
IEICE TRANS. FUNDAMENTALS, VOL.E83–A, NO.12 DECEMBER 2000
2689

PAPER

Improving the Speed of LZ77 Compression by Hashing

and Suffix Sorting

Kunihiko SADAKANE†∗, Nonmember and Hiroshi IMAI†, Regular Member

SUMMARY Two new algorithms for improving the speed of
the LZ77 compression are proposed. One is based on a new hash-
ing algorithm named two-level hashing that enables fast longest
match searching from a sliding dictionary, and the other uses
suffix sorting. The former is suitable for small dictionaries and
it significantly improves the speed of gzip, which uses a naive
hashing algorithm. The latter is suitable for large dictionaries
which improve compression ratio for large files. We also exper-
iment on the compression ratio and the speed of block sorting
compression, which uses suffix sorting in its compression algo-
rithm. The results show that the LZ77 using the two-level hash
is suitable for small dictionaries, the LZ77 using suffix sorting is
good for large dictionaries when fast decompression speed and
efficient use of memory are necessary, and block sorting is good
for large dictionaries.
key words: LZ77, hash, gzip, suÆx sorting, block sorting

1. Introduction

Many data compression schemes have been developed,
and they are selected according to their compression
speed, decompression speed, compression performance,
memory requirements, etc. The LZ77 compression
scheme [16] is a lossless compression scheme. Now it
becomes a basis of many compression schemes. Its de-
compression speed is very fast and the memory required
is small.

The LZ77 scheme compresses a string from left to
right. It first finds a prefix of a string to be encoded
from the string already encoded called dictionary. Then
the prefix is encoded by its length and the distance be-
tween it and the string in the dictionary. The size of
the dictionary is usually limited because of memory and
compression time limitations, and therefore the dictio-
nary stores only the newer part of the string. This type
of dictionary is called a sliding dictionary.

To compress a string well, we have to find the
longest match string in the dictionary. It is also impor-
tant to find the nearest one among the longest match
strings because the nearest one is encoded in fewer bits.
The most time-consuming task in the LZ77 compres-
sion is to find the longest match strings. Hence the
main topic of this paper is to find them quickly.

Manuscript received January 11, 2000.
Manuscript revised May 10, 2000.

†The authors are with the Department of Information
Science, The University of Tokyo, Tokyo, 113-0033 Japan.

∗Presently, with the Department of System Information
Sciences, Graduate School of Information Sciences, Tohoku
University.

Though the LZ77 has significant features described
above, it is difficult to implement a fast encoder in prac-
tice. The LZ77 compression using the sliding dictionary
can be done in linear time [10]. However, the algorithm
requires huge memory and it is not fast in practice. An-
other problem is that it cannot find the nearest string
in the dictionary. This causes compression loss.

The problems can be solved in part by using hash-
ing algorithms. Almost all programs using the LZ77
scheme, for example gzip, Info-ZIP, PKZIP, lha and
arj, use hashing data structures because of practical
speed and memory efficiency [4]. Among them, gzip[6]
is a typical and commonly used implementation of the
LZ77 scheme. Though the hashing algorithms are fast
enough for many strings, they become extremely slow
for some strings. This is a reason to consider new algo-
rithms for the LZ77.

There is another reason to improve the speed of the
LZ77, especially gzip. It is used for comparisons with
other compression algorithms in terms of their com-
pression ratio and speed. Because compression speed
depends on both the algorithm and its implementation,
the speed of gzip needs to be improved for fair com-
parison between compression algorithms. For example,
Balkenhol et al. [2] showed that their block sorting com-
pression program is superior to gzip with -9 option in
both compression ratio and speed for the Canterbury
corpus [1]. However, the reason why their algorithm is
faster than gzip is that gzip becomes very slow for files
E.coli and kennedy in the corpus. As will be shown in
Sect. 5 of this paper, gzip -9 is 13 times slower than
our improved implementation of gzip for E.coli. In
this regard, it is inappropriate to use the original pro-
gram gzip as a representative program for fair compar-
ison without reservation. Therefore it is important to
improve speed of compression algorithms not only for
practical reasons but also from academic interest.

In this paper, we consider increasing the speed of
the LZ77 compression scheme. We propose two algo-
rithms; one uses a new hashing technique called two-
level hashing and the other uses suffix sorting. We im-
prove the compression speed of gzip by the two-level
hashing without sacrificing compression performance.
This feature has not been achieved by the existing LZ77
programs. Their approach is to abandon finding the
longest match strings. As a result, compression ratio
will decrease. Our algorithm can be applied not only

2690
IEICE TRANS. FUNDAMENTALS, VOL.E83–A, NO.12 DECEMBER 2000

gzip but also other LZ77 compression programs, which
usually use hashing. By using the two-level hashing,
the compression speed for English text files is also 30%
to 60% faster and becomes three to five times faster
for PostScript files of English documents created by
dvi2ps. As mentioned above, it becomes 13 times
faster than the gzip for the file E.coli. Because we
only change the implementation of the function to find
longest match strings, the decoder can be used as it is.

We also use a new development in text retrieval,
the suffix array [12], to find the longest match strings.
It is an array of lexicographically sorted indices of all
suffixes of a string. Because the longest match string
can be found by scanning a small part of the suffix
array, finding it is faster than using hashing. Moreover,
recently a fast suffix sorting algorithm was proposed
[11].

