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Chapter 1 

Introduction 

How to treat the correlation effect in many-body systems is one of the most important but 

difficult problems in the field of solid state physics. Recent intensive theoretical stucties on 

t he metal-insulator (MI) transition have revealed that elect ron-electron interactions have 

essential importance on the electronic states near the MI transition in doped semiconduc­

tors [1 ,2]. In rare-earth metal compounds electrons behave as heavy fermions in the narrow 

f-band owing to the strong correlation. This has been vigorously studied lately [3]. Elec­

tronic correlation also plays an important role in many other materials , e.g. deep impurity 

levels in semiconductors, m.icroclusters, mesoscopic system , some low dimensional materi­

als, and so on. The copper oxide compound of the high temperature superconductor, which 

was ctiscoverecl in 1986 [4], is a further example of these strongly correlated materials. The 

discovery has stimulated a lot of people to study strong correlation to elucidate the mech­

anism of the superconductivity which occurs at unusually high temperature. Particularly, 

t he Hubbard model or some other models have been stuctied intensively to investigate the 

electronic structures in the strongly correlated systems, using large computers [5 ,6]. 

At the same time, several methods have been developed to predict the electronic states 

m many lcinds of materials from first principles. The most powerful and widely used 

method among them is the band structure calc ulation based on the local density fun ctional 

(LDA) principle which approximates the properties of the ground state as functionals of 

the local electronic density [T]. Although the band structure calculation is a one-body 

approximation, a part of the correlation effect is thought to be implicitly included in its 

effective potential, and it ha succeeded in describing the electronic structures in many 



weakly correlated systems. However, band structure calculations do not work well in the 

strongly correlated materials. In fact, according to band structure calculations, undoped 

compounds of the high temperature superconductors are metallic , though they are actually 

insulators (8,9,10, 11]. For other transition metal oxides, which are antiferromagnetic insu­

lators, band st ructure calculations predict a very narrow band gap or, sometimes, metallic 

behavior, in contradiction to the experimental results (12,13]. It seems to be necessary to 

take into account the correlation effect explicitly to describe the electronic structures in 

strongly correlated materials. 

In the field of quantum chemistry the methods of calculating the electronic states of 

molecules from first principles have been developed. A number of methods have been 

proposed to calculate the correlation energy beyond the mean field Hartree-Fock method. 

In these methods the electron correlation is treated explicitly. One of these advanced 

methods is the Multi-Configuration Self-Consistent Field (MCSCF) method (14,15]. In 

this one-electron orbitals are determined including a part of the correlation effect, based 

on the variational principle. Hence it has the advantage that the electronic structures can 

be represented by a small number of Slater determinants , even when the correlation effect 

is large. 

We applied for the first time the MCSCF method to problems in the field of solid state 

physics (16]. On the basis of the method, we have calculated the electronic structures 

of cluster models from first principles, using which we can investigate some of the bulk 

properties of strongly correlated materials . Our formalism is as follows. 

I. We adopt as a model a certain finite-size cluster which is appropriate to describe the 

properties of the bulk material. 

II. We investigate the electronic structure of the cluster, taking into account the corre­

lation effect explicitly by the MCSCF method. 

III. From the results we extract the important features of the electronic states and the 

properties of the bulk system. 

We ha,·e applied this formalism to investigate the following two systems, in both of which 

the electronic correlation is essentially important. 

The first system we study is the Anderson-localized state in doped semiconductors. In 

this system both the randomness and the electron-electron interactions play important roles 

[1,2] . For this reason the MI transition from the insulator side is exceedingly difficult to 

treat theoretically, and consequently has been little studied. We study the electronic states 

in uncompensated Si:P from the intermediate to the critical doping concentration region 

in chapter 3. To treat both of the characteristic effects we adopt clusters consisting of 

randomly distributed donors and calculate the MCSCF one-electron orbitals which include 

the correlation effect as well as the coulomb and exchange interactions. Then we carry 

out the configuration interaction (CI) calculation, taking the orbitals as a basis set. Based 

on this new representation, we are able to get, for the first time, a clear cut view of the 

Anderson localized states near the MI transition. Further , we investigate the properties of 

the MI transition from the new standpoint of approaching it from the insulator side. By 

taking an ensemble average over fifty clusters, we calculate the bulk properties; specific 

heat and spin-susceptibi lity, and are able to explain the experimental results . 

In doped semiconductors the compensation induces remarkable changes in various prop­

erties. For example, hopping conduction is greatly influenced by the compensation. The 

critical exponent of the conductivity at the MI transition is reported to be different between 

the uncompensated and compensated Si:P, which has not been explained theoretically yet. 

Some other properties are also changed by the compensation in the intermediate concentra­

t ion region accordi ng to experimental works, whi le there have been few theoretical works 

on the effect of the compensation in the Anderson-localization region. To elucidate the 

difference between the uncompensated and the compensated doped semiconductors, it is 

necessary to investigate the electronic states from the microscopic point of view. In chap­

ter 4 we study the Anderson-localized states in the compensated Si:P. For this purpose we 

take the cluster which consists both of donors and of acceptors distributed randomly. By 

the cluster calculation we make clear the different features between the compensated and 

uncompensated Si:P from the low to the intermediate concentration region and predict the 

different behavior of the specific heat. 

The second subject we study in the present thesis is the copper oxide compounds of the 

high temperature superconductors, L<~-:J-zSrzCuO, and :-.1d 2-zCezCu04 . Both compounds 
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are anti-ferromagnetic insulators in the absence of dopants, and superconductivity occurs in 

the former when holes are doped and in the latter when electrons are doped. The electronic 

st ructures of these compounds have not yet been clarified even in the normal state owing 

to the strong correlation effect. To elucidate the electronic structures in both compounds 

from first principles, we take clusters of Cu06 , Cu20 11 and Cu04 , Cu20 7, respectively. 

The details of calculations and results are presented in chapter 5. By taking account of the 

strong correlation effect explicitly by the MCSCF and CI methods, we investigate the anti­

ferromagnetic coupling in undoped compounds and the states of doped carriers, and clarify 

the different features between the hole-doped and the electron-doped superconductors. 

The organization of the present thesis is as follows. In chapter 2 we explain how 

to treat the correlation effect by MCSCF method. The chapters 3 - 5 are devoted to 

the calculations of the electronic structures of doped semiconductors and copper oxide 

compounds of the high temperature superconductors. In chapter 6 we give a summary and 

a discussion. 

Chapter 2 

Treatment of the Correlat ion Effect 

The Hamiltonian of many-body systems can be written as, 

H H1+H2 

L[~p~ + V(rk)] 
k 

2:::-1-, 
k>l Jrk- rd 

(2.1) 

the summations being over the N electrons. H1 is the one-electron part consisting of the 

kinetic energy and the one-body potentia.! V. The functional form of V depends on the 

system considered, e.g. the attractive force from atomic cores, random site energy etc., while 

H 2 is the two-electron part, which includes the Coulomb interaction between electrons. 

In the one-body approximation H1 is diagonalized together with the mean field part of 

H2 . The "Correlation energy" is defined as the difference between the real ground state 

energy including all the many-body effects and the minimum energy in the range of one­

body approximation, that is, the Hartree-Fock energy. To treat st rongly correlated systems, 

we are faced with the following problems. 

(1) How to include the correlation energy efficiently, 

and 

(2) How to represent the many-body state clearl y when the correlation effect is taken 

into account. 

5 



2.1 The Hartree-Fock, the Heitler-London and the 
CI methods 

We star t from the one-elect ron approximation, t he Hartree-Fock (HF) method. T his 

method is based on the variational principle and t he MCSCF method is a nat ural gen-

eralization. 

We consider t he system consisting of even number of elect rons, N = 2n, for simplicity. 

As a t rial func tion we take a single Slater determinant , 

iJ! HF 

(2.2) 

where a and (3 are up and down spin functi ons, and a!u is the creation operator of an elec tron 

in state i wi th spin <J . In minimizing the expectation value of the Hamiltonian (2.1) by the 

wavefun ction (2.2) , one-elec tron orbitals { 1/J., i = 1, · · ·, n} in t he Slater determinant are 

determined. 

T he HF orbitals determined by this procedure have the properties shown below. 

(i) In the variation t he Coulomb terms 

< ij l~ lij >= jj ,p;(r 1)1/J7(r z) -
1
.-

1
-.-

1
1/J,( r 1)1/J1 (rz)dr ldrz, 

,. 1 1 - 1 2 

and the exchange terms 

< ij i~ IJi >= j j 1/Ji(rJ) ,P~( rz )-l - 1
-

1 
1/J,(r J)1/J;( r2)dr ldrz, 

r r 1 - r 2 

(2.3) 

(2.4) 

are taken into account in t he elec tron-elec tron inte ractions. T hat is, the one-elec tron 

orbitals { 1/J., i = 1, · · · , n} are determined self-consistently in t he presence of these mean 

field terms . 

(ii) T he energy of the one-elect ron orbital corresponds to t he ionization energy when a n 

electron is car ried away from t he orbi tal and the other elec trons do not relax (Koopmans' 

theorem). 

We represent the wave function of (2.2) by the configuration of the elec trons' occ upation, 

as in Fig.2. 1. 
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Figure 2.1 : The configuration which corresponds to the Hart ree-Fock wavefu nction (2.2) . 

Now we go beyond the HF me thod to desc ribe t he correlation effects. We take a hy­

drogen molecule as the simples t example. There are two methods for solving this molec ule. 

One is the Heitler-London approach which star ts from the atomic orbi tals, and the other 

is the molecular orbital approach. (i) In the Heitler-London approach the wavefu nction is 

taken to be 

(2.5) 

where u.4 ( ua ) is the atomic orbital of a A (B) hydrogen atom and S is t he overl ap integral 

of the two orbitals. The wavefunction (2.5) includes t he correlation effect since it keeps 

the electrons from each other. (ii) In the molecular orbi tal approach we star t from the HF 

wavefunction, 

where the bonding (1/J+) and anti-bonding (w_) orbitals are given by 

1 
1/J± = ~(uA ± ua). 

v 2(1 ± s) 

(2.6) 

(2 .7) 

\Ve can take into account t he correlation effect by adding the other Slater-determinant 

states to (2.6) , such as, 

(2.8) 

T he appearance of the other states is due to t he many-body interact ions and is cal led the 

configurat ion in teract ion (CI). T he coefficients C1 and C2 in {2. ) may be determined by 
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+ .... . . 

Figure 2. 2: The many-body wavefunction of the CI calculation in 2n-electron system. 

minimizing the expectation val ue of the energy. This CI wavefunction, (2.8), includes the 

Heitler-London wavefunction (2.5) as the special case of CJ/C2 = -(1 + S)/(1- 5). 

In an N-elec tron syste m we must take the linear combination of many number of con­

fi gurations , as seen in Fig.2.2, to take account of the correlation effect . We determine the 

coefficients { Ck} of configurations by diagonalizing the Hamiltonian in the configuration 

space . (In this procedure we can get the excited states as well as the ground state.) Gener­

ally, a large number of configurations are necessary to represent the ground state when the 

correlat ion effect is st rong. Thus we would like to optimize the one-electron orbitals so that 

we get as large a correlation energy as possible with the smallest number of configurations. 

2.2 The MCSCF Method 

T he MCSCF method was developed from the standpoint of obtaining the best one-electron 

orbitals to be used in the CI calculation [14,15]. A trial function in this method is expressed 

as a linear combin ation of several Slater determinants; 

iJ!M C SC F 

(2.9) 

where 'll 0 is the same configuration as the HF wavefunction; j,P1(xt/! 1/31/;2a,P2 /3 · · · t/J ,.a.Pn/3 1, 

and the w~; 's corre· pond to the excited configurations in which one spin-up and one 

spin-down electrons are transferred simul taneously from an occupied i orbital in the con­

figuration 'll 0 into its unoccupied a orbital. In minimizing the expectation value of the 

Hamiltonian by this trial function , the one-electron orbitals 1/;/s , 1/J.'s, and the CI coef­

ficients c;;"•s in (2.9) are determined simultaneously in the elf-consistent way. Then the 

MCSCF orbitals have the following features: 

(i) Not only the Coulomb (2.3) and the exchange energies (2.4) bu t also the part of the 

elec tron correlation represented by the matri..x elements, 

(2.10) 

are taken into account . 

(ii) When the CI calculation is carried out using the MCSCF orbitals as a basis set , 

a small number of configurations is necessary to represent the ground state (MCSCF-CI 

method) . Thus we can get a clear cut view of the many- body state even when the correlation 

effect is strong. 

(iii) Owing to the correlation effect involved, MCSCF one-electron orbitals tend to be 

localized in a space, compared with the HF orbitals. 

The above type of elect ron-elect ron interactions (2.10) is the largest besides the mean 

field HF terms. Physically speaking, the correlation effect is the st rongest when two elec­

trons have the opposite direc tion of spins and are at the same place (or occupy the same 

orbi tal) . Thus the dominant part of the correlat ion energy is expected to be included by 

adopting the trial function (2.9) . We may select other trial functions than (2.9), for ex­

ample, we use a much larger trial function including all kinds of excited configurations in 

the Complete Active Space Self-Consistent Field ( CASSCF) method [17]. But this is not 

suitable for the purpose of understanding clearly the physics of the elect ronic states using 

a small number of CI's . 

