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Abstract

Understanding the ways how human hands interact with objects (hand

manipulation) automatically from daily tasks is important for domains

such as robotics, human grasp understanding, and motor skill anal-

ysis. To promote the study of daily hand manipulation, I present a

recognition framework for hand manipulation under first-person vision

paradigm with a wearable camera, which overcomes the constraints of

tactile sensors and calibrated cameras used in traditional approaches.

However, the tasks of recognizing different types of hand manipulation

from first-person view video are challenging due to rapidly changing

background, ambiguous hand appearance and mutual hand-object oc-

clusions. To tackle the challenges, I propose approaches to reason

about semantic information of hands and objects which are consid-

ered critical in understanding hand manipulation.

The thesis work is composed by three components which address

different aspects of understanding hand manipulation from first-person

view videos: (1) An image-based approach for hand grasp analysis

from image appearance is presented, which plays a central role in

understanding hand manipulation; (2) A sequence-based method is

proposed for hand grasp analysis from a different perspective of hand

dynamics rather than static appearance; (3) An unified framework for

recognizing grasp types, object attributes and manipulation actions is

proposed, in which semantic relationship between hands, objects, and

actions is modeled.

The study of hand grasp plays a central role in understanding

hand manipulation since hand grasp characterizes the ways how hand

hold an object and implies attribute information of the manipulated
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object. Therefore, an appearance-based approach for hand grasp anal-

ysis under first-person vision (FPV) paradigm is first presented. The

proposed approach recognizes the types of hand grasp from image ap-

pearance and analyzes visual similarity among different grasp types

(visual structures of hand grasp). Experiment results demonstrate

the potential of automatic grasp recognition in unstructured environ-

ments. Analysis of real-world video shows that it is possible to au-

tomatically learn intuitive visual grasp structures that are consistent

with expert-designed grasp taxonomies.

Appearance-based method is insufficient to discriminate between

different grasp types which are ambiguous from a single image, and

is sensitive to unreliable hand detection. To address this problem, I

propose a sequence-based method to study hand grasp from perspec-

tive of hand dynamics. In particular, a feature representation which

encodes dynamical information of hand appearance and motion is pro-

posed based on hand-guided feature tracking from image sequences. In

addition, I propose a metric for comparing hierarchical clusters in or-

der to quantitatively evaluate the consistency between different visual

structures of hand grasp. Through extensive experiments, effective-

ness of the proposed method is verified that hand dynamics can help

improve grasp recognition and learn more consistent grasp structures.

Building on the work of hand grasp analysis, a further step is taken

to study hand manipulation in a broader scale. I believe that grasp

types together with object attributes provide complementary informa-

tion for characterizing different manipulation actions. Thus, I propose

an unified model for recognizing hand grasp types, object attributes

and manipulation actions from a single image. Experiments strongly

support the hypothesis that: (1) Attribute information of the manipu-

lated object can be extracted without any specific object detectors by
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exploring spatial hand-object configuration; (2) Contextual informa-

tion between grasp types and object attributes is important in dealing

with mutual hand-object occlusions; (3) Action models that address

the semantic relationship with grasp types and object attributes out-

perform traditional appearance-based models which are not designed

to take into account semantic constraints and are overfit to image

appearance.
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Chapter 1

Introduction

This thesis aims to automate the understanding of hand-object interactions

(hand manipulation) in daily tasks using a wearable monocular camera. In

particular, I focus on recognizing (1) hand grasp types and (2) manipulation

actions from first-person view videos. Hand grasp types are a discrete set

of canonical hand poses often used in robotics to describe various grasping

strategies for objects. For example, the use of all fingers around a curved

object like a cup is called “medium wrap”. Figure 1.1 shows examples of

different grasp types. Manipulation actions in this work refer to different

patterns of hand-object interactions such as “open” or “pour”. Figure 1.2

shows examples of different manipulation actions.

1.1 Motivations

The ability to understand daily hand-object interactions automatically from

visual sensing is important for domains such as robotic manipulation [Cut89]

[YLFA15b], human grasp understanding [FBD14], and motor control analy-

sis [CSPA+92]. In robotic manipulation, the study of human hand function
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2 

(a) (b) (c) 

(a) (b) (c) 

Figure 1.1: Examples of hand grasp types. Images come from a self-collected

dataset. (a) Thumb-n Finger (b) Tripod (c) Medium Wrap

2 

(a) (b) (c) 

(a) (b) (c) 

Figure 1.2: Examples of manipulation actions. Images come from a public

dataset [FLR12].(a) Open (b) Pour (c) Scoop

provides critical information about robotic hand design and action planning.

In human grasps understanding, the recognition of hand-object manipula-

tions enables automatic analysis of human manipulation behavior, making it

more scalable than traditional manual observation used in previous studies

[ZDLRD11].

Existing approaches on studying hand-object interactions have been de-

veloped primarily in the controlled laboratory settings which often include

hand-contact sensors or calibrated cameras as shown in Figure 1.3. However,

there are many limitations in these settings. Intrusive sensors often inhibit

free hand-object interactions; calibrated camera system requires hand ma-

2



nipulation to be recorded in limited workspace. As a result, hand-object

interactions in everyday manipulation tasks have seldom been studied.

3 

(a) 

(b) 

(c) 

(d) 

(a) (b) 

Figure 1.3: Examples of sensors used for capturing hand motion and inter-

actions in controlled laboratory settings. (a) CyberGlove [CYB] used for

measuring hand articulation (b) isoTOUCH [ISO] used for measuring finger

touch pressure (c) Camera arrays (d) Kinect [KIN] RGB-D sensor

To promote the study of natural hand-object interactions, I propose first-

person vision-based approaches for understanding hand-object interactions

using a wearable camera in this thesis. A wearable camera (as shown in

Figure 1.4) overcomes the constraints of other modes of direct sensing by

allowing for continuous recording of natural hand interactions at a large

scale, both in time and space. Furthermore, it provides an ideal first-person

viewing perspective under which hands and objects are visible up-close in

the visual field.

However, understanding manipulations with first-person vision is also

3
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(a) 

(b) 

(c) 

(d) 

(a) (b) 

Figure 1.4: Examples of wearable cameras which can record first-person view

videos. (a) GoPro HERO3 [GOP] (b) Panasonic HX-A1 [HX-]

very challenging. There are many occlusions of the hand, especially the

fingers, during hand-object interactions. It is also challenging to reliably de-

tect the manipulated object since the object is also often occluded by the

hand. Furthermore, cluttered background with rapidly changing appearance

is a common situation in first-person view videos, which makes it unreliable

to directly model hand manipulation from image appearance. This suggests

that semantic information about the hands and objects need to be reasoned

about.

I believe the ability of recognizing different hand grasp types is of great

importance in understanding hand manipulation, since hand grasp charac-

terizes the way how hand holds an object during manipulation. Hand grasp

also implies attribute information of the manipulated object as the object

attributes, such as shape and mass, affect the selection of different grasp

types. Furthermore, hand grasp helps describe the functionality of an action,

whether it requires more power, or more flexible finger coordination. Thus,

in this thesis I propose approaches for hand grasp analysis with first-person

vision which play a central role for understanding hand manipulation.

4



1.2 Overview

16 

First person vision 

Hand grasp (Chapter 2, 3) 

Object attribute (Chapter 4) 

Manipulation action (Chapter 4) 

Figure 1.5: Structure of the thesis work. Hand grasp is studied under the

first-person vision paradigm, which plays a central role in this thesis. Object

attributes are extracted by exploring spatial hand-object configuration, and

manipulation action is modeled by its semantic relations with hand grasp

and object attributes.

In this thesis, I propose approaches for understanding hand manipulation

under the first-person vision paradigm, in which semantic information about

hand grasp, object attribute, and manipulation action are studied based on

their intrinsic logical structure. The hierarchical structure of this thesis is

illustrated in Figure 1.5.

The thesis work is composed by three components which address different

aspects of understanding hand manipulation: (1) An image-based approach

for hand grasp analysis in unstructured environments is presented in Chapter

2, which recognizes hand grasp types from a single image and analyzes visual

similarity between different grasp types; (2) A sequence-based method for

hand grasp analysis from dynamical hand information is proposed in Chap-

ter 3; (3) An unified framework for recognizing grasp types, object attributes

and manipulation actions is presented in Chapter 4, in which semantic re-

5



lationship between hands, objects, and actions is modeled. The overview of

this thesis is given as follows:

1.2.1 Hand grasp analysis with static appearance fea-

tures

Grasp is commonly defined as every hand postures used for holding an object

stably during hand manipulation tasks. The study of hand grasp plays a

central role in understanding hand manipulation, since for most manipulation

tasks objects are first required to be grasped by hands and then the following

manipulation can be performed. Traditional approaches to grasp analysis

have been developed primarily in controlled laboratory settings which pose

limitations on the recording and study of free hand-object interactions. As a

result, hand grasp in everyday manipulation tasks has seldom been studied.

To enable hand grasp analysis in natural working/living scenes, an ap-

pearance based approach for hand grasp analysis is presented which can rec-

ognize different hand grasp types in unstructured environments using a wear-

able monocular camera. A wearable camera allows for continuous recording

of natural manipulation tasks and enables the study of hand grasp at a large

scale. It also provides an ideal first-person viewing perspective for grasp anal-

ysis. The proposed approach incorporates advances of computer vision tech-

niques. In particular, egocentric hand detection techniques are adopted to

segment hand regions, and popular appearance-based features are extracted

for training discriminative grasp classifiers. Building on the output of grasp

classifiers, visual similarity among different grasp types are analyzed and vi-

sual structures of hand grasp are automatically learned. Experiments show

the potential of automatic grasp recognition in unstructured environments.

6



1.2.2 Hand grasp analysis with dynamic appearance

features

Visual grasp recognition is a challenging task and the appearance-based

method is unreliable in real world scenario. Different hand grasp types are

ambiguous from a single image as they share similar hand shape/appearance,

thus hand appearance alone is insufficient to discriminate between differ-

ent grasp types. It is also challenging to reliably detect the hand and the

appearance-based method is sensitive to hand detection noises.

In this chapter, hand grasp is studied from a different perspective of hand

dynamics rather than static appearance. In particular, I propose a new fea-

ture representation based on hand-guided feature tracking to encode dynam-

ical information of hand appearance and motion from image sequences. The

hand-guided feature tracking is called “Dense Hand Trajectories” (DHT).

Dense hand trajectories are obtained by densely sampling and tracking fea-

ture points in a short interval of images which are guided by hand detection.

Feature descriptors are computed for each trajectory to encode the informa-

tion of both hand motion and hand appearance. The feature representation

based on dense hand trajectories has several advantages over appearance-

based features. First, trajectory itself contains motion information of the

hand during interaction which is useful for identifying different grasp types.

Second, hand appearance at multiple adjacent images along the hand trajec-

tory can be computed as more compact representation for single grasp type

than image-based features. Moreover, features based on hand tracking are

more robust to hand detection noises than hand appearance-based features.

Extensive experiments verified effectiveness of the proposed method.

7



1.2.3 Understanding manipulation actions with grasp

types and object attributes

The ability to understand actions of hand-object manipulation automatically

from images is important for domains such as robotic manipulation, human

grasp understanding, and motor control analysis. However, the recognition

task for understanding manipulations from monocular images is also very

challenging. There are many occlusions of the hands and the manipulated

objects during interactions.

In this work, I propose a novel method to extract object attribute infor-

mation from the manipulated object. Furthermore, the recognition of grasp

types and object attributes is enhanced by exploring their mutual context in-

formation (contextual relationship between two components that by knowing

one component facilitates the recognition of the other). Finally, a semantic

action model based on grasp types and object attributes is provided. Specif-

ically, discriminative classifiers for different actions are trained based on the

recognition output (belief distribution) of grasp types and object attributes.