The suffix array is a static data structure. Though
dynamic tree structures such as binary trees also al-
low fast string searches, their construction is incremen-
tal and slow as is shown in [4]. On the other hand,
the suffix array can be constructed by a batch proce-
dure, which may be faster than dynamic data struc-
tures. Therefore we examine whether it is suitable for
LZ77 compression to use suffix sorting. It is natural
to compare the speed of LZ77 compression with block
sorting compression [5], [14] because both schemes can
be implemented by using suffix sorting. The block sort-
ing compression became famous now for the reason of
a good balance of compression speed and ratio. It is
therefore important to test which of the two compres-
sion scheme is suitable for each size of the dictionary.

As a byproduct of the speed up, it becomes prac-
tically tractable to use a wider sliding dictionary. By
using a wider dictionary, the compression ratio is im-
proved [15]. We vary the dictionary size of the LZ77 and
the block size in the block sorting, and compare their
compression ratios and speeds for a collection of html
files and articles of a newspaper. We find by experi-
ments that the LZ77 compression using a suffix array
is faster than hashing algorithms for very large dictio-
naries. We also find that the block sorting is superior to
the LZ77 in terms of both compression ratio and speed.

2. Definitions and the Algorithm of gzip

First we define some notations.

• X = x[1..N] = x1 . . . xN : a string to be com-
pressed where xi is a character in an alphabet Σ

• Sp = x[p..N]: the p-th suffix of X
• Dp = x[p− DSIZ..p− 1]: the sliding dictionary of

size DSIZ when x[1..p−1] has already been encoded

To encode the rest of the string x[p..N], the LZ77
scheme finds the longest string x[j..j+l−1] (p−DSIZ ≤
j ≤ p−1) that begins in the dictionary Dp and matches
with a prefix x[p..p+l−1] of the suffix Sp, then encodes

the prefix by its length l and the distance p − j. We
call the string x[j..j + l−1] as the longest match string
of Sp. Since the longest match string may appear more
than once in the dictionary, we define a function to find
it as follows.

• longest match(p) = (l,q) where l is the length of
the longest match string x[r..r+ l− 1] (max{1, p−
DSIZ} ≤ r < p) and q is the smallest value of p−r
among the r attaining the maximum match length.
If len = 0, q is undefined.

Note that the longest match string may exceed the right
boundary of the dictionary, that is, the index of its tail
j + l − 1 may be more than p− 1.

For two parameters M1 and M2, if l < M1,
the character xp is encoded as a literal by Huffman,
Shannon-Fano or arithmetic codes. The program gzip
uses the Shannon-Fano code. If l > M2, l is limited
to M2 because this limit makes implementation easy
and the code tree small. In the implementation of
gzip, DSIZ = 215, Σ = {0, 1, . . . , 255}, M1 = 3 and
M2 = 258.

We give a detailed description of the algorithm for
the function longest match(p) in gzip because it is a
basis of our two-level hashing algorithm. The program
gzip uses a chaining hashing method. All suffixes Si in
the dictionary are inserted in a hash table of size HSIZ.
All substrings of X are prefixes of Si; therefore we store
only indices i of Si to the hash table. All suffixes that
have the same hash value are inserted in a linked list,
with the newest string at the top of the list. This is
useful for LZ77 compression because we first find the
newest match string that can be encoded in shorter bits
than older ones. The linked lists in the hash table are
represented by two arrays: head and prev (see Fig. 1).
The arrays head and prev have sizes HSIZ and DSIZ
respectively, and these are defined as

• head[h1]: the index j of the newest suffix Sj in
the dictionary that has hash value h1

• prev[i & DMASK]: the index j of the suffix Sj

previously inserted in a list just before Si

where DMASK = DSIZ − 1. The hash function f1(p)

Fig. 1 Hash table of gzip.

SADAKANE and IMAI: IMPROVING THE SPEED OF LZ77 COMPRESSION BY HASHING AND SUFFIX SORTING
2691

is calculated from M1 characters of the head of Sp:

h1 = 0
for (i = 0; i < M1; i + +) {

h1 = (h1 << d) xor xp+i;
h1 = h1 & HMASK;

}
where HMASK = HSIZ− 1. We assume that HSIZ is a
power of two. This value can be incrementally updated
from f1(p − 1). Inserting or deleting suffixes is easy.
Insertion is done as follows.

prev[p & DMASK] = head[h1];

head[h1] = p;

Deletion is unnecessary, since prev is a circular buffer
of size DSIZ and Sp−DSIZ is automatically deleted by
overwriting Sp. In gzip, HSIZ = DSIZ = 215 and
d = 5.

Calculating each hash value and inserting/deleting
each suffix are quick, but searching is much slower. To
search the longest match string of Sp, we first update
the hash value h1 = f1(p). Next we look up the hash
table to get an index to the head of a list in the hash
table. Then we compare Sp with each Si in the list. It
is enough to traverse only the list to find longest match
string of length at least M1.

3. Two-Level Hashing Algorithm

3.1 An Idea for Improving Speed

The hash value in gzip is calculated by only M1 =
3 characters; hence many suffixes are inserted in the
same list and searching becomes slower. For example,
in some binary files, consecutive zeroes appear and their
substrings have the same hash value. To improve the
hash function, we should calculate the hash value by
m > M1 characters. However, if the longest match
string in the list is shorter than m, we must then search
other lists in the hash table that have shorter matched
strings for better compression performance. Therefore
we must change the hash value for searching all lists
that may have the longest match string of length at
least M1. If the length of the longest match string is
known, we can use an efficient hash function [13], but
it is impossible to use such a hash function in our case.