Although the MCSCF orbitals are suitable to represent strong correlat ion , each one­

electron orbital doesn' t have as clear a physical meaning by itself as a HF orbital because 

electrons do not move independently but are correlated to each other in this case. These 

orbitals are "e ffective" one-electron orbi tals optimized for the representation of the many­

body states in the form of the CI wavefunction . 

Thus far we consider the spin-singlet wavefunction. T his ca n be easily extended to the 

case of spin-triplet. The ii!CSCF trial fun ct ion of spin-triplet i shown in Fig.:2.3. Here the 
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Figure 2.3: T he MCSCF trial function for the spin-triplet state. 

orbitals ..p,d and 7j;02 are always singly occupied. Then one-electron orbitals ..P., ..P., ..Pol • 

7j;02 are optimized in the variation. We adopt t his method to obtain the spin-triplet ground 

state in chap ter 5 to determine which of the spin-singlet or the spin-tr iplet states is stable. 

Generally, however, the correlation effect is smaller in the high-spin state because the 

correlation between electrons of the same spin is included by the Pauli's exclusion principle 

in the HF approximation already. The rest of t he correlation effect can be taken into 

account in the MCSCF calculation for the spin-singlet state. Hence the MCSCF orbitals 

optimized for the spin-singlet state may also be used to represent the spin-triplet state. In 

fact, we can represent the spin-triplet state by a small number of configurations based on 

the spin-singlet MCSCF orbitals, as will be seen in the next chapter. For this reason we 

only carry out the MCSCF calculation for the spin-singlet state even for the spin-triplet 

clusters in chapter 3 and 4. (In these chapters, we perform the full CI calculation and take 

account of all the electron-elect ron interactions, and thus the calculated state energies do 

not depend on the selection of the one-electron orbitals.) 

Chapter 3 

Uncompensated Si:P Syst ems 

3.1 Introduction 

The electronic structure of doped semiconductors is one of t he most interesting topics 

in condensed matter physics in recent years. In the low concentration region of doped 

impurities in n-type semicond uctors, every dopant electron is localized around a donor , 

and hopping conduction is observed at low temperatures . As the donor concentration 

increases , the wavefunction of an electron becomes extended over several donors in the 

intermediate concentration region, and when the dopant concentration reaches a critical 

concentration, n,, a metal-insulator (MI) transition takes place. 

In the metal-insulato r transition of doped semiconductors both disorder and electron­

elect ron interactions play important roles [1,2 ,18,19]. For some time, intensive theoret ical 

studies have been made to clarify the mechanism of the transition, as well as the na.ture 

of the electronic states near the transition. On the metal side of the transition, a number 

of t heoretical works have been made on the precursor behaviors of t he transition (20 ,21], 

following the appearance of the scaling theory in 1979 [22]. On the insulator side, however , 

a few theoretical works have been reported , because of the extreme difficulty in treating 

the strong electron correlat ion in the neighborhood of the transition. 

On the insulator side of the transition, 1\amimura. and coworkers developed a. 'transfer­

diagonal' representation formalism to treat both the disorder effect and the electron-electron 

interactions on a.n equal footing (23,24] . They first cliagonali ze t he one-elect ron part of the 

Hamiltonian (2. 1) , including the random site energies, and then calculate the effects of the 

electron-electron interactions by perturbation. By taking into account the intra.-sta.te inter-



action, Yamaguchi et a/. showed that there are singly-occupied states, as well as doubly­

occupied and unoccupied states , and succeeded in explaining the observed temperature 

dependence of the T-linear specific heat and the spin susceptibility in Si:P [25]. Takemori 

and Kamimura then proposed the "spin pair model" in which each singly-occupied state 

forms a spin pair with the state which has the largest interstate interaction, and succeeded 

in explain ing the enhancement of the specific heat observed at low temperatures and its 

magnetic field dependence [26]. In their spin pair model, about half of the spin pairs are 

spin-singlet. The rest are spin-triplet. Later, Gan and Lee applied the transfer diagonal 

formalism to explain the temperature and magnetic-field dependence of the relaxation time 

in NlvrR experiments (27]. 

Andres and coworkers also suggested the treatment of magnetic properties by the spin 

pair approximation in the low concentration region (28]. Later, Bhatt and Lee developed a 

scaling theory applicable to the higher concentration region below the MI transition, based 

on the spin pair approximation of randomly localized spin system (29] . In their model all 

spi n-spin interactions are or iginally anti-ferromagnetic but after the scaling procedure they 

found that some effective couplings become ferromagnetic for certain spin pairs . Though 

their approximation is better at low dopant concentrations , the agreement with experiments 

on spin-suscept ibili ty, magnetization, NMR etc., is good even near the critical concentration 

at which the MI transition takes place [30,31]. 

From these considerations , the following questions arise. 

(i) How does an electronic state change in the intermediate to the critical concentration 

regions? 

(ii) Why does the spin pair approximation hold even in the neighborhood of the tran­

sition? 

(iii) How does spin triplet pairing appear? 

Computer calculation is the most powerful method to address these questions. From 

this standpoint , Takemori and Kamimura performed simulation studies on a cluster con­

sisting of six randomly distributed donors, using the basis states of the transfer diagonal 

formalism [:32]. After diagonalizing the effective one-electron Hamiltonian of the clusters , 

they performed the configuration interaction (CI) calculation with the resulting basis set 

12 

to take into account the effects of all the remaining electron-electron interactions. They 

showed that the formalism works very well in the intermediate concentration region, and 

that the spin pair model is suitable for the representation of the electron ic states there. 

However, with increasing donor concentration up to the critical concentration, the for­

malism faces some difficulties with regards to performing the numerical calculations. In 

their simulation a considerable number of configurations are necessary to describe the elec­

tronic states in the critical region. This indicates physically that the electron-electron 

interactions are too large to be treated as a perturbation near the MI transition. 

To represent the electronic states from the intermediate to the critical concentration 

region, we have developed a new representation formalism [16] . First , we determine the one­

electron orbitals by the MCSCF method, and then calculate the many-body wavefunctions , 

taking the MCSCF orbitals as a basis set. In this chapter we apply this formalism to 

the same cluster model as the one Takemori and Kamimura adopted . Since part of the 

correlation is already included in the MCSCF one-electron orbitals , this new representation 

formalism is suitable even up to the critical donor concentration region in which the electron 

correlation is very strong. On the basis of the results obtained, we discuss the mechanism 

of the metal-insulator transition from a new point of view. 

The orga1tization of t lti s chapter is the following. In the next section we explain the 

cluster model and the simulation formalism. In section 3.3 we give the calculated results 

in the cluster simulation. We calculate the spec ific heat and the spin-susceptibili ty using 

the results of the cluster calculations. In section 3.4 we present the calculated results and 

explain the experimental results. Finally, conclusions and discussions are given in section 

3.5. 

To simulate the system of doped semiconductors , we adopt the effective mass approxi­

mation , in which the Hamiltonian can be written as 

(3 .1) 

where r k and Pk are, respectively, the real space coordinate and the momentum of the k-th 

electron, and R " is the coordinate of the v-th donor center. Effective atomic units are used 

throughout unless otherwise stated, in this and the next chapters. The unit> of length and 
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energy are 19.63A and 60.8meV, respectively. T he valley dege neracy of the semiconductor 

is ignored. 

3.2 Cluster Calculation Method 

As a model we adopt a cluster consist ing of six donors distributed randomly in a sphere. T he 

radius of the sphere is determined corresponding to the donor concentrations, ND = (1.0, 

1.7, 2.4, 3.2) x 1018cm-3, which correspond to the intermediate to the critical concentration 

region of Si:P. Then a Gaussian-type hydrogen 1s orbital, lv >ex: exp( - .XI r - R .l2) is 

attached to the v-th donor atom, in which .\ is give n as 8/9ro by minimization of the 

binding energy of an isolated donor. By adopting Gaussian orbitals all t he matri..."< elements 

of Hami ltoni an (3.1) can be calculated analytically. 

The one-electron orbitals , which are represented by linear combinat ions of the six 

Gaussian-type orbitals, are determined by the MCSCF method. In t he MCSCF method we 

consider all pair-type excitations from the lower three orbitals to t he upper three orbitals, 

3 6 

II>McSCF = CoWo +I: I: c~,"w;t 
i=l a. = 4 

3 6 

(Co+ I: I: .c~: a~ 1 a~1 aila;JlWo, (3.2) 
i=l a=4 

where Wo = I1/J1a1j;J{J·rjJ2a1/;2(31f;3a1/JJ{3 1. T hese one-elect ron orbita ls {1/Jk, k = 1, · · · , 6} form 

a basis set of our representation . 

In the final step of the calculation, the configuration interaction (CI) calculation i 

carried out using the MCSCF orbitals, and the many-body wavefunctions and their energies 

are determined. In the CI calculation we include all configurations of 6 electrons occupying 

6 orbitals (full C l). We use a free boundary condition for t he clusters in the MCSCF and 

the CI calculations. 

Since every many-electron level of a cluster is an eigenstate of total spin , S, and of its 

z-component , S, in real numerical calculations it is conve nient to confine ourselves to the 

subspace wi th S,=O. Then the number of configurat ions in the CI calculation is reduced 

to (6C3f = 400 from 924, which is the total number of configurations composed of six 

one-electron orbitals occupied by si..."< electrons. 

The calculations are performed for fifty clusters for each impurity concentration. 

3.3 Calculated Results 

The ground state is found to be a spin-singlet in most of the 50 clusters, whi le 10 % to 20 

% of them have the spin-triplet ground state. 

T he advanta.ge of using MCSCF one-electron orbitals as a basis set is that the CI 

wavefuncti ons can be expressed by a small number of configurations. For example, the CI 

wavefunctions of the ground states of a spin-singlet cluster and a spin-triplet cluster for 

ND = 1.7 x 1018cm-3 are shown below. 

and 

II> singlet = 0.75I1/J,a1j;,f31j;2a1j;2f31f;3a1j;3f31- 0.65l ·r/J,a1j;,f31j;2a1/J2f31/J4a1/J4 f31 

-0.091 1/J, a1/;,(31f;3a1j;Jf3·•f.i5a1/J5 f3 l + O.OSI1/J1 a1f;1(31/;4 a1/;4 (31/;5 a1f;5 (31, 

II>Triple< = 0.56{1 1/J,a1j;,f31j;2a1/J2f31/J3a1/J, f31 + I1/J,a1j;,f31j;2a1/J2f31j;3f31/J,al} 

+0.30{ 11/J, a1j;,f31j;3a1f;4 (31f;5 a1/;;(31 + I1/J1 a1j;1(31f;3(31j;4 a1/;5 a1j;5 (31} 

+0.18{I1/J2a1/J2f31/J3a1j;,f31j;6a1/J6f31 + I1/J2a1/J2f31/J3(31/J,a1/J6a1/J6f31} 

+0.10{I1/J3a1j;,(31j;;a1f;;(31f;Ba1/JBf31 + I WJf3rjJ,arjJ;a1/Jsf3rfJBa1/JBf31}-

(3.3) 

(3.4) 

For higher dopant concentrations the CI wavefunctions may also be expressed by a small 

number of configurations only. Thus it is easy to get a clear cut view of the electronic 

states, even near the MI transition. It is possible, t herefore, to discuss the change in the 

electronic states from the low concentration region to t he critical region continuously, as 

will be seen in the following two example clusters. In this context we may say that the 

adoption of the MCSCF one-electron orbitals is highly su itable for the representation of 

the many-body states in t hi s st rongly corre lated random system. 

a) Spin-singlet clusters 

One example of the spin-singlet clusters is shown in Fig.3.1. T he ground state of the 

cluster corresponds to the wavefunction (.3.:3) for :-ID = 1.7 x 10 18cm-3 . For the lowest 



a c 

Figure 3. 1: An example of the spin-singlet cluste rs. The geometrical arrangement of 
six donor atoms (a) and MCSCF one-electron orbitals are shown schematically for the 
four donor concentrations: No = 1.0 x1Q18cm- 3 (b) , 1.7 x1Q18cm-3 (c), and 2.4 ~ 
3.2x 1018cm- 3 (d) . It should be noted that the two donor atoms at the left bottom corner 
are very close to each other. In (b),(c) and (d) , the solid and broken lines correspond to 
the highes t and the lowest amplitudes of the i'I'!CSCF orbitals, respectively. 

16 

Ground srate"' 1 

No 
(cm - 1) 

Co C" ]] c" 22 

!.Ox 1018 0.7 1 -0.69 - 0.11 
1.7xl018 0.75 -0.65 -0.09 
2.4 X 1018 0.79 -0.60 -0.08 
3.2x 1018 0.84 -0.54 -O.o7 

a) <1>, = Col 'lfia'lf ,P'Ifze<'lfzPifl1alfi1PI 
+ c;;llfl,a'lf,P'If,a'lf,Pifl,a'lf,PI 
+ Cllllfl,alfl, P'lf,alfi,P'If,alfi,P I 
+C~llllfl,a'lf,Pifl,a'lf,P'If,alfi,PI. 

