IEICE TRANS. FUNDAMENTALS, VOL. E76-A, NO. 3 MARCH 1993

259

INVITED PAPER Special Section on the 5th Karuizawa Workshop on Circuits and Systems

Geometric Algorithms for Linear Programming

SUMMARY Two computational-geometric approaches to
linear programming are surveyed. One is based on the prune-
and-search paradigm and the other utilizes randomization.
These two techniques are quite useful to solve geometric prob-
lems efficiently, and have many other applications, some of
which are also mentioned.

key words: computational geometry, linear programming, prune-
and-search, randomization

1. Introduction

Linear programming is an optimization problem
which minimizes a linear objective function under
linear inequality constraints:

min ¢’x
st. Ax=b

where ¢, xER® b=R", AER™, A, b, ¢ are given
and elements x,-*+, xg of x are d variables. Linear
programming would be the best optimization para-
digm that is utilized in real applications, since it can be
used as a powerful model of various discrete as well as
continuous sysiems and even a large-scale linear pro-
gramming problem with thousands of variables or
more may be solved within a reasonable time.

Wide applicability of linear programming makes
it very interesting to investigate algorithms for linear
programming in the field of computer science. Among
many types of linear programming problems, the low-
dimensional linear programming is of interest, for
example, in computer graphics where there arise linear
programming problems such that ¢ is much smaller
than » or d is a constant, say three. This type of linear
programming may be treated in computational geome-
try, which is a field in computer science treating geo-
metric problems in a unified way from the viewpoint of
algorithms (Preparata and Shamos®) and has
produced many efficient algorithms to construct the
convex hull, Voronoi diagram, arrangement, etc. The
purpose of this paper is to survey some of fruitful
results in this direction.

For linear programming, computational geometry
has yielded many linear-time algorithms when the

Manuscript received November 16, 1992.
T The author is with the Faculty of Science, The Univer-
sity of Tokyo, Tokyo, 113 Japan.

Hiroshi IMAIf, Member

dimension is regarded as a constant. The first linear-
time algorithm was developed by making use of the
prune-and-search paradigm (Megiddo®). This para-
digm was originally used in obtaining a linear-time
algorithm for selection. Through computational geom-
etry, the prune-and-search paradigm is generalized to
higher dimensional problems, and, besides linear pro-
gramming, produces many useful algorithms.

Another approach to low-dimensional linear pro-
gramming is to utilize randomization (Clarkson®),
which is found to be quite powerful tool in computa-
tional geometry. Randomization introduces
probabilistic behavior in algorithms, and often leads to
simple algorithms suitable for implementation.

We will cover these two computational-geometric
approaches to linear programming. This paper pro-
ceeds as follows. We first explain the prune-and-search
paradigm, and its application to the two-dimensional
linear programming problem in detail. Two applica-
tions of the prune-and-search technique to some spe-
cial linear programming problems are then mentioned.
We also describe randomized algorithms for linear
programming. In conclusion, some recent results in
this direction are touched upon.

2. Prune-and-Search Paradigm and Its Application
to the Two-Dimensional Linear Programming

In many of algorithmic paradigms, given a prob-
lem, its subproblems of smaller size are solved to
obtain a solution to the whole problem. This is
because the smaller the problem size is the more easily
the problem may be solved. The prune-and-search
paradigm tries to reduce the problem size by a constant
factor by removing redundant elements at each stage,
whose application to the two-dimensional linear pro-
gramming problem is described below.

The prune-and-search paradigm is one of useful
paradigms in the design and analysis of algorithms. It
was used in linear-time selection algorithms (Blum,
Floyd, Pratt, Rivest and Tarjan®). As mentioned
above, a key idea of this paradigm is to remove redun-
dant elements by a constant factor at each iteration. In
the case of selecting the k (= k) th element x among »
elements, at the ith iteration, the algorithm finds a
subset of s; elements which are either all less than x or

260

all greater than x. Then, we may remove all the
elements in the subset and, for k;=k;_;—s; and k;_;
according as these elements in the subset are less or
greater than x, respectively, find the k;th element
among the remaining elements in the next step.
Roughly speaking, finding the subset of elements
whose size is guaranteed to be at least a constant factor
a<1 of the current size can be done in time linear to
the current size. Then, the total time complexity is
bounded in magnitude by

n+(l—a)n+ (1—a)2n+---§%{n.

A linear-time algorithm is thus obtained.

