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Abstract

The information on the Internet is always exposed to the threat of eavesdropping and

falsification. Even in these conditions, we can ensure the confidentiality and integrity of

information by using cryptosystems. In the research of cryptosystems, especially in public

key cryptosystems, it is strongly required that we should rigorously prove its security.

When we prove the security of cryptosystems, we usually reduce its security to the difficulty

of mathematical problems. In this framework, we can objectively judge the security.

Although not all the cryptosystems without security proof are insecure, the concept of

provable security is useful in many aspects. In this thesis, we show two types of results

related to the provable security.

First, we denote the results of provably secure applied cryptosystems in Chapters 3-5.

In general, it often appears many entities, keys, and ciphertexts in applied cryptosystems.

Therefore, we have to consider a complex model to deal with various attacks. If we fail

this modeling, it is meaningless to prove the security. In these chapters, we show the

results with respect to threshold public key encryption and proxy re-encryption under the

extended models and security definitions. In Chapter 3, we show three new constructions

of threshold public key encryption schemes with key re-splittability. In Chapter 4, we

show a generic construction of a proxy re-encryption scheme with new functionality called

re-encryption verifiability. In Chapter 5, we show a construction of a multi-hop and uni-

directional proxy re-encryption scheme based on a cryptographic obfuscator. In this thesis,

we discuss practical / theoretical meaning of new models and security definitions.

Next, in Chapter 6, we extend the provable security to the security protocols other than

cryptosystems. More concretely, we show the result with respect to a protocol that we

call “password reset protocol”. We define models and security definitions, propose generic

constructions, prove its security, and implement a prototype to evaluate its efficiency. This

result can improve the security of real world protocols. Moreover, we can expect progress

of theoretical analysis for password reset protocol based on this result.
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Chapter 1

Introduction

1.1 Background and Motivation

These days, we exchange a lot of information through the Internet which is an open

network. The information on the Internet is always exposed to the threat of eavesdropping

and falsification. Even in these conditions, we can assure the confidentiality and integrity

of information by using cryptosystems.

It is an appropriate security evaluation that is important in information security re-

search. Research without security evaluation is not security research. In cryptosystems,

the most desirable security notion is the security against adversaries with unbounded

computational power. However, this is impossible to achieve in the context of public

key cryptosystems. Moreover, it is also despairingly difficult to derive the lower bound of

computational cost to break the cryptosystems because this means the settlement of P ver-

sus NP problem. Therefore, in cryptosystems (especially in public key cryptosystems),

a framework of security evaluation called “provable security” is widely spread. In this

framework, we can objectively judge the security within some model by reducing its secu-

rity of cryptosystems to the hardness of mathematical problems. Thanks to this property,

governmental organization (e.g. CRYPTREC [39]) can announce recommended ciphers

lists and estimate cryptographic parameters to provide enough security. We cannot easily

conclude that the cryptosystems without security proofs are insecure ones. However, we

have found that some cryptosystems without security proof (e.g. RSA PKCS#1 version

1.5, ISO/IEC 9796-2 (Scheme 1), etc.) that have been already standardized and widely

used in practice have been already broken. Moreover, as we can objectively judge the

security, we can also (to some extent) terminate the cat-and-mouse game between attacks

and heuristic countermeasures. Therefore, proving the security of cryptosystems is now

indispensable when we propose new ones.

To prove the security of cryptosystems, we have to define the models of security goal,

adversaries, correctness, and format of mathematical problems which are used as security

assumptions. We usually use the mathematical problems which are widely believed to

be difficult (e.g. factoring problem, discrete logarithm problem, etc.). When we prove

the security of cryptosystems, we have to show the fact that “there exists no algorithm

that can break the security of the cryptosystems with non-negligible probability if the

mathematical assumptions hold”. In practice, we show the contraposition of this. That
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is, we show the fact that “If there exist an probabilistic polynomial time algorithm A that

can break the security of the cryptosystems with non-negligible probability, we can solve

the mathematical problems by using A as subroutine”. Here, probabilistic polynomial

time algorithm shows the ability of algorithms that is existing in the real world. When

we define a security model, we consider a “security goal” and “attack model” separately.

We show an example as follows: As a security goal, we require that a ciphertext does

not leak any information of plaintext. This security goal is defined as “INDistinguishabil-

ity”. As an attack model, we consider the adversary that can choose arbitrary plaintexts,

encrypt them using public key (in the setting of public key encryption, anyone can ob-

tain the public key), and obtain the polynomially many pairs of plaintext and ciphertext.

This attack model is defined as “Chosen Plaintext Attacks”. Finally, we can define the

indistinguishability against chosen plaintext attacks (IND-CPA, for short) for public key

encryption by combining these security goal and attack model. Since we have already

found that there exist stronger attacks than chosen plaintext attacks, we usually consider

the indistinguishability against adaptive chosen ciphertext attacks (IND-CCA, for short).

We define these security models by using a security game which is executed by adversary

and challenger. More concretely, please see the Section 2.9.

These days, the theory of provable security has been progressed. More concretely,

we formalize various attacks and situations (e.g. side channel attacks, human errors,

and misuse) and introduce them into the security model (e.g. key-dependent message

security [18], leakage resilient security [3], selective opening security [45], and related-key

security [12]). Cryptosystems with above security have (to some extent) resistance against

attacks even if the security of hardware is partially broken. From this observation, we find

that these cryptosystems are important to improve the security level of whole systems.

As we can see above, the concept of provable security is a useful. However, there exist at

least two points that we should be noted. First, we have to rigorously discuss the hardness

of mathematical problems that are used as the destination of security reduction. We

should avoid introducing new (and hence, suspicious) assumptions without consideration.

In addition, we have to correctly estimate and decide the parameters of those problems

because their hardness depend on the size of parameters. This note has been continued

since the beginning of research on cryptosystems.

The other note is that we have to closely examine whether the security model captures

realistic threats or not. In the concept of provable security, modeling an adversary is

extremely important. If we fail this modeling, security proof becomes meaningless. How-

ever, it is not easy for applied cryptosystems to set an appropriate security model. We

can point out some reasons of above difficulty.

Diversification of usage environment: In the past, cryptosystems had been used only

to protect the confidentiality on communication channels. Recently, however, we use

cryptosystems in many ways. For example, the functionality of hard disk encryption

have been equipped in the standard computer to prevent information disclosures.

Since a key for encryption exists in the hard disk drive itself, plaintext contains

the key for encryption in this case. Standard security definitions for public key

encryption (e.g. IND-CCA security) do not capture this situation.

Enrichment of attack environment: Side channel attacks (that is, cryptanalysis using

2



physical information) have become more strong. For example, recently, we have to

consider the leakage of not only a secret key itself, but also a randomness which is

used in the encryption algorithm.

Existence of too many entities: In general, it often appears many entities, keys, and

ciphertexts in applied cryptosystems and we have to consider many situations. That

is, we have to consider who may become adversaries, what types of attacks should be

considered, and how security should be assured (or not be assured). In the research

on group signature (privacy preserving signature) before 2012, for example, we had

only considered the security property that the users are not falsely accused by other

malicious ones. However, we had not considered the signature hijacking. That is,

even in the previous group signature schemes with security proofs, malicious users

may be able to claim that he/she generated the signature even if it is generated by

other user.

If there exist many security models that we cannot compare, we also cannot compare

the security and efficiency between concrete schemes even in the same primitives. There-

fore, it is important to construct an appropriate security models. Here, “appropriate”

contains many meanings. For example, it captures realistic threats, we can prove enough

security, and it is well-defined, and so on. This problem arises recently because many

applied cryptosystems have been proposed and more and more functionalities/security on

them have been defined these days.

We pointed out some negative points and problems of provable security so far. On

the other hand, we can also point out positive aspects of provable security. That is, we

can consider extending its possibility. It seems that there is no reason to apply this useful

concept only for cryptosystems. In heuristically secure protocols, in fact, cat-and-mouse

game between attacks and heuristic countermeasures has been occurred. Therefore, it will

be meaningful if we can introduce the concept of provably security to the heuristically

secure protocols.

1.2 Outline and Summary of This Thesis

In this thesis, we show the results of three cryptosystems and a heuristically secure protocol

to address the above problems.

• In Chapter 2, we explain the basic notations and cryptographic primitives which are

used in this thesis.

• In Chapter 3, we denote the constructions of threshold public key encryption with the

functionality called “re-splittability”. In this setting, we can split a secret key poly-

nomially many times. This property is useful in practice. Moreover, this cryptosys-

tems plays an important role in the generic construction of a proxy re-encryption

scheme which is denoted in Chapter 4. The schemes that we propose in this chapter

can be obtained by extending the previous standard threshold public key encryp-

tion schemes. However, we note that we cannot extend all the previous standard

threshold public key encryption schemes to the re-splittable ones.
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• In Chapter 4, we denote a proxy re-encryption scheme with new functionality called

“re-encryption verifiability”. In verifiable proxy re-encryption, we can detect the ma-

licious activities of a proxy. We define a model and security definitions for verifiable

proxy re-encryption. Not only we add a functionality of re-encryption verifiability,

but also we show the backward compatibility between new security definitions and

previous ones. That is, the scheme secure under our new security definitions auto-

matically satisfy the previous ones of standard proxy re-encryption. In addition, we

propose a generic construction of proxy re-encryption that satisfies the new security

definitions.

• In Chapter 5, we propose a construction of a multi-hop uni-directional proxy re-

encryption scheme. In the proxy re-encryption scheme which is denoted in Chapter

4, the number of re-encryptions is limited to only once. As there exists no model

and security definitions for multi-hop uni-directional proxy re-encryption, we define

them and construct a concrete scheme via a cryptographic obfuscator. We cannot

expect the practicality of this scheme now because the obfuscator does not work

within realistic time. On the other hand, the technique which is used in the security

proof seems somewhat interesting.

• In Chapter 6, we extend the concept of provable security to security protocols other

than cryptosystems. As we denoted in Section 1.1, it seems there is no reason to

apply the concept of provable security only for cryptosystems. More concretely,

this is a result about a backup authentication protocol that we call “password reset

protocol”. Although most online services that adopt a password-based user authen-

tication system support a mechanism with which a user can reset a password, the

fact that the most popular password reset mechanism called secret question does not

provide enough security in practice has been already showed. Although the security

of password reset protocol has been evaluated in a heuristic manner, we introduce a

concept of provable security to this field. We define the model and security defini-

tions, propose a generic construction, prove its security, and implement a prototype

to evaluate the efficiency of our protocol. We introduce a special key for password

reset to overcome the barrier for provably secure protocols. We consider not only the

standard impersonation attacks, but also the illegal registration attacks for password

reset protocols. This result can improve the security of real world protocols. More-

over, we can expect the progress of theoretical analysis for password reset protocol

based on this results.

• In Chapter 7, we conclude the contributions of this thesis and describe the future

prospects that can be considered from this thesis.
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Chapter 2

Preliminaries

In this chapter, we review the basic notation, definitions, and cryptographic primitives

which are used in this thesis.

2.1 Basic Notations

N denotes the set of all natural numbers, and for n ∈ N, we let [n] := {1, . . . , n}. “x← y”

denotes that x is chosen uniformly at random from y if y is a finite set, x is output

from y if y is a function or an algorithm, or y is assigned to x otherwise. “x∥y” denotes

a concatenation of x and y. “|x|” denotes the size of the set if x is a finite set or bit

length of x if x is a string. “PPT” stands for probabilistic polynomial-time. If A is a

probabilistic algorithm then “y ← A(x)” denotes that A computes y as output by taking

x as input. “x := y” denotes that x is defined as y. Without loss of generality, we consider

that a secret key contains the information of the corresponding public key. “k” always

denotes the security parameter. ϕ denotes the empty string. A function f(k) : N→ [0, 1]

is said to be negligible if for all positive polynomials p and all sufficiently large k ∈ N,

we have f(k) < 1/p(k). If A is a protocol between interactive algorithms P and Q, we

write (pout, qout)← A(P (pin)↔ Q(qin)) to mean that P and Q take pin and qin as input,

respectively, interact with each other, and finally P and Q locally output pout and qout,

respectively.

2.2 Bilinear Maps

Groups (G,GT ) of prime order p are called bilinear groups if there is a mapping e : G×G→
GT with the following properties:

1. bilinearity: e(ga, gb) = e(g, g)ab for any g ∈ G and a, b ∈ Z;

2. efficient computability: given g, h ∈ G, e(g, h) ∈ GT is efficiently computable.

3. non-degeneracy: e(g, g) ̸= 1GT
whenever g ̸= 1G;

For convenience, we introduce a bilinear group generator BG that takes 1k as input

and outputs a description (p,G,GT , e) of bilinear groups where p is a k-bit prime. This

process is written as (p,G,GT , e)← BG(1k).
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2.3 Mathematical Assumptions

In this section, we explain the mathematical assumptions which are used in this thesis.

2.3.1 Decisional Bilinear Diffie-Hellman (DBDH) Assumption

The decisional bilinear Diffie-Hellman (DBDH) assumption on (G,GT ) posits the hardness

of distinguishing e(g, g)abc from a random group element in GT given (g, ga, gb, gc). More

formally, we define the advantage of an adversary A in solving the DBDH problem as

follows.

AdvDBDH
A (k) = |Pr[A(g, ga, gb, gc, e(g, g)abc) = 1]− Pr[A(g, ga, gb, gc, e(g, g)z) = 1]|

where, (p,G,GT , e) ← BG(1k), g ← G, and a, b, c, z ← Zp. We say that the DBDH

assumption holds when the advantage AdvDBDH
A (k) is negligible for any PPT adversary A.

2.3.2 Decisional Linear (DLIN) Assumption

The decisional linear (DLIN) assumption on (G,GT ) posits the hardness of distinguishing

ga+b
3 from random group element in G given (g1, g2, g3, g

a
1 , g

b
2). More formally, we define

the advantage of an adversary A in solving the DLIN problem as follows.

AdvDLIN
A (k) = |Pr[A(g1, g2, g3, ga1 , gb2, ga+b

3 ) = 1]− Pr[A(g1, g2, g3, ga1 , gb2, gz3) = 1]|

where, (p,G,GT ,e) ← BG(1k), g1, g2, g3 ← G, and a, b, z ← Zp. We say that the DLIN

assumption holds when the advantage AdvDLIN
A (k) is negligible for any PPT adversary A.

2.3.3 Hashed Diffie-Hellman (HDH) Assumption

Here, H is a hash function that takes an element in G as input, and outputs a string in

{0, 1}l. The hashed Diffie-Hellman (HDH) assumption on (G,GT ,H) posits the hardness

of distinguishing H(gab) from a random string given (g, ga, gb). More formally, we define

the advantage of an adversary A in solving the HDH problem as follows.

AdvHDH
A (k) = |Pr[A(g, ga, gb,H(gab)) = 1]− Pr[A(g, ga, gb, R) = 1]|

where, (p,G,GT , e)← BG(1k), g ← G, a, b← Zp, and R← {0, 1}l. We say that the HDH

assumption holds when the advantage AdvHDH
A (k) is negligible for any PPT adversary A.

Kiltz [73] introduced the gap HDH (GHDH) assumption, and constructed an efficient

key encapsulation mechanism. We remark that when we consider the GHDH assumption

on (symmetric) bilinear groups, the GHDH and the ordinary HDH assumptions become

equivalent. One of our proposed constructions uses the HDH assumption on (symmetric)

bilinear groups.

2.4 Pseudorandom Number Generator

A pseudorandom number generator [111] PRG : {0, 1}k → {0, 1}2k is a deterministic

function that takes k-bit length string s ∈ {0, 1}k as input, outputs a 2k-bit length string.

We define the advantage of an adversary A for PRG as follows:

AdvPRGA (k) := |Pr[A(PRG(s))→ 1|s← {0, 1}k]− Pr[A(r)→ 1|r ← {0, 1}2k]|
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We say that a PRG is computationally secure, if for any PPT adversary A, AdvPRGA (k)

is negligible.

2.5 Collision Resistant Hash Function

We define the advantage of an adversary A in finding the collision of a hash function H

as follows.

AdvCRHFA (k) = Pr[(m0,m1)← A(H) : H(m0) = H(m1) ∧m0 ̸= m1]

where, H is picked randomly. We say that H is a collision resistant hash function if for

any PPT adversary A, AdvCRHFA (k) is negligible.

2.6 Pseudorandom Function

We say that F is a pseudorandom function (PRF) if

1. there exists an efficient algorithm that takes a key K ∈ {0, 1}k and a string x as

input, and outputs F (K,x).

2. for all PPT adversaries A, the advantage in the following PRF game played with

the challenger B is negligible: First, B picks the challenge bit b ∈ {0, 1} and a key

K ∈ {0, 1}k uniformly at random. A can adaptively make queries x (without loss of

generality, we assume that A does not make the same query twice). If b = 0, then

B responds with F (K,m). Otherwise (that is, b = 1), B returns a random string in

the domain of F . Finally, A outputs a guess bit b′ for b. We define the advantage of

A in this game by AdvPRFA (k) = |Pr[b′ = b]− 1/2|.

2.7 Puncturable Pseudorandom Function

A puncturable pseudorandom function (PPRF) F consists of the following three Turing

machines (KeyF ,PuncF ,EvalF ) and a pair of computable functions (n(·),m(·)) satisfying

the following conditions:

KeyF : This is a key generation algorithm that takes 1k as input, and outputs a key K.1

This process is written as K ← KeyF (1
k).

PuncF : This is a puncture algorithm that takes a keyK and puncture points S ⊆ {0, 1}n(k)

as input, and outputs a punctured key K(S). This process is written as K(S) ←
PuncF (K,S).

EvalF : This is an evaluation algorithm that takes a key K and a string x as input, and

outputs a evaluation value of x EvalF (K,x). Here, n(·) means input length and m(·)
means output length. For simplicity, we use F (K,x) to represent EvalF (K,x).

1As shown in [106], in fact, it is sufficient to choose a K ∈ {0, 1}k from a uniform distribution instead

of running the KeyF algorithm. For simplicity, in this paper, we also write like that in the description of

our scheme and the security proof.
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We say that a PPRF is secure if the following two conditions are satisfied.

Preserving evaluation value at unpunctured point: We consider the all PPT ad-

versaries A that takes 1k as input, and outputs puncture points S ⊆ {0, 1}n(k). For
all x ∈ {0, 1}n(k)\S, we have:

Pr[EvalF (K,x) = EvalF (K(S), x)|K ← KeyF (1
k),K(S)← PuncF (K,S)] = 1.

Pseudorandomness at punctured points: We consider the all PPT adversaries A =

(A1,A2). Here, τ is state information. A1 takes 1k as input, and outputs puncture

points S ⊆ {0, 1}n(k). For all K ← KeyF (1
k) and K(S)← PuncF (K,S), we have:

AdvPPRF(A1,A2)
(k) = |Pr[A2(τ,K(S), S,EvalF (K,S)) = 1]

−Pr[A2(τ,K(S), S, Um(k)·|S|) = 1]| ≤ ε(k).

Here, the distribution of EvalF (K,S) is {EvalF (K,x)|x ∈ S}, and Uℓ denotes the

uniform distribution over ℓ bits.

2.8 Indistinguishability Obfuscation

Let Ck be the class of circuits of size at most k. A uniform PPT algorithm iO is called an

indistinguishability obfuscator (iO) [50, 98] for a circuit class Ck if the following conditions

are satisfied:

1. For all security parameters k ∈ N, for all C ∈ Ck, for all input x, we have:

Pr[C′(x) = C(x) : C′ ← iO(k, C)] = 1.

2. For any (not necessarily uniform) PPT algorithms A = (A1,A2), there exists a

negligible function ε such that the following holds: if A1 always outputs (C0, C1, σ)
such that C0, C1 ∈ Ck and C0(x) = C1(x) for all x, we have:

AdviO(A1,A2)
(k) := |Pr[A2(σ, iO(k, C0)) = 1 : (C0, C1, σ)← A1(1

k)]

− Pr[A2(σ, iO(k, C1)) = 1 : (C0, C1, σ)← A1(1
k)]| ≤ ε(k).

Such (candidate) constructions of iO for all polynomial-size circuits that satisfies the

above conditions were given in [50].

2.9 Public Key Encryption

A public key encryption scheme (PKE) consists of the following three algorithms (PKG,

PEnc,PDec).

PKG This is the key generation algorithm that takes 1k as input, and outputs a pair of

decryption key dk and public key pk.

PEnc This is the encryption algorithm that takes a public key pk and a plaintext m as

input, and outputs a ciphertext c.
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PDec This is the decryption algorithm that takes a decryption key dk and a ciphertext c

as input, and outputs a decryption result m (which could be the special symbol ⊥
meaning that c is invalid).

We require the standard correctness for a PKE scheme, namely, for any (dk, pk) ←
PKG(1k) and any plaintext m, we have m = PDec(dk,PEnc(pk,m)).

Chosen Plaintext Security [54] We recall the definition of chosen plaintext security

(CPA security, for short) of PKE, which is defined by the following game between the

challenger and an adversary A: First, the challenger picks the challenge bit b ∈ {0, 1},
computes (dk, pk) ← PKG(1k), and gives 1k and pk to A. A can make a challenge query

(only once). For a challenge query (m0,m1), where (m0,m1) is a message pair of equal

length, the challenger computes c∗ ← PEnc(pk,mb), and then returns the challenge ci-

phertext c∗ to A. Finally, A outputs a guess bit b′ for b. A wins the game if b = b′. We

define the advantage of A by AdvCPA-PKEA (k) = |Pr[b′ = b]− 1/2|. We say a PKE scheme is

CPA secure, if for any PPT adversary A, AdvCPA-PKEA (k) is negligible.

Chosen Ciphertext Security [83, 88, 44] We recall the definition of chosen ciphertext

security (CCA security, for short) of PKE, which is defined by the following game between

the challenger and an adversary A: First, the challenger picks the challenge bit b ∈ {0, 1},
computes (dk, pk) ← PKG(1k), and gives 1k and pk to A. A can adaptively make a

challenge query (only once) and decryption queries. For a challenge query (m0,m1), where

(m0,m1) is a message pair of equal length, the challenger computes c∗ ← PEnc(pk,mb),

and then returns the challenge ciphertext c∗ to A. For a decryption query c, the challenger

responds with m ← PDec(dk, c), except that if c is the challenge ciphertext c∗, then the

challenger returns ⊥ to A. Finally, A outputs a guess bit b′ for b. A wins the game if

b = b′. We define the advantage of A by AdvCCA-PKEA (k) = |Pr[b′ = b]−1/2|. We say a PKE

scheme is CCA secure, if for any PPT adversary A, AdvCCA-PKEA (k) is negligible.

Chosen Ciphertext Security in the Multi-user Setting In this paper, we will also

use the multi-user version of the CCA security for a PKE scheme, which was introduced by

Bellare, Boldyreva, and Micali [9]. We briefly recall it here. CCA security in the multi-user

setting is also defined by the game that is parameterized by an integer n, and is played

between the challenger and an adversary: Firstly, the challenger picks the challenge bit

b ∈ {0, 1}, computes (dki, pki)← PKG(1k) for i ∈ [n], and gives 1k and (pk1, . . . , pkn) to A.
A can adaptively make “left-or-right” (LR) queries and decryption queries. An LR query

is of the form (j ∈ [n],m0,m1) such that |m0| = |m1|, and the challenger responds to it

with Enc(pkj ,mb). A decryption query is of the form (j, c), and the challenger responds to

it with PDec(skj , c), except that if c is a ciphertext that is some of the answers to previous

LR queries, the challenger answers with ⊥. Finally, A outputs a guess bit b′ for b. A wins

the game if b = b′. We define the advantage of A by AdvCCA-PKE(A,n) (k) = |Pr[b′ = b]− 1/2|.
We say a PKE scheme is CCA secure in the multi-user setting, if for all positive

polynomials n = n(k) and for any PPT adversary A, AdvCCA-PKE(A,n) (k) is negligible.

Bellare, Boldyreva, and Micali [9] showed that ordinary CCA security and CCA secu-

rity in the multi-user setting are polynomially equivalent.
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Multi-challenge Chosen Ciphertext Security We recall the definition of indistin-

guishability against multi-challenge chosen ciphertext attacks (mIND-CCA, for short) [9]

of PKE, which is defined by the following game between the challenger B and an adversary

A: First, B picks the challenge bit b ∈ {0, 1}, computes (pk, dk)← PKG(1k), and gives pk

to A. A can adaptively make encryption queries. For an encryption query (m0,m1), where

(m0,m1) is a message pair of equal length, B computes c∗ ← PEnc(pk,mb), and then re-

turns the ciphertext c∗ to A. For a decryption query c, B responds with m← PDec(dk, c),

except that if c is one of the challenge ciphertexts c∗, as a response to the encryption

queries, then the challenger returns ⊥ to A. Finally, A outputs a guess bit b′ for b. A
wins the game if b = b′. We define the advantage of A by AdvmINDCCA-PKE

A (k) = |Pr[b′ =
b]− 1/2|. We say a PKE scheme is multi-challenge IND-CCA secure, if for all PPT adver-

saries A, AdvmINDCCA-PKE
A (k) is negligible. It was showed that ordinary IND-CCA security

and multi-challenge IND-CCA security are polynomially equivalent [9].

2.10 Signature

A signature scheme consists of the following three algorithms (SKG, Sign, SVer).

SKG This is the key generation algorithm that takes 1k as input, and outputs a signing

key sk and a verification key vk.

Sign This is the signing algorithm that takes a signing key sk and a message m as input,

and outputs a signature σ.

SVer This is the verification algorithm that takes a verification key vk, a message m, and

a signature σ as input, and outputs either ⊤ or ⊥ (indicating whether the signature

is valid or not).

We require the standard correctness for a signature scheme, namely, for any (sk, vk)←
SKG(1k) and any message m, we have SVer(vk,m, Sign(sk,m)) = ⊤.

Strong Unforgeability [4] We recall the definition of strong unforgeability [4] of a

signature scheme, which is defined by the following game between the challenger and an

adversary A. First, the challenger computes (sk, vk) ← SKG(1k), and gives 1k and vk to

A. A can adaptively make signing queries. For the i-th signing query on a message mi,

the challenger computes σi ← Sign(sk,mi), returns σi to A, and stores (mi, σi). Finally, A
outputs a message/signature pair (m∗, σ∗). A wins the game if SVer(vk,m∗, σ∗) = ⊤ and

(m∗, σ∗) ̸= (mi, σi) for all i. We define the advantage of A by AdvSUF-SIGA (k) = Pr[A wins].

We say a signature scheme is strongly unforgeable, if for any PPT adversary A,
AdvSUF-SIGA (k) is negligible.

One-time Strong Unforgeability. [4] One-time strong unforgeability [4] is defined by

the following game between the challenger and an adversary A. First, the challenger

computes (svk, ssk) ← SKG(1k), and gives 1k and svk to A. A can make a signing

query only once. For the signing query on a message m′, the challenger computes σ′ ←
Sign(ssk,m′), returns σ′ to A, and stores (m′, σ′). Finally, A outputs a message/signature

pair (m∗, σ∗). A wins the game if SVer(svk,m∗, σ∗) = ⊤ and (m∗, σ∗) ̸= (m′, σ′). We

define the advantage of A by AdvOT-sEUF-CMAA (k) = Pr[A wins].
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We say that a signature scheme is one-time strongly unforgeable, if for any PPT ad-

versary A, AdvOT-sEUF-CMAA (k) is negligible.

11



Chapter 3

Re-splittable Threshold Public

Key Encryption

3.1 Introduction

Threshold public key encryption (TPKE) is a kind of public key encryption where a secret

key is distributed among n decryption servers so that partial decryption shares from at

least t servers are needed for decryption. In TPKE, an entity called combiner has a

ciphertext c that it wishes to decrypt. The combiner sends c to the decryption servers

and receives partial decryption shares from at least t out of n decryption servers. Then,

the combiner combines these t partial decryption shares into a complete decryption of c.

No information about the plaintext is leaked, even if the number of the corrupted users

is up to t − 1. Ideally, there is no other interaction in the system, namely the servers

need not talk to each other during the decryption. Such threshold encryption systems are

called non-interactive. We usually require that a TPKE scheme has robustness. That is,

if decryption of a valid ciphertext fails, the combiner can identify the decryption servers

that supplied invalid partial decryption shares.

Not only the functionality of TPKE is useful in the real world, but TPKE is used as

a building block in a generic construction of another cryptosystem. Hanaoka et al. [58]

showed a generic construction of proxy re-encryption (PRE) using TPKE as one of the

building blocks. (Later, Ohata et al. [84] extended it to verifiable PRE.) To achieve the

functionality and prove the security of the PRE scheme in [58, 84], the underlying TPKE

scheme should have a special (but natural) property called key re-splittability . In TPKE

with key re-splittability (re-splittable TPKE, for short), a secret key can be split into a set

of secret key shares not only once, but also multiple times, and the security of the TPKE

scheme is guaranteed as long as the number of corrupted secret key shares under the

same splitting is smaller than the threshold. Since TPKE can control the distribution of

information in the same way as a secret sharing, one would expect even more convenience

of TPKE by considering the use of it to construct other cryptosystems such as multi-party

protocols. The example of PRE suggests that the impact of TPKE would be significantly

enhanced by the key re-splittability if it is also an essential property to prove the security

of such cryptosystems based on TPKE. We can understand that re-splittable TPKE is

a cryptosystem in which the mechanism of a proactive secret sharing [60] is applied to
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its secret key. That is, we can re-distribute the secret key shares without changing the

original public/secret keys. As mentioned in [60], it is difficult in practice to protect

secret information over a long period. To make matters worse, these days, threats of

information leakage (by malware, for example) are greatly increasing. We consider that

refreshing secret information is one of the promising countermeasures. Therefore, studying

the re-splittability of TPKE is important.

Hanaoka et al. gave a formal security definition of re-splittable TPKE, and proposed

a concrete construction by extending the ordinary TPKE scheme by Arita and Tsuru-

dome [5]. In [58], however, only one construction was given. The main motivation of this

paper is to show more constructions of re-splittable TPKE schemes.

3.1.1 Our Contribution

In this paper, we propose several new constructions of re-splittable TPKE by extending

the existing (ordinary) TPKE schemes. All of these schemes can be proven secure under

the well-established number-theoretic assumptions in the standard model. By directly

applying the result of [58], we can also obtain new CCA secure proxy re-encryption schemes

based on these assumptions.

Concretely, we present the following constructions:

1. Re-splittable TPKE scheme based on the decisional linear (DLIN) as-

sumption: We construct the first re-splittable TPKE scheme based on the DLIN as-

sumption on bilinear groups by extending Arita and Tsurudome’s TPKE scheme [5].

In terms of computational costs and parameter sizes, our DLIN-based scheme is not

as efficient as the re-splittable TPKE scheme of [58] based on the decisional bilinear

Diffie-Hellman (DBDH) assumption. However, the message space of our scheme is

not the target group but the source group of bilinear groups. Hence, our scheme

is considered to be convenient when used with bilinear-group-based zero-knowledge

proof systems such as the Groth-Sahai proofs [56].

2. Re-splittable TPKE scheme based on the DBDH assumption without sig-

nature: We construct a re-splittable TPKE scheme based on the DBDH assumption

by extending Lai et al’s TPKE scheme [76]. The scheme based on [58] is also based

on the DBDH assumption, and needs a one-time strongly unforgeable signature in

the construction. Our construction, however, does not need a one-time signature

scheme. Ciphertext size of this scheme is smaller than that of [58] because we do

not have to contain a signature and its verification key into a ciphertext of this

re-splittable TPKE scheme.

3. Re-splittable TPKE scheme based on the hashed Diffie-Hellman (HDH)

assumption: We construct a re-splittable TPKE scheme based on the HDH as-

sumption on bilinear groups by extending Gan et al’s TPKE scheme [47]. This

scheme also does not need a signature scheme in the construction. Though the as-

sumption on which the security is based is different from our second construction,

all of the algorithms of this scheme are more efficient than it.

The efficiency of our schemes is not degraded at all from the corresponding underlying

TPKE schemes. In general, when we extend an encryption scheme to achieve an additional
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functionality, the resultant scheme often suffers from unfavorable changes (e.g. stronger

or less popular assumptions to prove its security, longer communication overheads, and/or

higher computational cost). However, our extensions do not bring such changes. Our

results thus suggest that key re-splittability of discrete logarithm (DL)-based TPKE is a

very natural property which can be provided ordinarily. On the other hand, we cannot

extend the previous TPKE schemes based on multiple encryption (e.g. [42, 99]) to the re-

splittable ones through the methodology used in this paper. Therefore, we cannot assert

that re-splittability is a trivial property in TPKE.

3.1.2 Related Work

We briefly review related works. Desmedt and Frankel [40] introduced the concept of

TPKE. Their scheme needs an interaction among decryption servers to decrypt a cipher-

text. The first non-interactive and CCA secure TPKE scheme was proposed by Shoup

and Gennaro [104]. They proposed two constructions, one is based on the computational

Diffie-Hellman (CDH) assumption and the other is based on the decisional Diffie-Hellman

(DDH) assumption. To prove the security of these schemes, we need a random oracle.

Later, Boneh, Boyen, and Halevi [22] proposed a TPKE scheme based on the DBDH as-

sumption in the standard model. We can understand that this scheme is realized by the

combination of the identity-based encryption scheme by Boneh and Boyen [21] and the

CPA-to-CCA conversion technique by Canetti, Halevi, and Katz [32]. Subsequently, Arita

and Tsurudome [5] proposed two more efficient TPKE schemes than [22] by using tag-

based encryption [72]. One of their schemes is based on the DBDH assumption and the

other is based on the DLIN assumption. Later, Lai et al. [76] proposed a new technique to

construct an efficient public key encryption scheme and applied it to construct a TPKE

scheme. Though [22] and [5] use a signature scheme in the constructions, the scheme in

[76] does not use it. Subsequently, Gan et al. [47] proposed a TPKE scheme based on

the HDH assumption. We can understand that this scheme can be seen as the scheme by

[76] in which the bilinear map used as a key derivation (to generate a mask for hiding a

plaintext) is replaced with a hash function. (The relation between Gan et al.’s scheme [47]

and Lai et al.’s scheme [76] is similar to the relation between the Kiltz’ key encapsulation

mechanism (KEM) based on the gap HDH (GHDH) assumption [73] and Boyen et al.’s

KEM based on the DBDH assumption [28]. Note that on the bilinear groups, the GHDH

assumption and the HDH assumption become equivalent.) Libert and Yung [78] proposed

an adaptively secure TPKE scheme by using composite order groups. The same authors

[79] also proposed a framework for the construction of adaptively secure TPKE based on

the so-called all-but-one perfectly sound threshold hash proof systems, from which we can

obtain concrete instantiations based on the DLIN, the external Diffie-Hellman (XDH) as-

sumptions in prime order bilinear groups, and one based on some assumption in composite

order bilinear groups.

There are some schemes based on non-discrete logarithm type assumptions. Wee [108]

showed a CCA secure TPKE scheme based on the factoring assumption in the random

oracle model. Dodis and Katz [42] and Sakai et al. [99] proposed a generic construction of

TPKE via multiple encryption technique. Note that the model of TPKE [42] is different

from [22], (arguably) currently a more popular model of TPKE on which the security
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model of re-splittable TPKE is based.

In summary, to the best of our knowledge, none of the previous works other than [58]

considered the key re-splittability of TPKE.

3.1.3 Chapter Organization

The remainder of this chapter is organized as follows. In Section 3.2, we review the

model and security definitions of re-splittable TPKE. In Section 3.3, we present our new

constructions of re-splittable TPKE schemes. In Section 3.4, we give a comparison on the

efficiency among re-splittable TPKE schemes. Section 3.5 is the conclusion of this chapter.

3.2 Re-splittable Threshold Public Key Encryption

In this section, we review the model and the security definitions of re-splittable TPKE.

The concept of re-splittable threshold public key encryption (TPKE) was introduced in

[58]. It is a special class of TPKE in which a secret key can be split multiple times, and

security of the scheme is maintained as long as the number of corrupted secret key shares

under the same splitting is less than the threshold.

3.2.1 Model

A re-splittable TPKE scheme consists of the following six PPT algorithms:

TKG This is the key generation algorithm that takes 1k, n, and t such that 0 < t ≤ n as

input, and outputs a public key tpk and a secret key tsk. This process is written as

(tpk, tsk)← TKG(1k, n, t).

TEnc This is the encryption algorithm that takes tpk and a plaintext m as input, and

outputs a ciphertext c. This process is written as c← TEnc(tpk,m).

TSplit This is the key-splitting algorithm that takes tsk as input, and outputs n secret

key shares tsk1, · · · , tskn and a verification key tvk. This process is written as

(tsk1, · · · , tskn, tvk)← TSplit(tsk).

TShDec This is the share-decryption algorithm that takes tpk, a secret key share tski
(where i ∈ [n]) output by TSplit, and c as input, and outputs a decryption share

µi (which could be the special symbol ⊥ meaning that c is invalid). This process is

written as µi ← TShDec(tpk, tski, c).

TShVer This is the share-verification algorithm that takes tpk, tvk, c, an index i ∈ [n],

and a decryption share µ as input, and outputs ⊤ or ⊥. When the output is ⊤, we
say that µ is a valid decryption share of the ciphertext c. This process is written as

⊤/⊥ ← TShVer(tpk, tvk, c, i, µ).

TCom This is the combining algorithm that takes tpk, tvk, c, and t decryption shares

(generated under distinct secret key shares) as input, and outputs a decryption

result m (which could be the special symbol ⊥). This process is written as m/⊥ ←
TCom(tpk, tvk, c, {µ1, · · · , µt}).
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Correctness: For any k ∈ N, any polynomials t, n such that 0 < t ≤ n, any (tpk, tsk)←
TKG(1k, n, t) and any (tsk1, · · · , tskn, tvk) ← TSplit(tsk), we require the following two

correctness properties:

1. For any ciphertext c, if µ = TShDec(tpk, tski, c), then we have TShVer(tpk, tvk, c, i, µ)

= ⊤.

2. For any m, if c is output from TEnc(tpk,m) and S = {µs1 , · · · , µst} is a set of

decryption shares (i.e. µsi = TShDec(tpk, tsksi , c) for all i ∈ [t]), then we have

TCom(tpk, tvk, c, S) = m.

3.2.2 Security Definitions

In this subsection, we review the two security definitions for re-splittable TPKE which are

defined in [58].

Chosen Ciphertext Security: CCA security of a re-splittable TPKE scheme is defined

using the following game between a challenger and an adversary A: The challenger first

runs (tpk, tsk) ← TKG(1k, n, t) and gives tpk to A. Then A can adaptively make the

following types of queries.

Split&corruption query: On input a set of indices I = {s1, · · · , st−1}, the challenger

runs (tsk1, · · · , tskn, tvk) ← TSplit(tsk) and returns (tsks1 , · · · , tskst−1 , tvk) to A.
The challenger also stores {tski}i∈[n] and tvk for later share decryption queries from

A.

Share decryption query: On input (tvk, i, c), where tvk is required to be one of the an-

swers to previously asked split&corruption queries, i ∈ [n], and c ̸= c∗, the challenger

finds tski that is previously generated together with tvk, and returns a decryption

share µi ← TShDec(tpk, tski, c) to A.

Challenge query: This query is asked only once. On input (m0,m1), the challenger

randomly picks b ∈ {0, 1} and returns c∗ ← TEnc(tpk,mb) to A.

Finally, A outputs its guess b′ for b, and wins the game if b = b′. We define the advantage

of A by AdvCCA-RS-TPKE(A,n,t) (k) = |Pr[b = b′]− 1/2|.

Definition 1. We say that a re-splittable TPKE scheme is CCA secure, if for any PPT

adversary A and for any polynomials t and n with 0 < t ≤ n, AdvCCA-RS-TPKE(A,n,t) (k) is negligible.

Decryption Consistency: Decryption consistency is defined using the game which is

defined in the same way as the CCA game, except that the challenge query is not consid-

ered.

The adversary A finally outputs a ciphertext c, a verification key tvk, and two sets

of decryption shares S = {µs1 , . . . , µst} and S′ = {µ′s′1 , . . . , µ
′
s′t
}. A wins the game if the

following four conditions are simultaneously satisfied.

(a) tvk is one of verification keys returned as a response to one of A’s split&corruption

queries;
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(b) All shares in S and S′ are valid for a ciphertext c under tvk. That is, TShVer(tpk, tvk, c,

si, µsi) = TShVer(tpk, tvk, c, s′i, µ
′
s′i
) = ⊤ for all i ∈ [t];

(c) S and S′ are sets that are distinct regardless of re-ordering the elements;

(d) TCom(tpk, tvk, c, S) ̸= TCom(tpk, tvk, c, S′).

