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SUMMARY This paper surveys recent progress in the in-
vestigation of the underlying discrete proximity structures of ge-
ometric clustering with respect to the divergence in information
geometry. Geometric clustering with respect to the divergence
provides powerful unsupervised learning algorithms, and can be
applied to classifying and obtaining generalizations of complex
objects represented in the feature space. The proximity relation,
defined by the Voronoi diagram by the divergence, plays an im-
portant role in the design and analysis of such algorithms.
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1. Introduction

Clustering is a powerful tool in unsupervised learn-
ing. Clustering is the grouping of similar objects, from
which generalizations of each cluster formed by such
similar objects are obtained. When a learned cluster-
ing of observed objects is at hand and a new object is
given as a query, the problem of answering which class
the given query object belongs to arises. This prob-
lem may be regarded as a kind of the nearest neighbor
query against the clusters.

For clustering, the definition of similarity among
objects is crucial. In many applications, especially
those concerned with multimedia objects, objects have
multiple attributes, say d attributes, whose values are
integers or real numbers. Then each of such objects can
be modeled as a point in the d-dimensional space in a
direct manner. This space is called a feature space.
This enables us to treat these objects in a geometric
setting, to which many fertile properties of geometry
together with efficient geometric algorithms can be ap-
plied. In this space, the similarity of objects is rep-
resented by their dissimilarity, which is a kind of ‘dis-
tance’ of points in the space. Throughout this paper we
often use the term ‘distance’ as a measure of dissimi-
larity in an informal way and use the term ‘metric’ to
denote the distance satisfying the distance axiom in the
mathematical sense when necessary. Again, the defini-
tion of such a distance of points in the feature space
becomes crucial.

To represent the distance of points in the space,
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we often use the Euclidean distance as the most sim-
ple form for the general distance. The Euclidean dis-
tance is a metric. However, the Euclidean distance is
never a unique choice. In fact, in some cases, it may
not be invariant with respect to natural transforma-
tions which the target objects admit. Especially, for
objects arising from stochastic phenomena, statistical
and information-theoretic measures are meaningful.

Information geometry has been proposed as a
theoretically sound model representing objects hav-
ing stochastic and statistical properties by Amari [1],
Amari and Nagaoka [2] (see also [10]). In their work,
differential-geometric properties of information geom-
etry has been clarified. The divergence is naturally
introduced as a measure representing the distance of
points in the space, thus information geometry can be
a basis for learning problems mentioned above. The di-
vergence in information geometry is a generalization of
the squared Euclidean distance in the Euclidean space
and the Kullback-Leibler divergence for the exponential
family of probability distributions. Information geome-
try has been applied to learning problems with stochas-
tic nature, but its combinatorial structures have not
yet been understood well compared with differential-
geometric structures of the space.

Recently, Onishi, Imai [11]–[13], Inaba, Imai and
Sadakane [7], [9] shed light on the the most fundamental
discrete proximity relations, represented by the Voronoi
diagrams, in an information-geometric space. They de-
velop a combinatorial and algorithmic approach to the
space of information geometry. It has been shown that
the proximity structures induced by the divergence in
information geometry is combinatorially quite similar
to those in the Euclidean space. This indicates that
the space of information geometry has almost the same
combinatorial complexity, and hence can be computa-
tionally handled in a similar way. Furthermore, geo-
metric clustering becomes more natural in information
geometry, and, using the combinatorial proximity prop-
erties, the computational complexity of geometric clus-
tering in information geometry can be discussed.

From the viewpoint of clustering algorithms, these
proximity structures can be used to identify the in-
trinsic computational complexity of such unsupervised-
learning algorithms. Specifically, divergence-based
clustering has strong connection with learning the mix-
ture model. In fact, for the exponential family, which is
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the most fundamental class of probability distributions
including normal distributions, multinomial distribu-
tions, etc., the divergence-based clustering corresponds
to the classification likelihood method by Celeux and
Govaert [3]. In learning the mixture model, there have
been proposed many algorithms such as EM algorithms,
but their computational complexity has not yet been
analyzed well, and the approach in [7], [9], [12], [13] clar-
ifies the combinatorial complexity of underlying dis-
crete structures.

