682

IEICE TRANS. FUNDAMENTALS, VOL. E80-A, NO. 4 APRIL 1997

[PAPER Special Section on Discrete Mathematics and Its Application |

Counting the Number of Paths in a Graph via BDDs

Kyoko SEKINE', Nonmember and Hiroshi IMAI', Member

SUMMARY This paper proposes a unified approach by
means of the binary decision diagram, BDD in short, to solve
#P-hard problems of counting the number of paths between two
terminals in undirected and directed graphs. Our approach pro-
vides algorithms running in O(20(v™)) time for typical planar
graphs such as grid graphs. In fact, for any class of graphs hav-
ing a good elimination ordering, this paradigm provides efficient
solutions.

key words: graphs, paths, #P-complete, BDD

1. Introduction

Developing efficient algorithms for hard problems are
very important. #P-hard problems form a class of count-
ing problems hard to solve. The pioneering paper con-
cerning #P-hard problems by Valiant[19] shows that
counting the number of paths between two terminals of
a graph in undirected and directed cases is #P-hard.
This paper proposes a unified approach by means
of the binary decision diagram, BDD in short, to
solve #P-hard problems for the path counting problem.
Specifically, our approach provides the following solu-
tions to the above-mentioned #P-complete problems:

e O(n°(™™))-time algorithm for a class of O(n®)-
separable graph with n vertices (0 < o < 1),

° O(2O(ﬁ))-time algorithm for typical planar graphs
such as grid graphs.

In fact, for a class of graphs having a good elimina-
tion ordering, say a constant bandwidth, this paradigm
provides efficient solutions. Of course these bounds are
still exponential, but since very related problems are
#P-hard [15] even when restricted to planar cases and
this would hold also for the cases here, this would be
inevitable. A crucial point is that the exponents above
are sublinear in n, so that we can solve moderate-size
counting problems exactly by this paradigm.

This framework is an extension of constructing the
BDD representing all spanning trees of a graph in an
output-size sensitive manner developed by Sekine, Imai
and Tani[16]. In that paper, an algorithm is presented
which constructs the BDD of spanning trees for graphs
with at most 14 vertices and (%)) = 91 edges and planar

Manuscript received September 11, 1996.

Manuscript revised November 12, 1996.

tThe authors are with the Department of Information
Science, University of Tokyo, Tokyo, 113 Japan.

graphs such as 12 x 12 lattice graph with 144 vertices
and 264 edges in reasonable time. However, in our pre-
vious paper, there was a restriction on the edge ordering
for BDDs. We here generalize it by using isomorphism
induced by contractions so that edges can be ordered
arbitrarily.

For the problem of counting the number of paths,
we combine the BDD representing forests with another
BDD representing the flow conservation constraints so
that meaningless cycles can be removed.

As for related research, first, we should note that
the path counting problem in a acyclic graph is linear-
time solvable. In fact, in the case of the ordinary BDD
representing a Boolean function, the number of paths
from the root to the 1-node is the number of truth as-
signments which make the function true, and this num-
ber can be computed in time linear to the size of the
BDD, as is practically implemented.

Next, we may utilize existing path enumeration
algorithms, since counting problems can naturally be
solved by their corresponding enumeration algorithms
(e.g., see Eppstein [8] and its references). However, such
algorithms inevitably requires time at least proportional
to the number of paths, which is purely exponential in
most cases. Our approach may compute the number in
time sublinear to itself by compactly representing paths
via a BDD.

There are many papers discussing the number of
specific paths, especially Hamiltonian paths, since they
are connected with other discrete problems, There are a
few papers which directly discuss the problem of count-
ing the number of paths[2],[3], but as far as the authors
know algorithms proposed so far have time complexity
of 2(2") for a n-vertex graph, and our bounds are better
in general.

Finally, the path counting problem itself is consid-
ered to be a type of network reliability problem. For
example, one may easily modify the path counting al-
gorithms to count the number of paths passing through
a specified edge; this number compared with other path
numbers represents a certain degree of ‘importance’ of
the edge. Also, in connection with the general net-
work reliability problem, much has been done. The
network reliability itself forms a wide field of research.
See books by Colbourn[6], Harms et al. [9], and also
that by Welsh [20] for its relations to other fundamental

SEKINE and IMAL: COUNTING THE NUMBER OF PATHS IN A GRAPH VIA BDDS

combinatorial structures and problems.

