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Improving Width-3 Joint Sparse Form to Attain Asymptotically
Optimal Complexity on Average Case∗

Hiroshi IMAI† and Vorapong SUPPAKITPAISARN†† ,†††a), Members

SUMMARY In this paper, we improve a width-3 joint sparse form pro-
posed by Okeya, Katoh, and Nogami. After the improvement, the represen-
tation can attain an asymtotically optimal complexity found in our previous
work. Although claimed as optimal by the authors, the average compu-
tation time of multi-scalar multiplication obtained by the representation is
563/1574n + o(n) ≈ 0.3577n + o(n). That number is larger than the opti-
mal complexity 281/786n + o(n) ≈ 0.3575n + o(n) found in our previous
work. To optimize the width-3 joint sparse form, we add more cases to
the representation. After the addition, we can show that the complexity
is updated to 281/786n + o(n) ≈ 0.3575n + o(n), which implies that the
modified representation is asymptotically optimal. Compared to our opti-
mal algorithm in the previous work, the modified width-3 joint sparse form
uses less dynamic memory, but it consumes more static memory.
key words: analysis of algorithms, number representation, elliptic curve
cryptography, multi-scalar multiplication, width-3 joint sparse form

1. Introduction and Notations

In this work, we analyze the average efficiency of multi-
scalar multiplication, when it is implemented using width-3
joint sparse form. The operation is the bottleneck operation
of many elliptic curve cryptographic protocols, including el-
liptic curve digital signature algorithm (ECDSA) [2]. Our
goal is to compute S = r1P1 + r2P2 where r1, r2 are natural
numbers and P1, P2 are points on the elliptic curve.

Denote n := �log2 max{r1, r2}�. Let DS be a finite set.
The representations of r1, r2 using DS can be defined as fol-
lows.

Definition 1 (Representation Using DS ). Let R1 := 〈r1,t〉n−1
t=0

and R2 := 〈r2,t〉n−1
t=1 , when r1,t, r2,t ∈ DS . If r1 =

∑n
t=0 r1,t2t

and r2 =
∑n

t=0 r2,t2t, then (R1,R2) is the representation of
(r1, r2) using DS .

If (R1,R2) is the representation of (r1, r2) using {0, 1},
we call (R1,R2) as the binary representation of (r1, r2). If
r1 = 12 and r2 = 21, the only binary representation
of (r1, r2) is

(
R(b)

1 ,R
(b)
2

)
, when R(b)

1 := 〈0, 1, 1, 0, 0〉 and
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Fig. 1 The computation of multi-scalar multiplication using Shamir’s
trick with binary representation.

R(b)
2 = 〈1, 0, 1, 0, 1〉 respectively. One of the representa-

tions of (12, 21) using DS = {0,±1} is
(
R(c)

1 ,R
(c)
2

)
, when

R(c)
1 = 〈1, 0, 1̄, 0, 0〉, R(c)

1 = 〈1, 0, 1, 0, 1〉, and −1 is denoted
as 1̄.

Input: natural numbers r1, r2,
representations of r1, r2 using DS , 〈r1,t〉n−1

t=0 , 〈r2,t〉n−1
t=0 ,

elliptic points P1, P2, and d1P1 + d2P2 for all d1, d2 ∈ DS

Output: elliptic points S = r1P1 + r2P2

1 S ← r1,n−1P1 + r2,n−1P2

2 for t ← n − 2 to 0 do
3 S ← 2S
4 if (r1,t , r2,t) � (0, 0) then
5 S ← S +

(
r1,tP1 + r2,tP2

)
6 end

Algorithm 1: A multi-scalar multiplication algorithm us-
ing Shamir’s trick

In Algorithm 1 and Fig. 1, we show a method to com-
pute r1P1 + r2P2 using a representation of (r1, r2) and
Shamir’s trick. The bottleneck of Algorithm 1 are point
doubles in Line 3 and point additions in Line 5. While the
number of point doubles is always equal to n, the number
of point additions equals the number of non-zero (r1,t, r2,t)
minus one. The number of non-zero (r1,t, r2,t) can be for-
mally defined as a joint hamming weight in the following
definition.