We let AdvDC-RS-TPKE(A,n,t) (k) denote the probability of A winning in this game.

Definition 2. We say that a re-splittable TPKE scheme has decryption consistency,

if for any PPT adversary A and for any polynomials t and n such that 0 < t ≤ n,

AdvDC-RS-TPKE(A,n,t) (k) is negligible.

3.3 Proposed Re-splittable TPKE Schemes

In this section, we propose several concrete re-splittable TPKE schemes, and prove their

security. Each of our schemes is an extension of the existing ordinary TPKE schemes, and

we show how to implement the TSplit algorithm for each of them. For each scheme, the

assumption on which the security is based is exactly the same as the one on which the

original scheme is based. Furthermore, the efficiency (ciphertext size and the computa-

tional costs) of each scheme is also essentially the same as the corresponding underlying

scheme.

3.3.1 Construction Based on Arita and Tsurudome Scheme

We show the construction of a re-splittable TPKE scheme based on the Arita and Tsu-

rudome scheme [5]. Actually, Arita and Tsurudome showed two TPKE schemes, one is

based on the DBDH assumption and the other is based on the DLIN assumption. The

DBDH-based TPKE scheme was already extended to re-splittable TPKE by Hanaoka et

al. [58]. Here, therefore, we show the construction of re-splittable TPKE scheme based on

the DLIN assumption in [5].

Our proposed DLIN-based scheme is as in Fig.3.1. Here, we call it eAT.

Theorem 1. If the DLIN assumption on (G,GT ) holds, the signature scheme is one-time

strongly unforgeable, and H is a collision resistant hash function, then the re-splittable

TPKE scheme eAT is CCA secure.

Proof of Theorem 1. Let A be an arbitrary PPT adversary that attacks the re-splittable

TPKE scheme eAT in the game of the CCA security. Using the adversaryA, we build an al-

gorithm B that solves the DLIN problem on (G,GT ). Given (1k, p,G,GT , e, g1, g2, g3, g
a
1 , g

b
2,

W ) as input, B proceeds as follows.

1. Setup: Algorithm B does the following.

(a) B selects a collision resistant hash function H.

(b) B executes (svk∗, ssk∗)← SKG(1k) and sets τ∗ := H(svk∗).

(c) B chooses the random c1, c2 ← Zp and sets u1 := g−τ∗

3 gc11 , u2 := g−τ∗

3 gc22 . B sets

tpk := (p,G,GT , e,H, g1, g2, g3, u1, u2).
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TKG(1k, n, t) :
(p,G,GT , e)← BG(1k)
Select a collision resistant hash function H : {0, 1}∗ → Zp.
g1 ← G; x1, x2, y1, y2 ← Zp

g3 := gx1

1 ; g2 := g
1

x2

3 ; u1 := gy1

1 ; u2 := gy2

2
tpk := (p,G,GT , e,H, g1, g2, g3, u1, u2), tsk := (x1, x2)
Return (tpk, tsk).

TEnc(tpk,m) :
(p,G,GT , e,H, g1, g2, g3, u1, u2)← tpk
(svk, ssk)← SKG(1k)
r1, r2 ← Zp

C1 := gr11 ; C2 := gr22 ; D1 := (g
H(svk)
3 u1)

r1

D2 := (g
H(svk)
3 u2)

r2 ; E := m · gr1+r2
3

σ ← Sign(ssk, C1∥C2∥D1∥D2∥E)
Return c := (C1, C2, D1, D2, E, σ, svk).

TSplit(tsk) :
(x1, x2)← tsk
f1, f2 ← Zp[X] satisfying deg(f1) = deg(f2) = t− 1,

f1(0) = x1, and f2(0) = x2.
∀i ∈ [n] : tski := (tsk1.i, tsk2.i) := (f1(i), f2(i))

∀i ∈ [n] : (tvk1.i, tvk2.i) := (g
f1(i)
1 , g

f2(i)
2 )

tvk := (tvk1.i, tvk2.i)i∈[n]
Return ((tski)i∈[n], tvk).

TShDec(tpk, tski, c) :
(p,G,GT , e,H, g1, g2, g3, u1, u2)← tpk; (tsk1.i, tsk2.i)← tski
(C1, C2, D1, D2, σ, svk)← c
If SVer(svk, C1∥C2∥D1∥D2∥E, σ) = ⊥ then return µi := ⊥.
If e(C1, g

H(svk)
3 u1) ̸= e(D1, g1) or e(C2, g

H(svk)
3 u2) ̸= e(D2, g2)

then return µi := ⊥.
Return µi := (µ1.i, µ2.i) := (Ctsk1.i

1 , Ctsk2.i

2 ).
TShVer(tpk, tvk, c, i, µi) :

(p,G,GT , e,H, g1, g2, g3, u1, u2)← tpk; (tvk1.i, tvk2.i)i∈[n] ← tvk
(C1, C2, D1, D2, E, σ, svk)← c
If SVer(svk, σ, C1∥C2∥D1∥D2∥E) = ⊥ or

e(C1, g
H(svk)
3 u1) ̸= e(D1, g1) or e(C2, g

H(svk)
3 u2) ̸= e(D2, g2) then

If µi = ⊥ then return ⊤ else return ⊥.
End if
(µ1.i, µ2.i)← µi
If e(µ1.i, g1) = e(C1, tvk1.i) and e(µ2.i, g2) = e(C2, tvk2.i)

then return ⊤ else return ⊥.
TCom(tpk, tvk, c, {µsi}i∈[t]) where {si}i∈[t] ⊂ [n] :

If ∃i ∈ [t] : TShVer(tpk, tvk, c, si, µsi) = ⊥ or µsi = ⊥ then return ⊥.
∀i ∈ [t] : (µ1.si , µ2,si)← µsi
Return m = E/

(
(
∏t

i=1 µ
λ1.i

1.si
) · (

∏t
i=1 µ

λ2.i

2.si
)
)
using

Lagrange coefficients {λ1.i}i∈[t] satisfying f1(0) =
∑t

i=1 λ1.if1(si)

and {λ2.i}i∈[t] satisfying f2(0) =
∑t

i=1 λ2.if2(si).

Figure 3.1: The re-splittable TPKE scheme eAT.
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(d) B gives tpk to A.

2. Split&corruption query: When A issues a

split&corruption query I = {si}i∈[t−1], B does the following.

(a) B picks 2t− 2 random integers αs1 , βs1 , · · · , αst−1 , βst−1 ← Zp. We let f1, f2 ∈
Zp[X] be two polynomials of degree t − 1 defined by f1(0) := a, f1(si) := αsi

for all i ∈ [t− 1], f2(0) := b, f2(si) := βsi for all i ∈ [t− 1]. (Note that B does

not know f1 and f2 entirely.) For each i ∈ [t− 1], B sets tsksi := (αsi , βsi).

(b) i. For j ∈ I, B sets v1.j := g
αj

1 and v2.j := g
βj

2 .

ii. For j /∈ I, B computes v1.j = gλ0
3 (g

αs1
1 )λ1 · · · (gαst−1

1 )λt−1 and

v2.j = g
λ′
0

3 (g
βs1
2 )λ

′
1 · · · (gβst−1

2 )λ
′
t−1 , where {λ0, · · · , λt−1} and {λ′0, · · · , λ′t−1}

are the Lagrange coefficients satisfying f1(j) = λ0f1(0)+Σt−1
ℓ=1λℓf1(sℓ) and

f2(j) = λ′0f2(0) + Σt−1
ℓ=1λ

′
ℓf2(sℓ) for the polynomials f1 and f2. Note that

(v1.j , v2.j) satisfies v1.j = g
f1(j)
1 and v2.j = g

f2(j)
2 .

iii. B sets tvk := {(v1.i, v2.i)}i∈[n].

(c) B returns ((tsksi)i∈[t−1], tvk) to A.

3. Challenge query: Adversary A outputs two equal-length messages m0 and m1. B
flips a fair coin θ ∈ {0, 1}, and sets (C∗

1 , C
∗
2 , D

∗
1, D

∗
2, E

∗) := (ga1 , g
b
2, g

ac1
1 , gbc22 ,mθW ).

Then, B calculates σ∗ ← Sign(ssk∗, C∗
1∥C∗

2∥D∗
1∥D∗

2∥E∗). B returns the challenge

ciphertext c∗ := (C∗
1 , C

∗
2 , D

∗
1, D

∗
2, E

∗, σ∗, svk∗) to A.

4. Share decryption query: When A issues a share decryption query (tvk, i, c), B
does the following, where c = (C1, C2, D1, D2, E, σ, svk).

(a) If SVer(svk, C1∥C2∥D1∥D2∥E, σ) = ⊥, then B returns ⊥ to A.

(b) Else if H(svk) = H(svk∗), then B outputs a random bit and aborts.

(c) Else B first tests e(C1, z
H(svk)u1)

?
= e(D1, g1) and e(C2, z

H(svk)u2)
?
= e(D2, g2)

to check the validity of the ciphertext. If this validity test fails, B returns ⊥ to

A.

(d) If e(C1, z
H(svk)u1) ̸= e(D1, g1) or e(C2, z

H(svk)u2) ̸= e(D2, g2), B returns ⊥ to

A.

(e) Let I = {sℓ}ℓ∈[t−1] be the set of indices corresponding to tvk. B proceeds as

follows:

i. If j ∈ I, B computes µ1.j = C
f1(j)
1 and µ2.j = C

f2(j)
2 . Then, B returns

µj := (µ1.j , µ2.j) to A.
ii. Otherwise, B computes the Lagrange coefficients {λ1, · · · , λt} and λ∗ sat-

isfying f1(0) = λ∗f1(j) + Σt−1
ℓ=1λℓf1(sℓ) for the polynomial f1. Then, B

sets

µ1.j :=

(( D1

C
c1
1

)
1

H(svk)−H(svk∗)

C
Σt−1

ℓ=1λℓαsℓ
1

) 1
λ∗

.
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Similarly, B computes the Lagrange coefficients {λ′1, · · · , λ′t} and λ′∗ sat-

isfying f2(0) = λ′∗f2(j) + Σt−1
ℓ=1λ

′
ℓf2(sℓ) for the polynomial f2. Then, B

sets

µ2.j :=

(( D2

C
c2
2

)
1

H(svk)−H(svk∗)

C
Σt−1

ℓ=1λ
′
ℓβsℓ

2

) 1
λ′∗

.

Finally, B returns µj := (µ1.j , µ2.j) to A.

Finally, when A terminates with its guess bit θ′ ∈ {0, 1}, B outputs 1 if θ = θ′,

otherwise outputs 0 and terminates.

The above completes the description of B. Because of the one-time strong unforgeabil-

ity of the signature scheme and collision resistance of the hash function H, the prob-

ability that B aborts during the simulation is negligible. More specifically, the case

H(svk) = H(svk∗) can be further divided into two cases svk = svk∗ and svk ̸= svk∗,

where the probability that the former case occurs can be shown to be negligible due to the

one-time strong unforgeability of the signature scheme, and the probability that the latter

case occurs can be shown to be negligible due to the collision resistance of H. Except

for that, B perfectly simulates the CCA game for A if W = ga+b
3 . When W is a random

element, the view of B is independent of A’s challenge bit θ. Therefore, B’s advantage

of solving the DLIN problem can be estimated as AdvDLIN
B ≥ AdvCCA-RS-TPKE(A,n,t) (k) − (negl.).

This completes the proof of Theorem 1.

Theorem 2. The re-splittable TPKE scheme eAT has decryption consistency uncondi-

tionally.

Proof of Theorem 2. Let A be an arbitrary adversary attacking the TPKE scheme eAT in

the decryption consistency game. Suppose A outputs c = (C1, C2, D1, D2, E, σ, svk), tvk,

S = (µs1 = (µ1.s1 , µ2.s1), · · · , µst = (µ1.st , µ2.st)), S
′ = (µ′s′1

= (µ′1.s′1
, µ′2.s′1

), · · · , µ′s′t =

(µ′1.s′t
, µ′2.s′t

)).

If the shares µsi in S are valid, they must satisfy e(µ1.si , g1) = e(C1, g
f1(si)
1 ) and

e(µ2.si , g2) = e(C2, g
f2(si)
2 ). Therefore, µ1.si = C

f1(si)
1 and µ2.si = C

f2(si)
2 . Then, it holds∏t

i=1 µ
λ1.i
1.si

= C
Σt

i=1λ1.if1(si)
1 = Cx1

1 and
∏t

i=1 µ
λ2.i
2.si

= C
Σt

i=1λ2.if2(si)
2 = Cx2

2 , where {λ1.i}i∈[t]
and {λ2.i}i∈[t] are Lagrange coefficients computed in TCom. Therefore, TCom(tpk, tvk, c, S)

= E/
(
(
∏t

i=1 µ
λ1.i
1.si

) · (
∏t

i=1 µ
λ2.i
2.si

)
)
= E/(Cx1

1 · C
x2
2 ).

Similarly, if the shares µ′s′i
in S′ are valid, we have

∏t
i=1 µ

′λ′
1.i

1.s′i
= C

Σt
i=1λ

′
1.if1(s

′
i)

1 =

Cx1
1 and

∏t
i=1 µ

′λ′
2.i

2.s′i
= C

Σt
i=1λ

′
2.if2(s

′
i)

2 = Cx2
2 , where {λ′1.i}i∈[t] and {λ′2.i}i∈[t] are Lagrange

coefficients computed in TCom. Therefore, TCom(tpk, tvk, c, S′) = E/
(

(
∏t

i=1 µ
λ′
1.i

1.si
) ·

(
∏t

i=1 µ
λ′
2.i

2.si
)
)
= E/(Cx1

1 · C
x2
2 ).

We have seen that the combined values from the sets S and S′ cannot be distinct.

Thus, we have AdvDC-RS-TPKE(A,n,t) (k) = 0 for any (even computationally unbounded) adversary

A.
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3.3.2 Construction Based on Lai et al’s scheme

Here, we show the construction of a re-splittable TPKE scheme based on the Lai et al.

scheme [76] as in Fig.3.2. Here, we call it eLDLK. The scheme based on [58] is also based

on the DBDH assumption, and needs a one-time strongly unforgeable signature in the

construction. Our construction, however, does not need a signature scheme.

Theorem 3. If the DBDH assumption holds in (G,GT ) and H is a collision resistant

hash function, then the re-splittable TPKE scheme eLDLK is CCA secure.

Proof of Theorem 3. Let A be an arbitrary adversary that attacks the re-splittable TPKE

scheme eLDLK in the game of CCA security. Using the adversary A, we build an algorithm

B that solves the DBDH problem on (G,GT ). Given (1k, p,G,GT , e, g, g
a, gb, gc,W ) as

input, algorithm B proceeds as follows. (The aim of B is to distinguish whether W =

e(g, g)abc or not.)

1. Setup: Algorithm B does the following.

(a) B selects a collision resistant hash functionH and chooses x1, x2, x3, x4, x5, x6 ←
Zp.

(b) B sets g1 := ga, h := gb, u := gx1
1 g

x2 , v := gx3
1 g

x4 , d := gx5
1 g

x6 , and sets tpk :=

(p,G,GT , e,H, g, g2, Z = e(g1, h), u, v, d).

(c) B gives tpk to A.

2. Split&Corruption query: When A issues a

split&corruption query I = {si}i∈[t−1], B does the following.

(a) B picks t − 1 random integers αs1 , · · · , αst ← Zp. We let f ∈ Zp[X] be a

polynomial of degree t− 1 defined by f(0) := a, f(si) := αsi for all i ∈ [t− 1].

(Note that B does not know f entirely.) B sets {tsksi} := {αsi} for all i ∈ [t− 1].

(b) i. For j ∈ I, B sets tvkj := gαj .

ii. For j /∈ I, B computes vj = gλ0
1 (gαs1 )λ1 · · · (gαst−1 )λt−1 , where λ0, · · · , λt−1

∈ Zp are the Lagrange coefficients satisfying f(j) = λ0f(0) + Σt−1
ℓ=1λℓf(sℓ)

for the polynomial f . Note that vj satisfies vj = gf(j).

iii. B sets tvk := (vj)j∈[n].

(c) B returns ({tsksi}i∈[t−1], tvk) to A.

3. Challenge query: Adversary A outputs two equal-length messages m0 and m1.

First, B flips a fair coin θ ∈ {0, 1}, and sets (C∗
0 , C

∗
1 ) := (mθW, g

c). Then, B
computes ω∗ = H(C∗

0 , C
∗
1 ) and τ

∗ = x1ω∗+x5
x3

mod p. B sets C∗
2 := (gc)ωx2+τ∗x4+x6 .

B returns the challenge ciphertext c∗ := (C∗
0 , C

∗
1 , C

∗
2 , τ

∗) to A.

4. Share decryption query: When A issues a share decryption query (tvk, i, c), B
does the following, where c = (C0, C1, C2, τ).

(a) If c = c∗, then B returns µi := ⊥ to A.
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TKG(1k, n, t) :

(p,G,GT , e)← BG(1k)

Select a collision resistant hash function H : {0, 1}∗ → Zp.

g, g2, u, v, d← G; x← Zp; g1 := gx; Z := e(g1, g2)

tpk := (p,G,GT ,e, H, g, g2, Z, u, v, d); tsk := x

Return (tpk, tsk).

TEnc(tpk,m) :

(p,G,GT , e,H, g, g2, Z, u, v, d)← tpk

τ, r ← Zp

C0 := m · Zr; C1 := gr; ω := H(C0, C1); C2 := (uωvτd)r

Return c := (C0, C1, C2, τ).

TSplit(tsk) :

x← tsk

f ← Zp[X] satisfying deg(f) = t− 1 and f(0) = x

∀i ∈ [n] : tski := g
f(i)
2

∀i ∈ [n] : tvki := gf(i)

tvk := (tvki)i∈[n]
Return ((tski)i∈[n], tvk).

TShDec(tpk, tski, c) :

(p,G,GT , e,H, g, g2, Z, u, v, d)← tpk; (C0, C1, C2, τ)← c

ω := H(C0, C1)

If e(C1, u
ωvτd) ̸= e(g, C2) then return µi := ⊥.

γ ← Zp

Return µi := (µ1.i, µ2.i) = (tski · (uωvτd)γ , gγ).
TShVer(tpk, tvk, c, i, µi) :

(p,G,GT , e,H, g, g2, Z, u, v, d)← tpk; (tvki)i∈[n] ← tvk; (C0, C1, C2, τ)← c

ω := H(C0, C1)

If e(C1, u
ωvτd) ̸= e(g, C2) then

If µi = ⊥ then return ⊤ else return ⊥.
End if

If e(g, µ1.i) = e(tvki, g2) · e(uωvτd, µ2.i) then return ⊤ else return ⊥.
TCom(tpk, tvk, c, {µsi}i∈[t]) where {si}i∈[t] ⊂ [n] :

If ∃i ∈ [t] : TShVer(tpk, tvk, c, si, µsi) = ⊥ or µsi = ⊥ then return ⊥.
(C0, C1, C2, τ)← c

∀i ∈ [t] : (µ1.si , µ2.si)← µsi
Return m = C0 · e(C2,

∏t
i=1 µ

λi
2.si

)/e(C1,
∏t

i=1 µ
λi
1.si

) using

Lagrange coefficients {λi}i∈[t] satisfying f(0) =
∑t

i=1 λif(si).

Figure 3.2: The re-splittable TPKE scheme eLDLK.

(b) B computes ω = H(C0, C1) and tests e(C1, u
ωvrd)

?
= e(g, C2) to check the

validity of the ciphertext. If this validity check fails, B returns ⊥ to A.

(c) Let I = {sℓ}ℓ∈[t−1] be the set of indices corresponding to tvk. B proceeds as

follows:
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i. If j ∈ I, B chooses γ ← Zp. Then, B sets µj = (µ1.j , µ2.j) := (C
γαj

1 , gγ)

and returns µj to A.
ii. If ωx1 + τx3 + x5 mod p = 0, then B outputs a random bit and aborts.

iii. If ω = H(C∗
0 , C

∗
1 ) and (C0, C1) ̸= (C∗

0 , C
∗
1 ), then B outputs a random bit

and aborts.

iv. (Note that at this point, it is guaranteed that j /∈ I.) B choose γ ← Zp.

Then, B calculates µj = (µ1.j , µ2.j) :=
(
( C2

C
ωx2+τx4+x6
1

)
λ0

ωx1+τx3+x5 · χ, gγ
)
,

where χ = C
Σt−1

ℓ=1λℓαsℓ
1 and λ0, · · · , λt−1 ∈ Zp are the Lagrange coefficients

satisfying f(j) = λ0f(0) + Σt−1
ℓ=1λℓf(sℓ) for the polynomial f . Then, B

returns µj to A.

Finally, when A terminates with its guess bit θ′ ∈ {0, 1}, B outputs 1 if θ = θ′,

otherwise outputs 0 and terminates.

The above completes the description of B. For the challenge ciphertext, the adversary

could obtain the information that ωx1 + τx3 + x5 mod p = 0. However, there are exactly

p possible (x1, x3, x5) pairs that satisfy ωx1 + τx3 + x5 mod p = 0. In addition, each

of them is equally likely. Thus, information-theoretically, the probability that B aborts

is at most 1/p for each query. Therefore, taking the union bound over all A’s share

decryption queries, the probability that B aborts is at most q/p, where q is the number

of share decryption queries, which is negligible. Because of the collision resistance of

the hash function H and the above discussion, the probability that B aborts during the

simulation is negligible. Except for that, B perfectly simulates the CCA game for A if

W = e(g, g)abc. When W is a random element, the view of B is independent of A’s
challenge bit θ. Therefore, B’s advantage in solving the DBDH problem can be estimated

as AdvDBDH
B ≥ AdvCCA-RS-TPKE(A,n,t) (k)− (negl.). This completes the proof of Theorem 3.

Theorem 4. The re-splittable TPKE scheme eLDLK has decryption consistency uncondi-

tionally.

Proof of Theorem 4. Let A be an arbitrary adversary attacking the TPKE scheme

eLDLK in the decryption consistency game. Suppose A outputs c = (C0, C1, C2, τ), tvk =

(gf(i))i∈[n], S = {µsi}i∈[t] = {(µ1.si , µ2.si)}i∈[t], and S′ = {µ′s′i}i∈[t] = {(µ
′
1.s′i
, µ′2.s′i)}i∈[t],

satisfying the winning condition for the decryption consistency game, where f is the

polynomial that was generated for computing tvk. (Note that tvk must be one of the

verification keys returned to A as an answer to one of A’s split&corruption queries.) This

means that c must be valid, i.e. it satisfies

e(C1, u
ωvτd) = e(g, C2), (3.1)

where ω = H(C1, C2). (Otherwise, both TCom(tpk, tvk, c, S) = TCom(tpk, tvk, c, S′) = ⊥
and hence the results cannot be different.) Furthermore, the shares µsi = (µ1.si , µ2.si) in

S are valid, and hence we have e(g, µ1.si) = e(gf(si), g2) · e(uωvτd, µ2.si), which implies

µ1.si = gf(i) · (uωvτd)log µ2.si .
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This in turn implies

e(C1,
t∏

i=1

µλi
1.si

) = e(C1, g
Σt

i=1f(i)λi

2 · (uωvτd)Σt
i=1λi·log µ2.si )

= e(C1, g
x
2 ) · e(C1, u

ωvτd)Σ
t
i=1λi·log µ2.si

(∗)
= e(C1, g

x
2 ) · e(g, C2)

Σt
i=1λi·log µ2.si

= e(C1, g
x
2 ) · e(

t∏
i=1

µλi
2.si
, C2),

where {λi}i∈[t] are the Lagrange coefficients satisfying f(0) = x = Σt
i=1λif(si), and in the

equation (*) we used Eq. (3.1). Therefore, we have

TCom(tpk, tvk, c, S) = C0 · e(C2,

t∏
i=1

µλi
2.si

)/e(C1,

t∏
t=1

µλi
1.si

)

= C0/e(C1, g
x
2 )

Similarly, the shares µ′s′i
= (µ′1.s′i

, µ′2.s′i
) in S′ are also valid, from which we obtain e(g, µ′1.s′i) =

e(gf(s
′
i), g2) · e(uωvτd, µ′2.s′i). From this result, with a similar calculation to the above, we

have

e(C1,

t∏
i=1

µ
′λ′

i

1.s′i
) = e(C1, g

x
2 ) · e(

t∏
i=1

µ
′λ′

i

2.s′i
, C2),

where {λ′i}i∈[t] are the Lagrange coefficients satisfying f(0) = x = Σt
i=1λ

′
if(s

′
i). Hence, we

have

TCom(tpk, tvk, c, S′) = C0 · e(C2,

t∏
i=1

µ
′λ′

i

2.s′i
)/e(C1,

t∏
t=1

µ
′λ′

i

1.s′i
)

= C0/e(C1, g
x
2 ).

That is, the combined values from the sets S and S′ are identical, and we rearch a contra-

diction. Therefore, there cannot be two distinct sets of valid shares whose combined values

disagree. Thus, we have AdvDC-RS-TPKE(A,n,t) (k) = 0 for any (even computationally unbounded)

adversary A.

3.3.3 Construction Based on Gan et al’s scheme

Here, we show the construction of a re-splittable TPKE scheme based on the Gan et

al. scheme [47] as in Fig.3.3. Here, we call it eGWW+. As with the eLDLK scheme, this

scheme also does not need a signature scheme in the construction. Though the assumption

on which the security is based is different from eLDLK scheme, all of the algorithms of this

scheme is more efficient than it.

Theorem 5. If the HDH assumption on (G,GT ,H2) holds and H1 is a collision resistant

hash function, then the re-splittable TPKE scheme eGWW+ is CCA secure.
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TKG(1k, n, t) :

(p,G,GT ,H2, e)← BGHDH(1
k), where H2 : G→ {0, 1}|m|

Select a collision resistant hash function H1 : {0, 1}∗ → Zp.

g, u, v, d← G; x← Zp; g1 := gx

tpk := (p,G,GT ,e, H1,H2, g, g1, u, v, d); tsk := x;

Return (tpk, tsk).

TEnc(tpk,m) :

(p,G,GT , e,H1,H2, g, g1, u, v, d)← tpk; r, τ ← Zp

C0 := m⊕H2(g
r
1); C1 := gr; ω := H1(C0, C1); C2 := (uωvτd)r

Return c := (C0, C1, C2, τ).

TSplit(tsk) :

x← tsk

f ← Zp[X] satisfying deg(f) = t− 1 and f(0) = x.

∀i ∈ [n] : tski := f(i)

∀i ∈ [n] : tvki := gf(i)

tvk := (tvki)i∈[n]
Return ({tski}i∈[n], tvk).

TShDec(tpk, tski, c) :

(p,G,GT , e,H1,H2, g, g1, u, v, d)← tpk; (C0, C1, C2, τ)← c

ω := H1(C0, C1)

If e(C1, u
ωvτd) ̸= e(g, C2) then return ⊥.

Return µi := Ctski
1 .

TShVer(tpk, tvk, c, i, µi) :

(p,G,GT , e,H1,H2, g, g1, u, v, d)← tpk; (tvki)i∈[n] ← tvk

(C0, C1, C2, τ)← c; ω := H1(C0, C1)

If e(C1, u
ωvτd) ̸= e(g, C2) then

If µi = ⊥ then return ⊤ else return ⊥.
End if

If e(µi, g) = e(C1, tvki) then return ⊤ else return ⊥.
TCom(tpk, tvk, c, {µsi}i∈[t]) where {si}i∈[t] ⊂ [n] :

If ∃i ∈ [t] : TShVer(tpk, tvk, c, si, µsi) = ⊥ or µsi = ⊥ then return ⊥.
(C0, C1, C2, τ)← c

Return m = C0 ⊕H2(
∏t

i=1 µ
λi
si ) using

Lagrange coefficients {λi}i∈[t] satisfying f(0) =
∑t

i=1 λif(si).

Figure 3.3: The re-splittable TPKE scheme eGWW+.

Proof of Theorem 5. Let A be an arbitrary adversary that attacks the re-splittable TPKE

scheme eGWW+ in the game of CCA security. Using the adversary A, we build an algo-

rithm B that solves the HDH problem on (G,GT ,H2). Given (1k, p,G,GT , e, g, g
a, gb,W )

as input, algorithm B proceeds as follows. (The aim of B is to distinguish whether

W = H2(g
ab) or not.)

1. Setup: Algorithm B does the following.
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(a) B selects a collision resistant hash functionH1 and chooses x1, x2, x3, x4, x5, x6 ←
Zp.

(b) B sets g1 := ga, u := gx1
1 g

x2 , v := gx3
1 g

x4 , d := gx5
1 g

x6 , and sets tpk := (p,G,GT , e,

H1,H2, g, g2, Z = e(g1, g2), u, v, d).

(c) B gives tpk to A.

2. Split&Corruption query: When A issues a

split&corruption query I = {si}i∈[t−1], B does the following.

(a) B picks t − 1 random integers αs1 · · · , αst−1 ← Zp. We let f ∈ Zp[X] be a

polynomial of degree t−1 satisfying by f(0) := a, f(si) := αsi for all i ∈ [t−1].

(Note that B does not know f entirely.) B sets {tsksi} := {αsi} for all i ∈ [t−1].

(b) i. For j ∈ I, B sets vj := gαj .

ii. For j /∈ I, B computes vj = gλ0
1 (gαs1 )λ1 · · · (gαst−1 )λt−1 , where {λ0, · · · , λt−1}

are the Lagrange coefficients satisfying f(j) = λ0f(0)+Σt−1
ℓ=1λℓf(sℓ) for the

polynomial f . Note that vj satisfies vj = g
f1(j)
1 .

iii. B sets tvk := (vi)i∈[n].

(c) B returns ({tsksi}i∈[t−1], tvk) to A.

3. Challenge query: Adversary A outputs two equal-length messages m0 and m1.

First, B flips a fair coin θ ∈ {0, 1}, and sets (C∗
0 , C

∗
1 ) := (mθ ⊕ W, gb). Then, B

computes ω∗ = H1(C
∗
0 , C

∗
1 ) and τ

∗ = x1ω∗+x5
x3

mod p. B sets C∗
2 := (gb)ωx2+τ∗x4+x6 .

B returns the challenge ciphertext c∗ := (C∗
0 , C

∗
1 , C

∗
2 , τ

∗) to A.

4. Share decryption query: When A issues a share decryption query (tvk, i, c), B
does the following, where c = (C0, C1, C2, τ).

(a) If c = c∗, then B returns µi := ⊥ to A.

(b) If B computes ω = H1(C0, C1) and tests e(C1, u
ωvrd)

?
= e(g, C2). to check the

validity of the ciphertext. If this validity check fails, B returns ⊥ to A.

(c) Let I = {sℓ}ℓ∈[t−1] be the set of indices corresponding to tvk. B proceeds as

follows:

i. If j ∈ I, B chooses γ ← Zp. Then, B sets µj := C
γαj

1 and returns µj to A.
ii. If ωx1 + τx3 + x5 mod p = 0, then B outputs a random bit and aborts.

iii. If ω = H1(C
∗
0 , C

∗
1 ) and (C0, C1) ̸= (C∗

0 , C
∗
1 ), then B outputs random bit

and aborts.

iv. (Note that at this point, it is guaranteed that j /∈ I.) B choose γ ← Zp.

Then, B calculates

µj :=
(
( C2

C
ωx2+τx4+x6
1

)
λ0

ωx1+τx3+x5 ·χ
)
, where χ = (C1)

Σt−1
ℓ=1λℓαsℓ and λ0, · · · , λt−1

∈ Zp are the Lagrange coefficients satisfying f(j) = λ0f(0) + Σt−1
ℓ=1λℓf(sℓ)

for the polynomial f . Then, B returns µj to A.
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Finally, when A terminates with its guess bit θ′ ∈ {0, 1}, B outputs 1 if θ = θ′,

otherwise outputs 0 and terminates.

The above completes the description of B. Because of the collision resistance of the

hash function H1 and a similar argument in [76], the probability that B aborts during the

simulation is negligible. Except for that, B perfectly simulates the CCA game for A if

W = H2(g
ab). When W is a random string, the view of B is independent of the choice

b. Therefore, B’s advantage in solving HDH problem can be estimated as AdvHDH
B ≥

AdvCCA-RS-TPKE(A,n,t) (k)− (negl.). This completes the proof of Theorem 5.

Theorem 6. The re-splittable TPKE scheme eGWW+ has decryption consistency uncon-

ditionally.

Proof of Theorem 6. Let A be an arbitrary adversary attacking the re-splittable

TPKE scheme eGWW+ in the decryption consistency game. Suppose A outputs c =

(C0, C1, C2, τ), tvk = (f(i))i∈[n], S = {µsi}i∈[t], and S′ = {µ′s′i}i∈[t], where f is the poly-

nomial that was generated when computing tvk.

If the shares µsi in S are valid, they must satisfy e(µsi , g) = e(C1, g
f(si)), which

implies µsi = C
f(si)
1 . This in turn implies

∏t
i=1 µ

λi
si = Cx

1 , where {λi}i∈[t] are the Lagrange
coefficients satisfying f(0) = x = Σt

i=1λif(si). Therefore, it holds that

TCom(tpk, tvk, c, S) = C0 ⊕H(
t∏

i=1

µλi
si ) = C0 ⊕H(Cx

1 ).

Similarly, if the shares µ′s′i in S′ are valid, we have e(µ′s′i , g) = e(C1, g
f(s′i)), which

implies µ′s′i
= C

f(s′i)
1 . This in turn implies

∏t
i=1 µ

′λ′
i

s′i
= Cx

1 , where {λ′i}i∈[t] are the Lagrange
coefficients satisfying f(0) = x = Σt

i=1λ
′
if(s

′
i). Therefore, we also have

TCom(tpk, tvk, c, S′) = C0 ⊕H(

t∏
i=1

µ
′λ′

i

s′i
) = C0 ⊕H(Cx

1 ).

We have seen that the combined values from the sets S and S′ cannot be distinct.

Thus, we have AdvDC-RS-TPKE(A,n,t) (k) = 0 for any (even computationally unbounded) adversary

A.

Extension of eGWW+ Scheme. In this section, we propose an extension of the eGWW+

scheme. Here, we call this extended scheme eGWW++. This eGWW++ scheme is secure

under the computational Diffie-Hellman (CDH) assumption. We can obtain this scheme

by replacing the hash function H2 which is used in the eGWW+ scheme to a hardcore func-

tion for the CDH problem (in bilinear groups). The existence of such a hardcore function

was shown by Boneh and Shparlinski [25]. This is the first scheme that is secure under

the CDH assumption. Although the message space of this scheme is limited to {0, 1}, we
can extend this message space to O(log2 k) bits by applying the general hardcore function

by Goldreich and Levin [53].

3.4 Comparisons

The Tables 3.1 and 3.2 are comparisons of the previous re-splittable TPKE scheme [58]

and our proposed schemes. Here, e means the number of pairing computation, and E
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Table 3.1: Efficiency comparisons of computational cost (pairing computation and expo-

nentiation)

TKG TEnc TSplit TShDec TShVer TCom

Hanaoka et al. [58] 3E 1e+ 7E nE 2e+ 5E 4e+ 4E (4t+ 1)e+ (5t)E

eAT 4E 10E 2nE 4e+ 6E 8e+ 4E (8t)e+ (6t)E

eLDLK 1e+ 1E 5E 2nE 2e+ 4E 5e+ 2E (5t+ 2)e+ (4t)E

eGWW+ 1E 5E nE 2e+ 3E 4e+ 2E (4t)e+ (3t)E

eGWW++ 1E 5E nE 2e+ 3E 4e+ 2E (4t)e+ (3t)E

means the number of exponentiation, ciphertext overhead means |ciphertext|−|plaintext|,
and we ignore the computation costs for all other operations such as modular addi-

tions/multiplications and hash functions. For the re-splittable TPKE schemes that use

a one-time signature scheme as a building block, we concretely implement the signature

scheme by using Wee’s scheme [109, Section 5.1], which, to the best of our knowledge, is

the most efficient one-time signature scheme based on the discrete logarithm assumption.

As is clear from the tables, the eGWW+ scheme is the most efficient in almost all

aspects. Therefore, we can obtain an efficient PRE scheme by using this re-splittable

TPKE scheme as a building block in the construction of PRE schemes in [58] and [84].

Table 3.2: Efficiency comparisons of communication cost (Note that the message space of

eGWW+′ is limited to {0, 1}.)

tpk tsk tskshare tvk ciphertext dec.share

Hanaoka et al. [58] 4|G| 1|Zp| 1|Zp| n|G| 5|G|+ 1|GT |+ 2|Zp| 1|G|
eAT 5|G| 2|Zp| 2|Zp| 2n|G| 7|G|+ 1|GT |+ 2|Zp| 2|G|

eLDLK 5|G|+ 1|GT | 1|Zp| 1|G| n|G| 2|G|+ 1|GT |+ 1|Zp| 2|G|
eGWW+ 5|G| 1|Zp| 1|Zp| n|G| 2|G|+ 1|m|+ 1|Zp| 1|G|
eGWW++ 5|G| 1|Zp| 1|Zp| n|G| 2|G|+ 1|Zp| 1|G|

3.5 Conclusion

In this chapter, we proposed three new constructions of re-splittable TPKE schemes. It

seems that the re-splittable TPKE is close to the standard TPKE and we can easily extend

the standard TPKE schemes to the re-splittable ones. As we denoted in Section 3.1.1,

however, we cannot extend the previous TPKE schemes based on multiple encryption

to the re-splittable ones through the methodology used in this chapter. Moreover, the

property that we can re-distribute decryption key shares is useful not only in the generic

construction of proxy re-encryption but also in practical cases that we use TPKE in the

real world. From the view point of security, we can regard as the conditions of attacks

become harder because the adversary have to gather the t and more decryption (key)

shares which are generated in the same timing. From the view point of practicality, we

can handle the flexible change of the number of the entities or the threshold by changing
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the values of t and n. In our model, it seems that we have to decide these values in the

TKG algorithm. However, we can avoid it and decide those values in the TSplit algorithm.

We cannot see this property in the standard TPKE.

A proposal of new applications for re-splittable TPKE is a future work. Same as the

secret sharing, we can realize the distributed key management by (re-splittable) TPKE. We

are expecting that the proposal of theoretical and/or practical applications of re-splittable

TPKE.
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Chapter 4

Proxy Re-encryption with

Re-encryption Verifiability

4.1 Introduction

4.1.1 Background and Motivation

Proxy re-encryption (PRE) which was formalized by Blaze et al. [19] is an interesting

extension of traditional public key encryption (PKE) and has received much attentions

in recent years. In PRE, in addition to the normal operations of PKE, with a dedicated

re-encryption key (which is generated by receiver A), a semi-trusted third party called

proxy can change the destination of ciphertexts destined for user A into those for user

B. A noticeable property of PRE is that the proxy can carry out the transform of a

ciphertext without decrypting it and is totally ignorant of the plaintext. There are many

models as well as implementations [19, 6, 33, 77, 91, 37, 58, 65] of PRE. The type of PRE

we focus on in this chapter is “single-hop” and “uni-directional”, where a ciphertext1 can

be transformed only once, and a re-encryption key used to transform a ciphertext for user

A to that for user B cannot be used for the transform of the opposite direction.

In ordinary PRE schemes, a proxy is considered as a semi-trusted party, and is typically

assumed to perform the re-encryption process honestly. This means that we have to put

relatively high level of trust on proxies, and it may be undesirable for some applications

of PRE, e.g. cloud-based file sharing systems. In this chapter, we study a mechanism that

enables us to reduce the level of trust we have to put on proxies in PRE systems.

To motivate it further, consider a cloud storage service, one of the major applications

of PRE, in which users store a (possibly large) encrypted data c. PRE allows an easy way

to share the encrypted data in the cloud with another user: if an owner (say user A) of

the encrypted data c wants to share it with user B, it can simply give a re-encryption key

rkA→B to the cloud manager, and can go off-line.; When later B requests the data for

the cloud manager, the manager can transform c into a re-encrypted ciphertext ĉ that can

be decrypted by user B. However, in this situation, can user B be sure if ĉ is actually

a re-encryption of c? Can B detect whether the cloud manager (proxy) has misbehaved?

1In the context of single-hop uni-directional PRE, an original ciphertext (which can be re-encrypted)

and a re-encrypted ciphertext (which cannot be re-encrypted further) are typically called a second-level

ciphertext and a first-level ciphertext, respectively [77, 58], and we will also use the names.
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Note that an ordinary PRE scheme is not required to support the functionality to check

the relation between an original ciphertext c and a re-encrypted ciphertext ĉ (if user A

reveals its secret key to user B, then B can check the relation, but it is clearly undesirable).