There are several advantages for jointly modeling actions in this way:

(1) Grasp type helps describe the functionality of an action, whether it re-

quires more power, or more flexible finger coordination; (2) Object attributes

provide a general description about the manipulated object and indicates

possible interaction patterns; (3) High-level semantic labels of grasp types

and object attributes enable the model to encode high-level constraints (e.g .,

medium wrap can only be used for cylindrical objects) and as a result, results

of the learned model are immediately interpretable. Experiments strongly

support our hypothesis.
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Chapter 2

Hand grasp analysis with static

appearance features

2.1 Background

Grasp is commonly defined as every hand postures used for holding an object

stably during hand manipulation tasks. Understanding the way how humans

grasp object is important in different domains ranging from robotics [Cut89],

prosthesis [Kel47], hand rehabilitation [WCE+01], to motor control analysis

[CSPA+92] and many others. In robotics, the study of hand function provides

critical information regarding design of robotic hands [Cut89]. In rehabilita-

tion, statistical information about daily usage of grasp types is an important

factor in evaluation criterion for injured hand recovery [WCE+01]. I believe

the ability of automatic hand grasp analysis is of great importance in under-

standing hand manipulation, since for most manipulation tasks objects are

first required to be grasped by hands and then the following manipulation

can be performed. Thus the study of hand grasp plays a central role in this

thesis.
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Traditional approaches to grasp analysis often use tactile sensors which

can provide precise measurement of hand articulation and finger touch pres-

sure. However, intrusive hand sensors are required to be worn and often

inhibit free hand interactions. As a result, hand grasp analysis is mainly

conducted in controlled laboratory settings. In recent years, although some

researchers have studied daily hand usage based on manual annotation of

egocentric video recording everyday tasks, the annotation process required

many hours of visual inspection by skilled annotators and such manual ap-

proaches can not scale to larger datasets.

The goal of this chapter is to develop a fully automatic recognition system

for studying hand grasp in natural hand-object interactions. In particular, I

propose an image-based approach for hand grasp analysis under first-person

vision paradigm using a wearable camera. A wearable camera is qualified

for its portability and allows for continuous recording of daily activities at a

large scale. It also provides an ideal egocentric viewing perspective for grasp

analysis with hand-object interactions naturally recorded in the center of the

visual field.

The proposed approach incorporates advances of computer vision tech-

niques that can be used as a tool to advance studies in prehensile analy-

sis. In particular, state-of-the-art egocentric hand detection techniques are

adopted in order to deal with the new challenges of first-person vision such

as unconstrained hand movements and rapidly changing imaging conditions

(i.e., illumination and background) due to extreme camera motion. Based

on detected hand regions, popular appearance-based features are examined

and extracted as feature representation for hand grasp. Grasp classifiers are

trained for discriminating between different grasp types. Finally, the grasp

classifiers are used to learn the visual similarities between grasps in order to

10



automatically build an appearance based grasp hierarchy, which we call the

visual structures of hand grasp. In the experiments, the analysis of real-world

video shows that it is possible to automatically learn intuitive visual grasp

structures that are consistent with expert-designed grasp taxonomies.

The contributions of this chapter are as follows: 1) An appearance-

based approach is proposed for hand grasp recognition from a single image

recorded by a wearable camera. 2) An iterative clustering method is pro-

posed for learning visual structures of hand grasps using a visual clustering

approach which enables the system to automatically learn task-based grasp

taxonomies.

This chapter is organized as follows: Section 2.2 gives a brief review of the

related works about hand grasp taxonomy and hand detection in first-person

view video. Section 2.3 describes the architecture and main components of

our first-person vision-based system. Performance evaluation of the system

is shown in Section 2.4, and conclusions are made in Section 2.5.

2.2 Related works

2.2.1 Human grasp taxonomy

Grasp taxonomies have been studied for decades to better understand the use

of human hands [Sch19, Kel47, Nap56, IBA86, Cut89, KI93, FPS+09]. Early

work by Schlesinger [Sch19] classified hand grasps into 6 major categories

based on hand shape and object properties. In 1956, Napier proposed a

scheme [Nap56] that divides grasps into power and precision grasps based on

requirements of the manipulation task. The categorizations of power and pre-

cision grasps was widely adopted by researchers in the medical, biomechani-

cal and robotic fields. In studying grasps in manufacturing tasks, Cutkosky
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provided a comprehensive hand grasp taxonomy [Cut89] which played an im-

portant role in guiding robotic hand design. In the early 1990’s, Kang and

Ikeuchi [KI93] presented a computational framework for grasp identification,

allowing automatic grasp planning of a robotic system from a demonstrated

human grasp. Recently, Huang et al. [HMMK15] proposed an unsupervised

method to discover appearance-based grasp taxonomies. In their method,

hand images with similar appearance are clustered together as distinct grasp

types.

The human grasp taxonomy proposed by Feix et al. [FPS+09] is the

most complete to date as argued and has been widely used in grasp analysis

in recent years [RFKK10, BZR+13, DB14]. Considerable efforts have been

devoted in obtaining the statistics of human hand use [BZR+13, BFD13,

FBD14]. The created statistics is based on manual annotation of egocentric

video recording everyday tasks. However, the annotation process required

many hours of visual inspection by skilled annotators. As it becomes easier

to acquire large amounts of visual data, it is clear that manual approaches will

not scale to larger datasets. In this work, however, the aim is to propose an

automatic first-person vision-based framework that will help to support next

generation research in the area of prehensile analysis using a large amount

of video data.

2.2.2 Automated grasp analysis

Approaches for automatic hand grasp analysis have been developed primarily

in structured environment. Hand tracking devices such as data gloves or

inertial sensors have been used to obtain detailed measurements of joint

angles and positions of the hand [SFS98, FGE+99, BOID05, EK05]. Santello

et al. [SFS98] used Principle Component Analysis (PCA) to analyze finger

12



coordination of hand grasp using joint angle data from a data glove. However,

the main limitation of hand tracking devices is that they must be worn on

the hand and inhibit free hand interactions.

Vision tracking of hand grasping an object [KRK08, HSKMVG09, OKA11,

RKEK13] allows a completely non-contact markerless form of hand inter-

actions. Romero et al. [RKEK13] proposed a non-parametric estimation

method to track hand poses interacting with objects by performing a nearest

neighbor search in a large synthetic dataset. However, most visual tracking

systems require that hand interactions are recorded in a structured environ-

ment. In this work, a first-person vision-based approach is proposed which

can handle large scale video data in real-life manipulation tasks.

2.2.3 Hand detection in first-person vision

Wearable camera allows for continuous recording of hand interactions in real

world environments at a large scale and provide an ideal first-person view-

ing perspective for studying hand interactions. Recognition from egocentric

video has become a popular topic in computer vision community. Li and

Kitani [LK13] first addressed hand detection problem in the context of ego-

centric video. They proposed a pixel-level hand detection method which

can adapt to changing illuminations. Li et al. [LFR13] studied the eye-hand

coordination in egocentric video and used mid-level information from hand

detection to predict where the eyes look. Baraldi et al. [BPS+14] proposed to

use dense trajectories with hand segmentation for hand gesture recognition in

ego-vision scenarios. Dense trajectories which is often used in action recog-

nition is proved to work well in egocentric paradigm. Rogez et al. [RIR15]

recently presented promising results on discrete hand pose recognition from

a chest-mounted RGB-D camera. However, these discrete poses have no di-
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Figure 2.1: Outline of the proposed framework.

rect semantic correspondence to hand grasp types. This work is the first to

develop computer vision-based techniques for grasp recognition under first-

person vision.

2.3 Grasp analysis framework

A scalable grasp analysis framework is desired which can recognize different

hand grasp types in daily manipulation tasks and learn visual structures of

hand grasps from large scale of data. To achieve this goal, a first-person

vision-based approach is developed which can learn discriminative classifiers

and visual structures of hand grasp automatically with a single wearable

camera. The outline of the framework is illustrated in Figure 2.1. The in-

put to the system is egocentric video recording daily manipulation tasks.

Based on state-of-the-art hand detection techniques hand regions are seg-

mented from egocentric videos. Then grasp-related features are extracted
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Figure 2.2: Pipeline of the grasp recognition system. (a) Manipulation task

recorded with a wearable camera (b) Hand segmentation from pixel-level

hand detection (c) Appearance-based features (d) Multi-class classification

from hand regions for training discriminative grasp classifiers. Finally, an

iterative discriminative clustering method is used to learn visual structures

of hand grasp.

More specifically, the procedure of grasp recognition (after excluding the

clustering part of the proposed framework) is similar to ordinary visual recog-

nition system, and its pipeline is demonstrated in Figure 2.2. Different com-

ponents of grasp recognition as well as the discriminative clustering will be

described in details in the following subsections.

2.3.1 Hand segmentation

Robustly identifying hand regions with a wearable camera is a challenging

yet essential pre-processing needed to automate hand grasp analysis. As

the camera is mobile, the background is rapidly changing, hands are mov-

ing without constraint and the camera can move with extreme ego-motion.

15



Hand detection 

(a) (b) 

(c) 

Palm location 

(d) 

Figure 2.3: Example of hand segmentation. (a) Image from egocentric video

(b) Hand probability map (c) Candidate hand regions (d) Hand region within

a bounding box

Recent work on detecting hand regions using a wearable camera has shown

that robust hand detection performance can be achieved if the hand model is

rapidly adapted to changes in imaging conditions [LK13]. Following [LK13],

a multi-model hand detector is trained which is composed by a collection

of hand pixel classifiers indexed by global appearance models. Given a test

image, the global appearance modeled by a color histogram is computed as

a visual probe, for every frame, in order to recommend the n-best hand pixel

classifiers. Based on the multi-model hand detector, a probability map is

generated for each image as illustrated in Figure 2.3(b). The value of each

pixel represents the likelihood of being a hand pixel in the original image.

Once the hand probability map has been detected, hand region, which
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contains most of the grasp information, is then segmented with a bounding

box. Candidate hand regions with arms are first selected by binarizing the

probability map with a threshold. Regions under a certain area proportion

are discarded and at most two regions are retained. Fig. 2.3(c) shows two

candidate hand regions painted with green and orange contours. In this work

I only consider the right hand grasp. The left hand is suppressed by simply

selecting the candidate hand region which is right-most. If no hand region

is detected, that is when no hands are visible, the image is discarded. Each

hand region is extracted with a fixed size bounding box which is shown as

the white rectangle in Fig. 2.3(c). In detail, ellipse parameters (length of

long/short axis, angle) are fitted to the original hand region. The arm part

is approximately removed by shortening the length of long axis to 1.5 times of

the length of short axis. A fixed size bounding box is drawn by fixing the top-

center of the bounding box to the top-center of the arm-removed hand region.

The size of the bounding box is determined heuristically for each video and

takes advantage of the fact that the distance between the hands from the

head-mounted camera is consistent across various manipulation tasks.

2.3.2 Feature representation

In expert-defined grasp taxonomies, different grasp types are often identified

by hand postures, object properties and types of hand-object interactions.

Therefore, grasp-related features for palm regions are examined which en-

codes the shape of different hand postures and visual context of manipulated

objects.
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(a) (b) 

Figure 2.4: Visualization of HOG features. (a) HOG (b) HandHOG

Hand shape

Hand shapes are represented with Histogram of Oriented Gradient (HOG)

[DT05] computed from a palm region. HOG features are an image descriptor

based on collected local distributions of intensity gradients and have been

widely used in object detection. The HOG features are computed by first

dividing a palm region into a grid of smaller regions (cells) and then comput-

ing histogram of gradient orientations in each cell. Cell histograms within

a larger region (blocks) are then accumulated and normalized to make the

block descriptor less sensitive to varying illumination. Finally, the resulting

block histograms are concatenated to form a HOG feature descriptor. A cell

size of 8× 8 pixels, block size of 16× 16 pixels, and window size of 160× 80
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pixels with 9 orientation bins are used. A visualization of example HOG

features is shown in the bottom-left of Fig. 2.4.

