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Abstract

This thesis discusses monaural audio source separation and synthesis for decomposing mu-
sic audio mixtures into musically meaningful components (e.g. pitches and notes) and the
individual editing of the components. Such a process is applicable to a wide range of mu-
sical applications such as assistance systems for music composition and arrangement, music
players that allow users to edit existing music pieces as per their preferences, and automated
music arrangement systems.

The sound quality of edited audio signals greatly depends on the accuracy of source sep-
aration, and hence it is necessary to achieve accurate source separation followed by audio
editing. Since monaural source separation is essentially an ill-posed problem, we generally
require cues that allow us to adequately narrow down possible solutions. We can use various
cues (e.g. harmonicity and repeating structures of music) in time-frequency representations
(spectrograms). To select spectrograms having adequate frequency resolution, taking into
account how music audio signals are characterized and how they are represented in the se-
lected spectrogram domain are important. Therefore, we should take an approach that is
aware of spectrograms.

To realize the approach, three principles are considered and methods are proposed in ac-
cordance with these principles. The first principle (i) is to use log-frequency spectrograms
obtained with a continuous wavelet transform (CWT) since the fundamental frequencies
(Fp) of musical pitches are geometrically spaced. The second principle (ii) is to utilize the
source-filter model, which can describe the generation processes of instrument sounds fairly
well with two components originating from vibrating objects and resonant structures. This
enables us to make assumptions regarding the components individually. The third principle
(iii) is to explicitly describe the spectral leakage effect. The spectral shape is not allowed
to be arbitrary because of the redundancy of time-frequency transforms. Thus, identifying

the shape of the spectral leakage can be valid for separating adjacent Fy and harmonic com-
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ponents of different audio sources. To simultaneously satisfy the three principles, clarifying
the relation between spectrogram-domain and time-domain models, such as the source-filter
model, is crucial. However, the method for obtaining this relation is unclear since the basis
waveforms of CW'T are usually non-orthogonal.

In Chapter 3, we develop a source separation method that simultaneously satisfies prin-
ciples (i) and (ii). The source-filter model is incorporated into shifted non-negative matrix
factorization (NMF), which takes into account the constant inter-harmonic spacing of the
harmonic structure in log-frequency representations. Iterative parameter estimation algo-
rithms with guaranteed convergence are derived based on an optimization principle called
the auxiliary function approach. The incorporation of the source-filter model in the CWT
domain was confirmed to be effective in monaural audio source separation through an ex-
perimental evaluation.

In Chapter 4, a source separation method called harmonic-temporal factor decomposition
(HTFD) is proposed, which simultaneously satisfies principles (i) and (iii). HTFD uses a
spectrogram model that specifically describes a mathematical form of the spectral leakage of a
time domain signal model and takes into account local and global structures of spectrograms
of harmonic sounds. A parameter estimation algorithm is derived based on the auxiliary
function approach. Experimental results showed the effectiveness of using CWT and the
specific description of the spectral leakage.

In Chapter 5, we extend HTFD to satisfy all the principles. The source-filter model is
defined in the discrete-time domain and obtaining direct relation of parameters between
the source-filter model and the spectrogram model of HTFD is not easy. However, the
spectrogram model is derived from the analytic signal model and hence we can associate
parameters of the source-filter model with the parameters of the spectrogram model via the
signal model. Similarly to Chapter 4, a parameter estimation algorithm is derived based
on the auxiliary function approach. We confirmed through an experimental evaluation the
effectiveness of simultaneously incorporating the source-filter model and the spectral leakage
in the CWT domain.

In Chapter 6, we address phase estimation from a modified magnitude part of a spec-
trogram (magnitude spectrogram) obtained with CWT to obtain its time domain signal.
By taking the spectrogram-aware approach, we introduce a condition that complex spectro-
grams satisfy and formulate the phase estimation as the problem of minimizing a numerical

criterion derived from the condition. Based on the auxiliary function approach, fast phase
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estimation algorithms with guaranteed convergence are derived. An experimental evalua-
tion demonstrated that the devised fast algorithms work 75 times faster than a conventional
algorithm presented in previous literature while the reconstructed signals obtained with the
audio quality of reconstructed signals obtained with the devised algorithms is almost the
same as that of the original signals.

In Chapter 7, we present a method of enhancing singing voices in music audio signals
using NMF with the L, norm criterion by focusing on that spectrograms of singing voices
can be seen as sparse matrices while spectrograms of accompaniment sounds can be seen as
low-rank matrices. An experimental evaluation showed that reasonably good enhancement
results were obtained with appropriate choices of p.

In Chapter 8, we develop a system that allows users to edit a music audio signal without
using musical scores by replacing the timbres of drum sounds and the frequency charac-
teristics of harmonic sounds with those of another music signal. The present system was

confirmed to work well through a subjective experiment.
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Chapter 1

Introduction

1.1 Background

We discuss through the thesis separation and synthesis of music audio mixtures for audio
editing. The schematic illustration of audio editing of our interest is depicted in Fig. 1.1: An
audio signal performed by several harmonic musical instruments is separated into “musically
meaningful components”, listeners edited the components individually, and they can enjoy to
listen to the edited signal. Here examples of “musically meaningful components” are sounds
of individual pitches and musical instruments. Such a process is applicable to a wide range
of music applications such as assistance systems for music composition and arrangement,
music players that allow users to edit existing music pieces as per their preferences, and
automatic music arrangement systems. To realize such systems, we need techniques for
separating music audio signals into musically meaningful components, called audio source
separation, with high accuracy because the performance of audio editing greatly depends
on the accuracy of audio source separation. In this thesis, we mainly focus on audio source
separation specifically for music audio signals, taking into account the characteristics of
harmonic musical instruments.

The problem of audio source separation is not so simple to solve because there are many
possible separation patterns for a given audio signal without prior information and the prob-
lem is inherently ill-posed. To adequately narrow down possible solutions, appropriate cues
have continued to be sought in previous studies. If audio signals are recorded with multiple
microphones, spatial cues of sources can be used. In contrast, in a situation where audio

signals are recorded with a single microphone, we need other cues (e.g. statistical property
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Observed ) Separated results 5| Modified A\
audio signal Audio > o audio signal
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Figure 1.1: Schematic illustration of audio editing in the thesis.

of sources) instead of spatial cues. We will often be faced with such a situation, for example,
when there are several different sources very close to each other even if multiple microphones
are available and spatial cues are difficult to use, or when an observed signal is originally
monaural. Although musical scores can also be used as cues, they are often unavailable and
this makes source separation further difficult. In the following, we concentrate on monaural

source separation without musical score information.

1.2 Monaural Audio Source Separation

Time-frequency representations, referred to as spectrograms, have been commonly used
in many audio signal processing techniques containing monaural source separation because
we can utilize various cues in spectrograms. A spectrogram of an audio signal is defined
by an inner product of the signal and basis waveforms and how to select basis waveforms
determines the frequency resolution of the spectrogram. A representative time-frequency
transform is the short-time Fourier transform (STFT), which is frequently used and provides
a time-frequency representation with a linearly uniform frequency resolution. However, the
frequency resolution is not agreement with the human auditory system and the fundamental
frequencies (Fys) of musical pitches of equal temperament, which are geometrically spaced.
Psychoacoustics studies have revealed that the critical bandwidths of the auditory filters
increase approximately exponentially with increasing the center frequencies of the filters [3],
and the difference threshold of frequency also increases approximately exponentially with
the increase of frequency [4]. These suggest that a time-frequency representation with a

logarithmic frequency (log-frequency) resolution would be more suitable for source separation
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of music audio signals than a time-frequency representation with linear frequency resolution.
Such a time-frequency transform is the continuous wavelet transform (CWT) [5], also known
as constant-Q transform [6]. CWT provides a time-frequency representation of a time domain
signal with a logarithmically uniform frequency resolution. Indeed, recent studies have
reported that using the CW'T instead of the STFT significantly improves the performances
of source separation with multi-channel input [7], multiple Fjy estimation [1,8,9] and singing
voice separation [10].

For monaural source separation two main approaches have thus far been adopted, which
focus on different structure of spectrograms. One approach is based on the concept of com-
putational auditory scene analysis (CASA). Humans have an excellent ability to concentrate
on listening to a specific sound in a situation where there are multiple sound sources. The
significant ability to recognize the external environment is referred to as the auditory scene
analysis and Bregman investigated its psychological evidences through experiments [11]. The
auditory scene analysis process consists of two stages. In the first stage, an incoming audio
signal is separated into spectrogram-like segments, each of which should originate from a
single source. In the second stage, the segments that are likely to have originated from the
same source are grouped into a perceptual structure called an auditory stream. The aim
of CASA is to imitate the auditory scene analysis process with computers as our ears do.
Some studies tried to formulate the CASA problem as an optimization problem using the
grouping cues [1,12-17]. For example, in [1,17], an attempt has been made to imitate the
auditory scene analysis process by clustering time-frequency components based on a con-
straint designed according to the auditory grouping cues (such as the harmonicity and the
coherences and continuities of amplitude and frequency modulations). This method is called
“harmonic-temporal clustering (HTC).” Many other conventional methods can be found
in [18,19].

While the above approach uses strong assumptions on local spectral structures of sources,
the other approach instead focuses on global structure in time-frequency representations. In
the approach, an observed magnitude spectrogram is interpreted as a non-negative matrix
and non-negative matrix factorization (NMF) [20] is applied to it [21]. The idea behind this
approach is that the spectrum at each frame is assumed to be represented as a weighted
sum of a limited number of common spectral templates. Since the spectral templates and
the mixing weights should both be non-negative, this implies that an observed spectrogram

is modeled as the product of two non-negative matrices. Thus, factorizing an observed
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spectrogram into the product of two non-negative matrices allows us to estimate the unknown
spectral templates constituting the observed spectra and decompose the observed spectra
into components associated with the estimated spectral templates. Since the introduction
to monaural source separation [21], many NMF variants have been presented [8,22-45].
Some of NMF-based methods have been developed for spectrograms having a logarithmic
frequency resolution and utilized a fact that the inter-harmonic spacings of a harmonic
structure are constant in log-frequency representations, which was also exploited in [46,47].
Shifted NMF [37], a.k.a shift-invariant probabilistic latent component analysis (PLCA) [38],
is particularly unique in that it takes account of the fact and uses a shifted copy of a
spectrum template to represent the spectra of different Fjs. The extension of shifted NMF
outperformed the state-of-the-art methods in terms of multipitch F{, estimation, whose aim
is to estimate Fys of individual sources in a polyphonic music signal, in an international
contest of music information retrieval named music information retrieval evaluation exchange
(MIREX) [48] in 2013.

The generating processes of music instrument sounds are also very important cues for
monaural source separation. The processes can be explained fairly well by the source-filter
theory. According to the source-filter theory, an instrument signal is assumed to consist of
an excitation signal and a linear filter. The excitation signal is associated with a vibrating
object (e.g. a violin string) and varies with pitch. In contrast, the filter represents the
resonance structure of the instrument and varies with timbre. Thus, the theory enables us
to represent pitch and timbre of an instrument signal separately. The source-filter model
was incorporated into NMF in [49], and its variants have been presented in the STFT
spectrogram domain with considerable successes [41-44,50]. If we assume the independence
of an excitation signal and a filter as with studies of the source-filter model (e.g. [51-56]), the
spectrum of an instrument sound can be described as a product of an excitation spectrum
and a filter spectrum in the fast Fourier transform (FFT) domain due to the convolution
theorem. However, the CWT is not always orthogonal and so it is unclear how to describe

the source-filter representation in the CWT domain.

1.3 Phase Estimation

Many monaural source separation methods mentioned in the above work in the magnitude

or power spectrogram domain, and we must be able to construct a time domain signal from
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an estimated or modified magnitude spectrogram, in which phase information is missing. To
this end, we also address the problem of constructing a time-domain signal by estimating
an appropriate phase from a magnitude spectrogram, which we call phase estimation. For
STFT spectrograms, a well-known phase estimation algorithm has been presented in [57].
The algorithm consists in iteratively performing the STF'T and the inverse STFT and at each
iteration, the magnitude part of the updated STFT spectrogram while leaving the phase part
unchanged. After two decades, Le Roux et al. have thus far proposed a fast algorithm for
estimating the phase from a magnitude STFT spectrogram [58,59] by using the fact that the
waveforms in the overlapping part of consecutive frames must be consistent. This implies
the fact that an STFT spectrogram is a redundant representation when the hop-size is
shorter than the frame length and thus it satisfies a certain condition that it corresponds to
a time domain signal. We have referred to this condition as the consistency condition. The
problem of estimating the phase from a magnitude STFT spectrogram can be formulated
as an optimization problem of minimizing the consistency criterion that describes how far
an arbitrary complex array deviates from this condition. This formulation has provided a
new insight into the well-known Griffin’s algorithm, allowing us to derive a fast approximate
algorithm and give a very intuitive proof of its convergence.

An algorithm for estimating the phase from a magnitude CW'T spectrogram has been
proposed by Irino et al. [60], which consists in iteratively performing the CWT and the inverse
CWT. At each iteration, the magnitude part of the updated CW'T spectrogram is replaced by
the given magnitude CWT spectrogram while leaving the phase part unchanged. However,
since the CWT has a large computational cost, Irino’s algorithm requires a long processing
time for computation, which has been a serious obstacle for its practical uses. Thus, we
consider it necessary to develop a faster algorithm. The convergence of the algorithm as
well as the computational cost is an important issue. Efficient methods for computing the
CWT and the inverse CWT have been recently proposed [61-64]. It may appear that simply
carrying out one of these methods for the CWT and inverse CWT steps in Irino’s algorithm
would reduce the computational cost. However, it is not clear whether the convergence of

such an algorithm is guaranteed.
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Figure 1.2: Outline of the thesis.

1.4 Objectives and Outline

As the above mentioned, the definition of basis waveforms determines the frequency res-
olution of spectrograms. To select spectrograms having adequate frequency resolution, it is
important to take into account how music audio signals are characterized and how they are
represented in the selected spectrogram domain. Therefore, we should take an approach for
monaural audio source separation that is aware of spectrograms. To realize the approach,

we consider three principles listed in the following.

[P1] Use spectrograms having a log-frequency resolution obtained with the CWT.
[P2] Utilize the source-filter model.

[P3] Take into account the spectral leakage.

On the basis of these principles, we present monaural source separation algorithms.
The organization of the thesis is shown in Fig. 1.2. In Chapter 2, we first discuss a

spectrogram-aware approach for monaural audio source separation, describe the reasons
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why the three principles are considered, and show technical issues that should be solved to
realize the approach. In Chapter 3, we present a monaural audio source separation method
that simultaneously satisfies [P1] and [P2] by exploiting the constant inter-harmonic spacings
of a harmonic structure in the log-frequency domain and approximately incorporating the
source-filter model. In Chapter 4, we propose a monaural audio source separation method
simultaneously satisfies [P1] and [P3]. The method uses a CWT spectrogram model that can
associate parameters in the CW'T domain with parameters in the time domain and derive
an efficient algorithm to estimate the parameters from an observed CW'T spectrogram. We
call the method harmonic-temporal factor decomposition (HTFD). In Chapter 5, we present
a monaural source separation method that simultaneously satisfies all the principles by
incorporating the parameters of the source-filter model into the CW'T spectrogram model
of HTFD via the signal model in the time domain. For converting modified magnitude
spectrograms obtained with the CWT into time domain signals, we attempt the problem of
estimating the phase from a modified magnitude CWT spectrogram, specifically focusing on
the convergence and computation speed of algorithms, in Chapter 6. Moreover, we present
a method to enhance a singing voice in a monaural music signal in Chapter 7, and develop
a system that allows users to replace drum components in a monaural music signal with
those in another music signal in Chapter 8. Finally, we give a conclusion of the thesis in

Chapter 9.



Chapter 2

Spectrogram-Aware Approach Using
Continuous Wavelet Transform

Representations

2.1 Time Domain Representation and

Time-Frequency Representation

Generally, popular music audio signals contain percussive sounds and harmonic sounds.
Separating the two components from music audio signals has been attempted [65-67] and
the methods work well. Thus, we here consider audio signals performed by harmonic musical
instruments and explore an adequate separation domain that matches for harmonic sounds.

Let us first compare a time domain representation and a time-frequency representation.
A time-domain representation is straightforward to compute and additivity of source signals
holds. However, the time domain representation allows the sources to cancel each other out,
which causes to extremely increase possible separation patterns and makes monaural source
separation difficult. Especially for music signals, multiple notes are often performed at the
same time. On the other hand, the time-frequency representation such as the magnitude
spectrogram obtained with CWT (Fig. 2.1 (b)) is more sparse than the time domain repre-
sentation (Fig. 2.1 (a)). This is because a time-frequency transform such as STFT and CWT
can decompose an audio signal into individual frequency components in each frame even if

they are overlapped in the time domain representation. Hence the cancellation of source
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Figure 2.1: Examples of time-domain representation and time-frequency representation.

spectra occur more rarely than that of source signals in the time domain representation.
One may think that the effect of the cancellation would be reduced by preparing waveform
templates of sources. However, the signals of instrument sounds in real world generally vary
at different occurrences due to the irregular behavior of the phases. In contrast, the magni-
tude or power spectra of the signals are known to be often relatively identical to each other
at different occurrences.

Furthermore, if we discard phases from time-frequency representations and assume the ad-
ditivity of magnitude or power spectra, we do not need to consider the cancellation problem.
This assumption has empirically been confirmed to be a good approximation in considerable
successes of NMF. These suggest that the magnitude spectrogram would be more suitable

for monaural source separation of harmonic audio signals.
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Figure 2.2: Basis waveforms of STFT and CWT with respect to frequency.

2.2 Spectrogram-Aware Approach for Monaural

Audio Source Separation

In this section, we show the reasons why the three principles listed in Sec. 1.4 should be

considered.

2.2.1 Time-Frequency Transform and Characteristics of

Harmonic Audio Signals

Spectrograms are defined by an inner product of audio signal and basis waveforms. How
to select basis waveforms determines the characteristics of the time-frequency representa-
tion. The schematic illustrations of basis waveforms are shown in Fig. 2.2. For instance,
if windowed sinusoids are used as basis waveforms, where the window length is fixed, the
resulting spectrograms have a linear frequency resolution, which corresponds to STFT. In
contrast, if we use windows whose length is in proportion to periods as basis waveforms, the
resulting spectrograms have a log-frequency resolution, which corresponds to CWT.

Now, let us compare a time-frequency representation with linear frequency resolution
and one with logarithmic frequency resolution. Spectra of periodic signals have harmonic
structure as shown in Fig. 2.3. Here we consider a situation where we would like to separate

two signals of different low pitches. Musical pitches in equal temperament are distributed
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Figure 2.3: Schematic comparison of spectra of a harmonic audio signal obtained with CWT and

STET.

geometrically, and the inter-harmonic spacings of a harmonic structure is constant in the
log-frequency domain. This nature is unique in the log-frequency domain, and some methods
that takes account of the nature have been presented [37,38,46,47]. Hence the overlap of the
Fy and harmonic components of the two signals is independent of octaves and constant in
the CWT domain. On the other hand, the spacings depend on a Fj in the linear frequency
domain, and the lower pitches the two signals have, the more complex the overlap becomes.
This makes it difficult to separate the signals using their F and low harmonic components.
Although the frequency difference of Fys is expanded in high harmonics in the STFT domain
and the high harmonics can be a useful cue for the separation, music signals in real world
often have large energy in low harmonics and small energy in high harmonics. Actual spectra
performed by the clarinet are shown in Fig. 2.4 and we can confirm that the high harmonics
have small energy. Due to the fact, the cue in the STFT domain is difficult to use. These
results suggest that CW'T should be more suited than STFT for harmonic signals.
Furthermore, the log-frequency resolution also appears in the human auditory system,
particularly in pitch perception [3,4,68,69]. For the above reasons, we consider the principle

P1].
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Figure 2.4: Spectra of audio signals performed by the clarinet.

2.2.2 Continuous Wavelet Transform

CWT provides a time-frequency representation with a logarithmic frequency resolution and
has been originally presented by [6] and is essentially the same as constant-Q transform [5].
The CWT has a large computational cost, which has been a serious obstacle for its practical
uses. However, efficient methods for computing the CWT and the inverse CWT have been
recently proposed [61-64], one of which will be described in Section 6.5.1.

The CWT represents a time domain signal as a summation of wavelet basis waveforms,
also known as analyzing wavelets, whose periods (the reciprocals of the center frequencies)
correspond to a scale parameter. We here consider discretizing the scale parameter such that
the center frequencies of the wavelet basis waveforms are equally spaced on a log-frequency
scale. Let [ =0,1,--- ,L—1and m=0,1,---, M — 1 be the indices of scale and time shift
parameters, respectively, where L is the number of the discretized scale parameters and M is
the length of an input signal. Given a discrete time domain signal f = [fo, f1, -+, far_1] ' €

F:={f; f € CM >, f, =0}, the component of a CWT spectrogram associated with scale
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a; > 0, arranged as s; = [s10, 511, , Sim—1) |, is defined as

S :I/Vlf, (21)
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Here ¢}, is the complex conjugate of the wavelet basis waveform v, ,, := ¥ (tA/a;)/a;, where
A denotes the sampling period of the input signal, )(tA) is a mother wavelet satisfying the

admissibility condition. Each row of W, contains the wavelet basis waveform of scale a; with

a different time shift parameter. Then, the CWT spectrogram s = [s],s], -+ ,s; ,|" is
given as
s=WFf, (2.3)
where W denotes the CWT matrix, defined as
W=y Wy W) (2.4)

Whether the inverse CW'T of W f equals to f for all f € F depends on W. For simplicity,
we hereafter assume that the equality holds. It is important to note that the following
discussion is valid if the equality does not hold.

The inverse CWT can be defined by the pseudo inverse of W, defined as W, and the
inverse of s is given as W' s. This implicitly means that the inverse CWT of s is the solution

to the following minimization problem:

argmin ||s — W fl12, (2.5)
fer

where ||s]|o denotes the L? norm of s.

2.2.3 Low-Rank Approximation of Spectrograms

Same notes and instruments tend to appear in a music audio signal again and again. From
this tendency, the spectrograms of music audio signals tend to have low-rank structures.

NMF has introduced the structures explicitly with considerable success in monaural audio
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source separation. The idea behind NMF is that the spectrum at each frame is assumed to be
represented as a weighted sum of a limited number of common spectral templates. Since the
spectral templates and the mixing weights should both be non-negative, this implies that
an observed spectrogram is modeled as the product of two non-negative matrices. Thus,
factorizing an observed spectrogram into the product of two non-negative matrices allows us
to estimate the unknown spectral templates constituting the observed spectra and decompose
the observed spectra into components associated with the estimated spectral templates.

To examine how different the low-rankness changes with different time-frequency rep-
resentations and music genres, we conducted an experiment using the RWC music genre
database [2]. We used a measure to evaluate the rank of spectrograms as a nuclear norm of
a magnitude spectrogram normalized with a Frobenius norm. CW'T spectrograms were com-
puted with the fast approximate CWT algorithm [61,62] using the log-normal wavelet [1],
which has a Gaussian shape in the log-frequency domain. We set a parameter corresponding
to a standard deviation of the Gaussian as one fifth of a semitone interval, and the center fre-
quencies of the CWT ranged 27.5 to 7902 Hz with 100/3 cent interval. STFT spectrograms
were computed with a Gaussian window of 64 ms and a hopsize of 10 ms. We randomly
extract parts of each music signal with a duration of 10 s and compute the measures. We
repeated the operation ten times and calculated the average measures and standard errors.