It is therefore desirable if there is a PRE scheme in which the relation between original

and re-encrypted ciphertexts can be checked efficiently by a recipient of a re-encrypted

ciphertext (user B in this example), without the help of the other entities.

4.1.2 Our Contribution

In this chapter, we introduce a new functionality for PRE that we call re-encryption veri-

fiability. In a PRE scheme with re-encryption verifiability (which we simply call verifiable

PRE, or VPRE), a receiver of a re-encrypted ciphertext can verify whether the received

ciphertext is correctly transformed from an original ciphertext by a proxy, and thus can

detect an illegal activity of the proxy. We may even expect that the existence of re-

encryption verifiability suppresses proxy’s illegal activities, and this functionality enables

us to relax the level of trust that we have to put on proxies. We achieve re-encryption

verifiability by introducing a new algorithm that we call the re-encryption verification

algorithm, into the syntax of (single-hop, uni-directional) PRE. This algorithm takes two

ciphertexts c and ĉ, a secret key skB (of the receiver B) and a public key pkA (of another

user A) as input, and can tell whether ĉ is transformed from c using a re-encryption key

that transforms a ciphertext from user A to user B. We stress that this algorithm needs

not only a re-encrypted ciphertext ĉ but also a (candidate) original ciphertext c (while to

normally decrypt a re-encrypted ciphertext, original ciphertext c is not required). Note

that such a situation is natural in the applications of PRE which we explained earlier.

We formalize the security model for a VPRE scheme. In particular, in order for

the re-encryption verification algorithm to be meaningful, in addition to ordinary chosen

ciphertext (CCA) security (for both original/transformed ciphertexts), we introduce a

new security notion that we call soundness. Our security model for CCA security is based

on the one used by Hanaoka et al. [58], and is extended to take the existence of the re-

encryption verification algorithm into account. For “backward compatibility” with the

model of ordinary PRE (without re-encryption verification algorithm), we show that a

VPRE scheme secure in our model is in general secure as a PRE scheme in the model of

[58]. Then, we show that the PRE scheme by Hanaoka et al. [58] (which we call “HKK+”)

can be extended to a VPRE scheme (which we call “eHKK+”), by augmenting the HKK+

scheme with the dedicated re-encryption verification algorithm. To prove the security of

the VPRE scheme eHKK+, we need the property that we call strong smoothness (which is

essentially the same notion as that introduced in [46] with the name γ-uniformity) for the

underlying TPKE scheme. This property is unconditionally satisfied by natural TPKE

schemes, and thus is not a strong assumption at all. For more details, see Section 4.3.

Naive Approaches and Their Problems. Although one might think that the problem

of checking dishonest behaviors of a proxy can be resolved by using a signature scheme in a

PRE scheme (that is, by considering a proxy re-“signcryption” scheme), we argue that this

approach does not work. Specifically, consider a situation where a sender holds a key pair

of a signature scheme, and consider the typical “Sign-then-Encrypt”-style construction of
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a proxy re-signcryption scheme, i.e. the construction where a ciphertext is generated by

first signing the plaintext, and then the plaintext together with the signature are encrypted

by the PRE scheme. Note that what is verified in such a proxy re-signcryption scheme

(by a recipient of a re-encrypted ciphertext) is that the original plaintext has not been

modified and that it is indeed generated by the sender, but not that the transformed

ciphertext resulted from re-encryption performed by the proxy. For example, such a

construction is vulnerable to the following attack: a sender generates several ciphertexts

to the proxy, then the proxy re-encrypts one of them, and sends it to the recipient. The

recipient may find that the plaintext recovered from the received ciphertext indeed comes

from the sender, but he will not be sure which of the ciphertexts the proxy owns was re-

encrypted (and even that whether the received ciphertext is a re-encryption of one of the

ciphertexts). In the “Encrypt-then-Sign”-style construction, i.e. the construction where

the sender first encrypts a plaintext and then generates a signature on the ciphertext, the

situation is worse, because the signature attached to the original ciphertext will not be a

valid signature for a re-encrypted ciphertext. Furthermore, these proxy re-signcryption-

style approaches also have a potential drawback that the receiver needs to be aware of

the sender who generates the original ciphertext, which is not necessary in our VPRE

model (and in an ordinary PRE scheme), and may be a barrier for some applications of

(V)PRE. In summary, we emphasize that what is achieved by proxy re-signcryption-style

approaches and what we achieve in this research (i.e. verifiability of a dishonest behavior

of a proxy) are two very different properties, and one approach cannot be a solution to

the other.

On the Choice of Security Models on which Our Security Definitions Are

Based. We note that, as mentioned above, our definitions for VPRE are based on those

of PRE adopted by Hanaoka et al. [58]. Their security definitions (of chosen ciphertext

security) are known to be one of the strongest in the literature of PRE. Notably, besides

capturing the chosen ciphertext security (not re-playable variant [34]), the security models

in [58] do not assume the so-called knowledge-of-secret-key (KOSK) assumption [20], in

which an adversary can use any public key for corrupted users, without revealing the

corresponding secret key. The KOSK assumption typically appears in security models

of cryptographic primitives in which multiple users are inherently involved (e.g. multi-

receiver PKE [8, 87], multi-signature [20, 15, 89]). The KOSK assumption does not reflect

the reality quite well, and there are several critiques on this assumption (e.g. in the

discussions in [15, 89, 87]). To the best of our knowledge, the Hanaoka et al. model is the

only security definitions for PRE that do not assume the KOSK assumption, and thus we

base our security definitions on theirs.

As far as we are aware, most popular PRE schemes without random oracles are secure

only under the KOSK assumption (e.g. [77, 65]). 2 Therefore, we do not think these

schemes can be shown to achieve re-encryption verifiability in our model. However, we do

not rule out the possibility that these existing PRE schemes can be extended to VPRE

2To be more precise, in the security models adopted in these papers, public keys (of even a corrupted

user) that can be used in the security games (say, in a re-encryption key generation and/or re-encryption

queries) are generated by the challenger, who always generates these keys honestly. Therefore, the KOSK

assumption is automatically assumed in these security models.
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schemes that can be shown to be secure in the security models that are appropriately

extended from the security models in which the original PRE schemes are proved secure.

Especially, the pairing-based schemes (e.g. [77, 65]) seem to allow strong validity checking

properties between a re-encrypted ciphertext and an original ciphertext, and we think

they are good candidates of VPRE schemes. We would like to leave it as our future work

whether these existing PRE schemes can be extended to VPRE schemes and can be proven

secure in security models appropriately extended from the original security models.

Theoretical Aspect of Re-encryption Verifiability. There are two types of cipher-

texts in single-hop unidirectional PRE (i.e. first-level ciphertexts and second-level cipher-

texts), and consequently we have to consider “confidentiality” for each type of ciphertexts.

Since PRE is an extension of ordinary PKE, it is natural to consider (a suitably extended

version of) chosen ciphertext security for PRE. However, it is known that CCA secu-

rity implies non-malleability of ciphertexts [10, 44] (in the case of ordinary PKE), while

the “re-encryption” functionality directly contradicts “non-malleability” because it allows

a “meaningful” modification of a ciphertext, and therefore, even the definition of CCA

security for second-level ciphertexts of PRE has been non-trivial.

The difficulty is reflected in the security definition of second-level ciphertexts. Specif-

ically, in the security game for defining second-level CCA security, an adversary is al-

lowed to make decryption queries for both types of ciphertexts, and re-encryption and

re-encryption key generation queries. To capture as powerful adversaries as possible and

yet avoid unachievable security definitions, we allow arbitrary queries for an adversary, as

long as the queries do not allow the adversary to trivially win, such as that it should not

submit the challenge ciphertext itself as a decryption query for second-level ciphertexts.

Here, note that an adversary can also trivially win if there is no restriction in decryption

queries, because an adversary may transform the challenge second-level ciphertext into

a first-level ciphertext (via a re-encryption query or using a re-encryption key obtained

by making the re-encryption key generation query). However, in ordinary PRE, it is not

clear what ciphertexts should be considered as a “re-encrypted ciphertext” of the challenge

ciphertext.

The previous definitions [77, 58] resolve the issues by (partly) adopting the “replayable”-

CCA (RCCA) security security [34], which is a relaxed notion of CCA security. In the

RCCA game, if an adversary submits a ciphertext whose decryption result is one of the

plaintexts that the adversary has used as its challenge, then as the answer to the decryption

query the adversary receives not the decryption result, but some special symbol that tells

the adversary that the decryption result was one of the challenge plaintexts (but does not

tell which). The security definitions by Libert and Vergnaud [77] consider RCCA security

for both types of ciphertexts. The security definitions by Hanaoka et al. [58] strengthened

the definitions of [77], but still have a RCCA-security-like treatment in the security game.

Roughly speaking, what the definition of CCA security for second-level ciphertexts in [58]

achieves is CCA security against all entities but a proxy (who has a re-encryption key that

can convert ciphertexts for the challenge users to others) and RCCA security against the

proxy.

However, we naturally succeed in removing the RCCA-security-like treatment from

the definition of CCA security for second-level ciphertexts. Specifically, in our security
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definition, thanks to the functionality of re-encryption verification, we can unambiguously

define what should be considered as a re-encryption of the challenge ciphertext (and hence

the challenger does not answer to it by simply returning some symbol (e.g. ⊥) that tells
an adversary that it has queried an unallowable ciphertext). For more details, see the

security definitoins in Section 4.2.2.

4.1.3 Related Work

We briefly review the related work. Mambo and Okamoto introduced the concept of proxy

decryption [81]. Later, Ivan and Dodis [66] proposed a generic construction of proxy cryp-

tography based on sequential multiple encryption. Blaze, Bleumer, and Strauss formu-

lated the concept of PRE cryptosystems [19] and proposed the first bidirectional PRE

scheme based on the ElGamal PKE scheme. Subsequently, Ateniese et al. [6], Canetti

and Hohenberger [33], Libert and Vergnaud [77], and Chow et al. [37], proposed differ-

ent PRE schemes with various properties. Shao and Cao [91] proposed a PRE scheme

without pairings. Later, however, Zhang et al. [93] pointed out that it is not secure in

the Libert-Vergnaud security model [77]; that is, it does not provide master key security.

Subsequently, Matsuda et al. proposed a PRE scheme without pairings [82], but later,

Weng, Zhao, and Hanaoka [92] pointed out that their scheme is not chosen-ciphertext

secure. Hanaoka et al. [58] proposed a new definition of CCA security in PRE and showed

a generic construction of uni-directional PRE. Isshiki et al. [65] proposed a CCA secure

PRE scheme.3 Kirshanova [74] proposed a lattice-based PRE scheme. To the best of our

knowledge, none of the previous works considered the re-encryption verifiability.

4.1.4 Chapter Organization

The remainder of this chapter is organized as follows. In Section 4.2, we introduce the

model and security definitions for VPRE and discuss the relations with the security defi-

nitions (for ordinary PRE) by Hanaoka et al. [58]. In Section 4.3, we present our VPRE

scheme. In Section 4.4, we prove the security of our VPRE scheme. Section 4.5 is the

conclusion of this chapter.

4.2 Verifiable Proxy Re-Encryption

In this section, we present the model and the security definitions of VPRE. Note that we

only focus on a single-hop uni-directional scheme.

This section is organized as follows: In Section 4.2.1, we define the syntax of a VPRE

scheme. In Section 4.2.2, based on the definitions given in [58] for (ordinary) PRE, we

define three kinds of security definitions of VPRE. In particular, we introduce soundness,

which plays an important role for VPRE. We also explain the difference between our

definitions and those of [58]. Finally, in Section 4.2.4, we show that a VPRE secure in our

3Although it is claimed that their security model is stronger than that of [58], they are actually incom-

parable. The security model for a transformed ciphertext (first-level ciphertext) in [65] allows an adversary

a slightly more flexible challenge query than that of [58]. However, all public keys in the security models

of [65] that can be used for re-encryption key generation and re-encryption queries must be generated by

the challenger, and such restriction is not posed in the model of [58].
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definitions is also secure (as an ordinary PRE scheme) in the definitions of [58], and thus

our definitions have “backward compatibility” with [58].

4.2.1 Model

Here, we define the syntax of VPRE. As mentioned earlier, the main feature of VPRE is

the re-encryption verification algorithm REncVer.

Formally, a VPRE scheme consists of the following seven algorithms:

KG This is the key generation algorithm that takes 1k as input, and outputs a secret key

sk and a public key pk. This process is written as (sk, pk)← KG(1k).

RKG This is the re-encryption key generation algorithm that takes a secret key ski of user

i and a public key pkj of user j as input, and outputs a re-encryption key rki→j .

This process is written as rki→j ← RKG(ski, pkj).

Enc This is the encryption algorithm that takes a public key pk and a plaintext m as

input, and outputs a second-level ciphertext c that can be re-encrypted for another

party. This process is written as c← Enc(pk,m).

REnc This is the re-encryption algorithm that takes a second-level ciphertext c (for user

i) and a re-encryption key rki→j as input, and outputs a first-level ciphertext ĉ (for

user j) or the special symbol ⊥ meaning that (rki→j or) c is invalid. This process is

written as ĉ (or ⊥)← REnc(rki→j , c).

REncVer This is the re-encryption verification algorithm that takes a public key pki of user

i, a secret key skj of user j, a second-level ciphertext c, and a first-level ciphertext

ĉ as input, and outputs ⊤ (meaning that ĉ is a valid re-encrypted ciphertext of ci)

or ⊥. This process is written as ⊤ (or ⊥)← REncVer(pki, skj , c, ĉ).

Dec1 This is the first-level decryption algorithm that takes a secret key sk and a first-level

ciphertext ĉ as input, and outputs a decryption result m (which could be the special

symbol ⊥ meaning that ĉ is invalid). This process is written as m← Dec1(sk, ĉ).

Dec2 This is the second-level decryption algorithm that takes a secret key sk and a second-

level ciphertext c as input, and outputs a decryption result m (which could be ⊥ as

above). This process is written as m← Dec2(sk, c).

The REncVer algorithm needs not only a re-encrypted ciphertext ĉ but also a (can-

didate) original ciphertext c. We again stress that such a situation is natural in the

applications of PRE which we explained in Section 6.1. We remark that as in [58], we do

not consider the direct first-level encryption algorithm (that generates a first-level cipher-

text that cannot be re-encrypted further), because such a functionality can be realized by

just using a CCA secure PKE scheme in addition to a (V)PRE scheme.

We say that a VPRE scheme is correct if for all (ski, pki) and (skj , pkj) output from

KG(1k), all plaintexts m, all rki→j ← RKG(ski, pkj), all ci ← Enc(pki,m), and all ĉj ←
REnc(rki→j , ci), we have: (1) Dec2(ski, ci) = m, (2) Dec1(skj , ĉj) = m, and (3) REncVer(pki,

skj , ci, ĉj) = ⊤.
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4.2.2 Security Definitions

In this subsection, we give the formal security definitions of VPRE.

Soundness. According to the correctness requirement, an algorithm that outputs 1 for

any input is “correct” as the re-encryption verification algorithm REncVer. However,

this is clearly not what we expect for REncVer. To avoid such triviality and a meaningless

definition, here we introduce soundness of the REncVer algorithm. Roughly, our soundness

definition guarantees that if an adversary who owns a re-encryption key rki→j and is given

an original (second-level) ciphertext c, it can produce only a re-encrypted ciphertext ĉ that

can decrypt to the same value as the decryption result of c. Furthermore, if an adversary

does not have the re-encryption key rki→j , then it cannot produce a valid re-encrypted

ciphertext ĉ at all.

Formally, we define the soundness of re-encryption with the following game which is

parameterized by an integer n ∈ N and is played between the challenger and an adversary

A: Firstly, the challenger generates honest users’ key pairs (ski, pki)← KG(1k) for i ∈ [n],

and sets PK = {pki}i∈[n]. Next, the challenger generates a challenge user’s key pair

(ski∗ , pki∗)← KG(1k). Then, the challenger gives 1k and PK∗ = PK∪ {pki∗} to A. Then,
A can adaptively make the following types of queries:

Re-encryption key generation (RKG) query: On input (pki ∈ PK∗, pkj), where pkj
is an arbitrary public key of A’s choice (for which A is not required to reveal the

corresponding secret key), the challenger responds as follows: If pki = pki∗ and

pkj /∈ PK∗, then the challenger responds with ⊥. Otherwise, the challenger responds

with RKG(ski, pkj).

Re-encryption (REnc) query: On input (pki ∈ PK∗, pkj , c), where pkj is an arbitrary

public key of A’s choice (for which A is not required to reveal the corresponding

secret key), the challenger responds with REnc(RKG(ski, pkj), c).

Re-encryption verification (REncVer) query: On input (pki, pkj ∈ PK∗, c, ĉ), where

pki is an arbitrary public key of A’s choice (for which A is not required to reveal the

corresponding secret key), the challenger responds with REncVer(pki, skj , c, ĉ).

Challenge query: This query is asked only once. On input m∗, the challenger runs

c∗ ← Enc(pki∗ ,m
∗), and returns c∗ to A.

First-level decryption (Dec1) query: On input (pkj ∈ PK∗, ĉ), the challenger responds

with Dec1(skj , ĉ).

Second-level decryption (Dec2) query: On input (pki ∈ PK∗, c), the challenger re-

sponds with Dec2(ski, c).

Finally, A outputs (pkj ∈ PK∗, ĉ∗) and wins the game if they satisfy the following

three conditions:

1. REncVer(pki∗ , skj , c
∗, ĉ∗) = ⊤

2. ĉ∗ is not an answer to some of A’s REnc queries of the form (pki∗ , pkj , c
∗)
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3. Either of the following conditions is satisfied:

• In the case that A has submitted a RKG query of the form (pki∗ , pkj) and

obtained a re-encryption key rki∗→j : Dec1(skj , ĉ
∗) ̸= m∗.

• Otherwise: Dec1(skj , ĉ
∗) ̸= ⊥.

We define the advantage of A by AdvSND-VPRE(A,n) (k) = Pr[A wins].

Definition 3 (Soundness of Re-encryption Verification). We say that a VPRE scheme

satisfies soundness, if for any PPT adversary A and for all positive polynomials n,

AdvSND-VPRE(A,n) (k) is negligible.

Second-Level CCA Security. Here, we define the security for second-level ciphertexts

(second-level CCA security) with the following game which is parameterized by an integer

n ∈ N and is played between the challenger and an adversary A: Firstly, the challenger

generates honest users’ key pairs (ski, pki)← KG(1k) for i ∈ [n], and sets PK = {pki}i∈[n].
Next, the challenger generates the challenge user’s key pair (ski∗ , pki∗) ← KG(1k). Then,

the challenger gives 1k and PK∗ = PK ∪ {pki∗} to A. Then, A can adaptively make the

following types of queries:

Re-encryption key generation (RKG) and Re-encryption verification

(REncVer) queries:

These are the same as those in the soundness game.

Re-encryption (REnc) query: On input (pki ∈ PK∗, pkj , c), where pkj is an arbitrary

public key of A’s choice (for which A is not required to reveal the corresponding

secret key), the challenger responds as follows. If (pki, c) = (pki∗ , c
∗) and pkj /∈

PK∗, then the challenger returns ⊥ to A. Otherwise, the challenger responds with

REnc(RKG(ski, pkj), c).

Challenge query: This query is asked only once. On input (m0,m1), the challenger

picks a bit b ∈ {0, 1} uniformly at random, and computes c∗ ← Enc(pki∗ ,mb). Then

it gives c∗ to A.

First-level decryption (Dec1) query: On input (pkj ∈ PK∗, ĉ), the challenger responds

as follow: If REncVer(pki∗ , skj , c
∗, ĉ) = ⊤, then the challenger returns ⊥ to A. Oth-

erwise, the challenger responds with Dec1(skj , ĉ).

Second-level decryption (Dec2) query: On input (pki ∈ PK∗, c), the challenger re-

sponds with Dec2(ski, c), except that if (pki, c) = (pki∗ , c
∗), then the challenger

returns the special symbol ⊥ to A.

Finally, A outputs its guess b′ for b and wins the game if b = b′. We define the

advantage of A by Advsecond-VPRE(A,n) (k) = |Pr[b = b′]− 1/2|.

Definition 4 (Second-Level CCA Security). We say that a VPRE scheme is second-level

CCA secure, if for any PPT adversary A and all positive polynomials n, Advsecond-VPRE(A,n) (k)

is negligible.
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First-Level CCA Security. Next, we define the security for first-level ciphertexts

(first-level CCA security) with the following game between the challenger and an ad-

versary A: Firstly, the challenger generates the challenge key pair (sk∗, pk∗) ← KG(1k),

and gives 1k and pk∗ to A. Then, A can adaptively make the following types of queries:

Re-encryption key generation (RKG) query: On input pk, where pk is an arbitrary

public key of A’s choice (for which A is not required to reveal the corresponding

secret key), the challenger responds with RKG(sk∗, pk).

Re-encryption verification (REncVer) query: On input (pk, c, ĉ), where pk is an arbi-

trary public of A’s choice (for which A is not required to reveal the corresponding

secret key), the challenger responds with REncVer(pk, sk∗, c, ĉ).

Challenge query: This query is asked only once. On input (skA, pkA,m0,m1) where

(skA, pkA) is required to be a valid key pair4, the challenger picks the challenge bit

b ∈ {0, 1} randomly and runs c ← Enc(pkA,mb) and ĉ∗ ← REnc(RKG(skA, pk
∗), c).

It then returns ĉ∗ to A.

First-level decryption (Dec1) query: On input ĉ, the challenger responds with Dec1
(sk∗, ĉ), except that if ĉ = ĉ∗, then the challenger returns the special symbol ⊥ to A.

Second-level decryption (Dec2) query: On input c, the challenger responds with Dec2
(sk∗, c).

Finally, A outputs its guess b′ for b and wins the game if b = b′. We define the

advantage of A by Advfirst-VPREA (k) = |Pr[b = b′]− 1/2|.

Definition 5 (First-Level CCA Security). We say that a VPRE scheme is first-level CCA

secure, if for any PPT adversary A, Advfirst-VPREA (k) is negligible.

4.2.3 Security Definitions for PRE by [58]

Here, we recall the security definitions of [58]. In order not to mix up with our security

definitions for VPRE, we put the prefix “HKK+” for the security definitions of [58].

Second-Level CCA Security [58, Definition 1]. The security for second-level ci-

phertexts in [58] (HKK+-second-level CCA security) is defined using the following game

which is parameterized by an integer n ∈ N and is played between the challenger and an

adversary A: Firstly, the challenger generates honest users’ key pairs (ski, pki)← KG(1k)

for i ∈ [n], and sets PK = {pki}i∈[n]. Next, the challenger generates the challenge user’s

key pair (ski∗ , pki∗) ← KG(1k). Then, the challenger gives 1k and PK∗ = PK ∪ {pki∗} to
A. Then, A can adaptively make the following types of queries:

Re-encryption key generation (RKG) query: On input (pki ∈ PK∗, pkj), where pkj
is an arbitrary public key of A’s choice (for which A is not required to reveal the

corresponding secret key), the challenger responds as follows: If pki = pki∗ and

pkj /∈ PK∗, then the challenger responds with ⊥. Otherwise, the challenger responds

with RKG(ski, pkj).
4That is, (skA, pkA) is required to be in the range of KG(1k).
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Re-encryption (REnc) query: On input (pki ∈ PK∗, pkj , c), where pkj is an arbitrary

public key of A’s choice (for which A is not required to reveal the corresponding

secret key), the challenger responds as follows. If (pki, c) = (pki∗ , c
∗) and pkj /∈

PK∗, then the challenger returns ⊥ to A. Otherwise, the challenger responds with

REnc(RKG(ski, pkj), c).

Challenge query: This query is asked only once. On input (m0,m1), the challenger

picks a bit b ∈ {0, 1} uniformly at random, and computes c∗ ← Enc(pki∗ ,mb). Then

it gives c∗ to A.

First-level decryption (Dec1) query: On input (pkj ∈ PK∗, ĉ), the challenger responds

as follow: If A has asked a re-encryption query pki∗ , pkj ∈ PK∗, ci∗ and obtained ĉ

previously, then the challenger returns ⊥ to A. Else if A has asked a re-encryption

key generation query pki∗ , pkj ∈ PK∗ previously and Dec1(skj , ĉ) ∈ {m0,m1}, then
the challenger returns the special symbol test to A. Otherwise, the challenger re-

sponds with Dec1(skj , ĉ).

Second-level decryption (Dec2) query: On input (pki ∈ PK∗, c), the challenger re-

sponds with Dec2(ski, c), except that if (pki, c) = (pki∗ , c
∗), then the challenger

returns the special symbol ⊥ to A.

Finally, A outputs its guess b′ for b and wins the game if b = b′. We define the

advantage of A by AdvHKK+-second-PRE(A,n) (k) = |Pr[b = b′]− 1/2|.

Definition 6 (Second-Level CCA Security). We say that a PRE scheme is second-level

CCA secure, if for any PPT adversary A and all positive polynomials n, AdvHKK+-second-PRE(A,n) (k)

is negligible.

First-Level CCA Security [58, Definition 2]. The security for first-level ciphertexts

(HKK+-first-level CCA security) with the following game between the challenger and an

adversary A: Firstly, the challenger generates the challenge key pair (sk∗, pk∗)← KG(1k),

and gives 1k and pk∗ to A. Then, A can adaptively make the following types of queries:

Re-encryption key generation (RKG) query: On input pk, where pk is an arbitrary

public key of A’s choice (for which A is not required to reveal the corresponding

secret key), the challenger responds with RKG(sk∗, pk).

Challenge query: This query is asked only once. On input (skA, pkA,m0,m1) where

(skA, pkA) is required to be a valid key pair5, the challenger picks the challenge bit

b ∈ {0, 1} randomly and runs c ← Enc(pkA,mb) and ĉ∗ ← REnc(RKG(skA, pk
∗), c).

It then returns ĉ∗ to A.

First-level decryption (Dec1) query: On input ĉ, the challenger responds with Dec1
(sk∗, ĉ), except that if ĉ = ĉ∗, then the challenger returns the special symbol ⊥ to A.

Second-level decryption (Dec2) query: On input c, the challenger responds with Dec2
(sk∗, c).

5That is, (skA, pkA) is required to be in the range of KG(1k).
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Finally, A outputs its guess b′ for b and wins the game if b = b′. We define the

advantage of A by AdvHKK+-first-PREA (k) = |Pr[b = b′]− 1/2|.

Definition 7 (First-Level CCA Security). We say that a VPRE scheme is first-level CCA

secure, if for any PPT adversary A, AdvHKK+-first-PREA (k) is negligible.

Difference with the Definitions (for PRE) in [58]. Here, we explain the differences

of our security definitions for VPRE with the definitions (for PRE) by Hanaoka et al. [58].

(We use the prefix “HKK+” for the names of the security definitions in [58].) Soundness

is a new security definition for VPRE. Furthermore, regarding the definition of first-level

CCA security, we naturally allow REncVer queries for an adversary in addition to queries

allowed in the first-level CCA definition of Definition 7.

For the security definition of second-level ciphertexts, we also allow an adversary to

make REncVer queries. Furthermore, there is a remarkable difference in the response to

Dec1 queries. The response to Dec1 queries in the second-level CCA security game defined

in Definition 6 is as follows (where we emphasize the difference).

First-level decryption query (of [58]) : On input (pkj ∈ PK∗, ĉ), the challenger re-

sponds as follows: If A has asked a REnc query of the form (pki∗ , pkj ∈ PK, c∗) and
obtained ĉi previously, then the challenger returns ⊥ to A. Else if A has asked a RKG

query of the form (pki∗ , pkj ∈ PK) previously and Dec1(ski, ĉ) ∈ {m0,m1} holds,

then the challenger returns the special symbol test to A. Otherwise, the challenger

responds with Dec1(ski, ĉ). (We note that here, test is a symbol that is distinguished

from ⊥.)

Note that in a CCA security definition, what we expect is that an adversary can ask

any ciphertext that does not trivially allow it to decrypt the challenge ciphertext. The

emphasized sentences above are the definitional approach taken in [58] to avoid such a “self-

broken” definition considered in [58]. On the other hand, our definition of second-level

CCA security given in this subsection uses REncVer for deciding “prohibited” decryp-

tion queries, and thus is simplified (of course, we additionally need soundness in order

for REncVer to be meaningful). Our use of REncVer for deciding “prohibited” queries in

the CCA security game for an encryption scheme has some similarity with secretly de-

tectable re-playable CCA security of [34] and detectable PKE of [62], and we believe these

connections to be interesting.

4.2.4 Implications to the Definitions of [58]

Here, we show a “backward compatibility” of our security definitions. Namely, we show

that if a VPRE scheme satisfies security definitions given in Section 4.2.2, then it is also

secure as a (V)PRE under the definitions of [58].

Theorem 7. If a VPRE scheme is first-level CCA secure in the sense of Definition 5,

then the VPRE scheme is first-level CCA secure in the sense of Definition 7.

This is obvious from the definition. In particular, an adversary in our first-level CCA

security definition is only more powerful than that of Definition 7 (our adversary can make

REncVer queries which are not considered in [58]).
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Theorem 8. If a VPRE scheme is second-level CCA secure in the sense of Definition 4

and satisfies soundness (Definition 3), then the VPRE scheme is second-level CCA secure

in the sense of Definition 6.

Proof of Theorem 8 Let n > 0 be a polynomial, and A be any PPT adversary that

attacks a VPRE scheme in the sense of [58, Definition 1] and makes Q > 0 Dec1 queries.

(Since A is PPT, Q is polynomial.) Consider the following games.

Game 0. The second-level CCA game of Definition 6.

Game 1. Same as Game 0, except that if A submits a Dec1 query (pkj , ĉ) such that (1)

REncVer(pki∗ , skj , ci∗ , ĉ) = ⊤, and (2) ĉ is not an answer to some of A’s REnc queries
of the form (pki∗ , pkj , c

∗), then the challenger responds as follows:

If A has submitted a RKG query (pki∗ , pkj) before, then the challenger returns test

to A. Otherwise, the challenger returns ⊥ to A.

For i ∈ {0, 1}, let Succi be the event that in Game i A succeeds in guessing the

challenge bit (i.e. b′ = b occurs), and let Badi be the event that in Game i, A submits at

least one Dec1 query (pkj , ĉ) such that it satisfies the following conditions simultaneously:

1. REncVer(pki∗ , skj , c
∗, ĉ) = ⊤.

2. ĉ has not appeared as an answer to some of A’s previous REnc queries of the form

(pki∗ , pkj , c
∗).

3. Either of the following conditions is satisfied:

• In the case that A has submitted a RKG query (pki∗ , pkj) and obtained a re-

encryption key rki∗→j : Dec1(skj , ĉ) /∈ {m0,m1}.

• Otherwise: Dec1(skj , ĉ) ̸= ⊥.

A’s advantage (in the second-level CCA definition of 6) is calculated as follows:

|Pr[Succ0]−
1

2
| ≤ |Pr[Succ0]− Pr[Succ1]|+ |Pr[Succ1]−

1

2
|.

Thus, it suffices to show that each term in the right hand side of the above inequality is

negligible.

Firstly, note that Game 0 and Game 1 proceed identically unless Bad0 or Bad1 occurs in

the corresponding games. Hence, we have |Pr[Succ0]− Pr[Succ1]| ≤ Pr[Bad0] = Pr[Bad1].

Then, we show that we can construct a soundness adversary B such that AdvSND-VPRE(B,n) (k) ≥
(1/Q) · Pr[Bad1], which implies that Pr[Bad1] is negligible.

The construction of B is as follows: First, B is given public keys (pk1, · · · , pkn, pki∗)
from the soundness challenger. Then B forwards them to A.
B answers to A’s queries (except for the challenge query) exactly as specified in Game

1. This is possible because B can also query to B’s challenger except for the challenge

query. When A submits the challenge query (m0,m1), B randomly picks d ← {0, 1},
submits md as B’s challenge to B’s challenger, receives c∗, and returns c∗ to A.
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When A terminates, from A’s Dec1 queries, B randomly picks one query (pkj , ĉ), and

terminates with output (pkj , ĉ).

The above completes the description of B. It is not hard to see that B simulates Game

1 perfectly for A until A submits a Dec1 query satisfying the conditions of the event Bad1.

Therefore, the probability that A submits a Dec1 query satisfying the conditions of Bad1
in the game simulated by B is exactly the same as the probability of this event occurring in

Game 1. Furthermore, once A makes such a query, B can pick it with probability at least

1/Q. Therefore, we have AdvSND-VPRE(B,n) (k) ≥ (1/Q) · Pr[Bad1]. Hence, Pr[Bad1] is negligible.

This in turn implies that |Pr[Succ1]− Pr[Succ2]| is negligible.
To prove Theorem 8, it remains to show that |Pr[Succ1]− 1/2| is negligible. However,

it is straightforward from the definition of the second-level CCA security of the VPRE

scheme (in the sense of Definition 4). In particular, a second-level CCA adversary (in the

sense of Definition 4) can simulate Game 1 perfectly for A, and such an adversary has

advantage exactly |Pr[Succ1]− 1/2|.
This completes the proof of Theorem 8.

4.3 A Concrete VPRE Scheme

In this section, we show a concrete VPRE scheme and intuitions for its security. Specifi-

cally, our VPRE scheme is a simple extension of the PRE scheme by Hanaoka et al. (which

we denote by HKK+) [58], and we show how to implement the re-encryption verification

algorithm for it.

Intuition to Achieve the Functionality of Re-encryption Verification. Consider

a situation in which a second-level ciphertext cA for user A is re-encrypted into a first-

level ciphertext ĉB for user B. In order to achieve PRE with re-encryption verifiability,

one promising approach is to design a PRE scheme with the following properties: (1)

When re-encrypting cA into ĉB, cA is somehow embedded into ĉB in such a way that when

user B decrypts ĉB, the embedded second-level ciphertext cA can be extracted. (2) In

re-encryption verification (between ĉB and a candidate second-level ciphertext c′A) user B

checks whether an extracted ciphertext cA is equal to the given candidate c′A. We observe

that the HKK+ scheme has the desirable properties, and this is the reason why we focus

on the PRE scheme. We next explain how we extend it into a VPRE scheme.

Extending the Hanaoka et al. PRE [58] to VPRE. Recall that the PRE scheme

HKK+ is a generic construction from a re-splittable TPKE scheme, an (ordinary) PKE

scheme, and a signature scheme. We observe that a re-encrypted ciphertext (i.e. first-

level ciphertext) ĉ of the HKK+ scheme contains the information on an original ciphertext

(i.e. second-level ciphertext) c which is just a ciphertext of the underlying TPKE scheme.

Our re-encryption verification algorithm is thus fairly simple: On input (pki, skj , c, ĉ), it

executes the first-level decryption algorithm of the HKK+ scheme partway to recover the

“embedded” second-level ciphertext c′, and checks whether c = c′ holds.

Now, we formally describe the VPRE scheme, which we denote by eHKK+ (which

stands for “extended HKK+”). Let (TKG, TEnc, TSplit, TShDec, TShVer, TCom) be a

re-splittable TPKE scheme, (PKG, PEnc, PDec) be a PKE scheme, and (SKG, Sign, SVer)
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be a signature scheme. Using these as building blocks, the VPRE scheme eHKK+ is

constructed as in Fig. 4.1.

KG(1k) :
(tsk, tpk)← TKG(1k, 2, 2)

(d̂k, p̂k)← PKG(1k)
(dk, pk)← PKG(1k)
(sk, vk)← SKG(1k)

sk← (tsk, d̂k, dk, sk)

pk← (tpk, p̂k, pk, vk)
Return (sk, pk).

Enc(pki,m) :

(tpki, p̂ki, pki, vki)← pki
Return c← TEnc(tpki,m).

RKG(ski, pkj) :

(tski, d̂ki, dki, ski)← ski
(tpkj , p̂kj , pkj , vkj)← pkj
(tski.1, tski.2, tvki)← TSplit(tski)
ψ ← PEnc(pkj , tski.1)
σ ← Sign(ski, ⟨ψ∥tvki∥pki∥pkj⟩)
rki→j ← (pki, pkj , tski.2, ψ, tvki, σ)
Return rki→j .

Dec1(skj , ĉj) :

(tskj , d̂kj , dkj , skj)← skj
M̂ ← PDec(d̂kj , ĉj)

If M̂ = ⊥ then return ⊥.
⟨pk′i∥pk′j∥ci∥µ2∥ψ∥tvki∥σ⟩ ← M̂
If pk′j ̸= pkj then return ⊥.
(tpki, p̂ki, pki, vki)← pk′i
If SVer(vki, ⟨ψ∥tvki∥pk′i∥pk′j⟩, σ) = ⊥

then return ⊥.
tski.1 ← PDec(dkj , ψ)
If tski.1 = ⊥ then return ⊥.
µ1 ← TShDec(tpki, tski.1, ci)
If µ1 = ⊥ then return ⊥.
If TShVer(tpki, tvki, ci, 2, µ2) = ⊥

then return ⊥.
m← TCom(tpki, tvki, ci, {µ1, µ2})
Return m.

REnc(rki→j , ci) :
(pki, pkj , tski.2, ψ, tvki, σ)← rki→j

(tpki, p̂ki, pki, vki)← pki
If SVer(vki, ⟨ψ∥tvki||pki∥pkj⟩, σ) = ⊥

then return ⊥.
(tpkj , p̂kj , pkj , vkj)← pkj
µ2 ← TShDec(tpki, tski.2, ci)
If µ2 = ⊥ then return ⊥.
M̂ ← ⟨pki∥pkj∥ci∥µ2∥ψ∥tvki∥σ⟩
Return ĉj ← PEnc(p̂kj , M̂).

Dec2(ski, c) :

(tpki, p̂ki, pki, vki)← pki
(tski, d̂ki, dki, ski)← ski
(tski.1, tski.2, tvki)← TSplit(tski)
µ1 ← TShDec(tpki, tski.1, c)
If µ1 = ⊥ then return ⊥.
µ2 ← TShDec(tpki, tski.2, c)
If µ2 = ⊥ then return ⊥.
m← TCom(tpki, tvki, c, {µ1, µ2})
Return m.

REncVer(pki, skj , c
′
i, ĉj) :

(tpki, p̂ki, pki, vki)← pki
(tskj , d̂kj , dkj , skj)← skj
M̂ ← PDec(d̂kj , ĉj)

If M̂ = ⊥ then return ⊥.
⟨pk′i∥pk′j∥ci∥µ2∥ψ∥tvki∥σ⟩ ← M̂
If (pk′i, pk

′
j) ̸= (pki, pkj) then return ⊥.

If SVer(vki, ⟨ψ∥tvki∥pk′i∥pk′j⟩, σ) = ⊥
then return ⊥.

tski.1 ← PDec(dkj , ψ)
If tski.1 = ⊥ then return ⊥.
µ1 ← TShDec(tpki, tski.1, ci)
If µ1 = ⊥ then return ⊥.
If TShVer(tpki, tvki, ci, 2, µ2) = ⊥

then return ⊥.
If c′i = ci then return ⊤ else return ⊥.

Figure 4.1: The VPRE scheme eHKK+ based on the PRE scheme by Hanaoka et al. [58].

Since Dec2 described above needs to run TSplit, it is probabilistic. However, it can be

made deterministic by running (tsk1, tsk2) ← TSplit(tsk) in KG (instead of running it in

Dec2) and including (tsk1, tsk2) into sk. We do not take this approach in the above so

that the description is kept close to the original one shown in [58].

Security. We show that eHKK+ satisfies the three kinds of security of VPRE.

Theorem 9. If the PKE scheme is CCA secure, the signature scheme is strongly un-

forgeable, and the re-splittable TPKE scheme has decryption consistency, then the VPRE

scheme eHKK+ satisfies soundness.

Intuition. The formal proof is given in Section 4.4.1. Here, we explain an intuition of

the proof of soundness. Recall that the third winning condition of an adversary A who

outputs a pair (pkj , ĉ
∗) in the soundness game is different depending on whether A has

43



obtained a re-encryption key rki∗→j by making a RKG query of the form (pki∗ , pkj). If A
has issued such a RKG query, then the condition is “Dec1(skj , ĉ

∗) ̸= m∗”, where m∗ is the

challenge message, while if A has not done so, then the condition is “Dec1(skj , ĉ
∗) ̸= ⊥”.

