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SUMMARY The invariant polynomials of discrete systems
such as graphs, matroids, hyperplane arrangements, and simpli-
cial complexes, have been theoretically investigated actively in
recent years. These invariants include the Tutte polynomial of
a graph and a matroid, the chromatic polynomial of a graph,
the network reliability of a network, the Jones polynomial of
a link, the percolation function of a grid, etc. The computa-
tional complexity issues of computing these invariants have been
studied and most of them are shown to be #P-complete. But,
these complexity results do not imply that we cannot compute
the invariants of a given instance of moderate size in practice.
To meet large demand of computing these invariants in practice,
there have been proposed a framework of computing the invari-
ants by using the binary decision diagrams (BDD for short). This
provides mildly exponential algorithms which are useful to solve
moderate-size practical problems. This paper surveys the BDD-
based approach to computing the invariants, together with some
computational results showing the usefulness of the framework.
key words: Tutte polynomial, matroid, simplicial complex, net-
work reliability, BDD

1. Introduction

This paper concerns computing the invariant polyno-
mial of discrete systems, specifically the Tutte polyno-
mials of graphs and matroids and their variants. The
theory of these invariant polynomials was originated
around the beginning of this century, and it has been
extended to various fields connected with discrete sys-
tems [8], [37]. Computational aspects of these invari-
ant polynomials have been a hot topic in these ten
years, because its computation is very useful in a va-
riety of fields [37]. This computation problem is #P-
complete in general. Recently, the binary decision dia-
gram, BDD, has been used to solve this combinatorial
problem efficiently [27]. This paper first describes the
theory of these invariant polynomials briefly, and sur-
veys the computational approach in detail.

The Tutte polynomial of a graph is one of funda-
mental invariants in graph theory, which was proposed
by Tutte [34]. As for invariant polynomials of a graph,
the chromatic polynomial, which denotes the number
of vertex colorings such that no two adjacent vertices
have the same color, seems more popular. This might
be because of the well-known 4-color theorem of a pla-
nar graph. In fact, the chromatic polynomial was orig-
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inally considered to tackle this problem around 1912
(see [36], [37]).

The Tutte polynomial can be naturally defined for
matroids. The Tutte polynomial T (M ;x, y) of a ma-
troid M is a two-variable polynomial of x and y. This
polynomial has many combinatorial meanings. For ex-
ample, the following invariant polynomial of discrete
systems are special cases of the Tutte polynomial.

• the chromatic polynomial and flow polynomial of
a graph

• the network reliability of a network
• the partition function of an Ising model and a Q-
state Potts model

• the Jones polynomial of an alternating link
• the weight enumerator of a linear code over GF(q)
• the shelling polynomial and the characteristic
polynomial of a matroid complex

Also, values of the Tutte polynomial T (M ;x, y) of a
matroid M with two variables x and y at some typical
points (x, y) have the following meanings.

• T (M ; 1, 1) is the number of bases of M (spanning
trees in the case of a graph)

• T (M ; 2, 1) counts the number of independent sets
of M (forests in the case of a graph)

• T (M ; 1, 2) counts the number of spanning sets
• T (M ; 2, 0) is the number of cells of a central ar-
rangement of a linear matroid M on reals, and it
is the number of acyclic orientations of a graph
when M is its graphic matroid

For more details, see [8], [37].
The problem of computing the Tutte polynomial,

T (G;x, y), of a graph G is #P-complete in general, ex-
cept in some special cases such as the number T (G; 1, 1)
of spanning trees and the polynomial T (Kn;x, y) of a
complete graph Kn [2]. For example, when x = 2 and
y = 1, it gives the number of forests, and this computa-
tion becomes #P-hard. That is, in most cases, it is in a
complexity class at least as intractable as NP and there-
fore seems unlikely to have a polynomial time algorithm
to compute it rigorously. Recently, Alon, Frieze and
Welsh [1] developed fully polynomial time randomized
approximation schemes for approximating the value of
the Tutte polynomial for any dense graph G, when-
ever x, y ≥ 1. This result was extended to a general
graph by Karger [18]. Hence this is especially useful for
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calculating the approximate values of the Tutte polyno-
mials which have special meanings such as the number
of forests.

On the other hand, the exact computation of the
Tutte polynomial still remains a challenging problem.
Although exponential time would be inevitable for the
exact computation in view of the #P-completeness, re-
ducing the exponent would enable us to solve moderate-
size problems. Mildly exponential algorithms are prac-
tically important.

There has been proposed a BDD-based approach
to tackle these hard problems. The binary decision di-
agram, BDD for short, has been used in VLSI CAD for
manipulating Boolean functions in an efficient way [7].
A general package of BDD has been developed. It is
powerful enough compared with other methods of han-
dling Boolean functions, but such a general approach
has apparent limitation to the Tutte polynomial com-
putation. Sekine and Imai [27] propose a top-down con-
struction algorithm of the BDD representing all span-
ning trees of a graph, and then Imai, Iwata, Sekine and
Yoshida [17] the BDD of bases of a binary and ternary
matroid. This approach can be generalized to solve
related problems, such as computing the Jones polyno-
mial of a link, and the number of ideals of a partially
ordered set. Such a relation between the BDD and the
Tutte polynomial computation has been recognized in
a series of papers [13], [27], [30], [31], from which inter-
esting insights can be obtained from both sides.

The paper proceeds as follows. Section 2 intro-
duces the Tutte polynomial of a matroid, and mentions
a fundamental result for computing the Tutte polyno-
mial of a graph. Then Sect. 3 describes the BDD-based
paradigm for this computation for graphs. The time
and space complexities of the algorithms are analyzed
for complete graphs and planar graphs. A connection
with the OBDD is touched upon. As a specific example
how the computation of some special case of the Tutte
polynomial is interesting, the network reliability com-
putation is discussed in Sect. 4. Further applications of
this approach to the problem of counting the number
of paths, the numbers of some invariants of the linear
matroid and hyperplane arrangement, and the number
of ideas of a poset are also described.

2. Tutte Polynomial: Definitions and Näıve
Algorithm

The Tutte polynomial is defined for a general matroid
M , but we will be mainly concerned with a linear ma-
troid M on a finite set E. For matroids, see [8], [23],
[36]. The most typical linear matroid is that over the
reals. Given a set E of m vectors a1,a2, . . . ,am in Rn,
linear independence among these vectors induces a lin-
ear matroid M(E) of vectors in E. The rank function
ρ : 2E → Z of M(E) is defined by

ρ(S) = dim({ai | ai ∈ S}) (S ⊆ E),

where the righthand is the dimension of a space spanned
by ai (ai ∈ S). The linear matroid M(E) of vectors
ai ∈ E can be regarded as that of the arrangement of
hyperplanes hi = {x | ai · x = 0} (i = 1, . . . ,m) in the
dual Rn.

The Tutte polynomial T (M ;x, y) of matroidM on
E is a two-variable polynomial of x and y. By the rank
function ρ, it is defined by

T (M ;x, y) =
∑
S⊆E

(x− 1)ρ(E)−ρ(A)(y − 1)|S|−ρ(S).