2. BDD of Spanning Trees by Sharing Some Isomor-
phic Minors

We first describe necessary definitions. Let G = (V, E)
be a simple connected undirected graph with a vertex
set V and an edge set E. A graph obtained from G by
deletions and contractions of edges is called a minor of
G. A loop is an edge connecting the same vertex, and a
coloop (or isthmus) is an edge whose removal decreases
the rank of the graph by 1.

Suppose we apply contraction or deletion opera-
tion for edges in the order of ey, ez,..., e, (m = |E|).
Here, if e; is a loop in a minor obtained by operations
onej...,e;—1, we only consider deletion operation for
it, and, if e; is a coloop in the minor, we only consider
contraction operation. This process can be represented
as a binary tree such that the root corresponds to the
original graph G, each node' in the tree corresponds
to a minor obtained by the operations specified by the
path from the root to the node. For the minor with e;
as a loop or coloop as above, the corresponding node
have only one child.

By the operations above, each leaf of the expansion
tree corresponds to a spanning tree of G one-to-one, that
is, to a spanning tree formed by the contracted edges by
the operations along the path from the root to the leaf.
In this expansion tree, nodes can be divided by their
levels in the tree, and nodes in the same level corre-
spond to minors on the same edge subset. The root is
considered to be in the O-th level of the expansion tree.
For ¢ = 1,...,m, define the i-th elimination front V; of
the ¢-th level to be a vertex subset consisting of vertices
v such that v is incident to some edges e; with j < ¢
and some edges e; with k > 4.

Each node in the i-th level of the expansion tree
corresponds to a distinct subset of contracted edges for
{e1,...,e;}. For a node in the level, by the contracted
edges for this node, we can define an equivalence rela-
tion on V; such that two vertices are in the same equiva-
lence class iff, in the process of obtaining the minor,
they are unified into one vertex by the contractions.
Then consider a partition of V; into the equivalence
classes by this relation. We call this partition the i-th
elimination partition of this node.

For example, for K, at the top of Fig.1 with ver-
tices v1,...,v, and edges numbered by their indices
from 1 to 6, 171 = {v1,v4} and V, = {v1, v2,v4}; that
is, from ‘71 to 172 vy comes into the elimination front.
V}, = {’Ul,’Uz,’Ug,’U4} and V4 = {v1,vg,v3}; that is, from
V3 to V4, vy4 goes out of the elimination front. As for the
elimination partition, for nodes in the level 1, {{vy,v4}}
is the 1st elimination partition of a node obtained by
contracting ey, while {{v;}, {v4}} is that of a node ob-
tained by deleting e;.

683

v, 1 vy4

=27
k72
contrac/2 3\ delete
v
5
2

VY4

23 :
= z@ AN

v2 . v1U26
// / . l
vy vy 1 v ” v
4/ Ve 1 1
CQD @ YN = 5 PR BN
VU4 0,1,3,4‘ ~ , T3vg 034

’
’
+
’
’
.
’
’
’
'

vivor3ve o . 26,3, vy 136 TG U3va vy g v3

Fig. 1

BDD of spanning trees for Ky4.

Then, the following holds.

Lemma 1: If two minors in the same level of the ex-
pansion tree have the same i-th elimination partition,
they are isomorphic.

proof: By considering the map induced by the identi-
cal elimination partition for vertices in the elimination
front, and considering the identity map for the other
vertices, an tsomorphism is constructed. m]

If there are isomorphic minors in the same level of
the expansion tree, the subtree rooted at the nodes cor-
responding to these minors are also isomorphic. Hence,
we can completely share these isomorphic subtrees with-
out losing the information concerning spanning trees of
G (we also combine all leaves into one), which makes
the expansion tree into a rooted acyclic graph with the
single source (root) and single sink (edges are oriented
from the root to the sink). In this graph, each path from
the root to the sink corresponds to a spanning tree of
G one-to-one. We call this acyclic graph the BDD of
spanning trees by the partition isomorphism with re-
spect to the edge ordering ey, ea, ..., e, (The definition
of BDDs of Boolean functions is given in Sect. 3.1). See
an example of the BDD for K, in Fig.1. The size of
this BDD is defined to be the number of its nodes. The
width of a level is defined to be the number of nodes at
the level. The width of this BDD is defined to be the
maximum among the widths of all levels.