The results are summarized with respect to main categories defined in the RWC music
genre database in Fig. 2.5. (The results with respect to subcategories defined in the database
are displayed in Fig. A.1.) We can confirm that the ranks of the CWT spectrograms were
more on average than that of the STFT spectrograms for Latin songs while the CWT and
STFT spectrograms have similar ranks averagely for classical musical pieces. This result
suggests that percussive sounds deteriorate the accuracy of audio source separation in the
CWT domain. For Jazz musical pieces, the ranks of the CWT spectrograms are higher than
the STFT spectrograms. This may be because the musical pieces contain the bass solo part

and the CW'T spectrograms captured the spectral dynamics at very low Fgs.

2.2.4 Generating Processes of Musical Instrument Sounds

The generating processes of many musical instrument sounds in real world can be explained
fairly well by the source-filter theory. With the theory, an instrument signal is assumed to

consist of an excitation signal and a linear filter. The excitation signal is associated with a
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Figure 2.5: Comparison of STFT and CWT spectrograms in low-rankness for main categories of

music genres.

vibrating object (e.g. a violin string) and varies with pitch. In contrast, the filter represents
the resonance structure of the instrument and varies with timbre. Thus, the theory enables
us to represent pitch and timbre components of an instrument signal separately and to make
assumptions regarding the components individually. If we can obtain adequate parameters
of the source-filter model, estimated spectral shapes may be suppressed to be far different
from spectra of real musical instruments. For the above reasons, we consider the principle
[P2].

Let us assume that a discrete-time audio signal produced by a musical instrument within
a short-time segment is an output of a Pth order autoregressive (AR) process, i.e. an Pth
order all-pole system. That is, if we denote the signal by f[i] for i =0,1,--- | I —1, f[i] can

be described as
Bl i) = Blplfli — p] + elil (2.6)

where i, €[i], and S[p] (p = 0,1,---, P) denote the discrete-time index, an excitation signal



16 Chapter 2 Spectrogram-Aware Approach Using CWT Representations

and the AR coefficients, respectively. By abuse of notation, we understand f[i| = 0 for
i #0,1,--- 1 —1. As can be seen from Eq. (2.6), each f[i] can be predicted by a linear
combination of the P latest samples, and thus an audio compression method using this

representation is called linear predictive coding (LPC) [51].

2.2.5 Spectral Leakage

Finally, we describe reasons of the principle [P3]. Any time-frequency representation
has spectral leakage, which means that energy of an input signal spreads in the frequency
direction even if the input signal is a sinusoid of infinite length. The choice of the basis
waveforms determines the shape of the spectral leakage and thus there are certain constraints
of the neighboring time-frequency components. Here, let us consider the case where harmonic
components of different audio sources are close to each other. In this case, if the concrete
shape and functions of the individual components is known in advance, they can be useful
cues for the separation. Thus, identifying the shape of the spectral leakage can be valid for

separating adjacent Fj and harmonic components of different sources.

2.3 Issues to Realize the Spectrogram-Aware

Approach

All the principles are important for monaural audio source separation with high accuracy,
but methods that satisfy any one of the principles have been presented in previous literature
as mentioned in the above. One of the reasons why methods satisfying all the principles have
yet been presented is that source separation in the CWT domain have different difficulty
from that in the STFT domain. For example, if we assume the independence of an excitation
signal and a filter as with many studies of the source-filter model [51-56], the spectrum
of an instrument sound can be described as a product of an excitation spectrum and a
filter spectrum in the FFT domain due to the convolution theorem. Furthermore, if each
time slice of STFT spectrograms is assumed to be independent, the source-filter model
can be incorporated in the STFT domain as in the FFT domain. In contrast, since basis
waveforms of CWT are not always orthogonal rather non-orthogonal, the exact source-filter
representation in the CW'T domain is unclear and would be different from that in the STFT

domain. This makes it not easy to incorporate useful time-domain models and cues in
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the time domain into CWT-domain representations. The non-orthogonality of the basis
waveforms is the main obstacle to develop a monaural audio source separation approach in
the CWT domain.

On the basis of the above discussion, we attempt the following issues to realize the

spectrogram-aware approach:
[I1] How can we incorporate the source-filter model in the CWT domain 7 (Chapter 3)
[I2] How can we describe the spectral leakage in the CWT domain ? (Chapter 4)

[I3] How can we simultaneously incorporate the source-filter model and the spectral leakage

in the CWT domain 7 (Chapter 5)



Chapter 3

Shifted Non-Negative Matrix
Factorization with Source-Filter

Model

3.1 Chapter Overview

This chapter proposes an extension of NMF, which combines the shifted NMF model with
the source-filter model. Shifted NMF was proposed as a powerful approach for monaural
source separation and multiple Fj estimation, which is particularly unique in that it takes
account of the constant inter-harmonic spacings of a harmonic structure in log-frequency
representations and uses a shifted copy of a spectrum template to represent the spectra of
different Fjs. However, for those sounds that follow the source-filter model, this assumption
does not hold in reality, since the filter spectra are usually invariant under F changes. A
more reasonable way to represent the spectrum of a different Fj is to use a shifted copy
of a harmonic structure template as the excitation spectrum and keep the filter spectrum
fixed. Thus, we can describe the spectrogram of a mixture signal as the sum of the products
between the shifted copies of excitation spectrum templates and filter spectrum templates.
Furthermore, the time course of filter spectra represents the dynamics of the timbre, which
is important for characterizing the feature of an instrument sound. Thus, we further incor-
porate the non-negative matrix factor deconvolution (NMFD) model into the above model
to describe the filter spectrogram. We derive a computationally efficient and convergence-

guaranteed algorithm for estimating the unknown parameters of the constructed model based

18



Chapter 3 Shifted NMF with Source-Filter Model 19

Magnitude

e el

48 85 151 269 480 855 1523 2714 4836
Log—Frequency [HZ]

Figure 3.1: Two spectra of clarinet sounds at different pitches.

on the auxiliary function approach. Experimental results revealed that the proposed method

outperformed shifted NMF in terms of the source separation accuracy.

3.2 Introduction

One major approach to monaural source separation involves applying NMF to an observed
magnitude (or power) spectrogram interpreted as a non-negative matrix [21]. While many
variants and extensions of NMF were developed based on spectrograms with linear frequency
resolution such as the STF'T, spectrograms with log-frequency resolution such as the CWT
were chosen to utilize a fact that Fys of pitches in music are geometrically spaced in some
studies [8,32,33,36-38]. Specifically, shifted NMF [37], a.k.a shift-invariant PLCA [38], has
been often used in monaural source separation and multiple Fj estimation with considerable
success [39,40,70]. In this method, all notes performed by a specific instrument are assumed
to have a same harmonic structure in the entire musical piece. With this assumption, each
basis spectrum is associated with an individual instrument, and all notes performed by the
instrument can be represented by translating the basis spectrum up or down on the log-
frequency axis. The shift-invariant property has been also utilized in [47].

However, the above assumption is not always a valid approximation in real situations,
specifically for sounds at separate pitches. In fact, as we can see from Fig. 3.1, the two
spectra are apparently far different in relative energy of partials with each other. Although
previous studies limited a possible translation range [37] and associated multiple basis spectra

with each instrument [39,40,70] to cope with the problem, these increase the number of
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parameters excessively and makes the estimation less reliable.

To explore more compact representations, we focus on a fact that the generating processes
of instrument sounds can be explained fairly well by the source-filter theory. According to
the theory, an audio signal of an instrument is modeled by an excitation signal, produced
by a vibrating object (e.g. a violin string), and a linear filter, representing the resonance
structure of the instrument. The excitation signal varies with pitch, whereas the filter varies
with timbre. This suggests that the shift-invariant property should be imposed only on
excitation spectra of instrument sounds.

Motivated by the above, we propose a new method of separating individual instrument
sounds from a mixture audio signal by incorporating the source-filter model into shifted
NMF. While many NMF variants containing the source-filter [41-44, 50] used STFT spec-
trograms, the proposed method is developed based on spectrograms with log-frequency res-
olution to utilize the shift-invariant property. We hereafter consider spectrograms obtained
with the CWT such that its center frequencies are geometrically spaced. We first describe
spectrograms of individual instrument sounds separately, assuming that the excitation spec-
tra are shift-invariant. Furthermore, we introduce time-extended filter models to represent
temporal dynamics of timbre, which would be useful for monaural source separation. Sec-
ond, we formulate the NMF as a minimization problem and derive a convergence-guaranteed
algorithm that consists of multiplicative update equations based on an optimization princi-
ple called the auxiliary function approach [71-73]. Finally, we evaluate the impact of the
incorporation of the source-filter model in source separation accuracy using recorded music

signals.

3.3 Incorporating Source-Filter Model into Shifted

Non-Negative Matrix Factorization

3.3.1 Spectrogram Model of Single Instrument Sound

Let us define indexes of log-frequency and time by [ =0,--- | L—land m =0,--- , M —1,
respectively. We consider a CWT spectrogram of an audio signal that follows the source-filter
model. If we can assume that the frequency response of a filter (a filter spectrum) is constant
at each subband, the spectrum obtained with CWT can be described by the product of an

excitation spectrum and a filter spectrum as in the STFT domain. Since the inter-harmonic
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spacings of a harmonic structure are constant in the log-frequency domain, a shifted copy of
a excitation spectrum template can be used to represent the excitation spectra of different
Fys, as with shifted NMF [37] and shift-invariant PLCA [38]. The spectrogram Xl(i;(?k >0
of source excitation k(= 0,--- , K — 1) is modeled as a convolution of a excitation spectrum
template Sy; > 0 with time-varying gains U,Ee;(zn >0, i.e. Xl(j:?k = pep Sk,l_pU,g?;%, where
p is the frequency shift index and P is the set of possible frequency shifts. By abuse of
notation, we understand that Si;—, =0 unless 0 <!l —p < L — 1.

On the other hand, we describe the filter spectrogram in a similar manner to NMFD [27]
and NMF-2D [8] to capture the dynamics of the timbre, which is important for characterizing
the feature of an instrument sound. The spectrogram X l(iiti > 0 of filter 7(=0,--- ,R—1)
is represented by a time convolution of a time-frequency profile F.; > 0 with time-varying
gains Uﬁnl@t) >0, Le. Xl(?:)r = Zy:(;ap)fl Fr,l,TUg;}flT, where 7 =0, --- , M®P) — 1 is the time

shift index and M®P) is the tap size of the time-frequency profiles. By abuse of notation,

we understand that {7\fY

rm—T

=Qunless0<m-7< M —1.
As we want the magnitude spectra of filters to be smooth and non-negative in the log-
frequency domain, we parameterize F,;, by N envelope kernels G, > 0 and their mixture

weights W,.,, - > 0 that satisfies > W, . = 1:

Fr,l,T = Z WT,n,TGl,na (31>
1 (w—pn)?
Gip = e 2?2 3.2
b V2m? (3.2)
where n = 0,--- , N — 1 is the index of envelope kernel and w; € (0, 7] is the normalized

angular frequency corresponding to the I/th log-frequency. The kernel G, for n > 1 is
identical to a normal distribution of a normalized angular frequency with mean p, and
variance 2.

Multiple excitation and filter spectra can be used for an instrument to describe complex
spectral changes, but we hereafter assign an excitation spectrum and a filter spectrum to

each instrument for the simplicity. By putting Uy, pm-r = U,ge;%U,gfﬂtgm_T

and treating
Ukrpm—- itself as a parameter, the spectrogram of an instrument sound associated with

source excitation k and filter r can be written as

Xl,m,k’,r = Z Fr,l,TSk’,l—pUk,r,p,m—T' (33>

p?T

Assuming the additivity of magnitude spectrograms as with conventional NMFs, the ob-
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Table 3.1: List of indices for the proposed model.

Notation Meaning

[=0,---,L—1 Log-frequency index

m=0,---,M—1 Time index

k=0,--- , K—1 Source excitation index

r=0,---,R—1 Filter index

peP Frequency shift index (P is the set of possible frequency shifts.)
n=0,---,N—1 Index of kernels constituting filter spectrograms
r=0,---,MtP) _1 Time shift index of filter spectrograms

served spectrogram can be represented as
Xl,m = Z Xl,m,k,r- (34)
k,r

To avoid the indeterminacy in scaling, we put ), Sk, = 1 for all k. The indexes used in this
model is summarized in Tab. 3.1.

Although a model similar to the above has been mentioned in [74], the temporal dynamics
was not incorporated into the source-filter model in the literature. Any experimental evalu-
ation was not given and the incorporation of the source-filter model into shifted NMF has
yet been validated. We will thus confirm the efficacy of the incorporation of the source-filter

model in Sec. 3.5.

3.3.2 Formulation

For a given magnitude spectrogram Y := {Y} , };.m, we would like to find the parameters
S = {Skpthpy W= {Winrtrns and U := {Up 1 tkrim of the proposed model such that
minimizes

LS, W,U) =Y Du(Yim|[Xpm) + Ru(U). (3.5)
l,m

The first term of Eq. (3.5) is a goodness-of-fit measure between Y and X = {X;;,}im.

How to define the measure is very important since it corresponds to an assumption to the
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statistical nature of observed data. If we define D; as the generalized Kullback-Leibler
divergence (a.k.a I divergence), it implicitly assumes that Y}, follows a Poisson distribution

with mean X ,,:

DI(YE,mHXl,m> = Yi,m n = — Yz,m + Xl,m- (36>

Y,

Xim
From this fact, it is known that minimizing Zl,m Dy(Y, || Xim) with respect to X ,,, amounts
to the maximum likelihood estimation of Xj,,. This measure is frequently used in conven-
tional NMF algorithms and has been confirmed to work well for audio source separation

empirically. Another commonly-used measure is the Itakura-Saito divergence Dig:

Y2 Y2
Dis(Y2 || X)) = —2™ —n 2™ 1, 3.7
18V 1 X0m) Xon Xom (3.7)

This corresponds to the assumption that an observed complex spectrogram follows a circularly-
symmetric complex normal distribution with mean zero and variance X;,,, in which X,
can be interpreted as a model of a power spectral density of the observed signal.

The second term R.(U) is a regularizer for U. In popular and classical western music,
the number of pitches occurred in a musical piece and the number of times each note is
performed are usually limited, and so inducing the sparsity of U would facilitate the source
separation. To reflect it, we can design the regularizer in analogy to the Bayesian modeling.
The conjugate prior of the Poisson distribution is a gamma distribution Gam(z;a, ) o

7% te™P% and thus we design the regularizer Ry(U) for Dy as

Z { (I) o 1 ln Uk TP, + 6 Uk r,p,m} (38)

k,r,p,m

where a® > 0 and B > 0 are associated with the shape and rate parameters of a gamma
distribution, respectively. Similarly, the conjugate prior of a circularly-symmetric complex
normal distribution with known mean and unknown variance is an inverse gamma distribu-

—a—1

tion InvGam(y; o, ) ox x e B/% and we design the regularizer for Dig as

(15)
Ris(U)= > {(a<IS> + D) InUpypm + 6—} , (3.9)

k,r,p,m

where o™ > 0 and 8 > 0 are associated with the shape and scale parameters of an
inverse gamma distribution, respectively. The less oV (a')), the more sparse U tends to

become.
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3.4 Parameter Estimation Algorithms Based on

Auxiliary Function Approach

3.4.1 Parameter Estimation Algorithm for Proposed Model with

I Divergence Criterion

We first derive a parameter estimation algorithm for the I divergence. Since Li(S, W, U)
involves summations over k,r, p,7 and n in the logarithmic function, the current minimiza-
tion problem is difficult to solve analytically. However, we can develop a computationally
efficient algorithm for finding a locally optimal solution based on the auxiliary function ap-
proach [71-73|. The first step to apply the auxiliary function approach, is to define an upper
bound function for the objective function £(S, W, U), arranged as L (S, W, U, A), such that
L(S,W,U) = miny LT(S,W,U,A). We call A an auxiliary variable and £*(S,W,U, A) an
auxiliary function. If we can construct £1(S, W, U, A), L(S,W,U) is non-increasing under
the updates {S, W, U} < argmin L (S, W, U, A) and A « argmin L7 (S, W, U, A).

Since the logarithmic funscgz[i/gl is a concave function, we carll\ obtain an upper bound func-
tion by invoking the Jensen’s inequality:

Y I Xy € = Vi Y Mmbrprn (0 Spup + Wiy
k,r,p,7on

+1n Gl,n + In Uk,T,p,me —In )\l,m,k,r,p,T,n) (310)

where A krprn > 01s an auxiliary variable such that >, o Amkrprn = 1 for all [ and

m. The equality holds if and only if

A o Sk,l—pWr,n,TGl,nUk,r,p,m—T
l7m7k7r7p’7—7n - . (3-11)
Xl m

The auxiliary function can thus be written as

L:fr(S? I/Va Ua A) f - Z }/l,m Z )\l,m,k,'r,p,ﬂ-,n <ln Sk,l—p +In Wr,n,r +In Uk,r,p,m—ﬂ-
l,m

k,rp,mn

10 M) Y X+ Y (@0 = )Ty — BYUsr o}

I,m k,r,p,m

(3.12)

where A := {Nmkrprntimkrprn. By setting the partial derivatives of £1(S, W, U, A) with

respect to S, W and U at zeros and substituting Egs. (3.11) into A, we can derive the
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following update equations:

Yim
Zl,m X ZT,T FT,Z,TUk,r,l—l’,m—T S
Im k)l
Sk Sk . Sk — , (3.13)
>t Frir Uk ri—v m—r > 1Sk
Yim
2t o 2pk GunSki—pUkrpim—r
l,m Wr’an
WT,n,T eIA/'I","’L,T WT’nT % ) (3 14)

) \T, —
Zl,m,p,k Gl’nSkvl_pUk’T’p:m_T Z'n/,’r/ WT‘,?’L’,T/
Yim
: I
Ukt 2t~ 2pyk Frtm—m Sha—p + al —1
I,m
b
Zl,m,p,k FrtmemSki—p + O

Uk.rpm' = (3.15)

Both second update rules of Egs. (3.13) and (3.14) are to normalize S and U. It is
important to note that once the initial values of W and S are set to be non-negative,
the multiplicative update equations ensures the non-negativity of the entries of W and
S. Since the non-negativity of U does not hold, we can ensure it by simply performing
Uk rpm < max{0, U, ,m} at each update.

One may think that the update equations contain time-consuming convolutions and cor-
relations and would require a long computation time. However, we can invoke the fast
Fourier transform (FFT) to calculate the convolutions and correlations, and they are not
time-consuming in practice. For example, Eq (3.13) contains a convolution in 7 (correlation
in /) and a naive calculation of the convolution is of O(M®P)T) (O(LP)), whereas the FFT
reduces the complexity to O((T+ M ®P) In(T+ M ))) (O((L+ P) In(L+ P)), respectively).

3.4.2 Parameter Estimation Algorithm for Proposed Model with

IS-Divergence Criterion

Similarly to the above, we can construct an auxiliary function for the IS divergence, using

two inequalities. The logarithm function is a concave function and we can derive

Xim — Cim
lIlXLm S LO—l’ + In Cl,m; (316)

l,m
where (), is an auxiliary variable and the equality holds if and only if C,, = X;,,. Since
1/z is a convex function of x, we can invoke Jensen’s inequality as
2

2 12
YE,m < YE,m(bl,m,k,r,p,T,n (3 17)

~ E > .
Xl,m Slfp,kGl,nWr,n,TUk,r,p,me

k7r7p’7-7n
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where @y krprn > 0 is another auxiliary variable satisfying >, v Pt kerprn = 1 for all

[ and m. The equality of this inequality holds if and only if

o Sk,l—pW'r,n,TGl,nUk,r,p,m—T
¢l7m7k7,r9p’7-7n - (3-18)
Xl m

Hence the auxiliary function can be derived as

Y2 ¢2 X _ C’
+ _ LmYlmk,r,p,m,n Lm Lm
/CIS(Sa W) U7 07 ¢) ?Z ( Z Sl kGl W Uk- + C _|_1n Cl,m
Im \krprn ‘P nWrnrUkrpm—1 Lm
(1s) [19)
+ D { 1) 0V + } (3.19)
k,r,p,m k,r,p,m

The update equations can be derived similarly as

Y2
I,m
Zl,m,’l"ﬂ' X2 Fr,l,TUk’,r,p,m
l,m

Sk 14
Spw —Sp Sy & = 520
k,l k.l FT,I’TUkm,p,m o Zl Skvl ( )
Zl,m,r,‘r T
2
. . Zl,mk,p X2 - Ski—pGiaUk e pm . W, - 391
rm7 S Wenr s R A S '
n, 5Ty Sk,l—pGl,nUk’»"?pam Y an T/ Wr,n/ﬂ—/ ( )
Zl,m,k,p Xl 7
A r,p,m/

Uk,r.pm! = (15) 2 - (18) .

a'™ +1 Ski—pErim—m a™ +1

s T —— | Ay + ———

\/( 2 ) i <Zl’m Xim ke T
where
Y, 2 (1s)

Ak,r,p,m’ = Z X_QFryl,m—m/ Sk’,l—PUk,T,pvm’ + 67 <3'23)

Im lym

3.5 Experiments

3.5.1 Experimental Conditions

To evaluate the proposed algorithms in signal-to-distortion ratio (SDR), we conducted a
supervised source separation experiment. SDRs were computed with the BSSEval toolbox
[75]. For the convenience, we call the proposed algorithm with the I divergence criterion

(the IS divergence criterion) I-SNMFwSF (IS-SNMFwSF, respectively). For comparison,
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we employed shifted NMF with the I divergence criterion (I-SNMF) and that with the IS
divergence criterion (IS-SNMF). While the original shifted NMF [37] does not contain any
terms inducing the sparsity of parameters, the use of R,(U) improved SDRs and we here
used R.(U).

The experimental data was the Bachl0 dataset [76], which consists of audio recordings
of ten four-part chorales by J. S. Bach. Each recording is a mixture of violin, clarinet
saxophone and bassoon performances, which correspond to the soprano, alto, tenor and
bass parts of each musical piece, respectively. Audio recordings of individual parts are
also contained in the dataset. All recordings were monaural and downsampled to 16 kHz.
Magnitude spectrograms were computed with the fast approximate CWT algorithm [61,62].
The center frequencies ranged from 27.5 to 7902 Hz with 100/3 cent interval and the log-
normal wavelet [1] was used as an analyzing wavelet. The wavelet has a Gaussian shape
with a common variance in the log-frequency domain, and we set a parameter corresponding
to the standard deviation of the Gaussian as a one fifth of a semitone interval.

We first trained S and W of the proposed models and basis spectra of the shifted NMFs
with the audio recordings of individual parts of the five musical pieces (training data), and
then performed source separation on the audio recordings of the other five musical pieces
(test data). With the proposed algorithms, a pair of a source excitation and a filter was
trained for each instrument, and a total of four pairs of a source and a filter were used for
the separation. With the shifted NMF's, one basis spectrum was assigned to each instrument
and a total of four basis spectra were used for the separation. For each test data, we designed
a soft time-frequency mask as X’l,m,k,r /X1 to obtain separated audio signals of the sources.
The proposed methods and the shifted NMF's ran for 100 iterations both in the training and
test stages. As ol or o™, we use ot = 1.0 x 107'°,0.2,0.4,0.6,0.8, 1.0 for the training
data and (" = 1.0 x 107'°,0.2,0.4,0.6,0.8, 1.0 for the test data. The other parameters
were set as follows: B = pI8) = 1.0 x 10719, M®») = 1 N = 140, v = 7/2(N — 1) and
pn=mn/(N—1)forn=0,--- ,N—1.

