However, as it
turns out, the rank found by the sequence of Y provides a surprisingly good estimate also for
the sought minimal rank in the subspace. Moreover, the obtained X also provides the starting
guess X = PM for further improvement in the second phase, described next. An analogous
statement was proven in [138] for the sparse vector problem (which can be regarded as a special
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case of ours), but the analysis there assumes the existence of a sparse vector in a subspace of
otherwise random vectors; here we do not have such (or related) assumptions. In Section 8.4.1
we give some qualitative explanation for why we expect this process to obtain the correct rank,
but we leave a detailed and rigorous analysis of Algorithm 8.2 an open problem and call this
preliminary procedure “Rank estimation”.

8.3.2 Phase II: Extracting Matrix of Estimated Rank via Alternating Pro-
jections and Hard Thresholding

We now turn to the second phase, in which we find the matrix X ∈M such that rank(X) = r,
the output rank of Phase I.

Alternating Projections

In Phase II of our algorithm we assume that we know a rank r such that M contains a matrix
of rank at most r. To find that matrix, we use the method of alternating projection between
the Euclidean (Frobenius) unit sphere in the subspace M and the closed cone of matrices of
rank at most r. The metric projection (in Frobenius norm) on this cone is given by the singular
value truncation operator Tr defined as

Tr(X) = UTr(Σ)V >, Tr(Σ) = diag(σ1, . . . , σr, 0, . . . , 0),

where X = UΣV > is an SVD of X with Σ = diag(σ1, . . . , σmin(m,n)). The method of alternating
projections hence reads

Y = Tr(X), X = PM(Y )
‖PM(Y )‖F

. (8.10)

Conceptually, this iteration is the same as (8.7) with the soft thresholding operator Sτ replaced
by the hard thresholding operator Tr. Alternatively, (8.10) can be interpreted as employing
BCD for the problem

minimize
X,Y

‖Y −X‖F

subject to X ∈M, ‖X‖F = 1, and rank(Y ) ≤ r.

As a result, we obtain Algorithm 8.3.

Algorithm 8.3 Phase II – Alternating projections
Output: Orthogonal projection PM on M; rank r ≥ 1; scalars maxit, tol > 0; initial guess

X ∈M.
Input: X, Y , where X = PM(Y ) ∈M, and Y is a matrix of rank r, and hopefully ‖X−Y ‖F ≤

tol.
1: while ‖X − Y ‖F > tol and it ≤ maxit :
2: X = UΣV > # singular value decomposition
3: Y ← Tr(X) # best rank-r approximation
4: X ← PM(Y ) # projection onto subspace
5: X ← X/‖X‖F # normalization

The authors of the aforementioned reference [138], who proposed Algorithm 8.2 for the
sparse vector problem, also suggest a second phase (called “rounding”), which is, however,
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vastly different from our Algorithm 8.3. It is based on linear programming and its natural
matrix analogue would be to solve

minimize ‖X‖∗
subject to X ∈M, and tr(X̃>X) = 1.

(8.11)

Here X̃ is the final matrix X from Algorithm 8.2. In [138] it is shown for the vector case
that if X̃ is sufficiently close to a global solution of (8.6) then we can recover it exactly by
solving (8.11).

Comparison with a Convex Optimization Solver

Note that unlike our original problem (8.1) or its nuclear norm relaxation (8.6), (8.11) is a
convex optimization problem, since the constraints are now the linear constraint tr(X̃>X) = 1
along with the restriction in the subspace X ∈ M. Nuclear norm minimization under linear
constraints has been intensively considered in the literature, see [30], [140] and references therein
for seminal work. A natural approach is to attempt to solve (8.11) by some convex optimization
solver.

In view of this, we conduct experiments to compare our algorithm with one where Phase
II is replaced by the cvx optimization code [75]. For the test we used the default tolerance
parameters in cvx. We vary n while taking m = n and generated the matrix subspace M so
that the exact ranks are all equal to five. Here and throughout, the numerical experiments were
carried out in MATLAB version R2014a on a desktop machine with an Intel Core i7 processor
and 16GB RAM.

The runtime and accuracy are shown in Table 8.1. Here the accuracy is measured as follows:
letting X̂i for i = 1, . . . , d be the computed rank-1 matrices, we form the mn × d matrix
X̂ = [vec(X̂1), . . . , vec(X̂d)], and compute the error as the subspace angle [73, Sec. 6.4.3] between
X̂ and the exact subspace [vec(M1), . . . , vec(Md)]. Observe that while both algorithms provide
(approximate) desired solutions, Algorithm 8.5 is more accurate, and much faster with the
difference in speed increasing rapidly with the matrix size.

Table 8.1: Comparison between Alg. 8.5 and Phase II replaced with cvx.

(a) Runtime(s)

n 20 30 40 50
Alg. 8.5 1.4 2.21 3.38 4.97

cvx 28.2 186 866 2960

(b) Error

n 20 30 40 50
Alg. 8.5 2.9e-15 8.0e-15 9.5e-15 2.1e-14

cvx 6.4e-09 5.2e-10 5.7e-10 2.8e-10

Another approach to solving (8.11) is Uzawa’s algorithm as described in [30]. However, our
experiments suggest that Uzawa’s algorithm gives poor accuracy (in the order of magnitude
10−4), especially when the rank is not one.

In view of these observations, in what follows we do not consider a general-purpose solver
for convex optimization and focus on using Algorithm 8.3 for Phase II.
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8.3.3 A Greedy Algorithm for the Low-Rank Basis Problem

Restart for Linear Independence

Algorithms 8.2 and 8.3 combined often finds a low-rank matrix in M. To mimic the abstract
greedy Algorithm 8.1, this can now be done consecutively for ` = 1, . . . , d. However, to ensure
linear independence among the computed matrices Xi, a restart procedure may be necessary.
After having calculated X1, . . . , X`−1 and ensured that they are linearly independent, the or-
thogonal projector P`−1 onto span{X1, . . . , X`−1} is calculated. While searching for X` the norm
of X` − P`−1(X`) is monitored. If it becomes too small, it indicates (since X` is normalized)
that X` is close to linearly dependent on the previously calculated matrices X1, . . . , X`−1. The
process for X` is then randomly restarted in the orthogonal complement of span{X1, . . . , X`−1}
within M, which is the range of Q`−1 = PM − P`−1.

Algorithm 8.4 Restart for linear independence
Input: Orthogonal projection Q`−1, matrix X` and tolerance restarttol > 0.
Output: Eventually replaced X`.

1: if ‖Q`−1(X`)‖F < restarttol :
2: Replace X` by a random element in the range of Q`−1.
3: X` ← X`/‖X`‖F

In our implementation, we do not apply a random matrix to Q`−1 to obtain a random
element in the range. Instead Q`−1 is stored in form of an orthonormal basis for which random
coefficients are computed.

Final Algorithm and Discussion

The algorithm we propose for the low-rank basis problem is outlined as Algorithm 8.5. Some
remarks are in order.

Algorithm 8.5 Greedy algorithm for computing a low-rank basis
Input: Basis M1, . . .Md ∈ Rm×n for M, and integer restartit > 0.
Output: Low-rank basis X1, . . . , Xd of M.

1: Assemble the projection PM.
2: Set Q0 = PM.
3: for ` = 1, . . . , d :
4: Initialize normalized X` randomly in the range of Q`−1.
5: Run Algorithm 8.2 (Phase I) on X`, but every restartit iterations run Algorithm 8.4.
6: Run Algorithm 8.3 (Phase II) on X`, but every restartit iterations run Algorithm 8.4.
7: Assemble the projection P` on span{X1, . . . , X`} (ensure linear independence),
8: Set Q` = PM − P`.

1. The algorithm is not stated very precisely as the choice of many input parameters are not
specified. We will specify at the beginning of Section 8.5 the values we used for numerical
experiments.

2. Analogously to (8.8), the projections P` are in practice obtained from a QR decomposition
of [vec(X1), . . . , vec(X`)].

3. Of course, after Algorithm 8.2 one can or should check whether it is necessary to run
Algorithm 8.3 at all. Recall that Algorithm 8.2 provides a rank-estimate r and a new
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matrix X` ∈ M. There is no need to run Algorithm 8.3 in case rank(X`) = r at that
point. However, we observed that this seems to happen only when r = 1 (see next
subsection and Section 8.5.1), so in practice it is enough to check whether r = 1.

4. There is a principal difference between the greedy Algorithm 8.5, and the theoretical
Algorithm 8.1 regarding the monotonicity of the found ranks. For instance, there is no
guarantee that the first matrix X1 found by Algorithm 8.5 will be of lowest possible rank
in M, and it will often not happen. It seems to depend on the starting value (recall
the discussion on the initial guess in Section 8.3.1), and an explanation may be that the
soft thresholding procedure gets attracted by “some nearest” low-rank matrix, although a
rigorous argument remains an open problem. In any case, finding a matrix of lowest rank
is NP-hard as we have already explained in the introduction. In conclusion, one should
hence not be surprised if the algorithm produces linearly independent matrices X1, . . . , Xd

for which the sequence rank(X`) is not monotonically increasing. Nevertheless, at least
in synthetic test, where the exact lowest-rank basis is exactly known and not too badly
conditioned, the correct ranks are often recovered, albeit in a wrong order; see Figures 8.1,
8.3 and Section 8.5.1.

5. It is interesting to note that in case the restart procedure is not activated in any of the
loops (that is, the if-clause in Algorithm 8.4 always fails), one would have been able to
find the matrices X1, . . . , Xd independently of each other, e.g., with a random orthogonal
basis as a starting guess. In practice, we rarely observed that restart can be omitted,
although it might still be a valuable idea to run the processes independently of each other,
and monitor the linear independence of X1, . . . , Xd as a whole. If some of the X` start
converging towards the same matrix, or become close to linearly dependent, a modified
restart procedure will be required. A practical way for such a simultaneous restart is to
use a QR decomposition with pivoting. It will provide a triangular matrix with decreasing
diagonal entries, with too small entries indicating basis elements that should be restarted.
Elements corresponding to sufficiently large diagonal elements in the QR decomposition
can be kept. We initially tried this kind of method, an advantage being that the overall
cost for restarts is typically lower. We found that it typically works well when all basis
elements have the same rank. However, the method performed very poorly in situations
where the ranks of the low-rank basis significantly differ from each other. Nonetheless,
this “parallel” strategy might be worth a second look in future work.

8.3.4 Complexity and Typical Convergence Plot

The main step in both Algorithms 8.2 and 8.3 is the computation of an SVD of an m × n
matrix, which costs about 14mn2 + 8n3 flops [73, Sec. 8.6]. This is done at most 2maxit times
(assuming the same in both algorithms) for d matrices. Since we check the need for restarting
only infrequently, the cost there is marginal. The overall worst-case complexity of our greedy
Algorithm 8.5 hence depends on the choice of maxit. In most of our experiments, the inner
loops in Algorithms 8.2 and 8.3 terminated according to the stopping criteria, long before maxit
iterations was reached.

Figure 8.1 illustrates the typical convergence behavior of Algorithm 8.5 for a problem with
m = 20, n = 10, and d = 5, and the exact ranks for a basis are (1, 2, 3, 4, 5). The colors
correspond to ` = 1, . . . , 5. For each color, the evolution of the n = 10 singular values of X`

are plotted during the iteration (always after projection on M). The shaded areas show Phase
I, the unshaded areas Phase II. In both phases we used maxit = 1000 and restartit = 50,
moreover, Phase I was terminated when the rank did not change for changeit = 50 iterations
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Figure 8.1: Typical convergence of Algorithm 8.5 for a randomly generated problem with m =
20, n = 10, d = 5. Each color represents one outmost loop ` = 1, . . . , 5. The shaded regions
indicate Phase I, and the rest is Phase II. The exact ranks are (1, 2, 3, 4, 5), but recovered in
the order (1, 5, 3, 2, 4).

(which appears to be still conservative), while Phase II was terminated when X` remained
unchanged up to a tolerance of 10−14 in Frobenius norm. The number of SVDs is in principle
equal to the number of single iterations, and governs the complexity, so it was used for the
x-axis. Illustrating the fourth remark above, the ranks are not recovered in increasing order,
but in the order (1, 5, 3, 2, 4) (corresponding to the number of curves per color not converging
to zero). Repeated experiments suggest that all orderings of rank recovery is possible.

Regarding the convergence of a single matrix, we make two observations in Figure 8.1. First,
one can nicely see that in Phase I the singular values beyond σr` usually decrease until they
stagnate at a certain plateau. The length of this plateau corresponds to the 50 iterations we
have waited until accepting an unchanged rank (before projection) as a correct guess. Except
for the first (red) curve, which shows convergence towards a rank-one basis element, the error
level of this plateau is too high to count as a low-rank matrix. Put differently, the (normalized)
low-rank matrix Y` found by the shrinkage, on which the rank guess is based, is unacceptably
far away from the subspace, illustrating the need for Phase II. Phase II seems unnecessary only
when a rank-one matrix is targeted.

Second, the convergence of σr+1, . . . , σn towards zero in the second phase is typically linear,
and tends to be faster if the limit is lower in rank. We give an explanation for this observation
in Section 8.4.

The fact that the matrices are obtained in somewhat random order can be problematic
in some cases, such as the low-rank matrix problem where only one matrix of lowest rank is
sought. One remedy is to try multiple initial guesses for Phase I, and adopt the one that results
in the lowest rank estimate r. Figure 8.2 is a typical illustration when three initial guesses are
attempted. The shaded regions represent Phase I repeated three times for each greedy step,
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Figure 8.2: Same settings as Figure 8.1, but with three random initial guesses. Darkly shaded
region represent the initial guess that was adopted. For instance, for the first matrix (red
curve) the rank was estimated to be four in the first run of Phase I, and one in the second and
third. The second was adopted, Phase II was not necessary. The final rank order is the correct
(1, 2, 3, 4, 5).

and the ones that were adopted are shaded darkly. Observe that now the matrices are obtained
in the correct rank order (1, 2, 3, 4, 5).

