
282
IEICE TRANS. INF. & SYST., VOL. E82–D, NO. 1 JANUARY 1999

PAPER
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SUMMARY In geographical databases for navigation, users
raise various types of queries concerning route guidance. The
most fundamental query is a shortest-route query, but, as dynam-
ical traffic information newly becomes available and the static
geographical database of roads itself has grown up further, more
flexible queries are required to realize a user-friendly interface
meeting the current settings. One important query among them
is a detour query which provides information about detours, say
listing several candidates for useful detours. This paper first re-
views algorithms for the shortest and k shortest paths, and dis-
cusses their extensions to detour queries. Algorithms for finding
a realistic detour are given. The efficiency and property of the
algorithms are examined through experiments on an actual road
network.
key words: geographical databases, car navigation, shortest
paths, detour query

1. Introduction

In geographical databases, various types of queries
arise, especially for spatial and topological queries. One
such typical query is a shortest-path query, which is cru-
cial for car navigation, etc. Recently, as dynamical traf-
fic information newly becomes available such as ATIS
(Advanced Traffic Information Service), and VICS (Ve-
hicle Information & Communication System), more so-
phisticated queries come to be required. Also, the static
geographical database of roads itself has grown up fur-
ther, and similarly in this respect advanced types of
queries are necessary to realize a user-friendly inter-
face meeting the current circumstances. One important
query among them is a detour query which provides
information about detours; for example, enumerating
several candidates for useful detours.

From the algorithmic viewpoint, the shortest path
problem itself has been studied very well for a long
time. For example, the Dijkstra method is the most
famous and traditional algorithm for this problem. To
make this algorithm more efficient, many algorithms

Manuscript received May 8, 1998.
Manuscript revised August 28, 1998.

†The author is with IBM Tokyo Research Laboratory,
Yamato-shi, 242–0001 Japan. This work was done while
the author was at Department of Information Science, Uni-
versity of Tokyo.

††The author is with the Department of Information Sci-
ence, University of Tokyo, Tokyo, 113–0033 Japan.

†††The authors are with Sumitomo Electric Industries,
Ltd., Osaka-shi, 554–8511 Japan.

has been considered, such as the A∗ algorithm, the
bidirectional Dijkstra method, and the bidirectional A∗

algorithm, which are often cited as AI (Artificial Intel-
ligence) search techniques [3]–[5], [7], [9].

The k shortest paths problem is a generalization
of this shortest path problem. If you need “good” so-
lutions other than the optimal one, or optimal solution
under certain constraints, it is worth while to find the
k shortest paths quickly. Hence, this problem is also
very applicable in many fields, such as network connec-
tion routing, finding a detour in navigation systems,
DNA alignment [8], etc. This problem is also studied
very well, and, recently, Eppstein has proposed a very
efficient algorithm for this. According to this, for a di-
rected graph with n vertices and non-negative m edges,
the k shortest paths from one source to l destinations
are known to be obtained in O(m+ n logn+ lk) time,
or in sorted form in O(m + n logn + lk log k) time [1].
But this original algorithm requires searching with the
Dijkstra method from the source to the other all ver-
tices. Thus, reduction of the searched region is desired,
especially in case the graph is very large.

This paper extends the Eppstein’s algorithm, using
upper bound of the length of the suboptimal paths and
the technique of bidirectional A∗ algorithm, to reduce
the searched region in the 2-terminal k shortest paths
problem. This paper then discusses the detour problem
as one of its applications. The ‘detour’ is a suboptimal
path which is short but overlaps little with the short-
est path. But this concept is ambiguous. Because of
this ambiguity, the detour problem is not so studied as
the shortest path problem. Hence this paper defines
‘detour’ precisely, and proposes algorithms for finding
a realistic detour based on previous algorithms. Then
the efficiency of these algorithms are examined through
experiments on an actual road network.