The original definition of the Tutte polynomial by
Tutte is expressed as the summation over all bases of
a matroid. To describe this, we need more definitions.
Let B be a base of matroid M . For e ∈ E −B, a mini-
mal dependent set of B ∪ {e}, including e, is uniquely
determined, which is called the fundamental circuit of e
with respect to B. For e ∈ B, {e′ ∈ E | (B−{e})∪{e′}
is a base} is called the fundamental cutset of e with
respect to B. Given an ordering e1, e2, . . . , em of ele-
ments of E, ei ∈ E − B is called externally active if
its fundamental circuit with respect to B consists of ej

with j ≤ i. ei ∈ B is called internally active if its fun-
damental cutset with respect to B consists of ej with
j ≤ i. Then, for B, the external activity r(B) is the
number of external active elements, and the internal
activity s(B) is the number of internal active elements.
Then, for this ordering, the Tutte polynomial is given
by

T (M ;x, y) =
∑

B : bases of M

xr(B)ys(B).

The internal/external activity has connection with
shelling of a matroid complex, and in fact the Tutte
polynomial combines the h-vectors of a matroid and its
dual [5].

The Tutte polynomial of matroid M has many
meanings. For example, T (M ; 1, 1) is the number of
bases of M , since it counts the number of subsets S
with |S| = ρ(S) = ρ(E). T (M ; 2, 1) the number of
independent sets of M , and T (M ; 1, 2) the number of
spanning sets of M (see [8], [37]). With an arrange-
ment of hyperplanes such that all the hyperplanes pass
the origin, a linear matroid M over the reals is asso-
ciated in a straightforward way. An arrangement is
central if their hyperplanes have non-empty common
intersection, and our arrangement is central. In this
case, T (M ; 2, 0) gives the number of regions of this cen-
tral arrangement, and further interpretation in terms of
arrangements for the coefficients of the characteristic
polynomial is given [11] (see also [8], [37]).

When the Tutte [34] introduced the Tutte polyno-
mial, he also showed it has the recursive formula. This
formula holds for matroids, but from here in this sec-
tion we describe the case of a graph to state a specific
complexity of some fundamental algorithm.
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Fig. 1 Expansion tree for complete graph K4.

Theorem 1: The Tutte polynomial has the following
recursive formula.

T (G;x, y) =


xT (G/e;x, y) e : coloop
yT (G\e;x, y) e : loop
T (G\e;x, y) + T (G/e;x, y) otherwise

Here, for an edge e in E, we denote by G\e the
graph obtained by deleting e from G, and by G/e the
graph obtained by contracting e from G. A loop is an
edge connecting the same vertex, and a coloop is an
edge whose removal decreases the rank of the graph by
1. If G is a connected graph a coloop is an edge of G
whose removal disconnects G. By definition, the Tutte
polynomial of a loop is y and that of a coloop is x. The
Tutte polynomial of a graph with no edge is 1. Note
that the deletion, contraction, loop, and coloop are all
defined for matroids.

By applying the above formula recursively for an
edge chosen by any order we can also compute the Tutte
polynomial. This computation process corresponds to
top-down fashion for an expansion tree (Fig. 1). The
root corresponds to the graph G, and each parent has
at most two children. For each path from the root to a
leaf in the expansion tree, when a coloop is contracted
or a loop is deleted, x or y is multiplied, respectively.
Then the sum of the leaves is the Tutte polynomial of
a given graph G.

Here, for each path from the root to a leaf in the
expansion tree, a set of contracted edges corresponds
to a spanning tree of G one-to-one. For example, the
leftmost path in Fig. 1 corresponds to the spanning tree
{e1, e2, e3}. Then the number of leaves equals the num-

ber of spanning trees. The depth of the expansion tree
is |E|. Since the depth of the expansion tree is |E|,
by using this expansion tree in a clever way we obtain
the following bound. For more details of existing ap-
proaches, see [26].

Theorem 2: Using the recursive formula, the Tutte
polynomial of a graph G = (V,E) can be computed in
O(|E|T (G; 1, 1)) time.

3. Tutte Polynomial: BDD-Based Algorithms

In this section, a BDD-based algorithm for computing
the Tutte polynomial of a graph is described, which
does not take time proportional to the number of span-
ning trees.

For a given graph G, order the edges e1, e2, . . . , em

(m = |E|). Suppose we apply the recursive formula in
the order of e1, e2, . . . , em in a top-down fashion as in
the expansion tree described in the previous section.
A graph obtained from G by deletions and/or contrac-
tions of edges is called a minor of G. Nodes in the i-th
level in the expansion tree correspond to minors of G
with the edge set {ei+1, ei+2, . . . , em} (the 0-th level is
the root). Since the Tutte polynomial is an invariant
for isomorphic graphs, we may represent isomorphic mi-
nors among them by one of these members. However,
for given two graphs, there is no efficient algorithm to
decide whether they are isomorphic or not and finding
all isomorphic minors may be difficult.

The isomorphism between two graphs whose edges
have an identity map can be determined in linear time.
For this reason, we may restrict ourselves just to finding
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Fig. 2 Computation process of T (K4;x, y).

isomorphic minors whose corresponding edges have the
same order in the original graph G. By merging the
isomorphic minors with the same edge ordering, the
expansion tree becomes an acyclic graph (an edge is
directed from a parent to a child). See an example of
the complete graph K4 in Fig. 2. This acyclic graph
has a single source (the original graph G) and the m-th
level may be regarded as a single sink.

Rigorously, the acyclic graph representing the com-
putation process can be constructed as the following al-
gorithm, where Si is the set of minors in the i-th level.
S0 := {G};
for i := 1 to m do

begin
Si := ∅;
for each minor G̃ in Si−1 do

begin
if ei is a loop in G̃ then child(G̃) := {G̃\ei}
else if ei is a coloop in G̃ then
child(G̃) := {G̃/ei}

else (comment: ei is neither a loop nor a
coloop) child(G̃) := {G̃\ei, G̃/ei};
for each minor G̃ei in child(G̃) do

begin
check if there is an isomorphic graph with
the same edge ordering in Si;
if there is such an isomorphic graph Ĝ in
Si then construct an edge from the node

representing G̃ to the node representing
Ĝ;
otherwise, add G̃ei to Si and construct an
edge from the node representing G̃ to the
node of G̃ei ;

end
end

end;

Via the above computation process, the Tutte
polynomial can be computed as follows. The next algo-
rithm shows the Tutte polynomial can be computed by
top-down fashion and need not by bottom-up fashion.
Here a two-variable polynomial t(v;x, y) is associated
with each minor v in the computation process.

t(source; x, y) := 1;
for i := 1 to m do

begin
for all nodes u in Si do t(u;x, y) := 0;
for each node v in Si−1 do

begin
if v has two children u, w then

begin
t(u;x, y) := t(u;x, y) + t(v;x, y);
t(w;x, y) := t(w;x, y) + t(v;x, y)

end
else (comment: v has only one child u)
if ei is a loop then
t(u;x, y) := t(u;x, y) + yt(v;x, y)

else (comment: ei is a coloop)
t(u;x, y) := t(u;x, y) + xt(v;x, y);

end
end;

t(sink;x, y) is T (G;x, y).