Finally, Figure 8.3 contains an outcome of the initial experiment (without multiple initial
guesses) with square matrices of size m = n = 20. The ranks are recovered in another ordering,
namely (5, 1, 2, 3, 4). One can see that the ratio of the number of iterations in Phases I and II is
quite different, and the overall number of required SVDs is smaller. The convergence analysis
in Section 8.4, which suggests a typical convergence factor

√
r
n , gives a partial explanation.

The main reason we give this third plot is the following interesting fact: the maximum rank
a matrix in the generated subspace can have is 1 + 2 + 3 + 4 + 5 = 15. Consequently, there
seems to be a principal difference here from the previous example in that the subspace does not
contain a full-rank matrix. This is perhaps part of why this problem seems somewhat easier in
terms of the total number of iterations. Indeed, a close inspection of Figure 8.3 reveals that for
every color we have five singular values below machine precision (recall that the plot shows the
singular values after projection on the subspace).

8.4 Convergence Analysis

Given the hardness of the low-rank basis problem, the formulation of conditions for success or
failure of Algorithm 8.5 must be a challenging task. Not to mention the discontinuous nature of
the restart procedure, a satisfying rigorous and global convergence result remains a potentially
interesting problem for future work.
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Figure 8.3: m = n = 20. All matrices in the subspace are rank-deficient, and we observe that
the number or SVDs is fewer.

Here we confine ourselves to a local convergence analysis of Phase II for a single matrix
given a correct rank estimate r, which is an alternating projection method. We will consider
the simplest case where at the point of interest the tangent space of the manifold of rank-r
matrices intersects trivially with the tangent space of the sphere in M, which is arguably the
simplest possible assumption when it comes to local convergence of the alternating projection
method between smooth manifolds.

Regarding Phase I, we can at least note that if X ∈ M is a normalized rank-one matrix,
then in a neighborhood of X a single step of Algorithms 8.2 and 8.3, respectively, will give the
same result (this is also true for some similar choices of τ discussed above). Under the same
assumptions as for Phase II this hence shows the local convergence of Phase I toward isolated
normalized rank-one matrices inM, see Corollary 8.4.2 below. Since this is a local convergence
analysis, it of course does not fully explain the strong global performance of both Algorithms 8.2
and 8.3 in the rank-one case as seen in Figures 8.1– 8.3 and Tables 8.2 and 8.3.

In general, using the shrinkage operator cannot be guaranteed to converge to a local solution.
We have already noted that a matrix of rank larger than two cannot be a fixed point of the
shrinkage operator (unless all nonzero singular values are the same). One could construct
examples where in a fixed point of (8.7) X has the same rank as Y , but generically this seems
extremely unlikely. Therefore, the convergence of Phase I is in general a less relevant question.
The main problem is in which situations it provides a correct rank estimate, at least locally.
Except for the rank-one case we have no precise arguments, but we give a qualitative explanation
at the end of Section 8.4.1.
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8.4.1 Local Convergence of Phase II

Algorithm 8.3 is nothing else than the method of alternating projections for finding a matrix in
the intersection B ∩Rr of the closed sets

B = {X ∈M : ‖X‖F = 1}

and
Rr = {X ∈ Rm×n : rank(X) ≤ r}.

The understanding of local convergence of this method for nonconvex closed sets has made
substantial progress during the last years [8], [109], [110], [132]. In these papers one finds
very abstract result in the language of variational analysis or differential geometry. However,
it can happen for concrete problems, that the validation of the requirements is not much less
challenging than reproving the result with the concrete information at hand. For instance, the
statement of Theorem 8.4.1 below essentially follows from [109, Theorem 5.16], but we believe
the theorem does make a contribution by providing a direct proof based on elementary linear
algebra, and leading to an estimate for the typical convergence factor. In fact, projection on
low-rank matrices has been used frequently as a motivating example for alternating projections
(often in company with strictly affine constraints) [8], [109], [110], [118], but for the local
convergence very abstract general theorems like the one cited are invoked, whose fully general
proof is much longer than possibly necessary in this setting. In Remark 8.4.3 we discuss the
main assumption (8.13) in the context of the available literature in a bit more detail.

To state the result, we assume that X∗ ∈ Tr ∩ B has exactly rank r. By semi-continuity of
rank, all matrices in a neighborhood (in Rm×n) of X have rank at least r. Therefore, we can
locally regard Algorithm 8.3 as an alternating projection between B and the smooth manifold
of matrices of fixed rank r. Letting X∗ = U∗Σ∗V >∗ be a thin SVD of X∗ where Σ∗ contains
positive singular values, the tangent space to that manifold at X∗ is [83]

TX∗Rr =
{

[U∗ U⊥∗ ]
[
A B
C 0

]
[V∗ V ⊥∗ ] : A ∈ Rr×r, B ∈ Rr×(m−r), C ∈ R(n−r)×r

}
. (8.12)

For our analysis we make the following genericity assumption:

TX∗Rr ∩ TX∗B = {0}. (8.13)

Here TX∗B is the tangent space of B, which is the orthogonal complement of X∗ within M.
Since TX∗Rr contains X∗, (8.13) is expressed in terms of M as

TX∗Rr ∩M = span{X∗}. (8.14)

We remark that (8.13) ultimately implies that X∗ is an isolated point of Rr ∩ B, so actually it
then holds Rr ∩M = span{X∗}. Then we have the following result.

Theorem 8.4.1. Assume X∗ ∈ Rr ∩B has rank r, and that this rank is used in Algorithm 8.3.
If (8.13) holds, then for X ∈ B close enough to X∗ the new iterate Xnew = PM(Tr(X))

‖PM(Rr(X))‖F
constructed by the algorithm is uniquely defined, and

‖Xnew −X∗‖F
‖X −X∗‖F

≤ cos θ +O(‖X −X∗‖2F ),

where θ ∈ (0, π2 ] is the subspace angle between TX∗B and TX∗Rr, defined by

cos θ = max
X∈TX∗B
Y ∈TX∗Rr

|〈X,Y 〉F |
‖X‖F ‖Y ‖F

.
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As a consequence, the iterates produced by Algorithm 8.3 are uniquely defined and converge to
X∗ at a linear rate for close enough starting values.

In accordance with our observations in Section 8.3.4, we also have a result for Phase I in
the rank-one case.

Corollary 8.4.2. If r = 1, the statement of Theorem 8.4.1 also holds for Algorithm 8.2. In
fact, both algorithms produce the same iterates in some neighborhood of X∗.

Here it is essential that the value of shift τ is bounded below by a fixed fraction of the
Frobenius norm of X, as it is the case for in Algorithm 8.2, a lower bound being δ/

√
min(m,n).

Proof of Theorem 8.4.1. Since X and X∗ are in B, we can write

X −X∗ = E +O(‖X −X∗‖2F )

with E ∈ TX∗B. We partition the principal error E as

E = [U∗ U⊥∗ ]
[
A B
C D

]
[V∗ V ⊥∗ ]>. (8.15)

Of course, ‖E‖2F = ‖A‖2F + ‖B‖2F + ‖C‖2F + ‖D‖2F , and due to (8.12), our assumption implies

‖D‖2F ≥ sin2 θ · ‖E‖2F . (8.16)

Since X∗ has rank r, it follows that all matrices in some neighborhood have a unique best
rank-r approximation (by perturbation arguments for the singular values). In this neighborhood
Xnew is uniquely defined. To relate ‖E‖ to ‖Tr(X)−X∗‖ we consider the two matrices

F =
[

I CΣ−1
∗

−CΣ−1
∗ I

]
[U∗ U⊥∗ ]>,

and
G = [V∗ V ⊥∗ ]

[
I −Σ−1

∗ B
Σ−1
∗ B I

]
,

both of which are orthogonal up to O(‖E‖2F ):

‖F>F − I‖F = O(‖E‖2F ), ‖G>G− I‖F = O(‖E‖2F ).1

Therefore, denoting by F̃ , G̃ the orthogonal polar factors of F,G, respectively, we also have2

F = F̃ +O(‖E‖2F ), G = G̃+O(‖E‖2F ). (8.17)

One now verifies that

F̃XG̃ = FXG+O(‖E‖2F ) =
[
Σ∗ +A 0

0 D

]
+O(‖E‖2F ),

1Here and in the following, the error constant behind O(‖E‖F ) depends mainly on the condition of Σ∗, which
can be very large, but is fixed in this type of local analysis.

2From a polar decomposition Z> = UP one gets Z>Z − I = (Z> − U)(P + I)U>, and since the singular
values of (P + I)U> are all at least 1, it follows that ‖Z − U>‖F ≤ ‖Z>Z − I‖F .
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or, since F̃ and G̃ are orthogonal,

X = F̃>
[
Σ∗ +A 0

0 D

]
G̃> +O(‖E‖2F ).

For E small enough, the best rank-r approximation of the principal part is obtained by deleting
D. Hence,

Tr(X) = Tr

(
F̃>

[
Σ∗ +A 0

0 D

]
G̃>
)

+O(‖E‖2F )

= F̃>
[
Σ∗ +A 0

0 0

]
G̃> +O(‖E‖2F ). (8.18)

To get the last equality we have used results from matrix perturbation theory [169] (see also
[157, Sec.V.4]), which shows that under the perturbation O(‖E‖2F ), the singular subspace cor-
responding to the r largest singular values of X gets perturbed by O(‖E‖

2
2

gap ) where gap is the
smallest distance between the singular values of Σ∗ + A and those of D. For ‖E‖F sufficiently
small such that ‖E‖F = o(σmin(Σ∗)), this bound is O(‖E‖22). Together with the fact that the
perturbation in the singular values is bounded also by O(‖E‖22) (since the condition number of
singular values is always 1), we obtain the final equality above.

Therefore, taking also (8.17) into account, we obtain

‖Tr(X)−X∗‖F = ‖F̃Tr(X)G̃− FX∗G‖F +O(‖E‖2F )

=
∥∥∥∥∥
[
A+ Σ∗ 0

0 0

]
−
[

Σ∗ −B
−C CΣ−1

∗ B

]∥∥∥∥∥
F

+O(‖E‖2F )

=
∥∥∥∥∥
[
A B
C 0

]∥∥∥∥∥
F

+O(‖E‖2F ).

Here we used O(‖CΣ−1
∗ B‖2F ) = O(‖E‖2F ), which holds since ‖Σ−1

∗ ‖2 can be regarded as a
constant that does not depend on ‖E‖F . Since O(‖E‖) = O(‖X −X∗‖), we arrive at

‖Tr(X)−X∗‖F
‖X −X∗‖F

=

√
‖E‖2F − ‖D‖2F +O(‖X −X∗‖2F )
‖E‖F +O(‖X −X∗‖2F )

≤
√

1− sin2 θ +O(‖X −X∗‖2F )
= cos θ +O(‖X −X∗‖2F ),

(8.19)

where we have used (8.16). Since X∗ ∈M, it now follows that

‖PM(Tr(X))−X∗‖F ≤ ‖Tr(X)−X∗‖F ≤ cos θ‖X −X∗‖F +O(‖X −X∗‖3F ). (8.20)

Finally, we consider the normalization step. Recalling ‖X∗‖F = 1, by a simple geometric
argument on the unit sphere we obtain∥∥∥∥ Y

‖Y ‖F
−X∗

∥∥∥∥
F

≤ 1
cosφ‖Y −X∗‖F , (8.21)

where φ ∈ [0, π2 ] such that sinφ = ‖Y − X∗‖F . By Taylor expansion, 1√
1−ξ2

= 1 + O(ξ2).
Substituting ξ = sinφ and Y = PM(Tr(X)) in (8.21) gives

‖Xnew −X∗‖F ≤ ‖PM(Tr(X))−X∗‖F +O(‖PM(Tr(X))−X∗‖3F ).
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Using (8.20), we arrive at

‖Xnew −X∗‖F ≤ cos θ‖X −X∗‖F +O(‖X −X∗‖3F ),

completing the proof.

From Theorem 8.4.1 we can obtain a rough estimate for the convergence factor that we can
expect to observe in practice. Consider the “generic” case where the error term E in (8.15)
is randomly distributed, that is, each element is of comparable absolute value. Then we have
‖D‖2F ≈

(n−r)2

n2 ‖E‖2F , and plugging this into (8.19) gives ‖Tr(X)−X∗‖F
‖X−X∗‖F ≤

√
2nr+r2

n + O(‖X −
X∗‖2F ). This suggests that we typically expect a convergence factor ≈ O(

√
r
n). This estimate

reflects the experiments quite well; see Section 8.5.2.
The above proof provides some insight into the behavior of Algorithm 8.2 in Phase I. In

this case Tr(X) in (8.18) is replaced by Sτ (X). Provided again that we start with a matrix X
close to X∗ so that ‖D‖2 ≤ τ , the operation Sτ (X) again removes the D term, emphasizing
the components towards X∗ just like in Phase II as shown above. However, now the Σ∗ + A
term is also affected, and thus Phase I stagnates where the thresholding effect in Σ∗ + A is
balanced with the error terms that come in from the projection PM. Then the rank estimate r
is of correct rank rank(X∗), but neither X nor Y in Algorithm 8.2 is close to X∗; reflecting the
remark at the end of Section 8.3.1.