Definition 2 (Joint Hamming Weight). The joint Ham-
ming weight of (R1,R2) =

(
〈r1,t〉n−1

t=0 , 〈r2,t〉n−1
t=0

)
, denoted as

|(R1,R2)|, is equal to
∑n−1

t=0 wt, when wt = 0 if (r1,t, r2,t) =
(0, 0) and wt = 1 otherwise.

Recall the notation R(b)
1 ,R

(b)
2 ,R

(c)
1 ,R

(c)
2 . From the previ-

ous definition, we get
∣∣∣∣(R(b)

1 ,R
(b)
2

)∣∣∣∣ = 4 and
∣∣∣∣(R(c)

1 ,R
(c)
2

)∣∣∣∣ = 3.

By that, the multi-scalar multiplication using R(c)
1 ,R

(c)
2 is

faster than the calculation using R(b)
1 ,R

(b)
2 . If DS � {0, 1},

we can represent some natural numbers by more than one
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ways, and we want to find a way to minimize the computa-
tion time. That leads us to the following definition.

Definition 3 (Minimum Weight Representation). Let(
R∗1,R

∗
2

)
be a representation of (r1, r2) using DS . If there

does not exist a representation of (r1, r2) using DS , (R1,R2),
such that |(R1,R2)| <

∣∣∣(R∗1,R∗2)
∣∣∣, then (R∗1,R

∗
2) is the mini-

mum weight representation of (r1, r2).
We denote the joint Hamming weight of the minimum

weight representation of r1, r2, |(R∗1,R
∗
2)|, asMDS (r1, r2).

Given r1, r2,DS , the minimum weight representation
(R∗1,R

∗
2) can be computed using a dynamic programming al-

gorithm proposed in [3]. By the same algorithm, we can
also get the minimum joint weight MDS (r1, r2) in polyno-
mial time.

Next, we will analyze the average performance of
multi-scalar multiplication using the minimum weight rep-
resentation. The metric that we use is defined in the follow-
ing definition.

Definition 4 (Average joint Hamming weight). The aver-
age joint Hamming weight of digit set DS , ADS (n), can be
defined as

ADS (n) :=
2n−1∑
r1=0

2n−1∑
r2=0

MDS (r1, r2)

22n
.

It can be easily seen that A{0,1}(n) ∈ 0.75n + o(n).
Also, Solinas shows that A{0,±1}(n) ∈ 0.5n + o(n) in
[4]. One of the open problems in the paper is the value
of A{0,±1,±3}(n). While our previous work shows that
A{0,±1,±3}(n) ∈ 281/786n + o(n) ≈ 0.3575n + o(n) in
[5], Okeya, Katoh, and Nogami independently report that
A{0,±1,±3}(n) ∈ 563/1574n + o(n) ≈ 0.3577n + o(n) in [6],
which is slightly larger than our value.

1.1 Contributions in This Letter

In [6], the authors claim that a representation is a minimum
weight representation, if it satisfies a set of condition called
width-3 joint sparse form. Then, they devise an algorithm
which finds a representation that satisfies the conditions,
and use Markov chain to prove that the average joint Ham-
ming weight is 0.3577n + o(n). After we briefly explain
those ideas, we will show that there are representations in
the width-3 joint sparse form that are not minimum weight
representations in Sect. 2.

To handle those missing cases, we will modify con-
ditions for width-3 joint sparse form in Sect. 3. Then, we
modify their algorithms to handle the conditions modified,
and add more states to their Markov chain. After those
modification, we can show that the average joint Hamming
weight of the algorithm is updated to 281/786n + o(n) ≈
0.3575n + o(n). That number matches our result in [5].

