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SUMMARY Compact encodings of the web graph are required in order
to keep the graph on the main memory and to perform operations on the
graph efficiently. In this paper, we propose a new compact encoding of the
web graph. It is 10% more compact than Link2 used in the Connectivity
Server of Altavista and 20% more compact than the encoding proposed by
Guillaume et al. in 2002 and is comparable to it in terms of extraction time.
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1. Introduction

The World Wide Web has evolved at a surprisingly high
speed both in its size and in the variety of its content. Since
several information retrieval methods utilizing graph algo-
rithms on the web graph have been developed in recent years
such as [3]–[5], compact encodings of the web graph enough
for the main memory have been desired in order to perform
the graph algorithms efficiently. Note that the web graph
is a directed graph whose vertices represent web pages and
whose edges hyperlinks among them.

Though general compression algorithms such as bzip2
or gzip gives high compression ratio, the extraction of small
fragments of the data is too slow to use it for several kinds
of operations, such as the depth-first search. Thus, encod-
ings for this purpose have been developed in recent years.
The Link Database [6] is a well-known example, and used
in the Connectivity Server of Altavista. Link2 is the second
version of the Link Database and has achieved compression
with 11.03 bits per edge and practical extraction time. Guil-
laume et al. [2] have proposed another compact encoding
achieving 12.3 bits per edge and practical extraction time.

In this paper, we propose a new compact encoding of
the web graph utilizing the power distribution of several
kinds of elements representing the web graph. It is 10%
more compact than Link2 and 20% more compact than the
encoding proposed by Guillaume et al., and comparable to
the latter in terms of extraction time.
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2. Encoding Using Power Distribution

Let α > 1. A random variable taking positive integer
values is said to have the power distribution of the expo-
nent −α when its probability function f (n) satisfies f (n) =

1
cnα (n ≥ 1) where c =

∑∞
n=1

1
nα . Integers obedient to a

power distribution are encoded efficiently in a generalization
of the variable-length nybble code, which we call a variable-
length block code. In the variable-length block code with k-
bit blocks, a positive integer n is first represented in the base
2k. Each digit in this base 2k number is represented in k bits.
This k-bit sequence is called a block. A bit 1 is appended
for each block except for the last block, for which a bit 0 is
appended. Thus, the variable-length block code with k-bit
blocks encodes a positive integer n in

(
(k + 1)/k

)
log n bit

asymptotically.
If X has the power distribution of the exponent −α,

the following fact is obtained from Kraft’s inequality about
instantaneous codes: the most efficient instantaneous code
in terms of average codeword length is the variable-length
block code with 1/(α − 1)-bit blocks.

3. Proposed Encoding

Our encoding adopts the following ideas used in Link2:
pages are indexed in the lexicographical order of URLs, and
the graph is represented by the list of the adjacency lists
of all the vertices, where each adjacency list is sorted in
ascending order. Let the adjacency list for a vertex v be
(a1, a2, · · · , ad). Our encoding and Link2 encode the fol-
lowing list (v − a1, a2 − a1, a3 − a2, · · · , ad − ad−1), instead
of the original adjacency list, in order to keep the absolute
value of each element small by utilizing the locality of hy-
perlinks in the web. The first element of this list v − a1 is
called initial distance, and the other elements are called in-
crements. Link2 encodes both the initial distance and the
increments by using the variable-length nybble code. On
the other hand, our encoding encodes them distinctively by
using the variable-length block code with respective block
sizes, since the initial distance and the increments have dif-
ferent distributions as described below. Moreover, in our
encoding a sublist of consecutive 1s in this list are com-
pressed using the run-length encoding (i.e. instead of the
sublist, only the length of the sublist is encoded), since the
length will be long when a directory index page has links



1184
IEICE TRANS. FUNDAMENTALS, VOL.E87–A, NO.5 MAY 2004

Fig. 1 The comparison of the compactness of Guillaume et al.’s encoding
with Huffman codes and that of the proposed encoding. Both axes are in
logarithmic scale.

to all the files in that directory and such a situation occurs
frequently in the actual web.

To observe how the initial distance, increments, and
the run-lengths in our encoding are distributed, we have an-
alyzed Toyoda and Kitsuregawa’s web graph [7] of pages
in .jp domain collected in 2002. This graph consists of
60,336,969 pages in 297,949 servers and 221,085,322 edges
in total. For every adjacency list, the initial distance (i.e.
v − a1 in the list used in our encoding) has the power distri-
bution with the exponent of about −1.17, and the increments
(e.g. a2 − a1 or a3 − a2) have the exponent about −1.33, and
the run-lengths have the exponent about −2.67. Thus, the
initial distance is represented in the variable-length block
codes with 6-bit (1/(1.17 − 1), rounded off) blocks by using
the fact described in the previous section. Similarly, the in-
crements and the run-lengths are represented in the variable-
length block codes with 3-bit and 1-bit blocks, respectively.
Refer [1], the preliminary version of this paper, for the de-
tail.

In addition to the encoding of the adjacency list, we
use a balanced binary tree T with each leaf representing one
adjacency list to locate the adjacency list of a given vertex
in O(log n) time where n is the number of the vertices of the
graph. Each subtree T ′ of this binary tree is represented by
the concatenation of the encodings of the left child tree of
T ′ and of the right child tree of T ′, preceded by the length
of the first part represented in the variable-length block code
with 2-bit blocks.

4. Experiments, Results and Discussions

Figure 1 shows the comparison of compression ratio of our
encoding with Guillaume et al.’s encoding. Our encoding
produced 9.7 bits per edge on the average while Guillaume
et al.’s produced 27.0 bits per edge in this result.

In the citation [2], their encoding with Huffman codes
produced 12.3 bits per edge. Compared to this figure, our
method gives 20% less number of bits per edge than Guil-
laume et al.’s. According to the citation [6], Link2 produced
11.03 bits per edge on the average when used to encode their
dataset with 61 million vertices and 1 billion edges. Com-
pared to this, our encoding produces 10% shorter encoding.

Fig. 2 The comparison of the time taken by the depth-first search of the
graphs encoded in Guillaume et al.’s method with Huffman codes and that
in the proposed method. Both axes are in logarithmic scale.

From these observation, our encoding successfully uti-
lizes a wide range of locality and the distributions of various
variables (including initial distances and increments) in the
web graph.

Figure 2 shows that Guillaume et al.’s and our method
are comparable in extraction time. Guillaume et al.’s method
took 5.1 µsec. per edge and ours took 3.5 µsec. per edge.

Benchmark program was written in C++, compiled
with GNU C++ 3.0.1 and executed on Solaris 2.6 with
UltraSPARC-II 360MHz CPU and 1GB memory.

5. Conclusion

This paper has proposed a new efficient encoding of the web
graph using the distinct power distributions of the initial dis-
tances and the increments. Note that Link3 [6], a newer
version of Link2, achieves about 5.6 bits per edge on the av-
erage, though its extraction time is over four times longer
than the extraction time of Link2. Our method has several
parameters and it hopefully has application to other kinds of
graphs than the web graphs.
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