Remark 8.4.3. The conditions (8.13), resp. (8.14), allow for a simple proof but of course impose
some restrictions, most obviously d = dim(M) ≤ (m − r)(n − r) + 1. In a seminal attempt,
Lewis and Malick [110] obtained the local convergence of the method of alternating projections
between two smooth submanifolds M and N of Rn towards some X∗ ∈ M ∩ N under the
condition that TX∗M+ TX∗N = Rn (transversality). This allows for a non-trivial intersection,
but imposes lower bounds on the dimensions, in our case d ≥ (m − r)(n − r) + 1. Andersson
and Carlsson [8] relaxed the condition to TX∗(M∩N ) = TX∗M∩ TX∗N , however, under the
assumption thatM∩N is a C2 manifold. This does not impose restriction on the dimensions,
and contains (8.14) as a special cases. Still these conditions can fail in the situation at hand (M
a subspace ofRm×n, N = Rr), for instance when M = TX∗Rr, to mention one counter-example.
Recently, Noll and Rondepierre [132] proved local convergence for alternating projections under
very weak but abstract assumptions, which do not involve tangential conditions in first place.
It may be that their result applies to our setting, but we have not been able to validate this.

We conclude with a sufficient condition for (8.13) which might be useful in some very struc-
tured cases. We denote by ran(X) and ran(X>) the column and row space of a matrix X,
respectively.

Lemma 8.4.4. Let X∗ ∈ M have rank r. Assume there exists a (d− 1)-dimensional subspace
M̃ ⊆ M complementary to span{X∗} with the following property: for every X̃ ∈ M̃ it holds
ran(X∗) ∩ ran(X̃) = 0 and ran(X>∗ ) ∩ ran(X̃>) = 0. Then (8.13) holds.

Proof. Consider X = αX∗ + βX̃ ∈ M with X̃ ∈ M̃. Let P and Q denote the orthogonal
projections on ran(X∗)⊥ and ran(X>∗ )⊥, respectively. Then X ∈ TX∗Rr if and only if

0 = PXQ> = βP X̃Q>.

It holds P X̃Q> 6= 0. To see this we note that P X̃Q> = 0 would mean ran(X̃Q>) ⊆ ran(X∗),
which by assumption implies X̃Q> = 0. But then ran(X̃>) ⊆ ran(X>∗ ), a contradiction. Hence
X ∈ TX∗Rr if and only if β = 0, which proves the equivalent condition (8.14).
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8.5 Experiments

8.5.1 Synthetic Averaged Examples

We fix m = n = 20, d = 5, and a set of ranks (r1, . . . , rd). We then randomly generate d
random matrices M1, . . . ,Md of corresponding rank by forming random matrices U` ∈ Rm×r`
and V` ∈ Rn×r` with orthonormal columns, obtained from the QR factorization of random
Gaussian matrices using MATLAB’s randn and setting M` = U`V

>
` . To check the average rate

of success of Algorithm 8.5, we run it 100 times and calculate

• the average sum of ranks
∑d
`=1 rank(Y`) found by Phase I of the algorithm,

• the average truncation error
(∑d

`=1 ‖X` − Tr`(X`)‖2F
)1/2

after Phase I,

• the average truncation error
(∑d

`=1 ‖X` − Tr`(X`)‖2F
)1/2

after Phase II,

• the average iteration count (# of SVDs computed) in each Phase.

Table 8.2 shows the results for some specific choices of ranks. The principal parameters in the
algorithm are maxit = 1000 and restartit = 50 (in both Phase I and Phase II). The maximum
number of iterations was practically never reached. The rank guesses in Phase I were accepted
after they remained unchanged for changeit = 100 loops. This is still very conservative. For
comparison, recall that Figure 8.1 (ranks (1, 2, 3, 4, 5)) was generated with same parameter
maxit = 1000, but changeit = 50. Phase II was terminated using tol = 10−14, and never took
1000 iterations. From Table 8.2 we see that the ranks are sometimes estimated incorrectly,
although this does not necessarily tarnish the final outcome.

Table 8.2: Synthetic results, random initial guess.

exact ranks av. sum(ranks) av. Phase I err (iter) av. Phase II err (iter)
( 1 , 1 , 1 , 1 , 1 ) 5.05 2.59e-14 (55.7) 7.03e-15 (0.4)
( 2 , 2 , 2 , 2 , 2 ) 10.02 4.04e-03 (58.4) 1.04e-14 (9.11)
( 1 , 2 , 3 , 4 , 5 ) 15.05 6.20e-03 (60.3) 1.38e-14 (15.8)

( 5 , 5 , 5 , 10 , 10 ) 35.42 1.27e-02 (64.9) 9.37e-14 (50.1)
( 5 , 5 , 10 , 10 , 15 ) 44.59 2.14e-02 (66.6) 3.96e-05 (107)

A simple way to improve the rank estimate is to repeat Phase I with several initial matrices,
and adopt the one that results in the smallest rank. Table 8.3 shows the results obtained in
this way using five random initial guesses.

We observe that the problem becomes more difficult when the ranks vary widely. As men-
tioned in Section 8.3.1, choosing the initial guesses as in [138] also worked fine, but not evidently
better than random initial guesses as in Table 8.3. From the first rows in both tables we validate
once again that for the rank-one case, Phase II is not really necessary – Phase I is recovering a
rank-one basis reliably.

Comparison with Tensor CP Algorithm

As we describe in Appendix 8.6, if the subspace is spanned by rank-one matrices, then the CP
decomposition (if successfully computed; the rank is a required input) of a tensor with slices
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Table 8.3: Synthetic results, random initial guess from subspace repeated 5 times.

exact ranks av. sum(ranks) av. Phase I err (iter) av. Phase II err (iter)
( 1 , 1 , 1 , 1 , 1 ) 5.00 6.77e-15 (709) 6.75e-15 (0.4)
( 2 , 2 , 2 , 2 , 2 ) 10.00 4.04e-03 (393) 9.57e-15 (9.0)
( 1 , 2 , 3 , 4 , 5 ) 15.00 5.82e-03 (390) 1.37e-14 (18.5)

( 5 , 5 , 5 , 10 , 10 ) 35.00 1.23e-02 (550) 3.07e-14 (55.8)
( 5 , 5 , 10 , 10 , 15 ) 44.20 2.06e-02 (829) 8.96e-06 (227)
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Figure 8.4: Rank-1 basis matrices r = 1, fixed d = 10, varying m = n between 50 and 500. The
accuracy is not identical but nearly the same. Tensorlab performs well.

Mk, where M1, . . . ,Md is any basis of M, provides a desired rank-one basis. Here we compare
our algorithm with the CP-based approach. Specifically, we compare with the method cpd in
Tensorlab [154] with the exact decomposition rank (the dimension d ofM) as input. By default,
this method is based on alternating least-squares with initial guess obtained by an attempt of
simultaneous diagonalization. When applied to a rank-one basis problem, cpd often gives an
accurate CP decomposition with no ALS iteration.

As seen from the tables above, given a rank-one basis problem, our Algorithm 8.5 will
typically terminate after Phase I. On the other hand, since we assume a rank-one basis to
exist (otherwise the CP approach is not necessarily meaningful for finding a subspace basis),
we can also use the alternating projection algorithm from Phase II with rank one directly from
random initializations. In summary, we obtain three error curves: one for tensorlab, one for soft
thresholding (Phase I) and one for alternating projection (Phase II). The errors are computed
as in the experiments in Section 8.3.2 via the subspace angle.

We also present the runtime to show that our algorithms are not hopelessly slow in the
special rank-one case. Just running Phase II results in an algorithm faster than Algorithm 8.5,
but it is still slower than cpd. Note that while Tensorlab is a highly tuned toolbox, we did not
try too hard to optimize our code regarding the choice of parameters and memory consumption.
More importantly, unlike cpd our algorithm does not require the rank r and is applicable even
when r > 1.

Growing matrix size n We first vary the matrix size n, fixing the other parameters. The
runtime and accuracy are shown in Figure 8.4. We observe that if the CP rank is known, the
CP-based algorithm is both fast and accurate.
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Figure 8.5: Rank-1 basis matrices r = 1, Fixed m = n = 10, varying d between 2 and 20. Our
Algorithm gives better accuracy when d > n.

Growing dimension d We next vary the dimension d, in particular allowing it to exceed
n (but not n2). In this case, linear dependencies among the left factors a` and right factors
b`, respectively, of a rank-one basis a1b>1 , . . . ,adb

>
d must necessarily occur. It is known that

in this scenario obtaining an exact CP decomposition via simultaneous diagonalization, as in
part attempted by cpd, becomes a much more subtle problem. And indeed, we observe that
for d > n the accuracy of Tensorlab deteriorates, while our methods do not. The runtime and
accuracy for n = 10 are shown in Figure 8.5. However, this effect was less pronounced for larger
m = n.

We conclude that the CP-based algorithm is recommended if (i) the basis matrices are known
to be rank-1, and (ii) the dimension is lower than min(m,n).

8.5.2 Quality of the Convergence Estimate

In Section 8.4 we analyzed the convergence of Algorithm 8.3 in Phase II and showed that, when
the error term is randomly distributed the convergence factor would be roughly

√
r
n , recall the

remark after Theorem 8.4.1. Here we illustrate with experiments how accurate this estimate is.
In Figure 8.6 we plot a typical convergence of ‖Tr(X)−X‖F as the iterations proceed. We

generated test problems (randomly as before) varying n on the left (n = 10, 100) and varying
r on the right (r = 2, 10). The dashed lines indicate the convergence estimate (

√
r
n)` after the

`th iteration. Observe that in both cases the estimated convergence factors reflect the actual
convergence reasonably well, and in particular we verify the qualitative tendency that (i) for
fixed matrix size n, the convergence is slower for larger rank r, and (ii) for fixed rank r, the
convergence is faster for larger n.

8.5.3 Image Separation

One well known use of the SVD is for data and image compression, although currently it is
no longer used for the JPEG format or other modern image formats. It is known that most
images can be compressed significantly without losing the visible quality by using a low-rank
approximation of the matrix that represents the image.

Since each grayscale image can be expressed as a matrix, here we apply our algorithm to
a set of four incomprehensible images (shown as “mixed” in Figure 8.7) that are obtained as
a linear combination of four images (the famous woman.jpg in MATLAB, along with photos
of Audrey Hepburn, Angelina Jolie and Arnold Schwarzenegger, taken from the labeled faces
in the wild dataset [86]), with the singular values for each image truncated to have exact rank
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Figure 8.6: Convergence of ‖Tr(X)−X‖F as the iterations proceed in Phase II. The convergence
factor is faster for larger matrices when the rank is fixed (left), and slower for higher rank when
the matrix size is fixed (right), reflecting Theorem 8.4.1.

15. Since each original image is low-rank, we can recover them by our algorithm as shown in
Figure 8.7.

We note that such a problem has been considered extensively in the image processing liter-
ature [1], [21], [177], which is known as image separation, and we make no claims regarding the
actual usefulness of our approach in image processing; in particular, our approach would not
work well if the matrices of the images are not low-rank but have gradually decaying singular
values. This example is included simply for an illustrative visualization of the recovery of the
low-rank matrix basis by Algorithm 8.5.

8.5.4 Computing Exact Eigenvectors of a Multiple Eigenvalue

Eigenvectors of a multiple eigenvalue are not unique. For example, the identity matrix I has
any vector as an eigenvector. However, among the many possibilities one might naturally wish
to obtain “nice” eigenvectors: for example, the columns of I might be considered a good set of
“nice” eigenvectors for I, as they require minimum storage.

Numerically, the situation is even more complicated: a numerically stable algorithm com-
putes eigenpairs (λ̂, x̂) with residual Ax̂− λ̂x̂ = O(u‖A‖), where u is the unit roundoff. Since
the eigenvector condition number is O( 1

gap) [156, Sec. 1.3] where gap is the distance between λ

and the rest of the eigenvalues, the accuracy of a computed eigenvector is typically O(u‖A‖gap ).
This indicates the difficulty (or impossibility in general) of computing accurate eigenvectors for
near-multiple eigenvalues in finite precision arithmetic. The common compromise is to compute
a subspace corresponding to a cluster of eigenvalues, which is stable provided the cluster is well
separated from the rest [14, Sec. 4.8].

Here we shall show nonetheless that it is sometimes possible to compute exact eigenvectors of
(near) multiple eigenvalues, if additional property is present that the eigenvectors are low-rank
when matricized. As we discussed in the introduction, this also lets us compress the memory
to store the information. Below we illustrate how this can be done with examples.

Eigenvectors of a Multiple Eigenvalue of a Circulant Matrix

As is well known, the eigenvector matrix of a circulant matrix is the FFT matrix [73, Sec. 4.8].
One can easily verify that each column of an n2×n2 FFT matrix F is rank-one when matricized
to n× n, exemplifying a strong low-rank property.
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computed

original

mixed

Figure 8.7: We start with the bottom images, which are obtained as random linear combinations
of those in the middle row. This gives 4 matrices of size 200× 200, and we apply our algorithm
to obtain the top three images. Note how well the top images recover the original ones.

Let us consider a circulant matrix A ∈ Cn2×n2 defined by

A = 1
n
FΛF ∗, (8.22)

where Λ = diag(λ1, . . . , λn2).
Suppose for the moment that one is oblivious of the circulant structure (or perhaps more

realistically, we can think of a matrix A that is not circulant but has d eigenvectors consisting
of columns of F ; such a matrix gives similar results) and attempts to compute the d smallest
eigenvalues of A by a standard algorithm such as QR.