By the modification, we get two asymtotically optimal
algorithms for representations using DS . We will compare
the performance of those two algorithms in Sect. 4. While

our algorithm in [5] consumes more dynamic memory than
the algorithm modified in this paper, ours is faster, simpler,
and use less static memory than the other. Because both op-
timal algorithms have different advantages, we can choose
one that fits our computational environment more.

It is very important to note that we do not show the
optimality of the modified representation by correcting the
proof in [6]. Instead, we found an incorrect statement in
the early state of the proof. Then, we try to correct that
statement by adding more conditions to the representation,
and use Markov chain to prove the average joint Hamming
weight. We can claim that the modified representation is
asymtotically optimal, because the average weight obtained
from the Markov chain matches the result in our previous
work, which is proved to be optimal.

Although the result in those two papers are very
close, knowing the exact value of A{0,±1,±3}(n) can help
us predicting more general results easier. Currently, we
are aiming to find an explicit closed form between h and
A{0,±1,±3...,±(2h+1)}(n). A small discrepancy can lead us to an
incorrect formula and a large discrepancy for large h. An-
other reason is the fact that we want to verify our general
results for h ≤ 5 in [3]. By the discrepancy with the result
in [6], we could not be sure that the results were correct. As
we can improve the result in [6] to match our result in this
paper, we can gain more confidence on our proof in [3]. As
a result, we can also gain more confidence on our general
results for h ≤ 5.

2. Missing Cases in [6]

In this section, we will briefly explain the results in
[6], and point out the case missing in their proof. Let
(R1,R2) =

(
〈r1,t〉n−1

t=0 , 〈r2,t〉n−1
t=0

)
be a representation of (r1, r2)

using {0,±1,±3}. By those notations, we get the following
definitions.

Notations: i ∈ {1, 2}, 0 ≤ t < n, and 0 ≤ t2 < t1 < n. ri,[t1 ,t2] :=∑t1
t=t2

ri,t2t−t2 ; Ri,[t1 ,t2] := 〈ri,t〉t2t=t1
;

ut := (r1,t, r2,t); U[t1 ,t2] :=
(
R1,[t1 ,t2],R2,[t1 ,t2]

)
; O = (0, 0); ī = 2 when

i = 1, and ī = 1 when i = 2.

C1(i, t) : rī,t = 0, ut+1 = ut+2 = 0.
C2(i, t) : rī,t = 0, ut+1 = O, r1,t+2r2,t+2 � 0.
C3(i, t) : rī,t = 0, r1,t+1r2,t+1 � 0. If ri,[t+3,t] ∈ {±7,±9}, then ut+3 = O

and r0, j+4 ≡ r1, j+4 (mod 2).
C4(i, t) : rī,t � 0, ut+1 = ut+2 = O, at least one of ut+3 and ut+4 are equal

to O.
C5(i, t) : rī,t � 0, ut+1 = O, r1,t+2r2,t+2 � 0, and C4(i, t + 2) is sat-

isfied. Furthermore, there are no representation (R′1,R
′
2) of

(r1, r2) such that (R′1,[n−1,t],R
′
2,[n−1,t]) � (R1,[n−1,t],R2,[n−1,t])

and (R′1,R
′
2) satisfies C4(i, t).

C6(i, t) : rī,t � 0, ut+1 = ut+2 = O. There exists i′ ∈ {1, 2} such
that ri′,[t+6,t+3] ∈ {±7,±9} Furthermore, there are no repre-
sentation (R′1,R

′
2) of (r1, r2) such that (R′1,[n−1,t],R

′
2,[n−1,t]) �

(R1,[n−1,t],R2,[n−1,t]) and (R′1,R
′
2) satisfies C5(i, t).

C7(i, t) : rī,t � 0, ut+1 = O, r0,t+2r1,t+2 � 0. One of the condi-
tions C5(i, t + 2),C6(i, t + 2),C7(i, t + 2) is satisfies. Further-
more, there are no representation (R′1,R

′
2) of (r1, r2) such that

(R′1,[n−1,t],R
′
2,[n−1,t]) � (R1,[n−1,t],R2,[n−1,t]) and (R′1,R

′
2) satis-

fies C4(i, t), C5(i, t), and C7(i, t).