2. Preliminaries

In this paper, let the graph in assumption be a directed
graph, G = (V,E), in which l(v,w) is the length of the
edge (v,w) which is always non-negative, and s be the
source and t be the destination when we consider the
shortest path problem or the k shortest path problem.
Add to this, let d(u, v) be the shortest path length from
u to v, n be |V | and m be |E|.
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2.1 Dijkstra Method and A∗ Algorithm

The Dijkstra method is a basic algorithm to solve the
shortest path problem. We here describe it as a spe-
cial case of the following A∗ algorithm for conciseness.
The A∗ algorithm finds the shortest path from source
s to destination t efficiently, using a heuristic estimate
h(v) (>= 0) for the length of the shortest path from ver-
tex v to the destination t. The estimate is not longer
than the actual shortest path to the destination [3], [9].
The outline of the algorithm is as follows:

1. Let S be the empty set, and ps(v), the potential
of a vertex v, be +∞ except for the source s. Let
ps(s) be zero.

2. Find the vertex v0 which has the minimum value
of ps(v) + hs(v) in V − S and add v0 to S. If v0
equals to t, then halt.

3. For all vertices v such that (v0, v) is in E, if
ps(v0)+ l(v0, v) is less than ps(v), replace the path
from s to v with the path from s to v0 and the
edge (v0, v), and let ps(v) be ps(v0) + l(v0, v), and
remove v from S if v is in S.

4. Go to step 2.

Here, ps(v) also denotes the length of a temporary
shortest path from s to v. ps(v) +hs(v) is a temporary
estimate for the shortest path from s to t via v.

The Dijkstra’s algorithm is an A∗ algorithm with
h(v) = 0. Since all edge lengths are non-negative, the
shortest path lengths are at least 0, and this estimator
satisfies the condition of A∗. Using this estimator, the
Dijkstra algorithm searches all directions regardless of
where the destination is, which is a disadvantage of the
Dijkstra method.

The searched vertices by the A∗ algorithm is al-
ways within searched vertices by the Dijkstra method.
In this way, the A∗ algorithm can get the shortest path
more effectively. In the A∗ algorithm, the shortest path
from s may not appear first, and a shorter path may
be found in the future search, which is the reason of
the removal of vertices from S in step 3. It may make
this algorithm rather inefficient. This can be avoided if
the estimator is dual feasible: The estimator hs for the
shortest path to t is called dual feasible if and only if
hs satisfies the following constraint:

∀(u, v) ∈ E l(u, v) + hs(v) >= hs(u) (1)

For example, Euclid distance between v and t can be
used for a dual feasible estimator in a graph of a road
network. Also, h(v) = 0 for the Dijkstra’s algorithm
is dual feasible. If the estimator is dual feasible, the
A∗ algorithm can be easily translated to the Dijkstra
method by modifying the length of the edges [5]:
Theorem 1: For a dual feasible estimator hs for s,
the Dijkstra method on a graph in which the length

l(u, v) of edge (u, v) is replaced by l′(u, v) as follows is
equivalent to the A∗ algorithm on the original graph.

l′(u, v) = l(u, v) + hs(v)− hs(u) (2)

2.2 Bidirectional Methods

The Dijkstra method and the A∗ algorithm are unidi-
rectional algorithms. This means one of the two ver-
tices, that is the source or the destination, plays less
role than the other. The bidirectional Dijkstra method
solves this problem [4], [7]. In the bidirectional Dijkstra
method, searches are done both from the source and
destination using the Dijkstra method. In outline, the
algorithm is like the following:

1. Let S and T be the empty set, and the potentials
ps(v) for s and pt(v) for t be both +∞, except for
ps(s) and pt(t). Let ps(s) and pt(t) be zero.

2. Add vertex v0 which has the smallest potential for
s in V − S. Then, go to step 7 if v0 is in T .

3. For all vertices v such that (v0, v) is in E, if
ps(v0)+ l(v0, v) is less than ps(v), replace the path
from s to v with the path from s to v0 and the edge
(v0, v), and let ps(v) be ps(v0) + l(v0, v).

4. Add vertex v0 which has the smallest potential for
s in V − T . Then, go to step 7 if v0 is in S.

5. For all vertices v such that (v, v0) is in E, if l(v, v0)
+pt(v0) is less than pt(v), replace the path from v
to t with the edge (v, v0) and the path from v0 to
t, and let pt(v) be l(v, v0) + pt(v0).

6. Go to step 2.

7. Find the edge (u, v) minimizing ps(u) + l(u, v) +
pt(v) such that u is in S and v is in T . The short-
est path from s to t consists of the path from s to
u and the edge (u, v) and the path from v to t if
ps(u) + l(u, v) + pt(v) is less than ps(v0) + pt(v0),
otherwise it consists of the path from s to v0 and
the path from v0 to t.