Lemma 1 can be used not only to transform the ex-
pansion tree to the BDD but also to analyze the size of

tWe use the term ‘node’ for a vertex of this binary tree,
called an expansion tree, and a vertex of BDDs to distin-
guish them from vertices of a given graph.

684

the BDD. Concerning the latter, we have the following.

Theorem 1: Let! be the maximum size of the elimina-
tion front for a given edge ordering. Then, the width
of the BDD of all spanning trees of G by the partition
isomorphism is bounded by B;, where B;, called the
Bell number, is the number of partitions of a set of [
elements.

proof: From Lemma 1, the number of nodes of this BDD
in the i-th level is bounded by the number of distinct
partitions of the i-th elimination front. Then, from the
definitions of Bell number and width of the BDD, the
theorem follows. |

A known formula of B; is complicated. Trivially,
B; £ I'! and B; is much smaller than I’ in practice.
Asymptotically, By is slightly less than ©(I!) (see[14]).

The size of the BDD depends on the ordering of
edges. The existence of a good ordering of edges to
make the size of BDD smaller has strong connection
with the existence of a small separators. There are use-
ful classes of graph satisfying this property, especially
the class of planar graphs (see Lipton and Tarjan[13]
and Alon, Seymour, and Thomas[1]).

We now recall the definition of separators of
graphs. For a connected undirected graph G = (V, E)
with |V| = n vertices, G is f(n)-separable iff V' can be
partitioned into three subsets A, B and C, such that
no edge of G joins a vertex in A with a vertex in B,
neither A nor B contains more than 8n (% £B8<1
vertices, and C (called a separator) contains no more
than f(n) vertices. Let G, be a class of graphs having
O(n*)-separability closed under subgraph relation for
0 < a < 1. The planar separator theorem[13] states
that any planar graph with n vertices is in G /5.

The separator partition can recursively be applied
to graphs induced by A, B belonging to G,. Then, from
this recursive decomposition, we can naturally define
the following edge ordering: Suppose A, B, C are as in
the definition of separability. We first rename vertices
from 1 to n in the order of A, B, C, where vertices in
A, and those in B are recursively arranged among then
by applying the separator partition, and vertices in C'
are arranged arbitrarily. This vertex ordering is used
in the generalized nested dissection[12]. Then, edges
e connecting vertices u,v are ordered in the increasing
lexicographic order of (u,v) with u < v. The follow-
ing lemma bounds the size of elimination front for this
ordering.

Lemma 2: For an O(n®)-separable graph in G, with
0 < a < 1, the size of elimination front is O(n®) at any
level under the edge ordering by separator partitions.

proof: It is easy to see that, for the edge ordering, the
size of the elimination front at any level is at most the
sum of the separator size of each level of the separator
decomposition. This sum is bounded for some constant
¢ by

IEICE TRANS. FUNDAMENTALS, VOL. E80-A, NO. 4 APRIL 1997

+(())):o<na>

If we use an edge ordering induced from a vertex
ordering as in this lemma, the existence of a good elim-
ination ordering implies the existence of a good sepa-
rator; simply consider the elimination front at the stage
that the first half of vertices in the vertex ordering have
just been deleted from the front, and then the elimina-
tion front at this stage is a separator.

Combining Theorem 1 and this lemma, for graphs
in G, and further with the top-down breadth-first con-
struction algorithm in [18], we have the following.
Theorem 2: Under the edge ordering based on sepa-
rator decomposition, for an n-vertex graph in G, (0 <
a < 1). The width of the BDD representing all span-
ning trees is 20(""198") and this BDD can be computed
in 20(n%logn) time,

proof: From Theorem 1 and Lemma 2. O

[e3

Wit Wi

a

In[16], by imposing a condition on the edge or-
dering, this algorithm is shown to produce a canonical
BDD from the viewpoint of Boolean function. Here,
we do not impose such a condition, and hence lose the
canonical property. However, for reliability computa-
tion, this is sufficient and enables us to use the ordering
induced from the separators which does not satisfy the
condition in general.