This paper surveys such geometric-clustering ap-
proaches in the space of information geometry. First,
examples of the feature space are described for texts
and images. We then describe a well-known example
to reveal how the definition of the distance is impor-
tant. Furthermore, an additional problem of statistical
clustering is described to show the discrete structure of
the clustering. Then, the Voronoi diagram by the diver-
gence in information geometry is introduced. Results
on this Voronoi diagram are explained, with emphasis
on its connection with geometric clustering.

2. Examples of the Feature Space

Before going into details of the geometric structures of
the feature space, it is advisable to have an intuitive
understanding of the feature space. We here select the
feature spaces of texts and images as examples, and try
to describe the importance of geometric structures.

In the full text databases, a geometric approach,
called the vector-space method, has been developed for
advanced information retrieval of full text databases
(Salton et al. [16], [17]). Roughly speaking, this method
first fixes a set of d terms, and maps each text to a
point in the d-dimensional space such that the value
in the i-th coordinate is the frequency of term i. In
image databases, it is also natural to adopt geometric
approaches in querying images by their content, as dis-
cussed in [4]. By counting the frequencies of d colors,
each image is mapped to a point in the k-dimensional
space, called the feature space of images.

These are now described in more detail with com-
monly used distances in such application fields.

2.1 Vector Space Model for Texts

In the vector-space model, all information items of
stored texts are represented by vectors, or points, of
terms, or keywords, in the space whose dimension is
the number of terms. A term is typically a word. In
automatic processing of various texts, the terms are de-
rived directly from the texts under consideration.

Since all the terms do not equally represent the
contents of texts, it is important to use a term-
weighting system which assigns high weights to terms
deemed important and lower weights to the less impor-
tant terms. There are many term-weighting systems,

and a typical one described in [16] is given by the equa-
tion ft × 1/fc (term frequency times inverse collection
frequency), which favors terms with a high frequency
(ft) in particular documents but with a low frequency
overall in the collection (fc). General nouns appear fre-
quently everywhere, and hence their weights are low,
while technical nouns insensitively appear in some spe-
cific places, and may have relatively higher weights.

Then, all texts and text queries are represented
by weighted term vectors ti in the d-dimensional space
where d is the number of terms. Of course, the l-th
element in ti is the weight assigned to the l-th term in
the document i. The similarity sim(ti, tj) between two
vectors ti and tj of two given documents is defined by

sim(ti, tj) =
tTi tj

‖ti‖‖tj‖ = cos θ

where ‖ ‖ denotes the L2 norm, and θ is the angle be-
tween two vectors ti and tj . The similarity value ranges
from 0 (low similarity) to 1 (high similarity).

Here, instead of similarity, we define dissimilarity
dis(ti, tj) between two vectors ti and tj to be

dis(ti, tj) = 1− sim(ti, tj).

Geometrically, text vector ti is mapped to a normalized
vector t̃i by the projection on the sphere with radius 1,
then, the dissimilarity between two texts ti, tj can be
considered as the squared Euclidean distance between
these normalized vector t̃i, t̃j . That is,

dis(ti, tj) =
1
2
‖t̃i − t̃j‖2.

The squared Euclidean distance is a special case of
the divergence in information geometry, and, we may
impose information-geometric structure on a manifold
consisting of normalized vectors.

We may adopt another normalization such that
each frequency vector is divided by its total frequency.
Then, for the normalized vector, the sum of coordi-
nate values becomes one. This corresponds to using
the hyperplane x1+x2+ · · ·+xd = 1, instead of sphere
x2

1 + x2
2 + · · · + x2

d = 1 as above, in the normalization
process.

With this normalization, we may regard this space
as that of parameters of multinomial (or, discrete) dis-
tributions. That is, the l-th term with the normal-
ized vector (x1, . . . , xd) is considered to appear with
probability xl. This would be the simplest probabilis-
tic model for texts, and would be too naive to capture
complex structures of texts. Yet, it provides an approx-
imation based on the theoretical model. In this case,
information geometry tells us that the distance from a
point to another should be measured by the Kullback-
Leibler divergence.