In the experiments, three variants of the HOG feature descriptor are

examined. The first is the global HOG feature described above. The second

is a dimension-reduced version of HOG using Principle Component Analysis

(HOG-PCA) to reduce the dimension of feature descriptor from 6156 to 100.

The third is HOG features weighted by a skin probability map (HandHOG).

HandHOG effectively suppresses gradients due to object being manipulated

or background regions. As shown in Fig. 2.4, HOG features corresponding to

non-hand regions are removed by weighting each block histogram by squared

hand probability at the center of the block.

Object context

Features based on local keypoints are also examined in order to capture the

visual context of the object and hand-object interaction. In particular, the

following two local gradient descriptors are extracted.

SIFT detection 

Figure 2.5: Visualization of SIFT keypoints.

SIFT features [Low04] are extracted as a representation of the visual

context of manipulated objects. Example keypoints are visualized in Fig. 2.5

where the scale and orientation of each keypoint are illustrated with a circle

and a red radius. Histogram of gradients around each keypoint is computed

19



as a keypoint descriptor. Note that keypoints are detected around the object

and the part of the hand in contact with the object. A bag-of-words (BOW)

approach for obtaining an image descriptor is used which contains the fre-

quency of keypoint patterns. A total of 100 keypoint patterns are generated

using k-means clustering over all keypoint descriptors.

In addition to the SIFT BOW, the same approach is used to obtain a

100-dimensional image descriptor counting frequency of block-based HOG

features which are generated using k-means clustering over all block HOG

descriptors. The two 100-dimensional feature vectors are then concatenated

together to generate a new feature (BlockHOG-SIFT).

2.3.3 Grasp recognition

One-versus-all multi-class grasp classifiers are trained for the grasp types

defined in Feix’s taxonomy [FPS+09]. This taxonomy is preferred since it is

the most complete one in existence and has previously been applied to grasp

analysis in [BFD13][FBD14]. Probability calibration [Pla99] is performed for

each classifier in order to produce comparable scores. During testing, each

frame is classified to the grasp type of the classifier with the highest score.

A correlation index is also defined for evaluating the visual similarity

between different grasp types based on classification results. The correlation

index Ci,j between grasp type i and grasp type j is defined as:

Ci,j =
mi,j + mj,i

2
(

1

ni

+
1

nj

) (2.1)

where mi,j, mj,i denotes the number of samples from grasp type i misclassified

as grasp type j and vice versa. ni, nj are the number of samples from grasp

type i and grasp type j, respectively.

20



2.3.4 Discovering visual structures of hand grasp

The visual similarity between different grasp types poses big challenges in

training discriminative grasp classifiers based on visual features. Some vi-

sually similar grasp types are extremely difficult to differentiate, even for

human annotators. Taking Thumb-2 Finger and Thumb-3 Finger for exam-

ple, it is hard to tell how many fingers are used in holding the tool only from

visual perception.

Algorithm 1 Iterative Grasp Clustering

Initialize: N ⇐ the number of grasp types, consider each grasp type as a

single-member grasp cluster

while N > 1 do

Step1: Train grasp classifiers for each grasp cluster

Step2: Perform grasp classification, compute correlation index for each

pair of grasp clusters

Step3: Merge two grasp clusters with biggest correlation index into one

grasp cluster, N ⇐ N − 1

end while

To address this challenge, I take another direction to explore the visual

structures of hand grasps based on the correlation between visually trained

grasp classifiers. As introduced in Section 2.3.3, a correlation index is de-

fined for evaluating the visual similarity between different grasp types based

on classification results. Based on the correlation index, An iterative grasp

clustering algorithm was implemented by iteratively clustering two most sim-

ilar grasp types. The algorithm is described in Algorithm 1. This procedure

defines a visual structure between grasp types – a grasp dendrogram.

By incorporating the iterative clustering procedure into the grasp recog-
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Figure 2.6: 17 different grasp types from the Feix’s taxonomy[FPS+09].

Grasp types are selected based on the study of grasp usage in [BFD13].

nition procedure, an first-person vision system for hand grasp analysis is

composed as illustrated in Fig. 2.1. With input of first-person view video

recording daily manipulation tasks, this system can recognize different hand

grasp types and learn visual structures of hand grasp automatically.
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9 

Figure 2.7: Images samples from UT Grasp Dataset (top 2 rows) [CKS15]

and Machinist Grasp Dataset (bottom 2 rows) [BFD14].

2.4 Evaluation

2.4.1 Experimental setting

To explore the effectiveness of the examined visual features for recognizing

grasp types, a new dataset was collected under controlled environment (“UT

Grasp Dataset”). Only a subset of grasp types in Feix’s taxonomy are con-

sidered in our dataset, since not all the grasp types are commonly used in
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everyday activities. Seventeen grasp types were selected as shown in Fig. 2.6

based on the statistical result of grasp prevalence provided by Bullock et al.

[BFD13]. Four subjects were asked to grasp a set of objects placed on a desk-

top after brief demonstration of how to perform each type of grasps. Each

subject performed hand grasps with a unique set of objects (e.g., different

objects with a cylindrical shape are used by different subjects in the medium

wrap grasp type). Video was recoded by a HD head mounted camera (GoPro

Hero2) at 30 fps while subjects performed each grasp type with varying hand

poses. The recorded video was then downsized to 960× 540 pixels. Fig. 2.7

(top 2 rows) shows some images from UT Grasp Dataset.

To examine the proposed system in more natural environments, a real-

world grasp dataset [BFD14] is used, which is composed of 20 video sequences

recording a machinist’s daily work (“Machinist Grasp Dataset”). The Ma-

chinist Grasp Dataset is part of a larger human grasping dataset provided by

Yale University and is manually labeled with grasp types. The video quality

of the Machinist Grasp Dataset is relatively low with the image resolution

of 640x480 pixels. Fig. 2.7 (bottom 2 rows) shows some example images.

In the experiments on Machinist Grasp Dataset, rare grasp types were re-

moved and seventeen remaining grasp types were selected which at least take

place three times through out all sequences. The 17 grasp types in Machinist

Grasp Dataset are slightly different from that in UT Grasp Dataset since

grasp usage varies in different tasks.

Hand regions are segmented with a bounding box with the size of 320×160

for UT Grasp Dataset and 256×128 for Machinist Grasp Dataset. Then four

feature descriptors (HOG, HOG-PCA, HandHOG, and BlockHOG-SIFT) are

extracted for each of the segmented hand regions as explained in Section

2.3.2. Finally, three types of classifiers are trained by using the obtained
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feature descriptors: (1) Linear Support Vector Machine (SVM-linear), (2)

SVM with Radial Basis Function kernel (SVM-rbf), and (3) Exemplar SVM

(ESVM). The average F1 score computed from a weighted average of the F1

score of each grasp type is used for evaluating the grasp recognition perfor-

mance. Value ranges from 0 to 1, where 1 represents perfect performance.

2.4.2 Performance of grasp recognition

The proposed approach is applied to UT Grasp Dataset and Machinist Grasp

Dataset to see how visual features can discriminate between different grasp

types in both controlled and natural environments.

First grasp recognition results are presented for a single user on UT Grasp

Dataset. Grasp classifiers are trained and tested for each user using 5-fold

cross validation. The average F1 scores of the 17 grasp classifiersare shown

in Table 2.1 for different feature descriptors and different machine learning

algorithms. From Table 2.1, it can be seen global features (HOG, HOG-PCA,

HandHOG) outperform local feature histograms (BlockHOG-SIFT). While

different hand grasps may share similar statistics of local gradient patterns,

it can be observed that global gradient information is important for robust

classification. Although the separation between hand and object in Hand-

HOG seems intuitive and well-motivated, HandHOG performs slightly worse

than HOG in nearly all cases. This is in part because of the hand segmen-

tation noises, but also because HOG encodes additional information about

the appearance of the object being held. The big performance gap between

SVM-linear and SVM-rbf, especially when using HOG-PCA, indicates that

hand grasps have wide variance in pose and are therefore not linearly sepa-

rable. More importantly, the experimental results show that it is possible to

construct high performance vision-based task-specific classifiers for a single
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user.

Table 2.1: Performance of single user on UT Grasp Dataset

SVM-linear SVM-rbf ESVM

HOG 0.85 0.86 0.89

HOG-PCA 0.79 0.88 0.89

HandHOG 0.8 0.85 0.88

BlockHOG-SIFT 0.79 0.8 0.79

Table 2.2: Performance on Machinist Grasp Dataset

SVM-linear SVM-rbf ESVM

HOG 0.31 0.37 0.39

HOG-PCA 0.18 0.42 0.38

HandHOG 0.32 0.38 0.34

BlockHOG-SIFT 0.29 0.39 0.37

The grasp recognition performance on Machinist Grasp Dataset using 5-

fold cross validation is shown in Table 2.2. Note that the dataset contains

nearly eight hours of video data recording a machinist’s daily work, thus it

provides a good platform to evaluate how our vision-based approach works

under real-world conditions. The combination of HOG-PCA and SVM-rbf

achieves the best average F1 of 0.42, the average F1 for classification of 17

classes is 0.06 at the chance level. Although the absolute performance is still

low, I believe that the result demonstrates the potential of automatic visual

classification of grasp types in a realistic setting.
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Figure 2.8: Examples of true positives and false positives on Machinist Grasp

Dataset.

Some examples of true positives and false positives are shown in Fig. 2.8.

Two columns to the left of the dashed line show true positives of a grasp

type of which the prototype is illustrated in the left-most column. The false

positives are shown in the right side of Fig. 2.8. From these examples, it can

be seen that some grasp types are extremely difficult to differentiate, even

for human annotators. Taking Thumb-3 Finger for example, both of the first

true positive and the first false positive show the machinist’s hand holding

a tool. It is hard to tell how many fingers are used in holding the tool only

from visual perception.

The visual similarity between some pairs of grasp types (e.g., Thumb-2

Finger and Thumb-3 Finger) poses big challenges in training discriminative

grasp classifiers based on visual features. Differentiating between fine-grained

categories such as these will require more advanced vision-techniques for

extracting exact finger positions. This is left to my future work.
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2.4.3 Appearance-based grasp structures
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Figure 2.9: Correlation matrix of 17 grasp types on Machinist Grasp Dataset.

Here it is shown how the correlation between visually trained grasp clas-

sifiers can be used to discover the visual structures of hand grasps. The cor-

relation index between all pairs of grasp types for Machinist Grasp Dataset

is computed based on classification results using combination of HOG-PCA

and SVM-rbf. The correlation matrix of 17 grasp types is shown in Fig. 2.9,

where each element indicates the correlation index (scaled by 100 for visual-

ization) between a pair of grasp types indexed by rows and columns. Top 5

pairs of grasp types with highest correlation index are shown in Fig. 2.10.

Following the iterative grasp clustering algorithm described in Algorithm 1,

a dendrogram of grasp types was constructed by iteratively clustering two

most correlated grasp types after each iteration of supervised learning. A

dendrogram is a binary tree which gives a complete graphical description

of the hierarchical clustering. The final constructed grasp dendrogram is
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Figure 2.10: Top 5 grasp correlations on Machinist Grasp Dataset.

shown in Fig. 2.11. Grasp types with the highest classifier correlation are

clustered first at lower level nodes, while those dissimilar with each other

are clustered later at higher levels in the tree. The original grasp types from

Feix’s taxonomy are located at the leaf nodes (level-0). It can be observed

that for the first six iterations, grasps are clustered in a manner consistent

with known divisions of power and precision grasps in expert-designed grasp

taxonomies[Cut89][FPS+09]. With the exception of Writing Tripod and Ex-

tension Type, the division between power and precision grasps are preserved

until level-12 (the 12-th iteration) of the grasp hierarchy.