For planar graphs, a better bound holds by virtue
of the planarity. This follows from a fact that possi-
ble patterns of elimination partitions under planar con-
straints are limited, and their number is expressed in
terms of the Catalan number, which is well-known in
combinatorics (e.g., see[17],[18]). Although the fol-
lowing holds for a general planar graph, we here only
prove this theorem in the case of bounded-degree planar
graphs to give a short proof.

The following lemma is used in the proof.
Lemma 3: Consider N points on a horizontal line in
the plane and suppose that, for some pairs among the
points, each pair is connected by a continuous curve
lying in the upper half plane. Supposing that, when
curves intersect, their endpoints are all in the same con-
nected component, the number of possible distinct par-
titions of the points induced by the connected compo-
nents composed of arbitrary curves is given by the Cata-
lan number Cn 41 = NL_{_I(%V) < 4N,

An illustrative example is given in Fig.2 with two
induced partitions for N = 4 points {1,2,3,4}. Since
we take intersections among curves in the upper half
plane into account, if there is a curve connecting points
1 and 3 and another curve 2 and 4, then these four points
are contained in the same connected component. With

SEKINE and IMAIL: COUNTING THE NUMBER OF PATHS IN A GRAPH ViA BDDS

AL LA,
1 2 3 4 1 2 3 4

(@) {{1,2,4}, {3}} (b) {{1,4}, {2,3}}

Fig. 2 Two ways of partitioning points on a line by curves in
the upper half plane.

this observation, the number of partitions obtained in
this way is seen to be Cy4; by using standard tech-
niques in combinatorics, and the proof is omitted.

Theorem 3: Under the edge ordering in Lemma 2 for
an n-vertex planar graph such that the degree of each
vertex is at most some constant ¢, the width of the BDD
representing all spanning trees is O(2°(v™), and it can
be computed in O(2°V™) time.

proof: The edge ordering in Lemma 2 is defined based
on the vertex ordering. To prove the theorem, we have
only to bound the width of the i-th level such that
there is a vertex numbered v and e;,...,e; coincide
with edges incident to some vertex numbered at most u.
This is because the degree of a vertex numbered u + 1
is at most ¢ and in the subsequent levels corresponding
to edges incident to this vertex the width may become
large by at most a factor of 2°.

Now, let us consider the i-th level satisfying the
above condition. Vertices are partitioned into a sub-
set V,, of vertices numbered at most v and its comple-
ment. Consider the connected components of the sub-
graph induced by vertex set V,,. For each component,
consider a subset V' of the i-th elimination front which
are adjacent to some vertex in the component. By the
contractions and deletions of edges incident to vertices
in the component, the number of partitions induced by
the connectedness of contracted edges is bounded by
0(2°UV'DY from Lemma 3.

The multiplication of these numbers for all the
connected components is an upper bound on the size
of possible elimination partitions. Since the degree
is bounded by ¢, this multiplication is bounded by
0(200Vm), m

Figure 3 illustrates the proof by a small example.
3. Computing the Number of Paths

We now consider the path counting problem. To solve
this problem, we need more properties of BDDs, and be-
fore going into detail about our results we first describe
basics of BDDs.

3.1 Ordered Binary Decision Diagrams
An ordered binary decision diagram, OBDD in short,

is a binary branching program representing a Boolean
function with some conditions. In this paper we only

685

Fig. 3 Explanation of the proof: o vertices are numbered at
most v and e vertices are numbered more than «; dotted lines are
numbered at most ¢ and real lines are numbered more than ¢; there
are three connected components of V., ; the connected components
of sizes 3, 2, 1 are adjacent to subsets, of the elimination front, of
sizes 5, 3, 4, respectively, and in this case the proof here bounds
the number of elimination partitions by Cs1 X C341 X Cag1.

consider the subgraph of OBDD reachable to the 1-
node, and call this OBDD.