For the reason explained above, the numerically computed eigenvectors x̂i obtained by
MATLAB’s eig have poor accuracy. For concreteness suppose that λ1 = λ2 = · · · = λd and
λd+i = λd+i−1 + 1 for integers i, and we look for the eigenvectors corresponding to the first d
eigenvalues. With n = 10 and d = 5, the smallest angle between x̂i and the first d columns
of the Fourier matrix were O(1) for each i (it should be 0 if x̂i was exact). Nonetheless, the
subspace spanned by the d computed eigenvectors [x̂1, . . . , x̂d] has accuracy O(u), as there is
sufficient gap between λk and λd+1. We therefore run our algorithm with the n × n matrix
subspace

M = span{mat(x̂1), . . . ,mat(x̂d)}.
Our algorithm correctly finds the rank (= 1), and finds the eigenvectors [x1, . . . , xd], each of
which is numerically rank-one and has O(u) angle with a column of the Fourier matrix. This is
an example where by exploiting structure we achieve high accuracy that is otherwise impossible
with a backward stable algorithm; another established example being the singular values for
bidiagonal matrices [52, Ch. 5].

For example, we let n2 = 202 and compute the smallest 5 eigenvalues of a circulant matrix
A = 1

nFdiag(1 + ε1, 1 + ε2, 1 + ε3, 1 + ε4, 1 + ε5, 6, . . . , n2)F ∗ where εi = O(10−10) was taken ran-
domly. The matrix A therefore has a cluster of five eigenvalues near 1. The “exact” eigenvectors
are the first five columns of the FFT matrix.
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Table 8.4: Accuracy (middle columns) and memory usage for computed eigenvectors of a 202×
202 circulant matrix.

v1 v2 v3 v4 v5 memory
eig 4.2e-01 1.2e+00 1.4e+00 1.4e+00 1.5e+00 O(n2)

eig+Alg. 8.5 1.2e-12 1.2e-12 1.2e-12 1.2e-12 2.7e-14 O(n)

Note that our algorithm recovers the exact eigenvector of a near-multiple eigenvalue with
accuracyO(10−12). Furthermore, the storage required to store the eigenvectors has been reduced
from 5n2 to 5n.

Matrices with Low-Rank Eigenvectors

Of course, not every vector has low-rank structure when matricized. Nonetheless, we have
observed that in many applications, the eigenvectors indeed have a low-rank structure that can
be exploited. This observation may lead to the ability to deal with problems of scale much
larger than previously possible.

Circulant matrices are an important example, as we have seen above (which clearly includes
symmetric tridiagonal, symmetric banded, etc). We have observed that a sparse perturbation
of a circulant matrix also has such structure.

Other examples come from graph Laplacians. We have numerically observed that typically
the Laplacian matrix of the following graphs have eigenvectors (corresponding to the smallest
nonzero eigenvalues) that are low-rank: binary tree, cycle, path graph and the wheel graph all
have rank 3 irrelevant of the size, the lollipop graph has rank 4 (regardless of the ratio of the
complete/path parts), and the ladder graph has rank 2 and circular ladder (rank 2) regardless
of the size, and barbell always has rank 5. Clearly, not every graph has such structure: a
counterexample is a complete graph. Our empirical observation is that sparse graphs tend to
have low-rank structure in the eigenvectors.

Note that the low-rankness of the eigenvector depends also on the ordering of the vertices
of the graph3. An ordering that seemed natural have often exhibited low-rank property.

Our algorithm does not need to know a priori that a low-rank structure is present, as its
phase I attempts to identify whether a low-rank basis exists. We suspect that identifying and
exploiting such structure will lead to significant improvement in both accuracy and efficiency
(both in speed and memory). Identifying the conditions under which such low-rank structure is
present is left as an open problem. We expect and hope that the low-rank matrix basis problem
will find use in applications beyond those described above.

8.6 Finding Rank-One Bases via Tensor Decomposition

In this section, we describe the rank-one basis problem as a tensor decomposition problem.
Recall that in this problem, we are promised that the given subspaceM is spanned by rank-one
matrices. Thus we can apply Algorithm 8.3 (Phase II) with the precise rank guess directly.
Alternatively, we can also stop after Algorithm 8.2 (Phase I), which in practice performs well
(see Section 8.5.1). The following tensor decomposition viewpoint leads to further algorithms.

Let M1, . . . ,Md be an arbitrary basis ofM, and let T be the m×n×d tensor whose 3-slices
are M1, . . . ,Md. The fact that M possesses a rank-one basis is equivalent to the existence of d

3We thank Yuichi Yoshida for this observation.
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(and not less) triplets of vectors (a`, b`, c`) where a` ∈ Rm, b` ∈ Rn, c` ∈ Rd, such that

Mk =
d∑
`=1

ck(`)a`b>` , k = 1, . . . , d. (8.23)

Namely, if such triplets (a`, b`, c`) exist, then the assumed linear independence of the Mk

automatically implies that rank-one matrices a`b
>
` belong to M. Using the outer product of

vectors (denoted by ◦), we may express this relation in terms of the tensor T as

T =
d∑
`=1

a` ◦ b` ◦ c`. (8.24)

This type of tensor decomposition into a sum of outer products is called the CP decomposition,
and is due to Hitchcock [85] (although the term CP decomposition appeared later). In general,
the smallest d required for a representation of the form (8.24) is called the (canonical) rank of
the tensor T . We refer to [101] and references therein for more details. In summary, we have
the following trivial conclusion.

Proposition 8.6.1. The d-dimensional matrix spaceM = span(M1, . . . ,Md) possesses a rank-
one basis if and only if the tensor T whose 3-slices are the M1, . . . ,Md has (canonical) rank d.
Any CP decomposition (8.24) of T provides a rank-one basis a1b>1 , . . . ,adb

>
d of M.

We remark that computing the rank of a general third-order tensor is known to be NP-
hard [82], [84]. Therefore, it is NP-hard to check whether a matrix space M admits a rank-
one basis. Nevertheless, we might try to find a rank-one basis by trying to calculate a CP
decomposition (8.24) from linearly independent M1, . . . ,Md.
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Chapter 9

Introduction to Compressed Sensing

Compressed sensing, the subject of recovering a sparse signal vector x ∈ Rn from its measure-
ment vector y = Ax for some known matrix A ∈ Rm×n with m � n, has been intensively
studied in the last decade [24], [53], [64]. In this chapter, we briefly review the literature of
compressed sensing. Our presentation is based on the monograph [64]. For further details, refer
to [25], [64].

9.1 `1 Minimization and Null Space Property

A straightforward formulation for compressed sensing is as follows:

minimize ‖z‖0
subject to Az = y,

(P0)

where ‖z‖0 is the number of nonzero entries in z. This formulation is exact but not useful since
solving this optimization is NP-hard [127].

The basic idea of `1 minimization (also known as basis pursuit) is relaxing the `0-norm by its
convex envelope, the `1-norm. Therefore `1 minimization is to solve the following optimization:

minimize ‖z‖1
subject to Az = y.

(P1)

Note that (P1) is polynomial-time solvable, since it reduces to linear programming.
Then the crucial question is when does the solution of (P1) coincide with that of (P0). A

well-known condition is the null space property (NSP). We say that a matrix A satisfies the
NSP with respect to S ⊆ [n] if

‖vS‖1 < ‖vS‖1 (9.1)

for any v ∈ kerA\{0}. Similarly, we say that A satisfies the NSP with sparsity s if the NSP with
respect to S holds for any S with |S| ≤ s. The following is fundamental to the `1 minimization.

Theorem 9.1.1. For any vector x with support S, x is the unique optimal solution of `1
minimization (P1) with y = Ax if and only if A satisfies the NSP with respect to S.

Proof. Let us fix S and v ∈ kerA \ {0} arbitrary. Then vS is the unique optimal solution to
min{‖z‖ : Az = AvS}. Since Av = 0, vS is also feasible. By the uniqueness of the optimal
solution, we have ‖vS‖1 < ‖vS‖1, which establishes the NSP.
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Conversely, assume that the NSP with respect to S is satisfied. Let z be a feasible solution
of `1 minimization (P1) and v = x− z. Then v ∈ kerA since Av = Ax−Az = y − y = 0. We
also have

‖x‖1 ≤ ‖x− zS‖1 + ‖zS‖1 = ‖vS‖1 + ‖zS‖1 < ‖vS‖1 + ‖zS‖1 = ‖zS‖1 + ‖zS‖1 = ‖z‖1,

which shows the unique minimality of x.

9.2 Stable and Robust Null Space Property

In real-world applications such as image compression or sound signal processing, the original
vector x is not exactly sparse but close to a sparse vector. In such cases, we want to recover x
with an error controlled by its distance to s-sparse vectors, and this feature is called stability [64]
or instance optimality [48] of a recovery scheme. Here, a vector is said to be s-sparse if its support
has the cardinality at most s. For q > 0, an integer s ∈ Z+, and a vector x ∈ Rn, we define

σs(x)q = min{‖x− x′‖q | x′ ∈ Rn, ‖x′‖0 ≤ s}. (9.2)

That is, σs(x)q is the distance of x to the closest s-sparse vector in the `q norm. A common
choice of q is q = 1 or q = 2, but other choices of q are also interesting. It is known that a
slightly stronger version of the NSP guarantees good error performance of `1 minimization in
the `1 metric. For 0 < ρ < 1 and s ∈ Z+, a matrix A is said to satisfy the (ρ, s)-stable null
space property (SNSP) if

‖vS‖1 < ρ‖vS‖, (9.3)

for any v ∈ kerA \ {0} and any S with |S| ≤ s.

Theorem 9.2.1 (Candès, Romberg, and Tao [35]). Suppose that a matrix A satisfies the (ρ, s)-
SNSP (9.3). Let x be a vector and z be the optimal solution of `1 minimization (P1) with
y = Ax. Then we have

‖x− z‖1 ≤
2(1 + ρ)

1− ρ σs(x)1. (9.4)

We can go further by considering more severe scenarios that the observations are noisy; i.e.,
y = Ax + e for some error vector e. In order to handle such noisy observations, we can extend
` minimization to robust `1 minimization.

minimize ‖z‖1 subject to ‖Az − y‖2 ≤ η, (P1,η)

where η is a parameter. Remark that (P1,η) cannot be reduced to linear programming as in
(P1). However, (P1,η) is a convex problem and therefore still solvable by, for example, second
order cone programming (SOCP).

Being parallel to the standard NSP (9.1), one can define a robust version of the NSP. Let
ρ, τ > 0, and s ∈ Z+. A matrix A ∈ Rm×n is said to satisfy the (ρ, τ, s)-robust null space
property (RNSP) if

‖vS‖1 ≤ ρ‖vS‖1 + τ‖Av‖2 (9.5)

for any v ∈ Rn and S ⊆ [n] with |S| ≤ s. Note that the (ρ, τ, s)-RNSP implies the NSP with
sparsity s for any 0 < ρ < 1 and τ > 0. The RNSP ensures that the distance between the
original signal x and the solution z of robust `1 minimization is bounded.
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Theorem 9.2.2 (Candès, Romberg, and Tao [35]). Suppose that a matrix A satisfies the
(ρ, τ, s)-RNSP (9.5). Let x be a vector and z be an optimal solution of robust `1 minimiza-
tion (P1,η) with y = Ax + e and ‖e‖2 ≤ η. Then we have

‖x− z‖1 ≤
2(1 + ρ)

1− ρ σs(x)1 + 4τ
1− ρη. (9.6)

9.3 Coherence and Restricted Isometry Property

In this section, we review examples of matrices that satisfy the NSP (9.1) and the RNSP (9.5).
The main ingredient is relating the NSP and RNSP to properties of measurement matrices
called coherence and restricted isometry property.

9.3.1 Coherence

Let A ∈ Rm×n be a matrix with `2-normalized columns a1, . . . ,an. The coherence of a matrix
A ∈ Rm×n is defined as µ = maxi,j:i 6=j |〈ai,aj〉|. The `1-coherence function of A is defined as

µ1(s) := max
i∈[n]

max

∑
j∈S
|〈ai,aj〉| : S ⊆ [n], |S| = s, i /∈ S

 (9.7)

for s = 1, . . . , n−1. Evidently we have µ = µ1(1) ≤ µ1(2) ≤ · · · ≤ µ1(n−1) and µ ≤ µ1(s) ≤ sµ.
A matrix with small coherence approximately acts as an isometry for any sparse vector.

Indeed

(1− µ1(s− 1))‖x‖2 ≤ ‖Ax‖2 ≤ (1 + µ1(s− 1))‖x‖2 (9.8)

for any s-sparse vector x. Also, a matrix with small coherence satisfies the NSPs.

Theorem 9.3.1. Let A be a matrix with `2-normalized columns. If

µ1(s) + µ1(s− 1) < 1, (9.9)

then A satisfies the NSP with sparsity s. This condition holds if

µ <
1

2s− 1 . (9.10)

More generally, if µ1(s) < 1/2, then A satisfies the (ρ, τ, s)-RNSP with

ρ = µ1(s)
1− µ1(s− 1) and τ = s

1− µ1(s− 1) . (9.11)

The above theorem prompts us to construct a matrix with small coherence. In the literature,
various construction of such matrices has been known (see [64]).

Coherence is a handy concept; one can easily compute the coherence of a given matrix
and analysis with coherence is usually simpler than that with restricted isometry property.
Moreover, there exist several deterministic ways to construct matrices with small coherence.
On the other hand, the sample complexity of sensing with small coherence matrices can be
suboptimal. In fact, to ensure the coherence condition (9.10) above, we need Ω(s2) samples,
whereas reconstruction with O(s log(s/n)) samples is possible as we see in the following.
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9.3.2 Restricted Isometry Property

The restricted isometry property (RIP) was introduced by Candes and Tao [37]. Let A be an
m× n matrix with `2 normalized columns. The basic idea is a refinement of the near-isometry
inequality (9.8). For s ∈ Z+, the sth restricted isometry constant δs is defined as the smallest
value satisfying

(1− δs)‖x‖2 ≤ ‖Ax‖2 ≤ (1 + δs)‖x‖2. (9.12)

for any s-sparse vector x. Equivalently,

δs = max
S⊆[n]:|S|≤s

‖I −A>SAS‖, (9.13)

where AS is the column submatrix of A whose columns are indexed by S. Evidently we have
δ1 ≤ δ2 ≤ · · · ≤ δn. Similarly to coherence, the small restricted isometry constant implies the
NSPs.

