IEICE TRANSACTIONS, VOL. E 74, NO. 4 APRIL 1991

665

PAPER Special Issue on Discrete Mathematics and Its Applications |

A Geometric Fitting Problem of Two Corresponding

Sets of Points on a Line

SUMMARY This paper gives an O(#n log n)-time algorithm
for the following problem :

minﬁ}llxi—ai\ St SRS =X,

where a;(i=1, ---, n) are given constants and x,(i=1, -+, n) are
variables. There has been given an O(n?)-time incremental
algorithm®, and we improve it by using the heap as a data
structure and modify the incremental algorithm partly. This
problem is a kind of the geometric fitting problem between two
corresponding sets of points on a line which is related to some
VLSI layout design problem.

1. Introduction
This paper considers the following problem :

minz_‘,llxl-~az-| S XSS =X,

where a;(i=1, .-+, n) are given constants and x;(i=1,
.-, n) are variables. For a set of n fixed points p; on
the x-axis such that the x-coordinate of p; is a; this
problem locates n points qi, gz, ***, ¢ (the x-coordinate
of g; is x;) on the x-axis from left to right (i.e., x; <
Xz <-+-=x,) so that the sum of the distances between
p: and ¢; is minimized. This problem is thus a kind of
the geometric fitting problem between two correspond-
ing sets of points on a line which is related to some
VLSI layout design problem®»®,

An O(»n*)-time incremental algorithm is given in
Ref. (2). This paper gives an O(n log n)-time algo-
rithm for this problem by using the heap as a data
structure and modify the incremental algorithm partly.

The problem treated here is a very special case of
the linear programming problem. When applied to
VLSI layout design, this problem might be too restric-
tive. However, formulating the problem of removing
jogs in the VLSI compaction problem® in a similar
way to this problem would be useful, since then the
interior point algorithm for linear programming with
planar structures’”’ can be applied.

Manuscript received November 19, 1990.
T The author is with the Faculty of Science, The Univer-
sity of Tokyo, Tokyo, 113 Japan.

Hiroshi IMAIT, Member

2. Preliminaries

We here consider two special cases of the problem.
When a < a3 =+ < ap, this problem is trivially solved,
since then x;=a; is a unique optimum solution.
However, if a;(i=1, ---, n) are not in nondecreasing
order, the problem is never trivial.

Next consider the problem where all x; (i=1, -,
n) are set to be equal. The Weber problem for a set of
points is to find a center point that minimizes the sum
of the distances of the center point with points in the
set. Although the two-dimensional Weber problem is
very hard to solve rigorously, the one-dimensional
problem is easy to solve. For the one-dimensional
Weber problem, the following is well known.
[Lemma 2. 1] An optimum solution of the prob-

n
lem of minimizing >} | x—a;| is the median among
i=1

a;(i=1, -+, n). O
For simplicity, suppose that a; (i=1, ---, n) are
distinct to one another. If » is odd, the median is the
[n/27th largest value among a.. If n is even, (n/2)th
and (14+#/2)th values (and any value between them)
may be considered to be the median.
To avoid the degeneracy for even », we regard that

(1+e)x—a:) x—a:=0
| x—a: z{
—(x—a;) x—a<0
for sufficiently small positive number &;. Then, the
optimum solution is uniquely determined, and is the

[n/2]th value among @; for any n. We will simply call
this value the median.

3. Incremental Algorithm

In this section, we describe the incremental algo-
rithm given in Ref.(2). In that paper, some of inequal-
ities among x; are set to hold with equalities. In this
case, the problem is stated as follows :

m
minZZJ} | x;—a; | S LSS Zx, (P)

J=li€l;
where a;(i=1, :*+, n) are given constants, X;(j=1, -+,
m) are variables, and {I; | j=1, ---, m} is a partition of

666

m
{12, n)(m= n)(L*1L for j+j and U L={1,2, -,

n}). We will consider the problem in this general form.

For a subset I of {1, 2, -+, n}, define med(I) to be
the median among @ (i<1I). During the incremental
algorithm, adjacent sets Ir, Iy+1, -+, I, among I,-(j=1,

-+, m) are merged into a set I, and all x; associated

with I(i.e., Xs, Xg+1, ***, Xw) are conceptually set to
med (7). To maintain the adjacency relations among
sets I;, we use a list L of sets I;+ L is initially empty.
During the algorithm, for each set 7 in the list L , we
maintain the value of med (7).

The incremental algorithm consists of m stages. In
the first stage, it starts with computing the value b, of
med (k). x;=>5; is an optimum solution for the prob-
lem consisting of only the set f. Add I to the empty
list L.