The more important observation however is that the visual structures of

hand grasp for the machinist has been learned automatically in a data-driven

manner. While classical grasp taxonomies have been created through deep

introspection, the shared uncertainty between visual classifiers can also be

used to learn intuitive hierarchies over human grasps.

29



0.
43

 
0.

45
 

0.
61

 

0.
48

 
0.

51
 

0.
55

 
0.

6 

0.
61

 
0.

63
 

0.
64

 
0.

66
 

0.
66

 
0.

77
 

0.
81

 
0.

94
 

1.
0 

F
ig

u
re

2.
11

:
D

en
d
ro

gr
am

of
h
an

d
gr

as
p

ty
p

es
b
as

ed
on

h
an

d
ap

p
ea

ra
n
ce

.
A

ve
ra

ge
F

1
sc

or
es

co
m

p
u
te

d
at

d
iff

er
en

t

ab
st

ra
ct

io
n

le
ve

ls
ar

e
ad

d
ed

n
ea

r
ea

ch
cl

u
st

er
in

g
n
o
d
e.

30



2.4.4 Recognition using grasp abstractions

Based on the dendrogram in Fig. 2.11 it is possible to ‘cut’ the tree at dif-

ferent levels to obtain different set of grasp clusters. Furthermore, each slice

(abstraction) level can be interpreted as a new grasp taxonomy. By learning

new grasp classifiers for each category of the new taxonomies, a trade-off

between more detailed classification and more robust classification can be

achieved. Average F1 scores are computed for grasp recognition at each level

of grasp abstractions in Fig. 2.11. If we utilize a higher level of the tree to de-

fine grasp categories, more reliable grasp classification can be obtained. For

example, at level-12 of the tree, it is able to differentiate between 5 grasps

with an average F1 score of 0.66. On the other hand, choosing level-5 will

allows us to differentiate between 12 grasps with an average F1 score of 0.55.
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Figure 2.12: Grasp recognition performance at different levels of grasp ab-

stractions. Performance at different abstraction levels shows a trade-off be-

tween more detailed classification and more robust classification.
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The changes of grasp recognition performance at different levels of the

grasp dendrogram is shown in Fig. 2.12. The average F1 grows up steadily

until level-6 since at initial six iterations similar grasp types are being clus-

tered together. From level-7 to level-12, average F1 increases relatively slowly

compared to previous steps. For example, average F1 of level-11 and level-

12 are almost the same (0.66). This can be explained as newly clustered

grasp types become more dissimilar and thus only limited improvement of

recognition performance is achieved. Average F1 increases dramatically from

level-13 since big grasp clusters are merged together and chance of misclas-

sification is low.

This learned visual structure gives researchers the flexibility of finding a

good balance between better performance and more detailed grasps analysis.

2.5 Conclusion

In this chapter, I propose a first-person vision-based approach for automatic

grasp analysis from image appearance. In the approach, discriminative clas-

sifiers are trained to recognize different grasp types based on computer vision

techniques, and visual structures of hand grasps are learned by a supervised

grasp clustering method. This work shows the potential for using computer

vision techniques for analyzing hand grasps with large scale of data in real-life

settings.

There still exists a lot of work to do to improve grasp recognition per-

formance. The temporal aspect of grasping is obviated in this paper and it

would be helpful to impose temporal coherence to improve classification per-

formance. Moreover, explicit object attributes such as weight, shape and size

are important factors affecting human grasp selection. I believe a reliable de-
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tection framework of object attributes would be very useful in inferring grasp

usage. These problems will be addressed in next chapters.
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Chapter 3

Hand grasp analysis with

dynamic appearance features

3.1 Introduction

In the previous chapter, I proposed an image-based method for hand grasp

analysis from static image appearance within a first-person vision framework.

Although the proposed method can recognize different grasp types when only

an image is given, the recognition performance is not accurate enough, es-

pecially in real world scenario. Different grasp types which share similar

hand shape/appearance are ambiguous to be differentiated only from a sin-

gle image. Even hand appearance of one grasp type might be dynamically

changing during interactions, making image appearance alone insufficient for

accurate grasp recognition. Furthermore, it is sometimes challenging to reli-

ably detect the hand and the appearance-based method is sensitive to hand

detection noises. To address these problems, a more compact and richer fea-

ture representation which encode dynamical information of hand interactions

is desired.
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Instead of the case when only an image is used as in Chapter 2, I consider

another case when an image sequence with consecutive frames are available.

This enables us to study hand grasp from a different perspective, that is, from

hand dynamics by which it means dynamical information of hand appear-

ance and motion during interactions. In particular, a feature representation

based on hand-guided feature tracking is proposed and called as “Dense Hand

Trajectories” (DHT). Dense hand trajectories are obtained by densely sam-

pling feature points and tracking them within a short video interval and is

guided by hand detection. What makes it different from traditional dense

trajectories is that each tracked trajectory is given a weight based on its

spatial relations with detected hand regions. Trajectories with low weight

are discarded, and feature descriptors are computed for each trajectory to

encode the information of both hand motion and hand appearance. Features

based on dense hand trajectories have several advantages over appearance-

based features. First, trajectory itself contains motion information of the

hand during interaction which is useful for identifying different grasp types.

Second, hand appearance at multiple adjacent images along the hand tra-

jectory can be computed as more compact representation for single grasp

type. Moreover, grasp classifiers trained on trajectory-based features are

more robust to hand detection noises.

In addition, to better evaluate the visual grasp structures automatically

learned from data, I propose a new metric to quantitatively compare dif-

ferent hierarchical grasp structures. Quantitative evaluation with qualita-

tive comparison demonstrate the consistency of automatically learned grasp

structures with expert-designed grasp taxonomies.

Contributions of this chapter are summarized as follows: (1) A new fea-

ture representation for grasp recognition from image sequences is proposed

36



which achieves best classification accuracy and is robust to unreliable hand

detection. (2) A new metric is proposed to quantitatively evaluate the con-

sistence of the automatically learned grasp structures with expert-designed

grasp taxonomies. (3) The performance of the grasp recognition system is ex-

tensively evaluated by examining state-of-the-art feature representation used

in object and action recognition.

The rest of this chapter is organized as follows. Section 3.2 presents

related work. Section 3.3 introduces the proposed feature representation

based on dense hand trajectories. Performance evaluation of the system

is shown in Section 3.4. Section 3.5 discusses the advantages of proposed

method. Conclusions of the work is made in Section 3.6.

3.2 Related works

3.2.1 Vision-based grasp recognition

There exist few previous studies on vision-based grasp recognition. Work

from Cai et al. [CKS15] first developed techniques to recognize a complete

set of hand grasp types in everyday hand manipulation tasks recorded with a

wearable RGB camera and provided promising results with appearance-based

features. Yang et al. [YLFA15a] utilized a convolutional neural network to

classify hand grasp types on unstructured public dataset and presented the

usefulness of grasp recognition for action understanding. However, it only

considers a small number of grasp types trained on static scene hand images.

Saran et al. [STK15] used detected hand parts as intermediate representa-

tion to recognize fine-grained grasp types. The intermediate representation

outperforms low-level appearance-based representation when hand parts can

be well detected. In this work hand grasp types are recognized from perspec-
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tive of hand dynamics in order to tackle the challenges of unreliable hand

detection.

3.2.2 Dense trajectories

Dense trajectories proposed by [WKSL11] have become one of predominant

feature representation for video recognition. The main idea is to densely

sample feature points at each frame and track them for an amount of time in

the video using optical flow. Multiple descriptors encoding appearance and

motion information are computed along the trajectories of feature points.

Several approaches are proposed to improve dense trajectories. Vig et al.

[VDC12] employed saliency-mapping algorithms to address the descriptors

corresponding to informative regions. This space-variant method improves

action recognition accuracy with a more compact video representation. Wang

and Schmid [WS13] improved dense trajectories by removing trajectories

consistent with camera motion and cancel the camera motion from optical

flow for motion-based descriptors. In this work, when estimating the camera

motion, only feature points between frames which are beyond the hand region

are matched since hand motion is in general different from camera motion in

first-person videos.

Baraldi et al. [BPS+14] proposed to use dense trajectories with hand

segmentation for hand gesture recognition in ego-vision scenarios. Dense

trajectories which is often used in action recognition is proved to work well in

egocentric paradigm. The proposed dense hand trajectories is similar to the

work of [BPS+14] but with the differences as follows: First, hand detection is

utilized to weight the tracked feature points in order to give flexible evaluation

of the trajectories’ relatedness to hand interactions. Second, only feature

descriptors from trajectories which have high relatedness to hand interactions
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are extracted.

3.3 Proposed method

3.3.1 Dense hand trajectories

Dense trajectories proposed by Wang et al. [WKSL11] have been widely used

as video representation for action recognition, and proven to achieve state-

of-the-art results on many video datasets of third person view. To apply

it to grasp recognition in first person video, it is important to focus on the

region where hand interaction occurs and remove irrelevant features from

background. Motion-based background subtraction doesn’t work well in first

person video since the background is moving and is hard to reliably estimate

the camera motion as illustrated in Figure 3.1(c). In this work, I propose a

feature representation of “Dense Hand Trajectories (DHT)” which uses hand

detection as a spatial prior to extract dense trajectories most related to hand

interactions.

First the extraction procedure of traditional dense trajectories [WKSL11]

is described on which dense hand trajectories is based. At each frame, feature

points are densely sampled on a grid spaced by 5 pixels at multiple spacial

scales. Points in homogeneous area are removed since it is impossible to track

them without any structure. Feature points at each spacial scale are tracked

separately using a dense optical flow algorithm [Far03]. Each trajectory is

composed by feature points tracked for consecutive frames with trajectory

length set to L = 15 frames.

The main difference of the proposed DHT from [WKSL11] is that the

detected hand regions are used as spatial prior to weight trajectories which

pass through the hand regions. Specifically, a variable H is used to count
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(𝑎𝑎) (𝑏𝑏) 

(𝑐𝑐) (𝑑𝑑) 

Figure 3.1: Example of dense hand trajectories. (a) Image from egocentric

video (b) Hand probability map (c) Visualization of optical flow (d) Visual-

ization of dense hand trajectories in green color

the times of being tracked within the hand regions for each trajectory as

illustrated in Figure 3.2. At each frame t, a trajectory with a starting feature

point sampled within the hand region is initialized with H = 1 as indicated

by the trajectory (a), otherwise it is initialized with H = 0 as indicated by the

trajectory (b). At each subsequent frame during the tracking procedure, H

is increased by 1 for all trajectories of which the feature points being tracked

are within the hand regions. At the end of tracking, trajectories with H less

than a certain threshold Th are considered as non-hand trajectories and thus

removed. In the experiments, I set Th = L/2 based on empirical results.
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… … 

(𝑎𝑎) 

𝐻𝐻𝑎𝑎 = 1 

𝐻𝐻𝑏𝑏 = 0 

𝐻𝐻𝑎𝑎 += 1 
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𝐻𝐻𝑏𝑏 >= 𝑇𝑇ℎ? 
(𝑏𝑏) 

Figure 3.2: Illustration of my approach to extract dense hand trajectories.

3.3.2 Feature extraction

There are two stages of feature extraction based on dense hand trajectories.

At the first stage, descriptors are computed for each trajectory. At the second

stage, descriptors of trajectories are pooled together and further encoded for

each frame.

At the first stage, four descriptors (Displacement, HOG, HOF, MBH) are

computed the same as in [WS13]. Dimensions of these descriptors are 30 for

Displacement, 96 for HOG, 108 for HOF and 192 for MBH. These descriptors

contains information of both hand motion and hand appearance in the space-

time volume along the trajectory. The Displacement descriptor captures

pixel displacement along the trajectory, HOG are based on the orientation of

image gradient and encode the static appearance of the region surrounding

the trajectory, HOF and MBH are based on optical flow and capture motion

information. Homography estimation between consecutive frames is also used
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to remove global camera motion as in [WS13]. The difference is that hand

segmentation mask is used to discard the feature matches within hand regions

since hand motion is not consistent with camera motion in first-person view

videos.