3.5.2 Results

Table 3.2 summarizes average SDR improvements with standard errors obtained with all
algorithms for each musical piece, and Fig. 3.2 compares all algorithms in average SDR

improvements, signal-to-interferences ratio (SIR) improvements and signal-to-artifacts ra-
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Table 3.2: Average SDR improvements with standard errors [dB] obtained with the proposed
algorithms (I-SNMFwSF and IS-SNMFwSF) and the shifted NMFs (I-SNMF and IS-SNMF).
The displayed results were the highest in overall average SDR improvement of all combinations
(oa(trai“),a(teSt)) for each algorithm, and the pairs of two values below the algorithm names are

(a(train), a(te“)) for the highest results.

Viical Pioc|  TSNMFWSE  IS.SNMFwSF  LSNMF  1S-SNMF
(0.6,1.0 x 10°°)  (1.0,0.6)  (1.0,0.4) (0.4,1.0)
No. 1 6.35 + 1.60 5594045 4.00+1.34 2.39+1.35
No. 2 6.39 + 1.67 4814069 4.74+1.06 2.91 +1.49
No. 3 5.67 +1.61 3844082 3.53+1.08 2.88 + 1.51
No. 4 5.02 + 0.57 45840.69 3.23+0.44 2.24+0.52
No. 5 6.60 + 1.40 5014054 4.32+1.08 3.64+1.07
Overall 6.01 £ 0.58 4774029 3.97+0.44 281 +0.51

tio (SAR) for all data. In both divergences, the proposed algorithms provided around 2
dB higher SDR improvements on average compared to the shifted NMFs. Thus, we can
confirm that the incorporation of the source-filter model improves the source separation ac-
curacy in the CWT domain. The results of IS-SNMFwSF were less on average than those
of I-SNMFwSF, and the tendency of the difference in separation accuracy between the I
divergence and the IS divergence is consistent with the results on conventional NMFs (for
example, see [77]).

Fig. 3.3 displays average SDR improvements and standard errors for individual musical
instruments. I[-SNMFwSF with N > 100 provided significantly higher SDR improvements
for all musical instruments compared to [-SNMF. This shows that the incorporation of
the source-filter model is valid for the four musical instruments. We found that the best
N was different for each musical instrument, and exploring the best Ns for other musical

instruments and classifying them is one of the future works.

3.6 Summary

This chapter has developed a new source separation method by incorporating the source-
filter model into shifted NMF. With the proposed model, the observed spectrogram is rep-
resented by a product of excitation and filter spectrograms. The excitation spectrogram is

described with shifted NMF to exploit the constant inter-harmonic spacings of a harmonic
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Figure 3.2: Average SDR improvements, SIR improvements and SARs with standard errors for

overall data. The parameters and algorithms are the same as Table 3.2.

structure in the log-frequency domain, and the filter spectrogram is modeled by NMFD to
represent temporal dynamics of timbre. We have derived iterative algorithms of estimating
parameters for the I divergence and IS divergence criterions based on the auxiliary function
approach. We have experimentally confirmed that the proposed algorithm outperformed
shifted NMF in the accuracy of source separation. In future, we will examine the effect of

setting M #P) > 1 to the source separation accuracy.
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Figure 3.3: Average SDR improvements and standard errors obtained with the proposed algorithm

(I-SNMFwSF) and I-SNMF for each musical instrument. “SNMF” corresponds to I-SNMF.
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Chapter 4

Harmonic Temporal Factor

Decomposition

4.1 Chapter Overview

For monaural source separation two main approaches have thus far been adopted. One
approach involves applying NMF to an observed magnitude spectrogram, interpreted as a
non-negative matrix. The other approach is based on the concept of CASA. A CASA-
based approach called the “harmonic-temporal clustering (HTC)” aims to cluster the time-
frequency components of an observed signal based on a constraint designed according to
the local time-frequency structure common in many sound sources (such as harmonicity
and the continuity of frequency and amplitude modulations). This chapter proposes a new
approach for monaural source separation called the “Harmonic-Temporal Factor Decomposi-
tion (HTFD)” by introducing a spectrogram model that combines the features of the models
employed in the NMF and HTC approaches. We further describe some ideas how to design
the prior distributions for the present model to incorporate musically relevant information

into the separation scheme.

4.2 Introduction

Monaural source separation is a process in which the signals of concurrent sources are
estimated from a monaural polyphonic signal and is one of fundamental objectives offering

a wide range of applications such as music information retrieval, music transcription and

31
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audio editing.

While we can use spatial cues for blind source separation with multichannel inputs, for
monaural source separation we need other cues instead of the spatial cues. For monaural
source separation two main approaches have thus far been adopted. One approach is based
on the concept of computational auditory scene analysis (e.g., [78]). The auditory scene
analysis process described by Bregman [11] involves grouping elements that are likely to
have originated from the same source into a perceptual structure called an auditory stream.
In [1,17], an attempt has been made to imitate this process by clustering time-frequency com-
ponents based on a constraint designed according to the auditory grouping cues (such as the
harmonicity and the coherences and continuities of amplitude and frequency modulations).
This method is called “HTC.”

The other approach involves applying NMF to an observed magnitude spectrogram inter-
preted as a non-negative matrix [21]. The idea behind this approach is that the spectrum at
each frame is assumed to be represented as a weighted sum of a limited number of common
spectral templates. Since the spectral templates and the mixing weights should both be
non-negative, this implies that an observed spectrogram is modeled as the product of two
non-negative matrices. Thus, factorizing an observed spectrogram into the product of two
non-negative matrices allows us to estimate the unknown spectral templates constituting the
observed spectra and decompose the observed spectra into components associated with the
estimated spectral templates.

The two approaches described above rely on different clues for making separation possible.
Roughly speaking, the former approach focuses on the local time-frequency structure of
each source, while the latter approach focuses on a relatively global structure of music
spectrograms (such a property that a music signal typically consists of a limited number
of recurring note events). Rather than discussing which clues are more useful, we believe
that both of these clues can be useful for achieving a reliable monaural source separation
algorithm. This belief has led us to develop a new model and method for monaural source
separation that combine the features of both HTC and NMF. We call the present method
“HTFD.”

The present model is formulated as a probabilistic generative model in such a way that
musically relevant information can be flexibly incorporated into the prior distributions of
the model parameters. Given the recent progress of state-of-the-art methods for a variety

of music information retrieval (MIR)-related tasks such as audio key detection, audio chord
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Figure 4.1: The Fourier transform of the log-normal wavelet defined in [1].

detection, and audio beat tracking, information such as key, chord and beat extracted from
the given signal can potentially be utilized as reliable and useful prior information for source
separation. The inclusion of auxiliary information in the separation scheme is referred to
as informed source separation and is gaining increasing momentum in recent years (see e.g.,
among others, [35,42,79,80]). This chapter further describes some ideas how to design the
prior distributions for the present model to incorporate musically relevant information.

We henceforth denote the normal, Dirichlet and Poisson distributions by N, Dir and Pois,

respectively.

4.3 Spectrogram Model of Music Signal

4.3.1 Continuous Wavelet Transform of Source Signal Model

As in [1], this section derives the CWT of a source signal. Let us first consider as a signal
model for the sound of the kth pitch the analytic signal representation of a pseudo-periodic
signal given by

N

filu) = 2:a’m(u)ej(ne?k(u)+sok,n)7 (4.1)

n=1
where u € (—o00,00) denotes the continuous time, nfy(u) + ¢, the instantaneous phase

of the nth harmonic and ay,(u) the instantaneous amplitude. This signal model implicitly
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ensures not to violate the ‘harmonicity’ and ‘coherent frequency modulation’ constraints of

the auditory grouping cues. Now, let the wavelet basis function be defined by

Ya4) = — w(u_t>, (4.2)

2To Q

where « is the scale parameter such that a > 0, ¢ the shift parameter and ¢(u) the mother
wavelet with the center frequency of 1 satisfying the admissibility condition. t,:(u) can
thus be used to measure the component of period a at time t. The CWT of fi(u) is then
defined by

o N
Wi (In iaﬂ = / Zak,n(U)ej(”‘)k(“”“”’“’")wz,t(U)du- (4.3)
X p=1

Since the dominant part of 7} ,(u) is typically localized around time ¢, the result of the
integral in Eq. (4.3) shall depend only on the values of 8 (u) and ay, ,(u) near t. By taking this

into account, we replace 6i(t) and ay,,(t) with zero-and first-order approximations around

time ¢:
U (U) =g (1) + da"a—’;(u) u_t(u — 1)+ (4.4)
(1) (45)
o) =0, () 2| %dQS’Z(Z“) e (4.6)
04 (t) + O(8) (u — ). (47)

Note that the variable 6 (u) corresponds to the instantaneous fundamental frequency (Fp).
By undertaking the above approximations, applying the Parseval’s theorem, and putting

x =1In(1/a) and Q(t) = In ék(t), we can further write Eq. (4.3) as
N
Wi(z,t) = Z U (£) U (e "0 oI (0 () kn) (4.8)
n=1

where = denotes log-frequency and ¥ the Fourier transform of ¢. Since the function ¥ can
be chosen arbitrarily, as with [1], we employ the following unimodal real function whose

maximum is taken at w = 1:

_ (nw)?
)y =" w>0) (4.9)

0 (w<0)

The illustration of ¥(w) is shown in Fig. 4.1. Eq. (4.8) can then be written as

(=g (t)—In n)2

Wi(z,t) = Z apn(t)e 207 ) (MO +ern), (4.10)
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Figure 4.2: Spectral model of the pseudo-periodic signal at time ¢,, in the CWT domain.

If we now assume that the time-frequency components are sparsely distributed so that the

partials rarely overlap each other, [Wj(x,t)| is given approximately as

N 2
Wl )] = 3 lawa(Ole™ 55 (411)

n=1
This assumption means that the magnitude spectra of the partials can approximately be
considered additive. Note that a cutting plane of the spectrogram model given by Eq. (4.11)
at time t is expressed as a harmonically-spaced Gaussian mixture function as depicted in
Fig. 4.2. Tt should be noted that this model is identical to the one employed in the HTC
approach [1]. It is worthwhile noting that the spectrogram model approximately describes
the spectral leakage of the pseudo-periodic audio signal and enables us to develop a method
that takes account of the spectral leakage effect in the CW'T domain.

Although we have defined the spectrogram model above in continuous time and continuous
log-frequency, we actually obtain observed spectrograms as a discrete time-frequency repre-
sentation through computer implementations. Thus, we henceforth use Y, := Y (2, %,,) to
denote an observed spectrogram where z; (I =0,...,L—1) and ¢,, (m =0,..., M —1) stand
for the uniformly-quantized log-frequency points and time points, respectively. We will also

use the notation €2, and ag . m to indicate Q(t,,) and agn(tm).

4.3.2 Observed Spectrogram Model

The key assumption behind the NMF model is that the spectra of the sound of a particular
pitch is expressed as a multiplication of time-independent and time-dependent factors. In

order to extend the NMF model to a more reasonable one, we consider it important to clarify
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which factors involved in the spectra should be assumed to be time-dependent and which
factors should not. For example, the [y must be assumed to vary in time during vibrato or
portamento. As with the NMF model, the scale of the spectrum should also be assumed to
be time-varying, whereas the spectral shape of each pitch can be relatively static.

These assumptions can be reflected to the present model in the following way. We factorize

|k n.m| into the product of time-independent and time-dependent variables, wy,,, and Uy ,:
|k ] = Wi Ukm (4.12)

Wy, can be interpreted as the relative magnitude of harmonic n and Uy, ,,, as the time-varying
magnitude of the sound of pitch k. To avoid an indeterminacy in scaling, we introduce
>, Wiy =1 for all k.

If we assume the additivity of magnitude spectra, the magnitude spectrogram of a super-
position of K pitched sounds is given by the sum of Eq. (4.11) over k. In equation, we can

write a spectrogram model X, as

K—1
Xim = Z Xkim, (4.13)
k=0
N 2
~ (Il_ﬂk,m_ln n)
Xiim = Z Wgn€ 20 Uk.m.- (4.14)
n=1

N J/
g

Hg 1.m

If we denote the term inside the parenthesis by Hj;,,, X;,, can be rewritten as X;,, =
> & Hii.mUkm and so the relation to the NMF model may become much clearer. It should
be noted that the change of Hy;,, with the F{ can be represented by shifting a specific time
slice of Hy;,,» up or down since the inter-harmonic spacings of a harmonic structure in the
log-frequency domain are constant. This characteristics unique in the log-frequency domain
has been also utilized in shifted NMF [37], shift-invariant probabilistic latent component

analysis [38] and specmurt analysis [47].

4.3.3 Formulating Probabilistic Model

Since the assumptions and approximations we made so far do not always hold exactly in
reality, an observed spectrogram Y, may diverge from X;,, even though the parameters
are optimally determined. One way to simplify the process by which this kind of deviation

occurs would be to assume a probability distribution of Y}, with the expected value of X ,,.
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Figure 4.3: Spectrogram of a violin vibrato sound recorded in RWC music instrument database [2].

Here, we assume that Y;,, follows a Poisson distribution with mean Xj,,

Vi ~ Pois(Yim: Xim), (4.15)
where
2ot
Pois(z; &) = %. (4.16)

This defines our likelihood function

p(Y10) = [ [ Pois(Yim; Xim), (4.17)

I,m
where Y denotes the set consisting of Y}, and © the entire set consisting of the unknown
model parameters. It should be noted that the maximization of the Poisson likelihood with
respect to X;,, amounts to optimally fitting X;,, to Y}, by using the generalized Kullback-
Leibler divergence (a.k.a I-divergence) as the fitting criterion. The choice of the Poisson
likelihood is made for the convenience of deriving the optimization algorithm, which we will
show in Sec. 4.5.

The Fj of stringed and wind instruments often varies continuously over time with musical
expressions such as vibrato and portamento. For example, the Fy of a violin sound varies
periodically around the note frequency during vibrato, as depicted in Fig. 4.3. Let us denote

the standard log-F{, corresponding to the kth note by ui. To appropriately describe the
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variability of an Fj contour in both the global and local time scales, we design a prior
distribution for Q4 := (Qk.0, U1, -, Qar—1)' by employing the product-of-experts (PoE)
[81] concept using two probability distributions. First, we design a distribution g¢4(£2)
describing how likely 0, ..., -1 stay near . Second, we design another distribution

() describing how likely Qgp, ..., -1 are locally continuous along time. Here we

define ¢,(Q%) and ¢(Q) as

qe() = N (Q; pLar, vidar), (4.18)
@(Q) = N (Q; 0, 72D ), (4.19)
_ 1 -1 0 O 0 _
-1 2 -1 0 0
o -1 2 -1 0
D= , (4.20)
0 0o -1 2 -1
o --- 0 0 -1 1

where [Ip; denotes an M x M identity matrix, D an M x M band matrix, 1, an M-
dimensional all-one vector, and 0;; an M-dimensional all-zero vector, respectively. v, de-
notes the standard deviation from mean g, and 75 the standard deviation of the F, jumps

between adjacent frames. The prior distribution of €2 is then derived as

P(2) o< qg (k)™ @ (S2k)™ (4.21)

where a, and o) are the hyperparameters that weigh the contributions of g,(€2x) and ¢(€2)

to the prior distribution.

4.3.4 Relation to Other Models

It should be noted that the present model is related to other models proposed previously. If
we do not assume a parametric model for Hy; ,, and treat each Hy,, itself as the parameter,
the spectrogram model X ,, can be seen as an NMF model with time-varying basis spectra,
as in [25]. In addition to this assumption, if we assume that Hy,, is time-invariant (i.e.,
Hiim = Hyy), Xim reduces to the regular NMF model [21]. Furthermore, if we assume

each basis spectrum to have a harmonic structure, X ,, becomes equivalent to the harmonic
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NMF model [32,33]. If we assume that Q,, is equal over time m, X;,, reduces to a model
similar to the ones described in [82,83]. Furthermore, if we describe Uy, using a parametric
function of m, Xj,, becomes equivalent to the HTC model [1,17]. With a similar motivation,
Hennequin et al. developed an extension to the NMF model defined in the short-time Fourier

transform (STFT) domain to allow the Fj of each basis spectrum to be time-varying [84].

4.4 Incorporation of Auxiliary Information

We consider using side-information obtained with the state-of-the-art methods for MIR-
related tasks including key detection, chord detection and beat tracking to assist source
separation.

When multiple types of side-information are obtained for a specific parameter, we can
combine the use of the mixture-of-experts and PoE [81] concepts according to the “AND” and
“OR” conditions we design similarly in the previous section. For example, pitch occurrences
typically depend on both the chord and key of a piece of music. Thus, when the chord and
key information are obtained, we may use the product-of-experts concept to define a prior
distribution for the parameters governing the likeliness of the occurrences of the pitches. In

the next subsection, we describe specifically how to design the prior distributions.

4.4.1 Designing Prior Distributions

The likeliness of the pitch occurrences in popular and classical western music usually
depend on the key or the chord used in that piece. The likeliness of the pitch occurrences
can be described as a probability distribution over the relative energies of the sounds of the
individual pitches.

Since the number of times each note is activated is usually limited, inducing sparsity to the
temporal activation of each note event would facilitate the source separation. The likeliness
of the number of times each note is activated can be described as well as a probability
distribution over the temporal activations of the sound of each pitch.

To allow for designing such prior distributions, we decompose Uy, as the product of
three variables: the total energy C', the pitch-wise relative energy Ey = > Uk./V (i-e.
>« Ex = 1), and the pitch-wise normalized amplitude Ay, = Ugm/(CEy) (ie. >, Apm =1
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?(;1)

Figure 4.4: Plate notation of the proposed overall generative model.
for all k). Hence we can write
Ukm = CELAkm (4.22)

This decomposition allows us to incorporate different kinds of prior information into our

model by separately defining prior distributions over E = (Ey,...,Ex_1)" and A, =

(Aro, .-, Agar—1)". Here we introduce Dirichlet distributions:
Ay, ~Dir(Ap; ™M), (4.23)
E ~Dir(E;~'"?)), (4.24)

: . A A E E
where Dir(z;€) o< [[, 57, 4@ = (78 ), o ,fy](\/[)_l)T, and y&) = ('y(() ), o ,72_)1)? For

p(E), we set y,gE) at a reasonably high value if the kth pitch is contained in the musical

scale and vice versa. For p(Ay), we set 77(714 ) < 1 so that the Dirichlet distribution becomes
a sparsity inducing distribution.

In summary, the overall generative model is depicted in plate notation in Fig. 4.4.
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4.5 Parameter Estimation Algorithm
The random variables of interest in the present model are

Qk.m: the logarithm of F{ for pitch £ at time m,
wg,n: Relative energy of harmonic n of pitch £,
C: Total energy,
E}: Relative energy of pitch k,

Apj.m: Pitch-wise normalized activation of pitch £k at time m.
We denote the set of the above random variables as ©. Given an observed magnitude

spectrogram Y, we would like to find the estimates of © that maximizes the posterior density

p(OY) x p(Y|0)p(©). We therefore consider the problem of maximizing

L(©) :=Ilnp(Y|O)+Inp(O), (4.25)
with respect to © where
np(Y[0) = (YimIn Xy — Xim) (4.26)
Im
Inp(®) = Z Inp(2) + Z Inp(Ay) +Inp(E). (4.27)
k k

= denotes equality up to constant terms. Since the first term of Eq. (4.26) involves sum-
mation over k and n, analytically solving the current maximization problem is intractable.
However, we can develop a computationally efficient algorithm for finding a locally optimal
solution based on the auxiliary function approach [71-73], by using a similar idea described
in [1].

When applying an auxiliary function approach to a certain maximization problem, the first
step is to define a lower bound function for the objective function. As mentioned earlier,
the difficulty with the current maximization problem lies in the first term in Eq. (4.26). By
using the fact that the logarithm function is a concave function, we can invoke the Jensen’s
inequality

_ (zlfﬂkymfln n)2

wk,ne 202 Uk,m (4 28)

YimIn Xigm 2Yim > Mentim In

k.n

=Iim Z )\k,n,l,m <ln Wk n +In Uk,m -

k.n

Ak,n,l,m

(1 — Qpm — Inn)?
202

—In )\k,n,l,m) (429)
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to obtain a lower bound function, where A, ;,, is a positive variable that sums to unity:

ka Mintm = 1. The equality of the inequality (4.28) holds if and only if

_ (zlfﬁk’mfln n)2 U
wi e 202
k:,n k’m
< . (4.30)
,m

Although one may notice that the second term in Eq. (4.26) is nonlinear in 2 ,,, the

Ak,n,l,m =

summation of X;,, over [ can be approximated fairly well using the integral f_oooo X(z,t,)dz
since ), X, is the sum of the values at the sampled points X (z1,t,,), ..., X (2, t,) with

an equal interval, say A,. Hence,

1 ()
Xig = — X(x,t,,)d
> Xin =g | Xt
1 Sy (z—Q Jn—lnn)2
- A_ Zwk,nUk,m/ e k2‘72 dz
z k,n o

_ ZM S Ui > we. (4.31)
z k n

This approximation implies that the second term in Eq. (4.26) depends little on € ,,. The

choice of the Poisson likelihood enables us to use the approximation, which leads that update
equations can be derived in closed form.

An auxiliary function can thus be written as
(r; — Qpm — Inn)?
202

_ ZM S°S Ui S win + Inp(6) (4.32)
z m k n

where A\ denotes the set consisting of A\g ;. We can derive update equations for the model

L‘*(@, )\) f%,m Z /\k,n,l,m (hl Wk p + In Uk,m — —1In /\k,n,l,m)
k.n

parameters, using the above auxiliary function. By setting at zero the partial derivative of

L7(0, ) with respect to each of the model parameters, we obtain

Zl,m }/LmAk‘vnal»m w % wk,n
) k.mn

1
) o . «Q
Q. (;D + U_gIM +) dlag(pk,n,l)> (ukv—glM +3 (z—In n)p,w> . (4.34)

n,l
> tm Yim

Wg,n — (433)

n,l

C+———, 4.35
V2ma /A, (4.35)
E
Ek — Z Yi,m Z Ak,n,l,m + ’7](€E) - 17 Ek — i (436)
I,m n Zk/ Ek’
Yion S0 Akmtam + o) — 1 Apm
Ay 2T 2 Nendin 3 A 2 (1.37)

Ry, ’
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Figure 4.5: Spectrogram of a mixed audio signal of three violin vibrato sounds (Db4, F4 and Ab4).

-

Prni = % Yii M eni1, YioMeni2, s YoM | (4.38)
where diag(p) converts a vector p into a diagonal matrix with the elements of p on the
main diagonal. The second equations in the update rules of wy,, £ and Ay, are for the
normalization. With ’y,(CE) < 1or 77(724 ) < 1, By and Ay, after the update rules may be
negative. To keep Ej (Ag.m) to be non-negative, we set By = 0 (Agm = 0) if Eypn (A,

respectively) becomes negative.