We will show that the probability of the adversary A coming up with the pair (pkj , ĉ
∗)

in the latter case is negligible, mainly due to the strong unforgeability of the signa-

ture scheme. Intuitively this can be shown because if A can output (pkj , ĉ
∗) such that

Dec1(skj , ĉ
∗) ̸= ⊥ without using a re-encryption key rki∗→j , (among other things) A must

have generated a forged signature in the plaintext of ĉ∗, without relying on RKG queries.

However, note that A may indirectly obtain rki∗→j through a REnc query of the form

(pki∗ , pkj , c) where c is some second-level ciphertext. Therefore, we also need to use the

CCA security of the PKE scheme to guarantee that REnc queries of the above form do

not help A to indirectly obtain rki∗→j .

To show that the probability of the adversary A coming up with a ciphertext ĉ∗ such

that Dec1(skj , ĉ
∗) ̸= m∗ in case A has obtained rki∗→j (via a RKG query), we will use the

decryption consistency of the re-splittable TPKE scheme. In doing so, as above we have

to use the CCA security of the PKE scheme to guarantee that REnc queries do not help,

and also to guarantee that the information of tski∗.1 does not leak from a re-encryption

key rki∗→j that is obtained by A through the RKG query that A issued. Finally, note

that the decryption consistency is guaranteed only under an honestly generated verifica-

tion key tvki∗ , but A may have generated the ciphertext ĉ∗ in such a way that tvki∗ is

generated maliciously by A. To prevent it, we will again rely on the strong unforgeability

of the signature scheme, which ensures that the only way to generate a valid re-encrypted

ciphertext is to use a re-encryption key which is generated honestly (and thus tvki∗ is also

honestly generated).

Theorem 10. If the PKE scheme is CCA secure, the signature scheme is strongly unforge-

able, and the re-splittable TPKE scheme is CCA secure, then the VPRE scheme eHKK+

is second-level CCA secure.

Intuition. The formal proof is given in Section 4.4.2. Here, we explain an intuition of

the proof of second-level CCA security. The proof follows closely to the proof of soundness,

and the original security proof of the HKK+ scheme [58]. More specifically, the difference

is that we calculate the (differences of the) probabilities of A succeeding in guessing the

challenge bit (instead of the event that an adversary succeeds in breaking the conditions

of soundness). In the final game, we can show that there exists a PPT CCA adversary B
against the re-splittable TPKE scheme such that its advantage AdvCCA-TPKE(B,n) (k) is exactly

the difference between the success probability of A in the final game and 1/2.

Theorem 11. If the PKE scheme is CCA secure and the re-splittable TPKE scheme has

strong smoothness, then the VPRE scheme eHKK+ is first-level CCA secure.

Intuition. The formal security proof is given in Section 4.4.3. Here, we explain an

intuition of the proof of first-level CCA security. As shown in [58], a first-level ciphertext

in the eHKK+ scheme is wrapped entirely by the underlying PKE scheme (regarding p̂k),

and thus its CCA security naturally leads to first-level CCA security, if it were not for

re-encryption verification queries.
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MiniDec(tpk, tvk, tsk1, µ2, c):
µ1 ← TShDec(tpk, tsk1, c)
If µ1 = ⊥ then return ⊥.
If TShVer(tpk, tvk, c, 2, µ2) = ⊥
then return ⊥.

m← TCom(tpk, tvk, c, {µ1, µ2})
Return m.

MiniREncVer(tpk, tvk, tsk1, µ2, c, c
′):

µ1 ← TShDec(tpk, tsk1, c)
If µ1 = ⊥ then return ⊥.
If TShVer(tpk, tvk, c, 2, µ2) = ⊥
then return ⊥.

If c′ = c then return ⊤
else return ⊥.

Figure 4.2: The algorithms MiniDec (left) and MiniREncVer (right).

The main difference from the proof in [58] is that we need the strong smoothness of the

underlying re-splittable TPKE scheme, which was not necessary in the original proof of

[58], in order to deal with REncVer queries. More specifically, recall that in the first-level

CCA security game, an adversary A can choose a key pair (skA, pkA) for the second-level

encryption of the challenge query. In particular, A can know tskA. Now, suppose that

this TPKE scheme has a “weak plaintext” mw in the sense that it is easy to find given

tskA, and its encryption cw ← TEnc(tpkA,mw) is easy to guess. (Such a property does

not contradict the CCA security of the TPKE scheme, because mw could be hard to find

without tskA.) Then A can choose such mw as one of the challenge plaintexts, submit

it with (skA, pkA) as a challenge query, and obtain the challenge ciphertext ĉ∗. Then A
by itself calculates the “easy-to-guess” ciphertext cw corresponding to mw, and submits

a REncVer query (pkA, cw, ĉ
∗), which by definition reveals the challenge bit (because its

answer essentially tells whether “ĉ∗ is a re-encryption of cw”). However, if the underlying

re-splittable TPKE scheme is guaranteed to have strong smoothness, such weak plaintexts

cannot exist, and hence we can conclude that REncVer queries do not help A.

4.4 Proof of Theorems

In this section, we prove the theorems in Section 4.3.

4.4.1 Proof of Theorem 9

Here, we state the proof of soundness in Theorem 9. For the security proofs of sound-

ness and second-level CCA security, it is convenient to introduce the following algorithms

MiniDec and MiniREncVer:

MiniDec is the sub-procedure of Dec1 that starts from the step “µ1 ← TShDec(tpki, tski.1, c)”

of Dec1. More specifically, it takes a TPKE public key tpk, a TPKE verification key

tvk, a secret key share tsk1, a decryption share µ2, and a second-level ciphertext c,

and runs as in Fig. 4.2(left).

MiniREncVer is the REncVer-analogue of MiniDec. Namely, this algorithm takes a tuple

(tpk, tvk, tsk1, µ2, c), and another second-level ciphertext c′ as input, and runs as in

Fig. 4.2(right).

Let n = n(k) > 0 be any polynomial, and A be any PPT soundness adversary that

attacks the soundness of the VPRE scheme eHKK+. Consider the following sequence of

games:
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Game 0. This is the soundness game regarding eHKK+. Since the subsequent games

consider A’s queries of some special types, without loss of generality we let the

challenger generate two empty lists L∗
RKG and L∗

REnc at the beginning, and store the

values that appear in the response to a re-encryption key generation query and a

re-encryption query of special types. More concretely,

• If A issues a RKG query of the form (pki∗ , pkj) with pkj ∈ PK, then the chal-

lenger stores the values (pkj , ψ, tvki∗ , σ, tski∗.1) into L∗
RKG, where (ψ, tvki∗ , σ,

tski∗.1) are the values generated when calculating rki∗→j ← RKG(ski∗ , pkj).

• If A issues a REnc query of the form (pki∗ , pkj , c) with pkj ∈ PK and the

answer ĉ to this query is not ⊥, then the challenger stores the values (pkj , ĉ, c,

µ2, tvki∗ , tski∗.1) into L∗
REnc, where (µ2, tvki∗ , tski∗.1) are the values generated

when calculating ĉ← REnc(RKG(ski∗ , pkj), c).

Game 1. Same as Game 0, except for the following changes to the response to REncVer

queries and Dec1 queries: For REncVer queries (pki, pkj , c
′, ĉ), the challenger responds

as follows:

• (1) If (pkj , ĉ, c, µ2, tvki∗ , tski∗.1) ∈ L∗
REnc for some (c, µ2, tvki∗ , tski∗.1), then:

– (1a) If pki ̸= pki∗ , then return ⊥.
– (1b) Otherwise (i.e. pki = pki∗), runMiniREncVer(tpki∗ , tvki∗ , tski∗.1, µ2, c, c

′)

and return the result.

• (2) Otherwise (i.e. (pkj , ĉ, ∗, ∗, ∗, ∗) /∈ L∗
REnc), run REncVer(pki, skj , c, ĉ) and

return the result.

For Dec1 queries (pkj , ĉ), the challenger responds as follows:

• (1) If (pkj , ĉ, c, µ2, tvki∗ , tski∗.1) ∈ L∗
REnc for some (c, µ2, tvki∗ , tski∗.1), then ex-

ecute m← MiniDec(tpki∗ , tvki∗ , tski∗.1, µ2, c), and return m to A.

• (2) Otherwise (i.e. (pkj , ĉ, ∗, ∗, ∗, ∗) /∈ L∗
REnc, then execute m ← Dec1(skj , ĉ),

and return ⊥ to A.

We would like to emphasize that from this game on, the challenger need not perform

PDec(d̂kj , ĉ) for a REncVer query (∗, pkj , ∗, ĉ) and a Dec1 query (pkj , ĉ) such that

(pkj , ĉ, ∗, ∗, ∗, ∗) ∈ L∗
REnc.

Game 2. Same as Game 1, except that in this game, a re-encrypted ciphertext ĉ which

is from the challenge key pki∗ to an honest user key pkj ∈ PK, is generated in such

a way that ĉ contains no information.

More precisely, if A submits a REnc query of the form (pki∗ , pkj , c) with pkj ∈ PK,
then the challenger responds as follows:

• (1) Compute (tski∗.1, tski∗.2, tvki∗)← TSplit(tski∗).

• (2) Compute µ2 ← TShDec(tpki∗ , tski∗.2, c), and return ⊥ to A if µ2 = ⊥.

• (3) Compute ĉ ← PEnc(p̂kj , ⟨pki∗∥pkj∥0⟩) where 0 is the zero-string of appro-

priate length.
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• (4) Return ĉ to A and store the values (pkj , ĉ, c, µ2, tvki∗ , tski∗.1) into L∗
REnc,

where tski∗.1 is the secret key share corresponding to (tski∗.2, tvki∗) that appears

in the above step (1).

Game 3. Same as Game 2, except that in this game, if a re-encrypted ciphertext ĉ which

is from the challenge key pki∗ to an honest user key pkj ∈ PK is submitted as

a REncVer query (with pkj and some c) or as a Dec1 query (with pkj), then ĉ is

immediately answered with ⊥ unless (a) it is an answer to a previously asked REnc

query of the form (pki∗ , pkj , c), or (b) it is a re-encryption using a re-encryption key

rki∗→j that is returned as an answer to a previously asked RKG query.

More precisely, in this game, the challenger responds to REncVer queries (pki, pkj , c
′, ĉ)

as follows:

• (1) If (pkj , ĉ, ∗, ∗, ∗, ∗) ∈ L∗
REnc, then respond as in Game 1.

• (2) Run M̂ = (pk′i∥pk′j∥c∥µ2∥ψ∥tvki∥σ) ← PDec(d̂kj , ĉ), and return ⊥ to A if

M̂ = ⊥, (pk′i, pk′j) ̸= (pki, pkj), or SVer(vki, ⟨ψ∥tvki∥pk′i∥pk′j⟩, σ) = ⊥.
• (3) If pki ̸= pki∗ then execute REncVer(pki, skj , c

′, ĉ), and return the result to

A.
• (4) If pk′i = pki∗ and (pkj , ψ, tvki∗ , σ, ∗) /∈ L∗

RKG, then return ⊥ to A.
• (5) Otherwise (i.e. pk′i = pki∗ and (pkj , ψ, tvki∗ , σ, tski∗.1) ∈ L∗

RKG for some

tski∗.1), as in the above step (3), execute the remaining procedure of REncVer,

and output the result to A.

Furthermore, the challenger responds to Dec1 queries (pkj , ĉ) as follows:

• (1) If (pkj , ĉ, ∗, ∗, ∗, ∗) ∈ L∗
REnc, then respond as in Game 1.

• (2) Run M̂ = (pk′i∥pk′j∥c∥µ2∥ψ∥tvki∥σ) ← PDec(d̂kj , ĉ), and return ⊥ to A if

M̂ = ⊥ or pk′j ̸= pkj .

• (3) Parse pk′i as (tpki, p̂ki, pki, vki), and return⊥ if SVer(vki, ⟨ψ∥tvki∥pk′i∥pk′j⟩, σ)
= ⊥.

• (4) If pk′i ̸= pki∗ then calculate m by following the remaining procedure of Dec1
(i.e. from the step “tski.1 ← PDec(dkj , ψ)”), and return m to A.

• (5) If pk′i = pki∗ and (pkj , ψ, tvki, σ, ∗) /∈ L∗
RKG, then return ⊥ to A.

• (6) Otherwise (i.e. pk′i = pki∗ and (pkj , ψ, tvki, σ, tski∗.1) ∈ L∗
RKG for some

tski∗.1), as in the above step (4), calculate m by following the remaining pro-

cedure of Dec1.

Game 4. Same as Game 3, except that in this game, if A issues a REncVer query

(pki, pkj , c
′, ĉ) or Dec1 query (pkj , ĉ), such that ĉ is a re-encrypted ciphertext from

the challenge key pki∗ to pkj using a re-encryption key rki∗→j that is an answer to

a previously asked RKG query of the form (pki∗ , pkj) (which can be checked using

L∗
RKG as in Game 3), then the query is answered using the information of tski∗.1

found in L∗
RKG.

More precisely, in this game, the challenger responds to REncVer queries (pki, pkj , c
′, ĉ)

as follows:

47



• (1), (2), (3), and (4): Same as in Game 3.

• (5): Here, it is guaranteed that pk′i = pki∗ and (pkj , ψ, tvki∗ , σ, tski∗.1) ∈ L∗
RKG

for some tski∗.1. Execute MiniREncVer(tpki∗ , tvki∗ , tski∗.1, µ2, c, c
′), and return

the result to A.

Furthermore, the challenger responds to the Dec1 queries (pkj , ĉ) in the following

way:

• (1), (2), (3), (4), and (5): Same as in Game 3.

• (6): Here, it is guaranteed that pk′i = pki∗ and (pkj , ψ, tvki∗ , σ, tski∗.1) ∈ L∗
RKG

for some tski∗.1. Run m ← MiniDec(tpki∗ , tvki∗ , tski∗.1, µ2, c), and return the

result to A.

We would like to emphasize that from this game on, the challenger need not per-

form PDec(dkj , ψ) for a REncVer query (pki, pkj , c
′, ĉ) and a Dec1 query (pkj , ĉ) that

are processed at their steps (6), namely, those queries that satisfy (pkj , ĉ, ∗, ∗, ∗, ∗) /∈
L∗
REnc, PDec(d̂kj , ĉ) = ⟨pki∗∥pkj∥c∥µ2∥ψ∥tvki∗∥σ⟩ ̸= ⊥, SVer(vki∗ , ⟨ψ∥tvki∗∥pki∗∥pkj⟩,

σ) = ⊤, and (pkj , ψ, tvki∗ , σ, ∗) ∈ L∗
RKG.

Game 5. Same as Game 4, except that in this game, if A issues a RKG query of the form

(pki∗ , pkj) with pkj ∈ PK, then the component ψ in a re-encryption key rki∗→j is

generated in such a way that it contains no information.

More precisely, for this query, the challenger generates rki∗→j = (pki∗ , pkj , tski∗.2, ψ,

tvki∗ , σ) by following the procedure of RKG(ski∗ , pkj) except that ψ is generated by

ψ ← PEnc(pkj , 0
|tski∗.1|). Then the challenger returns rki∗→j to A and stores the

values (pkj , ψ, tvki∗ , σ, tski∗.1) into L
∗
RKG.

In Game 0 (i.e. the original soundness game), we define the event Win0 as the event that

A wins, i.e. the following conditions are satisfied: (where (pkj , ĉ
∗) represents A’s output)

(1) REncVer(pki∗ , skj , c
∗, ĉ∗) = ⊤

(2) ĉ∗ is not an answer to some of A’s REnc queries of the form (pki∗ , pkj , c
∗)

(3) Either of the following conditions is satisfied:

• In the case that A has submitted a RKG query of the form (pki∗ , pkj) and

obtained a re-encryption key rki∗→j : Dec1(skj , ĉ
∗) ̸= m∗

• Otherwise: Dec1(skj , ĉ
∗) ̸= ⊥

Furthermore, for i ∈ [5], we also define the event Wini in Game i, in the same way as

Win0 except that the condition of “REncVer(pki∗ , skj , c
∗, ĉ∗) = ⊤” is replaced with “The

response to the REncVer query (pki∗ , pkj , c
∗, ĉ∗) in Game i is ⊤”, and the condition “Dec1

(skj , ĉ
∗) ̸= m∗” (resp. “Dec1(skj , ĉ

∗) ̸= ⊥”) is replaced with the condition “The response

to the Dec1 query (pkj , ĉ
∗) is not m∗ (resp. ⊥)”.

Finally, for i ∈ {0, . . . , 5} let Aski be the event that A issues a RKG query of the form

(pki∗ , pkj) where pkj is used as the output of A in the soundness game. (Whether this

event has occurred is determined when A outputs (pkj , ĉ
∗) and terminates.)
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Note that by definition, for any i ∈ {0, . . . , 5}, we have

Pr[Wini] = Pr[Wini ∧ Aski] + Pr[Wini ∧ Aski].

The soundness advantage of A is, by definition, AdvSND-VPRE(A,n) (k) = Pr[Win0]. By the

above equation and the triangle inequality, we have:

AdvSND-VPRE(A,n) (k) ≤
∑

i∈{0,1,2}

|Pr[Wini]− Pr[Wini+1]|+ Pr[Win3 ∧ Ask3]

+
∑

i∈{3,4}

|Pr[Wini ∧ Aski]− Pr[Wini+1 ∧ Aski+1]|+ Pr[Win5 ∧ Ask5]. (4.1)

We complete the proof by upperbounding each term in the right-hand side of the above

inequality to be negligible.

Lemma 1. Pr[Win0] = Pr[Win1].

Proof of Lemma 1. Note that the difference between Game 0 and Game 1 is only in

how the challenger responds to a REncVer query (pki, pkj , c
′, ĉ) and a Dec1 query (pkj , ĉ)

such that there is an entry (pkj , ĉ, c, µ2, tvki∗ , tski∗.1) for some (c, µ2, tvki∗ , tski∗.1) in the

list L∗
REnc. Recall that according the definition of Game 0 (and Game 1), the values

(pkj , ĉ, c, µ2, tvki∗ , tski∗.1) are stored into the list L∗
REnc if and only if A makes a re-

encryption query of the form (pki∗ , pkj , c) satisfying (1) pkj ∈ PK and (2) TShDec(tpki∗ ,

tski∗.2, c) = µ2 ̸= ⊥ where tski∗.2 is the secret key share that is generated for answering

the re-encryption query.

Therefore, it is sufficient to show that the answer to the REncVer query (pki, pkj , c
′, ĉ)

and a Dec1 query of the above type in Game 0 and that in Game 1 are always the same,

where ĉ is an output of REnc(RKG(ski∗ , pkj), c), pkj ∈ PK, and c satisfies the above

condition (2).

Firstly, we consider how a REncVer query (pki, pkj , c
′, ĉ) is answered in both Game 0

and Game 1. We know that ĉ is a correctly generated re-encrypted ciphertext, and thus it

holds that PDec(d̂kj , ĉ) = ⟨pki∗∥pkj∥c∥µ2∥ψ∥tvki∗∥σ⟩, SVer(vki∗ , ⟨ψ∥tvki∗∥pki∗∥pkj⟩, σ) =
⊤, and PDec(dkj , ψ) = tski∗.1 ̸= ⊥, due to the correctness of the building block PKE

scheme and signature scheme. If pki ̸= pki∗ , then by definition the query is answered with

⊥ in Game 1. This is also the case in Game 0, because we know that ĉ contains pki∗

in its plaintext, and thus the check performed in the sixth line in the REncVer algorithm

cannot be passed. Otherwise (i.e. pki = pki∗), note that tski∗.1 recovered from ψ and

tski∗.1 in the entry corresponding to (pkj , ĉ) in L
∗
REnc are identical (due to the correctness

of the PKE scheme), and thus the procedure of REncVer(pki∗ , pkj , c
′, ĉ) after the step

“tski∗.1 ← PDec(dkj , ψ)” and the procedure of MiniREncVer(tpki∗ , tvki∗ , tski∗.1, µ2, c, c
′)

are exactly the same. The explanation here implies that the result of a REncVer query in

Game 0 and that in Game 1 agree.

With a very similar observation to the above, we can also show that the result of a

Dec1 query (pkj , ĉ) in Game 0 and that in Game 1 agree. Specifically, the procedure of

Dec1(skj , ĉ) after the step “tski∗.1 ← PDec(dkj , ψ)” and the procedure of MiniDec(tpki∗ ,

tvki∗ , tski∗.1, µ, c) are exactly the same, and thus the result of a Dec1 query in Game 0 and

that in Game 1 agree.
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We have seen that the answer to a REncVer query and that of Dec1 query agree in

both Game 0 and Game 1. This completes the proof of Lemma 1.

Lemma 2. If the PKE scheme is CCA secure in the multi-user setting,

|Pr[Win1]− Pr[Win2]| is negligible.

Proof of Lemma 2. We show that we can construct a multi-user CCA adversary B against

the underlying PKE scheme such that AdvCCA-PKE(B,n) (k) = |Pr[Win1]−Pr[Win2]|. By the multi-

user CCA security of the underlying PKE scheme (which is equivalent to the ordinary

CCA security), the above implies that |Pr[Win1] − Pr[Win2]| is negligible, which proves

the lemma. The description of B is as follows:

First, B is given 1k and public keys (p̂k1, . . . , p̂kn) from the challenger. Then B gen-

erates other key materials of the honest users (except {d̂ki}i∈[n]) as well as the challenge

key pair (ski∗ , pki∗)← KG(1k). B then sets PK = {pki}i∈[n] and PK∗ = {pki∗} ∪ PK, and
gives 1k and PK∗ to A. B also generates an empty list L∗

REnc. (Since the list L∗
RKG does

not play any role in Game 1 and Game 2, B need not generate it.)

When A makes a REnc query (pki ∈ PK∗, pkj , c), B responds as follows: (Recall that

B does not need the knowledge of {d̂ki}i∈[n] for answering to re-encryption queries.) (1)

If pki ̸= pki∗ or pkj /∈ PK, then B calculates ĉ← REnc(RKG(ski, pkj), c), and returns ĉ to

A. (2) Otherwise (i.e. pki = pki∗ and pkj ∈ PK), B proceeds as follows:

(2a) Execute (tski∗.1, tski∗.2, tvki∗) ← TSplit(tski∗) and µ2 ← TShDec(tpki∗ , tski∗.2, c),

and return ⊥ to A if µ2 = ⊥.

(2b) Execute ψ ← PEnc(pkj , tski∗.1) and σ ← Sign(ski∗ , ⟨ψ∥tvki∗∥pki∗∥pkj⟩).

(2c) Set M0 = ⟨pki∗∥pkj∥c∥µ2∥ψ∥tvki∗∥σ⟩ and M1 = ⟨pki∗∥pkj∥0⟩, where 0 is the zero-

string such that it holds that |M0| = |M1|. Then, submit (j,M0,M1) as an LR

query to the challenger, and receive ĉ ← PEnc(p̂kj ,Mb) as the response (where b is

the challenge bit for B).

(2d) Return ĉ to A, and store the values (pkj , ĉ, c, µ2, tvki∗ , tski∗.1) into the list L∗
REnc.

B answers to all other queries from A in the same way as the challenger in Game 1 (and

thus as in Game 2) does. This is possible because B holds all secret key materials except

{d̂ki}i∈[n], and when B needs to run PDec(d̂kj , ĉ) with j ∈ [n], B submits a decryption

query (j, ĉ) to the challenger, and uses the received result. Here, as described in the

description of Game 1, B need not perform PDec(d̂kj , ĉ) such that ĉ is obtained as a

response to some of B’s LR queries. (Such queries will be answered using the list L∗
REnc,

as described in Game 1.)

Finally, when A terminates with output (pkj ∈ PK, ĉ∗), B proceeds as follows. If ĉ∗ is

an answer to some of A’s REnc queries of the form (pki∗ , pkj , c
∗), then B outputs 0 and

terminates. Otherwise, it is guaranteed that ĉ∗ is different from any answer to LR queries

that B receives as an answer to its LR queries. B checks whether the pair (pkj , ĉ
∗) satisfies

the winning condition of Win1 (which is the same as Win2) by simulating the response to

the REncVer query (pki∗ , pkj , c
∗, ĉ∗) and the response to the Dec1 query (pki∗ , ĉ

∗) by itself.

If this is the case, then B outputs 1, otherwise outputs 0, and terminates.
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The above completes the description of B. Note that B submits a LR query of the form

(j,M0,M1) only if A submits a REnc query of the form (pki∗ , pkj , c) satisfying pkj ∈ PK
and TShDec(tpki∗ , tski∗.2, c) ̸= ⊥. Note also that B never submits a decryption query (j, ĉ)

such that ĉ is an answer to some of B’s LR queries of the form (j,M0,M1) (with the same

j).

Let b be B’s challenge bit. Let WinB be the event that A’s output (pkj , ĉ
∗) satisfies

the three conditions of Win1 (which is the same as Win2) in the experiment simulated by

B. The multi-user CCA advantage of B can be calculated as follows:

AdvCCA-PKE(B,n) (k) = |Pr[b = b′]− 1

2
|

=
1

2
|Pr[b′ = 1|b = 0]− Pr[b′ = 1|b = 1]|

=
1

2
|Pr[WinB|b = 0]− Pr[WinB|b = 1]|

Now, consider the case when b = 0. In this case, a re-encrypted ciphertext ĉ from the

challenge public key pki∗ to a honest user key pkj ∈ PK is generated as in Game 1.

Moreover, it is easy to see that all the other values are calculated as in Game 1. Therefore,

B simulates Game 1 perfectly for A. Under this situation, the probability that the event

WinB occurs is exactly the same as the probability that Win1 occurs in Game 1. That is,

Pr[WinB|b = 0] = Pr[Win1].

On the other hand, when b = 1, a re-encrypted ciphertext ĉ from pki∗ to pkj ∈ PK
is an encryption of ⟨pki∗∥pkj∥0⟩, where 0 is the zero-string of appropriate length, which

is exactly how it is generated in Game 2. Since this is the only difference from the case

b = 0, with a similar argument to the above we have Pr[WinB|b = 1] = Pr[Win2].

In summary we have AdvCCA-PKE(B,n) (k) = 1
2 |Pr[Win1] − Pr[Win2]|, as required. This com-

pletes the proof of Lemma 2.

Lemma 3. If the signature scheme is strongly unforgeable, |Pr[Win2]− Pr[Win3]| is neg-

ligible.

Proof of Lemma 3. For i ∈ {2, 3}, let Forgei be the event that in Game i, A submits

at least one REncVer query of the form (pki∗ , pkj , c
′, ĉ) or at least one Dec1 query (pkj , ĉ)

satisfying the following conditions:

(a) (pkj , ĉ, ∗, ∗, ∗, ∗) /∈ L∗
REnc

(b) PDec(d̂kj , ĉ) = ⟨pki∗∥pkj∥c∥µ2∥ψ∥tvki∗∥σ⟩ ̸= ⊥

(c) (pkj , ψ, tvki∗ , σ, ∗) /∈ L∗
RKG

(d) SVer(vki∗ , ⟨ψ∥tvki∗∥pki∗∥pkj⟩, σ) = ⊤.

Game 2 and Game 3 proceed identically until the event Forge2 or Forge3 occurs in the

corresponding games. Therefore we have |Pr[Win2]−Pr[Win3]| ≤ Pr[Forge2] = Pr[Forge3].

Now, we show that we can construct another adversary B against the strong unforge-

ability of the underlying signature scheme such that AdvSUF-SIGB (k) ≥ Pr[Forge3]. By the

strong unforgeability of the signature scheme, the above inequation implies that Pr[Forge3]
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is negligible, which in turn implies that |Pr[Win2]−Pr[Win3]| is negligible, and thus proves

the lemma. The description of B is as follows.

First, B is given 1k and a verification key vki∗ from the challenger. B generates other

key materials of the the honest users’ keys PK and the challenge key pair (ski∗ , pki∗)

except the signing key ski∗ corresponding to vki∗ . Then, B sets PK = {pki}i∈[n] and
PK∗ = {pki∗} ∪ PK, and gives 1k and PK∗ to A. B also generates two empty lists L∗

RKG

and L∗
REnc.

B answers to A’s queries exactly as in Game 3. This is possible because B holds

all key materials except the signing key ski∗ corresponding to vki∗ , and whenever B has

to compute σ ← Sign(ski∗ , ⟨ψ∥tvki∗∥pki∗∥pkj⟩) (for answering RKG or REnc queries) B
submits ⟨ψ∥tvki∗∥pki∗∥pkj⟩ as a signing query to the challenger and uses the obtained

result σ.

When A terminates with output (pkj , ĉ
∗), from the REncVer queries of the form

(pki∗ , pkj , c
′, ĉ) and the Dec1 queries (pkj , ĉ) made by A, B tries to find a query that sat-

isfies the conditions (a) to (d) satisfied by a query that causes the event Forge3. Namely:

(a) (pkj , ĉj , ∗, ∗, ∗, ∗) /∈ L∗
REnc, (b) PDec(d̂kj , ĉ) = ⟨pki∗∥pkj∥c∥µ2∥ψ∥tvki∗∥σ⟩ ̸= ⊥, (c)

(pkj , ψ, tvki∗ , σ, ∗) /∈ L∗
RKG, and (d) SVer(vki∗ , ⟨ψ∥tvki∗∥pki∗∥pkj⟩, σ) = ⊤. If such a

REncVer query (pki∗ , pkj , c, ĉ) or a Dec1 query (pkj , ĉ) is found, then B terminates with

output the message ⟨ψ∥tvki∗∥pki∗∥pkj⟩ and the signature σ as a forgery pair, where these

values are the ones that appear in the plaintext of ĉ (decrypted using PDec). If there is

no such query, then B simply gives up and aborts.

The above completes the description of B. It is not hard to see that B simulates Game

3 perfectly for A. We note that B submits a signing query when A submits a RKG query

of the form (pki∗ , pkj) or when A submits a REnc query of the form (pki∗ , pkj , c) with

pkj /∈ PK.
Now, we argue that whenever A submits a REncVer query (pki∗ , pkj , c

′, ĉ) or a Dec1
query (pkj , ĉ) satisfying the above conditions (a) to (d), B breaks the strong unforgeability

of the building block signature scheme: In order for B to break the strong unforgeability,

B has to come up with a valid message-signature pair that has not appeared in B’s sign-
ing query/answer pairs. Here, the condition (d) guarantees that the message-signature

pair (⟨ψ∥tvki∗∥pki∗∥pkj⟩, σ) is valid, and the condition (c) guarantees that the message-

signature pair output by B is different from all signing query/answer pairs made/received

by B. (Here, we note that although the list L∗
RKG does not contain the signing queries

(and the answers to them) that are made for generating a re-encryption key rki∗→j′ for a

corrupted user j′ (which is generated during the response to REnc queries (pki∗ , pkj′ , c)),

these signing queries M = ⟨ψ∥tvki∗∥pki∗∥pkj′⟩ always satisfy pkj′ /∈ PK and thus as a

message-signature pair, the pair finally output by B will always be different from signing

queries/answers of this type.)

This means B’s strong unforgeability advantage is at least the probability Pr[Forge3],

as required. This completes the proof of Lemma 3.

Lemma 4. Pr[Win3 ∧ Ask3] = 0.

Proof of Lemma 4. Note that the conditions of the event Win3∧Ask3 implies that for A’s
output (pkj , ĉ

∗) in Game 3, (among other conditions) the answer to Dec1 query of the form

(pkj , ĉ
∗) is not ⊥. This in turn implies that (1) PDec(d̂kj , ĉ

∗) = ⟨pki∗∥pkj∥c∥µ2∥ψ∥tvki∥σ⟩
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for some (c, µ2, ψ, tvki, σ), and (2) (pkj , ψ, tvki, σ, ∗) ∈ L∗
RKG.

However, if Ask3 occurs, the above (1) and (2) cannot be satisfied simultaneously,

because A has not issued a RKG query of the form (pki∗ , pkj), and thus there is no entry

of the form (pkj , ∗, ∗, ∗, ∗) in L∗
RKG. This completes the proof of Lemma 4.

Lemma 5. Pr[Win3 ∧ Ask3] = Pr[Win4 ∧ Ask4].

Proof of Lemma 5. Notice that the difference between Game 3 and Game 4 is only in

how a REncVer query (pki∗ , pkj , c
′, c) and a Dec1 query (pkj , ĉ) satisfying the following

conditions:

(a) (pkj , ĉ, ∗, ∗, ∗, ∗) /∈ L∗
REnc

(b) PDec(d̂kj , ĉ) = ⟨pki∗∥pkj∥c∥µ2∥ψ∥tvki∗∥σ⟩

(c) (pkj , ψ, tvki∗ , σ, ∗) ∈ L∗
RKG

are answered. More concretely, the difference in these games is only in whether the

challenger checks the signature σ and decrypt ψ that appear in the plaintext of ĉ as

is done in REncVer(pki∗ , skj , c
′, ĉ) and Dec1(skj , ĉ), or ignores ψ and σ and just decrypt

the second level ciphertext c using the values (tvki∗ , tski∗.1) found in L∗
RKG. However, with

the similar argument in the proof of Lemma 1, the results in Game 3 and Game 4 always

agree, due to the correctness of the underlying PKE scheme and the underlying signature

scheme.

Therefore, Game 3 and Game 4 are identical, which in particular implies the Lemma 5.

Lemma 6. If the PKE scheme is CCA secure in the multi-user setting, |Pr[Win4∧Ask4]−
Pr[Win5 ∧ Ask5]| is negligible.

Proof of Lemma 6. We show that we can construct a multi-user CCA adversary B (against

the underlying PKE scheme) such that AdvCCA-PKE(B,n) (k) = |Pr[Win4∧Ask4]−Pr[Win5∧Ask5]|.
By the multi-user CCA security of the underlying PKE scheme (which is equivalent to

the ordinary CCA security), the above implies that |Pr[Win4 ∧Ask4]−Pr[Win5 ∧Ask5]| is
negligible, which proves the lemma. The description of B is as follows:

First, B is given 1k and public keys (pk1, . . . , pkn) from the challenger. B gener-

ates other key materials of the challenge key pki∗ and the honest users’ keys PK except

{dki}i∈[n]. B then gives 1k and PK∗ = {pki∗}∪PK to A. B also generates two empty lists

L∗
RKG and L∗

REnc.

When A makes a RKG query (pki ∈ PK∗, pkj), B responds as follows: (Recall that B
does not need the knowledge of {dki}i∈[n] for answering to RKG queries.) (1) If pki ̸= pki∗

then B calculates rki∗→j by faithfully following the procedure of RKG(ski, pkj), and returns

rki∗→j to A. (2) If pki = pki∗ and pkj /∈ PK, then B returns ⊥ to A. (3) Otherwise (i.e.

pki = pki∗ and pkj ∈ PK), B proceeds as follows:

(3a) Execute (tski∗.1, tski∗.2, tvki∗)← TSplit(tski∗).

(3b) Set M0 = tski∗.1 and M1 = 0|tski∗.1|, submit (j,M0,M1) as a LR query to the

challenger, and receive ψ ← PEnc(pkj ,Mb) as the response (where b is the challenge

bit for B).
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(3c) Compute σ ← Sign(ski∗ , ⟨ψ∥tvki∗∥pki∗∥pkj⟩) and set rki∗→j = (pki∗ , pkj∗ , tski∗.2, ψ, tvki∗ , σ).

(3d) Return rki∗→j to A, and store the values (pkj , ψ, tvki, σ, tski∗.1) into the list LRKG.

B answers to all other queries from A in the same way as the challenger in Game 4 (and

thus as in Game 5) does. This is possible because B holds all secret key materials except

{dk}i∈[n], and when B needs to run PDec(dkj , ψ) with j ∈ [n], B submits a decryption query

(j, ψ) to the challenger, and uses the received result. As emphasized in the description of

Game 4, B need not perform PDec(dkj , ψ) for ψ that it receives as an answer to some of

B’s LR queries. (Such a case is dealt with by the use of the list L∗
RKG.)

Finally, when A terminates with output (pkj ∈ PK, ĉ∗), B proceeds as follows. If ĉ∗ is

an answer to some of A’s REnc queries of the form (pki∗ , pkj , c
∗), or A has not asked a RKG

query of the form (pki∗ , pkj), then B outputs 0 and terminates. Otherwise, B simulates

the response to the REncVer query (pki∗ , pkj , c
∗, ĉ∗) and the response to the Dec1 query

(pki∗ , ĉ
∗) by itself, and checks whether the pair (pkj , ĉ

∗) satisfies the winning condition of

Win4 (which is the same as Win5) for the case that A has asked the RKG query (pki∗pkj)

(i.e. whether the result of the REncVer query (pki∗ , pkj , c
∗, ĉ∗) is ⊤ and the Dec1 query

(pkj , ĉ
∗) is different from m∗). It this is the case, then B outputs 1, otherwise output 0,

and terminates.

The above completes the description of B. Note that B submits an LR query of the

form (j,M0 = tski∗.1,M1 = 0|tski∗.1|) only when A submits a RKG query of the form

(pki∗ , pkj) with pkj ∈ PK. Moreover, note also that all the ciphertexts ψ that B receives

as an answer to a LR query of the form (j,M0,M1) are stored into L∗
RKG, and all the

REncVer queries (pki∗ , pkj , c, ĉ) and all the Dec1 queries (pkj , ĉ) such that the plaintext of

ĉ contains ψ that appears in L∗
RKG are answered with either ⊥ or using MiniREncVer and

MiniDec, respectively. Therefore, B never submits a decryption query (j, ψ) such that ψ

is an answer to some of B’s LR query of the form (j,M0,M1) (with the same j).

Let b be B’s challenge bit. Let WinB be the event that A’s output (pkj , ĉ∗ satisfies the

condition of Win4 in the experiment simulated by B, and let AskB be the event A asks a

RKG query of the form (pki∗ , pkj) in the experiment simulated by B. Note that by our

construction of B, it outputs 1 only when both WinB and AskB occur.

The multi-user CCA advantage of B can be calculated as follows:

AdvCCA-PKE(B,n) (k) = |Pr[b = b′]− 1

2
|

=
1

2
|Pr[b′ = 1|b = 0]− Pr[b′ = 1|b = 1]|

=
1

2
|Pr[WinB ∧ AskB|b = 0]− Pr[WinB ∧ AskB|b = 1]|

Then, a similar analysis to the proof of Lemma 2 shows that Pr[WinB ∧AskB|b = 0] =

Pr[Win4 ∧ Ask4] and Pr[WinB ∧ AskB|b = 1] = Pr[Win5 ∧ Ask5]. Using these in the above

inequality, and recalling the assumption that the underlying PKE scheme is CCA secure

in the multi-user setting, we conclude that |Pr[Win4∧Ask4]−Pr[Win5∧Ask5]| is negligible.

Lemma 7. If the re-splittable TPKE scheme has decryption consistency,

Pr[Win5 ∧ Ask5] is negligible.

54



Proof of Lemma 7. We show that we can construct a PPT adversary B against the de-

cryption consistency of the underly re-splittable TPKE scheme such that AdvDC-TPKE(B,2,2) (k) =

Pr[Win5 ∧Ask5]. By the decryption consistency of the TPKE scheme, the above equation

implies that Pr[Win5 ∧ Ask5] is negligible, which proves the lemma. The description of B
is as follows.

First, B is given 1k and a public key tpki∗ from the challenger. B generates other key

materials of the the honest users’ keys PK and the challenge key pair (sk∗, pk∗) except for

the secret key tski∗ corresponding to tpki∗ . Then, B gives 1k and PK∗ = {pki∗} ∪ PK to

A. B also generates two empty lists L∗
RKG and L∗

REnc.

When A submits a challenge query m∗, B just encrypts c∗ ← TEnc(tpki∗ ,m
∗), and

returns c∗ to A.
When A submits a RKG query (pki ∈ PK∗, pkj), B responds as follows: (1) If pki ̸=

pki∗ , then B runs rki→j ← RKG(ski, pkj), and returns rki→j to A. (2) If pki = pki∗ and

pkj /∈ PK, then B returns ⊥ to A. (3) Otherwise (i.e. pki = pki∗ and pkj ∈ PK), B
proceeds as follows:

(3a) Submit a split&corruption query that asks for the second secret key share to the

challenger, and receive (tski∗.2, tvki∗).

(3b) Compute ψ ← PEnc(pkj , 0
|tski∗.1|) and σ ← Sign(ski∗ , ⟨ψ∥tvki∗∥pki∗∥pkj⟩).

(3c) Set rki∗→j = (pki∗ , pkj , tski∗.2, ψ, tvki∗ , σ), return rki∗→j to A, and store the values

(pkj , ψ, tvki∗ , σ,−) into the list L∗
RKG, where “−” is a “blank”.