At the second stage, Fisher vector is used to encode pooled trajectory de-

scriptors for each frame. Fisher vector has shown performance improvement

over bag-of-features for image/video classification in recent researches. For

details of Fisher vector encoding, one can refer to [PSM10]. Principal Compo-

nent Analysis (PCA) is first used to reduce the dimension of each descriptor

type to D = 16, and then a randomly sampled subset of 300, 000 features

are used to estimate the Gaussian Mixture Model (GMM) with number of

Gaussians set to K = 256, as in [PSM10]. The dimension of each descrip-

tor type after Fisher vector encoding is 2DK. Each frame is represented by

concatenation of Fisher vectors of different descriptor types. The procedure

of feature aggregation based on Fisher vector is summarized in Algorithm 2.

3.4 Evaluation

Like in previous chapter, system performance is evaluated on two datasets:

UT Grasp Dataset and Machinist Grasp Dataset. Recognition performance

of six different features is examined in the system. Four features (HoG,

HHoG, SIFT, CNN) rely on hand patches of fixed size. In the experiments,

hand patches are segmented with a bounding box with the size of 160× 160

for UT Grasp Dataset and 128 × 128 for Machinist Grasp Dataset. HoG

and HHoG are computed on hand patches resized to 80 × 80 and the fea-

ture dimension is 2916. The feature dimension of SIFT is 100 since it is

encoded using BoW with 100 dictionary entries. Features based on CNN are
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Algorithm 2 Feature extraction (the second stage)

Initialize: D ⇐ feature dimension after PCA, K ⇐ Number of Gaussians

for GMM, T ⇐ Number of consecutive frames for trajectory pooling

Training: Estimate PCA with D retained components for each descrip-

tor type (Displacement, HOG, HOF, MBH) from trajectory descriptors

in training data; then estimate GMM with K Gaussians for dimension-

reduced descriptors after PCA

for all frame t do

Step1: Pool together descriptors of all trajectories ended within [t, t+T ]

Step2: Perform Fisher vector encoding for each descriptor type sepa-

rately

Step3: Concatenate Fisher vector of different descriptor types as feature

descriptor for current frame

end for
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extracted from each hand patch using the Caffe implementation [JSD+14] of

the CNN model proposed by Krizhevsky et al. [KSH12]. Each hand patch is

forward propagated through five convolutional layers and a fully connected

layer and the feature dimension is 4096. Another two features are based on

dense trajectories. Improved Dense Trajectories (IDT) proposed by Wang

and Schmid [WS13] improves dense trajectories by removing camera mo-

tion between two consecutive frames. Dense Hand Trajectories (DHT) is

the proposed feature. Both IDT and DHT are encoded using Fisher vector

with same parameter settings and the feature dimension is 32768. Note that

for fair comparison, appearance-based features are aggregated from adjacent

(L = 15) frames using the same aggregation scheme as in the computation

of trajectory descriptors [WKSL11].

Linear SVMs are trained for each hand grasp type using the obtained

features mentioned above. The implementation of LIBSVM [CL11] is used for

training. At test time, each frame with detected hand region is assigned to a

grasp type of which the classifier obtains the highest score. The classification

accuracy is used for evaluating the grasp recognition performance.

3.4.1 Performance comparison

The proposed approach is applied to UT Grasp Dataset and Machinist Grasp

Dataset to see how visual features can discriminate between different grasp

types in both controlled and natural environments.

First grasp recognition results are presented for a single user on UT Grasp

Dataset. Grasp classifiers are trained and tested for each user using 5-fold

cross validation. Recognition performance of 17 grasp types are shown in

Table 3.1 for different feature representations. Precision and recall for each

grasp type and accuracy for overall performance are shown in the table.
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Here only nine most frequent grasp types according to sample proportion are

shown due to the space limit. From Table 3.1, it can be seen CNN-based

feature and proposed DHT achieve best accuracy of 94%. As for the four

features (HoG, HHoG, SIFT, CNN) which rely on exact hand patches, the

best performance achieved by CNN indicates the importance of high level

features in robust classification. The lowest performance from SIFT indi-

cates local appearance-based feature alone is less discriminative than global

features. Although the separation between hand and object in HHoG seems

intuitive and well-motivated, HHoG performs worse than HoG. This is in

part because of the hand segmentation noises, but also because HoG encodes

additional information about the appearance of the object being held. As for

the two trajectory-based features, better performance of the proposed DHT

over IDT demonstrates the effect of removing unrelated information from the

background. Although DHT doesnot outperform CNN as expected, I believe

this is because the motion information contained in DHT doesn’t help in the

controlled environment. More importantly, the experimental results show

that it is possible to construct high performance vision-based task-specific

classifiers for a single user.
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Grasp recognition performance of different features on Machinist Grasp

Dataset using 5-fold cross validation is shown in Table 3.2. The proposed

DHT achieves highest classification accuracy of 59% compared to other base-

line features. It is reasonable the proposed DHT works better than IDT since

irrelevant trajectory information from background has been removed using

hand detection. CNN-based feature improves the performance by over 15%

compared to HoG, which verifies the superiority of high-level features over

hand-crafted features. Also it is clear that trajectory-based features (DHT,

IDT) outperform appearance-based features (CNN, HoG), partly because

hand motion information is also captured in trajectory-based features which

can help discriminate different grasp types.

15 

(a) (b) 

Figure 3.3: Examples of unreliable hand detection. (a) Incomplete hand

detection with fingers missing due to extreme lighting condition (b) False

detection from background with similar skin color

I believe the robustness to unreliable hand detection of trajectory-based

features is another important reason why they outperform appearance-based

features. Hand detection in real-world first-person video is sometimes un-

reliable due to extreme imaging conditions such as changing background
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and extreme hand motion. Fig. 3.3 shows some examples of bad detection.

Grasp recognition relying on appearance-based features might be heavily in-

fluenced by unreliable hand detection. To evaluate the influence of hand

detection, classification accuracy under different hand detection conditions

are also compared. For ideal detection, image samples are manually selected

in which automatic hand detection results are acceptable. For real detection,

all image samples are used. The results are shown in Table 3.3. There is a

performance drop from ideal detection to real detection for HoG and CNN,

which indicates appearance-based features are sensitive to hand detection.

However, IDT and DHT are robust to hand detection with even slight per-

formance improvement under real detection. I believe the reason resides on

the feature tracking procedure through which IDT and DHT are extracted

since feature tracking is independent on hand detection. And more training

data under real detection results in further performance improvement.

Table 3.3: Performance influences by hand detection

Ideal detection Real detection

HoG 40.8% 33.9%

HHoG 32.5% 29.4%

SIFT 27.1% 23.8%

CNN 52.4% 48.5%

IDT 52.3% 54.3%

DHT 57.9% 59.2%
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3.4.2 Learning and comparing grasp structures

Here shows the visual structures of hand grasp learned based on the proposed

DHT. The correlation index between all pairs of grasp types is computed for

Machinist Grasp Dataset based on classification results of grasp classifiers

trained on DHT. Bad hand detection samples are removed from training

data in order to make the correlation between classifiers more likely reflect

the visual similarity of hand grasps.

Following the iterative supervised clustering algorithm described in Al-

gorithm 1, a dendrogram of grasp types based on DHT is constructed and is

shown in Fig. 3.4. Grasp types with the highest classifier correlation are clus-

tered first at lower level nodes, while those dissimilar with each other are clus-

tered later at higher levels in the tree. The original grasp types from Feix’s

taxonomy are located at the leaf nodes (level-0). It can be observed that

grasps are clustered in a manner consistent with known divisions of power

and precision grasps in expert-designed grasp taxonomies[Cut89][FPS+09].

With the exception of Precision Disk and Extension Type, the division be-

tween power and precision grasps are preserved until level-12 (the 12-th itera-

tion) of the grasp hierarchy. There are five groups of grasp types remained at

level-12. One group ranging from Medium Wrap to Power Sphere represents

the power grasps characterized by stably holding an object with palm and

five fingers. In contrast, the group ranging from Thumb-4 Finger to Adduc-

tion represents the precision grasps which can be used to flexibly manipulate

an object with dexterous finger articulation. Another interesting group rep-

resented by Lateral Pinch and Writing Tripod stands intermediately between

power and precision grasps where both stability and dexterity are addressed.

These qualitative examples show that the proposed DHT can also discover

grasp relationships consistent with parts of expert-designed taxonomy.
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Although it has been shown from qualitative evaluation that intuitive vi-

sual structures of hand grasp can be learned automatically in a data-driven

manner, there is no quantitative evaluation on these automatically learned

grasp structures. To have a quantitative comparison of different hierarchi-

cal grasp taxonomies, I propose a mew metric called Normalized Common

Distance (NCD) score. The NCD is composed as:

NCD(Ta, Tb) =
∑

lA,lB∈Ta,Tb

|da(lA, lB)

Ha

− db(lA, lB)

Hb

| (3.1)

where lA and lB are leaf nodes with labels of A and B respectively, Ha

and Hb are maximum depth of tree Ta and Tb, and d(∗, ∗) is the Lowest

Common Ancestor [DPZ91] distance between two nodes. In our case, trees

are hierarchical grasp taxonomies and labels A and B are grasp labels from

the taxonomy. The proposed NCD metric is necessary for comparing tree

structures with different branches and depth and uncommon terminal nodes.

Table 3.4: Distance between Cutkosky’s taxonomy and the automatically

learned grasp structures based on three features (HoG, CNN, DHT).

Tree pair NCD score

(Tref ,Thog) 16.1

(Tref ,Tcnn) 18.8

(Tref ,Tdht) 15.9

(Thog,Tcnn) 9

(Tcnn,Tdht) 14.6

(Tdht,Thog) 13.7

Taxonomy trees are built automatically based on three different features

(HoG, CNN, DHT) and compared to the reference tree based on Cutkosky’s
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taxonomy tree. The automatically learned trees are also compared between

themselves. The NCD scores are shown in Table 3.4. The tree based on DHT

has the smallest NCD score and is most similar to Cutkosky’s taxonomy

tree. More important observation is that the tree based on HoG has slightly

bigger NCD score to the reference tree than the tree based on DHT, which

means low-level appearance-based feature can also learn meaningful grasp

relationships. The NCD scores of comparing between the trees based on

three features indicate the automatically built trees are actually very similar

to each other.

3.4.3 Performance comparison at different abstraction

levels

As stated in previous chapter, the learned grasp structures give researchers

the flexibility of finding a good balance between better performance and

more fine-grained grasp classification. Here the grasp classification accuracy

of different features at different abstraction levels is shown to give a better

glance of trade-off between categorization and robustness.

The changes of grasp recognition performance for HoG, CNN and DHT

at different levels of the grasp dendrogram is shown in Fig. 3.5. As expected,

the classification accuracy for all three features grows up steadily as the

abstraction level increases. From level-12 the accuracy increases dramatically

since big grasp clusters are merged together and chance of misclassification

is low. Moreover, the big performance gap among the three features at

lowest level (fine-grained classification) becomes smaller as abstraction level

increases and inter-class ambiguity diminishes.

53



19 

0 2 4 6 8 10 12 14 16
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Clustering level in grasp dendrogram

C
la

ss
ifi

c
at

io
n
 a

c
c
u
ra

c
y

 

 

HoG
CNN
DHT

Figure 3.5: Grasp classification accuracy of different features at different

levels of grasp abstractions.