Theorem 9.3.2 (Candès [32]). If a matrix A satisfies δ2s <
√

2− 1, then the NSP (9.1) with
sparsity s is satisfied. Moreover, under the same condition, the (ρ, τ)-RNSP (9.5) holds, where
ρ and τ are constants depending only on δ2s.

We remark that the constant
√

2− 1 ≈ 0.4142 has been improved to 4/
√

46 ≈ 0.6246 by [9].
How can we construct a matrix with a small restricted isometry constant? In fact, computing

the restricted isometry constant of a given matrix with given sparsity is NP-hard [164]. The only
known method to obtain such a matrix is resorting to random matrices. For example, Gaussian
matrices, random matrices whose entries are independent standard Gaussian random variables,
satisfy the required condition with high probability. Similarly, Rademacher matrices, random
matrices whose entries are random sign ±1 with the equal probability, also have small restricted
isometry constants. The following theorem establishes the fundamental fact that these families
of random matrices yield reconstruction with O(s log(s/n)) sample complexity.

Theorem 9.3.3. Let A be an m × n Gaussian matrix, s ≥ 1, and δs be the sth restricted
isometry constant of 1√

m
A. Then there exists a constant C > 0 such that for any δ > 0,

Pr(δs ≤ δ) ≥ 1− 2 exp
(
−δ

2m

2C

)
, (9.14)

provided that m ≥ 2Cδ−2s log(en/s). The same bound holds even if A is a Rademacher matrix.

Note that each column of 1√
m
A has the unit `2-norm in expectation. Combining theorems

above, we can reconstruct any s-sparse vector with `1 minimization (P1), using a Gaussian or
Rademacher matrix with O(s log(s/n)) columns.

9.4 Instance Optimality

In the previous section, we saw that given m = O(s log(s/n)) samples from a random sensing
matrix, we can reconstruct a sparse signal with high probability. In this section we see that this
sample complexity is optimal in the sense specified below.

Let us first define the notion of instance optimality. For p > 0, a sensing matrix A ∈ Rm×n
and a reconstruction map ∆ : Rm → Rn are said to be `p-instance optimal of order s with
constant C > 0 if

‖x−∆(Ax)‖p ≤ Cσs(x)p, (9.15)
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for any x ∈ Rn. Note that a reconstruction map ∆ is not restricted to a polynomial time
algorithm but can be any map.

In the previous sections, we have already seen that if A is a random Gaussian matrix with
m = O(s log(s/n)) and ∆ is `1 minimization (P1), then (A,∆) is `1-instance optimal (see
Theorem 9.2.1). Indeed the converse also holds; i.e., any `1-instance optimal reconstruction
method requires Ω(s log(s/n)) samples.

Theorem 9.4.1 ([63]). Suppose that a matrix A ∈ Rm×n and a map ∆ : Rm → Rn are
`1-instance optimal with constant C > 0 of order s. Then

m ≥ cs log(en/s) (9.16)

for some constant c > 0 depending only on C.

On the other hand, any `2-instance optimal reconstruction method must require much many
samples.

Theorem 9.4.2 ([48]). Suppose that a matrix A ∈ Rm×n and a map ∆ : Rm → Rn are
`2-instance optimal with constant C > 0 of order s. Then

m ≥ cn (9.17)

for some constant c > 0 depending only on C.
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Chapter 10

Nonconvex Compressed Sensing
with the Sum of Squares Method

10.1 Introduction

Let us recall stable signal recovery in Chapter 9. The objective of stable signal recovery in
`q quasi-norm is, given a measurement vector y = Ax generated from an unknown signal
vector x ∈ Rn, to recover a vector z ∈ Rn such that ‖z − x‖q = O(σs(x)q). It is desirable
to take a small q, for example, in the sparse noise model; that is, x = x′ + e, where x′ is
the best s-sparse approximation to x and e is an s′-sparse noise with s′ = O(1). To see
this, let us compare the cases q = 1/2 and q = 1 as an illustrative example. Note that
‖z − x‖1 ≤ ‖z − x‖1/2 ≤ n‖z − x‖1 and σs(x)1/2 = ‖e‖1/2 ≤ s′‖e‖1 = s′σs(x)1. Hence,
‖z − x‖1/2 = O(σs(x)1/2) implies ‖z − x‖1 = O(σs(x)1), whereas ‖z − x‖1 = O(σs(x)1) only
implies a weaker bound ‖z − x‖1/2 = O(nσs(x)1/2). It is reported that the noise vector e is
often sparse in practice [46], [106]. Intuitively speaking, smaller q works better in the sparse
noise model because ‖z −x‖qq → ‖z −x‖0 and σs(x)q → s′ as q → 0, and hence z converges to
an (s+O(s′))-sparse vector.

A common approach to stable signal recovery is relaxing the `0 quasi-norm by an `q quasi-
norm for 0 < q ≤ 1:

minimize ‖z‖q subject to Az = y and z ∈ Rn. (Pq)

For q = 1, this approach is called basis pursuit, which we saw in the previous chapter. If
A satisfies some technical condition, called the stable null space property, then the solution z
to (Pq) satisfies ‖z − x‖q = O(σs(x)q). It is folklore that the following result can be obtained
by extending the results in [32], [36], which handle the q = 1 case.

Theorem 10.1.1. Let q ∈ (0, 1] and s, n ∈ Z+. Then, a random Gaussian or Rademacher
matrix A ∈ Rm×n with m = Θ(s log(n/s)) satisfies the following property with high probability:
For any vectors x ∈ Rn and y = Ax, the solution z to (Pq) satisfies ‖z − x‖q = O(σs(x)q).

When q = 1, i.e., in the basis pursuit, the program (Pq) can be represented as a linear
program and we can find its solution in polynomial time. When q < 1, however, solving (Pq) is
NP-hard in general and Theorem 10.1.1 is currently only of theoretical interest.

The main contribution of this chapter is showing that, even when q < 1, there is a recovery
scheme whose theoretical guarantee almost matches that of Theorem 10.1.1:

Theorem 10.1.2 (Main theorem, informal version). Let q ∈ (0, 1] be a constant of the form
q = 2−k for some k ∈ Z+, s, n ∈ Z+, and ε > 0. Then, a random (normalized) Rademacher
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matrix A ∈ Rm×n with m = O(s2/q logn) satisfies the following property with high probability:
For any vector y = Ax, where x ∈ [−1, 1]n is an unknown vector, we can recover z with
‖z − x‖q ≤ O(σs(x)q) + ε in polynomial time.

To our knowledge, our algorithm is the first polynomial-time stable recovery scheme in `q
quasi-norm for q < 1. Our algorithm is based on the sum-of-squares method, which we describe
next. The assumption on x can be easily relaxed to x ∈ [−R,R] for a polynomial R in n,
keeping the running time polynomial in n.

10.1.1 Sum of Squares Method

As we cannot exactly solve the non-convex program (Pq) when q < 1, we use the sum-of-squares
(SoS) semidefinite programming hierarchy [107], [131], [136], [150], or simply the SoS method.
Here, we adopt the description of the SoS method introduced in [16], [17]. The SoS method
attempts to solve a polynomial optimization problem (POP), via convex relaxation called the
moment relaxation. We specify an even integer d called the degree or the level as a parameter.
The SoS method will find a linear operator L from the set of polynomials of degree at most d to
R, which shares some properties of expectation operators and satisfies the system of polynomials.
Such linear operators are called pseudoexpectations.

Definition 10.1.3 (Pseudoexpectation). Let R[z] denote the polynomial ring over the reals
in variables z = (z(1), . . . , z(n)) and let R[z]d denote the set of polynomials in R[z] of degree
at most d. A degree-d pseudoexpectation operator for R[z] is a linear operator Ẽ : R[z]d → R
satisfying that Ẽ(1) = 1 and Ẽ(P 2) ≥ 0 for every polynomial P of degree at most d/2.

For notational simplicity, it is convenient to regard a pseudoexpectation operator as the
“expectation” operator of the so-called pseudodistribution1 D. Note that it is possible that no
actual distribution realizes a pseudoexpectation operator as the expectation operator (see, e.g.
[47], [142]). Also note that we cannot sample from a pseudodistribution; only its low-degree mo-
ments are available. We use the subscript ẼD to emphasize the underlying pseudodistribution.
Also we write Ẽz∼D P (z) to emphasize the variable z. We say that a degree-d pseudodistribu-
tion D satisfies the constraint {P = 0} if ẼPQ = 0 for all Q of degree at most d− degP . We
say that D satisfies {P ≥ 0} if it satisfies the constraint {P − S = 0} for some SoS polynomial
S ∈ Rd[z].

A pseudoexpectation can be compactly represented by its moment matrix, an nO(d/2) ×
nO(d/2) symmetric matrix M containing all the values for monomials of degree at most d. The
above condition ẼP 2 ≥ 0 is equivalent to requiring that M is positive semidefinite, and the
other conditions can be represented by linear constraints among entries of M . The following the-
orem states that we can efficiently optimize over pseudodistributions, basically via semidefinite
programming.

Theorem 10.1.4 (The SoS method [107], [131], [136], [150]). For every ε > 0, d, n,m,M ∈ N
and n-variate polynomials P1, . . . , Pm in Rd[z], whose coefficients are in 0, . . . ,M , if there exists
a degree-d pseudodistribution D for z satisfying the constraint Pi = 0 for every i ∈ [m], then we
can find in (n · poly log(M/ε))O(d) time a degree-d pseudodistribution D′ for z satisfying Pi ≤ ε
and Pi ≥ −ε for every i ∈ [m].

By using binary search, we can also handle objective functions. We ignore numerical issues
since it will never affect our arguments (at least from a theoretical perspective). We simply
assume that the SoS method finds an optimal degree-d pseudodistribution in poly(nO(d)) time.

1It is also called locally consistent distribution [47], [142].
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The dual of the SoS method corresponds to the SoS proof system [76], an automizable and
restricted proof system for refuting a system of polynomials. The SoS proof system are built on
several deep results of real algebraic geometry, such as positivestellensatz and its variants [137],
[144]. Roughly speaking, any fact that is provable in the (bounded-degree) SoS proof system
is also reflected to pseudodistributions. This approach lies at the heart of recent surprising
results [16], [133]; they imported known proofs for integrality gap instances into the SoS proof
system and showed that (low-degree) SoS hierarchy solves the integrality gap instances.

10.1.2 Proof Outline

Now we give a proof outline of Theorem 10.1.2. First we recall basic facts in stable signal
recovery using the non-convex program (Pq). For a set S ⊆ [n], we denote by S the complement
set [n] \ S. For a vector v ∈ Rn and a set S ⊆ [n], vS denotes the vector restricted to S. We
abuse this notation and regard vS as the vector in RS with vS(i) = v(i) for i ∈ S as well as
a vector in Rn with vS(i) = v(i) for i ∈ S and vS(i) = 0 for i ∈ S. The following notion is
important in stable signal recovery.

Definition 10.1.5 (Robust null space property). Let q ∈ (0, 1], ρ, τ > 0, and s ∈ Z+. A matrix
A ∈ Rm×n is said to satisfy the (ρ, τ, s)-robust null space property (RNSP) in `q quasi-norm if

‖vS‖qq ≤ ρ‖vS‖
q
q + τ‖Av‖q2 (10.1)

holds for any v ∈ Rn and S ⊆ [n] with |S| ≤ s.

If A satisfies the (ρ, τ, s)-robust null space property for ρ < 1, then the solution to the
program (Pq) satisfies ‖z − x‖q = O(σs(x)q) and we establish Theorem 10.1.1. Indeed, a
random Gaussian or Rademacher matrix will do as long as m = Ω(s logn/s) [36].

The main idea of our algorithm is that we can convert the proof of Theorem 10.1.1 into a
sum of squares (SoS) proof, a proof such that all the polynomials appearing there have bounded
degree and all the inequalities involved are simply implied by the SoS partial order. Due to the
duality between SoS proofs and the SoS semidefinite programming hierarchy (see, e.g. [133]),
any consequence of a SoS proof derived from a given set of polynomial constraints is satisfied
by the pseudodistribution obtained by the SoS method on these constraints.

Let us consider the following SoS version of (Pq).

minimize Ẽz∼D ‖z‖qq subject to D satisfies Az = y, (P̃q)

where D is over pseudodistributions for the variable z. In our algorithm, we solve (P̃q) with
technical additional constraints using the SoS method, and then recover a vector from the
obtained pseudoexpectation operator. A subtle issue here is that we need to deal with terms
of the form |z(i)|q for fractional q, which is not polynomial in z. A remedy for this is adding
auxiliary variables and constraints among them (details are explained later), and for now we
assume that we can exactly solve the program (P̃q).

As we can only execute SoS proofs by using the SoS method, we need an SoS version of the
robust null space property:

Definition 10.1.6 (Pseudo robust null space property, informal version). Let q ∈ (0, 1], ρ, τ >
0, and s ∈ Z+. A matrix A ∈ Rm×n is said to satisfy the (ρ, τ, s)-pseudo robust null space
property in `q quasi-norm (`q-(ρ, τ, s)-PRNSP for short) if

Ẽv∼D‖vS‖qq ≤ ρ Ẽv∼D‖vS̄‖
q
q + τ

(
Ẽv∼D‖Av‖22

)q/2
(10.2)

holds for any pseudodistribution D of degree at least 2/q and S ⊆ [n] with |S| ≤ s.
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In the formal definition of PRNSP, we allow to impose some other technical constraints.
Note that PRNSP is a stronger condition than the robust null space property because the latter
considers only actual distributions consisting of single vectors.