2.2 Quadratic Form Model for Images

In the Query-by-Image-Content (QBIC) system [4] the
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following measure is used to estimate the distance of
two images by their color frequency vectors. First, find
d̃ representative colors for the original color images,
and quantize the images by using the d̃ colors. Let
B = (bij) be a matrix of order d̃ such that bij is the
negative of some dissimilarity between color i and color
j. Let ξ1 and ξ2 be the normalized frequency vectors
of two images with respect to the d̃ colors, where nor-
malization is done by dividing the frequency vector by
the total count so that the sum becomes 1. Then, the
distance-like function between two images is defined to
be dis = ∆ξTB∆ξ with ∆ξ = ξ1 − ξ2.

When bij is defined to be the negative of squared
Euclidean distance between two points xi and xj in the
d-dimensional space, i.e., bij = −‖xi − xj‖2, which is
the case in the original framework of the QBIC system
based on the Luv color system with d̃ = 64 or 256 and
d = 3, then the distance dis is expressed as

dis = 2‖A∆ξ‖2

where A is the matrix whose i-th column is xi (Inaba
[7]). Hence, simply applying the singular value decom-
position of A, we can reduce the clustering problem
by the distance dis to the geometric clustering problem
with our objective function in the d-dimensional space.
Thus, the distances used in this case are all represented
as the squared Euclidean distances, which can be mod-
eled as the divergence in information geometry.

3. The Definition of the Distance Matters

3.1 Case of Normal Distributions

The following example of normal distributions is a well-
known to understand the Euclidean distance is not nec-
essarily a unique choice to measure the distance. The
probability density function of one-dimensional normal
distribution is given by

p(x;µ, σ) =
1√
2πσ

exp
(
− (x− µ)2

2σ2

)
.

where µ is the mean and σ is the standard deviation.
A normal distribution can be identified with a point
(µ, σ) in the (µ, σ)-plane, more specifically, in the (µ, σ)
upper half plane since σ > 0 (concerning the proxim-
ity relations in the upper half plane, see [14]). Then,
consider four normal distributions p(x; 1, 1), p(x; 1, 3),
p(x;−1, 1), and p(x;−1, 3). In the upper half plane,
these correspond to (1, 1), (1, 3), (−1, 1), and (−1, 3),
respectively. See Fig. 1.

In the upper half plane, these four points form
a square, and the Euclidean distance between (1, 1)
and (−1, 1) and that between (1, 3) and (−1, 3) are the
same. However, as is seen from the density functions
in the figure, p(x; 1, 1) and p(x;−1, 1) are much eas-
ier to distinguish from each other than p(x; 1, 3) and

(x;−1, 3).
In fact, we can take another pair of coordinates,

such as (µ, σ2), (µ, µ2 + σ2), rather freely instead of
the pair (µ, σ), and the Euclidean distance between
two points in such a coordinate changes. We should
adopt a measure which is statistically meaningful and
invariant under such transformations, which has been
studied from the viewpoint of differential geometry and
extended in the framework of information geometry.

3.2 Finding a Cluster in the Mixture Case

Consider a probability distribution p(x; ξ) with a prob-
ability variable (vector) x parameterized by a parame-
ter (vector) ξ. Suppose that there are k distributions
p(x; ξj) (j = 1, . . . , k), and an observation x̃ is drawn
by first choosing p(x; ξj) with probability qj among the
k distributions (

∑k
j=1 qj = 1, qj ≥ 0), and then from

the chosen distribution. An observation x is drawn by
the following probability density function:

k∑
j=1

qjp(x; ξj).

This is called the mixture distribution. We will return
to the so-called mixture clustering later in this paper,
and here we consider the problem of, for an observation
x̃ drawn from the mixture, finding a distribution among
the k given distributions from which the observation
is originally drawn. The posterior probability that x̃
belongs to a distribution p(x; ξj̃) is given by

qj̃p(x̃; ξj̃)∑k
j=1 qjp(x̃; ξj)

.