Fig. 2 Conditions for width-3 joint sparse form.
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Definition 5 (Width-3 Joint Sparse Form). A representation
(R1,R2) is a representation in width-3 joint sparse form, if
it satisfies one of the conditions C1(i, t), . . . ,C7(i, t) for any
i, t such that ri,t � 0.

The result that the authors of [6] got from the previous
definition can be concluded as follows:

Claim 1 (Appendix A of [6]). For each (r1, r2) ∈ Z2
+, there

is exactly one representation of (r1, r2) that is in width-3
joint sparse form.

Claim 2 (Appendix B of [6]). Let (R1,R2) and (R′1,R
′
2) be

representations of (r1, r2). If (R1,R2) is in width-3 joint
sparse form while (R′1,R

′
2) is not, then |(R1,R2)| ≤ |(R′1,R

′
2)|.

From the previous statements, the authors claim that
(R1,R2) is a minimum weight representation of (r1, r2) using
{0,±1,±3}, if it is in width-3 joint sparse form. The authors
also propose Algorithm 2 that can find that minimum weight
representation in linear time.

We found cases missing in the proof of Claim 1. Actu-
ally, the representations in width-3 joint sparse form is not
unique. When n = 8 and (r1, r2) = (10, 33), a minimum
weight representation using {0,±1,±3} is

(R∗1,R
∗
2) = (〈0, 0, 0, 0, 1, 0, 1, 0〉, 〈0, 0, 0, 0, 3, 0, 3, 3〉).

However, the representation

(R′1,R
′
2) = (〈0, 0, 0, 0, 1, 0, 1, 0〉, 〈0, 1, 0, 0, 3̄, 0, 3̄, 1̄〉)

is also a representation in width-3 joint sparse form, if 1̄, 3̄
denote −1,−3.

We know that (R′1,R
′
2) is not a minimum weight repre-

sentation, since 4 = |(R′1,R
′
2)| > |(R∗1,R

∗
2)| = 3. Although

the proof of Claim 2 might be correct, we cannot guarantee
that the algorithm, which always find a representation in the
form, will give us an optimal solution. That is because there
are many representations in the form, and some of them are
not a minimum weight representation.

Without our modification, Algorithm 2 unfortunately
outputs the sub-optimal solution (R′1,R

′
2), when its input is

(10, 33). Other than (10, 33), we found infinitely many cases
that Algorithm 2 cannot output an optimal solution, such as
(10 · 2h, 33 · 2h) for h ≥ 1.

3. Modification

Although we show that there are cases missing in those con-
ditions, our task is not only to modify those conditions. Re-
call that Okeya, Katoh, and Nogami proposes conditions
for width-3 joint sparse form. Then, they propose an al-
gorithm based on those conditions, and provide a Markov
chain based on the algorithm. Because of that, we have to fix
all of them. We will modify the conditions in Sect. 3.1, the
algorithms in Sect. 3.2, and the Markov chain in Sect. 3.3.

3.1 Modification on Conditions

To modify the conditions, we replace the condition C3(i, t)

C′3(i, t) : rī,t = 0, r1,t+1r2,t+1 � 0. If ri,[t+3,t] ∈ {±7,±9}, then
Ut+3 = O and r0, j+4 ≡ r1, j+4 (mod 2). If ri,[t+6,t] ∈
{±33} and rī,[t+6,t+1] ∈ {±5,±7,±9,±11}, then ut+2 =

ut+4 = ut+5 = ut+6 = O. If ri,[t+6,t] ∈ {±31} and
rī,[t+6,t+1] ∈ {±21,±23,±25,±27}, then ut+2 = ut+4 = ut+5
and r1,t+6, r2,t+6 ∈ DS \{0}.