First excited 
stateb1 

-----
c·"'" 22JJ c~ c"'* 2lJ 

0. 11 0.70 0. 11 
0.08 0.70 0.08 
0.06 0.70 O.o7 

0.70 0.06 

b) ct>.,=c;{ I 'lf,alfi,Piflz"lflzPifl,alfi,PI 
+I "''"lfi,Pifl,alfi,PVI,P'If,a I) 
+Cli;{ llfl,alfi,Pif/,alfi,Pifl,alfi,PI 
+I "''a'lf,P'IIJl'lf,alfl,a'lf,PI) . 

Table 3.1: Coefficients of the CI wavefunctions of the grou nd and the first-excited states 
of the spin-singlet cluster shown in Fig.3.1. All the coefficients larger than 0.05 are listed . 

concentration, N 0 = 1.0 x 1018 cm- 3 , which is just the border between the low and the 

intermediate concentration regions, all the MCSCF one-electron orbitals,1/;k, with k=1 to 6, 

are localized to within two donors. T he localized nature of t he one-electron orbitals reflects 

t he correlation effect involved in the MCSCF method. For t he higher concentrations, 1/;1 

and 1/;2 , corresponding to the lower energy states, have almost the same form as those of 

the lowest concentration and are well localized. The other four MCSCF orbitals become 

more extended as the concentration increases, although the regions of their highest charge 

density do not change, as indicated by the solid lines in Fig.3.1. 

CI wave functions of the ground state and the first excited sta te of this spin-singlet 

cluster a.re given in Table 3.1 for four donor conce ntrations. The CI wavefunctions for the 

above-mentioned four concentrations can be rewritten in a more useful form. For example , 

those for N 0 = 1.7 x 1018cm- 3 are shown below; 

<!>(g) 
Singlet 

<f> (ex) 
Smgle.t 

(3.5) 

(3.6) 

Let us examine the properties of each MCSCF one-electron orbital , 1/;k, correspo ndi ng to 

the creation operator al in detail. The IPJ and ,p, are bonding- and anti -bondi ng-type 

orbitals , respectively. Bot h of them are localized in almost the same region, as ha,·e been 

shown in Fig.3.l. The 1/;2 and 1/;5 are also respecti,·ely bonding- and anti-bonding-type 
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orbitals between the two donors which are not covered by if;3 and 1/;4 . The 1/;1 and 1/;6 

are also in a relation similar to the above. This indicates that the ground state (3.5) 

can be regarded as consisting of three spin-singlet pairs. Each spin pair is described by a 

mixture of a configurat ion in which two electrons occupy a bonding orbital and of another 

configuration in which two electrons occupy an anti-bonding orbital , just like a Heitler­

London wavefunction in a hydrogen molecule. These spin pairs do not interact with each 

other significantly. On the other hand, in the first excited state (3.6), the two electrons 

in 1/;3 and 1/;4 form a spin-triplet pair, while the other spin pairs are the same as those in 

the ground state (3.5). Tlus is the situation of the spin pair model proposed by Takemori 

and Kamimura [26]. In higher dopant concentrations, the MCSCF one-elect ron orbitals are 

extended, but their bonding and anti-bonding natures are the same in their highest charge 

density regions. Thus the situation of the spin pair model also holds for the higher dopant 

concentration region, even though the spin pairs are extended and overlap well with each 

other. 

As for the concentration dependence of the wavefunctions, Table 1 shows that the 

ground state approaches a single configuration, I1/J 1a'if;d3,P2a'if;2 fJ·if;3a'if;3fJI. with increasing 

donor concentration. In each spin-pair, the ratio of the occupation fraction of a bonding­

type orbital to that of an anti-bonding orbital increases. This indicates that the electron 

correlat ion decreases as the concentration increases to the MI transition. 

b) Spin-triplet clusters 

Spin-triplet clusters are found to have a common feature, that is , orbitals extended over 

three donor atoms always appear even for the lowest concentration. 

For example, the spin-triplet cluster corresponding to the wavefunction (3.4) is shown 

in Fig.3.2, whe re if;3 is extended over three donors while li·, is extended over two donors . 

The wavefunction of the ground state (3.4) can be factorised as, 

(3. 'i) 

Figure 3.2: An example of the spin-triplet clusters. (a) The geometrical arrangement of 
six donor atoms. (b) MCSCF one-electron orbitals, shown only for ND = 1.7 x 1018 cm-3 . 

while that of t he first excited state is written as, 

<P~";;~1., = (0.95al 1aL- 0.3lal1al1)(0.88a11a11 - 0.48al 1al 1) 

x (0.76a~ 1a~ 1 - 0.65a! 1a1 1)IO > . (3.8) 

From these we can see that the spin pair model also holds in the present case. The ground 

s tate (3.7) consists of three spin pairs , two of which are spin-singlet states and one is a 

spin-triplet state. The triplet pair is formed by two electrons in 1/;3 and 1/;4 . These same 

elect rons form a spin-singlet pair in the first excited state (3.8). Si nce 1/;3 and 1/;4 have 

a symmetry property close to the E irreducible representation of the C3• point group, 

which is orbi tally doubly degenerate, these one-electron orbitals are expected to be almost 

degenerate. In this context the appearance of spin-triplet ground states may be attributed 

to Hund's rule coupling of two electrons in two nearly degenerate orbitals, that is , spin­

triplet ground states may simply be due to the symmetric arrangements of donors which 

happen to appear in a random distribution. 

There seem to be two typical geometrical arrangements wluch produce a spin-triplet 

ground state in a random system. Fig.3.3 shows examples of the two typical geometries 

which give rise to Hund's rule coupling. At low donor concentration geometry (a) appears 
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(a) (b) 

,~' 
4 

Figure 3.3: Two types of atomic configurations that have the spin-triplet ground states 
are show n together with their electronic energy levels and the electron occupancy for the 
half-fill ed case. (a) A cluster with appreciate transfer energies (t ,u,v) only between the 
central atom a.nd the surrounding atoms, (b) a cluster with the accidental symmetry of 

C3v· 

often, while at high concent ration geometry (b) is more common. The cluster shown in 

Fig.3.2 corresponds to geometry (b). 

For spin-triplet clusters the CI wavefu.nctions of the ground states are expressed by a 

small number of configurations, when the donor concentration is high. In the present case 

they approach the form of two Slater determinants ; 

near t he MI transition. 

3.4 Specific H eat and Spin-Susceptibility 

Using the calculated results of the MCSCF-CI method the specific heat in magnetic fields 

and t he spin-susceptibility are calculated as functions of temperature. First , we calculate 

these quantities for each cluster, assuming a canonical distribution. Then we take an 

ensemble average of these quantities over fifty cluste rs for each concentration. 

The formulae which we have used are the following. [n t he presence of a. magnetic field , 

H , the energy of t he n-th many-body eigenstate has the Zeeman term shown below, if we 
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neglect the higher-order effects in H. 

E(n, SJ =En+ 2p.sS,H, (3.9) 

where En is the n-th eigenenergy. Usi ng the energy levels (3.8) , the specific heat , C, and 

the spin-susceptibility, x, for each cluster are calculated by, 

C/ks = L I: {E(n,SJVexp(-E(n,SJ/kaT) 
n s,=-S. kaT Z 

-{2::: I: E(n ,S,)exp(-E(n ,SJ/ksT)}2 

n S, =-S. kaT z ' (3.10) 

L Sn(Sn + 1)(2Sn + 1) exp( -En/kaT) 
n 3ksT Z ' 

(3. 11) 

where Z is the partition function for a canonical ensemble, 

s. 
Z = L L exp( -E(n, SJ/kaT). (3. 12) 

n S:=-Sn 

Jl.a is the Bohr magneton , ka is t he Boltzmann constant and Sn is the total spin of t he 

n-th level. 

Figure 3.4 shows the temperature dependence of the specific heat for several values of 

magnetic field for four donor concentrations. The specific heat of a single cluster seems to 

be the superposition of several Schottky-type specific heats. However, when the specific 

heat is averaged ove r fifty samples, it becomes linear in T in the high temperature region 

for Nv larger than 1.7 x 1018 cm-3 . This T- linear behavior is due to the randonmess of 

the energy spectrum in each cluster. At low temperatures, about 1 K, a hump over the 

T-linear part is seen in the specific heat, whose position corresponds to the average value 

of the first excitation energy for each concentration. This reflects the effect of the spin­

dependent intersite interactions which form the spin pairs. This coincides with Takemori 

and I\arnimura's argument that the hump is ascribed to the Schottky-type peak and cor­

responds to the thermal excitation between spin-singlet and spin-triplet states in a spin 

pair [26]. The features of the spec ific heat mentioned above are in good agreement with 

experimental results [33,3-1,3.5]. However , the size of the hump increases with increasing 

a donor concentration. This disagrees with experi mental results, and it may be due to a 

finite siz e effect of the clusters. 
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Figure 3A: Temperature dependence of the spec ific heat averaged over fifty clusters for each 
donor concentration. The magnetic fields correspond to 0 kOe (curve A) , 5 kOe (curve B) , 
10 kOe (curve C) and 15 kOe (curve D) , respec ti vely. 
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Figure 3.5: (a) Temperature dependence of the spin-susceptibility averaged over fifty clus­
ters. The donor concentrations are 1.0 x 1018cm- 3 (curve 1) , 1.7 x 1018cm-3 (curve 2) , 
2.4x 10

18
cm- 3 (curve 3), a nd 3.2x 1018cm- 3 (curve 4), respectively. (b) The C urie-Weiss 

plots of the spin-susceptibility for four concentrations. 

When the d onor concentration is low, the specific heat, in partic ular its hump, changes 

drastically with magnetic fields at low temperatures. The hump ove r the T-linear part 

coincides with the shape of a Schottky- type peak. Its position is shifted to higher temper­

atures with increasing magnetic fi eld . This peak corresponds to t he Zeeman splitting of 

a ground state in spin-triplet clusters. With increasing concentration, the change in the 

specifi c hea.t between the presence and absence of magnet ic fields decreases. T his behavior 

is also in good accordance with experimental results [35]. 

T he spin-susceptibility and its Curie-Weiss plot are shown in Fig.3.5. T he susceptibility 

diverges to infinite with decreasing T as in a paramagnet because o f the e:-..i stence of spin­

triplet clusters. The Curie-Weiss plots are almost T-Iinear (C uri e type) with a downward 

bending at low tempe ratures, again consistent with expe rimenta l results [28,36,37,38,39 ,40]. 

3.5 Conclusion and Remarks 

\Ve ha1·e calculated t he elec tronic states in the uncompensated system of Si:P by the 

:\ICSCF -CI method, using a cluster model. \Ve have shown that the representation based 
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on the MCSCF one-electron orbitals is very useful for investigating the features of the 

electronic states in the Anderson-localized region of Si:P. 

We have elucidated the electronic structure corresponding to the spin pair model from 

first principles. Namely, pair-type correlation effect is important even near the critical donor 

concentration, even if the spin pairs are extended and overlap well with each other at hlgh 

concentrations. 10 to 20 % of the spin pairs are spin-triplet, which may be attributed to 

the accidental appearance of two nearly degenerate orbitals. The existence of spin-triplet 

clusters causes a Curie-Weiss-like behavior in the spin-susceptibility. Furthermore , the 

results clarify the origin of the T-linear part and the hump at low Tin the specific heat . 

We have noted that , as the donor concentrat ion increases , the MCSCF one-electron 

orbitals near the Fermi level become more extended, while the CI wave functions approach 

the form of a singl e Slater determinant for spin-singlet clusters, and that of two Slater de­

terminants for spin-t riplet clusters. This means that, with increasi ng donor concentration, 

the electron correlation decreases because the electron-electron interactions are screened 

more effectively by the more extended MCSCF one-electron orbitals. This suggests that 

the metal-insulator transition in doped semiconductors has the nature of"a Mott-type tran­

sition. On the other hand, some MCSCF one-electron o rbitals at lower energy remain 

localized in a real space even at the critical donor concentration. This implies the im­

portance of the random effect. In this context we conclude that the mechanisms of both 

Anderson- and Mott-type MI transitions cooperate in the metal-insulator transition in 

doped semiconductors. 

In spite of the finite system size of N=6, the experimental results of the specific heat and 

the spin-susceptibility can be explained well by the present simulation. This suggests that 

the local properties of the electronic states can be described well in this cluster simulat ion, 

although it is not directly applicable to transport properties or other quantities whlch are 

sensitive to boundary conditions. 
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Chapter 4 

Compensated Si:P Systems 

4.1 Introduction 

It is well known that various properties of doped semiconductors are influenced by com­

pensation. For example, in the low doping concentration region the features of the hopping 

conduction have been investigated theoretically (41 ,42] . Its behavior changes by the com­

pensation ratio, which is defined as the ratio of the number of the minority carriers to 

that of the majority carriers doped in the semiconductor. Some of the theories on hop­

ping cond uction have taken into account the effect of electron-electron interactions, and 

suggested the appearance of a gap in the density of states at the Fermi level in the pres­

ence of compensation. This is called the Coulomb gap. It has been predicted that the 

existence of the Coulomb gap induces the change in the exponent of the variable range 

hopping, which should be observed at low temperatures. This prediction has stimulated 

many experimentalists to investigate the hopping behavior. 