4.6 Objective Experiments

4.6.1 Fy Tracking of Violin Sound

To confirm whether HTFD can track the F{y contour of a sound, we compared HTFD with
NMF with the I-divergence, by using a 16 kHz-sampled audio signal which were artificially
made by mixing Db4, F4 and Ab4 violin vibrato sounds from the RWC instrument database
[2]. The Fy of the pitch name A4 was set at 440 Hz. The spectrogram of the mixed
signal is shown in Fig. 4.5. To convert the signal into a spectrogram, we employed the fast
approximate CWT algorithm [61] with a 16 ms time-shift interval. As an analyzing wavelet,
we used the log-normal wavelet with o = 0.02. {z;}, ranged 55 to 7040 Hz per 10 cent. The
parameters of HTFD were set as follows: N = 8, (ag, 1) = (1,1), ¥&) = (1-2.4 x 1073)1,
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(b) Estimates of spectrograms obtained with NMF

Figure 4.6: Estimated spectrogram models by HTFD and NMF. In left-to-right fashion, the spec-
trogram models are for Db4, F4 and Ab4.

A = (1 -3.96 x 107%) 1, (74, vx) = (0.83,1.25), and uy, = In(55) + (k — 1) x In(2)/12
(Al to At7, i.e. K = 73) for all k. The initial values of © were set as follows: Uy, = 1
and ., = p for all £ and m, and wy, o< e for all k£ and n. Such an initialization of
Wk, corresponds to ideal harmonic structure and is known to be effective in multiple Fj
estimation [32]. The number of NMF bases were set at three. The parameter updates of
both HTFD and NMF were stopped at 100 iterations.

While the estimates of spectrograms obtained with NMF were flat and the vibrato spectra
seemed to be averaged (Fig. 4.6 (a)), those obtained with HTFD tracked the Fy contours of
the vibrato sounds appropriately (Fig. 4.6 (b)), and clear vibrato sounds were contained in

the separated audio signals by HTFD.

4.6.2 Separation Using Key Information

We next examined whether the prior information of a sound improve source separation
accuracy. The key of the sound used in 4.6.1, was assumed as Db major. The key information

was incorporated in the estimation scheme by setting %iE) =1-— 2.4 x 1073 for the pitch
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Figure 4.7: Temporal activations of A3—-Ab4 estimated with HTFD using and without using prior

information of the key. The red curves represent the temporal activations of D4.

indices that are not contained in the Db major scale and VI(CE) =1—3.0 x 1073 for the pitch
indices contained in that scale. The other conditions were the same as 4.6.1.

With HTFD without using the key information, the estimated activations of the pitch
indices that were not contained in the scale, in particular D4, were high as illustrated in
Fig. 4.7 (a). In contrast, those estimated activations with HTFD using the key informa-
tion were suppressed as shown in Fig. 4.7 (b). These results thus support strongly that

incorporating prior information improve the source separation accuracy.

4.6.3 Transposing from One Key to Another

Here we show some results of an experiment on automatic key transposition [85] using
HTFD. The aim of key transposition is to change the key of a musical piece to another key.
We separated the spectrogram of a polyphonic sound into spectrograms of individual pitches
using HFTD, transposed the pitches of the subset of the separated components, added
all the spectrograms together to construct a pitch-modified polyphonic spectrogram, and
constructed a time-domain signal from the modified spectrogram using the method described
in [62]. For the key transposition, we adopted a simple way: To transpose, for example, from
A major scale to A natural minor scale, we changed the pitches of the separated spectrograms
corresponding to Ct, Ff and Gf to C, F and G, respectively. Some results are demonstrated

in http://tomohikonakamura.github.io/Tomohiko-Nakamura/demo/HTFD.html.
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4.6.4 Source Separation Accuracy

To evaluate the efficacy of HTFD, we then measured signal-to-distortion ratios (SDRs),
signal-to-interferences ratios (SIRs) and signal-to-artifacts ratios (SARs), which were calcu-
lated with the BSSEval toolbox [75]. To examine whether the explicit incorporation of the
spectral leakage into the model improves source separation accuracy, we compared HTFD
(CWT-HTFD) with Harmonic NMF (CWT-HNMF) [32], which does not take account of the
spectral leakage. Furthermore, to examine whether using CWT instead of STFT improves
source separation accuracy, we implemented HTFD in the STFT domain with a Gaus-
sian window (STFT-HTFD), which corresponds to [84], and Harmonic NMF in the STFT
domain (STFT-HNMF), and compared CWT-HTFD and CWT-HNMF with STFT-HTFD
and STFT-HNMF. We used the same prior distributions of activation matrices defined by
Egs. (4.23) and (4.24) for all algorithms.

It was difficult to prepare real performances played at each pitch, and so audio signals
for the experiment were obtained by synthesizing the first 30 seconds of No. 1 to No. 5
from the RWC classic music database [2]. For the synthesis, we used a MIDI synthesizer
called FluidSynth [86] and a high-quality GeneralUser GS 1.4 soundfont to maximize realistic
synthesis as possible. In the synthesis, all control messages contained in the MIDI files were
preserved. The sampling rate was set at 16 kHz. To compute CWT spectrograms of the
signals, the fast approximate CWT algorithm was used with center frequencies ranging from
27.5 to 7040 Hz per 100/3 cent and a time shift of 0.916 ms. As an analyzing wavelet, we
used the log-normal wavelet with o = In(2)/48,1n(2)/60,1n(2)/72, which correspond to one
fourth, one fifth and one sixth of a semitone interval. For the computation of STFT, we
used 64,32 and 128 ms Gaussian windows with a hopsize of 10 ms.

The parameter of CWT-HTFD were set as follows: N =20, ag = a1 =1, 7, = In(2) /72 x
9.16 (a vibrato frequency of 6 Hz), v;, = In(2)/36 (a one third of semitone interval) and
e = In(27.5) + (k — 1)1In(2)/12 for all k. The number of spectral bases was set at 88 for
Harmonic NMFs, and the spectral bases correspond to pitch A0 to Af7 with a semitone
interval. The initial values of the parameters of HTFD were set as in Sec. 4.6.1, and a
spectral basis for pitch k& of Harmonic NMF was initialized by placing peaks at positions
corresponding to Fys and their harmonics, with magnitude decaying exponentially with
increasing frequency. All algorithms were run for 100 iterations. To reduce computation

time, the magnitude CW'T spectrograms were sampled every ten time points such that
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Table 4.1: Average SDR improvements, SIR improvements and SARs [dB] with standard errors
for overall data. “CWT-HTFD” and “CWT-HNMEF” represent HTFD and Harmonic NMF in the
CWT domain, and “STFT-HTFD” and “STFT-HNMEF” represent HTFD and Harmonic NMF in
the STFT domain.

Algorithm SDR improvement SIR improvement SAR
CWT-HTFD
16.42 + 0.62 26.07 +£ 0.88 0.27 +0.39
(1073 x 15,1071 x 1p)
CWT-HNMF
15.34 +0.75 25.50 £0.95 —0.32 +0.52
(10_2 X 1, ]-M)
STFT-HTFD
14.02 £+ 0.69 24.06 + 0.87 —1.254+0.45
(10_3 X 1, 1073 x ]-M)
STFT-HNMF
12.86 + 0.80 23.514+0.90 —2.01 +0.51
(1073 x 15,1072 x 1p)

tm — tm—1 =~ 10 ms and then used for the estimation. For the separation, we designed a
time-frequency mask as X kim/ Xim followed by linearly interpolating it.

Table 4.1 displays the results obtained with the individual algorithms for all data. The
results of CWT-HTFD and CWT-HNMF were for 0 = In(2)/60 and the results of STFT-
HTFD and STFT-HNMF were for a 128 ms frame since the algorithms provided the highest
SDR improvements of all o or all frame lengths. The pairs of two values below the algorithm
names are (v, ~) which scored the highest SDR improvement for each algorithm in
all combinations VI(CE) = 1.0 x 107372719 for all k£ and %(,f) = 1.0 x 107372719 for all m.
The table shows that the CWT-HTFD outperformed the other algorithms in all measures
on average. The comparison of CWT-HTFD (CWT-HNMF) with STFT-HTFD (STFT-
HNMF', respectively) shows that the use of CWT is valid in SDR. The difference between
CWT-HTFD and CWT-HNMF lies in the explicit incorporation of the spectral leakage into
the model, we can confirm that this incorporation is effective for unsupervised monaural

source separation by comparing the results of CWT-HTFD with those of CWT-HNMF.

4.7 Subjective Evaluation in Audio Quality of
Separated Signals

Finally, we conducted a XAB test on the audio quality of separated audio signals to

examine whether HTFD is also effective for human listening. Test signals were prepared as
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Table 4.2: Average preference scores over all subjectives. The values in the parentheses are 95%

confidence intervals.

Less
SNl WTHTFD  CWT-HTFD STFT-HNMF  STFT-HNMF

Similar (0 =1n(2)/60) (0 =1n(2)/48) (64 ms frame) (32 ms frame)

CWT-HTFD ] 0.6([0.39,0.79]) 0.96(]0.80,1.00]) 0.95([0.80,1.00])

(0 =1n(2)/60)

CWT-HTFD ; ; 1.0([0.86,1.0])  1.0(]0.86,1.0])

(o =1n(2)/48)

STFT-HNMF ; ; ; 0.9([0.69, 0.97))

(64 ms frame)

STFT-HNMF - - - -

(32 ms frame)

follows: We mixed a part of all pitch-wise signals (original signals or separated results) and
used the mixed signal as a test signal for each musical piece. The chosen number of pitches
for mixing was 30 % of the number of pitches contained in the corresponding musical piece,
and the separated signals were chosen in descending order of the signal energy. The mixed
signals of original pitch-wise signals were presented as X, and those of separated pitch-wise
signals were presented as A and B. As the separated algorithms, we used CWT-HTFD with
o =1n(2)/48,1n(2)/60 and STFT-HNMF with 32 and 64 ms frames. The other parameters
were the same as in Table 4.1. Each pair of four types of the test signals was presented to
six listeners in random order. The listeners were asked to choose A or B such that is more
similar to X. During the XAB test, the listeners were able to listen to all signals again and
again.

Table 4.2 shows average preference scores and 95 % confidence interval for all pairs of the
algorithms. The confidence interval was computed with the binomial test. These results
demonstrate that CWT-HTFD yields significant improvements in the audio quality of sep-
arated signals subjectively, and the incorporation of the spectral leakage and CW'T are also
confirmed to be effective in audio quality of separated signals while increasing the number

of subjectives is one of future works to increase the reliability of the result.
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4.8 Summary

This chapter has proposed a new approach for monaural source separation called the
“Harmonic-Temporal Factor Decomposition (HTFD)” by introducing a spectrogram model
that combines the features of the models employed in the NMF and HTC approaches. We
have further described some ideas how to design the prior distributions for the present
model to incorporate musically relevant information into the separation scheme. We have
experimentally confirmed the F{ tracking ability of HTFD, the reduction of estimation errors
with the key prior information. From a source separation experiment and a subjective
experiment, we have confirmed that the explicit incorporation of the spectral leakage into

the model and the use of CW'T are valid for monaural source separation.



Chapter 5

Harmonic Temporal Factor

Decomposition with Source-Filter

Model

5.1 Chapter Overview

In the previous chapter, we proposed a new approach for monaural source separation
called HTFD, which combines the features of the spectrogram models employed in two
main approaches for monaural source separation. One approach involves applying NMF
to an observed magnitude spectrogram interpreted as a non-negative matrix. The other
approach is based on the concept of CASA. A CASA-based approach called HTC aims to
cluster the time-frequency components of an observed signal based on a constraint designed
according to the local time-frequency structure common in many sound sources (such as
harmonicity and the continuity of frequency and amplitude modulations). In addition, taking
into account the generative processes of many sound sources is also important to improve
the accuracy of source separation. In this chapter, we incorporate the source-filter model
defined in the discrete time domain, into the spectrogram model of HTFD, which defined in
the CWT domain. To do this, we focus on that parameters of an analytic signal model are
associated with those of the spectrogram model in HTFD and derive the explicit relationship
between parameters of the source-filter model and the spectrogram model. Experimental
evaluations show that the incorporation of the source-filter model is effective in monaural

source separation.

50
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5.2 Introduction

For monaural source separation two main approaches have thus far been adopted. One
approach is based on the concept of computational auditory scene analysis, and the other
approach involves applying NMF to an observed magnitude spectrogram interpreted as a
non-negative matrix. The two approaches rely on different clues for making separation pos-
sible. Roughly speaking, the former approach focuses on the local time-frequency structure
of each source, while the latter approach focuses on a relatively global structure of music
spectrograms (such a property that a music signal typically consists of a limited number of
recurring note events). Rather than discussing which clues are more useful, we believe that
both of these clues can be useful for achieving a reliable monaural source separation algo-
rithm. On the basis of this belief, we developed a new approach, called HTFD, for monaural
source separation that combine the features of both HTC and NMF in Chapter 4.

To further improve the accuracy of source separation, the generative processes of musical
instrument sounds is also important. With the source-filter theory, an instrument signal
is considered to be an excitation signal filtered by a linear filter. The excitation signal
corresponds to a vibrating object and varies with pitch. In contrast, the filter corresponds
to resonance structure of the instrument and varies with timbre. F{y varies with time during
vibrato and portamento, whereas the spectral envelope associated with timbre is relatively
static. This suggests that, incorporating the static property of the spectral envelope into the
spectrogram model of HTFD suppress unnatural spectral shapes.

In this chapter, we incorporate the source-filter model defined in the discrete time domain
into the CW'T spectrogram model of HTFD. To do this, we focus on that parameters of
an analytic signal model are associated with those of the spectrogram model in HTFD
and derive the explicit relationship between parameters of the source-filter model and the
spectrogram model. Based on the relationship, we reconstruct the generative model of an
observed spectrogram and present an efficient algorithm consisting of closed-form update
equations. Experiments examine the effect of the incorporation of the source-filter model to

the accuracy of source separation.
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5.3 Spectrogram Model of Music Signal

5.3.1 Continuous Wavelet Transform of Source Signal Model

As in the previous chapter, this section derives the CW'T of a source signal. We first
consider as a signal model for the sound of pitch k the analytic signal representation of a
pseudo-periodic signal given by (4.1) where u denotes the time, nfy(u) + ¢, the instanta-
neous phase of the n-th harmonic and ay,(u) the instantaneous amplitude. To derive the
CWT of the analytic signal model, we define the wavelet basis function as Eq. (4.2) where o
is the scale parameter such that a > 0, ¢ the shift parameter and ¥ (u) the mother wavelet
with the center frequency of 1 satisfying the admissibility condition. ), .(u) can thus be
used to measure the component of period a at time ¢t. The CWT of fy(u) is then given
by Eq. (4.3). Since the dominant part of ¢} ,(u) is typically localized around time ¢, the
result of the integral in Eq. (4.3) shall depend only on the values of 6;(u) and ay,(u) near
t. This justifies to replace 6x(t) and ay,(t) with zero-and first-order approximations around
time ¢ (see Eqgs. (4.5) and (4.7)). By using the above approximations and applying the
Parseval’s theorem, we can further write Eq. (4.3) as Eq. (4.8) where = := In(1/a) denotes
log-frequency, Qx(t) := In6(t) the logarithm of the instantaneous fundamental frequency
(Fy), and U the Fourier transform of ¢. The function W can be chosen arbitrarily and thus
as with [1], we employ the log-normal wavelet, defined by Eq. (4.9). Although we omit
details of the derivation to avoid the duplicate description, the magnitude spectrogram of
the analytic signal model |Wy(z,t)| can be obtained approximately as Eq. (4.11) with the
assumption that the time-frequency components are sparsely distributed so that the par-
tials rarely overlap each other, which means that the magnitude spectra of the partials can
approximately be considered additive. If we assume the additivity of magnitude spectra,
the magnitude spectrogram of a superposition of K pitched sounds is given by the sum of
Eq. (4.11) over k. It should be noted that this model is identical to the one employed in the
HTC approach [1].

Although we have so far defined the spectrogram model above in continuous time and
continuous log-frequency, we actually obtain observed spectrograms as a discrete time-
frequency representation through computer implementations. Thus, we henceforth use
Yim = Y(x,t,) to denote an observed spectrogram where z; (I = 0,...,L — 1) and

tm (m = 0,...,M — 1) stand for the uniformly-quantized log-frequency points and time
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CQT domain: Discrete-time domain:
HTC model [ A Auto-regressive (AR) model = All-pole system
Log-frequency LQMMAM» >
(= )-lnn? F, Frequency Frequency
Mlag, > ¢ . .
” B0 fimlil = > Bilplfimli = P + €mlil
p:1 e
DTFT followed by
inverse DTFT
fi(u) = L, J (B () +i.n)
. Vk,m,n Q (tm)
" fumlil = e A
Time Zn: Z§=Oﬁk[p]e_1pneﬂk(m)u

Continuous-time domain:
Pseudo-periodic signal

Figure 5.1: Schematic illustration of the incorporation of the source-filter model into the spectro-
gram model of HTFD.

points, respectively. We will also use the notation €2, and ay, ., to indicate ((¢,,) and

ak,n(tm).

5.3.2 Incorporating Source-Filter Model

The generating processes of many sound sources in real world can be explained fairly well
by the source-filter theory. In this section, we follow the idea described in [73] to incorporate
the source-filter model into the above model. The schematic illustration of the incorporation
is shown in Fig. 5.1. Let us assume that each signal fj(u) within a short-time segment
is an output of an all-pole system. That is, if we use fi,,[i] to denote the discrete-time
representation of fi(u) within a short-time segment centered at time ¢,,, frm[i] can be

described as

P
Brom[0] fio,mlt] = Zﬁk,m[p]fk,m[i —pl+ exmlil, (5.1)
p=1
where 7, €, [i], and Bk [p] (p=0, ..., P) denote the discrete-time index, an excitation signal,

and the autoregressive (AR) coefficients, respectively. As we have already assumed in 5.3.1

that the Fyy of fi,,[i] is e*m  to make the assumption consistent, the Fy of the excitation
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signal €y, [i] must also be e%m. We thus define e, [i] as

N

hmli] = D vk, (5.2)

n=1
where 1y denotes the sampling period of the discrete-time representation and vy, ., denotes
the complex amplitude of the nth partial. By applying the discrete-time Fourier transform

(DTFT) to Eq. (5.1) and putting B m(2) := Bem([0] — Bem[l]z7' - - — Bem[P]z~T, we obtain

N
V2
T ] Z Vknm0(w — netemyg), (5.3)
=1

Fk,m(w) = W

where Fj, ,,, denotes the DTFT of fj ,,,, w the normalized angular frequency, and ¢ the Dirac
delta function. The inverse DTFT of Eq. (5.3) gives us another expression of fj ,,[¢]:

N
fk,m[l] _ Z Uk,n,m ejneﬂk’miuo. (54)

ot Bk’m(ejnegk,mm))

By comparing Eq. (5.4) and the discrete-time representation of Eq. (4.1), we can associate
the parameters of the source filter model defined above with the parameters introduced in
Sec. 5.3.1 through the explicit relationship:

Vk,n,m

B (@) |

)

(5.5)

’ak,n,m’ =

5.3.3 Constraining Model Parameters

The key assumption behind the NMF model is that the spectra of the sound of a particular
pitch is expressed as a multiplication of time-independent and time-dependent factors. In
order to extend the NMF model to a more reasonable one, we consider it important to clarify
which factors involved in the spectra should be assumed to be time-dependent and which
factors should not. For example, the F{y must be assumed to vary in time during vibrato or
portamento. Of course, the scale of the spectrum should also be assumed to be time-varying
(as with the NMF model). On the other hand, the timbre of an instrument can be considered
relatively static throughout an entire piece of music.

We can reflect these assumptions in the present model in the following way. For conve-

nience of the following analysis, we factorize |ay | into the product of two variables, wg , m

and Uk,m

|ak,n,m| - wk,n,mUk,m' (56)
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Wknm can be interpreted as the relative energy of the nth harmonic and Uy, as the time-
varying normalized amplitude of the sound of the kth pitch such that ), Uy, = 1. In the

same way, let us put v, ., as

Vknm = wk,n,mUk,m- (57>

Since the all-pole spectrum 1/|By ,(e7*)| is related to the timbre of the sound of the kth
pitch, we want to constrain it to be time-invariant. This can be done simply by eliminating

the subscript m. Eq. (5.5) can thus be rewritten as

o wk,n,m
wk7n7m - Bk(e]negkvmuo) . (5.8)
We can use €, ., as is since it is already dependent on m.
To sum up, we obtain a spectrogram model X, as
Xim :ZXk,l,m (5.9)
k

~ N _(a:l—Qk’m—lnn)2
Xk,l,m = E Wk, n,m€ 202 Uk7m, (510)
n=1

where X k.1.m represents the spectrogram of pitch k. Note that the term inside the parenthesis,
which corresponds to a spectral template in the NMF model, varies in time together with
not only €., but also wy,, compared to the spectrogram model of HTFD defined by
Eq. (4.13).

5.3.4 Formulating Probabilistic Model

Since the assumptions and approximations we made so far do not always hold exactly in
reality, an observed spectrogram Y ,, may diverge from Xj,, even though the parameters
are optimally determined. One way to simplify the process by which this kind of deviation
occurs would be to assume a probability distribution of Y;,, with the expected value of X ,,.

Here, we assume that Y;,, follows a Poisson distribution with mean X,
Yim ~ Pois(Y) ; Xim), (5.11)
where Pois(z; &) =&%¢7¢/T'(2). This defines our likelihood function

p(Y10) = [ [ Pois(Vim; Xim), (5.12)

Ilym
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where Y denotes the set consisting of Y;,, and O the entire set consisting of the unknown
model parameters. It should be noted that the maximization of the Poisson likelihood with
respect to X;,, amounts to optimally fitting X;,, to Y;,, by using the I-divergence as the
fitting criterion.

Eq. (5.8) implicitly defines the conditional distribution p(w|w, 3,2) expressed by the

) . (5.13)

The conditional distribution p(w|5,€2) can thus be obtained by defining the distribution

Dirac delta function

Wk n,m

By(einem™)

p(w|w, B,) = H ) (wkm’m -

k,n,m

p(w) and marginalizing over @. If we now assume that the complex amplitude @y, ,, ., follows

a circular complex normal distribution
'J)k,n,m NNC(wk,n,m;an2)7 n = 17'-'aN7 (514)

where Ng(z;0,6%) = e 1#°/€° /(7€2), we can show, as in [73], that wy,, follows a Rayleigh

distribution:

Wk.nm ™~ Raylelgh Wk n,m; ; Vﬂk . ) (515>
Bl

where Rayleigh(z; €)= (z/€2)e~*"/(%¢*) This defines the conditional distribution p(w|3, Q).
While the prior distributions defined in Eqgs. (4.21), (4.24) and (4.23) can be used for prior

distributions of Uy, ,,, we instead use a gamma distribution for the simplicity:
Uk ~ Gam(Upn; o), 5), (5.16)

where a(¥) > 0 and SY) > 0 are shape and rate parameters. Overall, the entire generative
model is depicted in plate notation in Fig. 5.2.

After our conference paper [36], a similar spectrogram model that incorporates the source-
filter model in the CWT domain has been presented [87]. The model can be derived from
our spectrogram model by assuming that the magnitude and phase of wy, ,, , follow the delta

distribution and a uniform distribution over [0, 27), respectively, instead of Eq. (5.14).