If the measurement matrix A ∈ Rm×n satisfies the PRNSP, then the resulting pseudodis-
tribution D satisfies an SoS version of stable signal recovery. Moreover, we can round D to a
vector close to the signal vector, as shown in the following theorem.

Theorem 10.1.7 (PRNSP ⇒ stable signal recovery, informal version). Let q ∈ (0, 1] be a
constant of the form q = 2−k for some k ∈ Z+, 0 < ρ < 1, τ > 0, s ∈ Z+, and ε > 0. If A
satisfies the `q-(ρ, τ, s)-PRNSP, then, from the pseudodistribution D obtained by solving (P̃q)
with additional constraints depending on ε, we can compute a vector z̄ ∈ Rn such that

‖z̄ − x‖q ≤
4(1 + ρ)

1− ρ σs(x)q + ε

in polynomial time.

We then show that there exists a family of matrices satisfying PRNSP, namely the family
of Rademacher matrices.

Theorem 10.1.8 (Existence of matrices satisfying PRNSP, informal version). Let q ∈ (0, 1]
and s ∈ Z+. For some 0 < ρ < 1 and τ = O(s), a (normalized) Rademacher matrix A ∈ Rm×n
with m = Ω(s2/q logn) satisfies the `q-(ρ, τ, s)-PRNSP with high probability.

Theorem 10.1.2 is a consequence of Theorems 10.1.7 and 10.1.8.

10.1.3 Technical Contributions

In order to prove Theorem 10.1.7, we would like to follow the proof of Theorem 10.1.1 in the
SoS proof system. However, many steps of the proof requires non-trivial modifications for the
SoS proof system to go through. Let us explain in more detail below.

Handling `q quasi-norm The first obvious obstacle is that the program (P̃q) contains non-
polynomial terms such as |z(i)|q in the objective function. This is easily resolved by lifting; i.e.,
we introduce a variable tz(i), which is supposed to represent |z(i)|q, and impose the constraints
t
2/q
z(i) = z(i)2 and tz(i) ≥ 0 (recall that q is of the form 2−k for some k ∈ Z+).

Imposing the triangle inequality for `qq metric The second problem is that the added
variable tz(i) does not always behave as expected. When proving Theorem 10.1.1, we frequently
use the triangle inequality ‖u + v‖qq ≤ ‖u‖qq + ‖v‖qq for vectors u and v, or in other words,∑
i |u(i) + v(i)|q ≤

∑
i |u(i)|q +

∑
i |v(i)|q. Unfortunately, we cannot derive its SoS version

Ẽ
∑
i tu(i)+v(i) ≤ Ẽ

∑
i tu(i) + Ẽ

∑
i tv(i) in the SoS proof system. This is because, even if we

impose the constraints t2/qu(i) = u(i)2, t2/qv(i) = v(i)2, and t
2/q
u(i)+v(i) = (u(i) + v(i))2, these con-

straints do not involve any constraint among tu(i), tv(i), and tu(i)+v(i). (Instead, we can derive(
Ẽ
∑
i t

2/q
u(i)+v(i)

)q/2
≤
(
Ẽ
∑
i t

2/q
u(i)

)q/2
+
(
Ẽ
∑
i t

2/q
v(i)

)q/2
in the SoS proof system, which is not

very useful.)
To overcome this issue, we use the fact that we only need the triangle inequality among

z − x, z, and x, where z is a variable in (P̃q) and x is the signal vector. Of course we do not
know x in advance; we only know that x lies in [−1, 1]n. We will discretize the region [−1, 1]n
using a small δ � 1/n2/q and explicitly add the constraints Ẽ tz(i)−b ≤ Ẽ tz(i) +b for each i ∈ [n]
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and multiple b ∈ [−1, 1] of δ. Instead of x, we use an approximated vector xL each coordinate
of which is a multiple of δ with ‖x− xL‖ being small. The SoS proof system augmented with
these triangle inequalities can now follow the proof of Theorem 10.1.1.

Rounding Rounding a pseudodistribution to a feasible solution is a challenging task in gen-
eral. Fortunately, we can easily round the pseudodistribution D obtained by solving the pro-
gram (P̃q) to a vector z̄ close to the signal vector by fixing each coordinate z̄(i) to arg minb ẼD |z(i)−
b|q, where b ∈ [−1, 1] runs over multiples of δ.

Imposing the PRNSP In order to prove Theorem 10.1.8, we show that a (normalized)
Rademacher matrix with a small coherence satisfies PRNSP. Here, the coherence of a matrix
A ∈ Rm×n with columns a1, . . . ,am is defined as µ = maxi,j |〈ai,aj〉|. Again our approach
is the following: rewrite a proof that matrices with a small coherence satisfy the robust null
space property, into an SoS proof. Here is the last obstacle; it seems inevitable for us to add
exponentially many extra variables and constraints, in order to convert known proofs. However,
we will show that the number of extra variables is polynomially bounded and that the extra
constraints admit a separation oracle, if A is a Rademacher matrix. Thanks to the ellipsoid
method, we can obtain the desired SoS proof for Rademacher matrices in polynomial time.

10.1.4 Related Work

The notion of stable signal recovery in `1 norm is introduced in [32], [35] and it is shown that
basis pursuit is a stable recover scheme for a random Gaussian matrix A ∈ Rm×n provided that
m = Ω(s log(n/s)). The notion of stable signal recovery is extended to `q quasi-norm in [48],
[143]. Stable recovery schemes with almost linear encoding time and recovery time have been
proposed by using sparse matrices [22], [23], [87]. See [64], [71] for a survey of this area.

Besides the fact that ‖·‖qq converges to the `0 norm as q → 0, an advantage of using the `q
quasi-norm is that we can use a smaller measurement matrix for signal recovery (at least for the
exact case). Chartrand and Staneva [41] showed that `q quasi-norm minimization is a stable
recovery scheme for a certain matrix A ∈ Rm×n with m = Ω(s+ qs log(n/s)). Hence, as q → 0,
the required dimension of the measurement vector scales like O(s).

In order to implement the `q quasi-norm minimization for q < 1, several heuristic methods
have been proposed, including the gradient method [39], the iteratively reweighed least squares
method (IRLS) [42], and an operator-splitting algorithm [40], and a method that computes a
local minimum [68].

Recently, the sum-of-squares method has been found to be useful in several unsupervised
learning tasks such as the planted sparse vector problem [17], dictionary learning [18], and
tensor decompositions [18], [19], [69], [161]. Surveys [47], [142] provide detailed information on
the Lasserre and other hierarchies. A handbook [10] contains various articles on the semidefinite
programming, conic programming, and the SoS method, from both the theoretical and the
practical point of view.

10.2 Preliminaries

Notation We write P � 0 if P is a sum-of-squares polynomial, and similarly we write P � Q
if P −Q � 0.

We now see several useful lemmas for pseudodistributions. Most of these results were proved
in the series of works by Barak and his coauthors [16]–[18]. We basically follow the terminology
and notations in the recent survey by Barak and Steurer [15].
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Lemma 10.2.1 (Pseudo Cauchy-Schwarz inequality [16]). Let d ∈ Z+ be an integer. Let
P,Q ∈ R[x]d be polynomials of degree d and D be a pseudodistribution of degree at least 2d.
Then, we have Ẽx∼D P (x)Q(x) ≤

(
Ẽx∼D P (x)2

)1/2 (
Ẽx∼DQ(x)2

)1/2
.

Lemma 10.2.2 (Function pseudo Cauchy-Schwarz inequality [16]). Let d ∈ Z+ be an integer.
Let u and v be vectors whose entries are polynomials in R[x]d. Then for any pseudodistribution
D of degree at least 2d, we have Ẽx∼D〈u,v〉 ≤

(
Ẽx∼D‖u‖22

)1/2 (
Ẽx∼D‖v‖22

)1/2
.

Lemma 10.2.3 (Triangle inequality for pseudo `2-norm [16]). Let u, v, and D be the same as
above. Then, we have

(
Ẽx∼D‖u + v‖22

)1/2
≤
(
Ẽx∼D‖u‖22

)1/2
+
(
Ẽx∼D‖v‖22

)1/2
.

Lemma 10.2.4. For any pseudodistribution D of degree at least 4, we have

Ẽ(u,v)∼D〈u,v〉2 ≤ Ẽ(u,v)∼D‖u‖22‖v‖22.

Proof. By the Lagrange identity, we have

‖u‖22‖v‖22 − 〈u,v〉2 =
∑
i<j

(u(i)v(j)− u(j)v(i))2.

Hence, the statement has an SoS proof of degree 4.

10.3 Pseudo Robust Null Space Property

In this section, we prove Theorem 10.1.7. The formal statement of Theorem 10.1.7 is provided
in Theorem 10.3.8. In the rest of this section, we fix q ∈ (0, 1] and an error parameter ε > 0.
We also fix a matrix A ∈ Rm×n and the unknown signal vector x ∈ [−1, 1]n, and hence the
measurement vector y = Ax.

Let δ > 0 be a parameter chosen later, and L be a set of multiples of δ in [−1, 1]. Clearly
|L| = O(1/δ), and there exists x̄ ∈ L with |x− x̄| ≤ δ for any x ∈ [−1, 1]. Let xL ∈ Rn be the
point in Ln closest to x. Our strategy is recovering xL instead of x. As we know that xL ∈ Ln
and each coordinate of xL is discretized, we can add several useful constraints to the moment
relaxation, such as triangle inequality.

For the measurement vector y = Ax, we have

‖AxL − y‖2 = ‖A(xL − x)‖2 ≤ σmax(A)‖xL − x‖2 ≤ σmax(A)
√
sδ.

To recover a vector close to xL in `q quasi-norm from y, we consider the following non-convex
program:

minimize ‖z‖qq subject to ‖Az − y‖22 ≤ η2, (Pq,η)

where η = σmax(A)
√
sδ. Note that the desired vector xL is a feasible solution of this program.

In Section 10.3.1, we show how to formulate the non-convex program (Pq,η) as a POP.
Although the form of the POP depends on ε, we can solve its moment relaxation using the SoS
method. Then, we show that, if A satisfies a certain property, which we call pseudo robust null
space property, then the vector z “sampled” from the pseudodistribution obtained by the SoS
method is close to the vector xL in `q quasi-norm. Then in Section 10.3.2, we show how to
round the pseudodistribution to an actual vector z̄ so that ‖z̄ − x‖q = O(σs(x)q) + ε for small
ε > 0.
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10.3.1 Formulating `q Quasi-Norm Minimization as a POP

To formulate (Pq,η) as a POP, we introduce additional variables. Formally, we define ‖z‖qq as a
shorthand for

∑n
i=1 tz(i), where tz(i) for i ∈ [n] is an additional variable corresponding to |z(i)|q.

We also impose constraints tz(i) ≥ 0 and t
2/q
z(i) = z(i)2 for each i ∈ [n].

Unfortunately, these constraints are not sufficient to derive formula connecting Ẽ tz(i) and
z(i) in the SoS proof system because Ẽ tz(i) and Ẽ t

2/q
z(i) are unrelated in general. To address this

issue, we add several other variables and constraints. Specifically, for each i ∈ [n] and b ∈ L,
we add a new variable tz(i)−b along with the following constraints:

• tz(i)−b ≥ 0,

• t2/qz(i)−b = (z(i)− b)2,

• tz(i)−b ≤ tz(i)−b′ + |b− b′|q (b′ ∈ L),

• |b− b′|q ≤ tz(i)−b + tz(i)−b′ (b′ ∈ L) .

Intuitively, tz(i)−b represents |z(i) − b|q. The last two constraints encode triangle inequalities;
for example, the first one corresponds to |z(i) − b|q ≤ |z(i) − b′|q + |b − b′|q. This increases
the number of variables and constraints by O(n/δ) and O(n/δ2), respectively. For the sake of
notational simplicity, we will denote tz(i)−b by |z(i) − b|q for i ∈ [n] and b ∈ L in POPs. Note
that these constraints are valid in the sense that the desired solution xL satisfies all of them.

Thus we arrive at the following POP:

minimize ‖z‖qq subject to z satisfies the system {‖Az − y‖22 ≤ η2} ∪ P,

where P is a system of constraints. Here, P contains all the constraints on tz(i)−b mentioned
above but not limited to. Indeed, in Section 10.4, we add other (valid) constraints to P so that
the matrix A satisfies the pseudo robust null space property. From now on, we also fix P.

Now, we consider the following moment relaxation:

minimize ẼD‖z‖qq subject to D satisfies the system {‖Az − y‖22 ≤ η2} ∪ P, (P̃q,η)

Proposition 10.3.1. Let nP be the number of variables in P and dP be the maximum degree
that appears in the system P. If there is a polynomial-time separation oracle for constraints in
P, then we can solve the moment relaxation (P̃q,η) in O(n/δ + nP)O(2/q+dP ) time.

Proof. Immediate from Theorem 10.1.4.

Since xL ∈ Ln, the value Ẽ‖z−xL‖qq is well defined. Furthermore, D satisfies the following
triangle inequalities:

Ẽ‖z‖qq ≤ Ẽ‖z − xL‖qq + ‖xL‖qq,
Ẽ‖z − xL‖qq ≤ Ẽ‖z‖qq + ‖xL‖qq,
‖xL‖qq ≤ Ẽ‖z − xL‖qq + Ẽ‖z‖qq.