When A submits a REnc query (pki ∈ PK∗, pkj , c), B responds as follows:

(1) If pki ̸= pki∗ , then execute ĉ← REnc(RKG(ski, pkj), c), and return ĉ to A.

(2) (From here on it holds that pki = pki∗ .) Submit a split&corruption query that asks

for the first key share to the challenger, and receive (tski∗,1, tvki∗) as the response.

(3) Execute ψ ← PEnc(pkj , tski∗.1) and σ ← Sign(ski∗ , ⟨ψ∥tvki∗∥pki∗∥pkj⟩).

(4) If pkj /∈ PK and c = c∗, then return ⊥ (recall that a REnc query (pki, pkj , c) with

pki = pki∗ , pkj /∈ PK and c = c∗ is answered with ⊥).

(5) Else if pkj /∈ PK and c ̸= c∗, then submit a share decryption query (tvki∗ , 2, c),

and receive µ2 as the response. Here, (5-1) if µ2 = ⊥ then return ⊥ to A. (5-2)

Otherwise, execute ĉ← PEnc(p̂kj , ⟨pki∗∥pkj∥c∥µ∥tvki∗∥σ⟩) and return ĉ to A.

(6) Otherwise (i.e. pkj ∈ PK), execute ĉ ← PEnc(p̂kj , ⟨pki∗∥pkj∥0⟩, return ĉ to A, and
store the values (pkj , ĉ, c, µ2, tvki∗ , tski∗.1) into the list L∗

REnc.

B answers to REncVer, Dec1, and Dec2 queries from A exactly as in Game 5. This

is possible because B holds all key materials except the tski∗ corresponding to tpk∗, and

whenever B has to compute TSplit(tski) or TShDec(tpki, tski.γ , c) (γ ∈ {1, 2}), B can

submit a split&corruption/share decryption query to the challenger and use the obtained

result. Here, we stress that B never falls into the situation where both of the secret shares

tski∗.1 and tski∗.2 (under the same splitting) are required. In particular, to answer to

Dec2 queries, B does not need the exact values of tski∗.1 and tski∗.2, but the decryption

55



shares computed using them, and thus Dec2 queries can be simulated by utilizing the share

decryption queries.

Finally, when A terminates with output (pkj , ĉ
∗), B checks whether the conditions of

Win5 and Ask5 hold for this (pkj , ĉ
∗) by simulating the response to the REncVer query

(pki∗ , pkj , c
∗, ĉ∗) and the response to the Dec1 query (pkj , ĉ

∗) by itself. If the conditions

of Win5 and Ask5 are not satisfied, then B gives up and aborts.

Otherwise (i.e. the conditions of Win5 and Ask5 are satisfied), let {µ1, µ2}, tski∗.1, and
tvki∗ be the decryption shares, the secret key share, and the verification key that appear

when simulating the response to the Dec1 query (pkj , ĉ
∗). Note that due to how B answers

to the RKG queries of the form (pki∗ , pkj), if Win5 and Ask5 occur, then the following

conditions are satisfied:

(a) TShVer(tpki∗ , tvki∗ , c
∗, 2, µ2) = ⊤.

(b) µ1 = TShDec(tpki∗ , tski∗.1, c
∗).

(c) tvki∗ is one that is obtained as an answer to one of the split&corruption queries made

by B (during the response to the RKG query (pki∗ , pkj)).

Note also that these three conditions also imply TShVer(tpki∗ , tvki∗ , c
∗, 1, µ1) = ⊤, because

of the correctness property of the TPKE scheme.

Then, B submits a share decryption query (tvki∗ , 2, c
∗) and receives the result µ′2. (Note

that that Win5 and Ask5 occur in particular implies that TCom(tpki∗ , tvki∗ , c
∗, {µ1, µ′2}) ̸=

TCom(tpki∗ , tvki∗ , c
∗, {µ1, µ2}) = m∗ and µ2 ̸= µ′2.)

Finally, B terminates with output c∗, tvki∗ , and two sets of decryption shares {µ1, µ2}
and {µ1, µ′2}.

The above completes the description of B. It is not hard to see that B perfectly

simulates Game 5 for A. In particular, as explained above, B never falls into the situation

where both of the secret shares tski∗.1 and tski∗.2 (under the same splitting) are required.

Hence, the probability that A and A’s output (pkj , ĉ∗) satisfy the conditions of Win5 and

Ask5 in the experiment simulated by B is exactly the same as the probability that A and

A’s output satisfy those in the actual Game 5.

Furthermore, as we explained in the description of B, whenever A and A’s output

satisfy the conditions of Win5 and Ask5, B can always output c∗, tvki∗ , and {µ1, µ2} and
{µ1, µ′2} satisfying the conditions of violating the decryption consistency, namely,

(a) tvki∗ is returned one of the split&corruption queries made by B.

(b) TShVer(tpki∗ , tvki∗ , c
∗, 1, µ1) = ⊤, TShVer(tpki∗ , tvki∗ , c

∗, 2, µ2) = ⊤, and TShVer

(tpki∗ , tvki∗ , c
∗, 2, µ′2) = ⊤ (where the last equation is due to the correctness of the

TPKE scheme and the fact that µ′2 is the result of the share decryption query of the

form (tvki∗ , 2, c
∗)

(c) µ2 ̸= µ′2 (and thus {µ1, µ2} ̸= {µ1, µ′2})

(d) TCom(tpki∗ , tvki∗ , c
∗, {µ1, µ2}) ̸= TCom(tpki∗ , tvki∗ , c

∗, {µ1, µ′2})

Putting everything together, B’s advantage in breaking the decryption consistency is

AdvDC-TPKE(B,2,2) (k) = Pr[Win5 ∧ Ask5], as required. This completes the proof of Lemma 7.

56



Lemmas 1 to 7 guarantee that the right hand side of the inequality (4.1) is negligible,

and thus A has negligible advantage in the soundness game. Since the negligible upper-

bound of the advantage can be shown for any soundness adversary A and any polynomial

n, we conclude that the VPRE scheme eHKK+ has soundness. This completes the proof

of Theorem 9.

4.4.2 Proof of Theorem 10

Let n = n(k) > 0 be any polynomial, and A be any PPT second-level CCA adversary

against the VPRE scheme eHKK+. We will consider the following sequence of games,

which are very similar to the games we used in the proof of Theorem 4.4.1. The difference

is that we will treat the share decryption of c∗ slightly differently in several places, which

is to guarantee that a reduction algorithm for attacking the CCA security of the re-

splittable TPKE scheme will not fall into the situation in which it needs to perform the

share decryption of c∗.

Game 0. This is the second-level CCA security game regarding eHKK+. Since the sub-

sequent games consider A’s queries of some special types, without loss of generality

we let the challenger generate two empty lists L∗
RKG and L∗

REnc at the beginning, and

store the values that appear in the response to a re-encryption key generation query

and a re-encryption query of special types. More concretely,

• If A issues a RKG query of the form (pki∗ , pkj) with pkj ∈ PK, then the chal-

lenger stores the values (pkj , ψ, tvki∗ , σ, tski∗.1) into L∗
RKG, where (ψ, tvki∗ , σ,

tski∗.1) are the values generated when calculating rki∗→j ← RKG(ski∗ , pkj).

• If A issues a REnc query of the form (pki∗ , pkj , c) with pkj ∈ PK and the

answer ĉ to this query is not ⊥, then the challenger stores the values (pkj , ĉ, c,

µ2, tvki∗ , tski∗.1) into L∗
REnc, where (µ2, tvki∗ , tski∗.1) are the values generated

when calculating ĉ← REnc(RKG(ski∗ , pkj), c).

Game 1. Same as Game 0, except the following changes to the response to REncVer

queries and Dec1 queries: For REncVer queries (pki, pkj , c
′, ĉ), A responds as follows:

• (1) If (pkj , ĉ, c, µ2, tvki∗ , tski∗.1) ∈ L∗
REnc for some (c, µ2, tvki∗ , tski∗.1), then:

– (1a) If pki ̸= pki∗ , then return ⊥.
– (1b) Else if pki = pki∗ and c′ = c∗, then: If c = c∗ and TShVer(tpki∗ ,

tvki∗ , c
∗, 2, µ2) = ⊤ then return ⊤, else return ⊥.

– (1c) Otherwise (i.e. pki = pki∗ and c′ ̸= c∗) run MiniREncVer(tpki∗ , tvki∗ ,

tski∗.1, µ2, c, c
′) and return the result.

• (2) Otherwise (i.e. (pkj , ĉ, ∗, ∗, ∗, ∗) /∈ L∗
REnc), run REncVer(pki, skj , c, ĉ) and

return the result.

For Dec1 queries (pkj , ĉ), the challenger responds as follows: (Here, note that we con-

sider the zero-th step corresponding to checking whether REncVer(pki∗ , pkj , c
∗, ĉ) =

⊤.)
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• (0) Simulate the response to the REncVer query of the form (pki∗ , pkj , c
∗, ĉ) for

this game, and return ⊥ if the result of the response is ⊤. (If A has not made

the challenge query, this step is skipped.)

• (1) If (pkj , ĉ, c, µ2, tvki∗ , tski∗.1) ∈ L∗
REnc for some (c, µ2, tvki∗ , tski∗.1), then:

– (1a) If c = c∗ then return ⊥.6

– (1b) Otherwise (i.e. c ̸= c∗), execute m ← MiniDec(tpki∗ , tvki∗ , tski∗.1, µ2,

c), and return m to A.

• (2) Otherwise (i.e. (pkj , ĉ, ∗, ∗, ∗, ∗) /∈ L∗
REnc), then execute m ← Dec1(skj , ĉ),

and return m to A.

We would like to emphasize that from this game on, the challenger need not perform

PDec(d̂kj , ĉ) for a REncVer query (∗, pkj , ∗, ĉ) and a Dec1 query (pkj , ĉ) such that

(pkj , ĉ, ∗, ∗, ∗, ∗) ∈ L∗
REnc.

Game 2. Same as Game 1, except that in this game, a re-encrypted ciphertext ĉ which

is from the challenge key pki∗ to an honest user key pkj ∈ PK, is generated in such

a way that ĉ contains no information.

More precisely, if A submits a REnc query of the form (pki∗ , pkj , c) with pkj ∈ PK,
then the challenger responds as follows:

• (1) Compute (tski∗.1, tski∗.2, tvki∗)← TSplit(tski∗).

• (2) Compute µ2 ← TShDec(tpki∗ , tski∗.2, c), and return ⊥ to A if µ2 = ⊥.

• (3) Compute ĉ ← PEnc(p̂kj , ⟨pki∗∥pkj∥0⟩) where 0 is the zero-string of appro-

priate length.

• (4) Return ĉ to A and store the values (pkj , ĉ, c, µ2, tvki∗ , tski∗.1) into L∗
REnc,

where tski∗.1 is the secret key share corresponding to (tski∗.2, tvki∗) that appears

in the above step (1).

Game 3. Same as Game 2, except that in this game, if a re-encrypted ciphertext ĉ which

is from the challenge key pki∗ to an honest user key pkj ∈ PK is submitted as

a REncVer query (with pkj and some c) or as a Dec1 query (with pkj), then ĉ is

immediately answered with ⊥ unless (a) it is an answer to a previously asked REnc

query of the form (pki∗ , pkj , c), or (b) it is a re-encryption using a re-encryption key

rki∗→j that is returned as an answer to a previously asked RKG query.

More precisely, in this game, the challenger responds to REncVer queries (pki, pkj , c
′, ĉ)

as follows:

• (1) If (pkj , ĉ, ∗, ∗, ∗, ∗) ∈ L∗
REnc, then respond as in Game 1.

• (2) Run M̂ = (pk′i∥pk′j∥c∥µ2∥ψ∥tvki∥σ) ← PDec(d̂kj , ĉ), and return ⊥ to A if

M̂ = ⊥, or (pk′i, pk′j) ̸= (pki, pkj), or SVer(vki, ⟨ψ∥tvki∥pk′i∥pk′j⟩, σ) = ⊥.
6This case will correspond to the situation where A asks a Dec1 query (pkj , ĉ) such that ĉ is an an-

swer to some of A’s previous REnc query of the form (pki∗ , pkj , c
∗), but such a ciphertext ĉ satisfies

REncVer(pki∗ , skj , c
∗, ĉ) = ⊤, and thus has already been answered with ⊥ at the zero-th step. And thus,

the condition c = c∗ checked here is never satisfied in Game 1. This is introduced just to clarify the later

proof of Lemma 13 where we need to ensure that TShDec(tpki, tski∗.1, c
∗) is never performed.
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• (3) If pki ̸= pki∗ then execute REncVer(pki, skj , c
′, ĉ), and return the result to

A.
• (4) If pk′i = pki∗ and (pkj , ψ, tvki∗ , σ, ∗) /∈ L∗

RKG, then return ⊥ to A.
• (5) Otherwise (i.e. pk′i = pki∗ and (pkj , ψ, tvki∗ , σ, tski∗.1) ∈ L∗

RKG for some

tski∗.1), as in the above step 4, execute the remaining procedure of REncVer,

and output the result to A.

Furthermore, the challenger responds to Dec1 queries (pkj , ĉ) as follows:

• (0) Simulate the response to the REncVer query of the form (pki∗ , pkj , c
∗, ĉ) for

this game, and return ⊥ if the result of the response is ⊤. (If A has not made

the challenge query, this step is skipped.)

• (1) If (pkj , ĉ, ∗, ∗, ∗, ∗) ∈ L∗
REnc, then respond as in Game 1.

• (2) Run M̂ = (pk′i∥pk′j∥c∥µ2∥ψ∥tvki∥σ) ← PDec(d̂kj , ĉ), and return ⊥ to A if

M̂ = ⊥ or pk′j ̸= pkj .

• (3) Parse pk′i as (tpki, p̂ki, pki, vki), and return⊥ if SVer(vki, ⟨ψ∥tvki∥pk′i∥pk′j⟩, σ)
= ⊥.

• (4) If pk′i ̸= pki∗ then calculate m by following the remaining procedure of Dec1
(i.e. from the step “tski.1 ← PDec(dkj , ψ)”), and return m to A.

• (5) If pk′i = pki∗ and (pkj , ψ, tvki, σ, ∗) /∈ L∗
RKG, then return ⊥ to A.

• (6) Otherwise (i.e. pk′i = pki∗ and (pkj , ψ, tvki, σ, tski∗.1) ∈ L∗
RKG for some

tski∗.1), as in the above step 4, calculatem by following the remaining procedure

of Dec1.

Game 4. Same as Game 3, except that in this game, if A issues a REncVer query

(pki, pkj , c
′, ĉ) or Dec1 query (pkj , ĉ), such that ĉ is a re-encrypted ciphertext from

the challenge key pki∗ to pkj using a re-encryption key rki∗→j that is an answer to

a previously asked RKG query of the form (pki∗ , pkj) (which can be checked using

L∗
RKG as in Game 3), then the query is answered using the information of tski∗.1

found in L∗
RKG.

More precisely, in this game, the challenger responds to REncVer queries (pki, pkj , c
′, ĉ)

as follows:

• (1), (2), (3), and (4): Same as in Game 3.

• (5): Here, it is guaranteed that pk′i = pki∗ and (pkj , ψ, tvki∗ , σ, tski∗.1) ∈ L∗
RKG

for some tski∗.1. The challenger proceeds as follows:

– (5a) If c′ = c∗ then: If TShVer(tpki∗ , tvki∗ , c
∗, 2, µ2) = ⊤ then return ⊤ else

return ⊥ to A.
– (5b) Otherwise (i.e. c′ ̸= c∗), executeMiniREncVer(tpki∗ , tvki∗ , tski∗.1, µ2, c,

c′), and return the result to A.

Furthermore, the challenger responds to the Dec1 queries (pkj , ĉ) in the following

way:

• (0), (1), (2), (3), (4), and (5): Same as in Game 3.
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• (6): Here, it is guaranteed that pk′i = pki∗ and (pkj , ψ, tvki∗ , σ, tski∗.1) ∈ L∗
RKG

for some tski∗.1. The challenger proceeds as follows:

– (6a) If c = c∗, then return ⊥.7

– (6b) Otherwise (i.e. c ̸= c∗), run m ← MiniDec(tpki∗ , tvki∗ , tski∗.1, µ2, c),

and return the result to A.

We would like to emphasize that from this game on, the challenger need not per-

form PDec(dkj , ψ) for a REncVer query (pki, pkj , c
′, ĉ) and a Dec1 query (pkj , ĉ) that

are processed at their steps (5), namely, those queries that satisfy (pkj , ĉ, ∗, ∗, ∗, ∗) /∈
L∗
REnc, PDec(d̂kj , ĉ) = ⟨pki∗∥pkj∥c∥µ2∥ψ∥tvki∗∥σ⟩ ̸= ⊥, SVer(vki∗ , ⟨ψ∥tvki∗∥pki∗∥pkj⟩,

σ) = ⊤, and (pkj , ψ, tvki∗ , σ, ∗) ∈ L∗
RKG.

Game 5. Same as Game 4, except that in this game, if A issues a RKG query of the form

(pki∗ , pkj) with pkj ∈ PK, then the component ψ in a re-encryption key rki∗→j is

generated in such a way that it contains no information.

More precisely, for this query, the challenger generates rki∗→j = (pki∗ , pkj , tski∗.2, ψ,

tvki∗ , σ) by following the procedure of RKG(ski∗ , pkj) except that ψ is generated by

ψ ← PEnc(pkj , 0
|tski∗.1|). Then the challenger returns rki∗→j to A and stores the

values (pkj , ψ, tvki∗ , σ, tski∗.1) into L
∗
RKG.

For i ∈ {0, . . . , 5}, let Succi be the event that A succeeds in guessing the challenge bit

in Game i, namely, b = b′ occurs. Then, the second-level CCA advantage of A is estimated

as:

Advsecond-VPRE(A,n) (k) = |Pr[Succ0]−
1

2
|

≤
∑

i∈{0,1,2,3,4}

|Pr[Succi]− Pr[Succi+1]|+ |Pr[Succ5]−
1

2
|. (4.2)

We complete the proof by upperbounding each term in the right-hand side of the above

inequality.

Lemma 8. Pr[Succ0] = Pr[Succ1].

This lemma can be shown in almost the same way as the proof of Lemma 1, and

thus we omit a formal proof. In the response to REncVer query of Game 1, we treat

the challenge ciphertext c∗ (namely, the steps (1b) and (1c)). However, note that we

know that the challenge ciphertext c∗ is always correctly generated, and thus that the

challenger does not run TShDec(tski∗.1, tski∗.1, c) in case c′ = c∗ does not change the

output of MiniREncVer(tpki∗ , tvki∗ , tski∗.1, µ2, c, c
′). The rest of the argument is exactly

the same as the proof of Lemma 1.

7This case implies that c∗ is contained in the plaintext of ĉ, and thus ĉ is potentially a re-encryption

of c∗. However, before this step, the challenger has performed the zero-th step test and thus have checked

whether REncVer(pki∗ , skj , c
∗, ĉ) = ⊤. If the result of REncVer was ⊤, then the query must have been

answered with ⊥ at its zero-th step. Therefore, that this step (6a) is performed means that ĉ was not a

valid re-encryption of c∗, and thus ĉ containing c∗ must be an invalid ciphertext whose decryption result

is ⊥. With a similar reason explained in the previous footnote, this step is introduced to ensure that

TShDec(tpki∗ , tski∗.1, c
∗) is never performed, which will be important in the proof of Lemma 13.
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Lemma 9. If the PKE scheme is CCA secure in the multi-user setting,

|Pr[Succ1]− Pr[Succ2]| is negligible.

Proof of Lemma 9. We show that we can construct a multi-user CCA adversary B
against the underlying PKE scheme such that AdvCCA-PKE(B,n) (k) = |Pr[Succ1]−Pr[Succ2]|. By
the multi-user CCA security of the underlying PKE scheme (which is equivalent to the

ordinary CCA security), the above implies that |Pr[Succ1]−Pr[Succ2]| is negligible, which
proves the lemma. The description of B is as follows:

First, B is given 1k and public keys (p̂k1, . . . , p̂kn) from the challenger. Then B gen-

erates other key materials of the honest users (except {d̂ki}i∈[n]) as well as the challenge

key pair (ski∗ , pki∗)← KG(1k). B then sets PK = {pki}i∈[n] and PK∗ = {pki∗} ∪ PK, and
gives 1k and PK∗ to A. B also generates an empty list L∗

REnc. (Since the list L∗
RKG does

not play any role in Game 1 and Game 2, B need not generate it.)

When A makes a challenge query (m0,m1), B picks a random bit d ∈ {0, 1}, encrypts
c∗ ← TEnc(tpki∗ ,md), and returns c∗ to A.
B answers to A’s queries except the challenge query in exactly the same way as B in

the proof of Lemma 2 does.

Finally, when A outputs the guess bit d′, B outputs b′ = 0 if d = d′, otherwise outputs

b′ = 1.

The above completes the description of B. Note that B submits a LR query of the form

(j,M0,M1) only if A submits a RKG query of the form (pki∗ , pkj , c) satisfying pkj ∈ PK
and TShDec(tpki∗ , tski∗.2, c) ̸= ⊥. Note also that B never submits a decryption query (j, ĉ)

such that ĉ is an answer to some of B’s LR queries of the form (j,M0,M1) (with the same

j).

The multi-user CCA advantage of B can be calculated as follows:

AdvCCA-PKE(B,n) (k) = |Pr[b = b′]− 1

2
|

=
1

2
|Pr[b′ = 0|b = 0]− Pr[b′ = 0|b = 1]|

=
1

2
|Pr[d = d′|b = 0]− Pr[d = d′|b = 1]|

Now, consider the case when b = 0. In this case, a re-encrypted ciphertext ĉ from

the challenge public key pki∗ to a honest user key pkj ∈ PK is generated as in Game 1.

Moreover, it is easy to see that all the other values are calculated as in Game 1. Under

this situation, the event d = d′ corresponds to the event that A succeeds in guessing the

challenge bit in Game 1, and thus we have Pr[d = d′|b = 0] = Pr[Succ1].

On the other hand, when b = 1, a re-encrypted ciphertext ĉ from pki∗ to pkj ∈ PK
is an encryption of ⟨pki∗ ||pkj ||0⟩, where 0 is the zero-string of appropriate length, which

is exactly how it is generated in Game 2. Since this is the only difference from the case

b = 0, with a similar argument to the above we have Pr[d = d′|b = 1] = Pr[Succ2].

In summary we have AdvCCA-PKE(B,n) (k) = 1
2 |Pr[Succ1]− Pr[Succ2]|, as required.

Lemma 10. If the signature scheme is strongly unforgeable, |Pr[Succ2]−
Pr[Succ3]| is negligible.
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Proof Sketch of Lemma 10. For i ∈ {2, 3}, let Forgei be the event that in Game i, A
submits at least one Dec1 query (pkj , ĉ) or a REncVer query of the form (pki∗ , pkj , c

′, ĉ)

satisfying the following conditions:

(a) (pkj , ĉ, ∗, ∗, ∗, ∗) /∈ L∗
REnc

(b) PDec(d̂kj , ĉ) = ⟨pki∗∥pkj∥c∥µ2∥ψ∥tvki∗∥σ⟩ ̸= ⊥

(c) (pkj , ψ, tvki∗ , σ, ∗) /∈ L∗
RKG

(d) SVer(vki∗ , ⟨ψ∥tvki∗∥pki∗∥pkj⟩, σ) = ⊤.

Game 2 and Game 3 proceed identically until the event Forge2 or Forge3 occurs in the

corresponding games. Therefore we have

|Pr[Succ2]− Pr[Succ3]| ≤ Pr[Forge2] = Pr[Forge3].

Then, we can show that there is another PPT adversary B against the strong unforgeability

of the underlying signature scheme such that AdvSUF-SIGB (k) ≥ Pr[Forge3]. By the strong

unforgeability of the underlying signature scheme, the above implies that Pr[Forge3] is

negligible, and thus |Pr[Succ2] − Pr[Succ3]| is negligible, proving the lemma. Since the

description of B and the analysis of B’s advantage are essentially the same as those of the

reduction algorithm B we used in the proof of Lemma 3 we omit a formal proof.

Lemma 11. Pr[Succ3] = Pr[Succ4]

The proof for this lemma is essentially the same as the proof of Lemma 5, and thus

we omit a formal proof.

Lemma 12. If the PKE scheme is CCA secure in the multi-user setting,

|Pr[Succ4]− Pr[Succ5]| is negligible

Proof of Lemma 12. We show that we can construct a multi-user CCA adversary B
(against the underlying PKE scheme) such that AdvCCA-PKE(B,n) (k) = |Pr[Succ4] − Pr[Succ5]|.
By the multi-user CCA security of the underlying PKE scheme (which is equivalent to

the ordinary CCA security), the above implies that |Pr[Succ4] − Pr[Succ5]| is negligible,

which proves the lemma. The description of B is as follows:

First, B is given 1k and public keys (pk1, . . . , pkn) from the challenger. B gener-

ates other key materials of the challenge key pki∗ and the honest users’ keys PK except

{dki}i∈[n]. B then gives 1k and PK∗ = {pki∗}∪PK to A. B also generates two empty lists

L∗
RKG and L∗

REnc.

When A makes a challenge query (m0,m1), B picks a random bit d ∈ {0, 1}, encrypts
c∗ ← TEnc(tpki∗ ,md), and returns c∗ to A.
B answers to A’s queries except the challenge query in exactly the same way as B in

the proof of Lemma 6 does.

Finally, when A outputs the guess bit d′, B outputs b′ = 0 if d = d′, otherwise outputs

b′ = 1.

The above completes the description of B. Note that B submits an LR query of the

form (j,M0 = tski∗.1,M1 = 0|tski∗.1|) only when A submits a RKG query of the form
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(pki∗ , pkj) with pkj ∈ PK. Moreover, note also that all the ciphertexts ψ that B receives

as an answer to a LR query of the form (j,M0,M1) are stored into L∗
RKG, and all the

REncVer queries (pki∗ , pkj , c, ĉ) and all the Dec1 queries (pkj , ĉ) such that the plaintext of

ĉ contains ψ that appears in L∗
RKG are answered with either ⊥ or using MiniREncVer and

MiniDec, respectively. Therefore, B never submits a decryption query (j, ψ) such that ψ

is an answer to some of B’s LR query of the form (j,M0,M1) (with the same j).

The multi-user CCA advantage of B can be calculated as follows:

AdvCCA-PKE(B,n) (k) = |Pr[b = b′]− 1

2
|

=
1

2
|Pr[b′ = 0|b = 1]− Pr[b′ = 0|b = 0]|

=
1

2
|Pr[d = d′|b = 1]− Pr[d = d′|b = 0]|

Then, a similar analysis to the proof of Lemma 6 shows that Pr[Succ4] = Pr[d′ = d|b = 0]

and Pr[Succ5] = Pr[d′ = d|b = 1]. Using these in the above inequality, and recalling the

assumption that the underlying PKE scheme is CCA secure in the multi-user setting, we

conclude that |Pr[Succ4]− Pr[Succ5]| is negligible.

Lemma 13. If the re-splittable TPKE scheme is CCA secure, |Pr[Succ5]− 1/2| is negli-

gible.

Proof of Lemma 13. We show that we can construct a CCA adversary B against the

underly TPKE scheme such that AdvCCA-TPKE(B,2,2) (k) = |Pr[Succ5]−1/2|. By the CCA security

of the TPKE scheme, the above equation implies that |Pr[Succ5]−1/2| is negligible, which
proves the lemma. The description of B is as follows.

First, B is given 1k and a public key tpki∗ from the challenger. B generates other key

materials of the the honest users’ keys PK and the challenge key pair (sk∗, pk∗) except for

the secret key tski∗ corresponding to tpki∗ . Then, B gives 1k and PK∗ = {pki∗} ∪ PK to

A. B also generates two empty lists L∗
RKG and L∗

REnc.

When A submits a challenge query (m0,m1), B submits the same pair (m0,m1) as a

challenge query to the challenger and obtains the challenge ciphertext c∗. Then, B returns

this c∗ to A.
B answers to A’s RKG and REnc queries in exactly the same way as B in the proof of

Lemma 7 does. This is possible because an adversary attacking the decryption consistency

and an adversary attacking CCA security for a re-splittable TPKE scheme have the same

interface (except an output).

B answers to REncVer, Dec1, and Dec2 queries from A exactly as in Game 5. This

is possible because B holds all key materials except the tski∗ corresponding to tpk∗, and

whenever B has to compute TSplit(tski) or TShDec(tpki, tski.γ , c) (γ ∈ {1, 2}), B can

submit a split&corruption/share decryption query to the challenger and use the obtained

result. Here, we stress that B never falls into the situation where both of the secret shares

tski∗.1 and tski∗.2 (under the same splitting) are required, or the situation where B has

to compute TShDec(tpki∗ , tski∗.γ , c
∗) for some γ ∈ {1, 2}. These are guaranteed by the

definition of Game 5 (see also the footnotes 4 and 5).

Finally, when A terminates with its guess bit b′ ∈ {0, 1}, B uses this b′ as its guess for

the challenge bit and terminates.
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The above completes the description of B. It is not hard to see that B perfectly

simulates Game 5 so that A’s challenge bit is that of B. (In particular, as explained

above, B never submits a prohibited query c∗ as a share decryption query.) Therefore, the

probability that B succeeds in guessing its challenge bit is exactly the probability that A
succeeds in guessing the challenge bit in Game 5. Therefore, B’s CCA advantage can be

calculated as

AdvCCA-TPKE(B,2,2) (k) = |Pr[Succ5]− 1/2|,

as required. This completes the proof of Lemma 13.

Lemmas 8 to 13 guarantee that the right hand side of the inequality (4.2) is negligible,

and thus A has negligible advantage in the second-level CCA game. Since the negligible

upperbound of the advantage can be shown for any second-level CCA adversary A and

any polynomial n, we conclude that the VPRE scheme eHKK+ is second-level CCA secure.

This completes the proof of Theorem 10.

4.4.3 Proof of Theorem 11

Let A be any PPT adversary that attacks the first-level CCA security of the VPRE

scheme eHKK+ and makes in total Q REncVer queries. (Since A is PPT, Q is polynomial.)

Consider the following games, where the values with asterisk (*) are those related to the

challenge ciphertext ĉ∗ of A:

Game 0. The first-level CCA game of the VPRE scheme eHKK+.

Game 1. Same as Game 0, except that if A submits a REncVer query (pk, c, ĉ) satisfying

ĉ = ĉ∗, then without actually executing REncVer, the query is answered with ⊤ if

(pk, c) = (pkA, c
∗) or with ⊥ otherwise.

Game 2. Same as Game 1, except that if A submits a REncVer query (pk, c, ĉ) satisfying

c = c∗, then it is answered with ⊥. This change in particular implies that now all

REncVer queries (pk, c, ĉ) with ĉ = ĉ∗ are always answered with ⊥.

Game 3. Same as Game 2, except that ĉ∗ is generated in such a way that it does

not contain any information on c∗. More precisely, ĉ∗ is generated so that ĉ∗ ←
PEnc(d̂k∗, ⟨pkA∥pk∗∥0ℓ∥ψ∗∥tvk∗A∥σ∗⟩), where ℓ = |c∗|+ |µ∗2|.

For i ∈ {0, 1, 2}, let Succi be the event that in Game i A succeeds in guessing the

challenge bit (i.e. b′ = b occurs), and let Queryi be the event that in Game i, A submits

at least one REncVer query (pk, c, ĉ) satisfying c = c∗.

A’s first-level CCA advantage is calculated as follows:

Advfirst-VPREA (k) = |Pr[Succ0]−
1

2
|

≤
∑

i∈{0,1,2}

|Pr[Succi]− Pr[Succi+1]|+ |Pr[Succ3]−
1

2
|. (4.3)
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Thus, it suffices to show that each term in the right hand side of the above inequality

is negligible.

Firstly, note that in Game 3, the information on the challenge bit is not at all contained

in ĉ∗ or answers to A’s queries, and hence A’s view is independent of the challenge bit.

Therefore, we have Pr[Succ3] = 1/2. Note also that it holds that Pr[Succ0] = Pr[Succ1],

due to the correctness of the building block PKE scheme. Specifically, ĉ∗ contains (in its

plaintext) pkA and c∗, and thus a REncVer query (pk, c, ĉ∗) with (pk, c) ̸= (pkA, c
∗) cannot

make REncVer output ⊤.
Next, we show that |Pr[Succ2] − Pr[Succ3]| is negligible, due to the CCA security of

the building block PKE scheme. To see this, consider the following CCA adversary B that

simulates Game 2 or Game 3 perfectly for A depending on B’s challenge bit:

At the beginning of the CCA game, B is given p̂k∗. B generates the challenge pub-

lic/secret key pair (sk∗, pk∗) except d̂k∗, by executing (tsk∗, tpk∗)← TKG(1k, 2, 2), (dk∗, pk∗)

← PKG(1k), and (sk∗, vk∗) ← SKG(1k), and setting sk∗ ← (tsk∗,⊥, dk∗, sk∗) and pk∗ =

(tpk∗, p̂k∗, pk∗, vk∗). Now, since B knows tsk∗, dk∗ and sk∗, B can answer to re-encryption

key generation, re-encryption, and second-level decryption queries perfectly. Furthermore,

B can answer to first-level decryption queries ĉ by its ability to make decryption queries

and the knowledge of tsk∗ and dk∗.

When A submits two plaintexts (m0,m1) of equal length and a key pair (skA, pkA) as

a challenge query, B proceeds as follows:

1. Parse skA as (tskA, d̂kA, dkA, skA) and pkA as (tpkA, p̂kA, pkA, vkA).

2. Flip a fair coin w ∈ {0, 1}, and execute c∗ ← TEnc(tpkA,mw), (tsk∗A.1, tsk
∗
A.2,

tvk∗A)← TSplit(tskA), ψ
∗ ← TEnc(pk∗, tsk∗A.1), σ

∗ ← Sign(sk∗, ⟨ψ∗∥tvk∗A∥pkA∥pk
∗⟩),

and µ∗2 ← TShDec(tpkA, tsk
∗
A.2, c

∗).

3. Set M̂0 = ⟨pkA∥pk∗∥c∗∥µ∗2∥ψ∗∥tvk∗A∥σ∗⟩ and M̂1 = ⟨pkA∥pk∗∥0ℓ∥ψ∗∥tvk∗A∥σ∗⟩, where
ℓ = |c∗|+ |µ∗2|.

4. Submit (M̂0, M̂1) to B’s CCA challenger, and receive B’s challenge ciphertext ĉ∗.

5. Return ĉ∗ to A as A’s challenge ciphertext.

When A asks a re-encryption verification query (pk, c, ĉ), if ĉ = ĉ∗, then B answers

with ⊥ (which is the legitimate answer in Games 2 and 3). Otherwise (i.e. ĉ ̸= ĉ∗), B
can answer to the re-encryption verification query perfectly as the challenger in Games 2

and 3 does, by forwarding ĉ to B’s challenger as a decryption query and calculating the

remaining procedure of REncVer using tsk∗ and dk∗.

Finally, when A terminates with its guess bit w′ ∈ {0, 1}, B sets b′ ← 1 if w′ = w,

otherwise it sets b′ ← 0, and terminates with output b′.

Let b be B’s challenge bit. It is easy to see that depending on B’s challenge bit

b, B simulates Game 2 or Game 3 perfectly for A so that A’s challenge bit is w. In

particular, B answers to all queries made by A as should be done in Games 2 and 3

perfectly. Furthermore, B outputs 1 whenever A succeeds in guessing w (i.e. w′ = w

occurs). Therefore, we have Pr[b′ = 1|b = 0] = Pr[Succ2] and Pr[b′ = 1|b = 1] = Pr[Succ3],

and thus |Pr[Succ2]−Pr[Succ3]| is negligible by the CCA security of the underlying PKE

scheme.
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It remains to show the upperbound of |Pr[Succ1]− Pr[Succ2]| to be negligible. To see

this, note that Game 1 and Game 2 proceed identically unless Query1 or Query2 occurs in

the corresponding games. Hence, we have

|Pr[Succ1]− Pr[Succ2]| ≤ Pr[Query1] = Pr[Query2].

Furthermore, by the triangle inequality, we have

Pr[Query2] ≤ |Pr[Query2]− Pr[Query3]|+ Pr[Query3]

We can show the upperbound of |Pr[Query2]−Pr[Query3]| to be negligible by the CCA

security of the building block PKE scheme, with essentially the same way as we did for

|Pr[Succ2] − Pr[Succ3]| to be negligible. Specifically, consider the reduction algorithm B′

that runs in the same way as the above B, except that B′ outputs b′ = 1 only when A
makes a re-encryption verification query that contains c∗. Then, B′ simulates Game 2

and Game 3 perfectly, and thus the probability that A makes a re-encryption query that

contains c∗ is exactly the same as the probability that A does so in the game simulated

by B′, i.e. Pr[b′ = 1|b = 0] = Pr[Query2] and Pr[b′ = 1|b = 1] = Pr[Query3], and thus

|Pr[Query2] − Pr[Query3]| is negligible due to the CCA security of the underlying PKE

scheme.

Finally, we can show that Pr[Query3] is upperbounded to be negligible due to the

strong smoothness of the underlying TPKE scheme. To see this, note that in Game 3,

the information on c∗ is not at all contained in A’s challenge ciphertext ĉ∗. Note also

that in Game 3, although the key pair (skA, pkA) is chosen by A, it is required to be a

valid key pair (and thus must be in the range of TKG). Moreover, the randomness for

generating c∗ is honestly chosen by the challenger in Game 3, and thus the probability that

c∗ is contained in one particular re-encryption verification query is bounded by Smth(k).

By applying the union bound over all of A’s Q queries, the upperbound of Pr[Query3] is

Q · Smth(k), which is negligible.

We have seen that each |Pr[Succi] − Pr[Succi+1]| is negligible and Pr[Succ3] = 1/2,

and therefore, A’s first-level CCA advantage is negligible. This completes the proof of

Theorem 11.

4.5 Conclusion

In this chapter, we introduced a new functionality for PRE that we call re-encryption

verifiability, proposed a generic construction, and proved its security. In practice, we can

reduce the level of trust we have to put on the proxies by achieving the functionality of

re-encryption verification. These days, large scale surveillance by NSA becomes public.

Therefore, it becomes difficult to trust the third parties completely. The contribution of

this research is to solve that problem not by the management and/or operation but by the

technology. From the view point of theory, moreover, we got out of the RCCA security

and achieve the CCA security. Strictly speaking, however, the security that we achieved

in this research is secret-key detectable RCCA. The biggest contribution of this research

is that we strictly proved the backward compatibility between security notions. There

exists many security notions for PRE and we cannot compare the most of them. In these
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situations, researchers were not able to judge that which definitions should be used. The

result and way of thinking in this chapter is important to escape from this situation.

A proposal of concrete PRE scheme with public verifiability is future work. It will be

difficult for our generic construction to achieve the public verifiability because the first-

level ciphertext is contained in the second-level ciphertext. If we can construct a PRE

scheme with public verifiability, we can avoid the long and difficult soundness proof which

is denoted in this chapter.
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Chapter 5

Proxy Re-encryption from

Indistinguishability Obfuscation

5.1 Introduction

5.1.1 Background and Motivation

Proxy re-encryption (PRE) is an interesting extension of traditional public key encryption

(PKE). In addition to the normal operations of PKE, with a dedicated re-encryption key

(generated by receiver A), a semi-trusted party called proxy can turn a class of ciphertexts

destined for user A into those for user B. A remarkable property of PRE is that the proxy

carrying out the transform is totally ignorant of the plaintext. PRE was first formalized by

Blaze et al. [19] and has received much attention in recent years. There are many models

as well as implementations [19, 6, 33, 77, 91, 37, 58, 65, 74], and most of the previous

constructions are based on bilinear maps.

We can classify the PRE schemes by its properties. First category is the number of

hops. In “single-hop” PRE, once the ciphertext for user A is re-encrypted for user B,

that ciphertext cannot be re-encrypted to another user. The PRE scheme that can re-

encrypt multiple times is called “multi-hop” PRE. The second category is the direction

of re-encryption. If we can re-encrypt the ciphertext from user A to user B, but cannot

re-encrypt it from user B to user A by using the re-encryption key, this setting is called

“uni-directional”. In contrast, if the re-encryption key can re-encrypt both directions, this

setting is called “bi-directional”.

