
Abstract
論 文 の 内 容 の 要 旨

論文題目 Efficient Exploitation of SIMD Instructions

in Non-Numerical Applications

(SIMD命令の効率的な活用による

非数値計算アプリケーションの高速化)

 氏 名 井上 拓

To achieve high performance on today’s systems, it is critically important to exploit different

types of parallelisms available in algorithms by mapping them onto hardware parallelisms. For

example, multiple cores and multiple SMT threads in a core can accelerate applications by executing

multiple threads simultaneously. Another important processor feature to accelerate

compute-intensive workloads is Single Instruction Multiple Data (SIMD) instructions, which can

operate on multiple data in one instruction, to exploit data parallelism. Many high-performance

processors support the SIMD instructions, such as the SSE and AVX instruction set of the x86

processors or the VMX and VSX instruction set of the PowerPC processors. To fully utilize the huge

computing capability of today’s processors, the programmers need to identify the thread-level and

data parallelism available in the algorithms. Hence, there are many existing research projects to

enhance important algorithms for parallelizing with multiple threads or vectorizing with SIMD

instructions. The SIMD instructions have been widely used in many scientific computing workloads

(such as matrix computations), image processing workloads (such as movie encoding and decoding),

and basic string operations since it is mostly straightforward to vectorize these algorithms. However,

there are still many important algorithms and workloads we cannot efficiently exploit SIMD

instructions.

In this dissertation, we present new high-performance algorithms for efficiently exploiting

SIMD instructions on the following three key operations: sorting for integer values, sorting for

structures, and sorted set intersection. These algorithms are important building blocks of many

non-numerical applications, such as database management systems and search engines. We showed

that our proposed algorithms improve the performance over scalar algorithms and existing SIMD

algorithms by efficiently exploiting SIMD instructions.

An obvious advantage of the SIMD instructions is the degree of data parallelism available in

one instruction. In addition, they allow programmers to reduce the number of conditional branches in

their programs. For example, a program can select the smaller or larger value from each element’s

pair of two vectors without conditional branches. For another example, a program can aggregate

multiple conditional branches by using vector-comparison-based conditional branches, such as

branch-if-all-equal instruction supported in most of SIMD instruction sets. On superscalar processors

with long pipeline stages, conditional branches can potentially incur pipeline stalls and thus

significantly limit the performance. The benefit of reduction in the number of conditional branches is

potentially significant for many non-numerical workloads since the branch misprediction overhead is

often larger for the non-numerical workloads compared to typical numerical applications such as

matrix computations with regular control flows. For example, it was reported that SIMD instructions

can accelerate many database operations, such as scan operations and nested-loop join operations, by

removing branch misprediction overhead.

In this dissertation, we study efficient sorting algorithm since sorting has been one of the most

important building blocks for many applications, such as database management systems. Hence

many sequential and parallel sorting algorithms have been studied in the past. However, SIMD

instructions in today’s processors have limitations and popular sorting algorithms, such as quicksort,

are not suitable to exploit SIMD instructions efficiently due to its scattered memory accesses. We

propose a new high-performance sorting algorithm suitable for exploiting both the SIMD

instructions and thread-level parallelism available on today's multicore processors. Our main

contribution includes a new high-performance sorting algorithm that can effectively exploit SIMD

instructions. It consists of two algorithms: a vectorized mergesort and a vectorized combsort. In our

vectorized combsort, it is possible to eliminate all unaligned memory accesses from combsort. For

the vectorized mergesort, we proposed a novel linear-time merge algorithm that can take advantage

of the SIMD instructions. We combine these two algorithms. First we divide data into small blocks

and sort them using the vectorized combsort. Then, we merge them using the vectorized (multiway)

mergesort. We show that our algorithm using SIMD instructions outperformed other

implementations of comparison-based sorting algorithm such as STL’s std::sort, which implements a

quicksort variant, and a SIMD implementation of the bitonic mergesort when sorting a large array of

random 32-bit integers. Comparing against an optimized radix sort, our algorithm achieved almost

comparable performance using 128-bit SIMD instructions and better performance using 256-bit

SIMD instructions. Also, our new algorithm showed better scalability with increasing number of

cores than the radix sort and the bitonic mergesort.