The metal-insulator transition occurs at almost the same electron concentration in the 

compensated system as in the uncompensated system. However, its critical behavior may 

be changed by the compensation. The critical exponent v of the conductivity, u(T = 0) = 

uo(n/nc- 1)" , is 0.5 in the uncompensated Si:P whlle it seems to be 1.0 in all the other 

doped semiconductors, including the compensated Si:P, according to experimental reports 

(43 ,44]. This feature has not been explained yet. 

In the intermediate concentrat ion region some other properties of the compensated semi­

conductors ha,·e been reported to be different from those of the uncompensated samples . 

For example, the specific hea t of electrons behaves as T-linear at low temperatures, even in 
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the low concentration regions in the compensated Si:P, while this T-linear behavior disaJ>­

pears in the low concentration region in the uncompensated Si:P [45]. As for the magnetic 

properties, the line width of ESR measurements becomes wider with the compensation. 

In spite of several experimental works on compensated doped semiconductors in the 

intermediate to the critical concentration region , there have been few theoretical works on 

the Anderson-localized states in the compensated systems. It is necessary to study the 

electronic structures from the microscopic point of view to clarify the different features 

between the uncompensated and the compensated doped semiconductors. In this chapter 

we calculate the electronic structure in the compensated Si:P system for the purposes listed 

below. 

(1) We clarify the elec tronic states from the low to the intermediate concentration region . 

Then we elucidate the characteristic features of the electronic structure in compensated 

Si: P, and compare with the electronic structure in the uncompensated system discussed in 

the previous chapter. 

(2) We calculate the T-dependence of the specific heat in magnetic fields, and the spin­

susceptibility and explain the differences from those of the uncompensated Si:P. 

In the calculation we take, as a model, a cluster consisting of donors and acceptors, 

both of which are distributed randomly in a sphere. We approximate the acceptors as point 

charges for the low temperature region. The Hamiltonian of this system can be written in 

the effective mass approximation as, 

( 4.1) 

where IJ and f.' represent the donor and acceptor sites, respectively. We evaluate the elec­

tronic states by the MCSCF and the CI method to take account of the correlation effec t . 

Further, we calc ulate the specific heat and the spin-susceptibility in the same way as de­

scribed in chapter 3. 

In section 4.2 we explain the cluster model and the calculation method. We prese nt 

the simul ated results in section 4. 3 and the calculations of the spec ific heat and the spin-

suscepti bi lity in 4.-!. A summary and discussions are gi,·en in sect ion 4.5. 
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Case Cluster Concentration ( x 1018cm-3 ) 

electron donor acceptor electron donor acceptor 
a 4 8 4 1.5 3.0 1.5 
b 4 12 8 1.0 3.0 2.0 
c 4 8 4 1.0 2.0 1.0 
d 4 8 4 0.25 0.5 0.25 

Table 4.1: The number of electrons , donors and acceptors in the clusters we have selected 
for the calculation. The concentrations corresponding to t he clusters are also li sted. 

4.2 Cluster Calculation Method 

We choose clusters with four electrons, consisting of 8 (or 12) donors and 4 (or 8) 

acceptors distributed randomly in a sphere. The concentrations we consider are listed in 

Table 4.1. Cases a, b and c are in the intermediate doping region , while cased corresponds 

to the low concentration region. The ratio of acceptors to donors , the concent ration ratio , 

is 1/2 in cases a, c and d , and is 2/3 in case b. A Gaussian-type hydrogen 1s orbital is 

attached to each donor site. The exponent is chosen to 8/9'lf as in chapter 3. Acceptors 

are represented by point charges of charge -e. 

In the MCSCF method we consider all the configurat ions of the pair-type excitations . 

For example, in case a in Table 4.1 , the MCSCF trial function is given as, 

2 8 

I> C-, oTo "' "' C-aa oToaa 
< MCSCF = O'k'O + ~ ~ 1i '¥1i 

i=l a.=3 
2 8 

(co+ I: I: c~." a~ 1 al 1 a, 1 a,r)wo, (4.2) 
i=l a=3 

where Wo = I1/J1a1j;J(31j;2a'ifl2f31. The one-electron orbitals { 1/Jk, k = 1, · · ·, 8 } are determined 

in the variational procedure. Next we carry out the CI calculation based on the MCSCF 

one-electron orbitals, to include all the electron-electron interactions. 

The calculations are done for thirty clusters for each case. 

For comparison in the low concentra.tion region, we perform the cluster calculations for 

the uncompensated system at the concentration of N D = ( 0. 5, 0.25) x 1018cm-3 'vVe take 

the cluster model consist ing of 6 randomly dist ributed donors in the same way as in the 

pre,·ious chapter. 
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Figure 4.1: An example of the spin-singlet clusters. The concentration corresponds to case 
a in Table.4 .1. The large and the small spheres represent the donors and the acceptors, 
respect ively. The solid and broken lines indicate the highest and the lowest amplitudes of 
the MCSCF orbitals, respectively. 

4.3 Calculated Results 

We present in the following the calculated results in our cluster simulations. 

Most of the clusters have the spin'-singlet ground states. The proportion of the spin­

triplet clusters is 10 to 20 %in the intermediate concentration region, which is almost the 

same as that of the uncompensated system. At low concentration the ground state becomes 

spin-degenerate in many clusters. 

One example of the spin-singlet clusters is shown in Fig.4.1 for the concentrat ion of case 

a in Table 4.1, which belongs to the intermediate doping concentration region. The MCSCF 

one-electron orbitals are more extended than those in the uncompensated system at the 

same electron concentration. T he extension of the one-electron orbitals does not change 

very much when the concentration decreases, which is also in contrast to the uncompensated 

system. 

The CI wavefunctions of the ground and the first excited states are given, respectively, 

2 

as, 

and 

<I> 9 = 0.93I•/J!a1/;, (31/;2a1/J2f31- 0.29l 1/11a1/;1(3•/1Ja1/;3(31 

-0.1911/Jr ai/;1(31/J,al/;4 (31, 

<I>= = 0.65{I1/Jra1/Jrf31/J2a1/J3f31 + I!/Jra1/J,(31/;2(31/;3al} 

-0.14{11/Jra1/J,f31/J2a!/J,f31 + I1/Jra1/J,(31/J2f31/J,al} 

-0 .16{I 1/Jra1/J,(31/;2a1/Jsf31 + I1/Jra1/Jrf31/12f31/Jsal}. 

(4.3) 

(4.4) 

The grvuml ;tate wa,·efunction, (4..3), is much clu,er to a , iugle Slakr JeLermiuduL, cvtu­

pared with the CI wavefunction (3.3) of the uncompensated system. It indicates that the 

one-electron picture is almost valid in this system and that the correlation effect is much 

weaker than that in the uncompensated system. This is because the more extended MCSCF 

one-electron orbitals screen the Coulomb interactions more strongly. 

The first excited state is a spin-triplet which consists of si.x electron configurations, as 

seen in (4.4). The first two configurations in (4.4), which have the largest coefficients, come 

from the spin-dependent interaction between the orbital 1/;2 and 1/;3, just as in the spin 

pair model. The other four configurations in (4..4) correspond to hopping type excitations; 

an electron is excited from 1/;2 to the orbitals, 1/;4 or 1/;5 , which are localized around the 

other donors. This has the effect that an electron moves to some other place from the 

localized region in the ground state. In t his view spin coupling effect is not as strong in 

the compensated system as in the uncompensated system, where the spin coupling is very 

important. 

The cases b and c co rrespond to the same electron concentration but with a different 

compensation ratio. Although the MCSCF orbitals in case b are a little more extended 

than in case c, the features discussed above are almost the same in both cases. 

Now we discuss the low concentration region in t he uncompensated and the compen­

sated systems. As the concentration decreases, electrons become localized and the sp in 

coupling effect diminishes in both systems. In the uncompensated system the excitation 

energy £rom the almost spin-degenerate ground state increases drastically. This i, due to 
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Figure 4.2: The temperature dependence of the specific heat averaged over thirty clusters. 
The upper row , (a), corresponds to the uncompensated case while the lower row, (b), to 
the compensated case. The values of the magnetic field are 0 (curve A), 5 KOe (curve B), 
10 KOe (curve C) and 15 KOe (curve D) , respectively. 

the intra-state interaction, that is, Hubbard U repulsion, which becomes larger in the more 

localized states. In the compensated system, on the other hand, hopping-type excitations 

exist above the nearly spin-degenerate ground state. This delocalizes the electrons and 

hence the excitation energy is much smaller. 

4.4 Specific Heat and Spin-Susceptibility 

We calculate the temperature dependence of the specific heat in magnetic fields and the 

spin-susceptibility in the same way as in the previous chapter. First , we calculate the 

quantities for each cluster and then take an ensemble average over 30 clusters for each case 

in Table 4.1. 

Fig.4.2 show the T-dependence of the specific heat under several values of the magnetic 

field. The lower figures show the results of the compensated system while the upper figures 

show the results of the uncompensated system corresponding to the same electron concen-
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Figure 4.3: Curie-Weiss plots of the spin-susceptibility averaged over thirty clusters; (a) the 
uncompensated systems and (b) the compensated systems. In (a) the donor concentrations 
correspond to Nn = 2.4 (curve 1) , 1.7 (curve 2), 1.0 (curve 3) , 0 . .5 (curve 4) , 0.25 x 1018cm- 3 

(curve 5) . In (b) the concentrations correspond to case a, b, c and din Table.4.1. 

trations. In the intermediate concentration region the specific heat behaves in the similar 

way in both systems: T-linear in the higher temperature region and a hump over the T­

linear part is seen at low temperatures. However , the hump is smaller in the compensated 

system, which reflects the weaker spin-dependent interaction. 

In the low concentration region the specific heat shows aT-linear behavior only in the 

compensated system. This is attributed to the hopping-type excitations. The gradient 

is an increasing function of dopant concentration while the hump becomes smaller as the 

concentration decreases . These results are in accordance with experiments (45]. 

In Fig.4.3 the Curie-Weiss plots of the spin-susceptibility are shown for the uncompen­

sated and the compensated systems. The T-dependence of the susceptibility is qualitatively 

the same between both systems. It tends to diverge with decreasing T even in the inter­

mediate concentration. This is due to the existence of spin-triplet clusters. 

4.5 Conclusion and Remarks 

\Ye have calculated the electronic structure in the compensated Si:P system by the i\ICSCF­

Cl method. In the intermediate concentration region the ~ICSCF one-electron orbitals are 
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more extended and the CI wavefunction is much closer to a single Slater determinant , com­

pared with the uncompensated Si: P case. These indicate that correlation effect is small 

owing to the screening effect by the extended one-elect ron orbitals. This is contrast to 

the Anderson-localized states in the uncompensated sys tem in which the correlation effect 

is fundamentally important and the electrons form strong spin pairs. The temperature 

dependence of the specific heat and the spin-susceptibility is , however, essentially similar 

in both systems in the intermediate concentration region. In the low concentration region 

where the spin-dependent interactions become small , the difference between the uncompen­

sated and the compensated Si:P becomes more obvious. The excitation energy from the 

almost spin-degenerate ground state increases drastically in the former, while hopping- type 

excitations with small excitation energies exist in the latter. As a consequence, the specific 

heat behaves as T-linear only in the compensated system. 

We cannot predict the transport properties, like the hopping conduction, directly by 

this finite cluster calculations. For that we must develop a simpler and much larger model. 

As for the Coulomb gap, we also need to treat a larger system because the gap is caused 

by the long range nature of the Coulomb interactions. 
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Chapter 5 

Copper Oxide Materials of High 
Temperature Superconductors 

5.1 Introduction 

Since high-temperature copper-oxide superconductors were discovered , intensive studies 

have been done on the mechanism of the superconductivity. The materials may be classified 

as strongly correlated systems and thus the band picture is not suitable. In fact , most of the 

band structure calculations for these materials have not been able to explain the observed 

anti-ferromagnetic insulating property in the undoped compounds [8,9,10, 11] . Here, the 

problem is how to treat the strong correlation in order to elucidate the elect ronic states in 

the normal phase as well as the mechanism of the superconductivity. 

To study strong correlation effect in these systems, a number of simulation studies 

have been done based on the Hubbard model , the t-J model, etc. [5 ,6] . In these simulation 

studies, however, important physical quantities such as transfer integrals, energy differences 

between orbitals, have been taken as parameters. In order to elucidate the electronic 

structures of the copper oxide superconductors, it is necessary to calculate all physical 

quantities from first principles. 

The copper oxide compounds of high-temperature superconductors have a couple of 

common features. They all have Cu02 planes which are thought to be important for the 

superconductivity. There are some additional Cu-0 structures, oc tahedron, pyramid etc., 

according to t he number of apical oxygens above and below a copper atom in the Cu0 2 

plane. The undoped compounds are anti-ferromagnetic insul ators. Howe,·er, they show 
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Figure 5.1: The crystal structures of the La-Cu-0 and the Nd-Cu-0 systems. T he former 
has the octahedron st ructure while the latter has no apical oxygens. 

superconductivity when carriers are doped by the substitution of divalent or tetravalent 

ions in place of the trivalent ions , or by oxygen vacancies. In this chapter we study two 

compounds among them, L~_,Sr,Cu04 and Nd2_,Ce,Cu0 4 . The La-Cu-0 system has 

an elongated oc tahedron structure while Nd-Cu-0 has no apical oxygens above or below 

the Cu02 plane, as seen in Fig.5.1. The former becomes superconducting when holes are 

doped while the latter becomes superconducting when electrons are doped. 