In the jth stage (j=2), the algorithm tries to add
the constraints concerning [; to the current optimum
solution for 4, ---, I_; which has been computed
already to obtain an optimum solution for I, -+, I,
1. First, add I; at the tail of the list L, and set =1,

The jth stage then iterates the following. Compute
the value of med(I). Let I’ be the predecessor of I in
the list L (if I=1; and I;_, has not yet been merged, I’
=1I;_,). For this I', the value of med(I’) has been
computed and recorded. If med (I") <med (I), we have
computed an optimum solution for L, ---, I; (the
optimum is obtained by, for each set I in the list L,
setting x; associated with 7 to med (7)), and proceed
to the (j+1)st stage. Otherwise, merge I and I’ into
one (accordingly update the list L), and, regarding the
merged set as I, repeat this procedure for this updated
I Here, if the predecessor of the merged set in L is
empty, proceed to the (j+ 1)st stage.

The algorithm halts after the mth stage. An opti-
mum solution is obtained by setting x; associated with
I in the list L at the end to med (1), the value of which
is maintained for each .

In this algorithm, for any set I =I\J L, ,\J--- UL~
in the list L, x;(j=k k+1, ---, k') are constrained to
be identical. Merging I and I’ at some stage in the
above algorithm corresponds to adding a new con-
straint that x; associated with I and x; associated with
I’ should also be identical. We can show that adding
this constraint to the problem does not increase the
optimum objective function value, and the validity of
this incremental algorithm follows (see Ref.(2)).
[Lemma 3.1] The incremental algorithm correctly
finds an optimum solution. 0
[Example 3. 1] We here give an example showing how
the incremental algorithm works. Consider the prob-
lem with

n=9, m=4,

L={1,2, 3}, L={4}, =15, 6}, L,={7, 8, 9}

IEICE TRANSACTIONS, VOL. E 74, NO. 4 APRIL 1991

< < < < as< < as< az< as

It should be noted that a total order among a; suffices
to determine the optimum solution, which is seen from
the incremental algorithm itself.

In this example, x; is set to a, after the first stage.
Then, x; is set to a4. Since as=med (L) <med (L) =ay,
I, and I; are merged, and x; and x3 are set t0o ag=
med (LU k). In the fourth stage, as=med (1) <med (L
L), so that I, is merged with L\UL. Then, ae=med (L
UBUL) <med(4), and LULUL is merged with I.
Thus all the sets are merged in this case, and the
optimum solution is x;=as(j=1, -+, 4). m|

The median of a set can be found in time linear to
the size of the set. Using this algorithm, it is easy to
show that this incremental algorithm can be im-
plemented so as to run in O(mn) time®.

4. Improved Algorithm

We now consider how to implement the in-
cremental algorithm so as to run in O(n log ») time.
First observe the following.

[Lemma 4.1] Suppose that a set I is in the list L
just after some stage. Then, the values, among a;(iE 1),
which are greater than med(I) will not become
med (I’) for any set I’ in the list L.

(Proof) After the stage, I will be scanned again
when, for its successor I in L, med(J) <med([).
Then, I and merged into one. Since med (7) <med (1),
the median for the merged set is not greater than med
(I), and the values a;(i&I) greater than med ()
cannot become the median med (I\UT) for the merged
set IUT

After I is merged with 7, the merged set may be
further merged with its predecessor I’ when med (]
UT) <med (I (I’ was the predecessor of I in L just
after the stage, and is now that of I\UJ7 in L after
merging I and I). In such a case, the median for the set
after merging I’ with I\U I does not exceed the median
for the original I’. Since I’ was the predecessor of I in
L just after the stage, med(/')<med(I) for these I
and I". Hence, the values among «; for i in the original
I which are greater than med(I) cannot become the
median for the set in L.

Using this argument inductively proves the
lemma. |
[Remark 4. 1] During the jth, stage, the values a; (i
€1I;) greater than the median med(J;) for the original
I; may become the median for a set in L. For instance,
in the third stage in Example 3. 1, as(>med () = as)
becomes the median for the merged set L\ L. Similar
for merged sets obtained in the process of the jth stage.
During the fourth stage in the same example, I =L
LUI is a temporal merged set, and go=med (I) < as,
while, at the end of the fourth stage, as=med (L UT).

O

IMAI: A GEOMETRIC FITTING PROBLEM

We now present a modified incremental algorithm
with early merging. To maintain and compute the
value med (/) for sets I in L efficiently, we use
mergeable heaps. For a set I in L, we maintain a heap
consisting of some of a;(i1T). Just after any stage of
the algorithm, the elements of the heap for I in L are
less than or equal to med(I), and the median is the
maximum in the heap. Also, the number of a;(i€I)
which are not contained in the heap is maintained at
any time. Just after the stage, this number is the number
of a,(i&T) greater than med (7).

In the jth stage, I =1I; is handled. We add I to the
list L, and, for this I =1I;, construct a heap consisting of
all a; (i< L).