Chapter 5 HTFD with Source-Filter Model Y

Tl Hi | | Uk

o)

5(U)

Figure 5.2: Plate notation of the proposed overall generative model.

5.4 Parameter Estimation Algorithm

The random variables in the present model are listed below:

Qpm: the logarithm of Fj for pitch k at time m,
Wk,mn: Relative energy of harmonic n of pitch £ at time m,
Brp: the pth AR coefficient of pitch k,

Uk,m: Temporal activation of pitch £ at time m.

We here denote the set of the random variables except for wy ,,, by ©. For an observed
magnitude spectrogram Y, we would like to find the estimates of © that maximizes the

posterior density p(©|Y). The problem can be written as the problem of maximizing

J(©) :=Inp(Y|O) + Inp(0), (5.17)
with respect to © where
np(¥(©) <l [ [T Poisi: Ximptuls, 2)d) (5.15)
np(©) => Inp(Qy) + np(U) (5.19)
k

where W is the domain of w. Since the first term of Eq. (5.18) involves the integration

of w, conventional smooth optimization techniques are difficult to use. However, we can
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derive a computationally efficient algorithm consisting of closed-form equations for updating
parameters by using a similar idea described in [1,73].

When applying an auxiliary function approach to a certain maximization problem, the first
step is to define a lower bound function for the objective function. As the abovementioned,
the integration of w makes it difficult to derive closed-form update equations. The logarithm
function is a concave function, and so we can invoke the Jensen’s inequality to derive a lower
bound function of Eq. (5.18) by introducing auxiliary variables ¢(w) such that f,, ¢(w)dw = 1
and ¢(w) > 0 for all w:

[T, POis(Yim; Xim)p(w]B, Q))
dw

o) (5.20)

Inp(Y]0) > /

w

q(w) (ln

:/Wq(w) (Z In Pois(Y, n; Xim) + Inp(w|B, ) — In q(w)) dw (5.21)

lym

= /W q(w) {Z Y In X, — Xim) + Inp(w|, Q) —In q(w)} dw (5.22)

where = denotes equality up to constant terms. The equality of the inequality (5.20) holds
if and only if

q(w) = p(w]Y, ©). (5.23)

It should be noted that the derived lower bound can be seen as the Q function in the
Expectation-Maximization (EM) algorithm. For the simplicity of notation, we hereafter

denote the expectation of W mn, W, ,, and In Wy nover the auxiliary variables g(w) by

E[wk,m,n] ::/ Q(w)wk,m,ndw> (5.24)
w
Bl ) = | atw)ud e, (5.25)
b b W b b
E[ln wg ) ::/ q(w) In wy, y, pdw. (5.26)
w

Next, by using the fact that the logarithm function is a concave function, we can invoke the
Jensen’s inequality

(zl_ﬂk,m_ln n)2
2
20 Uk,m

)\k,n,l,m

/ q(w)Y,m In X; dw 2/ Q(w)Yl,mZ)\k,n,z,m In Lhnme dw, (5.27)
w w s

to obtain a lower bound function, where Ay, ;, is an auxiliary variable such that >, = Agpim =

1 for all [,m and Ay 1.m > 0 for all k,n,l and m. The equality of the inequality (5.27) holds
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if and only if

eE[lnwk,n,m}e_ 202 Uk‘ m

>\k,n,l,m = —. (528)

Although one may notice that the second term in Eq. (5.18) is nonlinear in €y ,,,, the sum-
mation of X, over [ can be approximated fairly well using the integral [ fooo X(x,ty,)dz, asin
Sec. 4.5, since ), X, is the sum of the values at the sampled points X (z1,t,,), ..., X(xr,tm)

with an equal interval, say A,. Hence,

1 o0
;Xl’m ~ A—x/ooX(x,tm)dx

- ZM S Ui > Wi (5.29)
* k n

This approximation implies that the second term in Eq. (5.18) depends little on €2 ,,. Fur-

thermore, we focus on the fact that a quadratic function tangent to the absolute value
function is an upper bound of the absolute value function. By writing the tangent point as

Ekmm € R>o, the lower bound can be specifically written as

- Zﬂ-a Z Uk,m Z Wk, n,m Z - Zﬂ-a Z Uk,m Z gk’n’mwkﬂém T Sk’mm . (530)
z k n z k

n

The equality holds if and only if &, m = Wk pm-

The auxiliary function can thus be approximately written as

L7(0,q(w), )

— Qo —Inn)?
Ilym kn
277—0’ Sk?'rlsz[wlznm] +€knm V2
— Uk - — — + E[ln wg »m| — In 4
- zk: 7 zn: 2 k;n i | By (einemuo) |2

E[w?,, ]| By (e o) 2

- > +1Inp(O). (5.31)

202
where A\ denotes the set consisting of Ag ;. We can derive update equations for the model
parameters, using the above auxiliary function. First, the update of ¢(w) is the calculation

of the posterior distribution of w, and thus

Zl Yi,m/\k,n,l,m 1
X Zl m Yz,m)\k,n,l,m 2 T
Q<wk;,m,n)(_Nakagam1 Wk, m,ns : + 17 O
2 vV 27TUk,mO' 4 \Bk(eme 7mu0)|2
gk,m,nAx 202

(5.32)
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where Nakagami((;a,b) denotes the Nakagami distribution:

2 a
Nakagami((; a,b) = ﬁ“)baf%le“cz/b. (5.33)

By setting at zero the partial derivative of J7 (0, ¢(w), \) with respect to Uy, we obtain

>t Yim Do Memim + V) — 1
Z \V2ro
et gk’,m,nAx

Uk,m — (534)

Elwg ] + B8O

If we ignore the effect of In p(w|53, Q) to the update of €2, the update equation of 2 is written

as

-1
(0% « . (07
Q) (T—ZID + 3T+ dlag(pk7n7l)> (ukv—glM +> (@ —1In n)pw) o (5.35)
k k

n,l n,l

] T
Pt = 3 |:§/l,1)\k,n,l,1aYl,2)\k,n,l,27 e 7§/Z,M)\k,n,l,M:| ; (5.36)

where diag(p) converts a vector p into a diagonal matrix with the elements of p on the main
diagonal.

As for the update equations for the AR coefficients 3, we can invoke the method described
in [54] with a slight modification since the terms in the auxiliary function that depend on 3
has the similar form as the objective function defined in [54]. For the simplicity of notation,

we rewrite | By (w)]? as

| Bu(w)[* =B C(w)By (5.37)
Bi. =[Bro, -+ Brp) (5.38)

where C(w) is a (P 4+ 1) x (P + 1) Toeplitz matrix whose (p, ¢)-th entry is given by
(C(W))pq = cos(w(p = q))- (5.39)

With this notation, the partial derivative of J with respect to 3, is written as

AT (0, q(w), \)

98, :(Rk(ﬁk) - Rk)ﬁk- (5-40)
2
Ry =Y —E[wy’gm’”] C(eme o) (5.41)
~ | 212 o Qm
BB =Y O™ ) (5.42)

£ B C(eine™ w0 B,
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Both the first and second term in Eq. (5.40) are positive definite matrices, and thus a
multiplicative gradient ascent algorithm can be used similarly in [54, 88, 89] (see [54,90] for
the proof of the local convergence of the algorithm). J* can be increased by the following

update:

By < Ry'Ri(By)By (5.43)

To avoid the indeterminacy in scales of the filters, 3, is normalized at each update such
that Bx, = Brp/Pro for all k and p. For stability of the filters, all absolute values of the
roots of 2520 Brpz’ 7P are forced to be below 0.97 for all k. Although these steps violate
the convergence of the algorithm, we found empirically that the steps increase the numerical

stability of the algorithm.

5.5 Experiments

To examine the effect of the incorporation of the source-filter model, We conducted an
experiment on monaural source separation and measured SDRs, SIRs and SARs, which
were calculated with the BSSEval toolbox [75]. Similarly in Sec. 4.6, the magnitude CWT
spectrograms were sampled every ten time points such that ¢,, —¢,,_1 ~ 10 ms and then used
for the estimation. For the separation, we designed a time-frequency mask as )N(M,m / Xim
followed by linearly interpolating it. Here we used E[w,%nm] as the estimate of winm

The test data was the same as in Sec. 4.6. To compute CW'T spectrograms of the signals,
the fast approximate CWT algorithm was used with center frequencies ranging from 27.5
to 7994 Hz per 10 cent and a time shift of 1.832 ms. As an analyzing wavelet, we used the
log-normal wavelet with ¢ = 0.0116, which corresponds to one fifth of a semitone interval.
The parameters of the proposed algorithm was set as follows: N =20, oy = oy =1, v =1,
T, = In(2)/72 x 9.16, v = In(2) /36 and pux = In(27.5) + (k— 1) In(2)/12 for all k (A1 to A7,
i.e. K = 88). The algorithm was stopped after 100 iterations. For the convenience of the
implementation, we approximate E[wy ] and E[lnwg ] with zero-order approximations
as Elwy,mn) ~ (Blw} , .])Y? and 2E[In wym,] ~ mE[w? ], respectively.

Table 5.1 compares SDR improvements, SIR improvements and SARs obtained with the
proposed algorithm and HTFD. The results of the proposed algorithm were for (oY), g(V)) =
(¢,€). which scored the highest average SDR. improvement in the settings o) = ¢, 1.0 x

1073,1.0 x 1072,1.0 x 107" and 1.0 and BY) = €. Here € is the distance from 1.0 to the next
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Table 5.1: Average SDR improvements, SIR improvements and SARs [dB] with standard errors
obtained with the proposed algorithm (Proposed) with varying P and HTFD for overall data. The
result of HTFD is the same as in Table 4.1.

Algorithm P | SDR improvement SIR improvement SAR
16 16.13 £ 0.72 26.55 £ 0.98 0.31 +0.43
Proposed 32 17.58 £ 0.56 26.94 £ 0.83 1.16 £ 0.41
48 17.60 + 0.58 26.94 + 0.82 1.07 £ 0.40
60 17.42 + 0.56 26.84 £0.83 0.92 £0.40
HTFD - 16.42 £ 0.62 26.07 £ 0.88 0.27 £0.39

double-precision number, i.e. € = 27°2. The results of HTFD were the same in Tab. 4.1.
The improvement in SAR indicates that the results obtained with the proposed algorithm
have less artifacts, which is caused by the algorithm, than HTFD, and thus the proposed
algorithm provides separation results whose spectral shapes are similar to realistic musical
instruments. From these results, we confirmed that the incorporation of the source-filter

model improves monaural source separation.

5.6 Summary

This chapter have incorporated the source-filter model into the spectrogram model of
HTFD to improve the accuracy of monaural source separation. We have focused that pa-
rameters of the spectrogram model of HTFD in the CW'T domain can be associated with
those of an analytic signal model in the time domain, and have obtained the explicit rela-
tionship of parameters between the CW'T domain and the discrete-time domain in which
the source-filter model is defined as the AR model. We have experimentally confirmed that
the incorporation of the source-filter model improves the accuracy of monaural source sepa-

ration.



Chapter 6

Fast Signal Reconstruction from
Magnitude Spectrogram of

Continuous Wavelet Transform

6.1 Chapter Overview

The complex spectrograms obtained with typical time-frequency transforms are redundant
representations of a time domain signal. This means there is a certain condition that the
spectrograms must satisfy to ensure they correspond to a time domain signal. We say that
the complex spectrograms satisfying this condition are consistent. This chapter deals with
the problem of estimating an unknown signal from a given magnitude spectrogram obtained
with the CWT, based on a consistency criterion. A signal that is likely to yield the given
magnitude spectrogram can be found by an iterative algorithm consisting of initializing the
phase spectrogram estimate, performing inverse CWT followed by CWT, and replacing the
magnitude part of the updated CWT spectrogram with the given magnitude spectrogram
while leaving the phase part unchanged. Since CW'T and inverse CWT can be computation-
ally expensive, we may wish to accelerate the algorithm by employing some fast algorithms
for computing CWT and inverse CWT. Here, when invoking a method to approximate CWT
and inverse CW'T, it is not always clear whether the convergence of the entire iterative al-
gorithm is still guaranteed. The aim of this chapter is to show using the auxiliary function
principle that the use of a particular type of an approximate algorithm does not affect the

monotonicity of the convergence of the entire iterative algorithm. Experimental evaluations

63
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show that the devised fast algorithms are around 75 times faster than the conventional al-
gorithm while the reconstructed signals obtained with the proposed algorithms have almost

the same audio quality as original sounds.

6.2 Introduction

The continuous wavelet transform (CWT), also known as the constant-Q transform, pro-
vides a time-frequency representation of a time domain signal with a logarithmically uniform
frequency resolution. This agrees well with the human auditory system particularly at the
high-frequency end, which may be one reason why the fundamental frequencies of the semi-
tones on the musical scale are logarithmically spaced. This characteristic is in contrast to
the short-time Fourier transform (STFT), which gives a spectrogram with a linearly uniform
frequency resolution (Fig. 6.1). Thus, to develop auditory-motivated audio signal processing
methods, one promising approach would be to model, analyze and modify the spectrogram
given by the CWT (CWT spectrogram). Indeed, recent studies have reported that using
the CWT instead of the STFT significantly improves the performances of source separa-
tion [7], multiple fundamental frequency estimation [1,8,9] and singing voice separation [10].
Specifically for those applications in which the aim is to generate audio signals, we must
be able to construct a time domain signal from an estimated or modified magnitude CWT
spectrogram, in which phase information is missing. To this end, this chapter addresses the
problem of constructing a time-domain signal by estimation an appropriate phase from a
magnitude CW'T spectrogram.

A phase estimation algorithm for a magnitude CWT spectrogram has already been pro-
posed by Irino et al. [60], which consists in iteratively performing the CWT and the inverse
CWT. At each iteration, the magnitude part of the updated CWT spectrogram is replaced
by the given magnitude CW'T spectrogram while leaving the phase part unchanged. Since
the CWT has a large computational cost, Irino’s algorithm requires a long processing time
for computation, which has been a serious obstacle for its practical uses. Thus, we consider
it necessary to develop a faster algorithm. The convergence of the algorithm as well as the
computational cost is an important issue. Efficient methods for computing the CWT and
the inverse CWT have been recently proposed [61-64]. It may appear that simply carrying
out one of these methods for the CWT and inverse CWT steps in Irino’s algorithm would

reduce the computational cost. However, it is not clear whether the convergence of such an
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Figure 6.1: Examples of spectrograms of a music audio signal given by (a) CWT and (b) STFT. A
CWT (STFT) spectrogram has an equal resolution on a log-frequency scale (linear frequency scale,

respectively).

algorithm is guaranteed.

Le Roux et al. have thus far proposed a fast algorithm for estimating the phase from
a magnitude STFT spectrogram [58,59] by using the fact that the waveforms in the over-
lapping part of consecutive frames must be consistent. This implies the fact that an STFT
spectrogram is a redundant representation when the hop-size is shorter than the frame length
and thus it satisfies a certain condition that it corresponds to a time domain signal. We
have referred to this condition as the consistency condition. The problem of estimating the
phase from a magnitude STF'T spectrogram can be formulated as an optimization problem
of minimizing the consistency criterion that describes how far an arbitrary complex array
deviates from this condition. This formulation has provided a new insight into the well-
known algorithm proposed in [57], allowing us to derive a fast approximate algorithm and
give a very intuitive proof of its convergence. Since a CW'T spectrogram is also a redundant
representation, we can conjecture that we can develop a fast approximate method for esti-
mating the phase from a magnitude CWT spectrogram with guaranteed convergence in the
same way by using the concept of the spectrogram consistency.

This chapter presents two fast algorithms for estimating the phase from a magnitude CWT
spectrogram. First, we first introduce a consistency condition for a CWT spectrogram and
give its intuitive interpretation in analogy to the case of an STFT spectrogram (Sec. 6.3).
Second, we formulate the phase estimation problem as an optimization problem based on the

consistency condition, and derived an iterative algorithm based on an optimization principle



66 Chapter 6 Fast Signal Reconstruction from Magnitude CWT Spectrogram

called the auxiliary function approach (Sec. 6.4). It becomes clear that the algorithm is
equivalent to Irino’s algorithm and gives a very clear proof of its convergence, though it
should be noted that the proof of the convergence has already been mentioned in [91].
Third, on the basis of our proof, we show that the convergence of the iterative procedure is
guaranteed if the CWT and inverse CWT steps are replaced with any linear and redundant
transform and its inverse transform. Two efficient algorithms with guaranteed convergence
are then presented based on a fast approximate method for computing the CWT [61, 62]
(Sec. 6.5). Finally, we evaluate the efficiency and the signal reconstruction property of the
proposed algorithms compared to Irino’s algorithm through experiments on real audio signals
(Sec. 6.6). The evaluations also show a trade off of the proposed algorithms between the

approximation accuracy and the audio quality of reconstructed signals.

6.3 Spectrogram Consistency

6.3.1 Continuous Wavelet Transform

The CWT represents a time domain signal as a summation of wavelet basis waveforms,
also known as analyzing wavelets, whose periods (the reciprocals of the center frequencies)
correspond to a scale parameter. We here consider discretizing the scale parameter such
that the center frequencies of the wavelet basis waveforms are equally spaced on a log-
frequency scale. Let [ = 0,1,---,L —1 and m = 0,1,--- , M — 1 be the indices of scale
and time shift parameters, respectively, where L is the number of the discretized scale
parameters and M is the length of an input signal. Given a discrete time domain signal
= 1fofi. fual” € F = {f;f € CM Y fn = 0}, the component of a CWT
spectrogram associated with scale a; > 0, arranged as s; = [s;0, S;,1, - ,sl,M_l]T, is defined

as

S :VVlf, (61)

Yo Yimr o Y
Yin Yo o Vi

=
i

(6.2)

_¢1*,M—1 1/’5*,M—2 ¢Z0_
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Here 17, is the complex conjugate of the wavelet basis waveform v, ,, := ¥ (tA/a;)/a;, where
A denotes the sampling period of the input signal, )(tA) is a mother wavelet satisfying the

admissibility condition. Each row of W, contains the wavelet basis waveform of scale a; with

a different time shift parameter. Then, the CWT spectrogram s = [sg,s], -+ ,s. ,]' is
given as
s=WFf, (6.3)
where W denotes the CWT matrix, defined as
W=y Wy W] (6.4)

Whether the inverse CW'T of W f equals to f for all f € F depends on W. For simplicity,
we hereafter assume that the equality holds. It is important to note that the following
discussion is valid if the equality does not hold.

The inverse CWT can be defined by the pseudo inverse of W, defined as W™, and the
inverse of s is given as W' s. This implicitly means that the inverse CWT of s is the solution

to the following minimization problem:

argmin ||s — W2, (6.5)
fer

where ||s|la = />, 57, denotes the I* norm of s.

6.3.2 Consistency Condition and Relation to Phase Estimation

As can be seen from Eq. (6.3), s belongs to the subspace W spanned by the column vectors
of W. While the CWT spectrogram of a signal (i.e., a complex vector that belongs to W)
will be mapped to itself by applying the inverse CWT followed by the CWT, a complex
vector that does not belong to VW will not come back to the same point but will be projected
onto the nearest point in W (Fig. 6.2). We can thus define a condition for a complex vector
to be “consistent” (in the sense that it corresponds to a CWT spectrogram of a signal) as
follows:

OLM = 8 — WW+S, (66)

where 07, denotes an LM-dimensional zero vector. It is important to note that when W
is replaced with a matrix in which each row is a basis waveform of the STFT, Eq. (6.6)

becomes the consistency condition for an STFT spectrogram proposed in [59].
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Figure 6.2: Consistent and inconsistent examples based on the concept of spectrogram consistency.
The red curves represent W W™ and the gray plane depicts the subspace spanned W by the column

vectors of W. See text.

When given a magnitude CW'T spectrogram, we can construct a signal by assigning phase
to it to obtain a complex CWT spectrogram s, and applying the inverse CWT, i.e., Ws.
Here, if we assign “inconsistent” phase to the given magnitude CW'T spectrogram, the
complex CWT spectrogram s will not belong to W and so the CW'T spectrogram of the
constructed signal, WW s, will be different from s. As we want to equal the magnitude
CWT spectrogram of the constructed signal to the given magnitude CWT spectrogram, we

must find “consistent” phase such that s satisfies the consistency condition.

6.3.3 Intuitive Understanding of Consistency Condition

To obtain an intuitive understanding of the consistency condition, we consider the filter-
bank interpretation of the CWT. The CWT can be thought of as a filter bank with subband
filters whose impulse responses are given by the scaled analyzing wavelets. The filter bank
does not pass all frequency components of a signal and blocks at least the DC component
to satisfy the admissibility condition.

Now, by applying the M-point discrete Fourier transform (DFT) to each block of Eq. (6.6),
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Eq. (6.6) can be written equivalently as

5:=[80,8;, 501", (6.8)
R T
We=1lwr wy .. Wi, (6.9)
W, = Fy W, Fi, (6.10)

where 8; denotes the DFT of s, W+ is the pseudo inverse of W and F ]\'} is the Hermitian
transpose of the M-point DFT matrix F);. Since W is a circulant matrix, W, is diagonalized
by Fyr and FIf. The diagonal elements of 4% represent the frequency response of the subband

filter associated with scale a;:
Ulo

W, = H (6.11)

i)

where {@@Lk}ﬁ/[:f]l is the DFT of {¢,,}} -} and k is the angular frequency index. Eq. (6.7) is

explicitly written as

1

0= §l,k e — Z zﬂl*kqﬂl’,kgl’,kv (612>
DR L
for k=1,---,M — 1, where I’ is the index of the scale parameter.

If the subbands of the filter bank overlap each other (more precisely, if there exists a pair
of channels such that the product of their frequency responses is non-zero at every non-zero
frequency), i.e. Vk =1,--- M — 1,3 # l’,z@l’ik@@y,k # 0, Eq. (6.6) becomes a nontrivial
condition for a complex vector s € C*™ to correspond to a consistent CWT spectrogram.
Otherwise, all the elements of CLM trivially satisfy Eq. (6.6), implying that the consistency
condition cannot be used as a criterion for phase estimation. Therefore, care must be taken
in choosing the quantization intervals of the scale parameter and the type of the analyzing
wavelet. The Morlet [92], the log-normal wavelet [1] and the wavelets used in the auditory
wavelet transform [60] satisfy the above requirement when the quantization intervals of the
scale parameter are appropriately chosen. We hereafter assume that the filter bank satisfies

vk:L 7M_17E|l7él/71ﬁl*7kiﬁl/,k#0.
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The requirement for the subbands of the CW'T to overlap each other is analogous to the
requirement for the short time frames of the STFT to overlap. The consistency condition
of STFT spectrograms can be understood as implying that the waveforms within the over-
lapping segment of consecutive frames must be consistent [59]. The consistency condition of
CWT spectrograms, on the other hand, can be interpreted as implying that the outputs of

adjacent channels within the overlapping subbands must be consistent.