We also extend our new sorting algorithm for sorting an array of structures instead of an array

of integers. In real workloads, sorting is mostly used to rearrange structures based on a sorting key

included in each structure. Here, we call each structure to be sorted a record. For sorting large

records using SIMD instructions, a common approach is to first pack the key and index for each

record into an integer value, such as combining each 32-bit integer key and a 32-bit index into one

64-bit integer value. The key-index pairs are then sorted using SIMD instructions, and the records

are finally rearranged based on the sorted key-index pairs. This key-index approach can efficiently

exploit SIMD instructions because it sorts the key-index pairs while packed into integer values,

allowing it to use existing high-performance sorting implementations for integers. However, the

key-index approach causes frequent cache misses in the final rearranging phase due to its random

memory accesses, and this phase limits both single-thread performance and scalability with multiple

cores. We developed a new stable sorting algorithm that can take advantage of SIMD instructions

while avoiding the frequent cache misses caused by the random memory accesses. The main

contribution on this topic is a new approach in the multiway mergesort for sorting an array of

structures, which can effectively exploit the SIMD instructions while avoiding the random memory

accesses. Avoiding the waste of memory bandwidth due to random memory accesses is quite

important with multicore processors because the total computing capability of the cores in a

processor has been growing faster than the memory bandwidth to the system memory. Our results

showed that our new approach achieved up to 2.1x better single-thread performance than the

key-index approach implemented with SIMD instructions when sorting 16-byte records. Our

approach also yielded better performance when we used multiple cores.

Set intersection, which selects common elements from two input sets, is another important

workload we study in this dissertation. It is a fundamental operation in many applications, including

multi-word queries in Web search engines and join operations in database management systems. For

example, in Web search engines the set intersection is heavily used for multi-word queries to find

documents containing two or more keywords by intersecting the sorted lists of matching document

IDs from the individual query words. In such systems, the performance of the sorted set intersection

often dominates the overall performance. We describe our new algorithm to improve the

performance of the set intersection. Unlike most of the existing advanced techniques, we focus on

improving the execution efficiency of the set intersection on the microarchitectures of today’s

processors by reducing the branch mispredictions. Moreover, we can effectively eliminate many of

the comparisons by aggregating multiple comparisons and conditional branches with one branch

based on a SIMD comparison. Our algorithm roughly doubled the performance for set intersection

for 32-bit and 64-bit integer datasets even without using SIMD instructions compared to the

std::set_intersection implementation delivered with gcc. The use of SIMD instructions further

doubled the performance on both processors.

In these three new algorithms, the key to achieve high performance is 1) to exploit data

parallelism available in the algorithm and 2) to reduce the number of conditional branches 3) while

avoiding non-contiguous memory accesses, which increases the memory access overhead. Although

the data parallelism available in one instruction is an obvious and straightforward advantage of the

SIMD instructions, the reduced branch misprediction overhead also gives non-negligible

performance gain; and hence the advantage of the SIMD instructions can surpass the data parallelism

of the SIMD instruction. For example, we demonstrated 8.0x to 11.9x performance improvement

using 4-wide SIMD instruction (SSE for 32-bit integers) in various sorting algorithms that are

suitable for vectorizing with SIMD instructions..

To reduce the number of branch mispredictions, we take two different approaches for sorting

and set intersection. For the set intersection, we aggregate multiple conditional branches into one

since the direction of most of the conditional branches is same. For sorting, on the other hands, we

replace conditional branches by SIMD minimum and maximum instructions. In sorting, especially

for random numbers, the directions of conditional branches are mostly unpredictable and the branch

directions are divergent; hence it is not effective to aggregate multiple branches. By replacing

control flow of the unpredictable conditional branches into a data flow by arithmetic instructions

avoid the huge overhead of branch mispredictions and hence very effective to improve the

performance. Although we take different approaches for handling conditional branches, some of the

optimization techniques are common among our proposed algorithms. For example, using a smaller

data type instead of a larger type to increase the data parallelism in one instruction is an important

technique to get larger performance gain in sorting of structures and set intersection. Typically, using

a small data type does not improve the computation performance with scalar processing, and hence it

is unique to SIMD processing.

In addition to the superior performances with SIMD instructions, we have demonstrated that

we can improve the energy efficiency (performance per Watt) using SIMD instructions efficiently.

The energy efficiency is critically important for computing systems today ranging from super

computers to mobile devices. We observed only small increase in energy consumption in trade for

huge performance boost for both sorting and set intersection. Using SIMD increases energy

consumption in vector ALUs, but it also reduces the execution time. In total, we observed significant

improvement in the energy efficiency. Hence, our results show that our new algorithms can

contribute wide range of applications and systems.