The paths which pass vertices in neither S nor T
are always longer than ps(v0) + pt(v0). Thus, the ob-
tained path is guaranteed as the shortest path. If the
graph is homogeneous, the number of vertices searched
with this algorithm is half of that with the Dijkstra
method, because these searched vertices are in two cy-
cles whose radii in this algorithm are half of the radius
in the unidirectional Dijkstra method. But this bidirec-
tional Dijkstra method searches all directions regardless
of where the other terminal is. If we have dual feasible
estimators for both of the source and the destination,
we can overcome this disadvantage, using a technique
like in Theorem 1 based on the following theorem:
Theorem 2: By searching the shortest path with the
bidirectional Dijkstra method on the graph in which the
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length l(u, v) of edge (u, v) is replaced by the following
l′(u, v), we can get the shortest path. Let hs and ht be
dual feasible estimators for source s and destination t.

l′(u, v) = l(u, v) +
hs(v) − hs(u)

2
+
ht(u)− ht(v)

2
.

(3)

In this algorithm, the forward search is equiva-
lent to that of the A∗ algorithm using estimator of
(hs(v)− ht(v))/2, and backward (ht(v)− hs(v))/2.

2.3 Eppstein’s Algorithm

As for finding the k shortest simple paths (i.e. paths
without cycles), the best known bound is O(k(m +
n logn)) [6]. On the other hand, Eppstein proposed
an algorithm which finds the k shortest paths implic-
itly regardless of cycles, in time O(m+ n logn+ k), or
O(m+n log n+k log k) if the output paths are sorted [1].
We discuss the latter algorithm here.

At first, we define δ(u, v) for the edge (u, v) by

δ(u, v) = l(u, v) + d(v, t) − d(u, t) (4)

δ(u, v) means how much longer it will take than the
optimal way if we go to the edge (u, v), and hence its
value is non-negative. Consider a shortest path tree to
t with these edge lengths. For an edge (u, v) on this
tree, δ(u, v) = 0. An edge not on the shortest path
tree is called a sidetrack. If we go along a s-t path p
other than the shortest path, there must be sidetracks
on the path, and we define sidetrack(p) as the nearest
sidetrack to t within them.

We can consider a heap, in which the parent of a
path p is a path which is same as p until sidetrack(p)
and go along the shortest path instead of going to
sidetrack(p). We define this parent of p as parent(p).
The root of the heap is the shortest path, and all the
path from s to t appear in the heap once. In this heap,
p is δ(sidetrack(p)) longer than parent(p).

A heap is a p-heap if the node of the heap has at
most p children. The basic concept of the Eppstein’s
algorithm is to modify this path heap to 4-heap. Once
the 4-heap has made, we can get the k shortest paths
in O(k) time, or O(k log k) time if we sort the output
paths [2]. The following is the outline of this algorithm:

1. Make the shortest path tree from all the vertices
to t by the Dijkstra method.

2. For each vertex v, construct HG(v), that is, a 3-
heap of sidetracks (u, u′), such that u is on the
shortest path from v to t, ordered by δ(u, u′) de-
fined above, as follows:

a. For each vertex v, make Hout(v), that is a 2-
heap in which the root has only one child, of
sidetracks (v, v′) ordered by δ(v, v′).

b. For each vertex v, make HT (v), i.e., a 2-heap

of vertices on the shortest path from v to t
ordered by the value δ of the root in the heap
made in step 2-(a). For details, see [1]. Then
merge Hout(v) and HT (v) to make HG(v).

3. For each v in G, make a pointer from each node in
HG(v), which represents a sidetrack (u, u′) in G,
to the root of HG(u′), and define the length of this
new edge as the value of the root.

4. Make a node for each v in G, and make a pointer
from this new node to the root of HG(v). Let the
length of the new edge be the value of the root.
Let this new graph be P(G).

5. Find a heap Hv(G) in P (G) for any v, regarding
the root as the node made in step 4 for v, and the
value of a node as the length from the root to the
node. Find the k smallest nodes in this virtual
heap Hv(G). Using a correspondence between the
nodes in Hv(G) and the paths from v to t in G, the
path from the node of the heap can be restored.