Now we formally define pseudo robust null space property.
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Definition 10.3.2. Let ρ, τ > 0 and s ∈ Z+. A matrix A ∈ Rm×n is said to satisfy the (ρ, τ, s)
pseudo robust null space property in `q quasi-norm (`q-(ρ, τ, s)-PRNSP for short) with respect
to the system P if

ẼD‖vS‖qq ≤ ρ ẼD‖vS‖
q
q + τ

(
ẼD‖Av‖22

)q/2
holds for any pseudodistribution D of degree at least 2/q satisfying P and all v of the form
z − b (b ∈ Ln), and for any S ⊆ [n] with |S| = s.

Lemma 10.3.3. Let 0 < ρ < 1, τ > 0, and s ∈ Z+. If the matrix A ∈ Rm×n satisfies the
`q-(ρ, τ, s)-PRNSP with respect to the system P, then we have

Ẽ‖z − xL‖qq ≤
1 + ρ

1− ρ
(
Ẽ‖z‖qq − ‖xL‖qq + 2‖xL

S
‖qq
)

+ 2τ
1− ρ

(
Ẽ‖A(z − xL)‖22

)q/2
for any S ⊆ [n] with |S| ≤ s.

Proof. Let v := z − xL. Then from the PRNSP of A, we have

Ẽ‖vS‖qq ≤ ρ Ẽ‖vS‖
q
q + τ

(
Ẽ‖Av‖22

)q/2
. (10.3)

Note that

‖xL‖qq = ‖xLS‖qq + ‖xL
S
‖qq ≤ Ẽ‖(z − xL)S‖qq + Ẽ‖zS‖qq + ‖xL

S
‖qq = Ẽ‖vS‖qq + Ẽ‖zS‖qq + ‖xL

S
‖qq,

Ẽ‖vS‖
q
q = Ẽ‖(z − xL)S‖

q
q ≤ ‖xLS‖

q
q + Ẽ‖zS‖

q
q.

Summing up these two inequalities, we get

Ẽ‖vS‖
q
q ≤ Ẽ‖z‖qq − ‖xL‖qq + Ẽ‖vS‖qq + 2‖xL

S
‖qq. (10.4)

Combining (10.3) and (10.4), we get

Ẽ‖vS‖
q
q ≤

1
1− ρ

(
Ẽ‖z‖qq − ‖xL‖qq + 2‖xL

S
‖qq + τ

(
Ẽ‖Av‖22

)q/2)
.

Therefore,

Ẽ‖v‖qq = Ẽ‖vS‖qq + Ẽ‖vS‖
q
q

≤ (1 + ρ) Ẽ‖vS‖
q
q + τ

(
Ẽ‖Av‖22

)q/2
≤ 1 + ρ

1− ρ
(
Ẽ‖z‖qq − ‖xL‖qq + 2‖xL

S
‖qq
)

+ 2τ
1− ρ

(
Ẽ‖Av‖22

)q/2
.

Corollary 10.3.4. Let 0 < ρ < 1, τ > 0, and s ∈ Z+. If the matrix A ∈ Rm×n satisfies the
`q-(ρ, τ, s)-PRNSP with respect to the system P, then we have

Ẽ‖z − xL‖qq ≤
2(1 + ρ)

1− ρ σs(xL)qq + 21+qτ

1− ρ η
q.

Proof. Note that Ẽ‖z‖qq − ‖xL‖qq ≤ 0 and
(
Ẽ‖A(z − xL)‖22

)q/2
≤
(
Ẽ‖Az − y‖22

)q/2
+
(
‖y −

AxL‖22
)q/2

≤ 2ηq by Lemma 10.2.3 and the concavity of | · |q. The statement is immediate from
the previous lemma with S being an index set of top-s largest absolute entries of x.
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10.3.2 Rounding

Suppose that we have obtained a pseudodistribution D as a solution to (P̃q,η). Then, we use
the following simple rounding scheme to extract an actual vector z̄ ∈ Rn: For each i ∈ [n], find
b ∈ L that minimizes Ẽz∼D|z(i) − b|q and set z̄(i) = b. In other words, z̄ is a minimizer of
Ẽz∼D‖z − b‖qq, where b is over vectors in Ln. Clearly, we can find z̄ in O(n/δ) time. Also, we
have the following guarantee on its distance to xL.

Lemma 10.3.5. Let 0 < ρ < 1, τ > 0, and s ∈ Z+. If the matrix A ∈ Rm×n satisfies the
`q-(ρ, τ, s)-PRNSP with respect to the system P, then the vector z̄ ∈ Ln satisfies

‖z̄ − xL‖qq ≤ 2
(

2(1 + ρ)
1− ρ σs(xL)qq + 21+qτ

1− ρ η
q

)
. (10.5)

Proof. By Corollary 10.3.4, we have

Ẽ‖z − xL‖qq ≤
2(1 + ρ)

1− ρ σs(xL)qq + 21+qτ

1− ρ η
q.

Since xL ∈ Ln holds and z̄ is a minimizer of Ẽ‖z − b‖qq, we also have

Ẽ‖z − z̄‖qq ≤
2(1 + ρ)

1− ρ σs(xL)qq + 21+qτ

1− ρ η
q.

Then by the triangle inequality,

‖z̄ − xL‖qq ≤ Ẽ‖z − z̄‖qq + Ẽ‖z − xL‖qq ≤ 2
(

2(1 + ρ)
1− ρ σs(xL)qq + 21+qτ

1− ρ η
q

)
.

Then, we show that z̄ is close to the signal vector x in `qq metric.

Lemma 10.3.6. Let 0 < ρ < 1, τ > 0, and s ∈ Z+. If the matrix A ∈ Rm×n satisfies the
`q-(ρ, τ, s)-PRNSP with respect to the system P, then the vector z̄ satisfies

‖z̄ − x‖qq ≤
4(1 + ρ)

1− ρ σs(x)qq +O(ε)

by choosing

δ = min


(
(1− ρ)ε/τ

)1/q
σmax(A)

√
s

, ((1− ρ)ε/n)1/q

 .
Proof. From the choice of δ, we have η = σmax(A)

√
sδ ≤

(
ε(1−ρ)/τ

)1/q. Then from Lemma 10.3.5,
we get

‖z̄ − xL‖qq ≤
4(1 + ρ)

1− ρ σs(xL)qq +O(ε).

Note that we have ‖xL − x‖qq ≤ nδq and |σs(x)qq − σs(xL)qq| = O(nδq). Then, we have

‖z̄ − x‖qq ≤ ‖z̄ − xL‖qq + ‖xL − x‖qq ≤
4(1 + ρ)

1− ρ (σs(x)qq + nδq) +O(ε) + nδq

= 4(1 + ρ)
1− ρ σs(x)qq +O

(
ε+ nδq

1− ρ
)

= 4(1 + ρ)
1− ρ σs(x)qq +O(ε).
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Finally, we show that z̄ is close to x in `q quasi-norm.

Corollary 10.3.7. Let 0 < ρ < 1, τ > 0, and s ∈ Z+. If the matrix A ∈ Rm×n satisfies the
`q-(ρ, τ, s)-PRNSP with respect to the system P, then the vector z̄ satisfies

‖z̄ − x‖q ≤
4(1 + ρ)

1− ρ σs(x)q +O(ε)

by choosing

δ = O

(ε(1− ρ)1/q+1

τn1/q

)1/q

σmax(A)−1s−1/2

 .
Proof. Invoke Lemma 10.3.6 with

ε′ = ε ·
( 1− ρ

4(1 + ρ)σs(x)qq

)1/q−1
= Ω

(
ε

(1− ρ
n

)1/q
)
.

Then, we get a vector z̄ such that

‖z̄ − x‖q ≤
(4(1 + ρ)

1− ρ σs(x)qq + ε′
)1/q

≤ 4(1 + ρ)
1− ρ σs(x)q +O

(
ε′
(4(1 + ρ)

1− ρ σs(x)qq
)1/q−1)

≤ 4(1 + ρ)
1− ρ σs(x)q +O(ε).

Note that the required δ is

Ω
(

min
{((1− ρ)ε′

τ

)1/q
σmax(A)−1s−1/2,

((1− ρ)ε′

n

)1/q})

= Ω

(ε(1− ρ)1/q+1

τn1/q

)1/q

σmax(A)−1s−1/2

 .

Combining Proposition 10.3.1 and Corollary 10.3.7, we get the following theorem.

Theorem 10.3.8 (PRNSP ⇒ stable signal recovery, the formal version of Theorem 10.1.7).
Let 0 < ρ < 1, τ > 0, and s ∈ Z+. If the matrix A ∈ Rm×n satisfies the `q-(ρ, τ, s)-PRNSP with
respect to the system P and P has a polynomial-time separation oracle, then we can compute a
vector z̄ ∈ Rn such that

‖z̄ − x‖q ≤
4(1 + ρ)

1− ρ σs(x)q + ε.

The running time is (n/δ + nP)O(2/q+dP ), where nP is the number of variables in P, dP is the
maximum degree that appears in constraints of P, and δ = Ω

(( ε(1−ρ)1/q+1

τn1/q

)1/q
σmax(A)−1s−1/2

)
.

10.4 Imposing PRNSP

A normalized Rademacher matrix A ∈ Rm×n is a random matrix whose each entry is i.i.d. sam-
pled from {±1/

√
m}. In this section, we show that we can impose the PRNSP to the normalized

Rademacher matrix by introducing some additional variables and constraints to pseudodistri-
butions.

The following notion is important in our analysis.
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Definition 10.4.1 (Coherence). Let A ∈ Rm×n be a matrix whose columns a1, . . . ,an are
`2-normalized. The `q-coherence function of A is defined as

µqq(s) := max
i∈[n]

max

∑
j∈S
|〈ai,aj〉|q : S ⊆ [n], |S| = s, i /∈ S


for s = 1, . . . , n− 1.

Now we review properties of a normalized Rademacher matrix.

Lemma 10.4.2 ([2]). Let n ∈ Z+ and ε > 0. If m = Ω(logn/ε2), then a normalized Rademacher
matrix A ∈ Rm×n with columns a1, . . . ,an satisfies |〈ai,aj〉| ≤ ε for all i 6= j with high
probability.

Corollary 10.4.3. Let s, n ∈ Z+, ε > 0. If m = Ω((s/ε)2/q logn), then a normalized
Rademacher matrix A ∈ Rm×n with columns a1, . . . ,an satisfies µqq(s) ≤ ε with high proba-
bility.

Lemma 10.4.4 ([148]). A normalized Rademacher matrix A ∈ Rm×n with m ≤ n satisfies
σmax(A) = O(n logm

m ).

In what follows, we fix q ∈ (0, 1], s ∈ Z+, ε > 0, and a matrix A ∈ Rm×n that satisfies the
properties of Corollary 10.4.3 and Lemma 10.4.4. Let a1, . . . ,an be the columns of A.

For b ∈ Ln, we define vb = z − b, where z is a variable in POP. To impose the PRNSP to
A, for each i ∈ [n] and b ∈ Ln, we add a variable t〈Avb,ai〉 and constraints t2/q〈Avb,ai〉

= 〈Avb,ai〉2

and t〈Avb,ai〉 ≥ 0. Intuitively, t〈Avb,ai〉 represents |〈Avb,ai〉|q, and as with the previous section,
we will denote t〈Avb,ai〉 by |〈Avb,ai〉|q in POPs for notational simplicity.

Furthermore, we add the following constraints for each i ∈ [n] and b ∈ Ln,

|vb(i)|q ≤ |〈Avb,ai〉|q +
∑
j 6=i
|vb(j)|q|〈aj ,ai〉|q. (10.6)

These constraints are valid since vb(i)ai = Avb −
∑
j 6=i v

b(j)aj and 〈ai,ai〉 = 1.
At first sight, the resulting moment relaxation is intractable since there are exponentially

many new variables. However, this is not the case. To see this, note that

〈Avb,ai〉 =
n∑
j=1

z(i)〈aj ,ai〉 −
n∑
j=1

b(j)〈aj ,ai〉.

Also, the number of possible values of
∑n
j=1 b(j)〈aj ,ai〉 is O(nm/δ) because A is ±1/

√
m-

valued and b(j) ∈ [−1, 1] is a multiple of δ. Hence, identifying variables t〈Avb,ai〉 and t〈Avb′ ,ai〉 if∑n
j=1 b(j)〈aj ,ai〉 =

∑n
j=1 b

′(j)〈aj ,ai〉, we only have to add O(nm/δ) variables.
Another issue is that we have added exponentially many constraints. The following lemma

says that we can design a separation oracle for (10.6), and hence we can use the ellipsoid method
to solve SoS relaxations involving these constraints.

Lemma 10.4.5. There is a polynomial time algorithm that validates whether (10.6) is satisfied
by a given pseudodistribution D, and if not, it finds i ∈ [n] and b ∈ Ln such that

Ẽ|vb(i)|q > Ẽ|〈Avb,ai〉|q +
∑
j 6=i

Ẽ|vb(j)|q|〈aj ,ai〉|q.
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Proof. Since there are only polynomially many choices for the values of i, b(i), and
∑n
j=1 b(j)〈aj ,ai〉,

we can exhaustively check all of them. Hence, in what follows, we fix i ∈ [n], bi := b(i), and
c :=

∑n
j=1 b(j)〈aj ,ai〉. Note that, by fixing c, we have also fixed the value of Ẽ|〈Avb,ai〉|q to

c′ := Ẽ |〈Az,ai〉 − c|q.
Now we want to check whether there exists b ∈ Ln with b(i) = bi and

∑n
j=1 b(j)〈aj ,ai〉 = c

such that
Ẽ|z(i)− bi|q > c′ +

∑
j 6=i

Ẽ|z(j)− b(j)|q|〈aj ,ai〉|q.