3.1 Decision of Isomorphic Minors

The size of the computation process is defined as the
number of minors which occur in computing the Tutte
polynomial by the algorithm. The width is defined as
the maximum among the numbers of minors of the com-
putation process at each level. The depth of the com-
putation process is the number of edges of a path from
the source (or, root) to the sink. Hence the width of
the computation process is relevant.

Suppose that Ei = {e1, e2, . . . , ei}, and Ei =
{ei+1, ei+2, . . . , em}. Then the minors of G in the i-
th level have the edge set Ei. For i = 1, . . . ,m, define
the i-th level elimination front Ṽi to be a vertex subset
consisting of vertices v such that v is incident to some
edge in Ei and some edge in Ei. By the edges con-
tracted in this process, we can define an equivalence
relation on Ṽi such that two vertices are in the same
equivalence class if and only if, in the process of ob-
taining the minor, they are unified into one vertex by
the contractions. Then consider a partition of Ṽi into
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the equivalence classes by this relation. We call this
partition the i-th level elimination partition of the mi-
nor. For example, in Fig. 2 the third level elimination
front is {v2, v3, v4}, since all incident edges of v1 are
contracted or deleted. When e1 and e2 are contracted
and e3 is deleted, v2 and v3 are unified into one vertex.
In this case, the elimination partition of this minor is
{{v2, v3}, {v4}}. By using these definitions, we can de-
rive the following.

Theorem 3: Let H1 and H2 be two minors of G with
the same edge set Ei. H1 and H2 are isomorphic with
the same edge ordering if and only if their i-th level
elimination partitions are identical.

This theorem can be used not only to check the iso-
morphism more easily but also to analyze the size of the
computation process. Furthermore, checking whether
two partitions are identical can be done very easily.

The Tutte polynomial is an invariant for 2-
isomorphic graphs which is related to isomorphism of
matroids. If two graphs G1 and G2 are isomorphic then
they are also 2-isomorphic, although we can merge only
isomorphic minors with the same edge ordering by us-
ing Theorem 3.

For a given connected graph if the edge ordering
has a connectedness property, all 2-isomorphic minors
with the same edge ordering are isomorphic minors with
the same edge ordering. Here, the edge ordering is said
to have a connectedness property if, for i = 1, . . . ,m,
all subgraphs of G on Ei are connected.

Theorem 4: Suppose that the edge ordering has the
connectedness property for a given connected graph G.
Let G1 and G2 be two minors of G on the same edge set
Ei. Then G1 and G2 are 2-isomorphic with the same
edge ordering, if and only if G1 and G2 are isomorphic
with the same edge ordering.

For proofs of these theorems, see [29].

3.1.1 The Complexity of a Complete Graph

We consider the size of the computation process of a
complete graph Kn of n vertices, since it is the upper
bound for the other simple connected graphs.

For the complete graph Kn of n vertices, order the
vertices from 1 to n. Then, represent each edge by a
tuple (u, v) where u and v are numbers attached to their
endpoints and u < v, and order edges in the increasing
lexicographic order of (u, v). This ordering is called the
canonical edge ordering of a complete graph.

Let L(G, i) be the number of minors in the i-th
level of the computation process for the canonical edge
ordering. Since each parent has at most two children,
L(G, i) ≤ 2i. More precisely, for the complete graph
Kn, the following theorem holds. Here the Bell number
Bn is the number of partitions of a set of n elements.

Table 1 The size of computation process of Kn.

n width Bell number number of size
Bn−2 spanning trees

2 1 – 1 2
3 2 (1) 3 6
4 5 (2) 16 20
5 14 (5) 125 67
6 42 (15) 1296 225
7 130 (52) 16807 774
8 406 (203) 262144 2765
9 1266 (877) 4782969 10292

10 3926 4140 100000000 39891
11 15106 21147 ≈ 2.36 × 109 160837
12 65232 115975 ≈ 6.20 × 1010 673988
13 279982 678570 ≈ 1.79 × 1012 2932313
14 1191236 4213597 ≈ 5.67 × 1013 13227701

Theorem 5: L(Kn, i) = 2O(i) for i ≤ 2n − 3, and
L(Kn, i) ≤ Bi for 2n− 3 < i.

Corollary 1: For n ≥ 10, the width of the computa-
tion process of Kn for the canonical edge ordering is
bounded by Bn−2

This bound is not so tight. Table 1 gives the width
and the size of the computation process of Kn up to
n = 14. It also shows the width can be bounded by
Bn−2 for n ≥ 10 and much smaller than the number of
spanning trees.

Theorem 6: For any simple connected graph G with
n vertices, there exists an edge ordering such that the
size of the computation process ofG is less than or equal
to the size of the computation process of the complete
graph Kn with respect to the canonical edge ordering.

Note that, in computing the Tutte polynomial of
a graph with n vertices (n ≥ 10) via the computation
process, the space complexity is also bounded by the
width of the computation process and hence by Bn−2.
This is another advantage of this algorithm.

3.1.2 The Complexity of a Planar Graph

Next, we will see that the proposed algorithm solves the
problem of computing the Tutte polynomial of a planar
graph, which itself is still #P-hard, very efficiently.

First, to examine its efficiency for a planar graph,
we will consider its computational complexity of a lat-
tice graph. The (square) lattice graph Lm,n is a graph
which has m × n vertices located at the points (x, y)
of the 2-dimensional grid with edges joining neighbours
on the grid. The lattice graph is extremely important
for a number of problems in statistical physics.

For a k×k lattice graph Lk,k with n = k2 vertices,
Theorem 7 shows there is an edge ordering such that
the size of any elimination front (the maximum number
of vertices in any elimination front) can be bounded by
k =

√
n, that is, the algorithm works very efficiently.

For a k× k lattice graph Lk,k order the vertices in
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Table 2 The size of computation process of k×k lattice graphs
Lk,k.

k |V | |E| width number of size
(= Ck+1) spanning trees

2 4 4 2 4 8
3 9 12 5 192 47
4 16 24 14 100352 252
5 25 40 42 557568000 1260
6 36 60 132 ≈ 3.26 × 1013 6002
7 49 84 429 ≈ 1.99 × 1019 27646
8 64 112 1430 ≈ 1.26 × 1026 124330
9 81 144 4862 ≈ 8.32 × 1033 549382

10 100 180 16796 ≈ 5.69 × 1042 2395385
11 121 220 58786 ≈ 4.03 × 1052 10336173
12 144 264 208012 ≈ 2.95 × 1063 44232654

a row-major order, i.e., from the top row to the bot-
tom row, and for each row from left to right. Then, a
canonical edge ordering of a lattice graph is defined by
the same way for a complete graph. In addition, the
Catalan number Ck+1 is defined to be 1

k+1

(
2k
k

)
.