Let us see how this prune-and-search paradigm
may be used to develop a linear-time algorithm for the
two-dimensional linear programming problem, as
shown by Megiddo® et al. Since this is simple enough
to describe compared with the other method in this
paper, we here try to give a rather complete description
of this algorithm. A general two-dimensional linear
programming problem with » inequality constraints
can be described as follows:

min Cl.X1+ Ca X2
(i=1,-,n)

If one can illustrate the feasible region satisfying the
inequality constraints in the (x;, x)-plane, which is
simply a convex polygon if bounded, the problem
would be very easy to solve illustratively (see Fig.1).
Here, instead of considering the problem in this gen-
eral form, we restrict our attention to the following
problem.

S.t. a;x1+ Qiexe = Ay

min y

st. y2ax+b;, (i=1,-, n)

This is because this special problem is almost sufficient
to devise a linear-time algorithm for the general two-
dimensional problem, and its simpler structure is better
in order to exhibit the essence of the prune-and-search
technique. Figure 1 depicts this restricted problem of

onredundant for
the feasible region
redundant at the optimum

active at the optimum

redundant even for
the feasible region

\ /]

Fig. | A two-dimensional linear programming problem.

IEICE TRANS. FUNDAMENTALS, VOL. E76-A, NO. 3 MARCH 1993

n="7.
We consider the problem as defined above. Define
a function f (x) by

f (x)=max{a;x+b;]i=1,-, n}.

Then, the problem is equivalent to minimizing f (x).
The graph of y=f (x) is drawn in bold lines in Fig.1.
f (x) has a nice property as follows. First we review
the convexity of a function. A function g: R—R is
convex if

g(Axi+ (1=2) x2) = Ag () + (1—2) g (x2)

for any xi, xz, A& R with 0<A<1. If the above in-
equality always holds strictly, g(x) is called strictly
convex. Consider the problem of minimizing a convex
function ¢g(x). x” is called a local minimum solution
if, for any sufficiently small >0,

g(x)Lg(x’+¢e) and g(x) <g(x'—e).

x’ is a global minimum solution if the above inequal-
ity holds for arbitrary e. Due to the convexity, any
local minimum solution is a global minimum solution.
Also, if g(x) is strictly convex, there is at most one
global minimum solution. Suppose there is a global
minimum x* of g(x). Given x, we can determine,
without knowing the specific value of x* which of x
<x* x=x* x>x* holds by checking the following
conditions locally for sufficiently small &>>0:

(gl) if g(x+e) <g(x), x<x*;

(g2) if glx—e)<g(x), x=x*;

(g3) if glx+¢e),9(x—e)=g(x), x is a global mini-
mum solution. ‘

Finally, for k£ convex functions ¢;(x) (i=1,--
function g(x) defined by

k), a

g(x)=max{g:(x)|i=1,-, k}

is again convex.

Now, return to our problem of minimizing f (x)
=max{ax+ b;Ji=1,"++, n}. f(x) is a continuous piece-
wise linear function. From the above discussions, we
have the following. ‘
(f1) f(x) is convex (since ax-+b; is trivially con-
vex).

(f2) Given x, we can determine in which side of x an
optimum solution x*, if it exists, lies in O(n) time
(first, compute I={i|ax+ b;=f (x)}, a*=max{a|iE
I} and a~=min{a;|i& 1}, which can be done in O (n)
time; if at>0, x*< x; if =<0, x*=x; if a*=0 and
a” =0, x is an optimum solution; cf.(gl~3)).

Note that this property (f2) is obtained mostly from
the convexity of /. This property is a key in search
steps in the prune-and-search technique.

For simplicity, we assume there is a unique solu-
tion x* minimizing f (x) (that is, we omit the cases
where min f (x) is —co or min f (x) is attained on
some interval; both cases can be handled easily by
slightly changing the following algorithm). In the

IMAI: GEOMETRIC ALGORITHMS FOR LINEAR PROGRAMMING

following, we show that
(f3) we can find an x in O(n) time such that, by
determining in which side of x the minimum x* lies
(this can be done in O (n) time from (£2)), we can find
at least n/4 constraints such that a linear programming
obtained by removing these constraints still has the
same optimum solution with the original problem (we
call these constraints redundant). '
As mentioned above, the prune-and-search technique
thus finds a constant factor of redundant constraints, to
be pruned, with respect to the current number of
constraints for the two-dimensional linear program-
ming. Then, applying this recursively, we can finally
remove all the redundant constraints and get an opti-
mum solution in time proportional to

2 3

n—i—%n-&—(%) n+<—i—> n---
which is less than 4n. That is, if (f3) is true, we obtain
a linear-time algorithm for this linear programming
problem.