3.5 Discussion

In this work, a new feature representation based on dense hand trajectories

is used to improve grasp recognition. The advantages of hand trajectories-

based features over appearance-based features are: (1) Hand trajectories

capture motion information of the hand and thus encode richer information

than appearance only. (2) Hand trajectories-based features are more robust

to segmentation error. In this section, I will discuss in more details on how

dense hand trajectories improve the grasp recognition on the two aspects.

To demonstrate how motion information helps improve grasp recogni-

tion, recognition performance based on different components of dense hand

trajectories are compared in Table 3.5. Experimental setting is the same
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Table 3.5: Recognition performance based on different components of dense

hand trajectories.

Component Accuracy

HoG 55.1%

Disp. 35.1%

HoF 38.4%

MBH 44.7%

Disp.&HoF&MBH 49.5%

All 59.2%

as in Chapter 3. The HoG component which represents the appearance part

achieves an accuracy of 55.1%, while the combined components of Disp., HoF

and MBH which represent the motion part achieves an accuracy of 49.5%.

By combining appearance part and motion part together, the recognition

performance is improved by 4.1% compared to using appearance part only.

Note that the performance of using HoG component alone is still much better

than using CNN-based feature (48.5% according to Section 3.4) despite both

features are appearance-based. Two reasons can explain this. First, the

appearance extracted along hand trajectories encodes intrinsic appearance

variation within one grasp class than frame-based appearance. Second, fea-

ture extracted in the context of hand tracking is more robust to segmentation

errors which is described following.

To demonstrate the robustness of dense hand trajectories to hand seg-

mentation error, test images are divided into good and bad samples accord-

ing to hand segmentation and the percentage of correct prediction on these

good/bad samples are computed to measure the robustness to segmentation
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Table 3.6: Recognition performance on test samples with good and bad hand

segmentation. Test samples are divided into good samples and bad samples

based on hand segmentation, and 18% of test samples are counted as bad

samples.

Good samples Bad samples

HoG 39.6% 30.2%

CNN 50.8% 38.5%

DHT 60.2% 55.0%

error. Table 3.6 compares the robustness of HoG feature, CNN-based feature

and dense hand trajectories (DHT)-based feature. It can be seen that the

DHT-based feature has a much smaller performance drop on bad samples

than HoG feature and CNN-based feature, thus the robustness of DHT to

hand detection noises is verified.

3.6 Conclusion

In this chapter, a new feature representation of dense hand trajectories which

encodes the hand dynamics is proposed to improve grasp recognition from

consecutive image frames. Feature descriptors based on dense hand trajec-

tories encode dynamical information of hand appearance and motion during

hand interactions. Experiments show that the proposed method achieves

best recognition performance and is robust to hand detection noises in real

world environments.

While the recognition performance is not accurate enough in real-world

scenario, this work shows the potential for using computer vision techniques
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for analyzing hand grasps with large scale of data in real-life settings. The

proposed method achieved an classification accuracy of 59%, and the learned

visual structure of hand grasps gives researchers the flexibility of finding a

good balance between better performance and more detailed grasps analysis.

57



58



Chapter 4

Understanding manipulation

actions with grasp types and

object attributes

4.1 Background

Building on the prior work of hand grasp recognition introduced in previous

chapters, this work takes a further step to study the hand manipulation in a

broader scale. In particular, this work aims to recognize (1) grasp types, (2)

object attributes and (3) actions from a single image within a unified model.

These terms are defined as follows: Grasp types are a discrete set of canonical

hand poses often used in robotics to describe various grasping strategies for

objects. For example, the use of all fingers around a curved object like a cup

is called a medium wrap. Object attributes characterize physical properties

of the objects such as rigidity or shape. And actions in this work refer to

different patterns of hand-object interactions such as open or pour.

The ability to understand egocentric activities (manipulation actions)
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automatically from images is important for domains such as robotic manip-

ulation [Cut89, YLFA15b], human grasp understanding [FBD14], and motor

control analysis [CSPA+92]. In robotic manipulation, the study of human

hand function provides critical information about robotic hand design and

action planning. In human grasps understanding, the recognition of hand-

object manipulations enables automatic analysis of human manipulation be-

havior, making it more scalable than traditional manual observation used for

previous studies [ZDLRD11]. Wearable cameras enable recording of hand-

object manipulations at a large scale, both in time and space, and provides

an ideal first-person point-of-view under which hands and objects are visible

up-close in the visual field.

The recognition task for understanding manipulations from monocular

images is also very challenging. There are many occlusions of the hand,

especially the fingers, during hand-object interactions making it hard to ob-

serve and recognize hand grasps. It is also challenging to reliably detect

the manipulated object and infer attributes since the object is also often oc-

cluded by the hand. This suggests that visual information about the hands

and objects need to be reasoned about jointly by taking into account this

mutual context.

In this chapter, I propose a novel method to extract object attribute

information from the manipulated object without using specific object de-

tectors by instead exploring spatial hand-object configurations. Furthermore,

recognition of grasp types and object attributes is enhanced by their mutual

context (contextual relationship between two components that by knowing

one component facilitates the recognition of the other). Object attributes

(e.g ., thick or long shape of a bottle) have strong constraints on the se-

lection of hand grasp types (e.g ., Large Wrap). Thus, with the knowledge
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Figure 4.1: Relationship between grasp types, object attributes, and manip-

ulation actions. Grasp types and object attributes at both hands are learned

from image evidence. Mutual context between grasp types and object at-

tributes is explored. Manipulation actions are modeled based on grasp types

and object attributes.

of object attributes, it is able to predict a large percentage of grasp types.

On the other hand, humans use the same or similar grasp types for certain

types of objects, thus the grasp type used reveals attributes of the object

being grasped. In the end, I propose a Bayesian model to encode the mutual

context between grasp types and object attributes in which recognizing one

facilitates the recognition of the other.

Based on the visual recognition of grasp types and object attributes, a

semantic action model is provided as illustrated in Figure 4.1. Specifically,
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discriminative classifiers are trained for different actions based on the recog-

nition output (belief distribution) of grasp types and object attributes.

There are several advantages for jointly modeling actions in this way: (1)

Grasp type helps describe the functionality of an action, whether it requires

more power, or more flexible finger coordination; (2) Object attributes pro-

vide a general description about the manipulated object and indicates pos-

sible interaction patterns; (3) High-level semantic labels of grasp type of ob-

ject attributes enable the model encode high-level constraints (e.g ., medium

wrap can only be used for cylindrical objects) and as a result, is results of

the learned model are immediately interpretable.

The contributions of this work are as follows: (1) A novel method is

proposed for extracting attributes of the manipulated objects without any

specific object detection models; (2) The mutual context of grasp types and

object attributes is explored to boost the recognition of both; (3) Semantic

action model is proposed based on grasp types and object attributes which

achieves state-of-the-art recognition performance.

4.2 Related works

4.2.1 Hand grasp

Hand grasps have been studied for decades to better understand the use of

human hands [Nap56, SFS98, BZR+13, HMMK15]. Grasp taxonomies have

also been proposed to facilitate hand grasp analysis [Cut89, KI93, FPS+09].

Approaches for vision-based hand grasp analysis were developed primar-

ily in structured environment. Vision tracking of hand grasping an object

[KRK08, HSKMVG09, OKA11, RKEK13] allows a completely non-contact

markerless form of hand interactions. However, most hand tracking systems
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require that hand interactions are recorded in a structured environment. Ro-

gez et al. [RIR15] recently presented promising results on discrete hand pose

recognition from a chest-mounted RGB-D camera. However, these discrete

poses have no direct semantic correspondence to human grasp types com-

monly used.

Cai et al. [CKS15] first developed techniques to recognize hand grasp

types in everyday hand manipulation tasks recorded with a wearable RGB

camera and provided promising results with appearance-based features. Yang

et al. [YLFA15a] utilized a convolutional neural network to classify hand

grasp types on unstructured public dataset and presented the usefulness of

grasp types for predicting action intention. Saran et al. [STK15] used de-

tected hand parts as intermediate representation to recognize fine-grained

grasp types. However, the recognition performance is far from practical us-

age in real-world environment. In this work object contextual information is

explored to improve the grasp recognition performance.

4.2.2 Attribute classification

Visual attributes (physical properties inferred from image appearance) are of-

ten used as intermediate representation for many applications, such as object

recognition [FEHF09, LNH09, VMT+14], facial verification [KBBN09], image

retrieval and tagging [SFD11, PG11, ZPR+14]. Lampert et al. [LNH09] per-

forms object detection based on a human-specified high-level description of

the target classes for which no training examples are available. The descrip-

tion consists of attributes like shape, color or even geographic information.

Parikh and Graumn [PG11] explored the relative strength of attributes by

learning a rank function for each attribute which can be used to generate

richer textual descriptions. In this work, visual attribute information from
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the manipulated object are extracted as semantic information for modeling

manipulation actions.

The relations between object attributes and hand grasps are widely stud-

ied for decades. It has been shown that humans use the same or similar

grasp types for certain types of objects, and the shape of the object has a

large influence on the applied grasp [KMD+87, GHD12]. Recently, Feix et

al. [FBD14] investigated the relationship between grasp types and object at-

tributes in a large real-world human grasping dateset. However, behavioral

studies in previous work do not scale to massive dataset. In this work, a

Bayesian network is used to model the relations between grasp types and

object attributes to boost the recognition of both.

4.2.3 Manipulation action

Past researches on recognizing actions of hand manipulation focused on using

first-person vision since it provides an ideal viewing perspective for recording

and analyzing hand-object interactions. In [FFR11, FLR12], Fathi et al. used

appearance around the manipulation region to recognize egocentric actions.

The work in [PR12] has shown that recognizing handled objects helps to

infer daily hand activities. In [IKM+15], hand appearance is combined with

dense trajectories to recognize hand-object interactions. However, most of

previous work are learning actions directly from image appearance, thus the

action models learned are easily overfit to image appearance. There are small

number of works which aim to reason beyond appearance models [YFA13,

JLSZ14, YLFA15a]. In [JLSZ14] a hierarchical model is built to identify

persuasive intent of images based on syntactical attributes, such as “smiling”

and “waving hand”. The work of [YLFA15a] is most related to our work

which seeks to infer action intent from hand grasp types. However, the
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action model in [YLFA15a] is relatively simple with only three categories

to be learned. This work aims to model manipulation actions by jointly

considering grasp types together with object attributes.

4.3 Approach

In this work, I propose an unified model to recognize grasp types, object

attributes and actions from a single image. The approach is mainly composed

by three components: 1) A visual recognition layer which recognizes hand

grasp types and attributes of the manipulated objects. 2) A Bayesian network

which models the mutual context of grasp types and object attributes to

boost the recognition of both. 3) An action modeling layer which learns

actions based on the belief distribution of grasp types and object attributes

(output of the visual recognition layer).

4.3.1 Visual recognition of grasp types and object at-

tributes

The visual recognition layer consists of two recognition modules, one for grasp

types and the other for object attributes. Grasp types and object attributes

are important for understanding hand manipulation. Grasp types determine

the patterns of how a hand grasps an object, while object attributes indicate

the possible functionality of the manipulation. Furthermore, grasp types

together with object attributes provide consistent characterization of the

manipulation actions.
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Grasp types

Hand grasp is important for understanding hand-object manipulations since

they characterize how hands hold the objects during manipulation. A number

of work have investigated the categorization of grasps into a discrete set of

types [Cut89][FPS+09] to facilitate the study of hand grasps. Classifiers are

trained for recognizing nine different grasp types selected from a widely used

grasp taxonomy proposed by Feix et al. [FPS+09]. The grasp types as shown

in Figure 4.2 are selected to cover different standard classification criterion

based on functionality [Nap56], object shape, and finger articulation. Some

grasp types in original taxonomy which are too similar in appearance are also

abstracted into single grasp type (e.g. Thumb-n Finger). Furthermore, all

the nine grasp types have a high frequency of daily usage based on the work

of [BZR+13]. Thus the grasp types can be applied to larger manipulation

tasks.