In order to calculate the electronic structures of these materials from first principles, 

we adopt the MCSCF -CI method from the standpoint that the correlation effect plays a 

major role in t hese materials. To elucidate the elec tronic structure in t he Cu02 plane, 

we take as a model clusters consisting of one or two copper atoms wi th the sur rounding 

oxygen atoms. Although some other groups have already performed ab initio calculations 

in similar cluster models (46,47,48], we place special emphasis on the following points in 

our calculations, which have not rece ived sufficient attention previously. 

( 1) In order to clarify the correlation effect characteristi c of these materials , we represe nt 

the electronic states in a number of Slater determinants by the MCSCF-CI method. The 

small number of configurations by this method allow us to investigate the origin of the 
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anti-ferromagnetic coupling in the undoped compou nds and the properties of the electronic 

states in the carrier-doped compounds. 

(2) We calculate the electronic states in both the La-Cu-0 and the Nd-Cu-0 systems 

with the same formalism and elucidate t he essential differences between the hole-doped and 

electron-doped superconductors . 

(3) We investigate the role of the apical oxygens in the La-Cu-0 system. Recently, 

there have appeared experimental results suggesting that the distance between the apical 

0 atom and the Cu atom is reduced when carriers are doped in the high temperature su­

perconducting copper-oxide materials (49 ,.5 0]. As for the L~_,Sr,Cu04 compounds, Boyce 

et a/. have found , by X-ray absorption studies, that the distance becomes shorter as the 

doping concentration of Sr increases (50]. Theoretically, Shima et a/. have shown, by total 

energy-force calc ul ations, that the optimized Cu-apical 0 distance becomes shorter with 

increasing doping concent ration (51]. In addition, there are experimental reports that the 

onset temperature of the superconductivity (Tc) rises under high pressure in high temper­

ature superconductors, except in the Nd-Cu-0 system which has no apical oxygens (52,53]. 

This fact also implies the importance of t he apical oxygens for t he superconductivity. To 

investigate the effect of t he apical oxygens, t herefore, we vary t he Cu-apical 0 distance in 

t he cluster model. 

( 4) We will study the influence on the electronic structure of the doped divalent or 

tetravalent ions. 

The organization of this chapter is as follows. In the next section we present the cluster 

model and the calc ul ation method. \Ve give the calculated results in the Cu06 and the 

Cu0 4 clusters in section 5.3 and 5.4, respectively. In section 5.3 we elucidate the effect of 

the apical oxygens in the La-Cu-0 system. Section 5.5 is devoted to the calculated resu lts 

in t he Cu2 0 11 and the Cu2 0 ; clusters. We investigate the anti-ferromagnetic coupling by 

the superexchange mecha.nism there. We give a summary and some discussions in section 

5.6. 
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Figure 5.2: The clusters we take as a model in the calculations; (a) Cu06 and Cu20 11 for 
La-Cu-0 , (b) Cu04 and Cu20 7 for Nd-Cu-0. 

5.2 Cluster Calculation Method 

5.2.1 Cluster Model 

As a model we adopt clusters of Cu06 and Cu2 0 11 for La-Cu-0 , and CuO, and Cu201 

clusters for Nd-Cu-0, as shown in Fig.5.2. Cu06 and Cu2 0 11 clusters include two kinds of 

oxygens; oxygen in the Cu02 plane, which we call 0(1) hereafter , and apical oxygen above 

and below the Cu atoms in t he direction of c-a:,is, which we label as 0(2). The Cu04 and 

Cu20 7 clusters include only one kind of oxygen atoms , 0( 1). The lattice constants we use 

are listed in Table 5.1. The number of electrons is determined so that the charge of copper is 

+2 and that of oxygen is -2 for the undoped case. We also consider the hole-doped system 

for La-Cu-0 , and the electron-doped system for Nd-Cu-0 by subtracting, and adding, one 

electron , respectively. 

To include the effect of the Madelung potential from t he exterior ions outside the cluster , 

point charges are placed at exterior ion sites ( +2 for Cu, -2 for 0 and +3 for La (Nd)). 

Fractional charges are given to the most ou ter La. (:'lid) ion sites in such a way that the 

NiO 

Cu-0(1) Cu-0(2) 
1.889 
1.973 

2.411 

Ni-0 
2.0973 

Table 5.1: The lattice constants of L~Cu04 , Nd2 Cu04 and NiO . The length is indicated 
in angstroms. We use the values of the lattice constants in Ref.(54] for La2 Cu04 , Ref.(55] 
for Nd2Cu04 and Re£.[56] for NiO. 

effect up to electronic octapoles disappears at the ions located far away from the cluster. 

The number of point charges are 168 for Cu06 , 224 for Cu20 11 , 208 for Cu04 and 276 

for Cu2 0 7 • These point charges define the Madelung potential at Cu, 0(1) and 0(2) sites 

of the clusters in such a way that the relative value of the Madelung potential at each 

site is reproduced to coincide with that in the purely ionic crystal, to within less than 0.8 

%. The whole system is electrically neutral for the undoped case and we assume that the 

arrangement of point charges does not change when a hole or an electron is added, except 

in subsection 5.3 .3 and 5.4.3, where we investigate the effect of doping with Sr2+ or CeH 

ions. 

In accordance to the suggestions from both the experimental result from the X-ray 

absorption study by Boyce et a/.[50], and the theoretical study of the LDA total energy­

force calculation by Shima et a/. for L~-zSrzCu04 [51], we vary the Cu-0(2) distance c in 

Cu06 cluster while the other lattice constants are kept fi..xed . The distance c is taken as 2.41 

A, 2.35 A, 2.30 A and 2.24 A, where 2.41 A and 2.30 A correspond to those of the undoped 

and 20% Sr doped systems, respectively [50]. The positions of the -2e point charges at 

0(2) sites outside the cluster are also changed by the same amount . The change in the 

lattice constant c brings about the change in the electrostatic Madelung site potential in 

the purely ionic crystal. We calculate the Madelung potential as a function of c by Ewald 's 

method, and list the results in Table 5.2. As the 0(2) is moved closer to the Cu02 plane , 

the absolute values of the Madelung potential at the Cu and the 0{2) sites become larger , 

while the potential at 0(1) site becomes smaller. This means that an electron goes to an 
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Cu (or Ni) O(I) 0(2) 
L11'2Cu04 

c=2.4IA -28.44 21.26 ( 49.69) 20.08 ( 48.52) 
c=2.30A -29.53 20.49 (50.02) 20.35 ( 49.89) 

Nd2Cu04 -24.30 22. I4 (46.44) 

NiO -24.40 24.40 (47.99) 

Table 5.2: The electrostatic Madelung potential at the Cu (or Ni), O(I) and 0 (2) sites, in 
L11'2Cu04 , Nd2 Cu0 4 and NiO (in eV). The oxygen sites' potential , measured from that at 
the Cu (or Ni) site, is also indicated in the parentheses. 

0(2) site more easily, and to an O(I) site more difficultly and that a hole goes to a Cu site 

more easil y, as c decreases. 

For comparison we perform similar cluster calculations for NiO, wruch is an anti­

ferromagnetic insulator of the sodium chloride structure. The lattice constant is shown 

in Table.5.1. We take a Ni0 6 regular octahedron cluster and a Ni2 0 11 cluster with 336 and 

428 point charges outside of the clusters, respectively. 

5.2 .2 Basis set 

We express the one-elec tron orbitals by linear combinations of atomic orbitals (LCAO). 

The funct ional forms of the atomic orbitals are taken as linear combinations of Gaussian 

functions. For Cu Is, 2s, 3s, 2p, 3p and 0 Is we prepare one basis function for each orbital 

(single zeta) , and for Cu 3d, 4s and 0 2s, 2p we prepare two basis functions for each orbital 

(double zeta). ( (I2s6p4d)/(5s2p2d) for Cu (57) and (IOs5p)/(3s2p) for 0 (58)) 

With the oxygen ions, diffuse components are usually used in addition to the double 

or triple zeta functions in the field of quantum chemistry. This is because 0 2 - is not 

stable by itself and is very much extended in space. Although other people use the diffuse 

components in t heir cluster calculations of the copper-oxide superconductors (46 ,47 ,48), we 

don't adopt them for the following reasons. 

(i) In a molecule, elect ronic orbitals may be hybridi zed all over the molecule. T hus 

diffuse components become necessary to represent the electronic states in a molecule. We 

38 

would, however, like to simulate the electronic structure in a crystal where the elect ronic 

state in some neighborhood of an atom is expected to be closely represented by its atomic 

orbitals . Consequently, on physical grounds, we would not expect the diffuse components 

to be significant. 

(ii) In addition, without the unphysical diffuse components, we may represent the 

Madelung potential simply with the point charge approximation in the outside region of 

the cluster. 

Instead of using the diffuse components for 0 2- , we make extended 0 2p basis functions 

wruch were originally prepared for a neutral atom. For this purpose we introduce a scaling 

factor of 0.93 so that the orbitals scale up I/0.93 times as extended in space as the original 

base. We multiply all the Gaussian exponents in the double zeta base for the oxygen 2p 

orbitals, by the same scaling factor , on the assumption that the shape of the orbitals is 

not changed from that in a neutral oxygen atom. Then the value of t he scaling factor is 

determined so that the energy of an isolated 0 2- ion should be minimized in t he Hartree­

Fock approximation. 

For the same reason the 3d orbitals are shrunk in a Cu2+ ion, compared to t hose in a 

neutral Cu atom. For tills we in troduce a scaling factor of 1.09 so that the Cu 3d orbitals 

scales down I/1.09 times. Again, the scaling factor is determined so that the HF energy of 

isolated Cu2+ ion should be minimized. 

For Ni atom, we take the basis set similar to that for Cu atom; single zeta for Is, 2s, 

3s, 2p, 3p and double zeta for 3d, 4s ((I2s6p5d)/(5s2p2d) in Ref.(59)). 

5.2.3 Calculation of MCSCF-CI Method 

In the calculations of hole-doped Cu0 6 and electron-doped Cu0 4 systems we perform the 

MCSCF -CI variational calculations for both t he 1 A19 and the 3 B19 states independently. 

In the MCSCF method we take the trial function for the 1 A 19 state as 

Co I ifJ 1 a1/;J{J'if;2 a1!J2 (3 · · · 1/Jna1/Jnf31 

+ L L c~:l· · · •i',-Ia1/J,_ If3ifJ,+I O!w,+IP · · · 1/J.O!w. f31, (5. 1) 
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and that for the 3 B19 state as 

<I>r C'oi1/J1rx,PJ(J · · ·1/Jn-1 a1/Jn-dNprx,Pqrxl 

+ L L c·:tl·. ·1/J,-1rx1/J;-l!Ni+1rx1/J;+1fJ .. ·1/J.rx,P.{J,Pprx,Pqrxl, (5.2) 
' . 

where 2n is the number of the electrons in the cluster. 1/Jp and 1/Jq in (5.2) correspond to the 

singly-occupied orbitals of Cu d 3,,_,, and d$'-•' character, respectively. The summations 

over i and a are taken over all the a19 and b19 symmetry orbitals of the D,h point group, 

which consist of Cu 3d, 4s and 0 2p orbitals. We also perform the CI calculations for 

the 1 A19 and the 3B19 states using the 1 A 19 and t he 3B19 MCSCF one-electron orbitals, 

respectively. In the CI calculation we include all the excitations among these orbitals. 

(There are too many molecular orbitals to consider the full configuration space in the 

capacity of the present computer.) 

We perform the calculations in the undoped Cu20 11 and Cu20 7 clusters in a similar 

way. We explain the calculation method in detail in section 5.5. 

5.3 Cu0 6 Cluster 

5.3.1 Undoped system 

First we present the electronic state in undoped Cu06 cluster which includes 87 electrons. 

We carry out the unrestricted Hartree-Fock (UHF) calculation for the spin-doublet state. 

In the UHF calculation the orbitals of up-spin can be changed from those of down-spin, 

and thus a part of the correlation effect is effectively taken into account. 

In the calculated result , the b19-type orbital in which Cu d$'-•' and 0(1) Pu are coupled 

in an anti-bonding way is singly-occupied. That is, the hole is extended over the Cu and 

the 0 sites. As a result , the formal charge of the Cu site, which is estimated by the 

Mulliken analysis, is much reduced from +2, as seen in Table 5.3. The electronic state in 

the undoped cluster changes little when the Cu-0(2) distance is reduced. 

For comparison, we perform the Ni06 cluster calculation for NiO. NiO has regular 

octahedral symmetry so that the ground state is a spin-triplet owing to Hund 's coupling. 