We improve the hashing method used in gzip by
using a two-level hash. Suffixes which have the same
hash value are divided further by a secondary hash
function. The secondary hash table is separated into
many blocks. Each block corresponds to a primary hash
value h1 and it includes lists of suffixes corresponding
the secondary hash values. The primary hash value is
the base of a block in the secondary table and the sec-
ondary hash value is an offset in the block. Both hash
values determine a hash chain. Because the hash func-
tion of gzip mostly works well, we use it as the primary

Fig. 2 Two-level hash table.

hash function f1() of our two-level hashing algorithm.
The secondary hash value h2 is calculated from

xp+M1+1, xp+M1+2, . . . The size of a block is determined
by the number of suffixes having the same primary hash
value.

3.2 Definitions

We define the two-level hash function. The primary
hash function is the same as the function f1 and the
array prev is also used for representing hash chains.

• h1 = f1(p): the primary hash value for a suffix Sp

• h2 = f2(p): the secondary hash value for a suffix
Sp

• f3(xi) = xi & 3: a function used to calculate f2(p)
• base = phash[h1]: the base of a block in the sec-

ondary table corresponding to h1
• b = hashw[h1]: the number of characters used to

calculate the secondary hash value corresponding
to h1

• head[base + h2]: the index to the head of the list
corresponding to h1 and h2

The sizes of tables phash and hashw are HSIZ. We set
the size of the secondary hash table to DSIZ because
the number of suffixes in the dictionary is DSIZ. We
assume DSIZ = 2w. Figure 2 shows the structure of the
two-level hash table for the case M1 = 3. The value h1
is calculated from the first three characters ‘abc’ and
h2 is calculated from a character ‘d’ which follows the
‘abc.’

3.3 Secondary Hash Function

The secondary hash value should be calculated quickly
and incrementally like the primary hash value. We de-
fine the secondary hash value h2 as a concatenation of
f3(xp+M1), f3(xp+M1+1), The idea of the secondary
hash function comes from combinatorial hashing [9],
where a hash value is the product of many smaller hash
values. This kind of hash function is suitable for search-
ing variable length strings because the number of lists

2692
IEICE TRANS. FUNDAMENTALS, VOL.E83–A, NO.12 DECEMBER 2000

which have suffixes similar to Sp becomes small. On
the other hand, the primary hash function does not fit
searching variable length strings because the function
really hashes suffixes in the dictionary. Therefore we
use M1 characters of suffixes to calculate the primary
hash value.

The number of characters to calculate h2 for Sp

is b = hashw[h1]. Since the function f3 takes two-
bit values and the value h2 is a concatenation of
b pieces of the two-bit values, the maximum value
of b becomes �w/2� and the maximum bit-length
of a block in the secondary hash table becomes
w′ = 2�w/2�. The secondary hash value for Sp is
calculated by xp+M1 , xp+M1+1, . . . , xp+M1+b−1. Be-
cause b ≤ w′/2, if we store the concatenation of
f3(xp+M1), f3(xp+M1+1), . . . , f3(xp+M1+w′/2−1) as H2,
we can calculate h2 by

h2 = H2 >> (w′ − 2 · hashw[h1])

and we can update the value of H2 for Sp+1 from that
of Sp by

H2 = ((H2 << 2) + f3(xp+M1+w′/2)) & SHMASK

where SHMASK = 2w′ − 1. The initial value of H2
becomes concatenation of f3(x1+M1), f3(x2+M1), . . . ,
f3(xM1+w′/2). Insertion becomes as follows.

base = phash[h1];

prev[p & DMASK] = head[base + h2];

head[base + h2] = p;

Deletion is unnecessary, as in gzip, and updating the
hash table is also the same as in gzip. We subtract
DSIZ from each head and prev element.

3.4 The Sizes of Blocks in the Secondary Hash Table

The secondary hash table is divided into blocks. Each
block corresponds to a primary hash value. If many suf-
fixes have the same primary hash value, these should
be stored in different lists in the secondary hash ta-
ble. Therefore we determine the size of the block corre-
sponding to a primary hash value h1 to be proportional
to the number of suffixes having the value h1. We scan
first DSIZ bytes of a file that is to be compressed. Then
we determine hashw[h1] for each primary hash value
h1 to be proportional to the logarithm of the frequency
of h1 and fill the secondary table with blocks, that is,
hashw[h1] becomes ��log2 freq�/2� where freq is the fre-
quency of h1 in the first DSIZ bytes of a file. If freq = 0,
we define hashw[h1] = 0 and the size of the secondary
hash table becomes 1. In this case the secondary hash
table for this value of h1 is identical with the hash table
of the original gzip. The values phash and hashw are
computed as follows.

Count the frequency of each h1 for S1 to SDSIZ in
tmp[h1].
h = 0;
for (i = 0; i < DSIZ; i + +) {

phash[i] = h;
if (tmp[i] > 0) {

b = ��log2 tmp[i]�/2�;
hashw[i] = b;
h+ = 22b;

} else hashw[i] = 0;
}

The temporary array tmp is of size DSIZ and it is used
for counting frequency of each h1. If HSIZ ≥ DSIZ,
we can use the head array instead of the tmp ar-
ray so as not to increase the memory requirement. In
gzip, DSIZ = HSIZ = 215 and therefore growth of re-
quired memory is 96 Kbytes, 64 Kbytes for phash and
32 Kbytes for hashw.

3.5 Searching Strategy

When we encode a prefix of a suffix Sp, we first search
the list in the secondary hash table that has the same
primary and secondary hash values h1 and h2 with the
suffix Sp. These hash values are calculated from the
first M1 characters and following b = hashw[h1] char-
acters of Sp. Therefore we need not search other lists
that have the same primary hash value if we found pre-
fixes of length at least M1 + b that match with Sp,
otherwise we have to traverse the other lists to find
prefixes of length l (M1 ≤ l < M1 + b).