Theorem 7: (i) L(Lk,k, i) ≤ Ck+1. Equality holds
for �k

2�(2k − 1) ≤ i ≤ 2(k2 − k)− k.
(ii) L

(
Lk,k, 2(k2 − k)− j

)
= Cj+2 for 0 ≤ j < k.

Again, the sizes of the computation process of Lk,k

up to k = 12, i.e., up to 144 vertices and 264 edges,
have been computed by the algorithm proposed here
(Table 2). The width is bounded by Ck+1, though the
number of spanning trees becomes huge even for small
k.

Next we will see the size of the computation pro-
cess of general planar graphs. In general, the size of the
computation process depends on the ordering of edges.
For a planar graph, by using the planar separator theo-
rem, we can see that an appropriate edge ordering exists
and the Tutte polynomial can be computed efficiently
as follows.

Let G be a planar graph with n vertices. Here,
the planar separator theorem [20] is that the vertices of
G can be divided into three sets A,B,C such that the
following conditions hold.

• There is no edge whose one end belongs to A and
the other end belongs to B.

• A and B do not include more than 2
3n vertices.

• C does not include more than 2
√
2
√
n vertices.

The set C is called separator. Ordering edges by
using the planar separator theorem recursively and the
vertex ordering A ≺ B ≺ C, we obtain the following.

Lemma 1: For a simple connected planar graph G of
n vertices, there exists an edge ordering such that any
elimination front consists of O(

√
n) vertices, and such

an edge ordering can be found in O(n log n) time.

Lemma 1 can be extended for graphs with good
separators:

Lemma 2: For a class of graphs having a separator

of O(nα) (n: the number of vertices), there exists an
edge ordering such that any elimination front consists
of O(nα) vertices, and such an edge ordering can be
found in O(n logn) time.

Theorem 8: The width of the computation process
of an nα-separable graph with n vertices and 0 < α < 1
is bounded by 2O(nα log n).

For planar graphs, we can derive a tighter bound.

Theorem 9: For a connected, simple planar graph
with n vertices, there exists an elimination ordering of
edges such that any elimination partition consists of at
most O(2O(

√
n)). Such an elimination ordering can be

found in O(n logn) time.

Note that the BDD-based algorithm has high par-
allelism as reported in a preliminary report [25].

3.2 OBDD: Ordered Binary Decision Diagrams

The diagram for the computation of the Tutte polyno-
mial of a grpah is exactly the OBDD of a Boolean func-
tion, i.e., the characteristic fnction of a family of span-
ning trees. The OBDD has been developed and used in
the VLSI CAD field, and the OBDD itself is a quite in-
teresting research target. Hence, before proceeding to
more general cases on computing the invariants, we ex-
plain the OBDD and its relation to the algorithm given
above.

An ordered binary decision diagram, OBDD in
short, is a binary branching program representing a
Boolean function with some conditions. In this paper
we only consider the subgraph of OBDD reachable to
the 1-node, and call this OBDD.

An OBDD represents a Boolean function f of m
variables x1, . . . , xm by a labeled acyclic graph with a
single source (root) and a single sink (1-node). Each
node besides the sink has at most two edges emanating
from it, one is labeled as 0-edge and the other 1-edge.
The sink node is labeled as 1, and is called the 1-node.
All the directed paths from the source to the 1-node
have the same number of edges, and the level of a node
is defined to be the number of edges of directed paths
from the source to the node. The level of the source
is 0, and that of the sink is m. Nodes in the i-th level
(i = 0, . . . ,m − 1) correspond to a variable xi. Each
directed path from the root to the 1-node corresponds
one-to-one to an assignment of xi to the label of the
edge, emanating from the node of xi on this path (i =
1, . . . ,m), with which the function value is 1.

The width wi of the i-th level of OBDD of f is the
number of nodes in the i-th level. The width of OBDD
is the maximum among the widths over all levels. The
size of OBDD is the total number of nodes, and varies
by the ordering of variables.

We may regard the logical values of 0 and 1 as inte-
gers, and consider addition among them as integers [22].
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This type of Boolean formula is called an arithmetic
Boolean formula. We denote the Boolean AND, OR,
NOT by

∧
,
∨
, xi, respectively.

Bryant [7] proposes algorithms for taking Boolean
operations among OBDDs. Concerning the time to per-
form such operations and the size of computed OB-
DDs for nontrivial functions. Roughly, the fundamen-
tal Boolean operation such as AND, OR can be done
in time proportional to the sum of the product of cor-
responding widths over all levels for given two OBDD.
However, this approach does not guarantee that the
time complexity of computing the target OBDD is pro-
portional to its size, because in intermediate steps the
size of OBDDs often explode. For more details, see
[21], [22].

In concluding this explanation about the OBDD, it
should be mentioned that the algorithm of constructing
the diagram representing all the spanning trees of a
given graph is the only algorithm that can construct
the corresponding OBDD for a moderate-size graph of
about 200 edges in practice under current computing
environments as far as the author knows.

3.3 Matroidal Case

We now move to the case of matroids. For a matroid,
if the isomorphism test can be done among its minors
under the identity map, the BDD representing all the
bases of the matroi can be computed in time propor-
tional to its size. This subsection describes two cases
where such isomorphism test can be done efficiently
based on [17].

A matroid is called binary if it can be represented
as a linear matroid over GF(2). Given two matroids
M(E) of a set E of vectors a1, . . . ,am in GF(2)n and
M(E′) of a set E′ of vectors a′

1, . . . ,a
′
m in GF(2)n,

we will consider how to determine whether M(E) and
M(E′) are isomorphic under the identity mapping be-
tween E and E′ induced by their indices.

Let B be a base of M(E), and compute the coeffi-
cients βij that satisfy

aj =
∑

ai∈B

βijai (aj ∈ E −B).

We may suppose here that B is also a base of M(E′).
Otherwise, M(E′) is not isomorphic to M(E). Then
we obtain the coefficients β′

ij such that

a′
j =

∑
a′

i∈B

β′
ija

′
i (a′

j ∈ E −B).

The following well-known theorem directly gives an ef-
ficient procedure for the isomorphism testing.

Theorem 10: The binary matroids M(E) and
M(E′) are isomorphic under the identity map if and
only if βij = β′

ij holds for each ai,a
′
i ∈ B and

aj ,a
′
j ∈ E −B.

A matroid linearly representable over GF(3) is
called a ternary matroid. Suppose we are given two
matroids M(E) of a set E of vectors a1, . . . ,am in
GF(3)n and M(E′) of a set E′ of vectors a′

1, . . . ,a
′
m in

GF(3)n. We will discuss how to detect the isomorphism
between M(E) and M(E′).

Let B be a base of M(E), and define the coeffi-
cients βij and β′

ij similarly to the case of binary ma-
troids. The following theorem is helpful for the isomor-
phism testing. See [23, §10.1] for the proof.

Theorem 11: The ternary matroids M(E) and
M(E′) are isomorphic under the identity map if and
only if there exists an appropriate mapping α : E →
{1,−1} such that α(ai)βij = α(a′

j)β
′
ij holds for each

ai,a
′
i ∈ B and aj ,a

′
j ∈ E −B.