This may be regarded as a fuzzy membership function.
When it is required to identify one most likely distribu-
tion for x̃, a distribution p(x; ξj̃) attaining the following
maximum,

k
max
j=1

qjp(x̃; ξj)

is selected in most studies. Then, the domain of proba-
bility variable vector x is partitioned into the territory
Vj of each p(x; ξj) (j = 1, . . . , k):

Vj =
∏
j̃ �=j

{x | qjp(x̃; ξj) > qj̃p(x̃; ξj̃)}

The partition of the domain by Vj (j = 1, . . . , k) is
nothing but a generalized Voronoi diagram based on
the distance function p(x; ξj) (for the definition of ordi-
nary and some generalized Voronoi diagrams, see [5]).
This diagram is directly obtained from the likelihood
function.

In the sequel, we describe the Voronoi diagram in
the space of parameters of distributions with respect to
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Fig. 1 Four normal distributions.

the divergence. For the exponential family, the Voronoi
diagram in the manifold of observed data, discussed in
this subsection, and the Voronoi diagram in the space
of distribution parameters are both the projections of
the same upper envelope of hyperplanes to respective
spaces. This relation will be discussed elsewhere.

4. Statistical Manifolds of Probability Distri-
butions

A set of parameterized probability distributions form a
Riemannian manifoldM by their d parameters. For ex-
ample, a class of one-dimensional normal distribution
with mean µ and standard deviation σ form a man-
ifold M = {[µ, σ] | σ > 0}, the upper half plane.
This section describes fundamental properties of this
manifold for a wide and well-behaved class of probabil-
ity distributions, called the exponential family. Since
we will use two dual coordinates, θ-coordinate and η-
coordinate, which generalizes the polarity with respect
to a paraboloid, we will use the tensor notation.

4.1 Exponential Family

A probability distribution parameterized by θ = [θi]
belongs to the exponential family if its probability den-
sity function f(x; θ) with probability variable (vector)
x is expressed as

f(x; θ) = exp[C(x) +
∑

i

θiFi(x)− ψ(θ)].

Since
∫
f(x; θ)dx = 1, ψ is given by

ψ(θ) = log
∫
exp[C(x) +

∑
i

θiFi(x)]dx

For this θ = [θi], we define η = [ηi] by

ηi =
∫
Fi(x)f(x; θ)dx.

θ and η are two coordinate systems on the manifold M
of parameters of the distributions in the exponential
family. η is also given by

ηi =
∂ψ(θ)
∂θi

In the case of the exponential family, the dual potential
function ϕ(η) is defined in the η-coordinate system by

ϕ(η) =
∫
f(x; θ)(log f(x; θ)− C(x))dx

where θ in the right-hand side is that corresponding to
η in the left-hand side. Note that when C(x) ≡ 0, this
potential function ϕ becomes the minus of entropy of
distribution,

ϕ(θ) =
∫
f(x; θ) log f(x; θ)dx = −H(fθ).

θ is then given by

θi =
∂ϕ

ηi
.

In fact, θ = θ(p) and η = η(p) give two coordinate
systems on the manifold M of points p.
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The exponential family includes many fundamen-
tal probability distributions, such as the normal distri-
bution, Poisson distribution, exponential distribution
and finite discrete distribution.

4.2 Properties of the Divergence

Statistical manifold M of the exponential family has
very good properties as a dually flat space [2]. We
consider the θ-coordinate and the η-coordinate of the
manifold M for the exponential family. θ(p) and η(p)
denote the θ- and η-coordinate values for a point p
on M, that is, θ(p) = [θ1(p), . . . , θd(p)], and η(p) =
[η1(p), . . . , ηd(p)]. Then, the divergence between two
points p and q on M is defined as follows.