This algorithm is very efficient for finding the k
shortest paths from all the vertices to one destina-
tion, or one source to the other vertices. But, for the
2-terminal problem, this algorithm may search much
more vertices than necessary.

3. New Approach for the 2-Terminal k Short-
est Path Problem

3.1 How to Use A∗ Algorithm

How to use A∗ Algorithm in computing the k shortest
path in 2-terminal problem is discussed in this section.

If a dual feasible estimator is given, the replace of
the length of an edge l(u, v) with l′(u, v) described at
(2) in Theorem 1 does not change the k shortest paths:
Theorem 3: The k shortest paths from s to t on a
graph in which the length of the edge (u, v), or l(u, v)
is replaced by l′(u, v) as in (2) are same as those on the
original graph.
Proof: Let p be a path from s to t, and hs be a
dual feasible estimator for s. Then the length of p, or
length′(p) in new graph is described by the length of p,
or length(p) in the original graph as follows:

length′(p) =
∑

(u,v)∈p

l′(u, v)

=
∑

(u,v)∈p

l(u, v) + hs(t)− hs(s)

= length(p) + hs(t)− hs(s) (5)

Hence, all the paths on the new graph from s to t has
length hs(s)−hs(t), which is constant. This means the
k shortest paths on the new graph are same as those on
the original graph. ✷
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The same is the case with l′(u, v) of (3) in Theo-
rem 2:
Theorem 4: The k shortest paths from s to t in a
graph, in which the edge length l(u, v) is changed to
l′(u, v) as in (3), are same as those in the original graph.
Proof: All the paths from s to t in the modified graph
are only a constant shorter than in the original:

length′(p) =
∑

(u,v)∈p

l′(u, v)

=
∑

(u,v)∈p

l(u, v) + h

= length(p) + h (6)

h is constant, that is (hs(t) + ht(s)− hs(s)− ht(t))/2.
This means the k shortest paths are same in the two
graphs. ✷

Thus we can use either unidirectional or bidirec-
tional A∗ algorithm implicitly by changing the length
of the edges.

3.2 Unidirectional Method

Letting popt be the shortest s-t path, we define ∆(p) for
a s-t path p as length(p)− length(popt). If we can use
the upper bound of this ∆(p), or ∆̄, where p is within
the k shortest paths, we can easily reduce the searched
vertices.

When we do not need paths a constant longer than
the shortest one or we only want to list the paths a con-
stant longer than the shortest one at most, we should
let ∆̄ be this constant. If we can know approximate
value of ∆̄ by experience or other methods or really
know the value, we can use it.

The algorithm is very simple, and the outline of
this is as follows:

1. If a dual feasible estimator for t is given, replace
length of each edges as in Theorem 3.

2. Search from t by the Dijkstra method until the
shortest path from s to t is discovered.

3. Search successively until a vertex v from which the
shortest path to t is more than ∆̄ longer than that
from s.

4. Find the k shortest paths in the searched region,
by Eppstein’s algorithm.

If a path passes a vertex v not in the searched re-
gion, this path is longer than length(popt) + ∆̄ because
the shortest path from v to t is longer than it. So, all
the obtained k paths are shorter than length(popt)+∆̄,
which is supposed to be longer than the actual kth
shortest path. Thus, the obtained k paths are the ac-
tual k shortest paths.

3.3 Bidirectional Method

The Eppstein’s algorithm can be used both on the
shortest path tree from the source and on that to the
destination. Thus it is a natural idea to use a bidirec-
tional method for finding the k shortest paths. But it
needs some modification to the Eppstein’s algorithm.

The heaps obtained by the Eppstein’s algorithm
are not enough if we use a bidirectional method. To
solve this problem, we propose a new path heap graph
involving another heap called Hmid. We also use ∆̄
defined at 3.2.

In the algorithm, let S and T be sets of searched
vertices from s and t by bidirectional Dijkstra method,
ps and pt be potentials, ds be the length of the shortest
path from s to the last vertex added to S, and dt be the
length of the shortest path from the last vertex added
to T to t. The following is the outline of the algorithm:

1. If a dual feasible estimator for s and that for t are
given, change the length of the edges as in Theo-
rem 4.

2. Search by the bidirectional Dijkstra method both
from s and t, until the shortest path (popt) is dis-
covered.

3. Continue searching until ds + dt is longer than
length(popt) + ∆̄.

4. Let set of edges F be {(u, v)|(u, v) ∈ E, u ∈ S, v ∈
T − S}, and set of vertices U be {v|(u, v) ∈ F}.
(see Fig. 1) Construct heap Hmid of vertices in U
ordered by the value q(v) = ps(v) + pt(v). Note
that v is not in S but ps(v) is not +∞. In this
step, if q(v) is larger than length(popt)+∆̄, we can
ignore v.