We now consider how to perform the isomorphism
testing based on Theorem 11. Suppose that {(i, j) |
ai ∈ B,aj ∈ E − B, βij �= 0} = {(i, j) | a′

i ∈ B,a′
j ∈

E −B, β′
ij �= 0}. Because otherwise, M(E) and M(E′)

are not isomorphic. Construct a graph H = (E,F )
with vertex set E and edge set F = F+ ∪ F− defined
by

F+ = {(i, j) | ai∈B,aj ∈E −B, βij =β′
ij �=0},

F− = {(i, j) | a′
i∈B,a′

j ∈E −B, βij =−β′
ij �=0}.

Let H◦ = (E◦, F−) be a graph obtained from H by
contracting F+. Then we have the following theorem,
which gives an efficient procedure to detect the isomor-
phism. Recall that the bipartiteness of a graph can be
checked in linear time.

Theorem 12: The ternary matroids M(E) and
M(E′) are isomorphic under the identity mapping if
and only if the graph H◦ thus constructed is bipartite.

Hence, the BDD of bases of binary and ternary
matroids can be constructed in an output-size sensitive
manner.

4. Network Reliability

To analyze network reliability against probabilistic fail-
ures of links and sites, simple theoretical models have
been proposed. The simplest model is concerned with
link failures, and considers the probability that the net-
work remains connected when each edge e becomes
open (fail, disappear) with some probability pe inde-
pendently (and hence edge e survives with probability
1−pe) [9]. This is called the all-terminal network relia-
bility, and, when each pe is a constant p, it is called the
canonical all-terminal network reliability. For example,
the all-terminal reliability function involve information
on the number of minimum cuts, etc., of networks. In
fact, the size (the number of edges) of minimum cuts as
well as the number of minimum cuts is used as criteria
for network reliability in papers concerned with graph
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connectivity, etc., and these are represented implicitly
in our network reliability model.

From the theory of computational complexity, even
in such simple models it is hard to obtain exact net-
work reliability values. That is, computing the net-
work reliability is a #P-complete problem [24], [35], and
is believed hard to solve if the problem size is large.
Hence, there have been proposed many approximation
algorithms, such as the Ball-Provan bound [4] which
make use of the shelling polynomial of a cographic ma-
troid. Recently, randomized fully polynomial-time ap-
proximation schemes for computing the network relia-
bility have been developed by Alon, Frieze, Welsh [1]
and Karger [18]. Karger and Tai [19] report implemen-
tations of those algorithms, and show that the network
of moderate size up to 50 to 60 vertices can be ana-
lyzed approximately by their methods. For the whole
network reliability research, see [9], [12], [15], [16], [32].

The BDD-based approach can be applied to this
problem to yield a mildly exponential time algo-
rithm (Sekine, Imai [27], [28]). This outperforms other
exponential-time algorithms based on the recursive for-
mula. With this approach, networks of moderate size
can be analyzed. Furthermore, this approach yields a
polynomial-time algorithm for complete graphs, whose
reliability provides a natural upper bound for simple
networks, and also leads to an effective method for
computing the dominant part of the reliability function
when the failure probability is sufficiently small.

This section reports computational results of the
new approach of analyzing network reliability against
probabilistic link failures. Computational results for
complete graphs and the case with small failure proba-
bility are also reported.

4.1 All-Terminal Network Reliability

Let G = (V,E) be a simple connected undirected graph
with vertex set V and edge set E. Consider a net-
work (graph) G = (V,E). The canonical all-terminal
network reliability R(G; p) is defined as the probabil-
ity that G remains connected after each edge is deleted
with the same probability p.

Let p(e) be a given deletion probability of an edge
e ∈ E. Then, the all-terminal network reliability is
defined as the probability that the graph remains con-
nected after each edge e is deleted with the probability
p(e). This reliability will be simply denoted by R(G).

In this general case, the following edge dele-
tion/contraction formula holds.

Lemma 3: For an edge e,

R(G) =


(1− p(e))R(G/e) e : coloop
R(G\e) e : loop
p(e)R(G\e) + (1− p(e))R(G/e) otherwise

This is essentially equivalent to the recursive for-

mula of the Tutte polynomial. In fact, when all p(e)
are identical, the following holds.

Theorem 13:

R(G; p) = p|E|−ρ(E)(1− p)ρ(E)T (G; 1, 1/(1− p))

It is readily seen that the BDD-based approach
can be applied to the general case such that the edge
deletion probabilities are distinct. For this network re-
liability problem, we report computational results for
some typical cases.

Furthermore, this approach can be easily modi-
fied to computing the coefficients of lower terms in the
canonical all-terminal reliability polynomial efficiently.
To compute the coefficients of terms whose degree is at
most c, we have only to represent, in a compact man-
ner, spanning sets having at least |E| − c edges. To do
so, we have only to ignore the nodes in the BDD which
already have c or more deleted edges.

When the minimum cut size is small, as often oc-
curs in practical problems, small c is sufficient to obtain
a good approximate value for the network reliability
when the edge failure probability is small.

Computational results concerning how large-size
problems can be solved in practice by this method are
shown in the next section.

4.2 Reliability Function for a Complete Graph

Consider a graph Um,r obtained from Km by adding a
new vertex v and connecting it with each vertex of Km

by r multiple edges. By definition, Kn is isomorphic
to Un−1,1. Then, we can compute efficiently the relia-
bility function of a complete graph with the same edge
deletion probability. This is an extension of the work
for the Tutte polynomial in [2].

Theorem 14:

R(Um,r; p)

=
m∑

i=1

(
m

i

)
(1− pr)ipr(m−i)R(Um−i,i; p)

where R(U0,r; p) = 1.

We here omit its proof. See [26], [27] for details.
Again R(Kn; p) = R(Un−1,1; p) and this is ob-

tained by computing all R(Uj,k; p) such that j + k ≤
n − 1. The highest degree is 1

2n(n − 1) and its coeffi-
cient is (−1)n−1(n − 1)!. R(Kn; p) can be divided by
(1 − p)n−1 and by this factorization each term has a
positive sign in the remaining factor.

The practical computing results are given in Fig. 3.
In Fig. 3, each curve represents an upper bound for the
other simple connected graphs with the same number
of vertices.
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Fig. 3 R(Kn; p) (n = 2, . . . , 50).

4.3 Computational Results

As for test networks, we considered a complete graph
Kn of n vertices and

(
n
2

)
edges and a k×k lattice graph

(or, grid graph) of n = k2 vertices and 2k(k− 1) edges.
Computations are done by using SUN worksta-

tions. For large-size problems, we use SUN Ultra 60
with 2GB memory, where our programs only use at
most around 500MB memory. As will be seen in the
results, we can solve a graph having some planar prox-
imity relations of up to 50 – 60 vertices and 150 – 180
edges.

4.3.1 Complete Graphs

We show in Fig. 3 graphs of the reliability polynomials
of Kn for n = 2 to 50. Note that K50 just has 50
vertices, but its number of edges is 1225, quite large.
Since the algorithm in Sect. 4.2 is polynomial, we can
solve such large-scale problem.