To minimize the number of lists to traverse, we
traverse the lists in decreasing order of the maximum
match length between suffixes in the lists and Sp. We
call this length as maxlen. To do so, we imaginar-
ily divide the block corresponding to h1 into groups.
The group traversed first consists of only one list,
head[phash[h1] + h2]. The maxlen of this group is
M2. The second group consists of three lists whose least
significant two bits of the secondary hash value differ
from h2, that is, h2 xor 1, h2 xor 2 and h2 xor 3. This
means maxlen = M1 + b − 1. We traverse these three
lists to find matched strings longer than bestlen and
shorter than M1 + b where bestlen is the length of the
string matched so far. If we cannot find any matched
string of length M1 + b − 1, we next find a matched
string of length M1 + b − 2; therefore we change the
secondary hash value to h2 xor 4, . . . , h2 xor 15 and
search the 12 lists that correspond to these hash values,
and so on. This operation continues until we either find
a matched string that is maxlen long or finish search-
ing all of the lists that correspond to the primary hash
value. By using xor operation, we can easily change
the order of traversing the lists for each suffix Sp. The
algorithm is described as follows.

SADAKANE and IMAI: IMPROVING THE SPEED OF LZ77 COMPRESSION BY HASHING AND SUFFIX SORTING
2693

b = hashw[h1]; i = 0; j = 1; maxlen = M2;
for (k = 0; k ≤ b; k + +) {

for (; i < j; i + +) {
Find the longest match string of length

up to maxlen from the list
head[phash[h1] + (h2 xor i)].

}
If a matched string of length maxlen is found,

then exit.
j = j << 2; maxlen = M1 + b− k − 1;

}
Note that we must traverse all lists that have the

same maxlen because we must find the closest string
among the longest match strings. Assume that bestlen
and bestpos are the length and position, respectively, of
the longest matched string found so far. If we search
for a matched string in a list that has not already been
searched, we may find a matched string of length bestlen
in a position that is newer than bestpos; therefore when
the positions of suffixes Si are newer than bestpos (i >
bestpos), we must find a matched string of length l that
satisfies the conditions

l ≥ bestlen (if i > bestpos) or
l > bestlen (if i < bestpos).

3.6 Reconstructing Hash Tables

The value of hashw[h1] is determined by the frequency
of the value h1 in the first DSIZ bytes of the text file
to be compressed, but the balance of characters may
change in the middle of the file, causing some long lists
in the secondary hash table and slowing searching. If
the length of a list in the table becomes too long, we
reconstruct the hash tables. To do so, we first discard
all tables except the dictionary, the raw string of the
file. Next we count the frequency of the primary hash
values and determine the size of blocks in the secondary
hash table. Lastly we insert suffixes in the dictionary
to the hash table. When to reconstruct a hash table is
decided by experiments for the case DSIZ = 215. We
reconstruct the hash table

• as soon as the length of a list is more than 214, or
• if the length of a list is more than 22b+8 every time

DSIZ characters are encoded.

4. Finding Longest Matches by Suffix Sorting

In this section we describe an algorithm for finding the
longest match strings by using suffix sorting. All suf-
fixes in a sliding dictionary are sorted in lexicographic
order and their indices are stored in an array called the
suffix array. In the suffix array, suffixes are arranged in

order of match length with Sp. Therefore candidates
of the longest match string with the suffix Sp is in the
neighborhood of Sp. Therefore the number of suffixes
compared with Sp decreases.

4.1 Definitions

The suffix array of a string t[1..M] is an integer array
I[1..M]. If I[i] = j then the i-th suffix in lexicographic
order is the suffix t[j..M]. An array J [1..M] represents
the lexicographical order of the suffixes. If J [j] = i
then the suffix t[j..M] is lexicographically the i-th suf-
fix. The array J is the inverse function of I, that is,
J [I[i]] = i for all i. A function lcp(i, j) represents the
length of the longest common prefix (lcp) of two suffixes
t[i..M] and t[j..M].

4.2 Algorithm

We create the suffix array of a substring of length
(1+α)DSIZ containing the sliding dictionary Dp where
α is a positive constant. When we search for the longest
match strings of Sp, we skip suffixes which are outside
of the current sliding dictionary Dp = x[p−DSIZ..p−1].
Every time αDSIZ characters were encoded, we create
a new suffix array of the substring slided to the right by
αDSIZ. That is, the last αDSIZ bytes of the substring
are encoded by using preceding DSIZ bytes characters
as the dictionary. Note that the first (1 +α)DSIZ char-
acters of the string X are encoded without reconstruct-
ing the suffix array.

The following pseudo-code shows the function
longest match(p). First suffixes that are lexicographi-
cally smaller than Sp are traversed. Because the longest
match strings are not arranged in lexicographic order,
we must examine all suffixes that have maximum match
length with Sp and find the closest one. The variable
pm represents the index of a suffix that matches p by
lm bytes. If a suffix has an index that is larger than pm,
pm is updated. If the matched length between a suffix
and Sp is less than the matched length found so far,
the traverse is terminated. Next, suffixes that are lexi-
cographically larger than Sp are traversed in the same
way.

Note that p represents the global index (1 ≤ p ≤
N) of the suffix Sp, while q represents the local index
(1 ≤ q ≤ M = (1+α)DSIZ) of Sp in a substring t[1..M]
containing the sliding window Dp.