5. Construct Eppstein’s path heap graph on the
shortest path tree from s, only in Gs = (S +
U, {(u, v)|u ∈ S, v ∈ S + U}) and on that to t only
in Gt = (T, {(u, v)|u, v ∈ T }). Then let the heap
found in the graph be Hs(v) and Ht(v).

6. For each v in U , make a new edge from a node
in Hmid which represents v, to the roots of Hs(v)
and Ht(v), whose length is the value δ of the roots.
Then think as if there is an edge from each node

Fig. 1 Situation of U .
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in Hs(v) to the root of Ht(v). (This pointer is de-
cided when the path heap graph is searched.) The
length of it is also δ of the root of Ht(v). Note that
the completed virtual heap is 5-heap.

7. Find the k shortest paths from the root of the en-
tire heap by the same way as in Eppstein’s algo-
rithm.

Notice that, in step 5, we have to constructHt only
in T . It is because once a s-t path has gone out from
S, the rest of the path cannot pass any vertices out of
T , because ds + dt is guaranteed to be larger than any
path within the k shortest paths.

In step 4, Hmid can be constructed by the modifi-
cation of the heap used for searching from s in step 2
and 3, which can be done in O(n) time. Add to this,
step 6 can also be done in O(n) time.

4. Detour Problem

‘Detour’ is a path which is short but overlaps little with
the shortest path. To find it is very important in route
navigation systems, ATM network, and so on. We dis-
cuss how to gain this detour based on the above algo-
rithms.

4.1 How to Compute Overlapping Length

In searching a detour, the overlapping length of a de-
tour with the shortest path is an important factor. Let
this value for a path p be overlap(p). This length can
be computed very fast for every path encountered in
searching in the path heap graph. The following is the
outline of this procedure:

1. For each vertex v in V , compute the length of the
part of the v-t shortest path which overlaps with
the s-t shortest path. This can be done in O(n)
time, by the depth first search on the shortest path
tree to t for example. Then, let this value be ov(v).

2. For each sidetrack (u, v), compute following
δ′(u, v):

δ′(u, v) = ov(v) − ov(u) (7)

3. When we search in the path heap and obtained a
path p, we compute the overlap(p) as follows. Let
q be parent(p) and e be sidetrack(p).

overlap(p) = overlap(q) + δ′(e) (8)

Note that the same technique can be easily done
in the bidirectional method described in 3.3.

4.2 Definition of ‘Detour’

‘Detour’ is not so clear concept. Thus we must define

it precisely. In easiest way, we can define it as follows
for example:
Definition 1: ‘Detour’ is the shortest path which has
overlap, which is shorter than the half of the shortest
path length, with the shortest path length. ✷

But this definition requires searching the path heap in
order until a desired path will be found, which means
it takes O(k log k) time in checking k paths, and set-
ting ∆̄ is difficult. Add to this, the obtained detour
by this definition may branch off and join the shortest
path many times. In the car navigation system, such a
detour is not desirable. Furthermore, as will be seen in
computational results in the next section, the number
of suboptimal paths, including such undesirable ones,
is enormous, as in Fig. 3.

Taking these things into consideration, we define
‘detour’ as following:
Definition 2: ‘Detour’ is ∆̄ longer than the shortest
path at most, branch off and join the shortest path
only once, and has the smallest overlap with the short-
est path among such paths. If several paths satisfies
these constraints, choose the shortest one. ✷

Notice that the detour defined in either Definition 1
or 2 has no cycles unless there exists a zero-length cycle
in the graph. As is seen from the number of suboptimal
paths containing cycles in Table 1 in the next section,
this number is relatively small.

From the algorithmic viewpoint, an extension of
Eppstein’s algorithm [8] shows that the number of de-
tours of this type is much smaller than the total number
of suboptimal paths, and moreover such detours can be
found without any serious overhead. Hence, consid-
ering this type of detours is quite promising from the
viewpoint of practical applications.