The all-terminal network reliability of a complete
graph gives the probability that a simple random graph
is connected, where the latter asymptotic behavior has
been well studied (e.g., see Bollobás [6]). In this re-
gard, the graph in Fig. 3 has strong connection with
random graphs, and it provides quantitative informa-
tion roughly bounded in theory.

On the other hand, if the edge deletion proba-
bilities are different for edges, we can just produce a
straight-line program to compute the reliability func-
tion forKn up to, say, n = 15 by the current computing
environments (see [31]).

4.3.2 Lattice Graphs

We show in Fig. 4 graphs of the reliability polynomi-

Fig. 4 R(Lk,k ; p) (k = 2, . . . , 10).

als of Lk,k for k = 2 to 10. Note that L10,10 has 100
vertices and 180 edges. Its size may not be large, but
it is definitely of moderate size. Since the algorithm
in Sect. 4.1 is a mildly exponential algorithm and the
lattice graph has a nice ordering with small elimination
front (size at most k), we can solve such moderate-size
problem in practice.

It is observed that the reliability is monotonically
decreasing as k increases for the lattice graphs.

5. Counting the Number of Paths

So far, the BDD of spanning trees, etc., is constructed
in a top-down and output-size sensitive manner. How-
ever, to solve more complicated problems with nonma-
troidal structures, we may make use of the existing
BDD algorithm with the above approach. This sec-
tion describes such a unified approach to solve #P-hard
problems, as was shown by Valiant [35], of counting the
number of paths between two terminals in undirected
and directed graphs. This provides algorithms running
in O(2O(

√
n)) time for planar graphs.

For the problem of counting the number of paths,
we combine the BDD representing forests with another
BDD representing the flow conservation constraints so
that meaningless cycles can be removed.

As is well known, problems related to paths such
as the shortest path problem can be formulated as a
flow problem. We first show that flows of value 1 can
be represented by a compact OBDD. The discussion
will be made for directed graphs and directed paths,
but this can be easily extended to the undirected case.

In the directed case, denoting by δ+v and δ−v the
sets of edges emanating from and entering the vertex v,
respectively, we similarly define a function flows→t(x)
by
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flow s→t(x)

=

( ∑
k∈δ+s

xk = 1

)
∧
( ∑

k∈δ−s

xk = 0

)

∧
( ∑

l∈δ+t

xl = 0

)
∧
( ∑

l∈δ−t

xl = 1

)

∧
v∈V −{s,t}


 ∑

i∈δ+v

xi = 1 ∧
∑

j∈δ−v

xj = 1


∨
 ∑

i∈δ+v

xi = 0 ∧
∑

j∈δ−v

xj = 0


.

Lemma 4: flows→t(x) is a Boolean function repre-
senting all flows of value 1 from s to t in G.

We now analyze the size of BDD representing these
flows when the graph has an edge ordering with small
elimination front. δ± means one of δ+ and δ−. Suppose
edges are ordered from e1 to em.

Lemma 5: For an OBDD of (
∑

i∈δ+v xi = 1 ∧∑
j∈δ−v xj = 1) ∨ (

∑
i∈δ+v xi = 0 ∧∑j∈δ−v xj = 0)

for a vertex v, the width at the i-th level is made to be
at most 4 when v is in the i-th elimination front, and 1
otherwise.

For
∑

k∈δ−s xk = 1 and
∑

l∈δ+t xl = 1, similar re-
sults holds by replacing 4 by 2 above. Then, by the def-
inition of the elimination front, we obtain the following
(we here assume the elimination front size is Ω(logn)).

Lemma 6: For the graph G with n vertices and
an edge ordering whose maximum elimination front
consists of at most l vertices, there is an OBDD of
flows→t(x) whose width is at most 4l. Such an OBDD
can be constructed in O(2O(l)) time.

The OBDDs representing the flow condition can
thus be computed as above. However, from this OBDD,
the number of paths cannot be counted directly, since
a flow of value 1 does not necessarily correspond to a
simple path. In fact, a simple directed path from s to
t in a directed graph is an undirected flow of value 1
without any cycles. Hence, we have to remove flows
having circular flows of value 1.

Let tree(x), forest(x) be Boolean functions repre-
senting all the spanning trees and all the forests, re-
spectively. That is,

tree(x) =


1 edges ei with xi = 1

form a spanning tree
0 otherwise

tree(x) has already appeared many times, and an effi-
cient algorithm constructing a certain type of BDD of
tree(x) is given above. forest(x) becomes 1 when edges
with xi = 1 does not contain any cycle. Then, from the
above observations, the following hold.

Lemma 7: paths→t(x) ≡ flow s→t(x) ∧ forest(x) be-
comes 1 exactly when edges with xi = 1 form a simple
path from s to t in the directed case.

The OBDD of forests can be easily obtained from
the OBDD of trees.

Lemma 8: The OBDD of forest(x) can be obtained
from that of tree(x) simply by replacing each 1-edge in
the BDD corresponding to a coloop by both 1-edge and
0-edge.

This lemma basically holds for the BDD represent-
ing all bases and all independent sets of a matroid [13].

Theorem 15: (a) For the O(nα)-separable graph G
with n vertices, there is an OBDD of paths→t(x) whose
width is at most O(nO(nα)). Such OBDDs can be con-
structed in O(nO(nα)) time.

(b) For planar graphs with bounded degree,
O(nO(nα)) above can be replaced with O(2O(

√
n)).

Having an OBDD representing all simple paths, it
is easy to count the number of paths, say by a similar
algorithm for the reliability, in time proportional to the
OBDD size. Hence, we obtain the following.

Theorem 16: (a) The number of paths between two
terminals for the class of O(nα)-separable graphs can
be computed in O(nO(nα)) time in both undirected and
directed cases.

(b) For a simple planar graph with n vertices and
bounded degree, the number of paths between desig-
nated two terminals can be computed in O(2O(

√
n))

time.

6. Applications of the Tutte Polynomial of Ma-
troids

This section generalizes the approach of utilizing and
constructing BDDs efficiently to compute the polyno-
mial invariants of discrete systems for linear matroids,
graphic arrangements and partial orders, and present
efficient algorithms for solving counting problems re-
lated to them.

6.1 Weight Enumerator of a Linear Code

Besides bases, independent sets, spanning sets, the
Tutte polynomial has many implications in it. We now
consider two problems whose generating functions can
be computed via the Tutte polynomial but BDDs of
target objects are different from the BDD of bases. We
will show that these BDDs are also computed by the
top-down breadth-first algorithm. From these more di-
rect BDDs, more structures of the target objects are
derived.

Let G be a k × n matrix over GF(2). An (n, k)
linear code C is a set of all vectors x = GTy for
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y ∈ GF(2)k. The Hamming weight of x is the num-
ber of nonzero elements among its coordinate values.
The weight enumerator AC(z) of C is the generating
function of a family of sets whose characteristic vectors
are in C, that is, denoting by ai the number of vectors in
C with the Hamming weight i, the enumerator is given
by
∑n

i=0 aiz
i in term of z.