Fig. 3 A modified condition for width-3 joint sparse form.

by the condition C′3(i, t) shown in Fig. 3. In the figure, our
modifications are marked with bold letters. Obviously, the
representation (R′1,R

′
2) in the previous section does not sat-

isfy the conditions after that replacement.

3.2 Modification on Algorithm

In Algorithm 2, we show an algorithm by Okeya, Katoh, and
Nogami, together with our modification marked with bold
letters. The notation used in the algorithm can be found in
Fig. 5. From that algorithm, we get the following claims.

Lemma 1. If the input is the Booth recording of (r1, r2), the
modified version of Algorithm 2 outputs a representation of
(r1, r2) using {0,±1,±3} in the modified width-3 joint sparse
form.

Proof. We know that the output of the algorithm is the
representation of (r1, r2), since all operations in the algo-
rithm, such as S W, ZF, or DI, do not change the value that(〈

r(b)
1,t

〉n−1

t=0
,
〈
r(b)

2,t

〉n−1

t=0

)
represents.

Before our modification, it is proved in [6] that Algo-
rithm 2 outputs representations in width-3 joint sparse form.
Since it is obvious that our modifications in Lines 12-17 are
corresponding to the modifications in C′3(i, t), we know that
the modified algorithm outputs representations in the modi-
fied form. �

3.3 Modification on Markov Chain

In this subsection, we will prove the following theorem.

Theorem 1. Let M j(r1, r2) be a joint Hamming weight of
a representation for (r1, r2) in the modified width-3 joint
sparse form. We get

2n−1∑
r1=0

2n−1∑
r2=0

M j(r1, r2)

22n
=

281
786

n + o(n).

Proof. To prove this theorem, we will modify Markov chain
proposed in [6]. The result of that modification is shown in
Fig. 4. While the Markov chain in [6] contains five nodes,
A, B,C,D, E, we add more nodes, B′,C′, E′, in this modifi-
cation. In [6], each node represents a value of the variable
S T AT E in the algorithm, but we use two nodes, B, B′, to
represents the case when S T AT E = B in this proof. Simi-
larly, both C,C′ represents the case when S T AT E = C, and
both E, E′ represents the case when S T AT E = E. We will
explain the reason why we need to split those three nodes
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Fig. 4 Markov chain used for finding an average joint Hamming weight
of Algorithm 2.

later in this proof. The label of each transition T represents
the transition probability p(T ), the joint Hamming weight
increased by that transition w(T ), the value of t after the
transition minus the value before the transition �(T ), and the
case in the algorithm corresponding to that transition.

We add the transition (AA-1) and (AA-2), which are
the case added to improve the average joint Hamming
weight in Algorithm 2. By that addition, some transition
probabilities of the existing transition have to be modified.
Besides, we found that the distribution of the input bits in
the case (A-5) is not uniform after the distribution. We need
to add nodes B′,C′, E′ into the Markov chain to take care of
those cases. We will give the detail of this non-uniformity,
explain more detail on this Markov chain modification, and
calculate the transition probabilities for each newly-added
nodes in Appendix.

All probabilities in this Markov chain are confirmed to
be correct by simulations done in the similar way as in [6].
The simulations are done on 1000 random 107-bit integers.
For all of those integers, the difference between the transi-
tion probability found in the simulation and our calculation
results is at most 10−6.

The stationary distribution of the Markov chain is

π =
[
π(A), π(B), π(B′), π(C), π(C′), π(D), π(E), π(E′)

]
=

1
6745

[
1792, 1792, 329, 522, 77,

3975
2
,

119
2

]
.

Let V := {A, B,C,D, E}, Tv be a set of transition start-
ing from v ∈ V , w(v) =

∑
T∈Tv p(T ) · w(T ), and �(v) =∑

T∈Tv p(T ) · �(T ). Using the same argument as in [6], we
know that the expected Hamming weight after n transitions
is W :=

∑
v∈V w(v) ·π(v) ·n = 4496

6745 n. The expected length pro-
cessed after n transitions is L :=

∑
v∈V �(v) · π(v) · n = 12576

6745 n.
Then, the average joint Hamming weight is

W
L
· n + o(n) =

281
786

n + o(n).