Hand patches are needed to train grasp classifiers. Following [LK13], a

multi-model hand detector composed by a collection of skin pixel classifiers

is trained which can adapt to different imaging conditions often faced by a

wearable camera. For each test image, a pixel-level hand probability map

is generated from the hand detector, and hand patches are then segmented

with a bounding box. In detail, candidate hand regions are first selected by

binarizing the probability map with a threshold. Regions under a certain

area proportion are discarded and at most two regions are retained. Ellipse

parameters (length of long/short axis, angle) are fitted to the hand region

and the arm part is approximately removed by shortening the length of long

axis to 1.5 times of the length of short axis. Then the remaining region

is cropped with a bounding box. Linear SVM classifiers are trained for

each grasp type using feature vectors extracted from hand patches. As the
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Figure 4.2: The list of nine grasp types selected from [FPS+09], grouped

by functionality (Power and Precision) and object shape (Prismatic, Round

and Flat).

recognition output, belief distribution of grasp types (denoted as P (G|fG)) as

well as the predicted grasp type with highest probabilistic score are obtained.

Recognition of grasp types provide information about how the hands are

holding the objects during manipulation. However, The grasp type alone

is not enough to identify fine-grained actions without information from the

manipulated objects. In the next section, the method for recognizing object

attributes will be presented.

Object attributes

Object attributes are important for understanding hand manipulation since

they indicate possible functionality in manipulation. For example, a thick

and long object is probably used as a container while a thin and long object is

67



5 

Prismatic Round Flat Deformable 

Figure 4.3: Object examples with four different attributes.

probably used as a tool for drawing or stirring. While objects can be assessed

by a wide range of attributes, only attributes that are relevant to grasping

are focused based on the study of [FBD14]. Here four binary attributes are

considered which are important for grasping and can be possibly learned

using computer vision techniques. Figure 4.3 illustrates the attributes, three

of which are related to object shape and the fourth is related to object rigidity.

Three different shape classes are identified based on the criterion in Table 4.1.

The fourth attribute of Deformable identifies the object that deforms under

normal grasping forces. Examples are a sponge or a rag.

Similar to grasp type recognition, object patches are needed to train clas-

sifiers for object attributes. However, object detection is a challenging task

in computer vision, particularly unreliable when there are occlusions during

manipulation. It is observed that hand appearance provides important hint

about the relative location and size of the grasped object. As illustrated in

Figure 4.4, relative location (dx, dy) from the center of hand to the center of
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Table 4.1: Classification criterion of three shape classes. Length of object

along three object dimensions (major axes of the object) are denoted as A,

B, and C, where A ≥ B ≥ C.

Shape classes Object dimensions

Prismatic A > 2B

Round B ≤ A < 2B, C ≤ A < 2C

Flat B > 2C

object is consistent to the hand orientation, and the object scale (Wo, Ho) is

related to the size of hand opening. Therefore, a target regressor is trained

for predicting the relative location and scale of the grasped object based on

hand appearance. Specifically, regression is performed for three quantities:

normalized relative location of (Nx, Ny) and relative scale of Ns specified as

follows: 

Nx =
dx
Wh

Ny =
dy
Hh

Ns =

√
Wo ×Ho

Wh ×Hh

(4.1)

Here are the steps of how to recognize object attributes: First, SVM re-

gressors are pre-trained based on feature vectors extracted from hand patches.

Object bounding boxes are annotated in order to calculate training labels.

Then, object patches are segmented with bounding boxes calculated based

on the regressed quantities defined in Equation 4.1. Finally, Linear SVM

classifiers are trained for each object attribute based on the feature vectors

extracted from object patches. As recognition output, belief distribution of

different attributes (denoted as P (O|fO)) as well as the predicted attributes
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Figure 4.4: Illustration of relative location and scale of the hand and the

manipulated object.

are obtained.

Visual recognition of grasp types and object attributes are challenging

tasks as there are many occlusions during manipulation. In the next section,

the method of how to boost the recognition performance by mutual context

will be presented.

4.3.2 Mutual context of grasp types and object at-

tributes

There is strong causal relations between object attributes and grasp types.

Object attributes such as geometric shape and rigidity have a large impact

on the selection of grasp types. On the other hand, knowing the grasp types

used helps to infer the attributes of the grasped object. Thus mutual context

between grasp types and object attributes can be explored that knowing the
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information of one side facilitates the recognition of the other.

In this work, a Bayesian Network is used to model the relations between

grasp types and object attributes as illustrated in Figure 4.5. There is a

directional connection from object attributes O to grasp types G, encoding

the causal relation between object attributes of O and the grasp types of G.

fO and fG denote the visual features of the corresponding image patches re-

spectively. Based on this model, the posterior probability of object attributes

and grasp types given the image evidence can be computed as:

P (O,G|fO, fG) =
P (O)P (G|O)P (fO|O)P (fG|G)

P (fO)P (fG)

=
P (G|O)P (fO, O)P (fG, G)

P (fO)P (fG)P (G)

∝ P (G|O)P (G|fG)P (O|fO)

(4.2)

Thus, optimal object attributes O∗ and grasp types G∗ by maximizing a

posterior (MAP) can be jointly inferred as:

(O∗, G∗) = argmax
O,G

P (O,G|fO, fG)

= argmax
O,G

P (G|O)P (G|fG)P (O|fO)
(4.3)

where the conditional probability P (G|O) can be estimated by occurrence fre-

quencies of grasp types given certain object attribute, and P (G|fG), P (O|fO)

are belief distribution of grasp types and object attributes from visual recog-

nition layer.

4.3.3 Action modeling

My hypothesis is that grasp types together with object attributes provide

complementary information for characterizing the manipulation action. Pre-

vious studies [Nap56] showed that action functionality is an important factor
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Figure 4.5: A Bayesian network modeling the relationship between object

attributes and grasp types.

that affects human grasp selection. Thus it is possible to infer action func-

tionality from grasp types. In this work, a further step is taken to model

manipulation actions based on the grasp types of hands as well as the at-

tributes of manipulated objects.

Therefore, I propose a hierarchical semantic action model which builds on

visual recognition layer of grasp types and object attributes. The diagram of

our approach is shown in Figure 4.6. The hierarchical model separates the

action modeling part from the low-level visual recognition part, thus the ac-

tion learned is independent of image appearance which often changes under

different scenes. The visual recognition layer is introduced in Section 4.3.1.

At action modeling layer, a linear mapping function is learned for each ac-

tion based on belief distribution of grasp types and object attributes. More

specifically, for each image, the visual recognition layer is applied to extract

a 25-dimensional feature vector, of which 17 dimension is composed by belief
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Figure 4.6: Hierarchical semantic action model based on belief distribution

of grasp types and object attributes from the visual recognition layer.

distribution of grasp types for two hands (Writing Tripod is never used by

the left hand) and 8 dimension is composed by belief distribution of object

attributes of two grasped objects. Linear SVM classifiers are trained for

different actions based on the obtained 25-dimensional feature vectors.

4.4 Evaluation

In this section, four sets of results are presented to validate different com-

ponents of the proposed approach: (1) grasp type recognition, (2) target

regression and object attribute recognition, (3) improved recognition by mu-

tual context of object attributes and grasp types, (4) action recognition.
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The approach is evaluated on a public dataset (GTEA Gaze Dataset

[FLR12]) of daily activities recorded by wearable cameras. This dataset

consists of 17 sequences of cooking activities performed by 14 different sub-

jects. The action verb and object categories with beginning and ending frame

are annotated. Additionally, another public dataset (GTEA Gaze+ Dataset

[FLR12]) is also used to test the generality of action models. This dataset

consists of seven cooking activities, each performed by 10 subjects. Similarly,

action labels are provided. The main difference between these two datasets

is that in the former dataset activities are performed near a table while in

the second dataset activities are performed in a natural setting. The details

of evaluation for each component are introduced in following sections.

4.4.1 Grasp type recognition

To train grasp classifiers, grasp types are annotated for 1000 images selected

from GTEA Gaze Dataset. Histogram of Oriented Gradient (HoG) is used as

baseline feature for grasp type recognition. HoG is compared with other two

features based on Convolutional Neural Network (CNN). The two features

are extracted from two different layers (CNN-pool5 and CNN-fc6 ) of the pre-

trained CNN model proposed by Krizhevsky et al. [KSH12] using the open

source Caffe library [JSD+14]. Compared to CNN-pool5 which contains five

convolutional layers, CNN-fc6 adds one fully connected layer. Based on these

features, linear SVMs are trained for nine grasp types. 5-fold cross-validation

is used for evaluation. Note that previous work on visual recognition of grasp

types are very few. Only HoG [CKS15] and self-trained CNN [YLFA15a] were

used as appearance-based features for grasp type recognition from monocular

images. Since there is no sufficient training labels to train a large CNN model,

the method in [YLFA15a] is not applied in this work.
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Table 4.2: Classification accuracy for nine grasp types on GTEA Gaze

Dataset.

HoG CNN-pool5 CNN-fc6

Accuracy 50% 61.2% 56.9%

Grasp recognition performance of different features is shown in Table 4.2.

Highest classification accuracy of of 61.2% is achieved by CNN-pool5. It can

be seen that CNN-based feature has advantage over hand-crafted feature

HoG, also validated by the work of [YLFA15a]. However, my work shows

the feasibility of applying pre-trained CNN model to grasp recognition with

scarce training data.

4.4.2 Object attribute recognition

To train target regressors for predicting object location and scale, object

bounding boxes are annotated for 1000 images with well detected hand

patches from GTEA Gaze Dataset. The bounding box is annotated to in-

clude the object part being grasped. To train attribute classifiers, attributes

of the grasped objects are also annotated for the same 1000 images. SVM

regressors are trained based on features extracted from hand patches. SVM

classifiers are trained based on features extracted from within annotated

object bounding boxes. The public libSVM library [CL11] is used for imple-

mentation. Same features as in Section 4.4.1 are evaluated in 5-fold cross

validation. Note that this is the first work on recognizing object attributes

for understanding hand-object manipulations and the focus is not on feature

design.

Table 4.3 shows quantitative results of target regression. Regressors
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Table 4.3: Quantitative results of target regression evaluated by Intersec-

tion of Union (IoU) which measures the overlap ratio of ground-truth object

bounding box and the predicted object bounding box. The predicted ob-

ject bounding box with equal width and height are determined based on the

regressed quantities defined in Equation 4.1.

HoG CNN-pool5 CNN-fc6

IoU 0.471 0.739 0.736

trained by CNN-pool5 and CNN-fc6 have similar performance but work much

better than HoG. Figure 4.7 shows some qualitative results of the predicted

regions of object targets. It can be seen that the predicted regions match

well with ground-truth bounding boxes of the manipulated object parts, al-

though the background is cluttered and objects are partially occluded by

hands. More importantly, the results indicate that it is possible to detected

the manipulated object parts without any specific object detectors.

Table 4.4 shows the classification results for four binary object attributes.

Accuracy of over 80% is achieved for all binary attributes and the advantage

of CNN-based features over hand-crafted features is verified. For combined

attributes, CNN-pool5 achieves best accuracy of 72.4% which means the

percentage of cases that all binary features are correctly classified is over

72.4%. The results demonstrate the potential of learning physical properties

of the object with monocular images.

4.4.3 Better recognition by mutual context

In this section, evaluation shows the recognition of grasp types and object

attributes can be improved by mutual context. The probability of grasp
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Figure 4.7: Qualitative results of target regression. Blue and green bounding

boxes show the detected hand regions and ground-truth object regions re-

spectively. Red circles show the predicted object regions with center of circle

indicating object location and radius indicating object scale.

types conditioned on object attributes is estimated as prior information by

occurrence frequencies from training data. Figure 4.8 shows the estimated

conditional probability. It can be seen that different kinds of objects have

very different distribution over grasp types. Rigid-Prismatic objects such as a

bottle are often held with Large Wrap or Index Finger Extension, while Rigid-

Round objects such as a bottle cap are often held with Precision Sphere.