An OBDD represents a Boolean function f of m
variables zi,...,x,, by a labeled acyclic graph with a
single source (root) and a single sink (1-node). Each
node besides the sink has at most two edges emanating
from it, one is labeled as 0-edge and the other 1-edge.
The sink node is labeled as 1, and is called the 1-node.
All the directed paths from the source to the I-node
have the same number of edges, and the level of a node
is defined to be the number of edges of directed paths
from the source to the node. The level of the source
is 0, and that of the sink is m. Nodes in the (i — 1)-
th level (i =0,...,m — 1) correspond to a variable z;.
Each directed path from the root to the 1-node corre-
sponds one-to-one to an assignment of x; to the label
of the edge, emanating from the node of z; on this path
(i =1,...,m), with which the function value is I.

The width w; of the i-th level of OBDD of f is
the number of nodes in the i-th level. We also define
the proper width @; of the i-th level as follows. We
can consider the OBDD of the negation of f, and de-
note the width of the i-th level of this OBDD by wj.
Then, the proper width of the OBDD of f is defined
to be @; = max{w;,w}}. The width of OBDD is the
maximum among the widths over all levels. The size of
OBDD is the total number of nodes, and varies by the
ordering of variables.

In the sequel, we regard the logical values of 0 and
1 as integers, and consider addition among them as in-
tegers. This type of Boolean formula is called an arith-
metic Boolean formula. We denote the Boolean AND,
OR, NOT by A, V, Z;, respectively.

Bryant[5] proposes algorithms for taking Boolean
operations among OBDDs. Concerning the time to per-
form such operations and the size of computed OBDDs
for nontrivial functions, the following holds which can
be obtained by careful analysis, with using some ideas
in[18]. We here omit the proof due to the space limi-
tation.

Lemma 4: Suppose two OBDDs whose proper width
at the i-th level are @; and w;". Then, the OBDD of a

686

function obtained by taking the Boolean AND or OR
for two functions of given OBDDs can be computed in
o 01’5“{5"’). Furthermore, its proper width at the
i-th level is O(w; ;).

proof: First, note that, when we consider OBDDs ex-
plicitly having the 0-node, the corresponding property
to this lemma is well known (the conventional algo-
rithm by Bryant[5] proves this).

For a function f obtained by taking the Boolean
AND of two given functions, it becomes true iff the two
original functions are true. Hence, at the i-th level, the
width of the BDD of f is at most w; ;.

In the case of the Boolean OR, the correspond-
ing function becomes true iff one of the two func-
tions are true. Then, the width is trivially bounded
by (w; + 1)(w; + 1) by using the width w; and w}".
By carefully analyzing relations between the width and
the proper width, we can obtain the lemma.]

3.2 OBDDs Representing 1-Flows

As is well known, problems related to paths such as
the shortest path problem can be formulated as a flow
problem. This subsection shows that flows of value 1
can be represented by a compact OBDD.

First, consider the undirected case. Denote by év
the set of edges incident to v in G. Define a Boolean
function flow(x) of ® = (z1,...,zm) for graph G =
(V, E) with two terminal vertices s and ¢ by

flm‘us—t(m)

- A {Eaee

veV—{s,t} \ i€év i€bv

/\(Z Tp :1)/\(Z$l = 1)

kebs lest

Zz,—-O}

This simply represents the flow conservation condition,

and hence we have the following.

Lemma 5: flow, ,(x) becomes 1 iff edges with z; =1

correspond to a flow of value 1 between s and ¢ in G.
In the directed case, denoting by §7v and 6~ v the

sets of edges emanating and entering the vertex v, re-

spectively, we similarly define a function flow,_,,(x)
by

flows—>t (:B)

= /\ (Z.’Ei=1/\2$]‘=1)

veV ~{s,t} i€stv j€s—v
\/(ZCL‘Z':O/\ ZCIZ]=0)
i€6tv jeb—v

Zwk—l Z:L‘k—o

keéts keé—s

IEICE TRANS. FUNDAMENTALS, VOL. E80-A, NO. 4 APRIL 1997

Zzl—O le—l

lestt leé—t

Lemma 6: flow,_,(x) is a Boolean function repre-
senting all flows of value 1 from s to ¢t in G.