We can solve this problem by dynamic programming using a table T [·, ·], where T [k, a] stores the
minimum value of

∑
j∈[k],j 6=i Ẽ|z(j)− b(j)|q|〈aj ,ai〉|q conditioned on

∑
j∈[k],j 6=i b(j)〈aj ,ai〉 = a.

Since the size of T is O(n · nm/δ), the dynamic programming can be solved in polynomial
time.

Let P ′ be the system of all the added constraints on tz(i)−b (given in Section 10.3) and
constraints on t〈Avb,ai〉. Then, A satisfies the PRNSP by imposing the system P ′.

Theorem 10.4.6 (The formal version of Theorem 10.1.8). The matrix A satisfies the `q-(ρ, τ, s)-
PRNSP with respect to P ′ with ρ = µqq(s)

1−µqq(s−1) = O(ε) and τ = s
1−µqq(s−1) = O(s).

Proof. The proof basically follows the standard proof in compressed sensing (see [64]). Let us
fix S ⊆ [n] of size s and b ∈ Ln. Then for any pseudodistribution D satisfying the above
constraints, we have

Ẽ|vb(i)|q ≤ Ẽ|〈Avb,ai〉|q + Ẽ
∑
l∈S̄

|vb(l)|q|〈al,ai〉|q + Ẽ
∑

j∈S:j 6=i
|vb(j)|q|〈aj ,ai〉|q

for i ∈ S. Using the pseudo Cauchy Schwarz k = − log2 q times, we get(
Ẽ|〈Avb,ai〉|q

)2/q
≤ Ẽ〈Avb,ai〉2.

By Lemma 10.2.4,
Ẽ〈Avb,ai〉2 ≤ Ẽ‖Avb‖22‖ai‖22 = Ẽ‖Avb‖22.

Thus we have

Ẽ|vb(i)|q ≤
(
Ẽ‖Avb‖22

)q/2
+ Ẽ

∑
l∈S̄

|vb(l)|q|〈al,ai〉|q + Ẽ
∑

j∈S:j 6=i
|vb(j)|q|〈aj ,ai〉|q

Summing up these inequalities yields

Ẽ‖vb
S‖qq ≤ s

(
Ẽ‖Avb‖22

)q/2
+
∑
l∈S̄

Ẽ|vb(l)|q
∑
i∈S
|〈al,ai〉|q +

∑
j∈S

Ẽ|vb(j)|q
∑

i∈S:i 6=j
|〈aj ,ai〉|q

≤ s
(
Ẽ‖Avb‖22

)q/2
+ µqq(s) Ẽ‖vb

S̄
‖qq + µqq(s− 1) Ẽ‖vb

S‖qq.

Rearranging this inequality finishes the proof.

Combining Lemma 10.4.4 and Theorem 10.4.6, we immediately have the following.

Corollary 10.4.7. The matrix A satisfies the `q-(ρ, τ, s)-PRNSP with respect to P ′ with ρ =
O(ε) and τ = O(s). Moreover, σmax(A) = O((n logm)/m).

Now we establish our main theorem.
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Theorem 10.4.8 (Main theorem, the formal version of Theorem 10.1.2). Let q ∈ (0, 1] be a
constant of the form q = 2−k for some k ∈ Z+, s, n ∈ Z+, and ε > 0. Then, a normalized
Rademacher matrix A ∈ Rm×n with m = O(s2/q logn) satisfies the following property with
high probability: For any vector y = Ax, where x ∈ [−1, 1]n is an unknown vector, we can
recover z̄ with ‖z̄ − x‖q ≤ O(σs(x)q) + ε. The running time is (nm/δ)O(2/q), where δ =
O
(
m
(

ε
sn1/q

)1/q
/
(√
sn logm

))
.

Proof. Solve the SoS relaxation (P̃q,η) with the system P ′. Then, with high probability, the
matrix A satisfies the `q-(ρ, τ, s)-PRNSP with respect to P ′ for ρ = O(1) and τ = O(s), and
σmax(A) = O((n logm)/m) with high probability by Corollary 10.4.7. Then, we can recover a
vector z ∈ Rn with the desired property by Theorem 10.3.8.

Note that the number nP ′ of added variables in the system P ′ is O(nm/δ) and the maximum
degree dP ′ that appears in a constraint of P ′ is 2/q. Hence, the running time becomes as
stated.
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Chapter 11

Conclusion

In this dissertation, we have considered the three problems in machine learning and commu-
nication: monotone submodular function maximization, matrix completion, and compressed
sensing. We now conclude this dissertation with a brief summary of our contribution and
several open problems.

Submodularity over the Integer Lattice and Budget Allocation (Sections 3.3–3.5):
We presented a novel generalization of the previous models in machine learning by exploiting
the submodularity over the integer lattice. Our generalized models naturally capture not only
the budget allocation problem but also generalized sensor placement and text summarization,
in which we allow multiple choices for each element. Further investigation of the potential of
submodularity over the integer lattice in machine learning is an obvious future direction.

Submodular Function Maximization over the Integer Lattice (Chapter 4): We de-
vised several approximation algorithms for maximizing a monotone submodular function over
the integer lattice under a certain constraint. For DR-submodular functions, we designed poly-
nomial time (1− 1/e− ε)-approximation algorithms for cardinality, polymatroid, and knapsack
constraints. We also described a polynomial time (1 − 1/e − ε)-approximation algorithm for
lattice-submodular function maximization with a cardinality constraint. Since our algorithm
for maximizing a lattice submodular function subject to a knapsack constraint is a pseudopoly-
nomial time algorithm, the first open problem is to improve the time complexity. Furthermore,
maximization of a lattice submodular function subject to a polymatroid constraint is another
open problem, because we know almost nothing about it.

The Diminishing Return Submodular Cover Problem (Chapter 5): We designed
a bicriteria approximation algorithm for a generalization of submodular cover, namely, the
diminishing submodular cover problem (DR-submodular cover). Our algorithm is comparable
to the naive greedy algorithm in objective values, but exponentially faster in running time. We
do not think that our approximation ratio ρ

(
1 + log d

β

)
is tight for DR-submodular cover in

general, although the approximation ratio coincides with the tight log-factor if it is applied
for set cover. Especially, up to our knowledge, there is no reason to believe that the linear
dependence on a curvature ρ is optimal.

Faster Algorithm for Multicasting in Linear Deterministic Relay Network (Chap-
ter 7): We presented a faster algorithm for finding a multicast code in LDRN using mixed
matrix completion technique. Our algorithm achieves a “lower bound”; i.e., the simpler prob-
lem of unicast computations for all the sinks already takes the same time complexity and no
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multicast algorithms are known to break this lower bound even in a classical wired network.
Can we clarify this “lower bound” or can we design a multicast algorithm that is faster than
unicast computations for every sinks? Also, as we noted in the last of this chapter, it might be
possible to reduce the time complexity without unicast computation by exploiting the structure
of the mixed matrices in our algorithm. More generally, designing a sparsity-aware algorithm
for mixed matrix completion is an interesting future direction.

The Low-Rank Basis Problem for a Matrix Subspace (Chapter 8): We introduced
a new problem, the low-rank basis problem for a matrix subspace and provided a heuristic
algorithm for the problem. We pointed out that the low-rank basis problem has various appli-
cations in max-rank matrix completion, image separation, accurate eigenvector computation,
etc. Although our algorithm works very well in practice, establishing theoretical guarantee of
performance is obvious future work. One promising direction is to investigate a special case
that a given subspace is spanned by a single low-rank matrix and random Gaussian matrices.
Such a case is called the planted model, and indeed, Qu, Sun, and Wright [138] analyzed their
algorithm under the planted sparse vector model. However, their analysis is quite complicated
and it is nontrivial to generalize their result for matrices. Nonetheless, we are optimistic for
giving rigorous analysis to our heuristic methods.

Nonconvex Compressed Sensing with the Sum of Squares Method (Chapter 10):
We designed a polynomial time stable signal recovery algorithm in the `q metric, where q =
1/2k ≤ 1. Our algorithm heavily depends on the sum-of-squares (SoS) method. The SoS
method is a very powerful relaxation scheme for nonconvex problems, but its potential and
limitation are far from being fully understood. Our result shed the light on the potential of the
SoS method in compressed sensing. We believe that further investigation of the SoS method in
compressed sensing would be fruitful. From the technical point of view, our analysis relies on
the coherence argument, but an RIP argument often yields better sample complexity as we saw
in Chapter 9. However, known RIP arguments do not seem easy to be converted into an SoS
proof. Therefore, the last open problem we pose is; can we find an SoS proof for RIP arguments
or is it impossible to prove RIP results in the SoS proof system?
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[62] U. Feige, V. S. Mirrokni, and J. Vondrák, “Maximizing non-monotone submodular func-
tions,” SIAM Jounarl on Computing, vol. 40, no. 4, pp. 1133–1153, 2011 (cited on p. 28).

[63] S. Foucart, A. Pajor, H. Rauhut, and T. Ullrich, “The gelfand widths of `p-balls for
0 < p ≤ 1,” Journal of Complexity, vol. 26, no. 6, pp. 629–640, 2010 (cited on p. 104).

123



[64] S. Foucart and H. Rauhut, A Mathematical Introduction to Compressive Sensing. Springer
Science+Business Media New York, 2013 (cited on pp. 100–102, 109, 116).

[65] S. Fujishige, “Polymatroidal dependence structure of a set of random variables,” Infor-
mation and Control, vol. 39, no. 1, pp. 55–72, 1978 (cited on p. 8).

[66] ——, Submodular Functions and Optimization, 2nd. Elsevier, 2005 (cited on pp. 1, 7, 9,
20, 28, 67).

[67] ——, “A note on polylinking flow networks,” Mathematical Programming, vol. 137, no.
1, pp. 601–607, 2011 (cited on p. 67).

[68] D. Ge, X. Jiang, and Y. Ye, “A note on the complexity of Lp minimization,” Mathematical
Programming, vol. 129, no. 2, pp. 285–299, 2011 (cited on p. 109).

[69] R. Ge and T. Ma, “Decomposing overcomplete 3rd order tensors using sum-of-squares
algorithms,” CoRR, vol. abs/1504.05287, 2015 (cited on p. 109).

[70] J. F. Geelen, “Maximum rank matrix completion,” Linear Algebra and Its Applications,
vol. 288, pp. 211–217, 1999 (cited on pp. 3, 61).

[71] A. Gilbert and P. Indyk, “Sparse recovery using sparse matrices,” Proceedings of the
IEEE, vol. 6, pp. 937–947, 2010 (cited on p. 109).

[72] M. X. Goemans, S. Iwata, and R. Zenklusen, “A flow model based on polylinking system,”
Mathematical Programming, vol. 135, no. 1, pp. 1–23, 2012 (cited on pp. 9, 65–67, 69–71).

[73] G. H. Golub and C. F. Van Loan, Matrix computations, 4th, ser. Johns Hopkins Studies
in the Mathematical Sciences. Johns Hopkins University Press, Baltimore, MD, 2013
(cited on pp. 80, 83, 85, 96).

[74] C. Gottschalk and B. Peis, “Submodular function maximization on the bounded integer
lattice,” ArXiv preprint, 2015 (cited on p. 28).

[75] M. Grant and S. Boyd. (Mar. 2014). Cvx: Matlab software for disciplined convex pro-
gramming, version 2.1, [Online]. Available: http://cvxr.com/cvx (cited on p. 83).

[76] D. Grigoriev and N. Vorobjov, “Complexity of null-and positivstellensatz proofs,” Annals
of Pure and Applied Logic, vol. 113, no. 1, pp. 153–160, 2001 (cited on p. 107).

[77] M. Grötschel, L. Lovász, and A. Schrijver, “The ellipsoid method and its consequences
in combinatorial optimization,” Combinatorica, vol. 1, no. 2, pp. 169–197, 1981 (cited on
p. 9).

[78] L. Gurvits, “Classical complexity and quantum entanglement,” Journal of Computer and
System Sciences, vol. 69, no. 3, pp. 448–484, 2004 (cited on p. 76).

[79] P. Hand and L. Demanet, “Recovering the sparsest element in a subspace,” ArXiv, 2013
(cited on p. 74).

[80] N. J. A. Harvey, D. R. Karger, and K. Murota, “Deterministic network coding by matrix
completion,” in Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), 2005, pp. 489–498 (cited on pp. 3, 61, 62, 65, 68, 69).

[81] N. J. A. Harvey, D. R. Karger, and S. Yekhanin, “The complexity of matrix comple-
tion,” in Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithm
(SODA), 2006, pp. 1103–1111 (cited on p. 62).

[82] J. H̊astad, “Tensor rank is NP-complete,” Journal of Algorithms, vol. 11, no. 4, pp. 644–
654, 1990 (cited on p. 99).

[83] U. Helmke and M. A. Shayman, “Critical points of matrix least squares distance func-
tions,” Linear Algebra and its Applications, vol. 215, pp. 1–19, 1995 (cited on p. 89).

124

http://cvxr.com/cvx


[84] C. J. Hillar and L.-H. Lim, “Most tensor problems are NP-hard,” Journal of the ACM,
vol. 60, no. 6, Art. 45, 39, 2013 (cited on p. 99).

[85] F. L. Hitchcock, “The expression of a tensor or a polyadic as a sum of products,” Journal
of Mathematics and Physics, vol. 6, pp. 164–189, 1927 (cited on p. 99).

[86] G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller, “Labeled faces in the wild:
A database for studying face recognition in unconstrained environments,” University of
Massachusetts, Amherst, Tech. Rep. 07-49, Oct. 2007 (cited on p. 95).
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