The recognition performance of with and without context information are

compared. For both two cases, features of CNN-pool5 are used. The results

in Table 4.5 and Table 4.6 show that visual recognition of grasp types and

object attributes are significantly improved by using context information.

For grasp types, overall classification accuracy is improved by 12.9%. Perfor-
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Table 4.4: Performance of attribute classification on GTEA Gaze Dataset.

Accuracy is evaluated for four binary attributes separately as well as com-

bined. When evaluating combined attributes, a prediction is considered as

accurate if all the attributes are correctly classified.

Object Attribute HoG CNN-pool5 CNN-fc6

Prismatic 80.2% 87.9% 84.5%

Round 94.0% 94.0% 95.7%

Flat 81.0% 85.3% 87.1%

Deformable 88.8% 92.2% 91.4%

Combined 60.3% 72.4% 71.9%

mance of most grasp types are improved by object context, except for Power

Sphere and Precision Sphere. I believe the performance deterioration of the

two grasp types is due to some false classification of the attribute Sphere.

For object attributes, classification accuracy for combined attributes is im-

proved by 9.5%. Experiment results strongly support the use of contextual

information for improving visual recognition performance.

4.4.4 Action recognition

In this section, experiments are conducted to evaluate the effectiveness of

modeling manipulation actions based on semantic information of grasp types

and object attributes. The verb part of original action labels in GTEA

Gaze Dataset are used as action labels in this work. For example, “Open a

jam bottle”” and “Open a peanut bottle” are considered as the same action

“Open”. I focus on actions which require two-hand coordination. Seven
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Figure 4.8: Probability of grasp types given object attributes estimated by

occurrence frequencies from training data.

action categories are learned in this experiment.

To compare the performance of different components in the proposed ac-

tion model, linear SVM classifiers are trained based on features from grasp

types (GpT), object attributes (OA) and both components (GpT+OA) sep-

arately. Note that grasp types were also used in [YLFA15a] for predicting ac-

tion intention, thus the feature of GpT also serves to evaluate how [YLFA15a]

works in modeling manipulation actions. Action recognition performance is

also compared with existing methods. Note that no temporal information is

used since I focus on recognition from a single image. I choose to compare

the method in [FLR12] which utilizes appearance information around gaze

location. Since no gaze device is used in this work, an approximate feature

representation is composed by concatenating CNN-based features extracted

from two hand patches and two object patches (CNN-4). Each CNN-based
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Table 4.5: Performance improvement for grasp type recognition by mutual

context. F1 measure is evaluated for each grasp type. Accuracy is evaluated

for overall performance.

Grasp Category CNN CNN+Context

Extension Type 0.166 0.2

Index Finger Extension 0.666 0.949

Large Wrap 0.711 0.818

Lateral Pinch 0.875 0.903

Power Sphere 0.571 0.333

Precision Sphere 0.749 0.666

Small Wrap 0.526 1.0

Thumb-n Finger 0.55 0.59

Writing Tripod 0.733 0.8

Overall 61.2% 74.1%

feature vector is reduced to a 100-dimensional feature vector using Principal

Component Analysis (PCA) and the feature dimension for CNN-4 is 400.

Performance is evaluated using 5-fold cross validation based on labeled im-

ages from GTEA Gaze Dataset.

The classification accuracy for seven actions is shown in Table 4.7. The

proposed GT+OA achieves best classification accuracy of 79.3%, which indi-

cate the combination of grasp types and object attributes works better than

using grasp types alone. GT+OA also outperforms CNN-4, which verifies the

advantage of our action model over appearance-based method. Note that my

method only relies on 25 dimensional feature vector from a single image. The

confusion matrix for seven manipulation actions is shown in Figure 4.9. The
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Table 4.6: Performance improvement for object attribute recognition by mu-

tual context (evaluated by accuracy).

Object Attributes CNN CNN+Context

Prismatic 87.9% 88.8%

Round 94.0% 95.7%

Flat 85.3% 88.8%

Deformable 92.2% 92.2%

Combined 72.4% 81.9%

proposed method mainly confuses Close with Open. I believe that this is

because for some objects (such as a bottle) these two actions share similar

grasp types and object attributes from a single image.

To demonstrate the correlation between each action and its semantic com-

ponents of grasp types and object attributes, model parameters from support

vectors learned by each linear SVM classifier are computed. Model parame-

ters indicate the correlation between action and its 25 semantic components.

Visualization of model parameters is illustrated in Figure 4.10. It can be seen

that each action has strong correlation to different grasp types and object

attributes.
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Table 4.7: Performance comparison for recognizing seven action classes on

GTEA Gaze Dataset. CNN-4 is used as a baseline feature approximating the

work of [FLR12]. GpT is used as a baseline feature based on grasp types

similar to the work of [YLFA15a]. The features of OA and GpT+OA is

proposed in this work considering the joint use of object attributes together

with grasp types.

Accuracy

CNN-4 [FLR12] 70.3%

GpT [YLFA15a] 69.0%

OA 70.7%

GpT+OA 79.3%

12 

Figure 4.9: Confusion matrix for manipulation action classification using

grasp types and object attributes on GTEA Gaze Dataset.
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Table 4.8: Generality evaluation of action models by training on GTEA Gaze

Dataset and testing on GTEA Gaze+ Dataset. Appearance-based model is

trained based on CNN-4, while the proposed hierarchical model is trained

based on GpT+OA.

Appearance-based Proposed

Accuracy 29.2% 50.4%

To compare the generality of the proposed semantic action model with

appearance-based model, action recognition is performed by training and

testing on different datasets. While all the training procedure is done on

GTEA Gaze Dataset, actions are predicted on GTEA Gaze+ Dataset recorded

in different environments. 100 images are selected for each action category

and a total of 700 images from GTEA Gaze+ Dataset are used for testing.

Classification accuracy is shown in Table 4.8. The proposed semantic model

outperforms the appearance-based model by over 20%, which indicates that

the proposed method is more robust to overfitting.

4.5 Conclusion

In this chapter, I propose an unified model for understanding hand-object

manipulation with a wearable camera. From a single image, grasp types

are recognized from detected hand patches and object attribute information

are extracted from the manipulated objects. Furthermore, mutual context is

explored to boost the recognition of both grasp types and object attributes.

Finally, actions are recognized based on belief distribution of grasp types and

object attributes.
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Experiments are conducted to evaluate the proposed approach: (1) Aver-

age accuracy of 61.2% is achieved for grasp type recognition and if 72.4% is

achieved for object attribute classification. (2) By mutual context, recogni-

tion performance is improved by 12.9% for grasp types and by 9.5% for ob-

ject attributes. (3) Best average accuracy of 79.3% for manipulation action

recognition is achieved using the proposed semantic action model. Evalua-

tion results for model generality support my hypothesis that grasp types and

object attributes contain consistent information for characterizing different

actions.
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Chapter 5

Conclusions

5.1 Summary

In this thesis, methods are presented for recognizing and analyzing hand

grasp types, and modeling manipulation actions from first-person view video

with a wearable monocular camera. Chapter 1 explains the motivation of this

work, describing the importance of the topic and the shortcomings of pre-

vious approaches. Against these shortcomings, new methods are proposed

and introduced in the following chapters. In Chapter 2, a first-person vi-

sion system is proposed to recognize hand grasp types and discover visual

structures of hand grasp in everyday manipulation tasks. In the system, a

wearable camera is used to record hand manipulation tasks. Advances of

computer vision techniques are incorporated in the system to do hand de-

tection, and extract appearance-based features for training discriminative

grasp classifiers. An iterative clustering method is proposed to learn visual

structures between different grasp types. Chapter 3 introduces a new feature

presentation based on hand-guided feature tracking which improves the grasp

recognition performance and is more robust to hand detection noises than
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appearance-based features. In Chapter 4, semantic action model is proposed

which encodes high-level semantic constrains of actions based on hand grasp

types and object attributes. Furthermore, novel methods for extracting at-

tributes of the manipulated object are proposed without any specific object

detectors, and the mutual context between grasp types and object attributes

is explored to boost the recognition performance. As a whole, the methods

presented in this thesis offer a scalable way for studying the use of human

hands in daily manipulation tasks at a large scale.

5.2 Contributions

The main contributions of this work are summarized as follow:

• Propose a first-person vision system for hand grasp analysis. The system

is capable of recognizing hand grasp types and analyzing grasp struc-

tures for everyday manipulation tasks with a single wearable monocular

camera. The work shows the potential for using computer vision tech-

niques for analyzing hand grasps with large scale of data in real-life

settings.

• Propose a method for recognizing hand grasp types, object attributes

and manipulation actions from a single image within a unified model.

Attribute information from the manipulated object can be extracted

without using specific object detectors. Mutual context of grasp types

and object attributes is explored to enhance the recognition of both.

Furthermore, the proposed hierarchical semantic action model outper-

forms appearance-based models and is robust to overfitting.
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5.3 Future work

5.3.1 Grasp recognition with wearable RGB-D cam-

eras

In Chapter 3, a feature representation based on trajectory information of

hand tracking is proposed to improve grasp recognition performance. How-

ever, the classification accuracy is still not good enough for practical use in

real world applications.

In recent years, RGB-D cameras capable of recording both appearance

and depth information are becoming popular in various estimation techniques

such as 3D reconstruction and body pose estimation. With the advancement

of hardware and sensing techniques, RGB-D cameras are becoming smaller

and smaller from Microsoft Kinect [KIN] to Creative Senz3D [SEN]. Rogez

et al. [RIR15] recently proposed method for discrete hand pose recognition

with a chest-mounted RGB-D camera although it is not originally designed

for wearable usage. I believe that wearable RGB-D cameras will be available

in the near future, making it possible for researchers to extract stable 3D

features in first-person vision applications. Using 3D features, the spacial

configuration between fingers and the geometric information of the grasped

object can be explored, and performance of the grasp recognition system will

be largely improved.

5.3.2 Temporal dynamics of grasp types in hand ma-

nipulation

In Chapter 4, a bottom-up hierarchical model is proposed for recognizing

manipulation actions based on hand grasp types and object attributes from
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a single image. However, the dynamics of hand manipulation is complex, for

the patterns of how the hands holds the objects is changing overtime. Thus,

the information from a single image is insufficient for identifying fine-grained

actions which share similar grasping behavior, such as opening or closing a

bottle cap.

Regarding recognition of fine-grained manipulation actions, it is also im-

portant to investigate the temporal dynamics of hand grasp types used in

certain manipulation actions. In performing a manipulation action, human

selection of grasp types for the target object changes according to the varia-

tion of task requirements, such as force and dexterity. The temporal dynam-

ics of grasp types can be used as discriminative characterization for different

actions. Hence, to completely understand hand manipulation, it is important

to consider the temporal dynamics, not only image evidence.

5.3.3 Grasp analysis-based diagnosis system

With practical grasp analysis techniques in first-person vision, many applica-

tions can be proposed. One important application is a grasp analysis-based

diagnosis system which can provide useful feedback for both clinical diagnosis

and task assistance.

In this thesis, computer vision-based techniques are utilized to recognize

different hand grasp types of a single user in manipulation tasks. However

the detected grasp types can further be utilized to analyze hand grasping

behavior of different users in certain manipulation tasks. Profile information

can be built for each person by monitoring habitual knowledge, such as the

manner in which a manipulation task is performed, and the duration and fre-

quency of grasp types. In clinical diagnosis, deviation from person-tailored

profile and typical behaviours can be detected as feedback, helping clinicians
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in assessing individuals’ health status and diagnosing disease-related prob-

lems. In task assistance, skill assessment of beginners can be achieved by

comparing relevant traits of grasping behaviors with skilled workers.
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