Then the jth stage iterates the following. Let I” be
the predecessor of I in L. For this I’, the value of med
(I') is already computed. While the maximum of the
heap for I is greater than med(/) and med(I’), we
iterate to delete the maximum from the heap. Since the
number of @ (i&I) which are not contained in the
heap is maintained, we know how many elements
should be deleted from the heap to find med(I).

In so doing, we compare the maximum value of
the heap for I with med (1”). If all the values compared
with med (1) are geater than or equal to med (I’), the
maximum of the current heap becomes med(7) and
med (/) is not less than med(I’). In this case, we
proceed to the (j+ 1)st stage. Otherwise, some extracted
maximum value, which is greater than or equal to
med (I) for the current set J, is found to be less than
med (7”). Then, it is seen at this point that med (1) <
med ("), and hence I” will be further merged to the current
set 1. At this point, we immediately merge the heap for
I’ with the current heap for I even before the median
for the current set is found (this is early merging), and
repeat this procedure for this new merged set I:=71JI".
When the predecessor of the new set I in the list L
becomes empty, we just find the median for the current
set, and proceed to the next stage.

We now consider the validity of this modified
algorithm. As shown in Lemma 4. 1, for the original I’
above, the values a;(i&1I’) which are greater than
med(I’) cannot become the median for any merged
set. However, the values a;(/& I;) greater than med (I;)
for the original /= 1I; may become the median in some
merged set ; a similar thing may occur for merged sets
obtained during the jth stage (cf. Remark 4. 1). In the
above algorithm, all ¢,(i& 1) are first collected into a
heap, and therefore are checked for the median correct-
ly. Also, for any merged set appearing during the jth
stage, we do not delete, from the heap for the set, any
value which may become the median for some merged
set in future by virtue of early merging. Hence, the
medians for sets in L can be maintained using heaps.
We thus obtain the following lemma.

[Lemma 4.2] At the end of any stage, the list L
obtained by the original incremental algorithm and

667

that obtained by the above algorithm with early
merging are the same. m]

Then, from Lemma 3.1, the validity of this
modified algorithm follows.

We now analyze the time complexity of this
modified algorithm with the data structure. Each ele-
ment is removed from the heap at most once, and the
number of times two heaps are merged into one is at
most m—1=n—1. Finding and deleting the maximum
in the heap and merging two heaps can be done in
O(log n) time (e. g., see Ref.(4)). Hence, the total
complexity is bounded by O(n log n).

[Theorem 4. 1] The geometric fitting problem (P)
of two corresponding sets of # points on a line can be
solved in O(n log n) time. ad

5. Concluding Remarks

In this paper we have shown that the simple
incremental algorithm for some special one-
dimensional geometric fitting problem can be im-
plemented so as to run in O(nlog n) time. Tt is left
open whether this problem can be solved in linear
time, say by the prune-and-search method.

As mentioned in the introduction, the problem
treated here is a very special case of the linear program-
ming problem, and might be too restrictive to apply it
to a general VLSI layout design problem. However,
formulating the problem of removing jogs in the VLSI
compaction problem, considered in Ref.(3), in a
similar way to this problem would be very useful, since
then the interior point algorithm for linear program-
ming with planar structures’” can be applied. This
issue will be discussed elsewhere.

Acknowledgement

This research was supported in part by the Grant-
in-Aid of the Ministry of Education, Science and
Culture of Japan and by the Inamori Foundation.

References

(1) ImaiH.andIwano K.: “Efficient Sequential and Parallel
Algorithms for Planar Network Flow”, Proceedings of
the SIGAL International Symposium on Algorithms,
Lecture Notes in Computer Science, 450, pp.21-30,
Springer-Verlag, Heidelberg (1990).

(2) Ohmura M., Wakabayashi S., Miyao J. and Yoshida N.:
“Improvement of One Dimensional Module Placement in
VLSI Layout Design”, Trans. IEICE, J73-A, 11, pp.
1858-1866 (1990).

(3) Sato M., Yamamoto W., Nakajima N. and Ohtsuki T.:
“A Chip Compaction Algorithm with Jog Insertion”,
Technical Report SIGAL 90-16-11, Information Process-
ing Society of Japan (1990).

(4) Tatjan R.E.: “Data Structures and Network Algo-
rithms”, SIAM, Philadelphia (1983).

668

Hiroshi Imai was born in November
21, 1958. He obtained B. Eng. in Mathe-
matical Engineering, and M. Eng. and D.
Eng. in Information Engineering, Univer-
sity of Tokyo in 1981, 1983 and 1986,
respectively. In 1986-1990, He was an
associate professor of Department of
Computer Science and Communication
Engineering, Kyushu University. Since
1990, he has been an associate professor
at Department of Information Science,
University of Tokyo. His research interests include algorithms,
computational geometry, and optimization. He is a member of
IPSJ and ACM.

IEICE TRANSACTIONS, VOL. E 74, NO. 4 APRIL 1991