6.4 Phase Estimation Based on CW'T Spectrogram

Consistency

6.4.1 Formulation of Phase Estimation Problem

Assume that we are given a magnitude CWT spectrogram, arranged as a LM-dimensional
non-negative vector a. We would like to estimate the phase of the given magnitude CWT
spectrogram such that it meets the consistency condition. To allow for any L M-dimensional
non-negative vector as the input, we here formulate the problem as that of finding a phase

estimate ¢ € [—m, m)"M that minimizes the consistency criterion
I(¢) = ||s(a, ) — WIW*s(a, )5, (6.13)

where s(a, ¢) denotes the estimated CWT spectrogram, defined by

ei®o0

€j¢071

s(a, ) =a® ‘ . (6.14)

elbr—1,m-1

Here the operator ® denotes the element-wise product and ¢ ,,, is the element of ¢ associated
with scale a; and time shift t. Z(¢) describes how far s(a, ¢) deviates from the consistency
condition (Fig. 6.3). Namely, the more consistent s(a, @) becomes, the smaller Z(¢) be-
comes. Z(¢) = 0 indicates that s(a, ¢) lies in the intersection of the set of consistent CWT

spectrograms and the set of complex vectors that equal a up to a phase factor.
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Figure 6.3: The consistency criterion Z(¢) (purple broken line) can be seen as a distance from
s(a, @) to the subspace W spanned by the column vectors of W. The red curves and the gray

plane is the same in Fig. 6.2.

6.4.2 Iterative Algorithm with Auxiliary Function Approach

If we treat each s(a, @) itself as the parameter, denoted by s, the above minimization

problem can be converted into the following quadratic programming with quadratic con-

straints:
SrelgPM sH(Ipy —WWH)s (6.15)
subject to [s|* = aim for Vi, m. (6.16)

The problem is difficult to solve with the method of Lagrange multiplier since more than a
fourth order equation of the Lagrange multiplier need to be solved.

Conventional convex optimization techniques can be theoretically applicable to the prob-
lem. However, the number of rows and columns of WW ™ are usually very large and some
conventional techniques require large computational cost. To suppress it, we can invoke the
auxiliary function approach [93] to derive an iterative algorithm that searches for the esti-

mate of ¢. To apply the auxiliary function approach to the current minimization problem,
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the first step is to construct an auxiliary function Z% (¢, 8) satistying Z(¢) = ming Z* (¢, 8).
We refer to § as an auxiliary variable. It can then be shown that Z(¢) is non-increasing

under the updates ¢ + argminZ* (¢, 8) and 3 < argminZ" (¢, 8). Thus, Z* (¢, 8) should
(0] S

be designed as a function that can be minimized analytically with respect to ¢ and s. Such
a function can be constructed as follows.
Recall that the operator W is an orthogonal projection onto W and so WW s indicates

the closest point in W from s. Thus, we obtain

I(¢) = min ||s(a, ¢) - WF|3 (6.17)
fer
= min [|s(a, ¢) — 3]3. (6.18)
Sew
We can confirm that
I%(9,8) == |s(a,¢) — 5[, 5eW, (6.19)

satisfies Z(¢) = ming., Z1 (¢, 5). Eq. (6.19) can be used as an auxiliary function for Z(¢),
and we can monotonically decrease Z(¢) by iteratively performing 3 < argminZ* (¢, 8) and

s
¢ + argminZt (¢, 8). Here the iterative updates can be written explicitly as

5§ +WWts(a, ), (6.20)
¢ 25, (6.21)

respectively, where Z denotes an operator that gives the arguments of the components of a
complex vector as a real vector in [—m, )M,

Eq. (6.20) means applying the inverse CWT followed by the CWT to s(a,¢). When
s(a, @) is already a complex vector corresponding to a consistent spectrogram, this update
simply becomes § < s(a, ). Eq. (6.21) means replacing the phase estimate ¢ with the
phase of 5. The iterative algorithm is thus equivalent to Irino’s algorithm.

Any phase estimated with the algorithm is accurate to up to an overall phase constant.
This is because the CWT is a linear transform and the difference in an overall phase con-
stant does not change the magnitude CWT spectrogram [91] (see [94] for more fundamental
results).

The derivation of the algorithm depends only on the linearity of the CWT and the re-

dundancy of the wavelet basis waveforms. Therefore, if the CWT and the inverse CW'T are
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Figure 6.4: Examples of the frequency responses of different subband filters. The analyzing wavelet

is the log-normal wavelet [1].

replaced with any linear and redundant time-frequency transform and its inverse transform,
the iterative procedure is guaranteed to converge. In fact, when W is replaced with a ma-
trix in which each row is a basis waveform of the STFT, the proposed algorithm becomes
equivalent to the phase estimation algorithm for a magnitude STFT spectrogram proposed

in [59].

6.5 Fast Phase Estimation Algorithm

6.5.1 Fast Approximate Continuous Wavelet Transform

The CWT and the inverse CWT are computationally expensive compared to the STFT
and the inverse STFT. Here we briefly describe the fast approximate method (FACWT)
for computing the CWT proposed in [61]. It uses the fact that the dominant part of the
frequency response of each subband filter is concentrated around its center frequency (as
shown in Fig. 6.4), as is common in many types of analyzing wavelets including the Morlet
and log-normal wavelets [1]. The FACWT is equivalent to the method proposed in [64] if all
frequency responses {Qﬁlvk}lyk have finite supports.

According to the filter bank interpretation of the CWT, the CWT of an input signal,
81 =[s10,--+,81m-1]" = Wi f, can be computed by multiplying the DFT of the entire signal,
ie, }' = [fo, ey fM_l]T = Fy f, by the frequency response of the [-th subband, i.e., W, and
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then computing the inverse DFT of 4% f . This can be confirmed from

si=Wif (6.22)
= Fy Fy W Fs Ey f (6.23)

= FIW,f. (6.24)

Note that the second equality follows from the fact that the DF'T matrix Fj, is a unitary
matrix, i.e., FI Fy = Iy, Here, if we can assume that the elements of {@zk}k are dominant
within and near zero outside the range k = B,B+1,--- , B+ D —-1(0< B,0< D < M),
we can approximate s; reasonably well by using the elements of {zﬂlk fk}k only within that

range and neglecting the remaining elements. This implies the possibility of computing an
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approximation of s; with a lower computational cost.
For simplicity of notation, let us put G5 = 1[1l,k fk We are concerned with computing an

approximation of the full-band inverse DFT of G :

M-1
Siom = Z Gljkej%;@m. (625)

k=0
As mentioned above, Gy, ..., G -1 can be approximately viewed as a band-limited spec-

trum. In general, the inverse DFT of a band-limited spectrum can be computed by taking
the inverse DFT over the finite support. In the time domain, this process corresponds to
downsampling the signal given by the “full-band” inverse DFT. The proposed method uses
this idea to approximate the inverse DF'T of the full-band spectrum Gy, ..., Gy a—1. Now,
if we choose D such that M/D becomes an integer, we can approximate the downsampled

version of s;,, by

B+D-1 o
- 27
ya= Y Guel D (6.26)
k=B
BiD-1 2mk(M/D)d
= Z Gl,kej M . (627)
k=B

By comparing (6.25) and (6.27), we can confirm that
S1,(M/D)d = Uid (d = 0, 1, s ,D - 1), (628)

it we assume Gjj =~ 0 outside the range k = B, B+ 1,--- ,B+ D — 1. Since y;4 can be

rewritten as

D-1
i(2mk o B
Ya =Y Gspe? B H275)d (6.29)
k=0
D—-1
o B . onkd
=0y " Glpape T, (6.30)

k=0
we notice that y; 4 can be computed by multiplying the inverse DFT of G p, ..., G p+p-1
by 72754 Note that this is equivalent to computing the inverse DFT of a circularly shifted
version of Gy (see Fig. 6.5):

X Gliin k=0,... . B—(n—-1)D—1
G = v ( ( ) ) , (6.31)

Glk+(n-1)D (k=B—-(n-1)D,...,D—1)
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Algorithm 1 Fast approximate continuous wavelet transform: {y,}; = FACWT(f)
1: Initialize ¢}, By, Dy,my for k=1,2,-- , M —land [ =0,1,--- ,L — 1.
2. f « FFTy(f)
3: for [=0to L—-1do

4 B+ B;,D <+ D;n<+n, y, < 0p
5 ford=0toB—(n—1)D —1do
6: G < farnp X &ZdMD

7. end for

80 ford=B—-(n—1)DtoD—1do
9: Urd < fd+(n—1)D X &Zd.@.(n_l)D

10: end for

1.y, «+ iFFTp(y,)

12: end for

13: return {y;}

where n is an integer such that

n—1<—=<n. (6.32)

o flsy

We consider invoking the fast Fourier transform (FFT) for computing the inverse DFT and so
we assume the size D to be a power of 2. Since D < M, the computational cost for computing
Y, = [Y1.0,-->y.p—1] " is obviously lower than that for computing s; = [s;0,...,s.m-1] . B
and D are allowed to differ between subband filters, and we hereafter add the subscript [
to B, D and n, i.e. B;, D; and n;. The pseudo code of the FACWT is summarized in
Algorithm 1, where (i)FFT); denotes the M-point FFT (inverse FFT, respectively).

The processes of bandlimiting and circular shifting for the [-th subband can be represented

by a matrix Kj:

Kl _ O(nzDz—Bl)x{Bl—(nl_l)Dl} ]le_Bl

IBZ_(nl_l)Dl O{Bl—(nl—l)Dl}X(nlDl—Bl)

(6.33)

X ODZXBZ ]Dl ODIX(M—Dl—Bl)

where Ip and Opy g are the D x D identity matrix and the D x B zero matrix. The first matrix

of the right-hand side of Eq. (6.33) represents the circular shift and the second matrix the



Chapter 6 Fast Signal Reconstruction from Magnitude CWT Spectrogram 77

Algorithm 2 Inverse fast approximate continuous wavelet transform: f = iFACWT ({y,;}:)
1. Initialize v, By, Dy, ny, Cy, for k=1,2,--- .M —1andl=0,1,--- , L —1

2 f <+ Oy

3: for{=0to L —1do

4 D+« D, B+~ B, n<n, y, < FFTp(y,)
5. for k=B tonD —1do

6: fk — fk + Y k—(n—1)D X (&lk/ck)
7. end for

8: fork=nDtoB+D—-1do

9: fk — fk + Y1 k—nD X (@m/ck)

10:  end for

11: end for

12: f « iFFTy(f)

13: return f

bandlimiting. The downsampled version of s; obtained with the FACWT can be described

as

y, = Fj KW, Fu f. (6.34)

Similarly to the inverse CW'T, the fast approximate version of the inverse CWT can be
defined by the pseudo-inverse matrix of a (), D;) x M matrix defined by vertically con-
catenating {F BZKZVT/ZF vt The pseudo code of the inverse FACWT is summarized in
Algorithm 2, where {y}, denotes a CWT spectrogram obtained with the FACWT.

6.5.2 Fast Phase Estimation Algorithm

Now we consider the phase estimation algorithm in which the CWT and inverse CWT
steps are replaced with the FACW'T and the inverse FACWT. Both are linear and redundant
transforms, and so the convergence of the algorithm is guaranteed as mentioned in Sec. 6.4.2.
We call the algorithm the iterative FACWT algorithm. Its pseudo code is summarized in
Algorithm 3, where we redefine a given magnitude CWT spectrogram associated with the [-th
subband as a; € [0,00)?" and phase estimate as ¢, for each subband filter, and {y,(a;, ;) };
denotes an estimated CWT spectrogram with magnitude {a;}, and phase {¢,},.

Furthermore, the M-point inverse FFT in the inverse FACWT, (line 12 in Algorithm 2),
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Algorithm 3 Iterative fast approximate continuous wavelet transform algorithm: {¢;}; =

IterFACWT ({a; }:)
1: Initialize ¢, for [ =0,1,--- L —1

2: repeat

3 f <« iIFACWT({y,(ai, ¢)})

£ {f} + FACWT()

5 forl=0toL—1do

6: ¢ Ly,

7. end for

8: until a convergence criterion is satisfied

9: return {¢;}

can be cancelled by the M-point FFT in the FACWT (line 2 in Algorithm 1) in the iterative
FACWT algorithm. We call the algorithm the refined iterative FACW'T algorithm.

6.5.3 Time and Space Complexity

The computational costs for the CWT and the FACWT mainly depend on the number
of the points for the inverse DFT. Since the full band inverse DFT is of O(M log, M), the
total complexity of the CWT is O((L + 1) M log, M). By contrast, the band-limited DFT is
of O(D;log, D;) and so the total complexity of the FACWT is O(M log, M+, D;log, D).
Consequently, Irino’s algorithm is of O(2(L + 1)M log, M) per iteration while the iter-
ative FACWT algorithm (the refined iteration FACWT algorithm) is of O(2M log, M +
23 Dylog, Dy) (O(23°12,! Dilog, Dy), respectively).

The space complexity of the proposed algorithms are small compared to Irino’s algorithm
[60]. When the signal length M is long enough, the space complexity depends primarily
on the size of the CWT spectrogram. While the size of the CWT spectrogram of Irino’s
algorithm is LM, that of each proposed algorithm is only ), D;.
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6.6 Experimental Evaluations

6.6.1 Processing Time

We measured processing times to evaluate the reduction of the computational complex-
ity with the proposed algorithms. The processing time depends on signal length and not
on signal content. We artificially synthesized random signals with the length of 27 (z =
10,11, -+ ,21) samples at 16 kHz sampling rate, and used their magnitude CWT spectro-

grams as inputs. The log-normal wavelet [1] was used as an analyzing wavelet. Its Fourier

- (-5F) w=o)

transform is given by

(6.35)
0 (w<0)

where w denotes an angular frequency. o represents a standard deviation in the log-frequency
domain and we put ¢ = 0.02 in the following. The scale parameters a; were set such that
the center frequencies ranged 27.5 from 7040 Hz with a 1/10 semitone interval. In the
bandlimiting process of the proposed algorithms, we computed the elements within the range
[—30, 30| around the center frequency of each subband filter in the log-frequency domain.
The algorithms were implemented in C++ on a PC with 3.50 GHz CPU (Intel(R) Core(TM)
i7-3770K Processor) and 32 GB memory running Debian.

Processing times averaged over 50 iterations are shown in Fig. 6.6. It can be confirmed
that the proposed algorithms outperformed Irino’s algorithm in terms of processing times.
For example, to process a signal of around 16 seconds length, Irino’s algorithm took 18
seconds per iteration on average while the iterative FACW'T algorithm took 0.24 second per
iteration (75 times faster than Irino’s algorithm). The refined iterative FACWT was faster
than the iterative FACWT by around five percentage points on average. In addition, the
proposed algorithms processed all signals, although Irino’s algorithm could not work with
the signals of over around 20 seconds length due to lack of memory. These results show that
the proposed algorithms are efficient in both time and memory, which are consistent with

the theoretical result described in Sec. 6.5.3.
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Figure 6.6: Average processing times per iteration and standard errors with respect to signal
length. “Irino” denotes Irino’s algorithm [60] and “IterFACWT” and “RIterFACWT” represent
the iterative FACWT algorithm (Algorithm 3) and its refined version, respectively.

6.6.2 Audio Quality and Approximation Property

Experimental Conditions

The lower the approximation accuracy is, the faster the proposed algorithms becomes, but
the poorer audio quality the resulting reconstructed signal has. To examine the trade off,
we measured processing times and audio quality of signals reconstructed with the refined
iterative FACWT algorithm. The proposed algorithms are same in approximation accuracy
and the results obtained with the iterative FACWT algorithm were omitted. As input data,
we used magnitude CW'T spectrograms of music and speech audio signals. The music data
consisted of 102 music audio signals in the RWC music genre database [2], and the speech
data consisted of 485 speech signals (242 male and 243 female speeches) in the ATR Japanese
speech database [95]. The audio signals were downsampled to 16 kHz and their durations
were arranged to five seconds by cutting out a part of each audio. The analyzing wavelet
was same as in Sec. 6.6.1, and the central frequencies ranged from 50 to 7040 Hz with

an interval of 1/5 semitone. In the bandlimiting process of the refined iterative FACWT
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algorithm, we computed the elements within the range [—Po, Po] (P = 1,2,3,5) around
the central frequencies in the log-frequency domain. The smaller P is, the approximation
accuracy becomes lower. The proposed algorithm with enough large P is equivalent to
Irino’s algorithm, and we also compared the proposed algorithms with Irino’s algorithm.
The proposed algorithm and Irino’s algorithm were started with randomly initialized phase
and stopped after 500 iterations and 100 iterations, respectively. The algorithms ran on a
computer with 3.30 GHz CPU (Intel (R) Core(IM) i3-2120 Processor) and 8 GB memory

running Debian.

Results

The audio quality of a reconstructed music signal was measured by the method of per-
ceptual evaluation of audio quality (PEAQ) [96] in AFsp [97]. The PEAQ method provides
an objective difference grade (ODG) between an original audio signal and a reconstructed
signal, whose range is —4 to 0. The larger the ODG is, the higher the audio quality of a
reconstructed signal becomes.

Fig. 6.7 displays average ODGs with respect to the number of iterations (left) and the
processing times only required by the phase reconstruction part (right) on the music data.
The processing times were averaged over all audio signals at each iteration. The proposed
algorithms with P = 3 and 5 and Irino’s algorithm provided larger ODGs than —2.0 on
average after 100 iterations. These results show that the reconstructed signals obtained with
the algorithms had almost the same audio quality as the original sounds. We notice again
that the proposed algorithms with these Ps were much faster than Irino’s algorithm. It can
be seen that the proposed algorithm with P = 3 outperformed that with P = 5 in average
ODG in the first 40 seconds of the processing time. This is not surprising since using small P
increases the number of iterations that the algorithm can perform within the same processing
time.

Results on the speech data showed similar trends. The audio quality of a reconstructed
speech signal was measured by the method of the perceptual evaluation of speech quality
(PESQ) [98]. The PESQ value ranges from —0.5 to 4.5. The higher PESQ value is, the higher
the speech quality of a reconstructed signal becomes. Fig. 6.8 illustrates average PESQ values
similarly in Fig. 6.7. Similarly to the results on the music data, the proposed algorithms
with P = 3 and 5 reconstructed audio signals having almost the same speech quality as the

original sounds and were much faster than Irino’s algorithm. We finally concluded that using
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Figure 6.7: Evolution of average ODGs by PEAQ for the number of iterations and the processing
time on the music data. “[—Po, Po] (P =1,2,3,5)” denotes the refined iterative fast approximate

CWT with varying approximations, and “Irino” represents Irino’s algorithm [60].

around P = 3 is practical in terms of processing time and audio quality of reconstructed

signals.
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Figure 6.8: Evolution of average PESQ values for the number of iterations and the processing time

on the speech data. The algorithms are same as in Fig. 6.7.

6.6.3 Comparison to Signal Reconstruction from Magnitude
STFT spectrograms

Now, let us examine the effect of the difference of time-frequency transforms on signal
reconstruction from magnitude spectrograms. To compare the redundancy of spectrograms

having different frequency resolution, we defined a redundancy measure by the ratio of the
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number of the number of the spectrograms to the number of signal elements, for example,
> Di/T for a FACWT spectrogram. STFT spectrograms were computed with Gaussian
windows and a wide variety of hopsizes. The parameter ¢ of the log-normal wavelet corre-
sponds to the frame length and thus CW'T spectrograms were computed with a wide range
of 0 and P = 3. We used the Griffin’s algorithm [57] as the phase estimation algorithm for
STFT and the refined iterative FACWT algorithm for CWT. The audio signals were the

music data used in Sec. 6.6.2. The other conditions were the same as in Sec. 6.6.1.
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(b) Average ODGs with standard errors by PEAQ.

Figure 6.9: Comparison of signal reconstruction from magnitude STFT and CW'T spectrograms
in processing time and ODG by PEAQ for the redundancy measure. “STFT: 64 ms frame” and
“CWT: 120 bin/oct” represent the STFT with a frame length of 64 and the CWT with 120 bins

per octave, respectively.
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The results after 500 iterations are shown in Fig. 6.9. The results of “STFT: 64 ms frame”
(“STFT:128 ms frame”) were obtained with 32, 16,8,4,2 and 1 ms (64, 32,16, 8,4 and 2 ms,
respectively) in a left-to-right fashion of the redundancy measure. The results of “CWT: 60
bin/oct” and “120 bin/oct” were obtained with In(2)/84,1n(2)/72,1n(2)/60, In(2) /48, In(2) /36
and In(2)/24 in a left-to-right fashion of the redundancy measure. There were not significant
differences in processing time between CW'T and STFT, which shows the efficiency of the
present algorithms. While the ODGs were mainly dependent on the redundancy, the ODGs
of CWT increased more quickly with increase of the redundancy compared to those of STFT.
This indicates that the CWT is more valid in the audio quality of reconstructed signals than
the STFT when CW'T provides spectrograms having enough redundancy.

6.6.4 Demonstration of Phase Estimation

We here demonstrate pitch transposition of an audio signal in the magnitude CW'T spectro-
gram domain, using the refined iterative FACWT algorithm. When the center frequencies of
the subbands are located uniformly in the log-frequency domain and Dy = Dy =--- = Dy _;
in the proposed algorithm, we simply shift the components of the CWT spectrograms to
the lower or higher analysis frequency components, and the blank components by the move
are filled by zero. However, the shifts cause the mismatches of phases, and the use of the
original and zero phases leads to failure of the pitch transposition, hence we need to use the
phase estimation for synthesizing the pitch-transposed audio signals. Although the shifts
also result in the mismatches of magnitude CW'T spectrograms, the proposed algorithm can
be used as abovementioned. We obtained the synthesized signals with it as we expected, and
they are available at http://tomohikonakamura.github.io/Tomohiko-Nakamura/demo/
fastCWT.html.

6.7 Real-Time Extension of Fast Phase Estimation

Algorithm

The algorithms presented in Sec. 6.5.2 rely on the FFT of an entire signal, and the space
complexity of the algorithms increase with the signal length. This characteristics cause that
the algorithms require large memory to compute music audio signals of practical length and

in a situation where memories of computers and digital devices are limited, such as iPod,



86 Chapter 6 Fast Signal Reconstruction from Magnitude CWT Spectrogram

Divide an incoming

. i i Time-domain signal
signal mto slices

Multiply the analysis window
and apply the FACWT algorithm

Add the spectrograms according to
the overlap of the slices

Frequency
il
]
]
n

Spectrogram

Figure 6.10: Schematic illustration of the online extension FACWT.

music audio signals that can be processed are limited. Furthermore, the algorithms, in
principle, are not applicable to music applications that work in real time. To increase the
applicability of the present algorithms, we now extend the iterative FACWT algorithm to
work in real time. For the convenience of the notation we assume D := Dy = --- = Dy _q,

but the following discussion is valid for general D;.

6.7.1 Online FACWT Algorithm

A real-time algorithm of calculating CWT have already been proposed in [63], which
divides an incoming signal into segments overlapping with each other called slices and pro-
cesses the signal of each slice. In the same way of the real-time algorithm, we can extend
the FACWT algorithm to work in real time, which we call the online FACWT algorithm.

The online FACWT algorithm consists of three steps (Fig. 6.10):

(i): An incoming signal is divided into slices of 2N length with a N hopsize.

(ii): The FACWT algorithm is applied to the signal of each slice multiplied by an analysis
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window h = [hg, -+, han_1]" to the windowed signal of each slice.

(iii): The FACWT spectrograms of the slices are added with each other according to the

overlap of the slices.