Thus we perform the UHF fo r the spin-triplet state . The a19 and the b19 orbitals are singly­

occupied, in which the amplitudes of the Ni d orbitals are large and the hybridization with 
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Cluster 
undoped Cu06 (LqCu04 ) 

undoped Cu0 4 (Nd2Cu0 4 ) 

Ni06 (NiO) 

Cu (or Ni) 
1.27 
1.84 

1.74 

0(1) 0(2) 
-1.87 -1.90 
-1.96 

-1.96 

Table 5.3: The Mulliken charges in the undoped Cu06 (LqCu04 ), the undoped Cu0
4 

(Nd2CuO,) and the Ni06 cluster (NiO). The calculations are done by the unrestricted HF 
method for the spin-doublet state (in La2 Cu04 and Nd2Cu0 4 ) and for the spin-triplet state 
(in iO). 

the 0 Puis small . It indicates that the two holes are localized at the i site in Ni0 6 cluster 

in contrast to that in the undoped Cu06 system. This is reflected in the Mulliken charges 

li sted in Table 5.3. The formal charge of the Ni site is close to +2. 

This indicates that covalency is important in La2Cu04 while the ionicity is strong in 

NiO. 

5.3.2 Hole-doped System 

When one electron is subtracted from the undoped Cu06 cluster, the states of the 1 A19 

and the 
3
B19 symmetry of the D,h group are almost degenerate, as seen below. We perform 

the .MCSCF-CI calculations for those states independently to determine which state is 

the ground state as a function of the Cu-0(2) distance. First , we present the electronic 

structures of the 1 A19 and the 3 B19 states. Then we compare the energies of these states. 

After that , we investigate the states of other symmetries. 

(1) 1 A19 State 

The wavefunctions and one-electron orbitals in the MCSCF-CI results are shown in 

Fig.5.3 and 5.4, respectively. The CI wavefunction mainly consists of three configurations. 

It is close to a single Slater determinant and it indicates that the correlation effect is small. 

In the first configuration, which has the largest coefficient, the Cu d$'-•'-0(1) Pu anti­

bonding b1 9 orbital, ,P5 , is unoccupied. In the second configuration, the bonding orbital, 

.;;,, is unoccupied while the anti-bonding orbital, 7/-•5 , is doubly occupied. Thus the mixing 

between the first and the second configurations indicates that the added hole enters both 

of the Cu d$'-•' and the 0(1) Pu orbitals and that the added hole makes a spin-singlet pair 
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1/;6 

.P~ 

.p, 

1/;J 

1/;2 

1/;1 

(A) 

(B) 

(C) 

(D) 

0.958 -0.248 

0.959 -0.246 

0.959 -0.243 

0.959 -0.241 

-0.112 

-0.128 

-0.135 

-0.143 

Cu 4s 

0 (1) Pu (blg) 

0(2) p, (a19) 

0(1) Pu (alg) 

Figure 5.3: T he CI wavefunctions of the 1 A 19 state in the Cu06 cluster. The Cu-0(2) 
distance, c, is (A) 2.41A, (B) 2.35A, (C) 2.30A and (D) 2.24A, respectively. The atomic 
orbital with the largest component is attached to each MCSCF one-electron orbital in the 
right side. 

with the original hole, as in a Heitler-London wavefunction. T his situation corresponds to 

the spin-si nglet coupling between Cu dr'-y' and 0(1) Pu holes suggested by Zhang and 

Rice (60]. 

In the third configuration, the a19 orbital, 1/;1, is unoccupied while the b19 orbitals, 1/;4 

and 1/;~, are doubly occupied . 1/;1, shown in Fig.5.4, consists almost entirely of Cu d3,,_,,_ 

This configuration appears for the following reason. When two holes are at a Cu site, 

the on-site Coulomb repulsion, the so-called Hubbard U, raises the energy. T he Coulomb 

repulsion is smaller when t he holes occupy both the d3,,_,, and the dr' -•' orbitals than 

when they remain only at the dr'-y' orbital. Thus the mixing of the (d3,,_,, )
2 and the 

(dr'-•')2 configurations reduces the Hubbard U at the Cu site, compared with the single 

configuration (dr'-y' )2 T he coefficient of the third configuration in the CI wavefunction 

becomes larger as Cu-0(2) distance decreases, as shown in Fig.5.3. This is because the 

energy levels of the dr'-•' and the d3,,_,, orbitals become closer as t he Cu06 geometry 

approaches a perfect octahedron. 

The ?vlCSCF one-electron orbitals change li tt le when the Cu-0(2) distance is changed. 

0 1 still consists almost entirely of d3,,_,, orbital. although the components of the 0(2) p, 
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00 
0 

Figure 5.4: The MCSCF one-elect ron orbitals for the 1 A 19 state in the Cu0 6 cluster (c 
= 2.41..!..). The upper row shows the wavefunctions perpendicular to the Cu02 plane, the 
lower row shows the wavefunctions in the Cu02 plane. The contour lines are drawn every 
0.05. 
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'if;s Cu 4s 

'if;s Cu dx'~y' 

'if;. Cu d3,'~'' 

lj;3 0(1) Pu (big) 

'lj;2 0(2) p, (a1g) 

'if; I 0(1) Pu (aJg) 

0.704 -0.704 

Figure 5.5: The CI wavefunction of the 3 B1g state in the Cu06 cluster. 

orbitals increase just a li ttle when the Cu~0(2) distance decreases. This means that the 

added hole does not enter in to the p orbitals of the apical oxyge ns when Cu-0(2) distance 

is reduced, while the proportion of the hole at the Cu site increases. This result is consistent 

with the Madelung energy as a function of the distance, as discussed before . 

(2) 3 B1g State 

T he 3 B1g wave function obtained by the MCSCF-CI calculation is shown in Fig.5.5. The 

a1g orbital, lj;4 , and the b1g orbital , 'if;5 , are singly occupied and the two electrons couple to 

be a spin-triplet in these orbitals. In 'if;5 dx'~y' is mixed with 0(1) Pu, as seen in Fig.5.6, 

indicating that one of the holes is extended over both the Cu and the 0 atoms. On the 

other hand, lj;4 consists mainly of d3,' ~'' ' which means that one hole with d3,,~, ' character 

is localized at the Cu site. 

Both the CI wavefunction and the MCSCF one-electron orbitals are not sensitive to the 

Cu- 0(2) distance in the 3 B1g state. 

The energy difference between the 1 A19 and the 3 B19 states is shown in Fig.5.7 as 

a [unction of the Cu- 0(2) distance. As the apical 0 is closer to the Cu02 plane, the 

energy difference decreases rapidly and at some distance the 3 B19 state becomes stable. 

The reason for the conversion of the ground state from 1 A19 to 3 B19 is the following. When 

the Cu-0(2) distance decreases, the ene rgy difference between the b19 orbital of Cu dx'~y' 

characte r and the a1g orbital of Cu d3,,_,, character becomes smaller , so that the energy 

of the 3 B19 state is lowered, compared to that of t he 1 A 19 state. The net effect is that 

the intra-atomic exchange inte raction, t he so-called Hund's coupling, favors a parallel spin 

configuration. 