To show (f3), first consider two distinct con-
straints y = a;x+ b; and y = a;x+ b;. If a;= a;, accord-
ing as b;<b; or b;=b;, we can discard the ith or jth,
respectively, constraint immediately, because, then, a;x
+b; is smaller or not smaller, respectively, than a;x
+b; for any x. If a;=a; (suppose without loss of
generality a; > a;), there exists x,; satisfying a.x;;+ b;=
a;x;+b;. When x;>x* (resp. x;<<x*), we see the ith
(resp. jth) constraint is redundant, since a;x*+b; is
smaller (resp. greater) than a;x*+ b;.

Based on this observation, match » constraints
into n/2 disjoint pairs {(, j)}. For matched pairs with
a;= a;, discard one of the two constraints according to
the above procedure. For the other pairs, compute x;,
and find the median x” among those x;; (recall that we
can find the median of #’ numbers in O(#n’) time as
mentioned above) and test on which side of x’ the
minimum x* lies. If x’ is an optimum solution, we
have done. Otherwise, since x is the median, a half of
x:;’s lies in the opposite side of x” with x*. For a pair
(i, 7) with (x’—x*) (x"— x4) <0, we can determine on
which side of x;; the x* lies, and hence discard one of
them as above. Thus, in O (n) time, we can discard at
least n/4 constraints, and have shown (f3).

As noted in the discussion, even if min f (x) is
—oo or is attained on some interval, we can detect it
very easily in O (n) time bound. Thus, we have shown
that the special linear programming problem of the
above-mentioned form with two variables and » con-
straints can be solved in O (#) time. The general linear
programming problem can be solved in linear time in
an analogous way.

Still, this application of the prune-and-search
paradigm to the two-dimensional linear programming
is quite similar to the case for linear-time selection.
The prune-and-search technique can be generalized to

261

higher dimensions, and then algorithms obtained
through it are really computational-geometric ones.
The higher-dimensional prune-and-search technique
works as follows. An underlying assumption of the
general technique is that an optimum solution is
determined by at most a constant number of the
objects, which is d in the nondegenerate case for linear
programming. In general terms, the algorithm prunes
a constant fraction of n objects in the d-dimensional
space by recursively solving a constant number of
sub-problems in the (d—1)-dimensional space, thus
reducing the size of the problem by a constant factor in
the d-dimensional space. In other words, the follow-
ing characteristics of the pruning technique allow a
linear-time algorithm to be devised for a search relative
to »n objects in the d-dimensional space. At each
iteration, the algorithm prunes the remaining objects
by a constant factor, @, by applying a test a constant
number of times. The test in the d-dimensional space
is an essential feature of the algorithm since the com-
plexity of the algorithm depends on the test being able
to report the relative position of an optimum solution
in linear time with respect to the number of remaining
objects. The test in the d-dimensional space is per-
formed by solving the (d—1)-dimensional subprob-
lems as mentioned above. Hence, there are a total of O
(log n) steps, with the amount of time spent at each
step geometrically decreasing as noted above, taking
linear time in total.

This approach was first adopted by Megiddo®
et al. By this approach, linear programming in a fixed
dimension can be solved in O(2%%) time, which is
linear in n. However, this time complexity is doubly
exponential in &, and the algorithm may be practical
only for small d. This complexity has been improved
in several ways (e.g.,, see Clarkson®), but is still
exponential with respect to d. We will return to this
issue in Sect. 4. Before it, we mention two applica-
tions of the prune-and-search technique to larger spe-
cial linear programming problems.

3. Applications of the Prune-and-Search Paradigm
to Special Linear Programming Problems

Here, we mention two applications of the prune-
and-search paradigm to special linear programming
problems which |are not a two-dimensional linear
programming problem. One is on linear L, approxima-
tion of » points in the plane by Imai, Kato and
Yamamoto® and the other is on the assignment prob-
lem with much fewer demand points than supply
points by Tokuyama and Nakano.®?