Definition 1 (Divergence): Consider the two poten-
tial functions ψ,ϕ :M → R for the exponential family.
For two points p, q ∈ M, define the divergence D(p‖q)
by

D(p‖q) = ψ(p) + ϕ(q)−
∑

i

θi(p)ηi(q)

The pair of potential functions are connected via
the Legendre transformation, that is,

θi =
∂ϕ

∂ηi
, ηi =

∂ψ

∂θi

ψ,ϕ are strictly convex, and

ϕ(q) = max
p∈S

{
∑

i

θi(p)ηi(q)− ψ(p)}

ψ(p) = max
q∈S

{
∑

i

θi(p)ηi(q)− ϕ(q)}

Hence, D(p‖q) ≥ 0, and D(p‖q) = 0 iff p = q.

D(p‖p) = ψ(p) + ϕ(p)−
∑

i

θi(p)ηi(p) = 0

But, unlike the metric, D(p‖q) �= D(q‖p), in general.
Next, we consider the relation of D(p‖q) with the

potential function ϕ and a tangent hyperplane. Add a
new coordinate z, corresponding to the height, to the
η-coordinate system, and consider the graph z = ϕ in
the [η, z]-space. For p ∈ M, lift it up to the graph
(η1(p), η2(p), . . . , ηd(p), ϕ(p)), and consider the tangent
hyperplane

z − ϕ(p) =
∑

i

∂ϕ

∂ηi
(p)(ηi − ηi(p))

=
∑

i θ
i(p)(ηi − ηi(p))

Then, for a point q ∈ M, the height difference of a
point lifted to the graph z = ϕ(η)

(η1(q), η2(q), . . . , ηd(q), ϕ(q))

to a point lifted to the above tangent hyperplane

(η1(q), . . . , ηd(q),
∑

i

θi(p)(ηi(q)− ηi(p)) + ϕ(p))

is given by

ϕ(q) −
∑

i

θi(p)ηi(q) +
∑

i

θi(p)ηi(p)− ϕ(p)

= ψ(p) + ϕ(q) −
∑

i

θi(p)ηi(q) = D(p‖q)

By the duality of the definition of divergence, this
linearization technique can be also applied in the θ-
coordinate system; namely, the divergence D(p‖q) is
also the difference of the height at the point p between
the potential function ψ and tangent hyperplane on ψ
on the point q in the θ-coordinate system.

The divergence has such a nice and natural mean-
ing, which was used to analyze the∇∗-Voronoi diagram
as will be stated in Theorem 1.

Example 1 (Euclidean case): This corresponds to a
self-dual case: ψ = ϕ =

∑d
i=1 x

2
i /2 and θ

i = ηi = xi.
The divergence is a half of the square of the Euclidean
distance.

Example 2 (Exponential family): For this family,
the divergence coincides with the Kullback-Leibler di-
vergence DK(q‖p), also known as the relative entropy,
as follows:

D(p‖q) = DK(q‖p)
In the case of the finite discrete distributions p and
q such that (ξ1(p), . . . , ξd(p)) and (ξ1(q), . . . , ξd(q)) are
the parameters for p and q,

DK(q‖p) =
d∑

i=0

ξi(q) log
ξi(q)
ξi(p)

where ξ0(p) = 1−∑d
i=1 ξi(p) and ξ0(q) = 1−∑d

i=1 ξi(q).

Thus, this dually flat structure is an extension of the
ordinary Euclidean case, and the divergence is an ex-
tension of the squared Euclidean distance.

4.3 Maximum Likelihood Method, Minimizing the
Sum of Divergences and Centroid in η-Coordinate

For a parameterized probability distribution f(x; θ),
suppose we are given a set Sx of n observations
{x(1), . . . , x(n)}. For these data, the likelihood function
is defined as

L(θ) =
n∏

l=1

f(x(l); θ)

and the maximum likelihood method finds θ that max-
imizes L(θ).

For the exponential family, we can consider the log
likelihood. Let l(x(l); θ) = log f(x(l); θ), and then L(θ)
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is maximized when

L̂(θ)=
n∑

l=1

l(x(l); θ)

=
n∑

l=1

C(x(l)) +
∑

i

θiFi(x(l))− ψ(θ).