Since the proposal of the (candidate) construction of multilinear maps [48], many

cryptographic primitives based on them have been proposed. Especially, a cryptographic

obfuscation that is secure in the meaning of indistinguishability [50] (indistinguishability

obfuscation, iO) has received much attention. These days, many researches about iO (con-

struction, security analysis, and application to the cryptosystems, and so on) have been

developed. Since iO is relatively a new cryptographic tool, it is theoretically important to

understand what can be (or cannot be) constructed by using iO. In this chapter, we show

the construction of the PRE scheme based on iO. We can see the idea of re-encryption

in the construction of attribute-based encryption for polynomial size circuit [55] or boot-

strapping techniques for the constructions of fully homomorphic encryption (e.g. [52]).

Therefore, the result of this chapter may contribute for constructions of these cryptosys-
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tems.

5.1.2 Related Work

Blaze et al. formalized the concept of PRE cryptosystems [19] and proposed the first

bidirectional PRE scheme based on ElGamal PKE scheme. Subsequently, Ateniese et

al. [6], Canetti and Hohenberger [33], Libert and Vergnaud [77], and Chow et al. [37]

proposed different PRE schemes with various properties. Shao and Cao [91] proposed

a PRE scheme without pairing. Later, however, Zhang et al. [93] pointed out that it

is not secure in the Libert-Vergnaud security model [77]. Subsequently, Matsuda et al.

proposed a PRE scheme without pairing [82]. Later, however, Weng et al. [92] pointed

out that their scheme is not CCA secure. Hanaoka et al. [58] proposed a new definition of

CCA security in PRE and showed a generic construction of uni-directional PRE. Isshiki

et al. [65] proposed a CCA secure PRE scheme. Kirshanova [74] proposed a lattice-based

PRE scheme.

A research of cryptographic obfuscation has been started by Barak et al. [7]. In [7], they

showed that it is impossible to construct the cryptographic obfuscator for arbitrary poly-

nomial size circuit which is secure in the meaning of virtual black box (VBB). Hereafter, it

has been showed the results of the VBB obfuscator for specific functions (e.g. point func-

tion [107], re-encryption [63], encrypted signature [57], and Hyperplane membership [36]).

Garg et al. [50] showed the (candidate) construction of cryptographic obfuscator for ar-

bitrary polynomial size circuit secure in the meaning of indistinguishability. After this

proposal, many cryptographic primitives or cryptosystems based on it were proposed. For

example, public key encryption and key encapsulation mechanism [98], functional encryp-

tion for polynomial size circuit [50, 106], signature [98, 95] and its universal aggregator [61],

multiparty key exchange [26], multiparty computation [49], replacing random oracle [64],

self-bilinear map [110], and so on.

In summary, to the best of our knowledge, there is no previous work about the con-

struction of PRE scheme based on (standard) iO.

5.1.3 Our Contribution

In this chapter, we show the construction of PRE scheme based on iO by adding two

algorithms to the PKE scheme that was proposed by Sahai and Waters [98]. Although a

re-encryption function from one public key to another can be considered as a randomized

funcionality on the underlying plaintext and that functionality can be achieved by using

probabilistic iO that was proposed by Canetti et al. [35], we need sub-exponential iO
to construct the probabilistic iO. In our construction, we use not probabilistic iO but

standard iO. Moreover, our scheme has some (good) properties as follows:

Unidirectional re-encryption key: A re-encryption key that can re-encrypt cipher-

texts for user i to user j is generated by using a secret key of user i and a public key

of use j. Ciphertexts for user i is re-encrypted for user j by using this re-encryption

key unidirectionally.

Unbounded multi-hop re-encryption: Our scheme can execute the re-encryption mul-

tiple times. That is, we can re-encrypt the ciphertext that has been already re-
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encrypted. In addition, there is no limitation of the number of the re-encryption.

Constant size ciphertext: The size of the re-encrypted ciphertext does not expand by

the re-encryption and it remains constant.

Fast decryption The decryption algorithm is completely the same as the Sahai and

Waters’ PKE scheme [98] and runs very fast.

To the best of our knowledge, this is the first construction of multi-hop and uni-

directional PRE (MUPRE) scheme.

We can prove the CPA security for MUPRE that we define in this chapter. This

CPA security, intuitively, is a definition that removes some oracles from Hanaoka et al.’s

security definitions for CCA secure single-hop uni-directional PRE [58] and extends them

for the multi-hop setting. In our scheme, a message space is limited to {0, 1} because of

the security proof.

Intuition for the construction and security proof In PRE, if the proxy is allowed

to decrypt the ciphertext for user i, the functionality of the re-encryption for user j can

easily be achieved by a “decrypt-then-encrypt” approach. In this research, we adopt this

approach by using the power of iO. That is, we set the re-encryption key as the obfuscated

circuit that a secret key of user i and a public key of user j are hardwired, and execute

“decrypt-then-encrypt”.

In the security proof, it becomes a main problem that how to invalidate the power of

re-encryption key generation queries from an adversary. Since the re-encryption key is the

obfuscated circuit, we have to consider that the challenge ciphertext may be input to that

obfuscated circuit. To solve this problem, we adopt the methodology that we hardwire

the key of puncturable PRF to generate a randomness for re-encryption, and puncture

that key by using the challenge ciphertext. Thanks to this puncturable property, we can

invalidate the re-encryption key from challenge user to another. To execute this operation,

simulator has to know the challenge ciphertext before starting the security game between

the challenger and an adversary. However, in our scheme, this is achievable because the

message space is limited to {0, 1}.

5.1.4 CPA Secure PKE scheme via iO

We recall the IND-CPA secure PKE scheme that was proposed by Sahai and Waters’ [98].

Our proposed PRE scheme can be considered as an extension of this PKE scheme. We can

prove IND-CPA security of this scheme if the underlying PRG is computationally secure,

iO is an indistinguishability obfuscator, and F is a secure PPRF.

KG(1k) : First, it chooses a PPRF key K ← {0, 1}k. Next, it creates the encryption

circuit CEnc in Figure 5.1.1 Then, it returns (pk, sk) := (iO(k, CEnc),K).

Enc(pk,m, r) : It returns ct←iO(k, CEnc)(m, r).

Dec(sk, ct) : It returns m = ct2 ⊕ F (Ki, ct1).

1The message space of this PKE scheme is not limited to {0, 1}.
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Encryption Circuit CEnc:
Input: message m ∈ {0, 1}, a randomness r ∈ {0, 1}k

Hardwire: PPRF key K

1. Compute t := PRG(r).

2. Compute ct := (ct1, ct2) = (t, F (K, t)⊕m).

3. Output ct.

Figure 5.1: Encryption Circuit

5.1.5 Chapter Organization

The remainder of this chapter is organized as follows. In Section 5.2, we introduce the

model and the security definition for MUPRE. In Section 5.3, we present our construction

of an MUPRE scheme and prove its security. Section 5.4 is the conclusion of this chapter.

5.2 Proxy Re-encryption

In this section, we denote the model of multi-hop uni-directional proxy re-encryption

(MUPRE) and define the CPA security for it.

5.2.1 Model

Here, we define the syntax of MUPRE. Formally, a MUPRE scheme consists of the fol-

lowing five algorithms (KG, Enc, RKG, REnc, Dec):

KG This is the key generation algorithm that takes 1k as input, and outputs a public key

pk and a secret key sk. This process is written as (pk, sk)← KG(1k).

Enc This is the encryption algorithm that takes a public key pk, a plaintext m ∈M, and

a randomness r as input, and outputs a ciphertext ct. This process is written as

ct← Enc(pk,m, r).

RKG This is the re-encryption key generation algorithm that takes a secret key ski (of

user i), a public key pkj (of user j), and a randomness R as input, and outputs a

re-encryption key rki→j . This process is written as rki→j ← RKG(ski, pkj , R).

REnc This is the re-encryption algorithm that takes a ciphertext cti (for user i) and a

re-encryption key rki→j as input, and outputs a ciphertext ctj (for user j). This ctj
could be the special symbol ⊥ meaning that rki→j or cti is invalid. This process is

written as ctj (or ⊥)← REnc(rki→j , cti).

Dec This is the decryption algorithm that takes a secret key sk and a ciphertext ct as

input, and outputs a decryption resultm (which could be ⊥). This process is written
as m← Dec(sk, ct).
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Correctness. We say that an MUPRE scheme is correct if :

1. For any (sk, pk) output by KG, any message m ∈ M, and any randomness r, we

have: m = Dec(sk,Enc(pk,m, r)).

2. For all n > 1, any key pairs (pk1, sk1) · · · (pkn, skn) output by KG, any message m ∈
M, any randomness r and {Ri}i∈[n], all i < n, and any re-encryption keys rki→i+1

output by RKG(ski, pki+1, Ri), we have: m = Dec(ski+1,REnc(rki→i+1,Enc(pki,m, r))).

5.2.2 Security Definition

Here, we give the formal security definition of MUPRE. In this chapter, we consider the

CPA security.

CPA Security of MUPRE. We define the chosen plaintext security for MUPRE with

the following CPA-MUPRE game. This CPA-MUPRE security, intuitively, is a definition

that removes a re-encryption query and a decryption query from Hanaoka et al.’s security

definition for single-hop uni-directional PRE [58] and extends it for the multi-hop setting.

This security game is parameterized by an integer n ∈ N and is played between the

challenger B and an adversary A:

Setup : Firstly, B generates honest user’s key pairs (pki, ski) ← KG(1k) for i ∈ [n], and

sets PK = {pki}i∈[n]. Next, B generates a challenge user’s key pair (pk∗, sk∗) ←
KG(1k). Next, B B generates two lists PK∗

S := {pk∗} and PK∗
T := {pk∗, {pki}ni=1},

and gives 1k and PK∗ := PK ∪ {pk∗} to A. After that, A can adaptively make the

following types of queries:

Re-encryption key generation (RKG) query : On input (pki ∈ PK∗, pkj), where pkj
is an arbitrary public key of A’s choice (for which A is not required to reveal the cor-

responding secret key), B responds as follows: If pki ∈ PK∗
S and pkj /∈ PK∗

T , then the

challenger responds with ⊥. Otherwise, the challenger responds with RKG(ski, pkj).

When pki ∈ PK∗
S and pkj ∈ PK∗

T is queried, B adds that pkj to the list PK∗
S . When

pki /∈ PK∗
S and pki ∈ PK∗

T and pkj /∈ PK∗
T is queried, B removes the pki from the

list PK∗
T .

2

Challenge query : This query is asked only once. On input (m0,m1) where (m0,m1) is

a message pair of equal length, B picks a random bit b ∈ {0, 1} and a randomness

r∗, and computes ct∗ ← Enc(pk∗,mb, r
∗). Then it gives ct∗ to A.

Finally, A outputs its guess b′ for b and wins the game if b = b′. We define the

advantage of A by AdvCPA-MUPRE
(A,n) (k) = |Pr[b = b′]− 1

2 |.

Definition 8. We say that an MUPRE scheme is CPA secure, if for any PPT adversary

A and all positive polynomials n, AdvCPA-MUPRE
(A,n) (k) is negligible.

2This means that the honest users which are re-encrypted from the challenge user are equally treated

as the challenge user. Similarly, the honest users which re-encrypt to the corrupt user are equally treated

as the corrupt user.
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5.3 Proposed Construction

In this section, we show our construction of the MUPRE scheme via the iO.

5.3.1 Construction

Here, we show the intuition and construction of our scheme.

Intuition. If it is allowed to decrypt the ciphertext that is encrypted to user i (and then

re-encrypt it for user j), the functionality of re-encryption can easily be achieved. In our

scheme, we directly adopt the above policy by using the power of iO. That is, we set

the re-encryption key as the obfuscated “decrypt-then-encrypt” circuit. We realize the

PRE scheme by adding two algorithms to Sahai and Waters’ CPA secure PKE scheme. In

the re-encryption circuit, we need to prepare the randomness to re-encrypt the decrypted

plaintext for user j. This randomness is hardwired in the re-encryption circuit. To com-

plete the security proof, we set the PPRF key K in the re-encryption circuit, and make

the randomness for re-encryption by using this PPRF key K and the ciphertext which is

input to the re-encryption circuit.

Our PRE scheme is constructed as follows. Let PRG is a pseudorandom number

generator that maps {0, 1}k to {0, 1}2k, F be a puncturable PRF that takes inputs of k

bits and outputs 1 bit, and F ′ be a puncturable PRF that takes inputs of 2k+1 bits and

outputs k bits. In our scheme, the message space is limited to {0, 1}.

KG(1k) : First, it chooses a PPRF key K ← {0, 1}k. Next, it constructs the encryption

circuit CEnc in Figure 5.2. Then, it returns (pk, sk) := (iO(k, CEnc),K).

Encryption Circuit CEnc:
Input: message m ∈ {0, 1}, randomness r ∈ {0, 1}k

Hardwire: PPRF key K

1. Compute t := PRG(r).

2. Compute ct := (ct1, ct2) = (t, F (K, t)⊕m).

3. Output ct.

Figure 5.2: Encryption Circuit CEnc

Enc(pk,m, r) : It returns ct←iO(k, CEnc)(m, r).

RKG(ski, pkj , R) : It constructs the re-encryption circuit CREnc in Figure 5.3. Then, it

returns rki→j :=iO(k, CREnc).

REnc(cti, rki→j) : It returns ctj ←iO(k, CREnci→j
)(cti).

Dec(sk, ct) : It returns m = ct2 ⊕ F (K, ct1).

5.3.2 Security Proof

Here, we show the formal security proof of our PRE scheme.
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Re-encryption Circuit CREnc:
Input: cti (a ciphertext of user i).

Hardwire: Ki (a secret key of user i),

iO(k, CEncj ) (a public key of user j),

K ′ (a PPRF key).

1. Compute m = ct2 ⊕ F (Ki, ct1).

2. Compute r′ := F ′(K ′, ct1∥ct2).
3. Compute ctj :=iO(k, CEncj )(m, r′).
4. Output ctj = (ct1, ct2) = (t′, F (Kj , t

′)⊕m).

(Here, t′ := PRG(r′).)

Figure 5.3: Re-encryption Circuit CREnc

Intuition. The security proof of our PRE scheme follows the security proof of the CPA

secure PKE scheme in [98] to some extent. However we cannot directly apply it for the

proof of our scheme because of the following reason. In the security proof of [98], we

puncture the challenge user’s key K∗. If we try to apply this methodology directly to

our proof, the challenger has to respond the re-encryption key generation queries from an

adversary using the punctured key. However, this simulation does not succeed because

that punctured key cannot decrypt the challenge ciphertext. To solve this problem, just

like other security proof of PRE schemes, we have to invalidate the power of re-encryption

key generation queries from an adversary before erasing the information of message from

the challenge ciphertext. In our scheme, a randomness is hardwired in the re-encryption

circuit to generate a re-encrypted ciphertext. We set a PPRF key K ′ as this random-

ness, and puncture this key K ′ by a challenge ciphertext ct∗ to invalidate the power of

re-encryption key generation queries. The challenger can determine that a challenge mes-

sage pair (m0,m1) is (0, 1) because we limit the message space to {0, 1} in this research.

Therefore, the simulator can generate the challenge ciphertext before the re-encryption key

generation queries from an adversary and puncture the hardwired key by that challenge

ciphertext. However, this is not enough. The simulator cannot generate the re-encryption

circuit which correctly works when the input is (ct∗1, ct2(̸= ct∗2)). To solve this problem,

we hardwire the outputs (=re-encrypted ciphertext) directly to the re-encryption circuit.

After this changes, since we can erase the information of this hardwired outputs by using

the power of the PPRF, we succeed to prove the security of our scheme same as the proof

of [98].

Theorem 12. If the iO is an indistinguishability obfuscator, PRG is computationally

secure, F is a secure PPRF, then the proposed MUPRE scheme is CPA secure.

Let A be any PPT adversary that attacks the CPA security of the proposed MUPRE

scheme. We consider the following sequence of games.

Game 0: This is the CPA-MUPRE game.

Game 1: Same as Game 0, except for the encryption circuit of the challenge user. In

the construction of C∗Enc, it does not compute t ← PRG(r). It randomly chooses

t∗ ← {0, 1}2k and uses it instead.
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Game 2: Same as Game 1, except for the re-encryption circuit CREnc∗→j
which re-encrypts

from the challenge user to a user j. We change the re-encryption circuit from CREnc∗→j

to C′REnc∗→j
as in Fig. 5.4. First, it calculates the outputs when (ct∗1, 0) and (ct∗1, 1)

are input to the re-encryption circuit CREnc∗→j
. Here, we describe this hardwired

outputs (=re-encrypted ciphertexts) as c̃t∗0 and c̃t
∗
1, respectively. Next, it computes a

punctured key K∗(t∗) ← Punc(K∗, t∗) and K ′(t∗∥0, t∗∥1) ← Punc(K ′, {t∗∥0, t∗∥1}).
Then, it constructs a re-encryption circuit C′REnc∗→j

as in Fig.5.4. We execute this

game hop q times (q is a number of RKG queries from A) and change all the re-

encryption circuits from the challenger user to a user of {PK∗}(∈ pk∗ ∪ {pkj}nj=1).

Re-encryption Circuit C′REnc∗→j
:

Input: cti (a ciphertext of the challenge user).

Hardwire: Punctured key K∗(t∗),

iO(k, CEncj ),
Punctured key K ′(t∗∥0, t∗∥1)),
Two ciphertexts c̃t∗0 and c̃t∗1.

1. If the input ciphertext is (ct∗1, 0),

then it outputs c̃t∗0, and else if (ct∗1, 1) is input,

then outputs c̃t∗1.

After that, it aborts without executing

any following steps.

2. Compute m = ct2 ⊕ F (Ki, ct1).

3. Compute r′ := F ′(K ′(t∗∥0, t∗∥1), ct1∥ct2).
4. Compute ctj :=iO(k, CEncj )(m, r′).
5. Output ctj = (ct1, ct2) = (t′, F (Kj , t

′)⊕m).

Here, we denote t′ := PRG(r′).

Figure 5.4: Re-encryption Circuit C′REnc∗→j

Game 3: Same as Game 2, except for the second component of the hardwired ciphertexts

in the re-encryption circuit C′REnc∗→j
that re-encrypts from the challenge user to user

j. It replaces the second component of the hardwired ciphertexts to a randomness

which is randomly chosen from {0, 1}. We execute this game hop (n+ 1) times and

change all re-encryption circuits that re-encrypt from the challenge user to the user

of {PK∗}(∈ pk∗ ∪ {pkj}nj=1).

Game 4: Same as Game 3, except for the hardwired key in the encryption circuit of the

challenge user. It replaces the hardwired key K∗ to the punctured key K∗(t∗) ←
Punc(K∗, t∗) in the encryption circuit C∗Enc.

Game 5: Same as Game 4, except for the second component of the challenge ciphertext.

It does not choose b← {0, 1} and compute F (K∗(t∗), t∗)⊕mb. Instead, it randomly

chooses z∗ ← {0, 1} and sets (t∗, z∗) as the challenge ciphertext.
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For i ∈ [5], letWi be the event that the CPA-MUPRE adversary A succeeds in guessing

the challenge bit b in Game i (i.e. b′ = b occurs). The advantage of A is, by definition,

AdvCPA-MUPRE
(A,n) (k) = |Pr[W0]− 1

2 |. By the triangle inequality, we have:

AdvCPA-MUPRE
(A,n) (k) ≤

4∑
α=0

|Pr[Wα]− Pr[Wα+1]|+ |Pr[W5]−
1

2
| (5.1)

We complete the proof by upperbounding each term in the right-hand side of the above

inequality to be negligible.

Lemma 14. If the PRG is secure pseudorandom number generator, |Pr[W0]−Pr[W1]| is
negligible.

Proof of Lemma 14. We show that we can construct a PRG adversary B such that

AdvPRGB (k) = |Pr[W0]− Pr[W1]|. The description of B is as follows:

First, B is given γ∗ from the challenger. Here, this γ∗ is PRG(s) (s ← {0, 1}k) or

randomly chosen {0, 1}2k. B generates the honest users’ key pairs {pki, ski}i∈[n]. B sets

t∗ := γ∗, constructs the encryption circuit CEnc∗ , and generates a pk∗ :=iO(CEnc∗). Then,
B gives {(pki}i∈[n] and pk∗ to A.
B answers to A’s challenge query and RKG queries in exactly the same way as Game

0. Finally, when A outputs the guess bit b′ ∈ {0, 1}, B judges that γ∗ is PRG(s) if b′ = b.

Otherwise, B judges that γ∗ is {0, 1}2k. Then, B outputs this result and aborts.

The above completes the description of B. Note that when γ∗ is PRG(s), B completely

simulates the Game 0 to A, and when γ∗ is {0, 1}2k, B completely simulates the Game 1

to A. Therefore, if the AdvPRGB (k) is negligible, |Pr[W0]− Pr[W1]| is also negligible.

Lemma 15. If the iO is indistinguishability obfuscator, |Pr[W1]− Pr[W2]| is negligible.

Proof of Lemma 15. We show that we can construct a iO adversary B = (B1,B2) such
that AdviO(B1,B2)

(k) = |Pr[W1]− Pr[W2]|. The description of B is as follows:

First, B1 is given 1k from the challenger. B runs KG(1k) and generates the challenge

user’s key pair (pk∗, sk∗) and the honest user’s key pairs {pki, ski}i∈[n]. Then, B1 ran-

domly chooses t∗ ∈ {0, 1}2k. B sets σ := (1k, pk∗, sk∗, {pki, ski}i∈[n], t∗). After that, B1
constructs a re-encryption circuit CREnc as in Fig.5.3. We denote this circuit as C0. Next,

B1 inputs (t∗, 0) and (t∗, 1) to this re-encryption circuit CREnc and computes the outputs.

Then, B1 hardwires these two outputs to the CREnc, and rewrite this circuit to output the

hardwired value when (t∗, 0) and (t∗, 1) are input, respectively. In addition, B1 computes

the punctured key K∗(t∗) and K ′(S ∈ {t∗∥0, t∗∥1}), and replaces the PPRF key K∗ to

K∗(t∗) and K ′ to K ′(S ∈ {t∗∥0, t∗∥1}) in re-encryption circuit. We denote this circuit as

C1. Note that the functionality of these two circuits C0 and C1 are completely same. B1
outputs (σ, C0, C1) and aborts.

B2 is given σ and iO(k, C∗) from the challenger. Here, this iO(k, C∗) is iO(k, C0) or

iO(k, C1). B2 gets out pk∗ and {pki}i∈[n] from the σ and inputs them to A. B2 answers to

A’s challenge query and RKG queries in exactly the same way as Game 1 other than RKG

query from the challenge user to user j. When the re-encryption key from the challenge

user to user j is queried from A, B2 returns the iO(k, C∗) to A. Finally, when A outputs

the guess bit b′ ∈ {0, 1}, B2 judges that iO(k, C∗) is iO(k, C0) if b′ = b. Otherwise, B2
judges that iO (k, C∗) is iO(k, C1). Then, B2 outputs this result and aborts.
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The above completes the description of B. Note that when iO(k, C∗) is iO(k, C0), B
completely simulates the Game 1 to A, and when iO(k, C∗) is iO(k, C1), B completely

simulates the Game 2 to A. Therefore, if the AdviO(B1,B2)
(k) is negligible, |Pr[W1]−Pr[W2]|

is also negligible.

Lemma 16. If the F is secure PPRF, |Pr[W2]− Pr[W3]| is negligible.

Proof of Lemma 16. We show that we can construct a PPRF adversary B = (B1,B2)
such that AdvPPRF(B1,B2)

(k) = |Pr[W2]− Pr[W3]|. The description of B is as follows:

First, B1 is given 1k from the challenger. B1 randomly chooses t∗ ← {0, 1}2k. B1 sets

the puncture point S := t∗, outputs S and state σ := 1k, and aborts.

B2 is given (τ,K∗(S), S, Z) from the challenger. Here, this Z is F (K∗, S) or Um(k·|S|).

First, B2 sets sk∗ := K∗(S). Then, B2 constructs a re-encryption circuit CREnc as in Fig.5.3

by using sk∗ and t∗, and sets pk∗ :=iO(CEnc). B2 generates the honest user’s key pairs

{pki, ski}i∈[n] and inputs pk∗ and {pki}i∈[n] to A. B2 answers to A’s challenge query and

RKG queries in exactly the same way as Game 2 other than the RKG query from the

challenge user to user j. When the RKG query from the challenge user are asked, B2
responds as follows: First, B2 computes y0 = 0 ⊕ Z and y1 = 1 ⊕ Z. Next, B2 randomly

chooses PPRF key K ′. Then, B2 computes ĉti = yi⊕F (K ′, t∗∥i) for i = 0 and i = 1. After

that, B2 computes K ′(t∗∥0, t∗∥1)← Punc(K ′, {t∗∥0, t∗∥1}) and constructs a re-encryption

circuit as in Fig.5.3 by using t∗,K(t∗) and K ′(t∗∥0, t∗∥1). Differently from the Game 2, B
sets two hardwired ciphertexts as ĉt0 and ĉt1, respectively. Then, B obfuscates this circuit

and returns it as a re-encryption key from the challenge user to user j. Finally, when A
outputs the guess bit b′ ∈ {0, 1}, B2 judges that Z is F (K∗, S) if b′ = b. Otherwise, B2
judges that Z is Um(k)·|S|. Then, B2 outputs this result and aborts.

The above completes the description of B. Note that when Z is F (K∗, S), B completely

simulates the Game 2 to A, and when Z is Um(k)·|S|, B completely simulates the Game

3 to A. Therefore, if the AdvPPRF(B1,B2)
(k) is negligible, |Pr[W2] − Pr[W3]| is also negligible.

Lemma 17. If the iO is indistinguishability obfuscator, |Pr[W3]− Pr[W4]| is negligible.

Proof of Lemma 17. We show that we can construct a iO adversary B = (B1,B2) such
that AdviO(B1,B2)

(k) = |Pr[W3]− Pr[W4]|. The description of B is as follows:

First, B1 is given 1k from the challenger, B runs KG(1k) and generates the challenge

user’s key pair (pk∗, sk∗) and the honest user’s key pairs {pki, ski}i∈[n]. Then, B1 randomly

chooses t∗ ∈ {0, 1}2k and sets σ := (K∗, t∗). After that, B1 randomly chooses a PPRF key

K∗ and constructs a encryption circuit as in Fig.5.2 by using K∗. We denote this circuit

as C0. Next, B1 computes K(t∗)← Punc(K∗, t∗) and constructs a encryption circuit as in

Fig.5.2 by using K∗(t∗). We denote this circuit as C1. Note that the functionality of these

two circuits C0 and C1 are completely same except for when the t∗ is input. However, that

t∗ is not a image of the PRG with overwhelming probability. B1 outputs (σ, C0, C1) and

aborts.

B2 is given σ and iO(k, C∗) from the challenger. Here, this iO(k, C∗) is iO(k, C0) or

iO(k, C1). B2 gets out {pki}i∈[n] from the σ and sets pk∗ := iO(k, C∗). Then, B2 inputs

them to A. B2 answers to A’s challenge query and the RKG queries in exactly the same

way as Game 3. Finally, when A outputs the guess bit b′ ∈ {0, 1}, B2 judges that iO(k, C∗)
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is iO(k, C0) if b′ = b. Otherwise, B2 judges that iO (k, C∗) is iO(k, C1). Then, B2 outputs

this result and aborts.

The above completes the description of B. Note that when iO(k, C∗) is iO(k, C0), B
completely simulates the Game 3 to A, and when iO(k, C∗) is iO(k, C1), B completely

simulates the Game 4 to A. Therefore, if the AdviO(B1,B2)
(k) is negligible, |Pr[W3]−Pr[W4]|

is also negligible.

Lemma 18. If the F is secure PPRF, |Pr[W4]− Pr[W5]| is negligible.

Proof of Lemma 18. We show that we can construct a PPRF adversary B = (B1,B2)
such that AdvPPRF(B1,B2)

(k) = |Pr[W4]− Pr[W5]|. The description of B is as follows:

First, B1 is given 1k from the challenger. B1 randomly chooses t∗ ← {0, 1}2k. B1 sets

the puncture point S := t∗, outputs S and state σ := 1k, and aborts.

B2 is given (τ,K∗(S), S, Z) from the challenger. Here, this Z is F (K∗, S) or Um(k·|S|).

First, B2 sets sk∗ := K∗(S). Then, B2 constructs a encryption circuit CEnc as in Fig.5.2

by using sk∗ and t∗, and sets pk∗ :=iO(CEnc). B2 generates the honest users’ key pairs

(pki, ski)i∈[n] and inputs pk∗ and {pki}i∈[n] to A. B2 answers to A’s RKG queries in exactly

the same way as Game 4. When A asks challenge query, B2 responds as follows: First, B2
chooses random b ∈ {0, 1}. Then, B2 sets ct∗ = (ct∗1, ct

∗
2) := (t∗, Z ⊕mb) and returns ct∗

to A. Finally, when A outputs the guess bit b′ ∈ {0, 1}, B2 judges that Z is F (K∗, S) if

b′ = b. Otherwise, B2 judges that Z is Um(k)·|S|. Then, B2 outputs this result and aborts.

The above completes the description of B. Note that when Z is F (K∗, S), B completely

simulates the Game 4 to A, and when Z is Um(k)·|S|, B completely simulates the Game

5 to A. Therefore, if the AdvPPRF(B1,B2)
(k) is negligible, |Pr[W4] − Pr[W5]| is also negligible.

Lemma 19. |Pr[W5]− 1
2 | = 0.

Proof of Lemma 19. In Game 5, the challenge ciphertext contains no information about

challenge bit b. Therefore, |Pr[W5]− 1
2 | = 0.

Lemmas 14 to 19 guarantee that the right hand side of the inequation (5.1) is negligible,

and thus A has negligible advantage in the CPA-MUPRE game. Since the negligible up-

perbound of the advantage can be shown for any CPA-MUPRE adversary A, we conclude
that our proposed MUPRE scheme is CPA secure. This completes the proof of Theorem

12.

5.4 Conclusion

In this chapter, we proposed a MUPRE scheme via iO and proved its CPA security.

Achieving the CCA-secure MUPRE is future work. In addition, as the technique which

is used in the security proof of this research seems interesting, finding the applications of

this technique is also future work.

Although the iO is theoretically a big hummer, we cannot expect its practicality for a

while. In our construction, we need an obfuscator for “Dec-then-ReEnc” circuit and need

not a obfuscator for arbitrary circuit. Cryptographic obfuscator for specific circuit may

work within the realistic time. In this situation, we can find the practical meaning for the

cryptosystems based on iO. We hope the research directions like this in the future.
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Chapter 6

Provably Secure Password Reset

Protocols

6.1 Introduction

6.1.1 Background and Motivation

User authentication is one of the fundamental research themes not only in theory but

also in practice. Although there are some unsolved problems, password-based user au-

thentication systems are widely used in practice because of their usability and some other

advantages. One of the unsolved problems is that users may forget their passwords, and

this problem cannot be avoided as long as the user is a human. One may expect that

we can overcome this problem by alternatives such as graphical password [105], biomet-

rics [68], etc. However, these authentication methods also need backup authentication

systems when users are unable to perform the primary authentication due to operational

errors, physical problems, etc. To make matters worse, they have their own problems.

Their problems in primary authentication may include insufficient entropy of biomet-

ric information, wolves/lambs [41], and the initial/operational cost of additional devices.

Their problems in backup authentication can be even more complicated. For example,

if an officer can attend on users at authentication devices, some of the problems in the

primary authentication may be solved promptly (e.g. operational errors) but others may

stay still hard (e.g. severe physical problems such as a burn on a finger in biometrics).

It should be noted that relying on such an officer costs a lot, and may cause some other

problems (e.g. privacy problems).

A potential advantage of password-based authentication is a clear reset scenario in

backup authentication: if a password which is valid in the next execution of the primary

authentication can be securely delivered to a user who is unable to perform the primary

authentication, the user can be rescued by the delivered password. Thus we reach our

main research question: can we design a provably secure protocol for this reset (namely, a

provably secure password reset protocol)?

In existing websites which rely on password-based authentication, backup authentica-

tion for reissuing a valid password often uses personal information (e.g. e-mail address,

answers to secret questions, etc.) which was provided by the user in the initial registration

procedure. Although such backup authentication mechanisms are convenient for users,
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their security relies on nothing but heuristic evaluation or intuition. Even in the case of a

provably secure primary authentication protocol such as PAKE (password-authenticated

key exchange) [17, 16, 29, 71], its provable security is meaningless in practice if it is used

with a heuristic (and hence, potentially weak) password reset protocol. Bonneau et al. [27],

in fact, showed that the security of the secret question (which is a popular backup authen-

tication mechanism) is not enough. In order to prevent the cat-and-mouse game between

attacks and heuristic countermeasures completely, not only primary authentication but

also backup authentication should be provably secure.

Inspired by the above views, we investigate provably secure password reset protocols

in this chapter. Differently from the existing usable security papers regarding backup

authentication [113, 70, 67, 94, 100, 101, 96, 69, 59], we follow the provable security

approach in cryptography.

We firstly define a model, then provide security definitions of a password reset protocol,

and finally show provably secure protocols. In particular, we propose generic constructions

of a provably secure password reset protocol based on a pseudorandom function and public

key encryption.

The Difficulty of Model Design In a password reset protocol, it is demanded that a

user can re-register a refreshed password under the situation that the user does not have

his/her password. However, in an authentication system that uses only user’s identity and

password which are provided by the user in the initial registration procedure, a legitimate

user who forgets his/her password and an adversary are indistinguishable because the

former does not have a unique information. Therefore, when we consider a password

reset protocol, we have to adopt a different model from standard user authentication

systems. We will easily be able to construct a provably secure password reset protocol

by assuming the existence of a trusted third party (TTP) in the same way as the case of

applied cryptosystems such as identity-based encryption (IBE) [102, 24]. However, as the

fact that mass surveillance has been carried out by NSA becomes clear now, we would

like to avoid assuming such a big brother. A security definition should capture the real

world, and be achievable by a practical protocol (so that we need not require an unrealistic

assumption such as a secure channel between a user and a server with which a refreshed

password can always be securely delivered).

6.1.2 Our Contribution

In this chapter, we consider a provably secure password reset protocol, formalize a model

and security definitions, propose a construction, prove its security, and show the efficiency

of our protocol via prototype implementation. Because of the difficulty that we point out

in Section 6.1.1, we have to consider a different model from standard user authentication

systems to construct a provably secure password reset protocol. In this chapter, we propose

a model that introduces a key for password reset. In our model, the system generates a

reset key in the initial registration procedure. When a user wants to register/reset his/her

password, he/she uses this key in the password registration/reset phase. We assume that

the reset key is securely stored, and the user does not lose the reset key even if the user

forgets his/her password. We discuss the validity of this assumption in Section 6.1.3. In
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our model, a user can choose both primary and refreshed passwords. Moreover, our model

also captures the leakage of a password. In a standard password-based authentication, if

an adversary steals a password of a legitimate user and changes the inside states of the

authentication system (e.g. password, information for backup authentication, etc.), the

legitimate user cannot take back his/her user account. However, in our model, a user who

had his/her password stolen and lost the user account can take back it by using his/her

reset key which is securely stored. To the best of our knowledge, none of the previous user

authentication protocols can realize this property.

First, in this chapter, we formalize a model and security definitions of a password

reset protocol. For simplicity, first, we consider security against passive adversaries. In

this security definition, an adversary is allowed to get all the information by observing

the transcripts between a user and the server. After that (in Section 6.4.2), we also

consider security against active adversaries that can mount man-in-the-middle attacks

and concurrent attacks by extending the security definitions for passive adversaries. Then

we propose a generic construction based on a pseudorandom function and public key

encryption. The security that we require for these building blocks is popular one, and

a number of concrete schemes that satisfy our requirements have been already known.

Therefore, we can construct many efficient and simple concrete password reset protocols

from this generic construction. Finally, we evaluate the performance of our protocol by

implementing a prototype. The result shows that our protocol has good efficiency, and

can be used in practice.

6.1.3 Introduction of Reset Key

In our model, we introduce a special key for password reset, which we call a reset key, and

assume that it is securely stored. Indeed, this is relatively a strong assumption. Here, we

explain the reasons why we adopt this methodology and how this assumption is reasonable.

1. This assumption is similar to the setting of key-insulated cryptography [43], where

a secret key is updatable by a higher-level secret key that is assumed to be securely

stored. We emphasize that this is not only widely accepted in public-key cryptog-

raphy, but its potential feasibility was pointed out in practical security researches

(e.g. [80, 51]). One may think that if we allow these assumptions, then we may

as well assume that a user does not lose his/her password. However, as considered

in key-insulated cryptography, it is (to some extent) reasonable to assume that the

user does not lose the reset key because the reset key is only required in the case

of emergency and can therefore be securely stored. One may also think that this

assumption does not hold in the system where a user is forced to change his/her

password frequently. However, the assumption still holds because the user who re-

members his/her password can change his/her password in the system without using

a reset key.

2. There exist security protocols in the real world which work as (a valiant of) the

key-insulated setting. For example, widely used hardware security tokens have a

long-term key in itself and generate a one-time password by using it. If this long-

time key is revealed, we can compute a one-time password. We can consider that

the security of these tokens is assured in the key-insulated model.
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3. Our model (to some extent) captures the implementations of password reset pro-

tocols used in the real world. In Facebook, for example, information to reset a

password is sent to a user’s email address registered in the initial registration pro-

cedure. Here, the user’s password to log-in to the email account can be seen as a

reset key. Our model captures an intuition in such real-world protocols, and provides

provable security simultaneously.

4. The problem that we have to solve this time is the one that we do not really care in

the research of cryptography. For example, in the case of IBE, TTP receives a user’s

ID (e.g. user’s email address) and derives a corresponding secret key. However, the

framework of IBE does not offer how to distinguish whether the user really has that

ID or not. In order to use IBE in practice, we have to rely on an infrastructure other

than IBE. An easygoing way to solve this problem is, for instance, to send a derived

secret key to a user’s email address. In this example, we can think of the password

to log-in to the email account as a reset key. This is almost the same case as the

above example of account recovery in Facebook.

Even if we introduce a reset key in the password reset protocol, it does not mean that the

construction or security proof becomes trivial. Intuitively, we can achieve the password

reset functionality by using a symmetric key encryption (SKE). User regards a reset key

as a key of SKE, encrypts a new password by using a reset key, and sends a ciphertext to

the server. However, this simple method is vulnerable to a replay attack. Moreover, this

SKE-based construction seems to fail to satisfy the security definition which is descibed

in Section 6.2.2. We will explain the reason of this in Section 6.3.

6.1.4 Chapter Organization

The remainder of this chapter is organized as follows. In Section 6.2, we introduce the

models and security definitions for a password reset protocol. In addition, we explain how

this protocol is used in practice. In Section 6.3, we present our generic construction of a

password reset protocol and prove its security. In Section 6.4, we discuss the extension

of our proposed construction. In Section 6.5, we show the performance evaluation of our

protocol. Section 6.6 is the conclusion.

6.2 Password Reset Protocol

In this section, we present the model and the security definitions of a password reset

protocol. The proposed model and the security definitions (which are described in Section

6.2.2) are an extension of the existing model and the security definition for identity-based

identification [75, 14]. We assume that a reset key is securely distributed to the client in

some way. We also assume that the reset key is securely stored, and the client does not

lose the reset key even if the client forgets his/her password as assumed in key-insulated

cryptography [43]. One may think that if we allow these assumptions, then we may as

well assume that a client does not lose his/her password. As we discussed in Section 6.1.3,

however, it is (to some extent) reasonable to assume that the client does not lose the reset

key.
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6.2.1 Model

A password reset protocol consists of the following two PPT algorithms (SSetup,RKG)

and two subprotocols

PRR(CP (·)↔ SP (·)) and Auth(CA(·)↔ SA(·)). Let PW denote the password space.

SSetup This is the server setup algorithm that takes 1k as input, and outputs a public

parameter pp and a secret key sk. This process is written as (pp, sk)← SSetup(1k).

RKG This is the reset key generation algorithm that takes a secret key sk and a client’s

identity ID ∈ {0, 1}∗ as input, and outputs a reset key rk. This process is written

as rk ← RKG(sk, ID).

PRR This is the interactive protocol for password (re-)registration between the PPT al-

gorithms CP and SP . Let the identity of a client that runs the algorithm CP be ID.

The algorithm CP takes the identity ID, a password pw ∈ PW, and a reset key rk

as input, the algorithm SP takes the identity ID, a reset key rk, and a secret key

sk as input, and then these algorithms interact with each other. As a result of the

interaction, CP and SP locally output ϕ and pws (which could be ⊥), respectively1.
This process is written as (ϕ, pws)← PRR(CP (ID, pw, rk)↔ SP (ID, rk, sk))

2.