4.4. 

~~~-... ..__~..._ _ _. ~-· -""'-"-------·~· 

'1/;4 

~.=: . ..-/ 
0 

til 

Figure 5.6: The MCSCF one-electron orbitals for the 3 B1g state in the Cu06 cluster (c 
= 2.4.1A). The upper row shows the wavefunctions perpendicular to the Cu02 plane, t he 
lower row shows the wave[unctions in t he Cu0 2 pl ane. T he contour lines are drawn every 
0.05. 
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Figure 5. 7: T he energy difference between the 3 B19 and the 1 A19 states, as a function of the 
Cu-0(2) distance , c, in t he Cu06 cluster. The Cu- 0 (1) distance, a, is fixed at 1.889 A. c is 
2.41A(undoped case) (A), 2.35A(B) , 2.30A (Sr-10% doped) (C) and 2.24A(D) , respectively. 

T his indicates that the 3 B19 state is more stable at some doping concentration and that 

a transition should occur to a triplet state1 This would provide the necessary electronic 

configuration for the the spin polaron mechanism suggested by Kamimura eta/. [61 ,62,63]. 

In addition , the correspondence of the transition concentrat ion to that of the superconduc­

tivity transition [64,65,66], around 10% Sr eloping, which is the interpolated value using 

the experimental results by Boyce et a/. [50], is suggestive of the validity of the spin polaron 

model. 

T he strength of the Hund's coupling can be estimated directly from the energy difference 

between the 3 B 19 state and t he excited 1B19 state. The estimated value is 2.0 eV. 

(3) Other Symmetry States 

Until now we have only considered the cases t hat the doped hole enters the oxygen Pu 

orbitals. But some people insist that the eloped holes enter t he oxygen p, orbitals which 

1This transition has been also suggested by A.Fujimori [67J. However, his calculated result differs in 
two respects from ours. In his result the hole population at the apical oxygens is considerably large in the 
3 8 19 state, while in our result the hole hardly enters the apical oxygen orbitals. In addition, the strength 
of the Hund's coupling is estimated to be about 0.05 c\" in his calculation, while it is 2.0 eV in ours. 
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Figure 5.8: Two kinds of the 0(1) p, orbitals. Orbital a couples with none of the Cu d 
orbitals, while orbital b couples with Cu d,y in an anti-bonding way. 

couple with neither the Cu d,'-•' nor the d3,,_,, orbitals. Asai has performed ab initio 

cluster calcula tions a nd got the results that the added hole enters the 0(1) p, orbital which 

couples with none of Cud orbitals (orbital a in Fig.5.8) [48] . On the other hand, Yamaguchi 

et a/. have shown by the similar cluster calculation that the hole enters the 0(1) p, orbital 

which couples with Cu d,y in an anti-bonding way (orbital b in Fig.5.8) [47]. We perform 

the UHF calculations for the spin-triplet state so as to compare the energies among these 

states. 

We consider the following t hree states: ( 1) one hole enters the b19 orbital of Cu d,'-•' 

character and one enters the a19 orbital of Cu d3,,_,, character (the 3 B19 state studied 

above), (2) the b19 orbital and the orbital a in Fig.5.8 and (3) the b19 orbital and orbital b 

in F ig.5.8. We fix the Cu- 0 (2) distance at that of the undoped compound. The energies 

of these states are (1) 0.14 eV (2) 1.3 eV and (3) 1.7 eV, measured from the 1A19 state 

energy calculated using the MCSCF-CI method. Hence state (1) is the most stable among 

them. 

The different results of similar cluster calculations by the other groups seem to be due 

to the different selection of the oxygen's basis set. We don't use the diffuse components 

for 0 2- while t he ot her groups have used them. In their calculated results , therefo re , the 

p, orbitals overlap well with each other and a hole in the orbitals obtains a lower kinetic 

energy, compared with in our calc ulation . In their calculations, however, the diffuse compo­

nents cause problems with t he poin t cha rge approximation outside of the cluster, because 

the diffuse components reach the nearest neighbor sites with considerable amplitudes . In 
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(a) (b) 

Figure 5.9: (a) Cu06 and (b) Cu04 clusters with the nearest neighboring trivalent ions. 

addition, if the doped hole occupies t he 0 P~ orbital, we will not be able to explain the 

observed fact that the anti- ferromagnetic ordering of the Cu spins disappears by the hole 

doping. 

Although the shape of the oxyge n p, orbitals depends well on the basis set, that of the 

oxygen Pa orbitals is not essentially affected by the basis set, since in these orbitals the 

diffuse components of the 0 atoms are not important , owing to the existence of the Cu 

dx'-y' or d3,,_,, basis functions. Our calculated results about the 1 A19 and 3B19 states , 

t herefore, will be little changed by adopting the diffuse components. 

5.3.3 Effect of the Doped Sr2+ Ions 

In this subsection we investigate the effect of doped Sr2+ ions in the La2-xSrxCu04 com­

pound, where the Sr2+ ions are substituted for the La3+ ions. For this purpose we change 

the point charges outside the cluster in the two following ways: (i) We replace all of the 

eight +3e charges, which are the nearest La3+ sites to the cluster , by +2.875e point charges. 

(ii) We replace only one of the eigh t +3e by a +2e point charge (see Fig.5.9 (a)). Then we 

consider the electrically neutral hole-doped systems. The Cu-0(2) distance is fi.xed at the 

value of the undoped case. 

In situation (i) we perform indepe ndent MCSCF-CI calculations fo r the 1 A19 and the 

3B19 states. The many-body wavefunctions and the MCSCF one-electron orbitals are al­

most the same as before. Although the 1 A19 state is energetically more stable than the 
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3 B19 state, the energy difference between these states is much reduced, down to 0.046 eV 

from 0.117 eV in the system without the Sr2+ This is because the Madelung energy at the 

0(2) site decreases and consequently the energy of the a19 orbital of Cu d3,,_,, character 

is increased. 

In situation (ii), however, the spin-triplet state becomes unstable , compared with the 

singlet state. We perform the unrestricted Hartree-Fock calculation for the spin-triplet state 

and the restricted Hartree-Fock for the singlet state. The energy of the spin-triplet state 

is higher by 7.7 eV than that of the singlet state, with RHF for both states this difference 

is increased. This is because the D4h symmetry is broken so that the energy difference 

between the Cu dx'-y' and d3,,_,, orbitals becomes large, as a result, the Hund 's coupling 

becomes less effective. If we include further the correlation energy which is not included 

in the HF calculation, the energy difference between the spin-singlet and the triplet states 

becomes larger since the correlation effect is larger in the spin-si nglet state. This lowers 

the spin-singlet state's energy, and the spin-triplet state, therefore, becomes more unstable 

with respect to it. 

We conclude that there are two kinds of effects of the doped Sr2+ ions, one favoring 

the spin-triplet state and the other opposing it. If the doped divalent ions influence the 

electronic state in a random, averaged way, the triplet state becomes stable. On the 

other hand, if the randomness affects the electronic state locally, the triplet state becomes 

unstable , owing to the broken spat ial symmetry. 

5.4 Cu04 Cluster 

In this section we describe the electronic structure in the Cu04 cluster for the Nd-Cu-0 

system. 

5.4 .1 Undoped System 

We perform the UHF calculation for the spin-doublet state in the undoped Cu04 cluster. 

T he Cu dx'-y'-0 Pa anti-bond ing b19 orbital is singly-occupied. Compared to the Cu06 

cluster, the component of 0 Pa is smaller in the orbital and thus the covalency between 

Cu and 0 is smaller in this system. The :VIulliken charge , which are listed in Table .5.3, 
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Figure 5.10: T he CI wavefunctions of the ground state (3 B19) and the first excited state 
(IB 19) in the Cu04 cluster. 

also indicate that the ionicity is stronger in Nd2 Cu04 than in La2 Cu0 4 • The ionicity of 

Nd2Cu04 is almos t the same as that of NiO. This stronger ionicity in Nd2Cu0 4 is due to 

t he fact that the Cu- 0 (1) distance is longer in Nd2Cu0 4 than in L~Cu04 . 

5.4.2 Electron-doped System 

When an electron is added to the undoped Cu04 cluster, there are two possibilities of t he 

electronic state. (i) The electron enters the b19 orbital of Cu dr'-y' character e A19 state) . 

(ii) T he electron enters the a19 orbital of Cu 4s character eB19 state). Then we perform 

the MCSCF -CI calculations for both states independently, as in the previous section. 

As all ou r calcul at ions give the 3 B19 state as the ground state in this system, we present 

the calculated results for t he 3 B19 state only. 

T he many-body wavefunctions of the ground and the first excited states are given in 

Fig.5 .10. The MCSCF one-electron orbi tals are shown in Fig.5.11. The ground state con­

sists mainly of four configurat ions. In the first two configurations , which have the largest 

coefficients , the b19 orbi tal 'f/;4 and the a 19 orbital '1/;5 are singly occupied and two elec­

trons make a spin-triplet coupling in these orbitals. '1/;4 is almost completely Cu d,' -y' in 

character, while 'f/;5 consists mainly of Cu 4s, as seen in Fig.5. 11. In the last two configu­

rations t he singly occupied orbitals are '1/;4 and </;3 . •/;3 consists mainly of t he 0 Pa orbital 

wi th b19 symmetry. This indicates t hat an added elect ron enters the Cu 4s and couples 

ferromagnetically with an electron in the b19 orbi tal. 
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Figure 5. 11: The MCSCF one-electron orbitals for the 3 B19 state in the Cu04 cluster. The 
upper row shows the wavefunctions perpendicular to the Cu02 plane, the lower row shows 
the wavefunctions in the Cu02 plane. The contour lines are drawn every 0.05 for '1/;3 and 
'1/;4 , every 0.01 for '1/;5 . 
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In the first excited state two electrons make a spin-singlet pa.ir in the 'lj;4 and the 'lj;5 

orbitals, or in the 1j;3 and the 'lj;5 orbitals (IB19 state). The excitation energy is 0.05 eY . 

Thus the strength of the Hund's coupling is much weaker than that in the hole-doped 

Cu06 cluster. This is because the exchange integral between the Cu dz'-y' and 4s orbitals 

is much smaller than that between the Cu dz'-y' and d3,,_,, orbitals. The second excited 

state has the 1 A19 symmetry and its energy is higher by 1.1 eY than the energy of the 

3B
19 

ground state. This large energy difference between the 1 A 19 and the 3B19 states is due 

to the large Coulomb repulsion in the (3d) 10 configuration. In addition, the MCSCF one­

electron orbitals optimized for the 1 A 19 state have a d ifferent feature from those desc ribed 

before; the a19 orbital of Cu d3,,_,, character is well extended and is hybridized with the 

Cu 4s orbital. This also indicates a large Coulomb repulsion in Cu 3d orbital. 

5.4.3 Effect of the Doped Ce4+ Ions 

In order to investigate the influence of the doped tetravalent ions on the electronic structure, 

we replace one of the eight +3e point charges, which are the nearest NdJ+ sites to the cluster , 

by a +4e point charge (see Fig . .S.9 (b)). We compare the energies of the spin-singlet and 

spin-triplet states calculated by the RHF and the UHF method, respectively. The energy 

of the spin-triplet state is lower than the spin-singlet state by 4.5 e Y. Although we do not 

evaluate the correlation energy using the MCSCF-CI method, the correlation energy of the 

spin-singlet state is expected to be almost the same as before, that is, 3.6 eV. Thus we 

conclude that the spin-triplet state is still stable in this system, in contrast to the hole­

doped Cu06 cluster. This is because the spin-triplet state is stable in the electron-doped 

Cu04 cluster, owing to the large Coulomb repulsion in the (3d) 10 configuration, which is 

not affected by breaking the D4h symmetry. 

This result indicates that the spin-triplet state is qualitatively different between the 

electron-doped Nd-Cu-0 system and the hole-doped La-Cu-0 system. In the former an 

electron enters the Cu 4s orbital to avoid the strong repulsive energy of the 3d orbitals, 

and make a. wea k spin-triplet pa.ir with a spin in the 3d orbital. On the other hanJ , the 

triplet state in the La-Cu-0 system arises due to the occurrence of two nearly degenerate 

le1·els, and thus the geometrical symmetry is essentially important. 
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5.5 

In this section we present the electronic structures of the Cu20 11 a.nd the Cu20 7 clusters. 

The calculations are done in almost the same way as for the Cu06 and the Cu04 clusters , 

although the following two points are different. 

(i) We take the same basis sets as before for the two Cu atoms and for the 0 atom 

which is placed between the two coppers, but we take single zeta basis sets for Is, 2s and 

2p orbitals of the rest oxygen atoms, owing to the computational limitations. The single 

zeta functions of the oxygen are made up of the double zeta functions we have used in 

section 5.3 and 5.4, by keeping the coefficients of the double zeta functions fixed so as to 

minimize the energy of an 0 2- ion in the Ha.rtree-Fock approximation. This selection of 

the basis sets has no serious influence on the electronic structures. To make sure this point, 

we perform the Cu2 0 7 cluster calculation with the double zeta basis set for all the oxyge n 

atoms, and get essentially the same results. 

(ii) In the previous section we have considered all the configurations, including the a 19 

and the b19 orbitals, in the MCSCF-CI calculations. However, since Cu20 11 and Cu20 7 

clusters do not have D4h symmetry, there is some ambiguity in the restriction of the con­

figuration space. Thus we have tried several ways to restrict the configuration space and 

have selected several important orbitals to be considered in the MCSCF-CI calculations. 

5.5.1 Undoped Systems 

In the undoped Cu20 11 cluster , the ground state is a spin-singlet owing to the superex­

change between two spins at Cu sites , while the first excited state is a spin-triplet. Thus we 

perform the MCSCF-CI calculations for both the spin-singlet and the spin-triplet states. 

As we get almost the same optimized MCSCF one-electron orbitals for both states, we 

perform all the CI calculations based on the MCSCF orbitals op timized for the spin-singlet 

state. 

The many-body wavefunctions of the ground a.nd the first excited states are given 

tn Fig..5.12. The spatial clistributions of the li!CSCF one-electron orbitals are show n in 

Fig.5.13, indicating that 1/;2 and 1];3 co rrespond , respectil"ely. to the bonding and the anti-
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Figure 5.12: The CI wavefunctions of the ground state and t he first excited state in the 
undoped Cu20 u cluster. 

Figure .5. 13: The MCSCF one-electron orbitals in the undoped Cu2 0 11 cluster. The wave­
functions in the Cu02 plane are shown. T he contour lin es are dra.wn every 0.04. 

bonding orbitals between the two Cu dr' -•' orbitals. These orbitals also include small 

amplitudes of t he 0 Pu orbitals, which are hybridized with the Cu d•' -•' orbitals in an 

anti-bonding way. As seen in Fig.5.12, the ground state is a spin-singlet , and consists of 

two configurations in which one of ?j;2 or ?j;3 is doubly-occupied, like in a Heitler-London 

wavefunction . This indicates that the two electrons are localized at the Cu d•'-•' or­

bitals and t hat they are coupled anti-fe rromagnetically. The two elec trons are coupled 

ferromagnetically in t hese orbitals in the first excited state. From the excitation energy 

to the first excited state, we can estimate the value of the exchange integral , J , in the 

Heisenberg Hamiltonian , H .. = J L(i>;) S, · S1 , between two electrons in neighboring Cu 

d•'-•' orbitals. This is found to be 360 I<, which corresponds to only about a fifth of the 

experimental result, J = 1600K, for the La2Cu04 compound (68,69]. 

T he elect ronic struc ture in the undoped Cu2 0 7 cluster is very similar to that in the 

Cu20 11 cluster. The wavefunctions of the ground and the first excited states are shown 

in Fig.5. 14. The MCSCF one-electron orbitals are presented in Fig.5 .15. In the ground 

state two electrons form a spin-singlet pair in the orbitals ?j;2 and ?j;3 , while in the first 

excited state they form a spin-triplet pair in t hese orbitals. t/;2 and t/;3 are bonding and 

anti-bonding orbitals between the two Cu d•'-•' orbitals. The 0 Pu contribution is smaller 

in the Cu20 7 cluster than in the Cu2 0 11 cluster. The value of the exchange integral J is 

estimated to be 260 1<, 1 which is also much smaller t han the experimental value 1400 K 

for the Nd2 Cu04 compound (70 ,71]. 

The calculated values of the exchange integral J are smaller than those of the experi­

mental results for both the La2 Cu0 4 and the Nd2 Cu04 compounds. T his disagreement with 

the experiments may be ascribed to finite size effects of the clusters. The anti-ferromagnetic 