By partial differentiation by θi

n∑
l=1

Fi(x(l))− ηi(θ)

L(θ) is maximized when ηi(θ) = 1
n

∑n
l=1 Fi(x(l)). Re-

call the definition ηi ≡ ∫
Fi(x)f(x; θ)dx, the maxi-

mum likelihood estimator is nothing but the centroid
of the manifold M in the η-coordinate system. Con-
sequently, given a set Sp of n probability distribution
{p(1), . . . , p(n)}, the centroid of the set Sp in the η-
coordinate system also becomes a maximum likelihood
estimator of the whole distribution.

On the manifold M, the distance between two
distributions are measured by the divergence. Sup-
pose, given a set Sp of n probability distribution in
the exponential family, {p(1), . . . , p(n)}, the centroid
of the set Sp in the η- coordinate system is ηi(p) =
1
n

∑n
j=1 ηi(p(j)). The sum of divergences is expressed

as
n∑

l=1

D(p‖p(l)) = nD(p‖p) +
n∑

l=1

D(p‖p(l))

Since the divergence of two identical points is 0 and
the divergence of two distinct points is positive, it is
seen that the sum of divergences is achieved only at
the centroid of points corresponding to p(1), . . . , p(n) in
the η-coordinate, thus having strong connection with
the maximum likelihood estimator.

4.4 Information Theoretic Interpretation

The divergence is not a metric, and it does not satisfy
even the symmetric property, i.e., in general D(p‖q) �=
D(q‖p). This also implies that the θ-coordinate and
the η-coordinate have different properties.

In the above discussion, we describe that the cen-
troid of observations in the η-coordinate is the maxi-
mum likelihood estimator, and hence is meaningful. In
this subsection, we briefly describe this point from the
standpoint of information theory.

The Kullback-Leibler divergence DK(p(l)‖p) rep-
resents the average redundancy when the probability
distribution p(l) is expressed by p. This is explained as
follows. The Kullback-Leibler divergence is expanded
as

DK(p(l)‖p) =
∑

ηi(p(l)) log
ηi(p(l))
ηi(p)

=
∑

ηi(p(l)) log
1

ηi(p)
−

∑
ηi(p(l)) log

1
ηi(p(l))

The first term corresponds to the code length of encod-
ing, by the approximate probability p, codes originally
generated by p(l), and the second term corresponds to
the optimal code length of encoding, by the original
probability p(l), codes generated by p(l).

Hence, minimizing
∑
DK(η(l)‖θ) corresponds to

minimizing the sum of redundancies when expressing
n probability distributions by a distribution among the
same parameterized family of distributions.

5. Voronoi Diagrams by Divergence

5.1 ∇∗-Voronoi Diagrams by Divergence

The Voronoi diagram by the divergence is investigated
in [12], [13], which is defined bas follows.

Definition 2 (∇∗-Voronoi diagram): For k generator
points r(j) (j = 1, . . . , k), the ∇∗-Voronoi diagram con-
sists of Voronoi regions V (r(j)) defined as follows in
[13].

V (r(j)) =
⋂

j′ �=j

{p | D(p(j)‖p) < D(p(j′)‖p)}

See Fig. 2 for the case of normal distributions.
For the ∇∗-Voronoi diagram, the following holds.

Theorem 1 (Onishi, Imai [13]): The ∇∗-Voronoi dia-
gram can be obtained as the projection to the manifold
M of the upper envelope of hyperplanes which are tan-
gent hyperplanes in the [η, z]-coordinate of the graph
z = ϕ(p) at [η(p), ϕ(p)].

By this theorem, the combinatorial complexity of
the ∇∗-Voronoi diagram can be bounded by the upper
bound theorem for convex polytopes.

6. Clustering by Divergence

For a given set S of n points p(l) (l = 1, . . . , n) on
the manifold M, a k-clustering is a partition of S into
nonempty k disjoint subsets S1, . . . , Sk whose union is
S.