Let M be a linear matroid over columns of G.
Then, the following is known (e.g., see [37]).

Lemma 9: If U is an (n, k) code over GF(q), N is any
generating matrix for U , andM is the matroid induced
on the columns of N by linear independence,

AC(z) = (1− z)kzn−kT

(
M ;

1 + (q − 1)z
1− z

,
1
z

)
Of course, for GF(2), q in the theorem is set to 2.

Thus, the weight enumerator can be computed
via the BDD of bases of M . However, this BDD of
bases does not represent vectors (codes) of C in a direct
way. As we have mentioned in the previous section,
the weight enumerator can also be computed via the
BDD representing all codes in C and this BDD repre-
sent all codes in a compact manner. This BDD can be
computed by the top-down algorithm by using the fol-
lowing lemma, where H is an (n− k)× n parity check
matrix of the code C, i.e., C = {x | Hx = 0 }, and hi

is the i-th column vector of H .

Lemma 10: In the BDD of codes in C for the variable
ordering x1, . . . , xn, the equivalence between two nodes
N1 and N2 at the k-th level generated by the top-down
algorithm by assigning xi = x

(j)
i for i = 1, . . . , k(< n)

and j = 1, 2 can be judged by checking whether two
vectors

∑k
i=1 x

(j)
i hi (j = 1, 2) are the same with each

other.

Also, a node corresponding to a false function can
be checked similarly by linear algebra. We thus have
the following.

Theorem 17: The BDD representing all codes in C
can be constructed in time proportional to its size by
the top-down construction algorithm.

Note that the so-called affine Boolean formula al-
most corresponds to a linear code over GF(2), and
hence we can compute the BDD of a given affine
Boolean formula in an output-size sensitive manner by
the top-down algorithm.

6.2 Linear Matroid over the Reals and Hyperplane Ar-
rangements

In the previous section, we have shown that for binary
and ternary matroids, the BDD of all bases can be con-
structed in an output-size sensitive manner by the iso-
morphism test described there. However, this generally
seems hard for linear matroids over fields except GF(2)

and GF(3). For linear matroids over the reals, we can
compute the Tutte polynomial directly by a different
method based on its geometric structure.

Let M = M(E) be a linear matroid of set E of
vectors ai (i = 1, . . . ,m) in Rn. Throughout this sec-
tion, we regard n as a constant. Using the definition by
the rank function directly, the Tutte polynomial can be
computed by treating all the subsets, but this takes at
least Ω(2m) time. By using the original definition of the
Tutte polynomial, we can compute it by enumerating
all the bases, and computing the external and internal
activities of each base. All the bases can be enumer-
ated efficiently by the reverse search [3], and then the
activities can be found in O(m) time by regarding n as
a constant. Summarizing this, we obtain the following.

Theorem 18: The Tutte polynomial of a matroid M
can be computed in O(mT (M ; 1, 1)) time (m = |E|,
T (M ; 1, 1) gives the number of bases of M).

We will here concentrate on the use of the arrange-
ment [10] to compute the Tutte polynomial.

Consider the arrangement of hyperplanes hi = {x |
ai · x = 0} (i = 1, . . . ,m) in the dual Rn. Note that
each hyperplane hi passes the origin, and the arrange-
ment is central. We construct the face lattice of this ar-
rangement by the incremental algorithm [10]. Note that
since this is a central arrangement in the n-dimensional
space, its combinatorial complexity is O(mn−1), and
not Θ(mn).

A subset S of E is called a flat (or closed or a
subspace) of this linear matroid M(E) if the addition
of e ∈ E − S to S increases the rank by one. These
flats form a lattice (e.g., see [23], [36]). From the face
lattice of the arrangement, the lattice of flats of M(E)
can be constructed directly in O(mn−1) time and space.
We will show that from this lattice of flats the Tutte
polynomial can be computed efficiently.

Now, fix an ordering of elements of E like
e1, e2, . . . , em. First, we discuss the data structure rep-
resenting flats for this ordering. We represent the lat-
tice of flats in a standard way of representing lattices.
Each flat is represented by a sorted list (array) of its el-
ements with respect to this ordering. Furthermore, for
each subset S of E consisting of at most n−1 elements,
we associate a flat σS that is minimal with respect to
set inclusion among flats containing S, and for each S a
pointer to σS in the lattice is provided. σ is the closure
operator.

In our algorithm, we check all subsets of E con-
sisting of n elements for bases of the matroid. Sup-
pose we have a subset B = {ei(1), ei(2), . . . , ei(n)} with
1 ≤ i(1) < i(2) < . . . < i(n) ≤ m which is a
base of this matroid. Define Bj to be {ei(1), . . . , ei(j)}
(j = 1, . . . , n).

Lemma 11: (a) An element ei′ ∈ E −B with i(j) <
i′ < i(j + 1) for some j in {1, . . . , n − 1} is externally
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active with respect to the base B if and only if ei′ ∈
σBj .

(b) An element ei′ ∈ E − B with i(n) < i′ ≤ m is
externally active.

Lemma 12: An element ei(j) ∈ B is internally active
if and only if all the elements ei′ in E−B with i′ > i(j)
are in σ(B − {ei(j)}).

From these lemmas, we can compute the external
and internal activities as follows. As for the external
activity, for each j = 1, . . . , n−1, we count the number
sj of elements ei′ with i(j) < i′ < i(j + 1) which are
contained in σBj . Then,

(m− i(n)) +
n−1∑
j=1

sj

is the external activity. It should be noted that by con-
sidering intervals (i(j), i(j + 1)), each externally active
element is counted exactly once. As for the internal
activity, for each j = 1, . . . , n, we count the number rj
of elements ei′ in σ(B − {ei(j)}) with i′ > i(j). Then,
ei(j) is internally active if rj = m− i(j).

Thus, both activities can be computed by counting
the number of elements of flats within some interval like
(i(j), i(j + 1)). By representing elements of flats in a
sorted array A1 by the ordering, this counting can be
done in O(log n) time by binary search. Furthermore,
if for each flat σS we have an array A2 of lengthm such
that the i′-th entry of this array stores the number of
elements ej′ in σS with j′ ≤ i′, this counting can be
done in a constant time although this requires O(m)
space.

Lemma 13: (a) If the array A1 is used for each flat in
representing the lattice of flats, the external and inter-
nal activities of B can be computed in O(logm) time,
with O(mn−1) space in total.

(b) If the array A2 is used for each flat in rep-
resenting the lattice of flats, the external and internal
activities of B can be computed in a constant time,
with O(mn) space in total.

We can generate all n-element subsets of E in
O(mn) time. Finally, to compute the Tutte polyno-
mial by the original definition by Tutte, we have to
count the number of terms with the same external and
internal activities. Noting that the summation of these
numbers is bounded by the number of bases, and hence
is O(mn), this can be done in O(mn) time by counting
them in a batched way at the end. We thus obtain the
following theorem.

Theorem 19: The Tutte polynomial of a linear ma-
troid M of m vectors in Rn can be computed in
O(mn logm) time andO(mn−1) space or inO(mn) time
and O(mn) space, when n is regarded as a constant.