Calculate q from p.
i = J [q]; lm = 0; i1 = i− 1; i2 = i + 1;
while (t[q] = t[I[i1]]) {

j = I[i1];
if (q − DSIZ ≤ j < q) {

l = lcp(q, j);
if (l > lm or (l = lm and j > pm))

2694
IEICE TRANS. FUNDAMENTALS, VOL.E83–A, NO.12 DECEMBER 2000

{lm = l; pm = j;}
if (l < lm) break;

}
i1 = i1 − 1;

}
while (t[q] = t[I[i2]]) {

j = I[i2];
if (q − DSIZ ≤ j < q) {

l = lcp(q, j);
if (l > lm or (l = lm and j > pm))

{lm = l; pm = j;}
if (l < lm) break;

}
i2 = i2 + 1;

}
return (lm, q − pm)

The lcp function can be replaced by an array stor-
ing the length of lcp between adjacent suffixes in the
suffix array, that is, lcp(I[i − 1], I[i]) for all i in the
suffix array. The value of lcp(q, j) can be calculated
by taking the minimum of lcp(I[i − 1], I[i]) (q < i ≤
j or j < i ≤ q). Because the variables i1 and i2 are
updated one by one, each lcp calculation can be done
in constant time by using the lcp array.

5. Experimental Results

In this section we show several experimental results on
compression speed and ratio. First we make a prelim-
inarily experiment on relationship between dictionary
size and time for finding the longest match strings us-
ing three algorithms: one-level hashing, two-level hash-
ing and suffix sorting in Sect. 5.1. Then we compare
our two-level hashing algorithm for DSIZ = 215 with
gzip in Sect. 5.2. Then we make experiments on very
large dictionaries to compare LZ77 comperssion by us-
ing two-level hashing and suffix sorting, and the block
sorting compression in Sect. 5.3. We use a Sun Ultra60
workstation with 2048 MB memory except in Sect. 5.2.

5.1 Hashing Algorithms and Suffix Sorting

We compare time for finding the longest match strings
for file ‘bible.txt’ in the Canterbury corpus [1] among
the one-level hashing, the two-level hasing and suffix
sorting. The dictionary size varies from 32 Kbytes to
1024 Kbytes. The algorithms using hashing use vari-
ous sizes of HSIZ: 32 K, 64 K, 128 K, 256 K, 512 K and
1024 Kbytes.

In Fig. 3, one-level hash shows the time of the one-
level hash algorithm, two-level hash shows that using
our two-level hash algorithm, and suffix sorting shows
that using suffix sorting for finding the longest match

Fig. 3 Compression time and dictionary size.

strings in the file ‘bible.txt.’ The x-axis represents the
size of the sliding dictionary (DSIZ) and the y-axis rep-
resents the time. We set the parameter d in the primary
hash function f1() as 5 if HSIZ is 32 K to 256 Kbytes
and 6 if HSIZ is 512 K to 1024 Kbytes. For the other
parameters, the same values as gzip uses. In the suffix
sorting algorithm, α = 0.5, that is, the size of a suffix
array is 1.5DSIZ.

Our two-level hashing algorithm is considerably
faster than one-level and suffix sorting algorithms. The
difference between the two-level hashing algorithm and
the suffix sorting algorithm narrows as the size of the
dictionary grows. Therefore, it is necessary to compare
them for very large sliding dictionaries.

The results show that hashing algorithms become
faster as the size of hash tables increases. Therefore we
use hash tables that are the same size as the dictionary
in the rest. We also exclude the one-level hashing algo-
rithm from experiments because it is obviously slower
than the two-level hashing.

5.2 The Two-Level Hashing and gzip

We tested compression speed and ratio of the original
gzip and gzip using the two-level hasing. We used a
Sun SPARC station 5 with 32 MB memory because the
difference in compression time between the two pro-
grams becomes small if we use faster machines. We
used files in the Text Compression Corpus [3], the Can-
terbury Large Corpus [1] and PostScript files of English
documents [8] created by dvi2ps. We examined the
time taken to compress the files and their size after
compression. Compressed data are redirected to the
null device of unix. Therefore compression time does
not include time for writing compressed data to disk.

Table 1 shows compression time using “gzip -6,”
“gzip -9” and our two-level hashing algorithm for the
Calgary and Canterbury corpora. First 14 files in the
table come from the Calgary corpus and the rest 3 files
come from the Canterbury large corpus. Among the

SADAKANE and IMAI: IMPROVING THE SPEED OF LZ77 COMPRESSION BY HASHING AND SUFFIX SORTING
2695

Table 1 Compression time (s) for corpora.

name original gzip gzip ours
size -6 -9 (a) (b) (a/b)

bib 111261 0.64 0.83 0.64 1.29
book1 768771 6.85 8.55 4.79 1.78
book2 610856 4.11 5.11 3.41 1.49
geo 102400 1.69 2.60 2.14 1.21
news 377109 2.13 2.36 2.15 1.09
obj1 21504 0.10 0.17 0.20 0.85
obj2 246814 1.56 2.82 1.95 1.44
paper1 53161 0.29 0.33 0.28 1.17
paper2 82199 0.54 0.34 0.31 1.09
pic 513216 1.75 11.01 9.08 1.21
progc 39611 0.19 0.25 0.22 1.13
progl 71646 0.33 0.64 0.42 1.52
progp 49379 0.20 0.47 0.29 1.62
trans 93695 0.34 0.52 0.49 1.06
E.coli 4638690 87.52 386.30 29.07 13.28
bible.txt 4047392 30.86 59.71 26.12 2.28
world192.txt 2473400 13.14 18.67 15.64 1.19

Calgary corpus files, compression using our algorithm is
49% to 78% faster than “gzip -9” for English text files
(book1, book2). For source lists of programs (progl,
progp) it is between 50% and 60% faster. However our
algorithm has no effect on small files (obj1, progc). For
a file obj1, the speed becomes slower than “gzip -9.”
In these files most of the matched strings have a length
of only three. In this case, our algorithm searches all
of the elements with the same primary hash value and
the speed of the search is not improved. The improved
algorithm is faster for book1 and book2 and it is also
faster than “gzip -6,” but for the other files it is slower.