(1) Linear L; approximation of points

Approximating a set of n points by a linear func-
tion, or a line in the plane, called the line-fitting
problem, is of fundamental importance in numerical
computation and statistics. The most frequently used

262

method is the least-squares method, but there are
alternatives such as the L; and the L. (or Chebyshev)
approximation methods. Especially, the L, approxi-
mation is more robust against outliers than the least-
squares method, and is preferable for noisy data.

Let S be a set of n points p; in the plane and
denote the (x, y)-coordinate of point p; by (x;, y:) (i
=1,---, n). For an approximate line defined by y=ax
+b with parameters a and b, the following error
criterion, minimizing the L; norm, of the approximate
line to the point set S defines the L, approximation:

n
minZ}lyz-— (dxi+b)|
a,b i=1

This problem can be formulated as the following
linear programming problem with n+-2 variables a, b,
¢ (i=1,+, n):

. n
min 21 ¢
s.t. yi— (ax;+b) L¢;

—yit (ax;+b)=¢;

Here, x;,y; (i=1,--, n) are given constants. This
linear programming problem has n-+2 variables and
more inequalities, and hence the linear-time algorithm
for linear programming in a fixed dimension cannot be
applied. However, the problem is essentially a two-
dimensional problem. By using the point-line duality
transformation, which is one of the best tools used in
computational geometry, we can transform this prob-
lem so that the two-dimensional prune-and-search
technique may be applied. In the L; approximation
problem, however, any infinitesimal movement of any
point in S changes the norm (and possibly the solu-
tion), and, in that sense, redundant points with respect
to an optimum solution do not exist. Hence, direct
application of the pruning technique does not produce
a linear-time algorithm.

., Imai, Kato and Yamamoto® give a method of
overcoming this difficulty by making full use of the
piecewise linearity of the L; norm to obtain a linear-
time algorithm. Furthermore, in his master’s thesis,
Kato generalizes this result to higher dimensional L,
approximation problem. Although these algorithms
are a little complicated, they reveal how powerful the
prune-and-search technique is in purely computa-
tional-geometric settings.

(2) Assignment problem

The assignment problem is a typical problem in
network flow. The assignment problem with » supply
vertices and fewer k& demand vertices is formulated as
follows:

n k
min 2 2 WiiXij
i=1j=1

IEICE TRANS. FUNDAMENTALS, VOL. E76-A, NO. 3 MARCH 1993

n k
s.t. leij:nj (j:l’---ak)’ lel'jzl (i:lj-.-, n)
i= i=

Oéx,-,-

A

1

&
where x;; are variables and 2} n;=n for positive inte-
=

gers n;. Since this is an assignment problem, x;; should
be an integer, but all the extreme points of the polytope
of this problem are integer-valued and hence this
problem can be formulated as a simple linear program-
ming problem of kn variables.

For this assignment problem, Tokuyama and
Nakano? give the following nice geometric character-
ization. For this assignment problem, consider a set .S
of n points p; in the k-dimensional space whose coor-
dinates are defined by

1 &
pf= (wila Wiz, wik) _?ng wfj(ls 15'”5 1)'

Each point in S is on the hyperplane H: x;-+x;+ -
+x,=0. For a point g=(gi, gz,'**, g») on the hyper-
plane H, define

k
T (g; j) =h®1{(x1,--', Xx) on the hyperplane H|

xijhégj—gh}

T(g; j) (j=1,-, k) partition the hyperplane H.
This partition is called an optimal splitting if each T
(g; j) contains n; points from S. In the case of k=3,
the hyperplane is just a plane, and we can depict an
example. Then, a theorem in Ref.(10) states that there
exists an optimal splitting for any n; satisfying the
condition, and, for the optimal splitting by g, xi;
defined by x;;=1if p; isin T (g; j) and x;=0 other-
wise is an optimum solution to the assignment prob-
lem.

Thus, the assignment problem is reduced to a
geometric problem of finding an optimal splitting.
Again, as in L, linear approximation, this problem has
kn variables and more inequality constraints, and the
linear-time algorithm for linear programming in a
fixed dimension cannot be applied. Numata and
Tokuyama™™ apply the (k—1)-dimensional prune-
and-search technique to this geometrically interpreted
problem and obtained an O(((k+1)!)%n)-time algo-
rithm. This is linear if k£ is regarded as a constant,
although even for & of moderate size the complexity
becomes too big. For k=2, 3, this algorithm may
work well in practice. A linear-time algorithm for the
assignment problem with a constant k£ has not been
known before, and such an algorithm becomes avail-
able through the geometric interpretation explained
above.