4.3 How to Obtain Detour

We discuss how to get the detour defined in Definition 2,
in this section.

4.3.1 Unidirectional Method

The method to search the paths which branch off and
join the shortest path only once in the path heap is as
follows: If u of (u, v) = sidetrack(p) is on the shortest
path tree to t and parent(p) is not the shortest path,
or popt, we only have to search children of p in HT .
This technique can be also applied in the bidirectional
method, and note that listing paths which branch off
and join the shortest path i times can be done with a
similar method.

Add to this, notice that, if there is longer over-
lap from s to sidetrack(p) along p than the temporary
shortest overlap, we also have to search children of p
only in HT . To make this technique more efficient, we
should not search the children of popt in HT (s) from the
root of it, but search Hout(v) and its children from s to
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t along popt. The same technique can be used in finding
the detour defined in Definition 1. But this technique
is difficult to use with the bidirectional method.

4.3.2 Bidirectional Method

If the length of the edges are all integers, and ∆̄ is not
very large, we can compute the detour efficiently based
on the bidirectional method in 3.3. The outline of this
algorithm is as follows:

1. Construct Hs and Ht as in 3.3.

2. Let vmid be the nearest vertex to s along popt in
U . For each vertex v in U except for vmid, do the
following:

a. If q(v) is larger than length(popt)+∆̄, skip (b)
and (c).

b. Let ∆̄′
v be ∆̄−q(v). SearchHs(v) for s-v paths

which branch off popt only once as in 4.3.1,
and not more than ∆̄′

v longer than the short-
est s-v path in Gs. At the same time, make a
table Tv whose size is ∆̄′

v + 1 and fill in Tv[i]
the path whose overlapping length with popt
is the shortest among the paths s.t. ∆(p) <= i.

c. Search Ht(v). Note that, for some i, if there
is no path in Tv[i] or the overlapping length of
the path in Tv[i] is longer than the temporary
shortest overlapping length, or l, we only have
to search paths less than l− i longer than the
v-t shortest path.

3. If the length of the vmid-t shortest path in Gt, or l,
is shorter than the temporary shortest overlapping
length, find the detour between s and vmid in Gs

using ∆̄′
v − l as ∆̄.

4. If the length of the s-vmid shortest path in Gs, or l,
is shorter than the temporary shortest overlapping
length, find the detour between vmid and t in Gt

using ∆̄′
v − l as ∆̄.

In step 2, we can search either Hs(v) or Ht(v) first.
To make this technique more efficient, we should sort
v in U ordered by q(v), and search from the vertex of
which q(v) is large. This is because if q(v) is larger, the
overlapping length tends to be shorter. In step 3 and
4, use the techniques in 4.3.1.

4.3.3 Method for the Planar Graph

A planar graph has a good feature. If overlap(p) is
larger than overlap(parent(p)), there are three cases.
If popt and parent(p) are like in Fig. 2, p must take the
form of (a), (b) or (c). If p takes the form of (a), we
have to search the children of p only in HT .

Determining which form p takes is a little difficult.
But, fortunately, in most cases p takes the form of (a).

Fig. 2 Searching paths in a planar graph.

It means, if we do not require the exact detour defined
in Definition 2, we can ignore the cases (b) and (c).

The road network is not a planar graph, but prop-
erty of it is similar to it. Hence, this technique may
have some effect on the road network, which will be
verified through experiments as in Table 4.

5. Experiments on Road Network

In this section, we investigate the efficiency of algo-
rithms described above through experiments on the ac-
tual road network of 160 kilometers times 80 kilometers
region in Tokyo metropolitan area. As the length of
each edge, we used the necessary time (seconds) to pass
the edge, which is rounded off to an integer, rather than
the distance along the edge. Accordingly, we used Eu-
clid distance to t and from s divided by the maximum
speed, that is 105 kilometers per hour, as hs and ht.

5.1 Property of the Road Network

Figure 3 shows ∆ of the kth shortest path in case of
Hamadayama to Hongo. According to this, ∆ increases
in proportion to log k. This may help the estimation of
∆̄ used in Sect. 3.