For the Canterbury large corpus files, our two-level
hashing algorithm is also faster than “gzip -9.” Fur-
thermore, it is 13 times faster than “gzip -9” and three
times faster than “gzip -6” for the file E.coli. The rea-
son is as follows. The E.coli is a DNA sequence. Its
alphabet size is four (a, t, g and c). Therefore strings
in the sliding window are stored in only 43 = 64 in-
dices of the hash table in the gzip and many collision
occur. On the other hand, by using the two-level hash
algorithm the strings are divided in the secondary hash
table. Note that the lowest two bits of the alphabet is
01 (a), 00 (t), 11 (g), and 11 (c), that is, characters ‘g’
and ‘c’ have the same secondary hash value f3(). If we
change the function f3() to have different values for the
four characters, our algorithm runs much faster.

Table 2 and Table 3 show the compressed size
and the compression speed for PostScript files. The
compression speed is three to five times faster than
“gzip -9.” The compression ratio for PostScript files
is slightly better than that of “gzip -9” because the
length of a hash chain is limited to 4096 in gzip and
gzip does not find the longest match string, whereas
our algorithm searches all of the elements that may
become the longest match string in a list. The com-
pression ratio is of course better than “gzip -6.” The
program “gzip -6” traverses only the first 128 elements

Table 2 Compressed size of PostScript files in bytes.

name size gzip -6 gzip -9 ours
hasegawa 174370 49491 48879 48867
hayase 1430559 243790 236039 235810
ikeda 1295869 243986 235788 235503
kyoda 1247534 204960 199895 199643
masada 953292 177005 170480 170212
tanizo 791953 164867 158634 158496

Table 3 Compression time (s) for PostScript files.

name gzip -6 gzip -9 (a) ours (b) (a/b)
hasegawa 0.7 3.6 0.7 5.14
hayase 4.5 32.8 8.1 4.04
ikeda 4.3 37.4 7.6 4.92
kyoda 3.3 25.1 8.0 3.13
masada 3.3 29.9 5.8 5.15
tanizo 2.8 23.4 4.4 5.31

of each list and therefore cannot find the longest match
string, whereas our two-level hash algorithm always
finds the longest match string. In PostScript files, many
long repetitions occur that are in the same hash chain.
These cannot be distributed in a secondary hash table
of the current size, which is why our algorithm is slower
than “gzip -6” for these files.

5.3 Comparison between Hashing and Sorting

We show the test results for compression times and
compression ratios of algorithms that are based on
hashing and suffix sorting for various dictionary sizes.
Note that compression time does not include encoding
time; it includes only time spent searching the longest
match strings. We also compare with another compres-
sion algorithm called block sorting [5] because it uses
suffix sorting to compress a string. The block sort-
ing compression consists of three steps: suffix sorting,
move-to-front transformation, and Huffman or arith-
metic encoding. The last step is omitted because we
also omitted encoding step in the LZ77 compression.

5.3.1 Compression Time

Figure 4 shows the compression time for a collection
of html files. Its size is about 90 Mbytes. Dictionary
size varies from 32 Kbytes to 16 Mbytes. Because the
files contain many long repetitions, by using large dic-
tionaries compression ratio will be improved. We use
five algorithms:

• optlz77 (two-level hash): LZ77 using two-level
hashing

• optlz77 (sort+lcp+longest mach): LZ77 using suf-
fix sorting and the lcp table

• optlz77 (sort+longest match): LZ77 using suffix
sorting

• lz77 (sort only): LZ77 using suffix sorting which

2696
IEICE TRANS. FUNDAMENTALS, VOL.E83–A, NO.12 DECEMBER 2000

Fig. 4 Compression time and dictionary size.

does not find the nearest longest match strings
• block sorting: the block sorting without encoding

time.

The optlz77 (sort+lcp+longest mach) is slower
than optlz77 (sort+longest match). This implies that
lcp calculation for all adjacent suffixes in a suffix array
is not necessary. Note that this lcp computation can
take place during suffix array construction (see Man-
ber and Myers [12]), but this is not implemented in our
programs.

The block sorting is about three times faster than
the lz77 (sort only). The reason is as follows. To find
the longest match strings in LZ77 compression, a suffix
array of size (1 + α)DSIZ is used and this is updated
every αDSIZ bytes are compressed. A suffix array of
size M is created in O(M logM) time. Therefore the
total time becomes

O

(
N − DSIZ
αDSIZ

· (1 + α)DSIZ log{(1 + α)DSIZ)}
)

= O

(
(N − DSIZ)

1 + α

α
· log{(1 + α)DSIZ)}

)
.

On the other hand, sorting time in the block sorting us-
ing blocks of size DSIZ is O(N log DSIZ) time. There-
fore the block sorting is approximately three times
faster than the LZ77 if α = 0.5. For dictionaries smaller
than 512 Kbytes, the LZ77 using two-level hashing is
faster than the block sorting. If the size of dictionary
is larger than 8192 Kbytes, the optlz77 (sort+longest
match) algorithm is faster than the optlz77 (two-level
hash) algorithm.