Besides this algorithm, Tokuyama and Nakano“®
give a randomized algorithm to solve this problem.
We will return to this problem at the end of the next
section.

IMAl: GEOMETRIC ALGORITHMS FOR LINEAR PROGRAMMING

4. Randomized Algorithm for Linear Programming

The prune-and-search technique thus produces
linear-time algorithms for linear programming in a
fixed dimension, which is theoretically best possible.
However, the time complexity depends upon the
dimension d exponentially, and hence, even for d of
moderate size, the algorithms become inefficient in
practice. One of ways to overcome this difficulty is to
use randomization, which has been recognized as a
powerful tool in computational geometry. Here, ran-
domization does not mean to assume any probabilistic
distribution on the problem, say on the inequality
constraints in this case. Instead, randomization intro-
duces probabilistic behavior in the process of algorith-
ms. By randomization, it becomes possible somehow
to investigate the average case complexity of problems
besides the worst case complexity, which is quite nice
from the practical point of view. Also, it is often the
case that randomized algorithms are rather simple and
easy to implement.

Here, we first explain a randomized algorithm for
linear programming proposed by Clarkson® briefly.
Consider a two-dimensional linear programming prob-
lem treated in Sect.2. Recall that the problem can be
regarded as finding two active inequality constraints at
an optimum solution and removing all the other redun-
dant constraints. ‘

Take a subset S, of 4/ # constraints among
constraints randomly and independently. Solve a
linear programming problem with this subset S, of
constraints using the same objective function to obtain
an optimum solution (xo, Jo) for this subproblem. In
case the other n—y/ n constraints are satisfied at this
optimum solution (i.e., there is no i with }<awx
+b;), this optimum solution for the subset of con-
straints is an optimum solution for all the constraints,
and we are done.

Otherwise, we compute a set S; of constraints 7
which violate the computed solution: y< axo+ b;.

« violating constraint

sampled constraint

Fig.2 A randomized algorithm for linear programming.

263

Figure 2 illustrates the case of n=9 where / n=3
constraints are randomly sampled (denoted by bold
lines) and there are constraints (denoted by dotied
lines) violating the optimum for the sampled con-
straints. This set S; necessarily has at least one of two
active constraints at the global optimum solution,
which may be observed by overlaying the two active
constraints forming the optimum with the current
subset of constraints. In Fig.2, exactly one constraint
active at the global optimum is included in ;. The
size of S, depends on the subset of 4/ 7 constraints
chosen through randomization. It can be shown that
the expected size of S; is O (v n), which is a key of this
randomized algorithm. That is, by randomly sampling
a subset S; of ¥/ # constraints, we can find a set S; of
constraints of expected size O (y/ n) which contains at
least one of active constraints at the global optimum
solution.

We again sample another set S, of / # constraints,
and this time solve a linear programming problem with
constraints in S;U S.. Let S; be a set of constraints
violating the optimum solution to the subproblem for
S1US.. Again, it can be seen that the expected size of
S; is O(y/ n) and that S;US; contains at least two
among two active constraints (hence, exactly two in
this two-dimensional case) at the global optimum
solution. Since S;U .S; contains those two active con-
straints at the optimum solution and its size is O (v #)
on the average, the original problem for » constraints
is now reduced to that for O(y n) constraints. Then,
recursively applying this procedure solves the problem
efficiently.

~Based on the idea outlined above, Clarkson®
gives a Las Vegas algorithm which solves the linear
programming problem in a fixed dimension d rigor-
ously in O(d’n+1t(d)log n) running time with high
probability close to 1, where £(d) is a function of d
and is exponential in d. By randomization, the con-
stant factor of n becomes dependent on d only
polynomially, unlike the linear-time algorithm based
on the prune-and-search paradigm. This is achieved by
using random sampling in the algorithm. However,
still there is a term in the complexity function which is
exponential in d, and the algorithm is not a strongly
polynomial algorithm.

A main issue in the design and analysis of this
randomized algorithm is to evaluate the expected
number of violating constraints to the optimum for the
sampled set S. In this case, this evaluation can be
performed completely in a discrete way. However, in
more general case, the continuous model of probability
may be used as in Haussler and Welzl®, and, in this
sense, introducing randomization in geometric algo-
rithms may lead to investigating continuous structures
of geometric problems more.