In the algorithms in Sect. 4, we search paths re-
gardless of cycles. If there are many paths with cycles
among suboptimal paths, the algorithms may not work
well, because the detour defined by Definition 2 has no
cycle. Table 1 shows the ratio of paths with cycles in
the suboptimal paths whose ∆’s are smaller than 100,
in cases (a) Yumenoshima - Hongo (b) Narita - Ichihara
and (c) Sayama - Chosi.

According to this table, the paths with cycles are
relatively rare among the suboptimal paths. This ta-
ble also shows that the number of suboptimal paths
increases in cases such that the paths passes the urban
areas or the distance between the terminals is large.
The example (a) is the former case and (c) is the latter
case.

5.2 Efficiency of the Extended Eppstein’s Algorithm

Table 2 shows the number of the searched nodes in
finding the k shortest path in case of Hamadayama to
Matsudo. Note that (f) means forward search and (b)
means the backward search. In this experiment, we
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Fig. 3 Relation between the k and ∆.

Table 1 The number of paths within ∆ < 100.

s-t d(s,t) � paths � paths with cycles (%)

(a) 1010 780299 14828 (1.9%)
(b) 2851 202531 17857 (8.8%)
(c) 8769 674630 111644 (16.5%)

Table 2 Searched nodes by various algorithms.

k 1 10 100 1000 10000
length 2165 2170 2184 2203 2224
Dij. (b) 11162 11203 11305 11422 11545
A∗ (b) 5816 5871 6034 6252 6542
Bi-Dij. (f) 2812 2812 2882 3011 3135

(b) 2794 2794 2874 3012 3150
Bi-A∗ (f) 1325 1325 1388 1557 1752

(b) 1352 1352 1402 1555 1743

used the actual ∆ of the kth shortest path as ∆̄, so
that we can evaluate the best case of these algorithms.

According to this table, the number of the searched
nodes by the bidirectional method is about half of that
by the unidirectional method in both of the cases using
A∗ algorithm and Dijkstra method. On the other hand,
the number of them using A∗ algorithm is also about
half of that not using A∗ algorithm in both of the cases
unidirectional and bidirectional. Accordingly, the algo-
rithm using the bidirectional A∗ algorithm is far better
than those of the others. But, as k increase, the effect
of the bidirectional A∗ algorithm seems to decrease, so
it may not so efficient if k is enormously large. To sum
up, using the bidirectional A∗ algorithm is best, as long
as k is not much larger than the size examined in this
experiment.

Table 3 Searched paths by various algorithms.

(1) Hamadayama - Hongo (length(popt) = 891)

∆̄ 20 40 60 80 100 120
(a) 11 48 261 1180 5115 20246
(b) 9 35 185 869 3880 15348
(c) 1 6 67 375 1979 8109
(d) 2 14 97 362 1542 5883
(e) 2 28 94 237 891 3115

(f) 157 157 58 58 58 58
(17.6%)(17.6%)(6.5%) (6.5%) (6.5%) (6.5%)

(2) Sayama - Matsudo (length(popt) = 3256)

∆̄ 20 40 60 80 100 120
(a) 466 7174 61544 418016 2406750 12474190
(b) 108 324 1078 3259 12638 63811
(c) 107 273 954 3004 11973 37466
(d) 69 136 451 1290 5395 8689
(e) 69 136 451 1295 5379 8670

(f) 3159 1837 1837 1837 1753 1201
(97.0%)(56.4%) (56.4%) (56.4%) (53.8%) (36.9%)

5.3 Efficiency of the Algorithms for the Detour Prob-
lem

Table 3 shows the efficiency of algorithms in cases (1)
Hamadayama-Hongo and (2) Sayama-Matsudo. In the
table, (a) is the number of paths at most ∆̄ longer than
popt, (b) is that of paths who branch off and join popt

among them, (c) is that of searched paths by the algo-
rithm in 4.3.1, (d) and (e) are those of searched paths
by the algorithm in 4.3.2. In (d), we searched Hs first,
and in (e), Ht first. (f) is the overlapping length with
popt of the obtained detour and its ratio to the length
of popt.

According to 5.1, the farther the 2 terminals are,
the more suboptimal paths exists. In algorithm in 4.3.2,
if we search Hs first, the searched paths in Ht is re-
duced, and vice versa. Add to this, if ∆̄ is large in
compared with the distance of two terminals, the ver-
tices in U may be nearer to t than to s. It means that
we should search Ht first in such a case. This can be
seen in the case (1) especially when ∆̄ is larger than 80
seconds. But in case of (2), such phenomenon is not
seen because the distance of the 2 terminals is much
larger.