We now analyze the size of BDD representing these

flows when the graph has an edge ordering with small
elimination front. The discussion for the undirected
case using §v and that for the directed case using 6
and 6~ are almost similar, and in the sequel we just
consider the directed case. 6* means one of §* and 6.
Suppose edges are ordered from e; to e;,.
Lemma 7: For an OBDD of (3 s1,2i = 1A
Zjeé—v'rj = 1)V QLiestoTi = 0A Zj€6—ij = 0)
for a vertex v, the proper width at the ¢-th level is made
to be at most 4 when v is in the i-th elimination front,
and | otherwise.

proof: It is easy to find an OBDD of the function
Y icsto Ti = 1 such that its proper width is at most 2
when v is in the elimination front, and 1 otherwise. For
(D ics+vTi =0A Y cs-, x; = 0), an OBDD of proper
width 1 exists. Then, using Lemma 4 with some detailed
analysis, the proper width is bounded by 2x2 = 4 when
v is in the i-th elimination front, and | otherwise. O

For 3, cs-.zx =1 and), s, 2 = 1, similar re-
sults holds by replacing 4 by 2 above. Then, by the def-
inition of the elimination front, and again by Lemma 4,
we obtain the following (we here assume the elimina-
tion front size is 2(logn)).

Lemma 8: For the graph G with n vertices and an edge
ordering whose maximum elimination front consists of
at most [vertices, there is an OBDD of flow,_,,(x)
whose width is at most 4'. Such an OBDD can be con-
structed in O(2°0)) time.

In the undirected case, a similar lemma holds for
flow,_, with replacing 4 in this lemma by 3.

3.3 Counting the Number of Paths

The OBDDs representing the flow condition can thus
be computed as above. However, from this OBDD, the
number of paths cannot be counted directly, since a flow
of value 1 does not necessarily correspond to a simple
path. In fact, a simple path between two terminal ver-
tices s and ¢ in an undirected graph is an undirected
flow of value 1 without any cycles. Same for the di-
rected case. Hence, we have to remove flows having
circular flows of value I.

Let tree(x), forest(x) be Boolean functions repre-
senting all the spanning trees and all the forests, respec-
tively. That is,

1 edgese; withz; =1
tree(x) = form a spanning tree

0 othereise

SEKINE and IMAL: COUNTING THE NUMBER OF PATHS IN A GRAPH VIA BDDS

v b

|() lO
AN AN
v, \\ ® \\ \
~ ~_ 1
c a © (©) © (©)
\ \ /
v, [1] nid

KS BDD of spanning trees

Fig. 4 OBDD:s of forests and trees of K3.

BDD of forests

tree(x) has already been treated in Sect. 2, and an al-
gorithm constructing a certain type of BDD of tree(x)
has been given. forest(x) becomes 1 when edges with
z; = 1 does not contain any cycle. Then, from the above
observations, the following hold.
Lemma 9: (a) path,_.(x) = flow,_,(x) A forest(x)
becomes 1 when edges with z; = 1 form a simple path
between s and ¢ in the undirected case.

(b) path,_,,(x) = flow,_,.(x)A forest(x) becomes
1 when edges with z; = 1 form a simple path from s to
t in the directed case.

Concerning the OBDD of forests, from the OBDD
of trees, it can be easily obtained.

Lemma 10: The OBDD of forest(zx) can be obtained
from that of tree(x) simply by replacing each 1-edge in
the BDD corresponding to a coloop by both 1-edge and
O-edge.

proof: Before going into discussions of the proof, we
first show an example. The OBDDs of forests and trees
of a complete graph K3 of three vertices are drawn in
Fig.4. In this example, in a minor obtained by deleting
edge a, edge b is a coloop, and, in a minor obtained
by deleting edge a and contracting edge b, edge c is a
coloop. Correspondingly, the OBDD of forests can be
obtained from that of trees by the operation described
in this lemma.

This lemma basically holds for the BDD represent-
ing all bases and all independent sets of a matroid. Asis
well known, for a matroid, the greedy algorithm works.
We here show this lemma based on this property.