To reconstruct the signal of each slice overlapping with the previous slice, we require only
the spectrograms of the current slice and the previous slice obtained in Step (ii). The
spectrograms of the two slices are transformed into signals by the inverse FACW'T algorithm,
the signals are multiplied by a synthesis window, arranged as v = [vg, - - ,van_1] ", and the
windowed signals are added with each other according to the overlap of the slices. Here the
synthesis window satisfies h,v, + hyinvpiny =1 forn =0,--- ;N — 1. Since the slice-wise
processing does not require the entire input signal to obtain the spectrograms of individual
slices and the number of the spectrogram elements of a slice is independent of T', where T’
is the length of the input signal, the space complexity of the online FACWT algorithm is
much lower than that of the FACWT algorithm when N < T

For the convenience of the implementation, we use the following Tukey window defined
in [63] as the analysis window:

7

0 (0 <n< 84
n — N-M
0.5 — 0.5 cos <7TM—_21> . (BB <n < MM
h,=1<1 (N-;M <n< SNQ—M)’ (6.36)

n _ 3N-M
0.5+ 0.5cos | 7 2 , (M < < M)

0 (3NEM <y < 2N),

where M 0 < M < N is an parameter of controlling the overlap of the consecutive slices.
The larger M becomes, the more overlapping elements the consecutive slices have. The

window satisfies h,, + h, .y =1 forn =0, --- , N — 1 and thus we can set v, = 1 for all n.

6.7.2 Real-Time Iterative FACWT Algorithm

The online FACWT algorithm and its inverse transform are linear and redundant and one
may think that the algorithm where the FACWT and inverse FACW'T are replaced with their
online versions in the iterative FACW'T algorithm work well. We call the algorithm the real-

time baseline algorithm. However, the algorithm fails to reconstruct signals from magnitude
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spectrograms as we will show later in Sec. 6.7.3. This is because any phase estimated with
the iterative FACWT algorithm is accurate to up to an overall phase constant and the
estimated phases of consecutive slices are often inconsistent with each other. To suppress
the inconsistency between the consecutive slices, we present a real-time iterative algorithm
that takes into account signal components obtained in a previous slice, which we call the
real-time iterative FACWT algorithm.

Let us define the signal components obtained in the previous slice by g € CV, where signal
elements at the time outside the current slice are set as zero. We here redefine a, ¢ and
s(a, @) as a given magnitude spectrogram, a phase estimate and a spectrogram estimate of

the current slice. If the inverse FACWT of s(a, ¢) is consistent with g, s(a, ¢) satisfies
W+ s(a, ) = diag(h)diag(v)(g + " s(a, $) (6.37)

where where diag(p) converts a vector p into a diagonal matrix with the elements of p on the
main diagonal. If we can see the right-hand side of Eq. (6.37) as an inverse transform from a
complex FACWT spectrogram instead of the inverse FACW'T algorithm, the algorithm that
the inverse FACWT step is replaced with Eq. (6.38) in the iterative FACWT algorithm at

each slice may suppress the inconsistency between the consecutive slices:
5 + Wdiag(h)diag(v)(g + W s(a, @)), (6.38)

where § is an auxiliary variable redefined for the real-time iterative FACW'T algorithm. The
present algorithm involves s(a, ¢) and g for each slice, and thus the space complexity of the

algorithm is reduced to O(N + LD) compared to the iterative FACWT algorithm.

6.7.3 Experiments

To examine the effect of the consistency between slices and the computation speed of the
present algorithm, we conducted a signal reconstruction experiment. As a comparison, we
use the real-time baseline algorithm. The test data were magnitude spectrograms of the first
30 s of 10 musical pieces in the RWC music genre database [2] and the sampling frequency
was 48 kHz. The slice length was set as 170,340 and 680 ms (N = 2'2 213 2) and the
analysis time window was the Tukey window defined by Eq. (6.36) with M = N/4. The
analyzing wavelet was the log-normal wavelet with ¢ = 0.02. The center frequencies of the

FACWT ranged from 27.5 to 23679.5 Hz with a 25 cent interval, and the elements within
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Figure 6.11: Average ODGs and standard errors obtained with the present algorithm and the
real-time baseline algorithm for real time factor. Points correspond to the results finished with

0,10, ---,200 iterations in a left-to-right fashion of real time factor.

the range [—20, 20] around individual center frequencies in the log-frequency domain were
computed in the bandlimiting process of the FACWT. Both algorithms were started with
randomly initialized phase. The computation environment was the same in Sec. 6.6.1.

Fig. 6.11 displays the results obtained with the present algorithm and the real-time base-
line algorithm for real-time factor, which is defined as the ratio of a processing time to
a hopsize. Only the processing times required by the phase estimation part are reported
here. The present algorithm provided reconstructed signals with higher ODGs than the real-
time baseline algorithm. This shows that the consistency between slices is valid for signal
reconstruction. The author listened to the reconstructed signals by the real-time baseline

algorithm, and we found that the energy of the signals decreases quickly in the overlapping
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parts of slices. This may be because the estimated phases were not coherent and the signals
of the slices were cancelled with each other in the overlapping parts. While the convergence
of the algorithms have yet been proved, we confirmed that the objective function decreased

at each iteration.

6.8 Summary

We have proposed two fast algorithms for estimating the phase from a magnitude CWT
spectrogram to construct a time domain signal. We have introduced the consistency con-
dition for a CW'T spectrogram and gave its intuitive interpretation in a viewpoint of the
overlaps between the frequency responses of the neighboring subband filters. The problem
of the phase estimation have been formulated as that of minimizing a numerical criterion
describing how far a complex vector deviates from the consistency condition. To solve the
problem, we have applied the auxiliary function approach and have derived an iterative al-
gorithm. The derivation not only has turned out that the derived algorithm is equivalent to
Irino’s algorithm, but also have made it clear that the convergence of the phase estimation
algorithm where the CW'T and inverse CW'T steps are replaced with the fast approximate
versions is still guaranteed. On the basis of the proof of convergence, we have then de-
rived two fast and convergence-guaranteed algorithms whose computational complexity and
memory cost are far reduced from those of Irino’s algorithm. Experimental evaluations have
demonstrated that the present algorithms are around 75 times faster than Irino’s algorithm
and the reconstructed signals obtained with the present algorithms have almost the same
audio quality as original sounds. Moreover, we extended the present algorithms to work in

real time and showed the efficiency of the real-time version of the algorithms in experiments.
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L,-Norm Non-Negative Matrix
Factorization for Singing Voice

Enhancement

7.1 Chapter Overview

Measures of sparsity are useful in many aspects of audio signal processing including speech
enhancement, audio coding and singing voice enhancement. The well-known method for
these applications is NMF, which decomposes a non-negative data matrix into two non-
negative matrices. Although previous studies on NMF have focused on the sparsity of
the two matrices, the sparsity of reconstruction errors between a data matrix and the two
matrices is also important since designing the sparsity is equivalent to assuming the nature
of the errors. We propose a new NMF technique, which we called L,-norm NMF, that
minimizes the L, norm of the reconstruction errors, and derive a computationally efficient
algorithm for L,-norm NMF according to an auxiliary function principle. This algorithm can
be generalized to complex-valued matrix factorizations. Since the spectrograms of singing
voices can be seen as sparse matrices, we can apply L,-norm NMF for enhancement of a
singing voice in a monaural music signal. We confirmed experimentally that reasonably good

enhancement results were obtained with appropriate choices of p.

91
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7.2 Introduction

NMF [22] is a powerful technique that approximates a data matrix Y by using the product
of two non-negative matrices W and H, and has been actively studied in many scientific
and engineering fields in recent years (see [99]). In particular, in the field of music signal
processing, successful results were obtained by regarding a magnitude spectrogram as a
non-negative matrix [21].

NMF is formulated as the problem of minimizing a measure between a data matrix and a
model. How to define the measure is very important since it corresponds to an assumption on
statistical nature of observed data. For example, if we use the Frobenius norm, it implicitly
assumes that observed data follow a normal distribution. However, when the data are
contaminated with outliers, it becomes difficult to find the underlying low-rank structure of
the data.

To cope with outliers, measures of sparsity (e.g. L; norm) have been widely used in
many audio signal processing techniques such as NMF and robust principle component anal-
ysis [100, 101]. Many previous studies of NMF have used sparseness measures [28, 102],
regularizers [103] and priors [34] on W and H, which induce sparse solutions. However, it
is difficult to use the measures between a data matrix and a model directly since the mea-
sures are often non-linear and not differentiable and many conventional smooth optimization
techniques are difficult to be directly applied.

In this chapter, we propose a new NMF (L,-norm NMF) that minimizes the L, norm of
reconstruction errors between a data matrix and a model. We formulate L,-norm NMF with
0 < p < 2 and derive a convergence-guaranteed algorithm that consists of multiplicative
update equations for W and H based on an optimization principle called the auxiliary
function principle [71-73]. We further generalize this algorithm for complex-valued matrix
factorizations. Since the spectrograms of singing voices can be seen as sparse matrices, we
apply L,-norm NMF for the enhancement of a singing voice in a monaural music signal and
experimentally examined the effect of varying p.

We henceforth denote sets of real values and non-negative real values as R and R,

respectively.
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7.3 L,-Norm Non-Negative Matrix Factorization

7.3.1 Problem Setting

Let us define frequency, time, and basis indexes, respectively, as w € [0,Q2—1], ¢t € [0, T —1]
and k € [0, K—1] such that K < Q and K < T. Given a non-negative data matrix Y := (Y, ;)

L,-norm NMF is formulated as the problem of minimizing the L, norm

p
£(H7 U) = Z ‘Yw,t - Z Hw,kUk,t (71)
w,t k
subject to
Vk, Y Hyp=1. (7.2)

Here H = (H, ;) and U = (Uy;) are Q x K and K x T non-negative matrices. Eq. (7.2) is
introduced to avoid an indeterminacy in the scaling. When Y is a magnitude spectrogram,
the columns of H represent spectral templates and the rows of U represent the temporal
activities of the spectral templates.

The constant p (0 < p < 2) controls the sparsity of the difference between Y and HU. The
smaller p becomes, the sparser the reconstruction errors tend to be. Note that when p = 2,
the objective function equals the NMF with Frobenius norm. In a statistical viewpoint, this

formulation assumes that the observed data follow a generalized normal distribution.

7.3.2 Efficient Algorithm Based on Auxiliary Function Approach

The objective function £(H, U) involves a summation over & in the L, norm, and so many
conventional smooth optimization techniques cannot be directly applied. Now, we propose
a computationally stable algorithm based on an optimization principle called the auxiliary
function approach [71-73]. If we can construct an upper bound of the objective function such
that L(H,U) = ming LT (H, U, ©), the objective function is guaranteed to be non-increasing
under the updates, H,U — argmin L*(H,U,©) and © — argmin LT (H,U,©). We call the
upper bound the auxiliary funég]on. °

To construct it, we focus on the fact that a quadratic function tangent to the power
p function is an upper bound of the power p function. By writing the tangent point as

&wt € R>g, the upper bound can be specifically written as

Lo pe, (7.3)

p -2
< pgf;,t

Yar = 3 HolUks Vi = 3 HowUse
k k
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(see Lemma 2 of [26] for the proof of the inequality). The equality of the inequality (7.3)
holds if and only if

gw,t =

(7.4)

You = > HoiUgl-
k

Next, we focus on the fact that a quadratic function is a convex function, and so we can

employ Jensen’s inequality:

<Z Hw,kUkz,t>2 < Z
k k

where A, ; € Rs( are auxiliary variables that sum to unity, i.e. >, A, = 1. The equality

: (H, xUky)? (7.5)
w,t,k

of the inequality (7.5) holds if and only if
N H,, Uk
w,t =7
[Ae) Zk’ w, k! Uk/

In summary, the upper bound of L(H,U) can be described as

1
+(H,U,0) 52{ =Y, Hy Uy + Y ——(H, U, 2}+ 2 —p)e?
pr t ,tzk: KUkt zk:)\w,k( £Ukt) ;( P&

(7.7)
where © := ({Auik otk Swttws). By setting the partial derivatives of L1 (H,U,©) with

(7.6)

respect to H and U at zeros and substituting Eqs. (7.4) and (7.6) in A :x and &, we

obtain

H+Ho[{YoCO)U yo{(HUCU'} (7.8)
U«UOH{H (Yo CO)o{H"(HU © 0)}] (7.9)

where ® and @ denote element-wise product and division, and C'is an 2 x T" matrix whose

(w,t)-th element is
—-p

(7.10)

E:EM%t

It is worth noting that each update equatlon consists of multiplication by a non-negative

factor. Hence, the entries of H and U are guaranteed to be non-negative whenever their

initial values are set at non-negative values.

7.4 Extension to Complex-Valued Matrix

Factorizations

Although the target of the algorithm in the previous section is for non-negative matrices,

it can be generalized for complex-valued matrices similarly. We call the problem L,-norm
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matrix factorization (L,-norm MF).
L,-norm MF is the problem of finding complex-valued matrices H and U for a given

complex-valued data matrix Y such that

H U = Yw — Hw U p7
He(CQXIfIfl(?echT ( ) ) ;| it ; .k k,t|
subject to Vk, ZHw,k =1

where 0 < p < 2 and J(H,U) is the objective function.

Similarly in Sec. 7.3, we derive the upper bound of J(H,U) for applying the auxiliary
function approach to this problem. The inequality used in Eq. (7.3) is applicable to J (H,U),
and then its upper bound is the same as the right-hand side of Eq. (7.3). To derive the upper
bound of the square function of Eq. (7.3), we can use a generalization of Jensen’s inequality

for complex values, which was employed in [26]:

w w U 2
Yw,t - ZHw,kUkt Z |a bk 6 i k,t| (711)
L w,t,k

where a1 € R, Btk € [0, 1] are auxiliary variables subject to ), ik = Yo, D g Botk =

1. The equality of the inequality (7.11) holds if and only if

Atk = HywUkt — Butk ( Z Hy, Uy — Yw,t>- (7.12)

k/

The upper bound of J(H,U) can thus be given as

ok — Hy 1 U
j+(H7 U7 {éw,t}w,ta {aw,t,k}w,t,ka {Bw,t,k}w,t k pr Z | bl i t‘ (2 - p) fzt

w,t,k

(7.13)

By differentiating J+(H, U, {€ut }w.ts {Qw.tk wtks {Bwtk fwrk) partially with respect to H and

U and setting them at zeros, we can obtain the following update equations:

Zt Uk t( w t7]€Hw,khk:,t + Yw 4 Zk’ w,k’ Uk’ )

Hyp < = (7.14)
Zt Cw %BwikUl?t
U >0 Co 1H <BwtkHw KUkt + You — D0 HowUnr, ) (7.15)
kt < .
Z wtka)k

where C,,; is defined as Eq. (7.10).
The parameters f3,,,x can be chosen arbitrarily subject to B,.x € Rso and >, Bo e =1
for all w and ¢, and so B, is allowed to be different at each iteration. The update rule of

[ can be derived similarly in the above.
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Figure 7.1: Examples of spectrograms of an accompaniment sound and a singing voice.

7.5 Application to Singing Voice Enhancement

7.5.1 Singing Voice Enhancement

In this section, we apply L,-norm NMF to singing voice enhancement, of which aim is to
enhance a singing voice enhancement in a monaural music signal. Singing voice enhancement
is often used in music information retrieval (MIR) applications such as automatic lyrics
recognition [104,105], automatic singer identification [106], and automatic karaoke generators
[107].

To do this, we focus a difference in spectrogram between between accompaniment sounds
and singing voices (Fig. 7.1). Music instruments can reproduce almost the same sounds
each time they are played and music has a repeating musical structure. We can see the
spectrograms of accompaniment signals as a low-rank matrix. By contrast, the spectra of
singing voices are highly time-varying in pitch, timbre and loudness, and so the rank of the
spectrograms of singing voices are relatively higher than those of accompaniment sounds. In
addition, the spectrograms of singing voices are sparse as shown in Fig. 7.1 (b). Thus, if we
try to approximate Y with HU, HU may correspond to the spectrograms of accompaniment
sounds, and the spectrograms of singing voices can be viewed as outliers.

The enhancement scheme is depicted in Fig. 7.2. First, the spectrogram of an input
sound is computed by the STFT. Second, the magnitude spectrogram of an input sound

is regarded as a non-negative matrix, and L,-norm NMF is applied to it. Third, some
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Figure 7.2: Proposed enhancement scheme using L,-norm NMF.

time-frequency components of the obtained model spectrogram HU may be larger than
corresponding components of Y, and so such components of HU are forced to equal those
of Y. This means that the corresponding time-frequency components of Y are estimated
not to contain the components of the singing voice. In summary, the estimated magnitude

spectrogram of a singing voice S is derived as

N Yw, _Z Hw,kUk, (Yw, Z Z Hw,kUk,)
Soe=2{ Pl ek v (7.16)

0 (Yw,t < Zk Hw,kUk,t)
The magnitude spectrograms of the accompaniment sound and the singing voice are con-

verted into an audio signal by the inverse STF'T, using the phase of the input spectrogram.

7.6 Experimental Evaluation

7.6.1 Experimental Conditions

To evaluate the performance of the proposed method, we conducted two experiments on
singing voice enhancement: an evaluation of the effect of p, which controls sparsity, and
frame length F', and a comparison of our results with the state-of-the-art [101, 108, 109].

The criteria for evaluating the singing voice enhancement were the normalized signal-to-

distortion ratio (NSDR) and the global NSDR (GNSDR), given as

NSDR({ fi}s: { fi}e, {2 }e) = SDR({ fe}e, {fi}:) — SDR({ze}e, {fi}e), (7.17)

cwNSDR({ fi i }oi { i }eo {i}e) (7.18)

GNSDR = 2= ,
D2 Wi
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Figure 7.3: Singing-voice-enhanced results obtained with the proposed method.
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Figure 7.4: Box plot of the NSDRs by the proposed method for the MIR-1K dataset. The results
for SNRs of —5,0 and 5 dB are for (p, F') = (1.7,2048), (1.0,2048) and (0.8,1024), respectively.
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Table 7.1: Comparison in GNSDR of the proposed method and methods presented in previous
studies. F' denotes the length of a frame in sample point. “Hsu”, “Rafii” and “Huang” represent
the corresponding methods [101,108,109].

Input Proposed method Proposed method
Hsu Rafii Huang
SNR [dB] F=1024 F = 2048
-5 2.84 (p=1.6) 3.70 (p=1.7) —0.51 0.52 1.51
0 1.93 (p = 1.0) 1.95 (p = 1.0) 091 1.11 237
5 143 (p =0.8) 1.04 (p =0.8) 0.17 1.10  2.57

where ﬁ»,t, fir and z;; denote the estimated signal, the target signal and the input signal of
the i-th piece. NSDR represents the improvement in SDR, and GNSDR denotes the weighted
averages of the NSDR of all the music pieces by the length of the i-th piece, {w;};. These
criteria have also been employed in many previous studies [101,108-112]. To calculate the
SDR, we used the BSS Eval Toolbox [75,113].

As an evaluation dataset, we used the MIR-1K dataset [114], following the evaluation
framework in [101,108,109]. The dataset consists of 1000 Chinese song clips performed by
amateur singers. The durations of the clips range from 4 to 13 s, and the audio signals
are monaural with a sampling rate of 16 kHz. The accompaniment and vocal parts were
recorded separately, and we could mix them with any signal-to-noise ratio (SNR), where the
SNR corresponds to the voice to accompaniment ratio. The accompaniment and vocal parts
for each clip were mixed at —5 dB (accompaniment is louder), 0 dB (same level) and 5 dB

(vocal is louder) SNRs.

7.6.2 Effect of Sparsity and Frame Lengths

We first compared the proposed method in p and F. We used p = 0.1,0.2,---,2.0 and
F = 512,1024, 2048, 4096 sample points. For STFT, the window function was the sine
window, and the frame shifts were half the length of the frames. The number of bases was
set at K = 10. The entries of W and H were initialized randomly. There were 200 iterations,
which is supposed to be sufficient empirically.

Fig. 7.3 shows one of the enhanced results obtained with the proposed method. The

figures show the spectrograms of the input signal and the enhanced result. We can see
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that most of the accompanying sounds (vertically and horizontally smooth components) are
suppressed, and the singing voice component of the spectrogram is clearer than that of the
input spectrogram.

Fig. 7.4 shows the distributions of NSDRs for each SNR. The results were for (p, F') =
(1.7,2048), (1.0, 2048), (0.8,1024) for SNRs of —5,0 and 5 dB. Since most of the NSDRs
exceeded 0 dB, and we can confirm that the proposed method worked well for most of the
input signals.

As illustrated in Fig. 7.5 for SNRs of —5,0,5 dB, the results show that the GNSDRs
depended strongly on p for all frame lengths. The highest GNSDRs for all SNRs were 3.7
at (p, F) = (1.7,2048) for —5 dB SNR, 1.95 at (p, F') = (1.0,2048) for 0 dB SNR, and 1.43
at (p, F') = (0.8,1024) for 5 dB SNR. We can see that p at which GNSDR was the highest
for each input SNR decreased as the input SNR became higher. With a high input SNR,
the non-zero time-frequency components of the singing voice spectrogram are large, and
increasing the sparsity is preferred. On the other hand, with a low input SNR, the non-zero

time-frequency components are small, and decreasing the sparsity is preferred.

7.6.3 Comparison with Previous Studies

Finally, we compared the proposed method with the state-of-the-art [101,108,109]. The
results are summarized in Tab. 7.1. The proposed method with F' = 1024 outperformed
two previous methods for all input SNRs. While the GNSDRs of the proposed method were
lower than those of [101] at SNRs of 0 and 5 dB, the GNSDR with the proposed method was
0.4 to 2.4 dB larger than those of three previous methods at a SNR of —5 dB. This result

indicates that the proposed method works well particularly in a low SNR environment.

7.7 Summary

We have proposed a new NMF that minimizes the L, norm of the reconstruction errors
between a data matrix and the model. We have derived a computationally efficient algorithm
according to the auxiliary function principle. This algorithm consists of multiplicative update
equations and guarantee the non-negativity of H and U at each iteration. We have further
generalized this algorithm for complex-valued matrix factorizations. We have applied L,-
norm NMF to singing voice enhancement and have showed experimentally that adequately

selecting p improves the enhancement quality, and the proposed method outperformed three
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previous works under a low SNR situation. There are several ways to extend L,-norm NMF
to other applications. We think one promising application is speech enhancement since the
spectrogram of background noise is sometimes approximated as low rank and the speech

spectrogram is relatively sparse.
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Figure 7.5: GNSDRs of the proposed method with respect to p of the L, norm and frame length
F. Red, blue, green and purple points correspond to F' = 512, 1024, 2048, 4096 sample points. The
results are for (a) —5 dB, (b) 0 dB, and (c) 5 dB SNRs.



Chapter 8

Timbre Replacement of Drum

Components in Music Audio Signals

8.1 Chapter Overview

This chapter presents a system that allows users to customize an audio signal of poly-
phonic music (input), without using musical scores, by replacing the frequency characteris-
tics of harmonic sounds and the timbres of drum sounds with those of another audio signal
of polyphonic music (reference). To develop the system, we first use a method that can sep-
arate the magnitude spectra of the input and reference signals into harmonic and percussive
spectra. We characterize frequency characteristics of the harmonic spectra by two envelopes
tracing spectral dips and peaks roughly, and the input harmonic spectra are modified such
that their envelopes become similar to those of the reference harmonic spectra. The input
and reference percussive spectrograms are further decomposed into those of individual drum
instruments, and we replace the timbres of those drum instruments in the input piece with
those in the reference piece. Through the subjective experiment, we show that our system

can replace drum timbres and frequency characteristics adequately.