�

Let
(〈

r(b)
1,t

〉n−1

t=0
,
〈
r(b)

2,t

〉n−1

t=0

)
be a binary representation of (r1, r2). A Booth

recording of (r1, r2),
(〈

r(d)
1,t

〉n
t=0
,
〈
r(d)

2,t

〉n
t=0

)
when r(d)

i,n := r(b)
i,n−1, r(d)

i,t :=

r(b)
i,t−1 − r(b)

i,t for 0 < t < n, and r(d)
i,0 := −r(b)

i,0 [7].
Recall notations in Fig. 3. Let 0 ≤ t1 < t2 < n and t1 ≤ t′i ≤

t2 be the smallest number such that ri,t′i
� 0. S W(U[t1 ,t2]) :=(

S W
(
R1,[t1 ,t2]

)
, S W

(
R2,[t1 ,t2]

))
, where S W

(
Ri,[t1 ,t2]

)
:= 〈r′i,t〉

t2
t=t1

, r′i,t =
0 if t � t′i , and r′

i,t′i
= ri,[t1 ,t2].

Let t1 ≤ t′i ≤ t2 be the largest number such that ri,t′i
� 0, s := ri,t′i

/|ri,t′i
|,

and s̄ := −s. ZF(U[t1 ,t2]) :=
(
ZF
(
R1,[t1 ,t2]

)
, ZF
(
R2,[t1 ,t2]

))
, where

ZF
(
Ri,[t1 ,t2]

)
:= 〈r′i,t〉

t2
t=t1

, r′i,t = ri,t if t < t′i , r′i,t = ri,t − 2s if t = t′i ,
r′i,t = s̄ if t′i < t < t2, and r′i,t = s if t = t2.

DI(〈x, 0, 0, 3, 1〉) := DI(〈x + 1, 0, 0,−3,−3〉) and
DI(〈x, 0, 0,−3,−1〉) := DI(〈x − 1, 0, 0, 3, 3〉)

Let a, b be natural numbers such that a < b, and
(
〈r′1,t′ 〉

t+b
t′=t+a, 〈r

′
2,t′ 〉

t+b
t′=t+a

)
= S W(U[t+a,t+b]). Denote ω(a, b) :=

∣∣∣∣{t′ : (r′1,t′ , r
′
2,t′ ) � O for t

+a ≤ t′ ≤ t + b}|.
Let
(
〈r′′1,t〉

t2
t=t1
, 〈r′′2,t〉

t2
t=t1

)
:= ZF(U[t1 ,t2]), and(

〈r′1,t〉
t2−1
t=t1
, 〈r′2,t〉

t2−1
t=t1

)
:= S W

((
〈r′′1,t〉

t2−1
t=t1
, 〈r′′2,t〉

t2−1
t=t1

))
. S W

(
U[t1 ,t2]

)
:=(

〈r1,t〉t2t=t1
, 〈r2,t〉t2t=t1

)
when ri,t = r′i,t when t < t2 and ri,t2 = r′′i,t2 .

* R33 = 〈0, 0, 0, 3, 0, 3, 3〉, R31 = 〈1, 0, 0,−3, 0,−3,−3〉,
R10 = 〈0, 0, 0, 1, 0, 1, 0〉, R14 = 〈0, 0, 0, 1, 0, 3, 0〉,
R18 = 〈0, 0, 0, 3, 0,−3, 0〉, R22 = 〈0, 0, 0, 3, 0,−1, 0〉,
R42 = 〈1, 0, 0,−3, 0, 1, 0〉, R46 = 〈1, 0, 0,−3, 0, 3, 0〉,
R50 = 〈1, 0, 0,−1, 0,−3, 0〉, R54 = 〈1, 0, 0,−1, 0,−1, 0〉.
Denote −Ri,[t1 ,t2] = 〈−ri,t〉t2t=t1

. R−y = −Ry for y ∈ Z+.