6.3 Graphic Arrangement

In the previous section, by virtue of geometric struc-
tures of arrangements, we show that the Tutte polyno-
mial can be computed in time linear to the number of
bases in the worst case. However, this is not the best
algorithm at all in some cases. For example, when all
ai (i = 1, . . . ,m) are generic, the matroid M(E) is a
uniform matroid Um,n of m elements and rank n, and
hence the Tutte polynomial is very easily computed.
Testing whether all vectors ai are generic has connec-
tion with a well-known problem of testing whether a
given arrangement is nondegenerate in computational
geometry. (For instance, given n lines in the plane, test-
ing whether there are three lines meeting at a common
point is hard to solve in o(n2) time, and it is widely
considered that Ω(n2) time would be necessary to solve
this decision problem.) O(mn−1) is the size of the ar-
rangement and the size of the lattice of flats, and one
may be tempted to consider that Ω(mn−1) is a lower
bound to this computation problem.

However, by restricting the arrangement or vec-
tors, we can obtain a better bound than Ω(mn−1)
via BDD. For linear matroids over the reals, there is
not known any efficient algorithm, like for binary and
ternary cases, for testing the isomorphism of two linear
matroids under a given map, and this also implies that,
for some restricted arrangements related to binary and
ternary matroids, counting problems on them such as
counting the number of cells may be solved in o(mn−1)
time.

For the arrangement associated with an undirected
graph, called the graphic arrangement, this is the case.
Furthermore, this consideration relates the discussion
so far with the counting problem on partially ordered
sets.

For an undirected G = (V,E) with vertex set V =
{v1, . . . , vn}, consider a set of m = |E| hyperplanes in
Rn defined by

xi = xj ((vi, vj) ∈ E).
The arrangement of these hyperplanes is called the
graphic arrangement of G. Each cell of this graphic
arrangement corresponds to an acyclic orientation of
G one-to-one. Concerning the number of cells of this
arrangement, the following is known.

Lemma 14: [8], [11] The number of cells of the
graphic arrangement is equal to T (M(G); 2, 0) where
M(G) is the graphic matroid of G.

Applying the results described above, we obtain
the following.

Theorem 20: The number of cells of the graphic ar-
rangement of a simple planar graph with n vertices can
be computed in O(2O(

√
n)) time.
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By extending the results in [11] for formulae to
count the number of lower-dimensional faces in the ar-
rangement, we can further obtain the following.

Theorem 21: The number of (n − k)-dimensional
faces of the graphic arrangement of a simple planar
graph with n vertices can be computed in O(2O(

√
n))

time for fixed k.

Thus, as far as computing the combinatorial com-
plexities of the arrangement is concerned, it can be done
with much less time than the total size of the arrange-
ment, when for example it is a graphic arrangement of
a planar graph.

7. Computing the Number of Ideals of a Par-
tial Order

Consider a partial order � on a finite set V . We denote
this partially ordered set by (V,�). An ideal of this
partially ordered set is a subset U of V such that, for
any v ∈ U and u � v, we have u ∈ U . An empty
set and the whole set V are ideals. The ideals play
an important role in decomposing the partially ordered
set.

For (V,�), we can define a polytope by

{x | x = (xv) ∈ RV , xu ≤ xv for u � v, 0 ≤ xv ≤ 1}.
This polytope is called an order polytope. The vertices
of the order polytope is a 0-1 vector. Each vertex cor-
responds to an ideal one-to-one, i.e., the complement of
the characteristic vector of an ideal is a vertex.

Let G = (V,E) be an acyclic graph correspond-
ing to the partially ordered set (V,�). (From the al-
gorithmic viewpoint, G should be made to the Hasse
diagram.) Consider the graphic arrangement for the
unoriented graph for G. Then, the order polytope is
the intersection of a cell of the graphic arrangement
corresponding to the orientation of G and the unit hy-
percube [0, 1]V .

The number of ideals of (V,�) can be computed
via BDD. To do this, we have to first construct the
BDD representing all ideals, or all vertices of the order
polytope. The Boolean function f representing all ver-
tices of the order polytope can be described as follows
((u, v) ∈ E implies v � u):

f =
∧

(u,v)∈E

(xu ∨ xv).

This is not monotone, and a technique to construct
the BDD of monotone functions [14] cannot be used.
However, each clause of this formula consists of two
literals, and this enables us to test the equivalence of
subfunctions of this function.

For U ⊆ V , consider two subsets U1 and U2 of U
such that there is not a pair of u ∈ Ul and v ∈ U − Ul

with u � v (l = 1, 2). Let fl be a subfunction obtained
by setting xu = 1 for u ∈ Ul and xv = 0 for v ∈ U −Ul

(l = 1, 2). Let V 1
l be a subset of vertices in V −U from

which to a vertex in Ul there is a directed path in G
(l = 1, 2). Let V 0

l be a subset of vertices in V − U to
which from a vertex in U − Ul there is a directed path
in G (l = 1, 2). Define Vl = V −(U∪V 1

l ∪V 0
l ) (l = 1, 2).

Then, we have the following.

Lemma 15: Two subfunctions f1 and f2 are equiva-
lent if and only if V 1

1 = V 1
2 and V 0

1 = V 0
2 (and hence

V1 = V2).

To use this lemma to check the equivalence be-
tween two subfunctions, we have to check the whole
V 0

1 , V
1
1 , V

0
2 , V

1
2 . However, some of vertices in these

sets are contained in them by transitivity. In this re-
gard, only “boundary vertices” around U determine
these sets. Let us define this concept rigorously.

Consider an ordering of vertices in V into
v1, v2, . . . , vn. The i-th elimination front Ṽi is a ver-
tex subset consisting of vertices vl with l > i such that
vl is adjacent to some vertex vj with j ≤ i. Then, the
following holds.

Lemma 16: Let W be the i-th elimination front. If
V h

1 ∩W = V h
2 ∩W , then V h

1 = V h
2 (h = 0, 1).

Hence, the equivalence check can be done by check-
ing the equivalent of partitions of the elimination front
W into three sets V 0

l ∩ W , V 1
l ∩ W and the remain-

ing elements. The number of distinct partitions of an
N -element set into at most three sets is at most 3N .
Combining these, we have the following.

Theorem 22: When the underlying acyclic graph
(Hasse diagram) G has an ordering of vertices such that
the size of any elimination front is bounded by N , the
BDD representing all ideals of this partially ordered set
can be constructed in O((n2 logn)3N ) time.

Theorem 23: When the underlying acyclic graph
(Hasse diagram) G is a simple planar graph with n
vertices, the number of ideals of this partially ordered
set can be computed in O(2O(

√
n)) time.

8. Concluding Remarks

This paper emphasizes computational aspects of the
Tutte polynomial. For the deep theory of the Tutte
polynomial from the viewpoint of discrete mathemat-
ics, see [8], [37]. The computational approach described
here has potential to solve computationally hard prob-
lems rigorously in practice when it is of moderate size.
There still seem much more applications of this ap-
proach.
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