Auth This is the interactive authentication protocol between the PPT algorithms CA and

SA. Let the identity of a client that runs the algorithm CA be ID. The algorithm

CA takes the identity ID and a password pw ∈ PW as input, the algorithm SA
takes the identity ID, pws, and a secret key sk as input, and then these algorithms

interact with each other. As a result of the interaction, CA and SA locally output

ϕ and ⊤/⊥, respectively, where ⊤ (resp. ⊥) means “accept” (resp. “reject”). This

process is written as (ϕ,⊤/⊥)← Auth(CA(ID, pw)↔ SA(ID, pws, sk))
2.

Correctness We require the following correctness property for a password reset pro-

tocol. For any (pp, sk) ← SSetup(1k), any pw ∈ PW, any ID ∈ {0, 1}∗, any rk ←
RKG(sk, ID), any (ϕ, pws) ← PRR(CP (ID, pw, rk) ↔ SP (ID, rk, sk)), we have (ϕ,⊤)
← Auth(CA(ID, pw)↔ SA(ID, pws, sk)).

Remark Here, we explain how to use this protocol in practice. First, the server executes

SSetup and generates a public parameter pp and a secret key sk. In the initial registration

procedure, the server runs RKG and generates a reset key rk for each client. When a client

registers an initial password, a client and the server execute PRR interactively, and a client

registers an initial password pw. In this PRR protocol, the client executes the algorithm

CP , and the server executes the algorithm SP . A client authenticates himself/herself by

using an ID and a pw in Auth protocol. In this Auth protocol, a client executes the

algorithm CA, and the server executes the algorithm SA. When a client forgets his/her

1This pws denotes the information that is supposed to be stored in the server and is used when the

user with password pw next time requests authentication of him/her. We do not require pws = pw hold

in general. (See, e.g. the construction in Section 6.4.)
2The algorithms SP and SA of our proposed scheme need not use a secret key sk. In general, however,

SP and SA are allowed to use sk. In our extended password reset protocol in Section 6.4, in fact, we need

sk in both of the algorithms SP and SA.

83



password pw, a client and the server execute PRR interactively, and the client re-registers

a refreshed password pw′. In this PRR protocol, the client executes the algorithm CP , and

the server executes the algorithm SP .

6.2.2 Security Definitions

In this subsection, we give the formal security definitions of a password reset protocol

and explain what situations our definitions capture. In this section, we consider passive

attacks. Later (in Section 6.4.2), we also consider active attacks. The passive attack

captures the situation in which an adversary observes the transactions between a client

and the server from outside. In our security definitions, an adversary can get all the

information by observing the transactions between a client and the server. Here, we have

to consider the two types of security for a password reset protocol. The first one is that an

adversary who does not have a correct password cannot pass the authentication. We call

it security against impersonation attacks. The second one is that an adversary who does

not have a correct reset key cannot (re-)register a password. We call it security against

illegal registration attacks.

Let D be the dictionary of user’s password.

Impersonation First, we consider security against impersonation under passive attacks

(Imp-PA) for a password reset protocol. This security is defined using the following Imp-

PA game which is played by the challenger B and an adversary A = (A1,A2). First, B
executes (pp, sk) ← SSetup(1k), and generates an empty list L into which tuples of the

form (ID, pw, pws, rk, fragp, fragr) where fragp, fragr ∈ {0, 1} will be stored. These

fragp and fragr are used to indicate whether a client with ID is “corrupted” by A in the

sense that either pw or rk is known to A, in which case A is not allowed to use the ID

for its attack. After key generation, B gives pp to A1. Then A1 can adaptively make the

following types of queries.

Client create query (CCreate): On input ID ∈ {0, 1}∗, B responds as follows. If there

exists a tuple of the form (ID, ∗, ∗, ∗, ∗, ∗) in the list L, B does nothing. Otherwise,

B executes rk ← RKG(sk, ID), and stores (ID,⊥,⊥, rk, 0, 1) into the list L. If A1

makes the following queries (RKR,PRR,Auth) with an identity ID, then this ID

must have appeared as a CCreate query (and thus be stored in the list L).

Reset key reveal query (RKR): On input ID, B finds the tuple of the form (ID, ∗, ∗, rk,
∗, ∗) in the list L, and returns rk to A1. Then, B updates the tuple in the list L by

(ID, ∗, ∗, rk, ∗, 0).

Password (re-)registration transcript query (TransPRR): On input (ID, pw′), B re-

sponds as follows.

1. If pw′ ∈ PW, B first finds the tuple (ID, ∗, ∗, rk, ∗, ∗) in the list L, executes

(ϕ, pw′
s)← PRR(CP (ID, pw

′, rk)↔ SP (ID, rk, sk)), and returns the transcript

transPRR of PRR and the result of registration ⊤/⊥ to A1. Then, B updates

the tuple in the list L by (ID, pw′, pw′
s, ∗, 0, ∗).
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2. If pw′ = ϕ, B first chooses a random password pw′ ∈ D. Next, B finds

the tuple (ID, ∗, ∗, rk, ∗, ∗) in the list L, executes (ϕ, pw′
s) ← PRR(CP (ID,

pw′, rk) ↔ SP (ID, rk, sk)), and returns the transcript transPRR of PRR and

the result of registration ⊤/⊥ to A1. Then, B updates the tuple in the list L

by (ID, pw′, pw′
s, ∗, 1, ∗).

Authentication transcript query (TransAuth): On input (ID, pw′), B responds as fol-

lows.

1. If pw′ ∈ PW, B first finds the tuple (ID, ∗, pws, ∗, ∗, ∗) in the list L, executes

Auth(CA(ID, pw
′)↔ SA(ID, pws, sk)), and returns the transcript transAuth of

Auth and the result of authentication ⊤/⊥ to A1.

2. If pw′ = ϕ, B first finds the tuple (ID, pw, pws, ∗, ∗, ∗) in the list L, executes

Auth(CA(ID, pw) ↔ SA(ID, pws, sk)), and returns the transcript transAuth of

Auth and the result of authentication ⊤/⊥ to A1.

Finally, A1 outputs (ID∗, st). To win the Imp-PA game, the tuple (ID∗, pw∗, pw∗
s , rk

∗,

frag∗p, frag
∗
r ) must exist in the list L and satisfy frag∗p = 1 and frag∗r = 1 (if this is

satisfied, we say that ID∗ satisfies the “winning precondition”). If these conditions are

not satisfied, B decides that A has lost the Imp-PA game. Otherwise, B gives st to

A2. Then A2 and B interactively execute Auth(A2(st) ↔ SA(ID
∗, pw∗

s , sk)). During the

execution of this Auth protocol, A2 can adaptively make queries in the same way as A1.

However, A2 is not allowed to use ID∗ in the RKR and TransPRR queries. Finally, A wins if

the SA’s output of Auth is ⊤. We define the advantage of A by AdvImp-PA
A (k) = Pr[A wins].

Definition 9. Let qA be the number of TransAuth queries by A1. We say that a password

reset protocol is Imp-PA secure if for all PPT adversaries A, AdvImp-PA
A (k) = O(qA)/|D|+

ε(k).

Illegal Registration Second, we consider security against illegal registration under

passive attacks (IR-PA) for a password reset protocol. This security is defined using the

following IR-PA game which is played by the challenger B and an adversary A = (A1,A2).

B’s initial procedure and A1’s queries of this IR-PA game are exactly the same as the Imp-

PA game. Finally, A1 outputs (ID∗, st). To win the IR-PA game, ID∗ must satisfy the

winning precondition. If these conditions are not satisfied, B decides that A has lost

the IR-PA game. Otherwise, B gives st to A2. Then A2 and B interactively execute

PRR(A2(st) ↔ SP (ID
∗, rk∗, sk)). During the execution of this PRR protocol, A2 can

adaptively make the queries in the same way as A1. However, A2 is not allowed to use

ID∗ in the RKR and TransPRR queries. Finally, A wins if SP ’s output of PRR is different

from ⊥. We define the advantage of A by AdvIR-PAA (k) = Pr[A wins].

Definition 10. We say that a password reset protocol is IR-PA secure if for all PPT

adversaries A, AdvIR-PAA (k) is negligible.

Remark Here we explain what situations RKR, TransPRR, TransAuth queries allowed for

an adversary try to capture. An adversary may register the authentication system as a le-

gitimate user and learn which ID/pw is weak, which is captured by RKR queries. Further-

more, the adversary may eavesdrop the communication between honest users and the server
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to obtain all the transcripts. This is captured by TransPRR and TransAuth queries. Note

that for both types of queries, the challenger behaves differently depending on whether

pw′ in the adversary’s input is ϕ or not. The former case (pw′ = ϕ) captures the situation

where the protocols are run by honest users.; The latter case (pw′ ̸= PW) has different

meanings depending on the types of queries. A TransPRR query with pw′ ̸= PW captures

the situation where the adversary itself tries to learn information from the transcript of

the PRR protocol by executing it honestly, using the adversarially chosen password pw′.

We may also be able to think of it as capturing the situation where an honest user registers

a password that is known to an adversary for some reason (e.g. because of the choice of

an easy-to-guess password).; A TransAuth query with pw′ ̸= PW captures the case where

again the adversary itself tries to learn information from the transcript of Auth protocol

by executing it honestly, using the (adversarially chosen) password pw′. It also in some

sense captures the situation where an honest user forgets (or mistypes) his/her password.

6.3 Proposed Construction

In this section, we propose a generic construction of a password reset protocol which

satisfies the security definitions in Section 6.2.2.

6.3.1 Construction

In this subsection, we show a generic construction of a password reset protocol based on

a PRF and PKE.

Intuition Before showing our construction, we explain an intuition of our proposed

protocol. In our protocol, we set a reset key rk := F (K, ID). In the password reset

procedure, a user encrypts a randomness (which is sent by the server), a reset key, and

a password by using a PKE scheme, and sends a ciphertext to the server. The server

decrypts the ciphertext and gets a password. The authentication procedure is very similar

to the password reset procedure. A user encrypts a randomness (which is sent by the

server) and a password by using a PKE scheme, and sends a ciphertext to the server.

The server decrypts the ciphertext, and checks whether the decryption result matches

the registered password or not. The security of PKE (and the PRF) ensures that the

transcripts do not leak the information of the passwords of honest users, and hence an

adversary who wants to impersonate an uncorrupted user (with an unknown password)

essentially has to guess the password.; In both PRR and Auth protocols, the randomness

chosen by the server prevents “replay” attacks.

How Straightforward SKE-based Construction May Fail Suppose we want to

reduce the security of a password reset protocol to the security of SKE. Recall that in

our Imp-PA security game, an adversary A is allowed to issue reset key reveal (RKR)

queries for ID’s that are not the challenge ID∗. This means that the reduction algorithm

cannot embed its problem instance regarding SKE into the reset keys of users who will

be corrupted. Therefore, the most natural approach for designing the reduction algorithm

(that attacks the security of SKE) using an adversary A against the Imp-PA security of
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SSetup(1k) :

(pk, dk)← PKG(1k)

Choose a random K ∈ {0, 1}k

pp := pk; sk := (K, dk)

return (pp, sk).

RKG(sk, ID) :

(K, dk)← sk

rk := F (K, ID)

return rk.

(ϕ, pws)← PRR(CP (ID, pw, rk)↔ SP (ID, rk, sk)) :

1. SP chooses a randomness r ∈ {0, 1}k and sends it to CP

2. CP executes c← PEnc(pk, ID∥r∥rk∥pw) and sends it to SP
3-1. SP executes ID′∥r′∥rk′∥pws ← PDec(dk, c)

3-2. If ID′ = ID, r′ = r, and rk′ = rk hold, SP returns pws

else SP returns ⊥.
(ϕ,⊤/⊥)← Auth(CA(ID, pw)↔ SA(ID, pws, sk)) :

1. SA chooses a randomness r ∈ {0, 1}k and sends it to CA

2. CA executes c← PEnc(pk, ID∥r∥pw) and sends it to SA
3-1. SA executes ID′∥r′∥pw′ ← PDec(dk, c)

3-2. If ID′ = ID, r′ = r, and pw′ = pws hold, SA returns ⊤
else SA returns ⊥.

Figure 6.1: The proposed generic construction of a password reset protocol

a considered password reset protocol, will be to guess the index ℓ of A’s CCreate query

(for which A specifies ID∗) and embed the instance of the reduction algorithm’s problem

into the challenge user’s ID∗. However, once we do this, the number of CCreate queries

appears in the numerator of the formula of the advantage, namely, what we will be able

to show is something like AdvImp-PA
A ≤ O(qCqA)/|D|+ ε(k), where qC is the number of A’s

CCreate queries. However, Imp-PA security requires that AdvImp-PA
A is upper-bounded by

O(qA)/|D| + ε(k), and thus the straightforward approach using SKE is not sufficient for

proving Imp-PA security.

Although there could exist a way to avoid this problem by developing a new proof

strategy, we try to solve this problem by using PKE scheme.

Our Construction Now, we formally describe the password reset protocol. Let F :

{0, 1}k ×{0, 1}∗ → {0, 1}k be a pseudorandom function and (PKG,PEnc,PDec) be a PKE

scheme. Using these as building blocks, our password reset protocol is constructed as in

Fig. 6.1.

6.3.2 Security Proof

In this subsection, we show security proofs of the proposed password reset protocol in Fig.

6.1.
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Theorem 13. If F is a PRF and the PKE scheme is mIND-CCA secure3, then the

proposed password reset protocol in Fig. 6.1 satisfies Imp-PA security.

Let A = (A1,A2) be an Imp-PA adversary of the password reset protocol, qA be the

number of TransAuth queries by A1. Here, qA is a polynomial of the security parameter k.

Consider the following sequence of games.

Game 0. This is exactly the Imp-PA game.

Game 1. This game proceeds in the same way as Game 0, except that the first messages

r of SA picked in the executions of PRR (in the response to A’s TransPRR query)

and Auth (either in the response to A’s TransAuth query or in the challenge phase),

are picked from {0, 1}k\{r’s that are already used}, so that they are all distinct

and never collide. For notational convenience, in this and subsequent games, we

introduce the list R that is used to store r’s that are used in the response to the

TransPRR query, TransAuth query, and in the execution of Auth in the challenge phase,

and we make the challenger choose r uniformly at random from {0, 1}k\R every time

it needs to choose r for PRR and Auth, and put the used r into the list R.

Game 2. This game proceeds in the same way as Game 1, except that if A1 issues RKG

queries on ID, then instead of using the result of F (K, ID), B picks rk uniformly

at random from the range of F , and uses it as the reset key corresponding to ID.

Game 3. This game proceeds in the same way as Game 2, except for the following two

points.

• If A1 issues a TransPRR query on ID, then instead of using the result of

PEnc(pk, ID∥r∥rk∥pw), B executes c ← PEnc(pk, ID∥r∥0|rk|+|pw|), and uses

r and c as the transPRR corresponding to ID.

• If A1 issues a TransAuth query on ID, then instead of using the result of

PEnc(pk, ID∥r∥pw), B executes c← PEnc(pk, ID∥r∥0|pw|), and uses r and c as

the transAuth corresponding to ID. In addition, when B calculates the output

of SP (i.e. ⊤/⊥) only by checking pw = pws where pws is the value found in

the tuple corresponding to ID in the list L, without running PDec.

For i ∈ {0, 1, 2, 3}, we define the event Wi as the event that A wins in Game i. The

advantage of A is, by definition, AdvImp-PA
A (k) = Pr[W0]. We complete the proof by using

the following inequality, and the upper bounds in the terms in the right hand side are

shown in Lemmas 20 to 23.

Pr[W0] ≤
2∑

i=0

|Pr[Wi]− Pr[Wi+1]|+ Pr[W3] (6.1)

Lemma 20. |Pr[W0]− Pr[W1]| is negligible.

Proof. The difference |Pr[W0]− Pr[W1]| can be upperbounded by the statistical distance

between the distributions of r’s used in PRR (in the responses to A’s TransPRR queries) and

3Strictly speaking, multi-challenge 1-bounded CCA secure PKE [38] is enough for the security proof.
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Auth (in the responses to A’s TransAuth queries and in Auth the challenge phase) in Game

0 and those in Game 1. Since the number of r’s in the games is at most (qP + qA+1), the

statistical distance between the distributions is at most (qP + qA + 1)2/2k.

Lemma 21. If F is a PRF, |Pr[W1]− Pr[W2]| is negligible.

Proof. We show that we can construct an adversary B against the PRF F . The description

of B is as follows:

First, the challenger chooses a keyK ∈ {0, 1}k and the challenge bit {0, 1} uniformly at

random (which are both unknown to B). B executes (pk, dk)← PKG(1k) and generates an

empty list L which will be used to store tuples of the form (ID, pw, pws, rk, fragp, fragr).

B also generates an empty list R. After that, B gives pp := pk to A1.

When A1 makes a CCreate query ID, B responds as follows.

1. If there exists a tuple (ID, ∗, ∗, ∗, ∗, ∗) in the list L, B does nothing.

2. Otherwise, B submits the identity ID to the challenger, and receives rk. This rk is

F (K, ID) if b = 0 and is a random string in the range of F if b = 1. After that, B
stores (ID, ϕ, ϕ, rk, 0, 1) into the list L.

When A1 makes a PR query ID, B finds the tuple (ID, pw, ∗, ∗, ∗, ∗) in the list L, and

returns pw to A1. Then, B updates the tuple in the list L by (ID, ∗, ∗, ∗, 0, ∗).
When A1 makes a RKR query ID, B finds the tuple (ID, ∗, ∗, rk, ∗, ∗) in the list L,

and returns rk to A1. Then, B updates the tuple in the list L by (ID, ∗, ∗, ∗, ∗, 0).
When A1 makes a TransPRR query (ID, pw′) where pw′ ∈ PW ∪ {ϕ}, B responds as

follows. First, B finds the tuple (ID, ∗, ∗, rk, ∗, ∗) in the list L.

1. If pw′ ∈ PW, B chooses a randomness r ∈ {0, 1}k. Next, B executes c ← PEnc(pk,

ID∥r∥rk∥pw′) and ID′∥r′∥rk′∥pw′
s ← PDec(dk, c). Then, B returns transPRR :=

(r, c) and the registration result z := ⊤ to A1. After that, B updates the tuple in

the list L by (ID, pw′, pw′
s, ∗, 0, ∗) and adds r to the list R.

2. If pw′ = ϕ, B first chooses a random password pw′ ∈ D (where D is the dictionary

from which an honest user is assumed to sample his/her password) and a randomness

r ∈ {0, 1}k. Next, B executes c ← PEnc(pk, ID∥r∥rk∥pw′) and ID′∥r′∥rk′∥pw′
s ←

PDec(dk, c). Then, B returns transPRR := (r, c) and the registration result z := ⊤
to A1. After that, B updates the tuple in the list L by (ID, pw′, pw′

s, ∗, 1, ∗) and

adds r to the list R.

When A1 makes a TransAuth query (ID, pw′) where pw′ ∈ PW ∪ {ϕ}, B responds as

follows. First, B finds the tuple (ID, pw, pws, ∗, ∗, ∗) in the list L.

1. If pw′ ∈ PW, B chooses a randomness r from {0, 1}k\R, executes c← PEnc(pk, ID∥
r∥pw′) and ID′′∥r′′∥pw′′ ← PDec(dk, c). Next, B sets z := ⊤ if ID′′ = ID, r′′ = r,

and pw′′ = pws hold. Otherwise, B sets z := ⊥. Then, B returns transAuth := (r, c)

and the authentication result z to A1. After that, B adds r to the list R.

2. If pw′ = ϕ, B chooses a randomness r from {0, 1}k\R, executes c← PEnc(pk, ID∥r∥
pw) and ID′′∥r′′∥pw′′ ← PDec(dk, c). Next, B sets z := ⊤ if ID′′ = ID,r′′ = r, and

pw′′ = pws hold. Otherwise, B sets z := ⊥. Then, B returns transAuth := (r, c) and

the authentication result z to A1. After that, B adds r to the list R.
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Finally, A1 terminates with (ID∗, st). B outputs b′ = 1 and aborts when the identity

ID∗ does not satisfy the winning precondition. Otherwise, B chooses r∗ uniformly at

random from {0, 1}k\R, and gives r∗ and st to A2. B can respond to the queries from

A2 in the same way as B did for A1. However, when A2 submits ID∗ as a RKR or

TransPRR query, B returns ⊥ to A2. Finally, A2 terminates with c∗. Next, B executes

r′∗∥pw′∗ ← PDec(dk, c∗). Then, B finds the tuple (ID∗, ∗, pw∗
s , ∗, ∗, ∗) in the list L and

checks whether the conditions r′∗ = r∗ and pw′∗ = pw∗
s hold or not. If these conditions

hold, B terminates with b′ = 0. Otherwise, B terminates with b′ = 1.

The above completes the description of B. It is not hard to see that B perfectly

simulates Game 1 for A when B’s challenge bit b = 0, and Game 2 when b = 1. When

the challenge bit of B is 0 and B does not abort before A terminates, B’S responses to

A’s queries are performed in exactly the same way as those in Game 1. In addition,

B outputs 0 only if B does not abort and A2 succeeds in outputting a ciphertext c∗ =

PEnc(pk, ID∗∥r∗∥pw∗
s). Therefore, Pr[b′ = 0|b = 0] = Pr[W1]. On the other hand, when

the challenge bit of B is 1, the response of the challenger of B is a random string, and

this situation is the same as Game 2. With almost the same discussion as above, we have

Pr[b′ = 0|b = 1] = Pr[W2]. Therefore, AdvPRFB (k) = |Pr[b′ = b] − 1/2| = (1/2)|Pr[b′ =
0|b = 0] − Pr[b′ = 0|b = 1]| = (1/2)|Pr[W1] − Pr[W2]|. Using this equality, and recalling

the assumption that the underlying F is a PRF, we conclude that |Pr[W1] − Pr[W2]| is
negligible.

Lemma 22. If the PKE scheme is mIND-CCA secure, |Pr[W2]− Pr[W3]| is negligible.

Proof. We show that we can construct a multi-challenge IND-CCA adversary B against

the underlying PKE scheme. The description of B is as follows:

First, the challenger executes (pk, dk) ← PKG(1k) and chooses the challenge bit b ∈
{0, 1} uniformly at random. Then, the challenger gives pk to B. B chooses a random key

K ∈ {0, 1}k for PRF F and generates an empty list L which will be used to store tuples

of the form (ID, pw, pws, rk, fragp, fragr). B also generates an empty list R. After that,

B gives pp := pk to A1.

When A1 makes a CCreate query ID, B responds as follows.

1. If there exists a tuple (ID, ∗, ∗, ∗, ∗, ∗) in the list L, B does nothing.

2. Otherwise, B chooses rk ∈ {0, 1}k uniformly at random from the range of F and

gives rk to A1. After that, B stores the tuple (ID, ϕ, ϕ, rk, 0, 1) into the list L.

When A1 makes a PR query ID, B finds the tuple (ID, pw, ∗, ∗, ∗, ∗) in the list L, and

returns pw to A1. Then, B updates the tuple in the list L by (ID, ∗, ∗, ∗, 0, ∗).
When A1 makes a RKR query ID, B finds the tuple (ID, ∗, ∗, rk, ∗, ∗) in the list L,

and returns rk to A1. Then, B updates the tuple in the list L by (ID, ∗, ∗, ∗, ∗, 0).
When A1 makes a TransPRR query (ID, pw′) where pw′ ∈ PW ∪ {ϕ}, B responds as

follows. First, B finds the tuple (ID, ∗, ∗, rk, ∗, ∗) in the list L.

1. If pw′ ∈ PW, B chooses a randomness r ∈ {0, 1}k, submits (ID∥r∥rk∥pw′, ID∥r∥
0|rk|+|pw′|) to the challenger, and receives c. This c is PEnc(pk, ID∥r∥rk∥pw′) if b = 0

and is PEnc(pk, ID∥r∥0|rk|+|pw′|) if b = 1. Then, B returns transPRR := (r, c) and

90



the registration result z := ⊤ to A1. After that, B updates the tuple in the list L

by (ID, pw′, pw′, ∗, 0, ∗) and adds r to the list R.

2. If pw′ = ϕ, B chooses a random password pw′ ∈ D (where D is the dictionary)

and a randomness r ∈ {0, 1}k, submits (ID∥r∥rk∥pw′, ID∥r∥0|rk|+|pw′|) to the chal-

lenger, and receives c. This c is PEnc(pk, ID∥r∥rk∥pw′) if b = 0 and is PEnc(pk,

ID∥r∥0|rk|+|pw′|) if b = 1. Then, B returns transPRR := (r, c) and the regis-

tration result z := ⊤ to A1. After that, B updates the tuple in the list L by

(ID, pw′, pw′, ∗, 1, ∗) and adds r to the list R.

When A1 makes a TransAuth query (ID, pw′) where pw′ ∈ PW ∪ {ϕ}, B responds as

follows. First, B finds the tuple (ID, pw, pws, ∗, ∗, ∗) in the list L.

1. If pw′ ∈ PW, B chooses a randomness r from {0, 1}k\R, submits (ID∥r∥pw′, ID∥r∥
0|pw

′|) to the challenger, and receives c. This c is PEnc(pk, ID∥r∥pw′) if b = 0 and is

PEnc(pk, ID∥r∥0|pw′|) if b = 1. Next, B sets z := ⊤ if pw′ = pws holds. Otherwise,

B sets z := ⊥. Then, B returns transAuth := (r, c) and the authentication result z

to A1. After that, B adds r to the list R.

2. If pw′ = ϕ, B chooses a randomness r from {0, 1}k\R, submits (ID∥r∥pw, ID∥r∥0|pw|)

as a challenge query to the challenger, and receives c. This c is PEnc(pk, ID∥r∥pw)
if b = 0 and is PEnc(pk, ID∥r∥0|pw|) if b = 1. Next, B sets z := ⊤ if pw = pws holds.

Otherwise, B sets z := ⊥. Then, B returns transAuth := (r, c) and the authentication

result z to A1. After that, B adds r to the list R.

Finally, A1 terminates with (ID∗, st). B outputs b′ = 1 and aborts when the identity

ID∗ does not satisfy the winning precondition. Otherwise, B chooses r∗ uniformly at

random from {0, 1}k\R, and gives r∗ and st to A2. B can respond to the queries from

A2 in the same way as B did for A1. However, when A2 submits ID∗ as a RKR or

TransPRR query, B returns ⊥ to A2. Finally, A2 terminates with c∗. If this c∗ is one of the

ciphertexts used as a response to the TransPRR or TransAuth queries, B stops the Imp-PA

game, decides that A has lost the Imp-PA game, and terminates with b′ = 1. Next, B
submits c∗ as a decryption query4 to the challenger, and receives ID∗∥r′∗∥pw′∗. Then, B
finds the tuple (ID∗, ∗, pw∗

s , ∗, ∗, ∗) in the list L and checks whether the conditions r′∗ = r∗

and pw′∗ = pw∗
s hold or not. If these conditions hold, B terminates with output b′ = 0.

Otherwise, B terminates with output b′ = 1.

The above completes the description of B. It is not hard to see that B perfectly

simulates Game 2 when B’s challenge bit b = 0, and Game 3 when b = 1. When the

challenge bit of B is 0 and B does not abort before A terminates, B responses to A’s queries
are distributed identically to those in Game 2. In addition, B outputs 0 only if B does not

abort andA2 succeeds in outputting a ciphertext c∗ satisfying PDec(dk, c∗) = ID∗∥r∗∥pw∗
s .

Therefore, Pr[b′ = 0|b = 0] = Pr[W2]. On the other hand, when the challenge bit of B
is 1, A2 succeeds in outputting a ciphertext c∗ satisfying PDec(dk, c∗) = ID∗∥r∥0|pw∗

s |,

and this situation is the same as Game 3. With almost the same discussion as above,

we have Pr[b′ = 0|b = 1] = Pr[W3]. Therefore, AdvmIND-CCA
B (k) = |Pr[b′ = b] − 1/2| =

4This is the only decryption query that B submits, which is the reason why 1-bounded CCA security [38]

suffices.
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(1/2)|Pr[b′ = 0|b = 0] − Pr[b′ = 0|b = 1]| = (1/2)|Pr[W2] − Pr[W3]|. Using this equality,

and recalling the assumption that the underlying PKE scheme is mIND-CCA secure, we

conclude that |Pr[W2]− Pr[W3]| is negligible.

Lemma 23. Pr[W3] ≤ (qA + 1)/|D|.

Proof. Note that in Game 3, the “transcript” part in the responses to the TransPRR and

TransAuth queries contain no information of pw. However, if an adversary makes a TransAuth
query (ID, pw) with pw ̸= ϕ, the “server’s output” part (i.e. ⊤ or ⊥) leaks whether

pw = pw′. However, other than this, no information about pw leaks. Since pw is chosen

randomly from D, the probability that A wins in Game 3 is at most (qA + 1)/|D|.

Lemmas 20 to 23 guarantee that the right hand side of the inequality (6.1) is upper-

bounded by O(qA)/|D|+ ε(k). This completes the proof of Theorem 13.

Theorem 14. If F is a PRF and the PKE scheme is mIND-CCA secure5, then the

proposed password reset protocol in Fig. 6.1 satisfies IR-PA security.

Let A = (A1,A2) be an Imp-PA adversary of the password reset protocol. Let qP be

the number of TransPRR queries by A1. Here, qP is a polynomial of the security parameter.

Consider the following sequence of games.

Game 0. This is exactly the IR-PA game.

Game 1. This game proceeds in the same way as Game 0, except that the first messages r

of SP picked in the execution of PRR (either in the response to A’s TransPRR query or

in the challenge phase) and Auth (in the response to A’s TransAuth query), are picked

from {0, 1}k\{r’s that are already used }, so that they are all distinct and never

collide. For notational convenience, in this and subsequent games, we introduce the

list R that is used to store r’s that are used in the response to the TransPRR query

or in the execution of PRR in the challenge phase and TransAuth query, and we make

the challenger choose r uniformly at random from {0, 1}k\R every time it needs to

choose r for PRR and Auth, and put the used r into the list R.

Game 2. This game proceeds in the same way as Game 1, except that if A1 issues a

TransPRR query on ID, then instead of using the result of F (K, ID), B picks rk

uniformly at random from the range of F , and uses it as the reset key corresponding

to ID.

Game 3. This game proceeds in the same way as Game 2, except that if A1 issues a

TransPRR query on ID, then instead of using the result of PEnc(pk, ID∥r∥rk∥pw),
B executes c ← PEnc(pk, ID∥r∥0|rk|+|pw|), and uses r and c as the transPRR corre-

sponding to ID.

For i ∈ {0, 1, 2, 3}, we define the event Wi as the event that A wins in Game i. The

advantage of A is, by definition, AdvIR-PAA (k) = Pr[W0]. We complete the proof by using

5Multi-challenge 1-bounded CCA secure PKE is enough for the security proof.
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the following inequality, and the upper bounds in the terms in the right hand side are

shown in Lemmas 24 to 27.

Pr[W0] ≤
2∑

i=0

|Pr[Wi]− Pr[Wi+1]|+ Pr[W3] (6.2)

Lemma 24. |Pr[W0]− Pr[W1]| is negligible.

Proof. The difference |Pr[W0]− Pr[W1]| can be upperbounded by the statistical distance

between the distributions of r’s used in PRR (in the response to A’s TransPRR queries and

in the challenge phase) and Auth (in the response to A’s TransAuth queries) used in Game

0 and that in Game 1. Since the number of r’s in the games is at most (qP + qA + 1), the

statistical distance between the distributions is at most (qP + qA + 1)2/2k.

Lemma 25. If the F is a PRF, |Pr[W1]− Pr[W2]| is negligible.

Proof. This proof follows closely to the one of Lemma 21. Therefore, we omit it.

Lemma 26. If the PKE scheme is mIND-CCA secure, |Pr[W2]− Pr[W3]| is negligible.

Proof. We show that we can construct a multi-challenge IND-CCA adversary B against

the underlying PKE scheme. The description of B is as follows:

First, the challenger executes (pk, dk) ← PKG(1k) and chooses the challenge bit b ∈
{0, 1} uniformly at random. Then, the challenger gives pk to B. B chooses a random key

K ∈ {0, 1}k for PRF F and generates an empty list L which will be used to store tuples

of the form (ID, pw, pws, rk, fragp, fragr). B also generates an empty list R. After that,

B gives pp := pk to A1.

When A1 makes a CCreate query ID, B responds as follows.

1. If there exists a tuple (ID, ∗, ∗, ∗, ∗, ∗) in the list L, B does nothing.

2. Otherwise, B chooses rk ∈ {0, 1}k uniformly at random from the range of F and

gives rk to A1. After that, B stores the tuple (ID, ϕ, ϕ, rk, 0, 1) into the list L.

When A1 makes a PR query ID, B finds the tuple (ID, pw, ∗, ∗, ∗, ∗) in the list L, and

returns pw to A1. Then, B updates the tuple in the list L by (ID, ∗, ∗, ∗, 0, ∗).
When A1 makes a RKR query ID, B finds the tuple (ID, ∗, ∗, rk, ∗, ∗) in the list L,

and returns rk to A1. Then, B updates the tuple in the list L by (ID, ∗, ∗, ∗, ∗, 0).
When A1 makes a TransPRR query (ID, pw′) where pw′ ∈ PW ∪ {ϕ}, B responds as

follows. First, B finds the tuple (ID, ∗, ∗, rk, ∗, ∗) in the list L.

1. If pw′ ∈ PW, B chooses a randomness r ∈ {0, 1}k\R, submits (ID∥r∥rk∥pw′, ID∥r∥
0|rk|+|pw′|) to the challenger, and receives c. This c is PEnc(pk, ID∥r∥rk∥pw′) if b = 0

and is PEnc(pk, ID∥r∥0|rk|+|pw′|) if b = 1. Then, B returns transPRR := (r, c) and

the registration result z := ⊤ to A1. After that, B updates the tuple in the list L

by (ID, pw′, pw′, ∗, 0, ∗) and adds r to the list R.

2. If pw′ = ϕ, B chooses a random password pw′ ∈ D (where D is the dictionary)

and a randomness r ∈ {0, 1}k\R, submits (ID∥r∥rk∥pw′, ID∥r∥0|rk|+|pw′|) to the

challenger, and receives c. This c is PEnc(pk, ID∥r∥rk∥pw′) if b = 0 and is PEnc(pk,
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ID∥r∥0|rk|+|pw′|) if b = 1. Then, B returns transPRR := (r, c) and the regis-

tration result z := ⊤ to A1. After that, B updates the tuple in the list L by

(ID, pw′, pw′, ∗, 1, ∗) and adds r to the list R.

When A1 makes a TransAuth query (ID, pw′) where pw′ ∈ PW∪{ϕ}, B responds as follows.

First, B finds the tuple (ID, pw, pws, ∗, ∗, ∗) in the list L.

1. If pw′ ∈ PW, B chooses a randomness r from {0, 1}k and executes c← PEnc(pk, ID∥
r∥pw′). Next, B sets z := ⊤ if pw′ = pws holds. Otherwise, B sets z := ⊥. Then, B
returns transAuth := (r, c) and the authentication result z to A1. After that, B adds

r to the list R.

2. If pw′ = ϕ, B chooses a randomness r from {0, 1}k and executes c← PEnc(pk, ID∥r∥
pw). Next, B sets z := ⊤ if pw = pws holds. Otherwise, B sets z := ⊥. Then, B
returns transAuth := (r, c) and the authentication result z to A1. After that, B adds

r to the list R.

Finally, A1 terminates with (ID∗, st). B outputs b′ = 1 and aborts when the identity

ID∗ does not satisfy the winning precondition. Otherwise, B chooses r∗ uniformly at

random from {0, 1}k\R, and gives r∗ and st to A2. B responds to the queries from A2 in

the same way as B did for A1. However, when A2 submits ID∗ as a RKR or TransPRR query,

B returns ⊥ to A2. Finally, A2 terminates with c∗. If this c∗ is one of the ciphertexts as

a response to the TransPRR queries, B stops the IR-PA game, decides that A has lost the

IR-PA game, and terminates with b′ = 1. Next, B submits c∗ as a decryption query6 to the

challenger, and receives ID′∗∥r′∗∥rk′∗∥pw′∗. Then, B finds the tuple (ID∗, ∗, pw∗
s , rk

∗, ∗, ∗)
in the list L and checks whether the conditions ID′∗ = ID∗, r′∗ = r∗, rk′∗ = rk∗, and

pw′∗ = pw∗
s hold or not. If these conditions hold, B terminates with b′ = 0. Otherwise, B

terminates with b′ = 1.

The above completes the description of B. It is not hard to see that B perfectly

simulates Game 2 when B’s challenge bit b = 0, and Game 3 when b = 1. When the

challenge bit of B is 0 and B does not abort before A terminates, B responses to A’s
queries are distributed identically to those in Game 2. In addition, B outputs 0 only if

B does not abort and A2 succeeds in outputting a ciphertext that is decrypted to the

ID∗∥r∗∥rk∗∥pw∗
s . Therefore, Pr[b′ = 0|b = 0] = Pr[W2]. On the other hand, when the

challenge bit of B is 1, A2 succeeds in outputting a ciphertext that is decrypted to the

ID∗∥r∗∥0|rk∗|+|pw∗
s |, and this situation is the same as Game 3. With almost the same

discussion as above, we have Pr[b′ = 0|b = 1] = Pr[W3]. Therefore, AdvmIND-CCA
B (k) =

|Pr[b′ = b] − 1/2| = (1/2)|Pr[b′ = 0|b = 0] − Pr[b′ = 0|b = 1]| = (1/2)|Pr[W2] − Pr[W3]|.
Using this equality, and recalling the assumption that the underlying PKE scheme is

mIND-CCA secure, we conclude that |Pr[W2]− Pr[W3]| is negligible.

Lemma 27. Pr[W3] is negligible.

Proof. Note that in Game 3, the “transcript” part in the responses to the TransPRR queries

contain no information about rk. Therefore, the probability that A succeeds the guess of

rk (that is, the probability that A wins in Game 3) is negligible.
6This is the only decryption query that B submits, which is the reason why 1-bounded CCA security [38]

suffices.
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Lemmas 24 to 27 guarantee that the right hand side of the inequality (6.2) is negligible,

and thus A has negligible advantage in the IR-PA game. This completes the proof of

Theorem 14.

6.4 Extension

In this section, we discuss two extensions of our password reset protocol.

6.4.1 Password Reset Protocol with Password Salting

In practice, it is recommended not to store the client’s raw password into the server. The

server stores “processed data” instead of the client’s password itself, and uses it for the

authentication. Our proposed password reset protocol can be easily extended to a protocol

with password salting. In the setup procedure, a server chooses another key K ′. In the

password re-registration procedure, the server decrypts the password pw from a ciphertext

ct, executes pws := F (K ′, pw), and stores pws. In the authentication procedure, server

checks whether the condition F (k′, pw′) = pws holds or not, and outputs ⊤/⊥. In this

scheme, pws which is stored in the server collides if different users set the same password.

To prevent this situation, we modify the scheme to compute F (K ′, ID∥pw) instead of

F (K ′, pw). Although secret key size of this scheme becomes bigger compared to the

original scheme, we can avoid it by using the domain separation technique. That is,

instead of preparing the new key K ′, the server uses a key K for two purposes by adding

the prefix bit. When the server generates a reset key rk, it executes rk := F (K, 0∥ID).

When the server generates pws, it generates pws := F (K, 1∥ID∥pw).
Our password reset protocol with password salting is constructed as in Fig. 6.2. The

security proofs for this extended scheme follow closely to the security proofs of original

scheme. Therefore, we omit them.

6.4.2 Security against Active Adversary

In Section 6.2.2, we only considered the security against passive attacks. In this section, we

give the formal security definitions against active attacks for a password reset protocol by

extending the security definitions for passive ones, and show that our proposed protocol in

Section ?? (and Section 6.4.1) satisfies them under the same assumptions on the building

blocks.

Impersonation First, we consider security against impersonation under active attacks

(Imp-AA) for a password reset protocol. Imp-AA security is defined using the following

Imp-AA game which is played by the challenger B and an adversary A = (A1,A2). First,

B executes (pp, sk) ← SSetup(1k), and generates an empty list L into which tuples of

the form (ID, pw, pws, rk, fragp, fragr) where fragp, fragr ∈ {0, 1} will be stored. These
fragp and fragr are used to indicate whether a client with ID is “corrupted” by A in the

sense that either pw or rk is known to A, in which case A is not allowed to use the ID

for its attack. Moreover, B generates two lists L′
P and L′

A into which tuples of the form

(sid, ID, pw, stc, sts, transsid) will be stored. Here, sid means session ID, stc/sts mean

the state information in client/server side, and transsid means a transcript with respect
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SSetup(1k) :

(pk, dk)← PKG(1k)

Choose a random K ∈ {0, 1}k

pp := pk; sk := (K, dk)

return (pp, sk).