For each forest, consider a lexicographically maxi-
mum spanning tree, with respect to the edge ordering, of
the minor obtained by contracting edges in the forests.
Then, edges in the forests and edges of the computed tree
of the minor form a spanning tree of the whole graph.
Since the computed tree of the minor is uniquely de-
termined, this spanning tree is uniquely associated with
the forest.

Then, it is easy to see that, along the path in
the OBDD representing this spanning tree, the forest is
uniquely represented by the operations in this lemma.

O

It should be noted that, without the matroidal
structure, this lemma does not necessarily hold. Then,

687

applying Theorem 2 and 3, we obtain the following
theorem.

Theorem 4: (a) For the O(n®)-separable graph G with
n vertices, there is an OBDD of path,_,(x) and that of
path, () whose width is at most O(n®")). Such
OBDD:s can be constructed in O(n®™*)) time.

(b) For planar graphs with bounded degree,
O(n°™*)) above can be replaced with O(20(vV™).

Having an OBDD representing all simple paths, it
is easy to count the number of paths, say by a similar
algorithm for the reliability, in time proportional to the
OBDD size. Hence, we obtain the following.

Theorem 5: (a) The number of paths between two ter-
minals for the class of O(n®)-separable graphs can be
computed in O(n°(™)) time in both undirected and
directed cases.

(b) For a simple planar graph with n vertices and
bounded degree, the number of paths between desig-
nated two terminals can be computed in O(20(V™)
time.

4. Concluding Remarks

By further applying the conventional BDD algorithms,
including one computing the BDD representing prime
implicants from the BDD of a given Boolean func-
tion[7], to the BDDs considered in this paper, we can
compute the following.

o the directed network reliability (from the root to
other vertices, or from the source to the sink)

o generalized directed reliability guaranteeing high
connectivity (from the root to other vertices there
are k directed paths, etc.)

e counting the number of circuits and that of cutsets
of a graph, or implicitly representing circuits and
cutsets by BDDs (this may be done in several ways;
for example, by first constructing the BDD of circu-
lation flows and then applying the prime implicant
algorithm, or by first constructing the BDD of the
negation of forest(x) and then applying the prime
implicant algorithm (cf. [7],[10])).

However, in these cases, the number of Boolean oper-
ations performed among BDDs becomes proportional
to the number of variables, and then the current theory
just tells us a trivial exponential worst-case bound. This
kind of situations are almost always the case with BDD,
but even with such theoretical background it worked
well. Our results in this paper show that as far as
the numbers of paths are concerned this theoretical dif-
ficulty is overcome by applying the output-size sensi-
tive top-down algorithm for the BDD of spanning trees.
Performing a theoretically meaningful analysis for such
generalized cases would be a challenge.

From the viewpoint of combinatorial structures, for

688

the above highly-connected version, matroid theory pro-
vides us a good framework such as matroid union and
intersection. Furthermore, the directed network reliabil-
ity from the root to other vertices has connection with
greedoids and their Tutte polynomial (e.g., see[4],[11]).
Since the Boolean functions can represent a set system
as used in this paper, it would be very interesting to
bridge the theory of BDD for Boolean functions and
such combinatorial structures.

Acknowledgment

The authors would like to express our sincere thanks
to the referees for giving many useful comments to the
original version of this paper. Part of this work of the
second author was supported by the Grant-in-Aid of the
Ministry of Education, Science and Culture of Japan.

References

[1] N. Alon, P. Seymour, and R. Thomas, “A separator the-
orem for graphs with an excluded minor and its applica-
tions,” Proc. of the 22nd Annual ACM Symp. on Theory
of Computing, pp.293-299, 1990.

[2] E.T. Bax, “Algorithms to count paths and cycles,” Infor.
Process. Lett., vol.52, pp.249-252, 1994.

[3] E. Biondi, L. Divieti, and G. Guardabassi, “Counting
paths, circuits, chains, and cycles in graphs: a unified ap-
proach,” Canad. J. Math., vol.22, pp.22-35, 1970.

[4] A.Bjérner and G.M. Ziegler, “Introduction to Greedoids,”
in Matroid Applications, ed. N. White, Encyclopedia of
Mathematics and Its Applications, vol.26, pp.284-357,
Cambridge University Press, 1992.