exchange is due to the superexchange mechanism through which an oxygen atom mediates 

between the two Cu atoms. T he mechanism includes t he virtual process in which an elec­

tron moves from the 0 Pu orbital to the Cu d•'-•' orbitals, that is, Cu+ and o- states 

appear. In the larger system this virtual state may be stabi li zed by the relaxation of the 

electronic configuration around the Cu+ -o- sites. In our cluster calculations, however, this 

1 \V hcn we perform the Cu207 cl uster calculation with the do11 bit' zeta basis sets for all the oxygen 
atoms. the valu e of J is esti mated to be 270 l\. 
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Figure 5. 14: The CI wavefunctions of the ground state and the first excited state in the 
undoped Cu2 0 7 cluster. 

Figure 5. 15: The MCSCF one-electron orbitals in the undoped Cu2 0 7 cluster. The wave­
functions in the Cu02 plane are shown. The contour lines are drawn every 0.04 for ,P2 and 
1/13, every 0.01 for ·if;,. 
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Figure 5.16: Cu20 and Cu2 0 5 cluste rs. We perform the calcula tions of these two cluste rs 
for La2 Cu04 , and the calc ulation of the Cu20 cluster for Nd2 Cu04 . 
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Table 5.4: The calculated values of the exchange integral between Cu spins, J , in the 
Cu20 11 (Cu20 ~) , Cu20 5 and Cu20 clusters. 

effect is not enough taken into account and , as a result , the virtual process is suppressed 

and the superexchange effect becomes smaller. 

To investigate the mechanism mentioned above further, we carry out the MCSCF-CI 

calculations for the smaller clusters; Cu20, Cu2 0 5 for LqCu04 and Cu20 for Nd2Cu0 4 

(see Fig.5.16). The point charges are placed outside of the clusters in the same way as 

before. The values of the calculated exchange integral , J , between the Cu spins are listed 

in Table 5.4. As the number of oxygen atoms around a Cu site decreases, the value of 

J becomes smaller. This result indicates the importance of the relaxation effect and the 

covalent effect around the Cu sites in the mechanism of the superexchange. 

In comparison , we perform the MCSCF-CI calculation of the Ni20 11 cluster for NiO. It 

should be noted that the two Ni atoms in the cluster are not neares t neighbors but second 

nearest neighbors. We consider the two nearest Ni sites, which belong to the different 

magnetic sublattices in the anti-ferromagnetic ordering of the NiO crystal [12], in order to 

in vestigate the superexchange mechanism through the oxygen between them . 
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In NiO each Ni site has a triplet spin, as seen in section 5.3.1, and the two pairs of spin­

triplet couple anti-ferromagnetically with each other . This is also due to the superexchange 

mechanism through the oxygen ion between the Ni ions. In the calculated result, the ground 

state is a spin-singlet, the first excited state is a spin-triplet and the second excited state 

has total spin 2. The excitation energies to the first and second excited states are 79 K 

and 237 K, respectively. This corresponds to J = 79 K in the Heisenberg Hamiltonian, 

H"' = JI:(•>J)S, ·51 , where the value for each S; is 1. Compared with the experimental 

value of 210 K [72), this calculation is better for the NiO system than for the L~Cu04 and 

Nd2Cu04 systems. 

As seen before, ionicity is stronger in NiO than in L~Cu04 . Thus the finite size effect 

is expected to be smaller for NiO. In L~Cu04 the covalent character between the Cu and 

the 0(1) atoms plays an important role, consequently the finite size effect becomes more 

serious in the mechanism of the superexchange. In addition, the difference in the crystal 

structures may also play a role. This would account for the poor agreement of J with 

experiment in the Nd2 Cu04 case, despite it having a similar ionicity to NiO. In particular , 

there are oxygen lone pair electrons in the L~Cu04 and the Nd2Cu04 compounds, which 

are able to rela.x easily. 

5.5.2 Hole-Doped Cu20 11 

Now we proceed to discuss the hole-doped Cu20 11 cluster. For simplicity, we perform the 

CI calculation , using the MCSCF one-electron orbitals optimized for the spin-singlet state 

of the undoped Cu2 0 11 system (see Fig.5.13) . 

The many-body wavefunctions of the ground and the first excited states are shown in 

Fig.5.17. The ground state is a spin-doublet a.nd consists mainly of four configurations. 

In the first configuration the 1/12 orbital is singly-occupied, that is , one electron is in the 

Cu dr'-•' orbitals. In the other three configurations the 1/11, 1/12 and 1/13 orbitals are singly­

occupied. Thus a hole enters the 1/11 orbital, which corresponds to the Pa orbital of the 

central oxygen. The contribution of the first configuration is 38%, while the total contri­

bution of the latter three is 59o/c. Using Clebsch-Gordan coefficients , we can transform 

the latter three configurations into two parts. one includes the spin-triplet coupling of two 
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Figure 5.17: The CI wavefunctions of the ground state and the first excited state in the 
hole-doped Cu20 11 cluster . Only main configurations are listed. 

electrons in the 1/12 and the t{;3 orbitals, l(sl = h 52,3 = 1)5total = ~), the ot her includes the 

singlet coupling between them, l(s 1 = ~' 52,3 = 0)5total = ~), as 

This indicates that the spin coupling of the two Cu sites is almost entirely ferromagnetic, 

5 2,3 = 1 component, (more than 99%) when the added hole occupies the 0(1) Pa orbital. 

This is the result of an anti-ferromagnetic direct exchange between the Cu and the 0(1) 

unpaired spins. 

The first excited state is also a spin-doublet and consists mainly of three configurations. 

In the first configuration the 1/13 orbital, which consists almost entirely of the two Cu dr'-y' 

orbitals , is singly-occupied. In the rest two configurations the t/;1 accommodates one hole , 

and two electrons couple anti-ferromagnetically in if;2 and 1/;J, like in a Heitler-London 

wavefunct ion. The excitation energy to the fir st excited state is 1.13eV, which is much 

larger than that in the undoped system, 0.03leV. T hi is because the direc t exchange 

between the 0 Pa and the Cu dr'-•' orbitals is strong in the hole doped system, while the 
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Figure 5.18: The CI wavefunctions of the ground state and the first excited state in the 
electron-doped Cu 20 7 cluster. 

indirect anti-ferromagnetic superexchange between two Cu d%'-•' orbitals works weakly in 

the undoped system. 

In the Cu20 11 cluster the symmetry of the Cu site is lower than that in the Cu06 cluster 

and also that in the elongated octahedral La-Cu-0 system. Thus the energy difference 

between the Cu d%'-•' and d3,,_,, orbitals is larger, so that the holes hardly occupy the 

d3,,_,, orbitals. This is in contrast to the situation in the Cu06 cluster, mentioned before. 

5.5 .3 Electron-Doped C u20 7 

In this subsection we present the investigation of the electron-doped Cu20r cluster. We 

perform the CI calculation , based on the MCSCF one-electron orbitals, shown in Fig.5.15 , 

optimized for the undoped Cu20 7 system. 

The many-body wavefunctions of the ground and the first excited states are shown in 

Fig.5 .18. The ground state is a spin-doublet, in which the bonding orbital between the 

two Cu 4s, 1/J4, is singly-occupied. Two electrons exhibit a spin-singlet coupling in the 1/J2 

and the 1jJ3 orbitals. The occupation ratio of the two Cu d%'-• ' bonding orbital ( ifJ2 ) to the 

anti-bonding orbital (if;3 ) is almost the same as in the ground state of the undoped case 

(see Fig.-5.14). This indicates that the electronic state in the Cu d%'-•' orbitals does not 

change while the doped electron is added to the 4s orbitals. 

In the first excited state, the three electrons couple to the spin-quartet state in the 

60 

1/J2, w3 and 1/J4 orbitals. Hence the two electrons in the 1jJ2 and 1/J3 orbitals make a spin­

triplet pair. The excitation energy to the first excited state is 120I< , which is much smaller 

than the energy of 260K in the undoped case. This reduction in the anti-ferromagnetic 

coupling between the two Cu d%'-•' spins is due to a double exchange effect by the electron 

occupying the 1/J4 orbital. The movement of the electron between the two Cu 4s orbitals 

reduces the energy when the two Cu d%'-•' spins are parallel , owing to t he Hund's rule 

coupling between the Cu 4s and d%'-•' orbitals. 

5.6 Conclusions and R emarks 

We have performed cluster calculations on Cu06 , Cu20 11 clusters for the La-Cu-0 com­

pounds, and on Cu04 , Cu20 7 clusters for the Nd-Cu-0 compounds. In the hole-doped 

Cu06 cluster we have investigated the effect of the apical oxygens, 0(2) , by varying the 

Cu-0(2) distance. As the distance decreases, the ground state is changed from the 1 A19 

state to the 3 B19 state at some Cu-apical 0 distance , which corresponds to the value of 

about 10% Sr doped compound. The 3 B19 state becomes more stable, if the effect of the 

doped divalent ions is in a randomly averaged way. In the 1 A19 state the contribution of the 

Cu d3,, _,, orbital to the wavefunction increases to reduce the Hubbard U at the Cu site, 

with decreasing Cu-0(2) distance. These both show the importance of the decrease in the 

energy diffe rence between the Cu d%'-•' and t he d3,,_,, orbitals, as the Cu- 0(2) distance 

is reduced . In the electron-doped Cu0 4 cluster the ground state has the 3B19 symmetry, 

in which both the Cu 4s and the 3d%'-•' orbitals are singly-occupied . 

In the undoped Cu20 11 and Cu20 7 clusters, the two electrons couple anti-ferromagnetically 

in the two Cu d%'-•' orbitals. However , the calculated values of the exchange integral , J , 

are smaller than those of the experimental results . This may be due to the neglect of the 

rela.xation effect outside the clusters. This effect seems more important in L~CuO, and 

Nd2 Cu04 , than in NiO. When a hole is added to the Cu20 11 cluster , it mainly enters the 

p .. orbital of the central oxygen and the coupling of the two Cu d%'-•' spins changes to 

be ferromagnetic. When an electron is added to the Cu20, cluster, it occupies the Cu 4s 

orbitals and the coupling of the two Cu dz'-•' spins is st ill anti-ferromagnetic, although its 

coupling is weaken by the double exchange effect of the elec tron in the Cu 4s orbitals. 
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The added elec tron enters the Cu 4s orbital in the N d-Cu-0 system, according to 

t he calculated results of both the Cu04 and the Cu207 clusters. T hus we conclude that 

electrons can be doped to the Cu 4s orbi tals in systems without apical oxygens, because 

their energy is lower, compared to that in the octahedron or pyramid structures. 

As for hole doping in the La-Cu-0 system, however, we have obtained results different 

for the Cu06 and for the Cu20 11 clusters. In the former, both the Cu dx'-y' and the d3,,_,, 

orbitals play important roles , while in t he latter, the hole hardly enters the Cu d3='-'' 

orbitals but goes into the central 0 p.,. orbital to gai n the energy due to the direct exchange 

with two Cu spins. As a result, the hole is localized at the 0 site and the two Cu spins 

couple ferromagnetically in the ground state of the hole-doped Cu20 11 cluster. However, 

if tlus situat ion happe ns in the Cu02 network of the La-Cu-0 system, the kinetic energy 

of the hole is increased owing to its localized na.ture, and the spin states are frustrated, 

because the exchange interactions with the Cu spins surrounding the Cu20 11 cluster must 

be anti-ferromagnetic. In order to remedy this unrealistic situation, we should take account 

of the effect of the motion of the holes to regions outside of the cluster , so that the correct 

symmetry at the Cu site is restored as well as the kinetic energy effect is reduced. On the 

other hand, in t he case of the Cu06 cluster , the Cu site has the same symmetry, D.h , as 

that in the bulk La-Cu-0 system. Thus we expect that the calculated results of the CuOs 

cluster reflect the local properties of the electronic structure in the hole-doped bulk system 

correctly. 
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Chapter 6 

Summary 

In this chapter we summarize the results obtained and discuss the problems in our calc u-

lations. 

In this thesis we have performed first principles investigations of two strongly correlated 

sys tems; the Anderson-localized states in the uncompensated and the compensated Si:P 

and the coppe~ . oxide materials of the high temperature superconductors. To take into 

account the correlation effect explicit ly, we have adopted the MCSCF method in finite-size 

cluster models. In the MCSCF method one-electron orbitals are determined including a 

part of the correlation effect as well as the Coulomb and the exchange interactions . Hence 

we can get a clear cut view of the strongly correlated many-body states, by a small number 

of configurations, using the MCSCF orbitals as a basis set . 

For the Anderson-localized states of the doped semiconductors, we have t aken the cluster 

models in which donors (and acceptors) are distributed randomly. In t he uncompensated 

Si:P system, the pair-type correlation effect is important between the localized electrons. 

T his is the situation of the spin pair model, which holds even near the critical donor 

concentration of the MI transition , although the spin pairs are extended and overlap well 

each other. We have found that 10 to 20% of the spin pairs are spin-triplet , which may be 

a ttributed to the appearance of two nearly degenerate orbitals. In the compensated Si:P 

system, the MCSCF one-electron orbitals are more extended in space than those in the 

uncompensated case, and sc reen bette r the electron-electron interact ions. Consequent ly 

the pair-type correlation effect is not so strong as in the uncompensated case. We have 

calculated the specific heat in the magnetic field and t he spin-susceptibility, and explained 
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their temperature dependence. 

As the donor concentration increases, the MCSCF one-electron orbitals become more 

extended, and the elect ron correlation becomes smaller owing to the stronger screening 

effect by the more extended MCSCF orbitals. This is the feature of the Mott-type MI 

transition. With increasing donor concentration, however , the finite size effect of the clus­

ters may become serious . To investigate the electronic structure near the MI transition 

point further , we must perform the calculations of larger clusters. By this we may study 

t he cluster size dependence of the electronic structure, or explore its scaling behavior. 

However, we think that t he local properties of the electronic states can be described in this 

cluster simulation . We have already carried out the calculations of the 12-donor clusters 

and got qualitatively the same results. 

In the copper oxide materials of the high temperature superconductors, we have adopted 

clusters of Cu06 , Cu20u and Cu04 , Cu2 0 7 for the La2_,Sr,Cu0 4 and the Nd2_,Ce,Cu0 4 

compounds , respectively. In the hole-doped Cu06 cluster , the Cu d3,,_,, orbital plays 

an important role as well as the d,'-•' orbital. As the Cu-apical 0 distance decreases, 

t he ground state is changed from the 1 A19 state to the 3 B19 state. In addition , in the 

1 At 9 state the contribution of the Cu d3,,_,, orbital increases to reduce the Hubbard U 

at t he Cu site, with decreasing Cu- apical 0 distance. In the elec tron-doped Cu0 4 cluster 

the added electron occupies the Cu 4s orbital (3B19 state). In the undoped Cu2 0 11 and 

Cu20 1 clusters , the two elec trons, which are localized at the Cu d,'-y' orbitals , couple 

anti-ferromagnet ically, although the calculated values of the exchange integral , J , are not 

in agreement with the experimental values. This is due to the superexcha.nge mechanism 

t hrough the oxygen between the Cu atoms. 

In the cluster calculations , however, we have neglected the periodicity of the crystals, 

although we have considered a part of the ions ' effect outside of the cluster by including 

point charges . This approxi mation seems to be valid in the undoped clusters because the 

undoped compounds are anti-ferromagnetic insulators, and the elect rons are locali zed at 

t he Cu sites. v\ihen we consider the carr ier-doped cases, finite size effects become se rious. 

We should take account of the motion of the carriers to elucidate the electronic structures 

in the carrier-doped sys tems. ~l onte Ca rlo simulation may be a method suitable for this 

64 

purpose. However, we believe that the local properties and the correlation effect can be 

described qualitatively in our cluster calculations. 

Our first principles calculat ion formalism is applicable to other strongly cor related elec­

t ronic systems. By investigating other systems, we will understand the correlation effect 

on elect ronic structures further. 
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