RKG(sk, ID) :

(K, dk)← sk

rk := F (K, 0∥ID)

return rk.

(ϕ, pws)← PRR(CP (ID, pw, rk)↔ SP (ID, rk, sk)) :

K ← sk

1. SP chooses a randomness r ∈ {0, 1}k and sends it to CP

2. CP executes c← PEnc(pk, ID∥r∥rk∥pw) and sends it to SP
3-1. SP executes ID′∥r′∥rk′∥pw′ ← PDec(dk, c)

3-2. SP executes pws := F (K, 1∥ID′∥pw′)

3-3. If ID′ = ID, r′ = r, and rk′ = rk hold, SP returns pws

else SP returns ⊥.
(ϕ,⊤/⊥)← Auth(CA(ID, pw)↔ SA(ID, pws, sk)) :

K ← sk

1. SA chooses a randomness r ∈ {0, 1}k and sends it to CA

2. CA executes c← PEnc(pk, ID∥r∥pw) and sends it to SA
3-1. SA executes ID′∥r′∥pw′ ← PDec(dk, c)

3-2. If ID′ = ID, r′ = r, and pws = F (K, 1∥ID∥pw′) hold, SA returns ⊤
else SA returns ⊥.

Figure 6.2: The proposed generic construction of a password reset protocol with password

salting

to sid. After that, B gives pp to A1. Then A1 can adaptively make the following types of

queries7. We explain the meaning of SSession and Send queries in the paragraph of remark

right after the Definition 12.

Client create query (CCreate): This is exactly the same as the CCreate query in the

Imp-PA game. IfA1 makes the following queries (RKR,PRR, SSessionPRR, SSessionAuth)

with an identity ID, then this ID must have appeared as a CCreate query (and thus

be stored in the list L).

Password reveal query (PR): This is exactly the same as the PR query in Imp-PA

game.

Reset key reveal query (RKR): This is exactly the same as the RKR query in Imp-PA

game.

Start session query for password (re-)registration (SSessionPRR) On input (ID, pw

7PRR and Auth query are not considered in the following list of queries because A can perform those

functionalities by making SendPRR and SendAuth queries, respectively.
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∈ PW ∪{ϕ}), B responds as follows. First, B generates a unique session ID sid and

returns it to A. If pw ∈ PW, B stores (sid, ID, pw, ϕ, ϕ, ϕ) into the list L′
P and

updates the tuple in the list L by (ID, ∗, ∗, ∗, 0, ∗). Otherwise (that is, pw = ϕ), B
chooses a password pw′ uniformly at random from D, stores (sid, ID, pw′, ϕ, ϕ, ϕ)

into the list L′
P , and updates the tuple in the list L by (ID, ∗, ∗, ∗, 1, ∗). When A1

makes a SendPRR query with a session ID sid, then this sid must have been generated

by this SSessionPRR query previously.

Start session query for authentication (SSessionAuth) On input (ID, pw ∈ PW∪{ϕ}),
B responds as follows. If pw = PW, B generates a unique session ID sid and stores

(sid, ID, pw, ϕ, ϕ, ϕ) into the list L′
A. Otherwise (that is, pw = ϕ), B chooses a

password pw′ uniformly at random from D, generates a unique session ID sid, and

stores (sid, ID, pw′, ϕ, ϕ, ϕ) into the list L′
A. When A1 makes a SendAuth query with

a session ID sid, then this sid must have been generated by this SSessionAuth query

previously.

Send query for password (re-)registration (SendPRR) On input (sid, i,M), B exe-

cutes an appropriate response corresponding to i and M by using stc and sts in the

list L′
P . Then, B updates the tuples in the lists L and L′

P .

Send query for authentication (SendAuth) On input (sid, i,M), B executes an appro-

priate response corresponding to i and M by using stc and sts in the list L′
A. Then,

B updates the tuples in the lists L and L′
A.

Finally, A1 outputs (ID∗, st). To win the Imp-AA game, the tuple (ID∗, pw∗, pw∗
s , rk

∗,

frag∗p, frag
∗
r ) must exist in the list L and satisfy frag∗p = 1 and frag∗r = 1 (if this is

satisfied, we say that ID∗ satisfies the “winning precondition”). If these conditions are

not satisfied, B decides that A has lost the Imp-AA game. Otherwise, B gives st to

A2. Then A2 and B interactively execute Auth(A2(st) ↔ SA(ID
∗, pw∗

s , sk)). During the

execution of this Auth protocol, A2 can adaptively make the queries in the same way as

A1. However, A2 is not allowed to use ID∗ in the PR, RKR, SSessionPRR and SendPRR
queries. Finally, A wins if the SA’s output of Auth is ⊤. We define the advantage of A by

AdvImp-AA
A (k) = Pr[A wins].

Definition 11. Let qSA
be the number of SSessionAuth queries by A1. We say that a

password reset protocol is Imp-AA secure if for all PPT adversaries A, AdvImp-AA
A (k) is

O(qSA
)/|D|+ ε(k).

Illegal Registration Second, we consider security against illegal registration under ac-

tive attacks (IR-AA) for a password reset protocol. This security is defined using the fol-

lowing IR-AA game which is played by the challenger B and an adversary A = (A1,A2).

B’s initial procedure and A1’s queries of this IR-AA game are exactly the same as the

Imp-AA game. Finally, A1 outputs (ID∗, st). To win the IR-AA game, the tuple

(ID∗, pw∗, pw∗
s , rk

∗, frag∗p, frag
∗
r ) must exist in the list L and satisfy frag∗r = 1. If these

conditions are not satisfied, B decides that A has lost the IR-AA game. Otherwise, B
gives st to A2. Then A2 and B interactively execute PRR(A2(st) ↔ SP (ID

∗, rk∗, sk)).

During the execution of this PRR protocol, A2 can adaptively make the queries in the
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same way as A1. However, A2 is not allowed to use ID∗ in the RKR, SSessionPRR, and

SendPRR queries. Finally, A wins if SP ’s output of PRR is different from ⊥. We define

that the advantage of A by AdvIR-AAA (k) = Pr[A wins].

Definition 12. We say that a password reset protocol is IR-AA secure if for all PPT

adversaries A, AdvIR-AAA (k) is negligible.

Remark

1. First, we explain the meaning of SSession(ID, pw) and Send(sid, i,M) queries. These

queries are extension of a Send query that we can see in a security model of key

exchange protocols. Before querying Send, an adversary A has to query SSession(ID,

pw) and obtain sid previously. When this query is issued, B generates the tuple

(sid, ID, pw, ∗, ∗, ∗) in the list L′. If A issues (sid, i,M) as a Send query, A can

obtain the correct execution result of algorithm that is generated by client/server.

Here, M is inserted into the (i + 1)-th message. In PRR algorithm of our proposed

construction (in Fig. 6.1), for example, a client receives a randomness r from the

server, executes c ← PEnc(pk, ID∥r∥rk∥pw), and returns c to the server. In this

situation, A issues SendPRR(sid, 2,M) and can obtain PEnc(pk, ID∥M∥rk∥pw) from
B. Since there exists no input message in SendPRR(sid, 1,M), this M is always ϕ.

In contrast to the key exchange protocol, an attack frag may revive by resetting the

password that is randomly chosen by B. Therefore, we introduce not only a SendPRR
query but also SSessionPRR query to manage the attack frag. The above example is

the case of PRR, the same is true in Auth.

2. We require that Send query is executed in order. For example, an adversary A is not

allowed to query (sid, 2,M) without querying (sid, 1,M), or (sid, 3,M) right after

querying (sid, 1,M). This is because executions of algorithms without previous steps

do not occur in practice. Moreover, we do not consider an adversary that queries

(sid, 1,M) after (sid, 2,M). If the adversary wants to issue these queries, he/she has

to issue SSession queries and re-setup the sid. The formalization that captures the

above situation (slightly similar to the notion of resettable security [31]) is future

work.

3. In our security definitions against active attacks, we omit the Trans queries which

are allowed in the ones of passive attacks. This is because an adversary can realize

the functionalities of Trans queries by using SSession queries and Send queries. The

adversary A that wants to obtain a transcript transPRR responds as follows: First, A
issues CCreate query (ID). Next, A issues SSessionPRR query (ID, pw) and obtains

sid. Then, A issues SendPRR (sid, 1, ϕ) and obtains r, SendPRR (sid, 2, r) and obtains

c, and SendPRR (sid, 3, c) and obtains ⊤/⊥. Here, the tuple (r, c,⊤/⊥) is a transcript

transPRR and a registration result that A can obtain when he/she issues TransPRR
(ID, pw). Although the above example is the case of TransPRR, the same is true in

TransAuth.

Construction and Security Proofs Even if we consider the security against active

adversaries, the construction is exactly the same as in Fig. 6.1. Here, we show the security
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proofs.

Theorem 15. If F is a PRF and the PKE scheme is mIND-CCA secure8, then the

proposed password reset protocol in Fig. 6.1 satisfies Imp-AA security.

Let A = (A1,A2) be an Imp-AA adversary of the password reset protocol. Let qPi and

qAi be the numbers of SendPRR(sid, i,M) and SendAuth(sid, i,M) queries by A1, respec-

tively. Here, qPi and qAi are polynomials of the security parameter. In our protocol, PRR

and Auth are both two pass protocols. Therefore, we only have to consider the following

three cases for SendPRR queries.

1. r ← SendPRR(sid, 1, ϕ) : This means that A gives ϕ to the server and obtains a

randomness r.

2. c ← SendPRR(sid, 2, r) : This means that A gives a randomness r to the client and

obtains a ciphertext c.

3. ϕ ← SendPRR(sid, 3, c) : This means that A gives a ciphertext c to the server and

obtains a registration result ⊤/⊥.

In the Imp-AA game, the challenger B responds as follows:

If A issues SendPRR(sid, 1, ϕ), B chooses a randomness r, returns it to B, and updates

the tuple in the list L′
P by (sid, ∗, ∗, ∗, r, r).

If A issues SendPRR(sid, 2, r), B first finds the tuples (sid, ID, pw, ∗, ∗, ∗) in the list L′
P

and (ID, ∗, ∗, rk, ∗, ∗) in the list L. Then, B executes c← PEnc(pk, ID∥r∥rk∥pw), returns
c to A, and updates the tuples in the list L′

P by (sid, ∗, ∗, ∗, ∗, ∗∥c) and in the list L by

(ID, pw, ∗, ∗, ∗, ∗).
If A issues SendPRR(sid, 3, c), B first finds the tuples (sid, ID, pw, ∗, r, ∗) in the list L′

P

and (ID, ∗, ∗, rk, ∗, ∗) in the list L. Then, B responds as follows: B executes ID′∥r′∥rk′∥pws

← PDec(dk, c). If this decryption result is ⊥, B returns ⊥ to A and does not execute the

following steps. Then, B sets z := ⊤ if ID = ID′, r = r′, and rk = rk′ hold. Otherwise,

B sets z := ⊥. After that, B updates the tuples in the list L by (ID, ∗, pws, ∗, ∗, ∗) and

returns z to A.
Similar to the cases of SendPRR queries, we only have to consider the following three

cases for SendAuth queries.

1. r ← SendAuth(sid, 1, ϕ) : This means that A gives ϕ to the server and obtains a

randomness r.

2. c ← SendAuth(sid, 2, r) : This means that A gives a randomness r to the client and

obtains a ciphertext c.

3. ⊤/⊥ ← SendAuth(sid, 3, c) : This means that A gives a ciphertext c to the server and

obtains an authentication result ⊤/⊥.

8In the case of security against passive adversaries, 1-bounded CCA secure PKE is enough for the

security proof. In the case of security against active adversaries, however, we need (full) CCA secure PKE

for the security proof.
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In the Imp-AA game, the challenger B responds as follows:

If A issues SendAuth(sid, 1, ϕ), B chooses a randomness r, returns it to B, and updates

the tuple in the list L′
A by (sid, ∗, ∗, ∗, r, r).

If A issues SendAuth(sid, 2, r), B first finds the tuples (sid, ID, pw, ∗, ∗, ∗) in the list

L′
A. Then, B executes c← PEnc(pk, ID∥r∥pw), returns c to A, and updates the tuple in

the list L′
A by (sid, ∗, ∗, ∗, ∗, ∗∥c).

If A issues SendAuth(sid, 3, c), B first finds the tuples (sid, ID, pw, ∗, r, ∗) in the list

L′
A and (ID, ∗, pws, ∗, ∗, ∗) in the list L. Then, B executes ID′∥r′∥pw′

s ← PDec(dk, c).

If the conditions ID′ = ID, r′ = r, and pw′
s = pws are satisfied, B returns z := ⊤ to

A. Otherwise, B returns z := ⊥ to A. Then, B updates the tuple in the list L′
A by

(sid, ∗, ∗, ∗, ∗, ∗∥z).
Consider the following sequence of games.

Game 0. This is exactly the Imp-AA game.

Game 1. This game proceeds in the same way as Game 0, except that the first messages

r of SA picked in the execution of PRR (in the response to A’s SendPRR query) and

Auth (either in the response to A’s SendAuth query, or Auth in the challenge phase),

are picked from {0, 1}k\{r’s that are already used }, so that they are all distinct

and never collide. For notational convenience, in this and subsequent games, we

introduce the list R that is used to store r’s that are used in the response to a

SendPRR query, SendAuth query, or in the execution of Auth in the challenge phase,

and we make the challenger choose r uniformly at random from {0, 1}k\R every time

it needs to choose r for SendPRR and SendAuth, and put the used r into the list R.

Game 2. This game is the same as Game 1, except that as in Game 2 considered in the

proof of Theorem 13, we replace the output of F (K, ·) with a random string.

Game 3. This game proceeds in the same way as Game 2, except that following three

points.

• If A1 issues SendPRR(sid, 2, r) queries on ID, B executes c∗ ← PEnc(pk, ID∥r∥
0|rk|+|pw|) and uses c∗ instead of c← PEnc(pk, ID∥r∥rk∥pw).

• If A1 issues SendAuth(sid, 2, r) queries on ID, B executes c∗∗ ← PEnc(pk, ID∥r∥
0|pw|) and uses c∗∗ instead of c← PEnc(pk, ID∥r∥pw).

• When B calculates the output of Auth(sid, 3, c) (i.e. ⊤/⊥) only by checking

pw = pws where pws is the value found in the tuple corresponding to ID in the

list L, without running PDec.

For i ∈ {0, 1, 2, 3}, we define the event Wi as the event that A wins in Game i. The

advantage of A is, by definition, AdvImp-AA
A (k) = Pr[W0]. We complete the proof by using

the following inequality, and the upper bounds in the terms in the right hand side are

shown in Lemmas 28 to 31.

Pr[W0] ≤
2∑

i=0

|Pr[Wi]− Pr[Wi+1]|+ Pr[W3] (6.3)

where the above equality can be derived by the triangle inequality.
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Lemma 28. |Pr[W0]− Pr[W1]| is negligible.

Proof. The difference |Pr[W0]− Pr[W1]| can be upperbounded by the statistical distance

between the distributions of r’s used in PRR and Auth (in the responses to A’s SendPRR
queries, SendAuth queries, and Auth in the challenge phase) in Game 0 and those in Game

1. Since the number of r’s in the games is at most (qP1 + qA1 +1), the statistical distance

between the distributions is at most (qP1 + qA1 + 1)2/2k.

Lemma 29. If F is a PRF, |Pr[W1]− Pr[W2]| is negligible.

Proof. This proof follows closely to the one of Lemma 21. Therefore, we omit it. The only

difference between this Lemma and Lemma 21 is B has to choose a randomness r from

{0, 1}k\R not only for Auth but also for PRR.

Lemma 30. If the PKE scheme is mIND-CCA secure, |Pr[W2]− Pr[W3]| is negligible.

Proof. We show that we can construct a multi-challenge IND-CCA adversary B against

the underlying PKE scheme. The description of B is as follows:

First, the challenger executes (pk, dk)← PKG(1k) and chooses a bit b ∈ {0, 1}. Then,
the challenger gives pk to B. B chooses a random keyK ∈ {0, 1}k for PRF F and generates

an empty list L which will be used to store tuples of the form (ID, pw, pws, rk, fragp, fragr).

B also generates two empty lists L′
P and L′

A which will be used to store tuples of the form

(sid, ID, pw, stc, sts, transsid). Moreover, B generates an empty list R. After that, B gives

pp := pk to A1.

When A1 makes a CCreate query ID, B responds as follows.

1. If there exists a tuple (ID, ∗, ∗, ∗, ∗, ∗) in the list L, B does nothing.

2. Otherwise, B chooses rk ∈ {0, 1}k uniformly at random from the range of F and

gives rk to A1. After that, B stores the tuple (ID, ϕ, ϕ, rk, 0, 1) into the list L.

When A1 makes a PR query ID, B finds the tuple (ID, pw, ∗, ∗, ∗, ∗) in the list L, and

returns pw to A1. Then, B updates the tuple in the list L by (ID, ∗, ∗, ∗, 0, ∗).
When A1 makes a RKR query ID, B finds the tuple (ID, ∗, ∗, rk, ∗, ∗) in the list L,

and returns rk to A1. Then, B updates the tuple in the list L by (ID, ∗, ∗, ∗, ∗, 0).
When A1 makes a SSessionPRR query (ID, pw ∈ PW ∪ {ϕ}), B responds as fol-

lows: First, B generates a unique sid and returns it to A. If pw ∈ PW, B stores

(sid, ID, pw, ϕ, ϕ, ϕ) into the list L′
P and updates the tuple in the list L by (ID, ∗, ∗, ∗, 0, ∗).

Otherwise (that is pw = ϕ), B chooses pw′ uniformly at random from D, stores (sid, ID,
pw′, ϕ, ϕ, ϕ) into the list L′

P , and updates the tuple in the list L by (ID, ∗, ∗, ∗, 1, ∗).
When A1 makes a SSessionAuth query (ID, pw ∈ PW ∪ {ϕ}), B responds as fol-

lows: First, B generates a unique sid and returns it to A. If pw ∈ PW, B stores

(sid, ID, pw, ϕ, ϕ, ϕ) into the list L′
A. Otherwise, (that is, pw = ϕ), B chooses a pass-

word pw′ uniformly at random from D and stores (sid, ID, pw′, ϕ, ϕ, ϕ) into the list L′
A.

When A1 makes a SendPRR query (sid, 1, ϕ), B responds as follows: B first chooses a

randomness r∗ from {0, 1}k\R and returns it to A1. Then, B updates the tuple in the list

L′
P by (sid, ∗, ∗, ∗, r∗, r∗) and adds r∗ to the list R.
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When A1 makes a SendPRR query (sid, 2,M), B responds as follows: First, B finds

the tuples (ID, ∗, ∗, rk, ∗, ∗) in the list L and (sid, ID, pw, ∗, ∗, ∗) in the list L′
P . Then,

B submits (ID∥M∥rk∥pw, ID∥M∥0|rk|+|pw|) to the challenger and receives c∗. This c∗

is PEnc(pk, ID∥M∥rk∥pw) if b = 0 and is PEnc(pk, ID∥M∥0|rk|+|pw|) if b = 1. Then, B
returns c∗ to A1. After that, B updates the tuples in the list L′

P by (sid, ∗, ∗, ∗, ∗, ∗∥c∗)
and L by (ID, pw, ∗, ∗, ∗, ∗).

When A1 makes a SendPRR query (sid, 3,M), B responds as follows:

• If c(= M) is not the challenge ciphertext of B, B finds the tuples (ID, ∗, ∗, rk, ∗, ∗)
in the list L and (sid, ID, ∗, ∗, r, ∗) in the list L′

P . B submits c(=M) as a decryption

query to the challenger and receives ID′∥r′∥rk′∥pws. Then, B sets z := ⊤ if the

conditions ID′ = ID, r′ = r, and rk′ = rk hold. Otherwise, B sets z := ⊥. After

that, B updates the tuple in the list L by (ID, ∗, pws, ∗, ∗, ∗) and returns z to A.

• If c(=M) is one of the challenge ciphertexts of B, B cannot submit c as a decryption

query to the challenger. Here, we denote the queried c as ĉ. First, B finds the tuples

(sid, ID, ∗, ∗, r, ∗∥c) and (ŝid, ÎD, p̂w, ∗, r̂, ∗∥ĉ) in the list L′
P , and (ID, ∗, ∗, rk, ∗, ∗)

and (ÎD, ∗, ∗, r̂k, ∗, ∗) in the list L. Then, B sets z := ⊤ if the conditions ID = ÎD,

r = r̂, and rk = r̂k hold. Otherwise, B sets z := ⊥. After that, B sets pws := p̂w,

updates the tuples in the list L by (ID, ∗, pws, ∗, ∗, ∗), and returns z to A.

When A1 makes a SendAuth query (sid, 1, ϕ), B responds as follows: B first chooses a

randomness r∗ from {0, 1}k\R and returns it to A1. Then, B updates the tuple in the list

L′
A by (sid, ∗, ∗, ∗, r∗, r∗) and adds r∗ to the list R.
When A1 makes a SendAuth query (sid, 2,M), B responds as follows: First, B finds the

tuple (sid, ID, pw, ∗, ∗, ∗) in the list L′
A. Then, B submits (ID∥M∥pw, ID∥M∥0|pw|) to the

challenger and receives c∗. This c∗ is PEnc(pk, ID∥M∥pw) if b = 0 and is PEnc(pk, ID∥M∥
0|pw|) if b = 1. Then, B returns c∗ to A1. After that, B updates the tuple in the list L′

A

by (sid, ∗, ∗, ∗, ∗, ∗∥c∗).
When A1 makes a SendAuth query (sid, 3,M), B responds as follows: First, B finds the

tuples (ID, ∗, pws) in the list L and (sid, ID, ∗, ∗, r, ∗) in the list L′
A. Then, B submits

c(=M) as a decryption query to the challenger and receives ID′∥r′∥pw′
s. If the condition

pw′
s = pws holds, B returns z := ⊤ to A1. Otherwise, B returns z := ⊥ to A1. After that,

B updates the tuples in the list L′
A by (sid, ∗, ∗, ∗, ∗, ∗∥z).

Finally, A1 terminates with (ID∗, st). B outputs b′ = 1 and aborts when the identity

ID∗ does not satisfy the winning precondition. Otherwise, B chooses r∗ uniformly at

random from {0, 1}k\R, and gives r∗ and st to A2. B can respond to the queries from A2

in the same way as B did for A1. However, when A2 submits ID∗ as PR, RKR, SSessionPRR,

and SendPRR queries, B returns ⊥ to A2. Finally, A2 terminates with c∗. If this c∗ is one of

the ciphertexts used as a response to the SendPRR or SendAuth queries, B stops the Imp-AA

game, decides that A has lost the Imp-AA game, and terminates with b′ = 1. Next, B
submits c∗ as a decryption query to the challenger, and receives ID∗∥r′∗∥pw′∗. Then, B
finds the tuple (sid, ID∗, pw∗, ∗, ∗, ∗) in the list L′

P , checks whether the conditions r
′∗ = r∗

and pw′∗ = pw∗ hold or not. If these conditions hold, B terminates with output b′ = 0.

Otherwise, B terminates with output b′ = 1.

The above completes the description of B. It is not hard to see that B perfectly

simulates Game 2 when B’s challenge bit b = 0, and Game 3 when b = 1. When the
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challenge bit of B is 0 and B does not abort before A terminates, B responses to A’s
queries are distributed identically to those in Game 2. In addition, B outputs 0 only if B
does not abort and A2 succeeds in outputting a ciphertext c∗ satisfying PDec(dk, c∗) =

ID∗∥r∗∥pw′∗. Therefore, Pr[b′ = 0|b = 0] = Pr[W2]. On the other hand, when the

challenge bit of B is 1, A2 succeeds in outputting a ciphertext c∗ satisfying PDec(dk, c∗) =

ID∗∥r′∗∥0|pw′∗|, and this situation is the same as Game 3. With almost the same discussion

as above, we have Pr[b′ = 0|b = 1] = Pr[W3]. Therefore, AdvmIND-CCA
B (k) = |Pr[b′ =

b]− 1/2| = (1/2)|Pr[b′ = 0|b = 0]−Pr[b′ = 0|b = 1]| = (1/2)|Pr[W2]−Pr[W3]|. Using this

equality, and recalling the assumption that the underlying PKE scheme is mIND-CCA

secure, we conclude that |Pr[W2]− Pr[W3]| is negligible.

Lemma 31. Pr[W3] ≤ O(qA3)/|D|+ ε(k).

Proof. Note that in Game 3, the responses to the SendPRR and SendAuth queries contain

no information of pw. However, if an adversary makes a SendAuth(sid, 3, c) query, the

“server’s output” part (i.e. ⊤ or ⊥) leaks whether pw = pws or not. However, other than

this, no information about pw leaks. Since pw is chosen randomly from D, the probability
that A wins in Game 3 is at most (qA3 + 1)/|D|.

Theorem 16. If F is a PRF and the PKE scheme is mIND-CCA secure9, then the

proposed password reset protocol in Fig. 6.1 satisfies IR-AA security.

Let A = (A1,A2) be an IR-AA adversary of the password reset protocol. Let qPi and

qAi be the numbers of SendPRR(sid, i,M) and SendAuth(sid, i,M) queries by A1, respec-

tively. Here, qPi and qAi are polynomials of the security parameter. Same as the case of

Theorem 15, we only have to consider the three cases for SendPRR and SendAuth queries,

respectively. Since the response of challenger is completely same as the case of Theorem

15, we omit them. Consider the following sequence of games.

Game 0. This is exactly the IR-AA game.

Game 1. This game proceeds in the same way as Game 0, except that the first messages

r of SA picked in the execution of PRR (in the response to A’s SendPRR query) and

Auth (either in the response to A’s SendAuth query, or Auth in the challenge phase),

are picked from {0, 1}k\{r’s that are already used }, so that they are all distinct and

never collide. As with Game 1 in Theorem 15, we introduce the list R and use it in

the same manner.

Game 2. This game proceeds in the same way as Game 1, except that except that as

in Game 2 considered in the proof of Theorem 13, we replace the output of F (K, ·)
with a random string.

Game 3. This game proceeds in the same way as Game 2, except that If A1 issues

SendPRR(sid, 2, r) queries on ID, B executes c∗ ← PEnc(pk, ID∥r∥0|rk|+|pw|) and

uses c∗ instead of c← PEnc(pk, ID∥r∥rk∥pw).

9We need (full) CCA secure PKE for the security proof.
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For i ∈ {0, 1, 2, 3}, we define the event Wi as the event that A wins in Game i. The

advantage of A is, by definition, AdvIR-AAA (k) = Pr[W0]. We complete the proof by using

the following inequality, and the upper bounds in the terms in the right hand side are

shown in Lemmas 32 to 35.

Pr[W0] ≤
2∑

i=0

|Pr[Wi]− Pr[Wi+1]|+ Pr[W3] (6.4)

where the above equality can be derived by the triangle inequality.

Lemma 32. |Pr[W0]− Pr[W1]| is negligible.

Proof. This proof follows closely to that of Lemma 28. Therefore, we omit it.

Lemma 33. If F is a PRF, |Pr[W1]− Pr[W2]| is negligible.

Proof. This proof follows closely to that of Lemma 29. Therefore, we omit it.

Lemma 34. If the PKE scheme is mIND-CCA secure, |Pr[W2]− Pr[W3]| is negligible.

Proof. The only difference between the proof of this lemma and Lemma 30 is the B’s
response to a SendAuth query (sid, 2,M). Therefore, we show the response to this query and

omit the other parts. More concretely, in Lemma 30, the challenger submits (ID∥M∥pw,
ID∥M∥0|pw|) as a challenge query. In this lemma, however, we do not have to execute

this and the challenger responds as follows (This is the same responses as Game 1.):

When A1 makes a SendAuth query (sid, 2,M), B responds as follows: B first finds the

tuples (sid, ID, pw, ∗, ∗, ∗) in the list L′
A. Then, B executes c ← PEnc(pk, ID∥r∥pw),

returns c to A, and updates the tuple in the list L′
A by (sid, ∗, ∗, ∗, ∗, ∗∥c).

Lemma 35. Pr[W3] is negligible.

Proof. Note that in Game 3, the responses to the SendPRR queries contain no information

of rk. Therefore, the probability that A succeeds the guess of rk (that is, the probability

that A wins in Game 3) is negligible.

Lemmas 32 to 35 guarantee that the right hand side of the inequality (6.4) is negligible,

and thus A has negligible advantage in the IR-AA game. This completes the proof of

Theorem 16.

6.5 Implementation

To show the practical feasibility and test the performance of our protocol, we implemented

a prototype of our protocol (excluding the communication part) in Python. We imple-

mented our first scheme (Fig. 6.1), and all cryptographic operations are performed using

the python cryptography toolkit (Pycrypto 2.6.1) over Python 2.7.10. We expect that

performance can be improved by using other appropriate libraries (e.g. Number Theory

Library [103]).

We implement our scheme on a laptop computer (Windows 7 (64bit), Core i7-M640

2.80GHz, 8GB RAM). Table 6.1 shows the computational costs of our first protocol. We
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Table 6.1: Performance of our scheme (computational cost)

Name of Execution

algorithms time [µs]

RKG 2.61

PRR1 2.68

PRR2 3.67× 103

PRR3 4.67× 104

Auth1 2.71

Auth2 3.62× 103

Auth3 4.67× 104

implement F (K,x) in our construction as H(K∥x) where H is SHA-256. This means that

we regard SHA-256 hash function as a random oracle. We adopt RSA-OAEP(2048bit)

as a PKE scheme. We omit to calculate the the execution time of SSetup algorithm

because this operation is executed only once and does not rely on the participation of

users. PRR1(Auth1) denotes the first server side execution, PRR2(Auth2) denotes the first

client side execution, and PRR3(Auth3) denotes the second server side execution. We set

the length of ID as 10 alphanumeric characters, randomnesses that is used in the first pass

of PRR/Auth as 128bit, and passwords that is used in the PRR/Auth as 16 alphanumeric

characters. We execute each algorithm 10000 times, and show its average time in Table

6.1.

Although the executions of PRR3 and Auth3 (the dominant part of these algorithms

is decryption of RSA-OAEP(2048bit)) take more time than other algorithms, even these

two algorithms need less than 50ms. Therefore, we can see that our scheme is suitable for

practical use.

6.6 Conclusion

In this chapter, we proposed a model, security definitions, and a construction of a provably

secure password reset protocol. Our generic construction is based on a PRF and PKE. We

can construct a number of concrete password reset protocols from this generic construction.

Countermeasures against server breach is one of the future works. It is interesting to

introduce a server decentralization to the password reset protocol like Camenisch et al.’s

decentralized password verification protocol [30]. Proposing another model and security

definitions is also a future work. In this chapter, we proposed a model that introduces a

reset key and two security definitions (impersonation/illegal registration). However, there

may exist a more appropriate model and security definitions depending on the system

context. Especially, our security definitions against active adversary does not capture the

notions of resettable security [31]. We believe that this research opens a door to rigorous

security treatment of password reset protocols and that our proposed model/schemes can

be a foundation there.
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Chapter 7

Conclusion

In this thesis, we showed the results of provably secure cryptosystems and security pro-

tocols. In the following, we summarize the contributions of this thesis, and conclude this

thesis with future prospects.

7.1 Summary of Contributions

Provably Secure Applied Cryptosystems: In Chapter 3, we proposed four new con-

structions of re-splittable TPKE schemes. Our new constructions are based on dif-

ferent cryptographic assumptions (DLIN, DBDH, HDH, and CDH) and there exists

a trade-off between the hardness assumptions and efficiency of algorithms. It seems

that the re-splittable TPKE is close to the standard TPKE and we can easily extend

the standard TPKE schemes to the re-splittable ones. However, this is not true. The

property that we can re-distribute decryption key shares is useful in practical cases

that we use TPKE in the real world. In practice, we can handle flexible changes

of the number of the entities or the threshold by changing the values of t and n.

We cannot see this property in the standard TPKE. Moreover, re-splittable TPKE

plays an important role in the generic construction of a proxy re-encryption scheme.

We can obtain many concrete proxy re-encryption schemes via this constructions of

re-splittable TPKE schemes.

In Chapter 4, we proposed a proxy re-encryption scheme with re-encryption ver-

ifiability. We introduced a new functionality for PRE that we call re-encryption

verifiability, proposed a generic construction, and proved its security. In practice,

we can reduce the level of trust we have to put on the proxies by achieving the

functionality of re-encryption verification. Not only we added a functionality of

re-encryption verifiability, but also we showed the backward compatibility between

new security definitions and previous ones. That is, secure VPRE scheme automati-

cally becomes secure PRE scheme. Moreover, we showed the construction of VPRE

scheme by extending the previous (standard) PRE scheme and proved its security.

In Chapter 5, we proposed a construction of a multi-hop uni-directional proxy re-

encryption scheme. The constructions of multi-hop bi-directional PRE schemes and

single-hop uni-directional PRE schemes have already proposed. However, there is

no previous construction of multi-hop uni-directional PRE. Therefore, this is a first
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construction of multi-hop uni-directional PRE scheme. We defined the model and

security definitions, constructed a concrete scheme via a cryptographic obfuscator,

and proved its CPA security. Since the obfuscator does not work with realistic

time, we cannot expect the practicality of this scheme now. On the other hand,

the technique which was used in the security proof of this scheme seems somewhat

interesting.

Provably Secure Protocols: In Chapter 6, we extended a concept of provable security

to the security protocols other than cryptosystems. More concretely, this was a

result about backup authentication protocols that we call “password reset protocol”.

Although the security of password reset protocol has been evaluated in a heuristic

manner, we introduce a concept of provable security to this field. First, we defined

the model and security definitions. In our security definitions, we considered not only

passive attacks but also active attacks. Next, we proposed a generic construction

based on pseudorandom function and public key encryption. Then, we showed the

reduction security of our protocols. Finally, we implemented a prototype to evaluate

the efficiency of our protocol. The results of our experiment showed that our protocol

is practical enough. In addition, we can expect the progress of theoretical analysis

for password reset protocols based on this results.

7.2 Future Prospects

In this section, we describe the future prospects that can be considered from this thesis.

Security Definitions of Applied Cryptosystems and Protocols. In this thesis,

we treated provably secure cryptosystems and protocols. We would like to describe that

these two themes and results may give a good effect with each other.

There is no doubt that we can extend the possibility of new information services

via improved applied cryptosystems. For example, we can show that the flexible and

scalable contents distribution systems via attribute-based cryptosystems [97], encrypted

databases via keyword searchable encryption [23] or order preserving encryption [1], file

sharing systems via proxy cryptosystems [19], and outsourcing of computation via multi

party computation [112] or homomorphic cryptosystems [86, 52] as examples. Secure and

efficient applied cryptosystems support these convenient online systems.

On the other hand, there may also exist a contribution for applied cryptosystems (or

the theory of cryptosystems) by considering the provably secure systems. When we define

the model and security for cryptosystems, we (to some extent) cannot avoid containing

the human factor in those models. Therefore, those models have to be discussed by many

researchers to win a de-facto standard. Like the example of group signature, however, it is

not uncommon to find vulnerable points even in the models and security definitions that

have already been widely spread. There exists a possibility to find such insufficient points

on the models and security definitions in a more simple way by considering provably secure

systems. When we consider provably secure systems, we have to discuss the models and

security definitions deeply. That is, we have to consider who may be an adversary, what

types of attacks can be considered, and how security should be assured or not be assured
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in the context of real world. When we prove its security by reducing to the (applied)

cryptosystems which are used as building blocks, that security proof may not go well.

This failure means the either of following three cases:

1. To begin with, there exists an impossibility for proving the security.

2. We have to need other building blocks.

3. We need other security notions for underlying (applied) cryptosystems.

In the last case, the security definitions of those applied cryptosystems may be insufficient

when we use them in practice. This is an example that the research of systems can feedback

good effects to the research of cryptosystems. Regret to say, we cannot expect this effect

in this thesis because the underlying building blocks which are used in our password reset

protocol are very basic ones. When the research of provably secure systems based on

applied cryptosystems make progress, however, we can expect the above effect. Moreover,

there may exist merits not only new security definitions but also the existing ones. For

example, in our security definitions of password reset protocols, internal states of challenger

are changed by the password re-registration queries which are issued by the adversary. We

have no idea how to treat this situation in the context of resettable security [31] where

the adversary can reset the states of simulator. Like this example, it will appear the cases

that we have to reconsider security definitions of (applied) cryptosystems by considering

the provable security for real world systems. We would like to hope that the research on

rigorous security of real world systems will make progress and contribute to both practical

and theoretical security research.

The Relation between Reduction Security and Formal Method. Formal meth-

ods are usually used to verify the security of cryptosystems and cryptographic protocols.

Although formal methods can check the validity of security proof, however, it cannot de-

sign a security model so far. That is, how to define security is still human tasks and this

means that showing reduction security is still very valuable. As we showed in this thesis,

the possibility of containing human errors in security proofs of applied cryptosystems is

not low since recent ones are very complicated. In this sense, formal methods are also

very valuable.

The stream as follows will be desirable from the viewpoint of quality assurance for

cryptosystems, cryptographic protocols, and security products.

1. We define the rigorous security model and prove its security by reduction.

2. We check the validity of that security proof using formal methods.

3. We feedback the verification results to the security definitions and proofs.

We need more developments of formal methods themselves to make an above stream

since recent formal methods are still meager. In addition, cryptographers should promote

the research such as Chapter 6 in this thesis and pile up the research results of “provably

secure heuristically secure protocols”. Such research results will extend the scope of formal

methods and contribute the research of formal methods themselves.
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How the Research of Provably Secure Protocols Make Progress? In this thesis,

we discuss the security of password reset protocols. Password reset protocols are part

of the online user authentication systems. It is easy to imagine to consider the provable

security of protocols that are used on the Internet in practice. By considering a wider

perspective, it may possible to rigorously prove the security or property of softwares.

For example, we may be able to construct a “malware-undownloadable web browser”

by assuming some security properties for underlying machine learning or specification of

programming language. We can consider other large-scale example. We may be able to

extend the scope of provable security to the control systems. When we define security

models of some systems, we will have to introduce the peculiar situations for that ones.

In the case of control systems, for example, “we cannot easily shutdown the systems.”,

“there exist high incentives to use the legacy systems”, and so on.

We would like to pay attention to a hierarchical structure that is existing in this

research field. Roughly speaking, there exists a hierarchical structure as follows.

[Number Theory] → [Cryptosystems] → [Protocols] → [Systems]

When we consider the provable security of a certain part, it is convenient for us to use the

parts (and its security) in one under layer. In our research on password reset protocols,

we use some cryptographic tools in a black-box manner. In the concrete example of future

direction that is written in above paragraph, we assumed not hardness on number theory or

cryptosystems but hardness on machine learning or specification of programming language.

Therefore, the following two research directions will be valuable to reach provably secure

systems.

1. We should show many provably secure protocols. In applied cryptosystems, there

exists hierarchy among them, and cryptosystems with high functionality, which is

close to protocols (e.g. functional encryption [97], proxy re-encryption [19], and

searchable encryption [23]) have been constructed by combining (slightly) basic ap-

plied cryptosystems. Similar to these cases, protocols with high functionality, which

is close to systems will be constructed by combining basic protocols. By continuing

such research, we will be able to reach the research on provably secure systems.

2. We should seek the new candidate destinations of security reduction. In the sys-

tems or protocols, we sometimes have to prove the properties like “proof of pos-

session” or “proof of being a human”. These proofs are different from the knowl-

edge proofs, which are often used in a construction of cryptosystems. The pos-

sibility for constructing provably secure systems/protocols will extend if we can

use the tools (and their security) for such proofs to construct systems/protocols.

CAPTCHA(Completely Automated Public Turing test to tell Computers and Hu-

mans Apart) [2] is representative example to show the “proof of being a human”.1

Of course, it does not matter the research on other than CAPTCHA. To the best of

our knowledge however, there exists no such a research.

1Although there exist some attack results against CAPTCHA that is used in practice (e.g. [90]), it may

be possible to reduce the security of CAPTCHA to number theory in the future.
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In Chapter 6 of this thesis, we showed the provable security results that connect be-

tween “Cryptosystems” and “Protocols”. By proceeding above types of research, we would

like to reach provable security results that connect between “Protocols” and “Systems”.

In the end, we would like to reach more secure society via these provably secure cryptosys-

tems, protocols, and systems.
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