[5] R.E. Bryant, “Graph-based algorithms for Boolean func-
tion manipulation,” TEEE Trans. Comput., vol.C-35,
pp.677-691, 1986.

[6] C.J. Colbourn, “The Combinatorics of Network Reliabil-
ity,” Oxford University Press, 1987.

[7] O. Coudert and J. Madre, “Implicit and incremental com-
putation of primes and essential primes of Boolean func-
tions,” Proc. 29th ACM/IEEE DAC, pp.36-39, 1992.

[8] D. Eppstein, “Finding the k shortest paths,” Proc. of the
25th Annual TEEE Symp. on Foundations of Computer
Science, pp.154-165, 1994.

(9] D.D. Harms, M. Kraetzl, C.J. Colbourn, and J.S. Devitt,
“Network Reliability: Experiments with a Symbolic Alge-
bra Environment,” CRC Press, Inc., 1995.

[10] K. Hayase and H. Imai, “OBDDs of a monotone function
and of its prime implicants,” ISAAC’96, Lecture Notes in
Computer Science, vol.1178, pp.136—145, Springer-Verlag,
1996.

[11] B. Korte, L. Lovasz, and R. Schrader, “Greedoids,” Algo-
rithms and Combinatorics, vol.4, Springer-Verlag, 1991.

[12] RJ. Lipton, D.J. Rose, and R.E. Tarjan, “Generalized
nested dissection,” STAM J. Numer. Anal.,, vol.16, no.2,
pp-346-358, 1979.

[13] R.J. Lipton and R.E. Tarjan, “A separator theorem for
planar graphs,” SIAM J. on Appl. Math., vol.36, no.2,
pp.177-189, 1979.

[14] L. Lovasz, “Combinatorial Problems and Exercises,”
North-Holland, Amsterdam-New York, 1979; 2nd edition,
1993,

[15] J.S. Provan, “The complexity of reliability computations
in planar and acyclic graphs,” SIAM J. Comput., vol.15,

IEICE TRANS. FUNDAMENTALS, VOL. E80-A, NO. 4 APRIL 1997

no.3, pp.694-702, 1986.

[16] K. Sekine, H. Imai, and S. Tani, “Computing the Tutte
polynomial of a graph of moderate size,” ISAAC’95, Lec-
ture Notes in Computer Science, vol.1004, pp.224-233,
Springer-Verlag, 1995.

[17] S. Tani, “An Extended Framework of Ordered Binary Deci-
sion Diagrams for Combinatorial Graph Problems,” Mas-
ter’s Thesis, University of Tokyo, 1995.

[18] S. Tani and H. Imai, “A reordering operation for an or-
dered binary decision diagram and an extended framework
for combinatorics of graphs,” ISAAC’94, Lecture Notes in
Computer Science, vol.834, pp.575-583, Springer-Verlag,
1994.

[19] L.G. Valiant, “The complexity of enumeration and reliabil-
ity problems,” SIAM J. Comput., vol.8, no.3, pp.410-421,
1979.

[20] D.J.A. Welsh, “Complexity: Knots, Colourings and
Counting,” London Mathematical Society Lecture Note
Series, vol.186, Cambridge University Press, 1993.

Kyoko Sekine obtained M.Sc. in
Mathematical Sciences, University of Ox-
ford in 1993. Since then, she has been
a doctoral candidate at Department of
Information Science, University of To-
kyo. Her research interests include graph
theory, especially flow polynomial, Tutte
polynomial and their variant. She is a
member of OR Soc. Japan.

Hiroshi Imai obtained B.Eng. in
Mathematical Engineering, and M.Eng.
and D.Eng. in Information Engineering,
University of Tokyo in 1981, 1983 and
1986, respectively. In 1986~1990, He was
an associate professor of Department of
Computer Science and Communication
Engineering, Kyushu University. Since
1990, he has been an associate professor at
Department of Information Science, Uni-
versity of Tokyo. His research interests
include algorithms, computational geometry, and optimization.
He is a member of IPSJ, OR Soc. Japan, ACM and IEEE.