8.2 Introduction

Customizing existing musical pieces according to users’ preferences is a challenging task
in music signal processing. We would sometimes like to replace the timbres of instruments

and audio textures of a musical piece with those of another musical piece. Professional audio

103



104Chapter 8 Timbre Replacement of Drum Components in Music Audio Signals
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Figure 8.1: System outline for replacing drum timbres and frequency characteristics of the harmonic
component. Red and blue modules relate to harmonic and percussive components of input and

reference pieces.

engineers are able to perform such operations in the music production process by using effect
units such as equalizers [115-119] that change the frequency characteristics of audio signals.
However, sophisticated audio engineering skills are required for handling such equalizers
effectively. It is therefore important to develop a new system that we can use intuitively
without special skills.

Several highly functional systems have recently been proposed for intuitively customizing
the audio signals of existing musical pieces. Itoyama et al. [120], for example, proposed an
instrument equalizer that can change the volume of individual musical instruments indepen-
dently. Yasuraoka et al. [121] developed a system that can replace the timbres and phrases
of some instrument with users’ own performances. Note that these methods are based on
score-informed source separation techniques that require score information about the musi-
cal pieces (MIDI files). Yoshii et al. [122], on the other hand, developed a drum instrument
equalizer called Drumiz that can change the volume of bass and snare drums and replace
their timbres and patterns with others prepared in advance. To achieve this, audio signals
of bass and snare drums are separated from polyphonic audio signals without using musical
scores. In this system, however, only the drum component can be changed or replaced. In
addition, users would often need to prepare isolated drum sounds (called reference) with
which they want to replace original drum sounds. Here we are concerned with developing
an easier-to-handle system that only requires the users to specify a different musical piece

as a reference.
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Figure 8.2: Bottom (green) and top (red) envelopes of a spectrum (blue). The envelopes trace dips

and peaks of a spectrum roughly.

In this chapter, we propose a system that allows users to customize a musical piece (called
input), without using musical scores, by replacing the timbres of drum instruments and
the frequency characteristics of pitched instruments including vocals with those of another
music piece (reference). We consider the problems of customizing the drum sounds and the
pitched instruments separately, because they have different effects on audio textures. As
illustrated in Fig. 8.1, the audio signals of the input and reference pieces are separated into
harmonic and percussive components, respectively, by using a harmonic percussive source
separation (HPSS) method [123] based on spectral anisotropy. The system then (1) analyzes
the frequency characteristics of the spectra of the harmonic component (hereafter harmonic
spectra) of the input piece by using a spectral-envelope-based method presented by [93], and
(2) adapts those characteristics to the frequency characteristics of the reference harmonic
spectra. Moreover, (a) the spectrograms of the percussive components (hereafter percussive
spectrograms) of the input and reference pieces are further decomposed into individual drum
instruments such as bass and snare drums, and (b) the drum timbres of the input piece
are replaced with those of the reference piece. In the following, we describe a replacement
method of frequency characteristics for harmonic spectra and a replacement method of drum

timbres for percussive spectrograms.

8.3 Frequency Characteristics Replacement

The goal is to modify the frequency characteristics of the harmonic spectra obtained

with HPSS from an input piece by referring to those of a reference piece. The frequency
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characteristics of a musical piece are closely related to the timbres of the musical instruments
used in that piece. If score information is available, a music audio signal could be separated
into individual instrument parts [120,121]. However, blind source separation is still difficult
when score information is not available. We therefore take a different approach to avoid the
need for perfect separation.

We here modify the input magnitude spectrum using two envelopes, named bottom and top
envelopes, which trace the dips and peaks of the spectrum roughly as illustrated in Fig. 8.2.
The bottom envelope expresses a flat and wide-band component in the spectrum, and the
top envelope represents a spiky component in the spectrum. We can assume that the flat
component corresponds to the spectrum of vocal consonants and attack sounds of musical
instruments, while the spike component corresponds to the harmonic structures of musical
instruments. Thus, individually modifying these envelopes allows us to approximately change
the frequency characteristics of the musical instruments. The modified magnitude spectra

are converted into an audio signal using the phases of the input harmonic spectra.

8.3.1 Mathematical Model for Bottom and Top Envelopes

We describe each envelope using a Gaussian mixture model (GMM) as a function of the

frequency w:

U(w;a) = Zak¢k(w), Yp(w) = 2202 exp [— 2; (w — kj;zyq)} (8.1)

where a := {a;}X_ |, and f,yq stands for a Nyquist frequency. a > 0 denotes the power of
the k-th Gaussian ¢ (w) with the average k fiyq/K and the variance 0.

We first estimate a for the bottom envelopes of the input and reference pieces respectively
by fitting W(w;a) to their harmonic spectra, and also estimate a for the top envelopes
(see Sec. 8.3.3). We then design a filter that converts the input envelopes so that their time
averages and variances equal those of the reference envelopes. Finally, by using the converted

version of the input envelopes, we convert the input magnitude spectra.

8.3.2 Spectral Synthesis via Bottom and Top Envelopes

We consider converting the input piece so that the bottom and top envelopes of the
converted version become similar to those of the reference piece. Let us define the averages

and variances in time of the envelopes of the input and reference harmonic spectra as ug) and
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Figure 8.3: The proposed (red curve) and threshold-based (blue lines) rules of modifying a spectrum
in the log-spectral domain. The horizontal and vertical axes are an magnitude spectral elements

of input and synthesized pieces.

VY for 1 = in, ref, respectively. Assuming that the envelopes follow normal distributions,
the distributions of the converted input envelopes approach those of the reference envelopes
by minimizing a measure between the distributions. As one such measure, we can use the

Kullback-Leibler divergence, and derive the gains as

(m (ref + \/ (ref 4{V in) ( Sn))Q}VuSref)

2{%5“” (™)) >

Yo =

Next, we show the conversion rule for the harmonic magnitude spectrum (SS“) ) of the
input piece by using the gains for the bottom and top envelopes in the log-spectral domain.
When modifying the bottom envelope, we want to modify only the flat component (and
keep the spiky component fixed). On the other hand, when modifying the top envelope,
we want to modify only the spiky component (and keep the flat component fixed). To do
this, we multiply the spectral components above or near the top envelope by gop. (the gain
factor for the top envelope), and multiply the spectral components below or near the bottom
envelope by ghot (the gain factor for the bottom envelope). One such rule is a threshold-
based rule which means that we divide the set of spectral components into two sets, one
consisting of the components above or near the top envelope and the other consisting of

the components below or near the bottom envelope. We multiply the former and latter sets
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th) .
(svnth) 5o a synthesized

by Giopw and grotw, respectively. Fig. 8.3 illustrates the rule where S,
magnitude spectrum and a threshold 6 := {In(V(w; apet) ¥ (w; atep)) }/2 is the midpoint of the
bottom and top envelopes (V(w;ape) and V(w;ag,,)) of the input piece in the log-spectral
domain. However, the rule changes spectral elements near # with discontinuity. To avoid

the discontinuity, we use the relaxed rule as shown in Fig. 8.3:

In S8 — ¢
In S(synth) —In ot wS(ln +In Gtop,w w 8.3
o gbOt‘*’f(pln(\Ij(W;atOP)/\IJ(WQabot)>> (8:3)
1 0 (z— —o0)
(z) 1+ exp(—x) 1 (2 — o0)

where p > 0. Note that (8.3) is equivalent to the threshold-based rule when p — 0.

8.3.3 Estimation of Bottom and Top Envelopes

Estimation algorithms of spectral envelopes presented in this section have already been
presented in [93]. However, it has not been published in English and so we will review it

details in the rest of this section.

Estimation of Bottom Envelopes

When estimating the bottom envelope W(w;a), we can use the Itakura-Saito divergence
(IS divergence) [124] as a cost function. The estimation requires a cost function that is lower
for the spectral dips than for the spectral peaks. The IS divergence meets the requirement

as illustrated in Fig. 8.4. Let S, be an magnitude spectrum. The cost function is described

Tvot(a ZDIS (w;a)||S.L), (8.5)
Dys(U(w:a)||S,) := ‘I’(;‘Za) —In \I’(;";a) —1 (8.6)

where Drg(+]|-) is the IS divergence. Minimizing Jyet(a) directly is difficult, because of the
non-linearity of the second term of (8.5).

We can use the auxiliary function method [71-73]. Given a cost function J, we introduce
an auxiliary variable A and an auxiliary function J*(z, A) such that J(z) < J*(x, \). We
can then monotonically decrease J(x) indirectly by minimizing J(x, \) with respect to z

and A iteratively.
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The auxiliary function of Jyet(a) can be defined as

e N D S i R S

w k

where A = { A\ (w )}kK:’VKw:1 is a series of auxiliary variables such that Vw,) , A\g(w) =
1, A(w) > 0. The auxiliary function is obtained by Jensen’s inequality based on the concav-
ity of the logarithmic function in the second term of (8.5). By solving 7, (a, X)/day = 0
and the equality condition of Jpot(a) = Jit (a, A), we can obtain

k) aptr(w)

TS @S T S @)

(8.8)

Estimation of Top Envelopes

The estimation of the top envelope W(w;a) requires a cost function that is higher for
the spectral dips than for the spectral peaks. This is the opposite requirement for that in
Sec. 8.3.3. The IS divergence is asymmetric as shown in Fig. 8.4, thus exchanging ¥(w;a)
with S, of (8.6) leads to the opposite property to (8.6), and D;s(S,||¥(w;a)) meets the
requirement. Suppose that the bottom envelope W (w; ape;) was estimated. The cost function

is defined as

Jrop(@) 1= P(a;apet) + Y Dys(S,||¥(w;a)) (8.9)

where P(a;apo) = D1 MkGbot,k/ @k 15 & penalty term for the closeness between the bottom
and top envelopes, and 1, > 0 is the weight of apetx/ag. Direct minimization of Jiop(a) is
also difficult because the IS divergence in the second term of (8.9) includes non-linear terms
as described in (8.6).

Here we can define the auxiliary function of Ji.p(a) as

kZcip(au V7h> = a Apot +Z { ZJ —i—lnh(w)

— apty(w)

+ ﬁ(zawk(w) - h(w)) S, — 1}
k

where v = {Vk(w)}kK:"ffwzl and h = {h(w)}V_, are series of auxiliary variables such that

(8.10)

Vw, > ve(w) = 1, vg(w) > 0, h(w) > 0. This inequality is derived from the following two

inequalities for the non-linear terms:

1
Dok Tk

v 1
gzx—z, lnxglnh—i—ﬁ(x—h). (8.11)
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Figure 8.4: The Itakura-Saito divergences for bottom and top envelopes.

where V&, v, > 0 and h > 0 are auxiliary variables such that ), 1, = 1. The first inequality
is obtained by Jensen’s inequality for 1/ ), x) and the second inequality is a first-order
Taylor-series approximation of Inz around h. By solving 07, (a, v, h)/da;, = 0 and the

equality condition of Ji.p(a) = jtﬁp (a,v, h), update rules can be derived as

Nkabot ke + 9, (Vi (W))? Sy /i (w) Y 1/2
" { > Yk(w)/h(w) } ’ (8.12)
Ve(w) < %, h(w) Zakdzk(w). (8.13)

(8.12) does not guarantee ay > Gpot k, and we set ap = apotrr When ag < apo k-

8.4 Drum Timbre Replacement

To replace drum timbres, we first decompose the percussive magnitude spectrograms into
approximately those of individual drum instruments. The decomposition can be achieved by
non-negative matrix factorization (NMF) [125] and Wiener filtering. We call a component
of the decomposed spectrograms a basis spectrogram. NMF approximates the magnitude
spectrograms by a product of two non-negative matrices, one of which is a basis matrix.
Each column of the basis matrix corresponds to the magnitude spectrum of an individual

drum sound, and the corresponding row of the activation matrix represents its temporal
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activity. The users are then allowed to specify which drum sounds (bases) in the input
piece they want to replace with which drum sounds in the reference piece. According to this
choice, the chosen drum timbres of the input piece are replaced with those of the reference

piece for each basis.

8.4.1 Equalizing Method

One simple method for replacing drum timbres, called the equalizing (EQ) method, is
to apply gains to a basis spectrogram of the input piece such that the drum timbre of
the input basis becomes similar to that of the reference basis. The input and reference
bases represents the timbral characteristics of their drum sounds, and we use the gain that
equalize the input and reference bases for each frequency bin. Let us define the complex
basis spectrogram of the input piece and its basis as Yw(lf ) and HS™. Using the corresponding

(ref)

reference basis H, ’, we can obtain the synthesized complex spectrogram thy ") for the

(synth) — y 0 g &0 B for w € [1,W] and ¢ € [1, 7).

basis as Y, it

This method only requires applying gains to the input basis spectrograms uniformly in
time. However, when there is a large difference between the timbres of the specified drum
sounds, the method often amplifies low-energy frequency elements excessively, and so the
resulting converted version would sound very noisy and the method fails to replace the drum

timbres adequately.

8.4.2 Copy and Paste Method

To avoid the problem of the EQ method, we directly use basis spectrograms of the ref-
erence piece. The reference basis spectra include the drum timbre which we want, and by
appropriately copying and pasting the reference basis spectra, we can obtain the percussive
spectrogram with the reference drum timbres and the input temporal activities. We call the
method the copy and paste (CP) method.

This method requires how to copy and paste the reference basis spectra with keeping
the input temporal activities and how to reduce noise occurred by this method. Features
should be less sensitive to the drum timbres but reflect temporal activities. As the features,
the NMF activations are available. Furthermore, there are three requirements related to
the noise reduction. Noise occurs when previously remote high-energy spectra are placed

adjacent to each other. To suppress the noise, (i) time-continuous segments should be used
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and (ii) the segment boundaries should be established when the activation is low. Since
unsupervised source separation is still a challenging problem, the basis spectra may include
a non-percussive component due to imperfect source separation, and (iii) the use of basis
spectra that include non-percussive components should be avoided.

The problem can be formulated as an alignment problem. The requirements of (i), (ii), and
(iii) are described as cost functions, and the cumulative cost Z;(7) can be written recursively
as

O, (t: 1)

)

I,(7) := , (8.14)
Oir +max, {Cr, + L1 (7))} (t>1)

Orr := aD(UM™| | 4 P, (8.15)

where 7 is a time index of the reference piece, « > 0 and 8 > 0 are the weights of
DM ||UEDY and Py, and U = U/ max,{U"} for | = in,ref. The first term of (8.15)
indicates the generalized I-divergence between the two normalized activations. P, represents
the degree to which the reference basis spectrum at the 7-th frame includes non-percussive
components: the term becomes larger as the number of non-percussive components in the
spectrum (requirement (iii)). Cp , is the transition cost from the 7'-th frame to the 7-th
frame of the reference piece:

1 (r=7+1)
Cr = . (8.16)

c+ y(ﬁjfef) + Uf(ref)) (tr#7 +1)
The constant ¢ expresses a cost for all other transitions except for a straight one. We set
¢ > 1 and this ensures that a straight transition occurs more frequently than the others
(requirement (i)). The second term of (8.16) for 7 # 7’ 4 1 indicates that transitions to
remote frames tend to occur when the activations are low (requirement (ii)), and v > 0 is
the weight of U T(fef) + 0D We can obtain the alignment as an optimal path that minimizes
the cumulative cost by the Viterbi algorithm [126].

The input basis spectra may include the non-percussive components because of imperfect
source separation. In this case, the input basis spectra which may include the non-percussive
components are replaced with the reference basis spectra by the CP method, and the input
basis spectra loses the input non-percussive components. To recover the components, we

make an extra processing. The components tend to have low energy, and they would prob-

ably be included in the input percussive spectra with low energy. We replace synthesized
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percussive spectra {thy nth)}w with the corresponding input percussive spectra {Yff ) }, when

> YLSI? ) is lower than a threshold .

8.5 Experimental Evaluation

8.5.1 Experimental Conditions

We conducted an experiment to evaluate the performance of the system subjectively. We
prepared three audio signals of musical pieces (10 s for each piece) from the RWC popular
music and music genre databases [2] as input and reference pieces, and they were down-
sampled from 44.1 to 22.05 kHz. Then, we synthesized six pairs of these musical audio
signals. Some synthesized sounds are available at http://tomohikonakamura.github.io/
Tomohiko-Nakamura/demo/TimbreReplacer.html. The signals of the input and reference
pieces were converted into spectrograms with the short time Fourier transform (STFT) with a
512-sample Hanning window and a 256-sample frame shift, and the synthesized spectrograms
were converted into audio signals by the inverse STFT with the same window and frame
shift. The parameters of the frequency characteristics replacement were set at ¢ = 240 Hz
and (K, p,n) = (30,0.2,100/k) for k € [1, K]. Then, the parameter a; of the envelope
model was initialized by > S, /K for k € [1, K], all frames and all pieces. For the NMF of
the percussive spectrograms, we set the number of bases at 4, and used the generalized I-
divergence. The CP method was compared with the EQ method, and one of the authors chose
which drum sounds in the input piece were replaced with which drum sounds in the reference
piece. The parameters for the drum timbre replacement were set at (M, «, f3,7,¢,€) =
(4,0.5,3,10,3,100). A negative log posterior, which was computed by the L2-regularized
L1-loss support vector classifier (SVC) [127], was used as P, and the SVC was trained to
distinguish between percussive and non-percussive instruments, using the RWC instrument
database [2].

We asked 9 subjects how adequately they felt that (1) the drum timbres of the input piece
were replaced with those of the reference piece and (2) the timbres of the input harmonic
components were replaced with those of the reference piece. The subjects were allowed to
listen to the input, reference, and synthesized pieces as well as their harmonic and percussive
components as many times as they liked. They then evaluated (1) and (2) for each synthe-

sized piece on a scale of 1 to 5. 1 point means that the timbres were not replaced and 5
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Figure 8.5: Outline of the copy and paste method.

points indicates that the timbres were replaced perfectly.

8.5.2 Result and Discussion

The average scores of (1) with standard errors were 2.37 + 0.15 and 2.83 £ 0.15 for the
EQ and the CP methods. The CP method result was provided prior to that provided by
the EQ method, in particular when the drum timbres were very different as we mentioned
in Sec. 8.4. The average score of (2) with standard errors was 2.5 + 0.1. The results show
that the subjects perceived the replaced drum timbres and frequency characteristics, and
that the system works well.

We asked the subjects to comment about the synthesized pieces. One subject said that
he wanted to control the degree to which drum timbres and frequency characteristics were
converted. This opinion indicates that it is important to enables users to adjust the con-
versions. Additionally, another subject mentioned that replacing vocal timbres separately
would change the moods of the musical pieces more drastically. We plan to replace vocal

timbres by using an extension of HPSS [128] for vocal extraction.
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8.6 Summary

We have described a system that can replace the drum timbres and frequency characteris-
tics of harmonic components in polyphonic audio signals without using musical scores. We
have proposed an algorithm that can modify a harmonic magnitude spectrum via its bottom
and top envelopes. We have also discussed two methods for replacing drum timbres. The
EQ method applies gains to basis spectrograms by the proportions of the NMF bases of the
input percussive spectrograms and those of the reference percussive spectrograms. The CP
method copies and pastes the basis spectra of a reference piece, according to NMF activa-
tions of the input and reference pieces. Through the subjective experiment, we confirmed

that the system can replace drum timbres and frequency characteristics adequately.



Chapter 9

Conclusion

We discussed a spectrogram-aware approach for monaural audio source separation. To realize

the approach, we considered the three principles:

[P1] Use spectrograms having a log-frequency resolution obtained with the CWT.
[P2] Utilize the source-filter model.

[P3] Take into account the spectral leakage.

To develop methods that satisfy all the principles simultaneously, we addressed the following

issues in Chapters 3, 4 and 5, respectively.
[I1] How can we incorporate the source-filter model in the CWT domain ?
[I2] How can we describe the spectral leakage in the CWT domain ?

[I3] How can we simultaneously incorporate the source-filter model and the spectral leakage

in the CWT domain ?

In Chapter 3, we presented a monaural audio source separation method that satisfies
the principles [P1] and [P2] simultaneously. The method describes the spectrogram of a
mixture signal as the sum of the products between the shifted copies of excitation spectrum
templates, which represent spectra of different Fys, and filter spectrogram templates, which
represent the dynamics of the timbre. Iterative algorithms of estimating parameters for
the I divergence and IS divergence criterions were derived based on the auxiliary function
approach. Experiments revealed that the incorporation of the source-filter model is effective

in terms of the source separation accuracy.

116
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In Chapter 4, we presented a new approach for monaural source separation, called HTFD,
that satisfies the principles [P1] and [P3]. HTFD combines the features of the models em-
ployed in the NMF and HTC approaches. Since the present spectrogram model was derived
from an analytic signal model, the parameters of the spectrogram model in the CWT do-
main can be associated with those of the analytic signal model in the time domain. The
parameter relationship enables us to describe the spectral leakage of the signal model in the
log-frequency domain. We conducted an experiment to compare HTFD with the harmonic
NMF, which does not take into account the spectral leakage, and found that the incorpora-
tion of the spectral leakage is effective in the CWT and STFT domains. Furthermore, we
implemented HTFD for STF'T spectrograms and compared it with HTFD for CWT spectro-
grams, and obtained that the CWT-domain HTFD outperformed the STFT-domain HTFD
in source separation accuracy. Moreover, we confirmed that the CWT-domain HTFD out-
performed the harmonic NMF for STFT spectrograms in audio quality of separated signals
through an subjective experiment. These results show that CW'T is more suited for monaural
source separation of harmonic audio signals compared to STFT.

Using the explicit relationship of parameters between the CW'T domain and the time
domain, we incorporate the source-filter model into the spectrogram model of HTFD in
Chapter 5. The present method satisfies all the principles simultaneously. The source-filter
model is defined in the discrete time domain, and thus we can associate the parameters of
the source-filter model with those of the spectrogram model defined in the CWT domain
via the analytic signal model. An iterative algorithm was derived based on the auxiliary
function approach. Experiments showed that the incorporation of the source-filter model
improves the source-separation accuracy.

In Chapter 6, we addressed the problem of estimating an unknown signal from a given
magnitude CWT spectrogram. Due to the redundancy of CWT spectrograms, any CWT
spectrograms satisfy a certain condition to ensure they correspond to time domain signals,
which we call the consistency condition. The problem of the phase estimation was formulated
as that of minimizing a numerical criterion describing how far a complex vector deviates from
the consistency condition. We presented fast phase estimation algorithms with guaranteed
convergence using the auxiliary function principle. Experimental evaluations have demon-
strated that the present algorithms are around 75 times faster than an algorithm proposed
in previous literature, and the reconstructed signals obtained with the present algorithms

have almost the same audio quality as original sounds. Moreover, we extended the present
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algorithms to work in real time and showed the efficiency of the real-time version of the
algorithms in experiments.

In Chapter 7, we present a method of enhancing singing voices in music audio signals
using NMF with the L, norm criterion by focusing on that spectrograms of singing voices
can be seen as sparse matrices while spectrograms of accompaniment sounds can be seen as
low-rank matrices. An experimental evaluation showed that reasonably good enhancement
results were obtained with appropriate choices of p.

In Chapter 8, we develop a system that allows users to edit a music audio signal without
using musical scores by replacing the timbres of drum sounds and the frequency charac-
teristics of harmonic sounds with those of another music signal. The present system was

confirmed to work well through a subjective experiment.
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Additional Experimental Results of

Low-Rankness of Spectrograms
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Figure A.1: Comparison of STFT and CWT spectrograms in low-rankness for subcategories of

music genre.
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