Problem 1 (Divergence-sum clustering):

minr(j), Sj (j=1,...,k)

k∑
j=1

∑
p(l)∈Sj

D(r(j)‖p(l))

Here, r(j) is a representative point for Sj , and, since
the sum of divergence is minimized at the centroid, r(j)

is simply set to the centroid of Sj in the η-coordinate.
This clustering criterion corresponds to maximiz-

ing the Classification Maximum Likelihood (CLM) for
the exponential family [3]. The following theorem es-
tablishes connection between optimal clustering and
the underlying discrete proximity structures.
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Fig. 2 Four normal distributions and their Voronoi diagram by the divergence in the
(µ, σ) upper half plane (left) and the η-plane (right), where, in the η-plane, η1 = µ and
η2 = µ2 + η2 and the manifold is {(η1, η2) | η2 > η2

1}.

Theorem 2 (Inaba, Imai, Sadakane [9]): An optimal
clustering for the divergence-sum clustering problem is
identical with a partition by the ∇∗-Voronoi diagram
generated by the centroids of clusters.

This kind of property was known only for the case
of the sum of squared Euclidean distances. This the-
orem generalizes it to the divergence-sum case, and
hence to the classification likelihood method.

This theorem considers clustering of points on the
statistical manifold formed by parameters. For clus-
tering observed data points, as described in Sect. 3.2,
the Voronoi diagram with respect to the likelihood was
defined. This diagram is the projection of the upper en-
velope in Theorem 1 onto the manifold formed by data
points, and a similar theorem as above can be obtained.

7. Complexity of the Voronoi Partitions

By Theorem 2, k-clustering problem by divergence can
be solved by enumerating all the partitions of n points
induced by the corresponding Voronoi diagram gener-
ated by k points, and finding a partition with the min-
imum one. We call a partition of n points induced by
such a Voronoi diagram a Voronoi partition.

The number of all possible Voronoi partitions by k
generators corresponds to evaluation of the generalized
primary shatter function for a label space induced by
the Voronoi diagrams [6]. which has connection with
the VC dimension. For the primary shatter function
as well as the VC dimension, refer to [6]. That is, k

generators are numbered from 0 to k − 1, and, each of
n points is labeled by the label of a generator whose
Voronoi region contains the point. The generalized pri-
mary shatter function of this label space is the number
of all possible partitions.

In this section, utilizing the dual structure between
the η- and θ-coordinate system, we evaluate the num-
ber of all possible partitions πS(m) for the label space
S = (X,L) defined for the ∇∗-Voronoi diagram, where
X is a set of infinite points on the d-dimensional sta-
tistical manifold, and L is a set of functions from X
to {0, . . . , k − 1}. The function for the weighted ∇∗-
Voronoi diagram can be evaluated in a similar way. We
evaluate πS(m) by counting the number of cells of an
arrangement of hyperplanes in the (d+1)k-dimensional
representative space.

In the d-dimensional statistical manifold with a du-
ally flat structure, and given k representative points for
k-clustering, each of k points can be considered to move
independently. Denote by R a set of k generator points
{r(1), r(2), . . . , r(k)}, and, denote by X a set of n ob-
served points which are partitioned. We will consider
two spaces, one is the dk-dimensional space of

(θ1(r(1)), θ2(r(1)), . . . , θd(r(1)), . . . ,
θ1(r(k)), θ2(r(k)), . . . , θd(r(k))),

which we call representative space, and the other is the
k(d+ 1)-dimensional space,

(θ1(r(1)), . . . , θd(r(1)), θd+1(r(1)) = ψ(r(1)),
. . . ,
θ1(r(k)), . . . , θd(r(k)), θd+1(r(k)) = ψ(r(k))).
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Definition 3: (Equivalence relationship with re-
spect to partitioning) Suppose we are given a set X
of n points, and sets R and R′ of k generator points.
If the partitioning {X1, . . . , Xk} and {X ′

1, . . . , X
′
k} in-

duced by R and R′, respectively are identical, R and
R′ are in equivalence relationship concerning to parti-
tioning.

By the definition of the ∇∗-Voronoi Diagram,
this equivalence relationship changes only when
∃x, r(j), r(l), the sign ofD(r(j)‖x)−D(r(l)‖x) changes.
Hence, consider a hypersurface in the dk-dimensional
representative space:

D(r(j)‖x)−D(r(l)‖x)
= ψ(r(j))− ψ(r(l))− ∑

i(θ
i(r(j))− θi(r(l))ηi(x)) = 0

This can be regarded as a hyperplane in the above-
mentioned (d + 1)k-dimensional space, and the total
number of the hyperplanes is n

(
k
2

)
= O(nk2). Then,

the problem is reduced to evaluating the number of cells
of this hypersurface arrangements. Using the convexity
of potential functions, and the linearization technique,
we obtain the following.