According to the table, in general, the best method
is to use the algorithm in 4.3.2 and search Ht first, but
there are some cases that another algorithm is better.

Figure 4 shows the obtained detour from Sayama
to Matsudo when ∆̄ is 100 seconds and 120 seconds. In
the figure, the thickest line is the shortest path, and
the relatively thinner line which branch off it is the ob-
tained detour. Note that the left terminal is Sayama
and the other Matsudo.

In a road network, intersections cannot be nodes in
the graph, for the reasons that costs of turning left or
right or going straight in intersections differ, we cannot
make U-turn in most intersections, and so on. Accord-
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(1) ∆̄ = 100

(2) ∆̄ = 120

Fig. 4 Detour between Sayama and Matsudo.

Table 4 Effect of the technique in 4.3.3.

∆̄ 20 40 60 80 100 120

(1) (a) 1 6 67 374 1952 8000
(b) 2 26 81 190 580 1658

(2) (a) 107 261 808 2443 10290 31316
(b) 68 133 385 1018 4472 24321∗

* Failed finding the optimal solution

ingly, we let a node in the graph be one side of a road
segment between intersections. Hence, in a road net-
work, the detour defined in Definition 2 can cross the
shortest path at intersections.

The road network is not a planar graph, but we
must examine the effect of the technique in 4.3.3 be-
cause the road network may have a feature similar to a
planar graph.

Table 4 shows the effect of this technique. This
table shows the number of searched paths in cases of
(1) Hamadayama to Hongo and (2) Sayama - Matsudo
(same cases as in Table 3) by the algorithms (a) unidi-
rectional method and (b) bidirectional method search-
ing Ht first.

According to this, in most cases, the optimal de-
tour is obtained, and the number of the searched paths
are decreased. But in computing the detour from
Sayama to Matsudo when ∆̄ is 120 by the algorithm
(b), we failed finding the optimal one but the same
one as when ∆̄ = 100. Figure 4 shows the reason of
this. The detour crosses the shortest path when ∆̄ is
120. Such paths are difficult to obtain with this tech-
nique. Add to this, we searched with this technique

much more paths than without it in this case. It is be-
cause we failed to find the path which has little overlap
with the shortest path, and as a result of it, we could
not cut away the unnecessary paths in searching.

Thus, it is not strongly recommended to apply this
technique to the road network. But if we deal with a
planar graph, we should take this technique into con-
sideration.

6. Conclusions

In this paper, we first reviewed algorithms for the short-
est path problem such as the Dijkstra method, A∗ algo-
rithm, bidirectional Dijkstra method, and bidirectional
A∗ algorithm, and also discussed about Eppstein’s al-
gorithm which is for the k shortest paths problem.

Based on these algorithms, we proposed how to im-
prove Eppstein’s algorithm for the 2-terminal k shortest
paths problem, using the upper bound of the length of
the kth shortest path. We first showed we can use the
A∗ algorithm in finding the k shortest paths both in
the unidirectional method and in the bidirectional one.
Then, we extended the Eppstein’s algorithm to use with
the bidirectional methods.

For the application of these algorithms, we dis-
cussed on the detour problem. This problem is a prob-
lem of finding a short path which overlaps little with
the shortest path. First, we defined what the ‘detour’
is, and then proposed the algorithms to find it. We
described a technique when we use the unidirectional
method, then another algorithm using the bidirectional
method which can be used under certain constraints,
and an approximate method for the problem in a pla-
nar graph.

These algorithms are examined in the experiments
in the actual road network. For the k shortest path
problem, if a proper upper bound of the kth shortest
path length are given, the extended Eppstein’s algo-
rithm using bidirectional A∗ algorithm showed the best
performance. For the detour problem, the method us-
ing the bidirectional method is more efficient than the
other algorithms in most cases. In this problem, the
approximate technique for a planar graph is not so ef-
fective for the road network which is not a planar graph.

Constructing an efficient algorithm for the 2-
terminal k shortest path problem without using the
value ∆̄, and algorithms fit for the road network, which
is constructed on hierarchical structures, for various
problems like described above remained as a future
work.

The algorithmic results in this paper surely en-
hance the advanced use of geographical databases.
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