5.3.2 Compression Ratio

Here we compare compression ratio of LZ77 and block
sorting for very large windows. gzip uses static codes,
that is, it first stores output of the longest match func-
tion in a buffer, then it calculates codes according to
frequency of the output and encodes characters by us-
ing the codes. The compression ratio of gzip depends

Fig. 5 Compression ratio for html files.

on the size of the buffer and it is difficult to find the
optimal size. Therefore we use a simple compression
scheme as follows:

• (l, q) = longest match(p)
• (l2, q2) = longest match(p + 1)
• if l < M1 or l < l2, encode a character xp by an

adaptive arithmetic code.
• otherwise

1. encode l−M1+ |Σ| by an adaptive arithmetic
code

2. encode bit-length of q by an adaptive arith-
metic code

3. encode q except the most significant bit

We use a technique called lazy evaluation to improve
compression ratio. We encode a prefix of suffix Sp as
a literal xp if l < l2. This technique is used in gzip
and many other programs, and its effect is analyzed
in [7]. It improves compression ratio by about 0.05
bits/character for both optlz77 and lz77 with various
dictionary sizes in our experiments.

The adaptive arithmetic code encodes characters
and match lengths according to their frequencies which
are updated each time a character or a length is en-
coded. We call this program optlz77 where opt means
that this program finds the closest longest matches. Its
performance will be close to the best program using
the LZ77 scheme. We also use a program named lz77.
Their difference is that lz77 may not find the closest one
among the longest match strings in the longest match
function. The function returns the first matched string
among strings that match p. Therefore it may not find
the closest longest match string and the compression
ratio will decrease.

Because the optlz77 and the lz77 use the lazy eval-
uation, their compression speed is a little slower than
the lz77 (sort+longest match) and the lz77 (sort only)
in Fig. 4, respectively.

Figure 5 shows compression ratios of the optlz77,
the lz77 and bzip2 for the html files. In the figures,

SADAKANE and IMAI: IMPROVING THE SPEED OF LZ77 COMPRESSION BY HASHING AND SUFFIX SORTING
2697

Fig. 6 Compression ratio for articles.

optlz77 and lz77 show the compression ratio of LZ77
using suffix arrays, gzip -9 shows that of gzip, and bzip2
shows the compression ratio using bzip2 version 0.1pl2,
the block sorting compressor [14], which is modified to
be able to use large blocks. The original bzip2 uses a
block of 100 Kbytes to 900 Kbytes in size, but here it is
made between 32 Kbytes and 16 Mbytes with the least
modification. The upper bound 16 Mbytes is tight for
this modification. The program is also modified to use
the fast suffix sorting algorithm [11].

The compression ratio of optlz77 is better than that
of lz77, which implies that finding the nearest longest
match is important even if we use large dictionaries.
The compression ratio of gzip is better than optlz77
with a dictionary of 32 Kbytes because encoding of dis-
tances in gzip is optimized for the 32 Kbytes window.

The figure shows that the compression ratio of
bzip2 decreases faster than that of optlz77 and lz77 al-
though the sliding window LZ77 is asymptotically op-
timal for all finite-alphabet stationary ergodic sources
[15]. Therefore the block sorting has better compres-
sion ratio than the LZ77 for blocks of moderate sizes.
The compression ratio of optlz77 is better than bzip2
if dictionary size is less than 128 Kbytes. In this case,
optlz77 is better than bzip2 in both compression speed
and ratio and the two-level hashing algorithm signifi-
cantly improves compression speed.

About the compression ratios, a more remarkable
result is obtained for all articles of Mainichi newspaper
in 1995. The size of the text is about 100 Mbytes. Fig-
ure 6 shows compression ratios of the above algorithms.
The compression ratios of our LZ77 implementations
are reduced to about 70% by using a wider dictionary
by a factor of 512. Even in this case, the bzip2 is also
superior to the optlz77 and the lz77. Because both the
html files and the articles are collections of similar kinds
of texts and now we have many such kind of texts, the
block sorting is useful to compress them.

Fig. 7 Compression time and array size.

5.4 Compression Time and Suffix Array Size

Figure 7 shows the compression time of the suffix sort-
ing algorithm using suffix arrays of various sizes for the
html files. The size of the suffix array is (1+α)DSIZ. In
the figure, sort 0.5, sort 1.0, sort 2.0, and sort 4.0 show
the compression time for α = 0.5, 1.0, 2.0, 4.0, respec-
tively. The number of suffixes to sort is (N−DSIZ)(1+
α)/α and becomes smaller as α increases. On the other
hand, finding the nearest longest match string becomes
slower by a factor of (1+α). If α = 4.0, the compression
time for large dictionaries is slower than when α = 2.0.
We find that an appropriate value of α is between 2.0
and 4.0.

5.5 Memory Requirements

Finally, we compare memory requirements. The two-
level hash algorithm uses two integer array phash and
head of size HSIZ, an integer array prev of size DSIZ,
and an array hashw for small integers of size HSIZ.
The suffix sorting algorithm uses two integer arrays of
size (1+α)DSIZ, I and J . These algorithms use almost
the same amount of memory if HSIZ = DSIZ and α =
0.5. The block sorting uses a suffix sorting algorithm
which requires two integer arrays of size DSIZ. If α =
2.0, the LZ77 using the suffix sorting algorithm becomes
faster than when α = 0.5. However, this requires 6DSIZ
memory, which is three times larger than that required
in the block sorting, and it is about twice as slow as the
block sorting. Therefore the block sorting is superior
to the LZ77 scheme in compression speed, compression
ratio and required memory if the dictionary size is not
too small. If we can use only limited memory or we
want a fast decompression speed, then the LZ77 scheme
with a small sliding dictionary is better, and the two-
level hash algorithm is useful.