Theorem 3 (Inaba, Imai, Sadakane [9]): The number
of distinct partitions of n points induced by the ∇∗-
Voronoi diagram generated by k points on M is
bounded by O(n(d+1)k).

Constructing this (d+1)k-dimensional hyperplane
arrangement and its section as above, all the Voronoi
partitions can be enumerated. Regarding d and k as
constants, this yields a polynomial-time algorithm to
solve our divergence-sum clustering problem.

8. Random Sampling Algorithm for 2-Cluster-
ing

If we regard k and d to be constant, the complexity
of exact algorithm runs in polynomial time, but, even
for small k and d, it becomes quite large. We extend
an approximate algorithm for 2-clustering using ran-
dom sampling technique to the divergence-sum prob-
lem, based on the algorithm in the Euclidean case [8].

The random sampling technique surely captures
some outline of the point distribution, but it is not
powerful enough to make the divergence sum relatively
small with respect to the minimum value. That is,
sampled data by themselves might not reflect the di-
vergence sum of the whole data.

The algorithms in [8], [9] proceeds as follows. Sam-
pled data can reflect the centroid with high probability,
so, try all possible partitions on sampled data, compute
the centroid using sampled data, then, compute cost
function using the whole data and get the minimum
one.

In the Euclidean case [8], the divergence is directly
connected with the variance, the cost function, while

in general cases it is not. Hence, as for analysis of
approximation ratio we restrict ourselves to the case of
finite discrete distribution.
[Randomized 2-clustering algorithm with diver-
gence]

1. Sample a subset T of m points from S by m inde-
pendent draws at random;

2. For every linearly separable 2-clustering (T1, T2) of
T in the η-coordinate system, execute the follow-
ing:

Compute the centroids t1 and t2 of T1 and T2

in the η-coordinate system, respectively;
Find a 2-clustering (S1, S2) of S by dividing
S by the hyperplane with the same divergence
between t1 and t2 in the η-coordinate system,
Compute the value of Cost(S1)+Cost(S2) and
maintain the minimum among these values;

This randomized algorithm is an approximation al-
gorithm, and its approximation ratio may be evaluated
as follows. First, we consider the error of cost function
for one cluster. Consider a set S of n points and its
subset T randomly sampled from S. The absolute error
for one cluster depends on how the estimated centroid
q(T ) is deviated from the centroid q(S) of S. Recall
the following.

n∑
l=1

D(q(T )‖p(l))−
n∑

l=1

D(q(S)‖p(l))

= nD(q(T )‖q(S))

= n

d∑
i=1

q(S)i log
q(S)i
q(T )i

This can be bounded by using the Hoeffding in-
equality. We obtain the following theorem.

Theorem 4 (Inaba, Imai, Sadakane [9]): Suppose th-
ere is an optimal 2-clustering such that the sizes of clus-
ters are within some constant factor to each other. Let
D be the minimum among the averages ofD(q(Sj)‖p(l))
for each cluster in the optimal clustering. Then, for
some constant α′ with α > α′ > 0, the randomized
algorithm finds a 2-clustering in O(nmd) time, whose
sum of divergences is within a factor of 1+c with prob-
ability at least 1− 4d exp(−2α′ (1− exp(− cD

n

)2
m).

When the divergence is the squared Euclidean dis-
tance, a tighter analysis can be done and the following
holds.

Theorem 5 (Inaba, Katoh, Imai [8]): For the prob-
lem of finding an optimum 2-clustering, which is as-
sumed to be moderately balanced in size, the random-
ized algorithm finds a 2-clustering whose value is within
a factor of 1 +O(1/(δm)) to the optimum value of this
problem with probability 1− δ for arbitrary small δ.
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