Now, return to the assignment problem with k&

264

demand vertices and #» supply vertices mentioned in
the previous section. The prune-and-search paradigm
yields the O((k+1)!)%n)-time algorithm for it as
mentioned above. Tokuyama and Nakano“? propose
a randomized algorithm, making use of random sam-
pling, with randomized time complexity O (kn
+k*°n% log n). This algorithm is optimum for k< n,
since the complexity becomes simply O(kn) then.
Thus, for the assignment problem with k< 7, random-
ization gives a drastic result. It should be emphasized
again that this becomes possible by establishing a nice
bridge between geometry and combinatorial optimiza-
tion, and by applying the randomization paradigm
suitable for geometric problems.

These randomized algorithms are regarded as
fruitful results by combining computational geometric
results with linear programming and its special case.

5. Concluding Remarks

In this paper we have surveyed two computa-
tional-geometric algorithms for linear programming,
and described their applications to other problems.
Recently, another type of randomized algorithm for
linear programming is investigated, and several new
nice results are obtained.® Applying these tech-
niques to other problems and also combining them
with nonlinear approaches such as the interior-point
method for linear programming would be interesting
as future work.

Acknowledgment

This work was partially supported by the Grant-
in-Aid of the Ministry of Education, Science and
Culture of Japan.

References

(1) Matousek, J., Sharir, M. and Welzl, E., “A Subex-
ponential Bound for Linear Programming,” Proceedings
of the 8th Annual ACM Symposium on Computational
Geometry, pp. 1-8, 1992.

(2) Blum, M., Floyd, R.W., Pratt, V., Rivest, R.L. and
Tarjan, R. E., “Time Bounds for Selection,” Journal of
Computer and System Sciences, vol. 7, pp. 448-461, 1973.

(3) Clarkson, K.L., “A Las Vegas Algorithm for Linear
Programming when the Dimension is Small,” Proceedings
of the 29th IEEE Annual Symposium on Foundations
of Computer Science, pp. 452-456, 1988.

(4) Haussler, D. and Welzl, E., “Epsilon-Nets and Simplex
Range Queries,” Proceedings of the 2nd Annual ACM
Symposium on Computational Geometry, pp. 61-71,
1986.

(5) Imai, H., Kato, K. and Yamamoto, P., “A Linear-Time
Algorithm for Linear L; Approximation of Points,”
Algorithmica, vol. 4, no. 1, pp. 77-96, 1989.

(6) Megiddo, N., “Linear Programming in Linear Time when
the Dimension is Fixed,” Journal of the Association for
Computing Machinery, vol. 31, pp. 114-127, 1984.

IEICE TRANS. FUNDAMENTALS, VOL. E76-A, NO. 3 MARCH 1993

(7) Numata, K. and Tokuyama, T., “Splitting a Configu-
ration in a Simplex,” Proceedings of the SIGAL Interna-
tional Symposium on Algorithms (Asano, T., Ibaraki, T.,
Imai, H., Nishizeki, T., eds.), Lecture Notes in Computer
Science, vol. 450, pp. 429-438, Springer-Verlag, Heidel-
berg 1990.

(8) Preparata, F. and Shamos, M. L., Computational Geome-
try: An Introduction, Springer-Verlag, New York, 1985.

(9) Seidel, R., “Low Dimensional Linear Programming and
Convex Hulls Made Easy,” Discrete and Computational
Geometry, vol. 6, pp. 423-434, 1991.

(10) Tokuyama, T. and Nakano, J., “Geometric Algorithms
for a Minimum Cost Assignment Problem,” Proceedings
of the 7th Annual ACM Symposium on Computational
Geomelry, pp. 262-271, 1991.

Hiroshi Imai was born in November
21, 1958 at Kobe, Japan. He obtained B.
Eng. in Mathematical Engineering, and
M.Eng. and D.Eng. in Information Engi-
neering, University of Tokyo in 1981,
1983 and 1986, respectively. In 1986-
1990, he was an associate professor of
Department of Computer Science and
Communication Engineering, Kyushu
University. He was also a visiting associ-
ate professor at School of Computer
Science, McGill University in 1987 and a visiting scientist at IBM
T. J. Watson Research Center in 1988. Since 1990, he has been
an associate professor at Department of Information Science,
University of Tokyo. His research interests include algorithms,
computational geometry, and optimization. He is a member of
IPSJ, OR Soc. Japan and ACM.