2698
IEICE TRANS. FUNDAMENTALS, VOL.E83–A, NO.12 DECEMBER 2000

6. Conclusion

We considered increasing the speed of an LZ77-type
data compression scheme. In the LZ77 compression,
finding the longest match string is the most time-
consuming process. Though the widely used gzip also
uses the LZ77, its compression algorithm is not opti-
mized. Therefore the compression speed of gzip needs
to be improved, not only for practical purposes but also
as it is the touchstone of compression algorithms. We
proposed two algorithms for finding the longest match
string. One uses two-level hash and the other suffix
sorting.

We tested the compression time and ratio of the
LZ77 method using hashing and suffix sorting, and the
block sorting compression algorithm. The suffix sorting
algorithm is faster than the two-level hash algorithm if
the sliding dictionary is very large. To improve the
compression ratio of the LZ77, it is important to find
the nearest longest match string even if very large dic-
tionaries are used. By comparing the compression time
and ratios of the LZ77 and the block sorting, we con-
cluded that:

• The suffix sorting algorithm can increase the speed
of the LZ77 method if the dictionary is very large.

• However, the block sorting is superior to the LZ77
in compression speed and ratio and memory usage.

• For limited memory, the LZ77 is superior to block
sorting and the proposed two-level hash algorithm
significantly improves compression speed.

• It is well known that decoding of the LZ77 is faster
and more memory efficient than the block sort-
ing. By using the LZ77 with large dictionaries, we
can improve compression ratio while preserving the
features of the LZ77. In this case the suffix sort-
ing algorithm is faster than the one-level and the
two-level hash algorithm.

Acknowledgment

The work of the authors was supported in part by the
Grant-in-Aid from the Ministry of Education, Science,
Sports and Culture of Japan. The authors would like
to thank the anonymous referees for their helpful com-
ments.

References

[1] R. Arnold and T. Bell, “A corpus for the evalua-
tion of lossless compression algorithms,” Proc. IEEE
Data Compression Conference, pp.201–210, March 1997.
http://corpus.canterbury.ac.nz/

[2] B. Balkenhol, S. Kurtz, and Y.M. Shtarkov. “Modifica-
tion of the Burrows and Wheeler data compression algo-
rithm,” Proc. IEEE Data Compression Conference, pp.188–
197, March 1999.

[3] T. Bell, J.G. Cleary, and I.H. Witten, Text Compres-
sion, Prentice Hall, 1990, ftp://ftp.cpsc.ucalgary.ca

/pub/projects/text.compression.corpus/

[4] T. Bell and D. Kulp, “Longest-match string searching for
Ziv-Lempel compression,” Software—Practice and Experi-
ence, vol.23, no.7, pp.757–771, July 1993.

[5] M. Burrows and D.J. Wheeler, “A block-sorting lossless
data compression algorithms,” Technical Report 124, Digi-
tal SRC Research Report, 1994.

[6] Jean-loup Gailly, gzip, 1993.
ftp://ftp.gnu.org/gnu/gzip/gzip-1.2.4.tar.gz

[7] R.N. Horspool, “The effect of non-greedy parsing in Ziv-
Lempel compression methods,” Proc. IEEE Data Compres-
sion Conference, pp.302–311, 1995.

[8] Imai laboratory homepage. http://www-imai.is.s.u-

tokyo.ac.jp/

[9] D.E. Knuth, The Art of Computer Programming, vol.3—
Sorting and Searching, Addison-Wesley, Reading MA, 1973.

[10] N.J. Larsson, “Extended application of suffix trees to data
compression,” Proc. IEEE Data Compression Conference,
pp.190–199, April 1996.

[11] N.J. Larsson and K. Sadakane, “Faster suffix sorting,”
Technical Report LU-CS-TR:99-214, LUNDFD6/(NFCS-
3140)/1–20/(1999), Department of Computer Science,
Lund University, Sweden, May 1999. http://www.cs.lth.se
/home/Jesper Larsson/

[12] U. Manber and G. Myers, “Suffix arrays: A new method
for on-line string searches,” SIAM J. Comput., vol.22, no.5,
pp.935–948, Oct. 1993.

[13] P.K. Pearson, “Fast hashing of variable-length text strings,”
Communications of the Association for Computing Machin-
ery, vol.33, no.6, pp.677–680, June 1990.

[14] J. Seward, bzip2, 1996. http://www.muraroa.demon.co.uk/
[15] A.D. Wyner and J. Ziv, “The sliding-window Lempel-Ziv

algorithm is asymptotically optimal,” Proc. IEEE, vol.82,
no.6, pp.872–877, June 1994.

[16] J. Ziv and A. Lempel, “A universal algorithm for sequen-
tial data compression,” IEEE Trans. Inf. Theory, vol.IT-23,
no.3, pp.337–343, May 1977.

Kunihiko Sadakane received B.S.,
M.S., and Ph.D. degrees from Depart-
ment of Information Science, University
of Tokyo in 1995, 1997 and 2000, respec-
tively. He is a research associate at Grad-
uate School of Information Sciences, To-
hoku University. He has won the Capoc-
elli Award at the IEEE Data Compression
Conference 1998. His research interests
include text compression and databases.

Hiroshi Imai obtained B.Eng. in
Mathematical Engineering, and M.Eng.
and D.Eng. in Information Engineering,
University of Tokyo in 1981, 1983 and
1986, respectively. In 1986–1990, he was
an associate professor of Department of
Computer Science and Communication
Engineering, Kyushu University. Since
1990, he has been an associate professor at
Department of Information Science, Uni-
versity of Tokyo.