Fig. 5 Notations in Algorithm 2. The notations added in this letter are
marked with asterisks (*).

Table 1 Comparison between Algorithm 2 and the algorithm in [5].

Algorithm 2 Algorithm in [5]

Algorithmic scheme If-Case Based Dynamic
Programming Based

#Lines of Codes 453 Lines 58 Lines
Computation Time 1.8 ms 0.7 ms
Dynamic Memory 6n + o(n) 105n + o(n)
Usage (bits)

4. Comparison between Two Algorithms

By the result in this paper, we have two optimal algorithms
for the minimum weight representation using {0,±1,±3},
Algorithm 2 and our algorithm in [5]. In this section, we
will compare those two algorithms in several aspects, and
give suggestions for researchers who will implement the al-
gorithms.

We summarize our comparison results in Table 1.
Those results are obtained by implementing both algorithms
using Java in a personal computer with Intel Core i7-3770
CPU @3.40 GHz, 16.0 GB RAM, Windows 8 64 bits.

First, we compare the computation time of both algo-
rithms. We randomly select 10, 000 pairs of (r1, r2) such that
0 ≤ r1, r2 < 2512. Then, we insert those (r1, r2) as an input
of the algorithms, and calculate average computations time
that they use. For this aspect, the algorithm in [5] is clearly
faster. While the algorithm spends 0.7 ms on average, Algo-
rithm 2 spends 1.8 ms on average.
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Input: A representation of (r1, r2) in Booth recording(
〈r1,t〉n−1

t=0 , 〈r2,t〉n−1
t=0

)
, such that ri,t = 0 for n − 10 ≤ t < n

Output: A representation of (r1, r2) in modified width-3 joint sparse
form

(
〈r1,t〉n−1

t=0 , 〈r2,t〉n−1
t=0

)
1 S T AT E ← A; t ← 0
2 if STATE = A then
3 if u j = O (A-1) then t ← t + 1 ;
4 else if there exists i ∈ {1, 2} such that ri,t � 0 and rī,[t,t+2] = 0 (A-2)

then
5 U[t,t+2] ← S W

(
U[t,t+2]

)
; t ← t + 3

6 else if there exists i ∈ {1, 2} such that ri,t � 0 and rī,[t,t+1] = 0 (A-3)
then

7 U[t,t+2] ← S W
(
U[t,t+2]

)
; t ← t + 2; S T AT E ← B

8 else if there exists i ∈ {1, 2} such that ri,t � 0, rī,t = 0, and
ri,[t,t+3] ∈ {±7} (A-4) then

9 U[t,t+2] ← S W
(
U[t,t+2]

)
; t ← t + 2; S T AT E ← B

10 else if there exists i ∈ {1, 2} such that rī,t = 0 and ri,[t,t+3] ∈ {±7}
(A-4) then

11 S T AT E ← D
12 else if there exists i ∈ {1, 2} such that ri,[t,t+6] ∈ {±33} and

rī,[t,t+6] ∈ {±10,±14,±18,±22} (*AA-1) then
13 Ri,[t,t+6] ← Rri,[t,t+6] ; Rī,[t,t+6] ← Rrī,[t,t+6]

14 t ← t + 7;
15 else if there exists i ∈ {1, 2} such that ri,[t,t+6] ∈ {±31} and

rī,[t,t+6] ∈ {±42,±46,±50,±54} (*AA-2) then
16 Ri,[t,t+6] ← Rri,[t,t+6] ; Rī,[t,t+6] ← Rrī,[t,t+6]

17 t ← t + 6; S T AT E ← B
18 else if there exists i ∈ {1, 2} such that ri,t � 0 and rī,t = 0 (A-5)

then
19 U[t,t+1] ← ZF(U[t,t+1]); t ← t + 1; S T AT E ← B.
20 else (A-6) S T AT E ← B;
21 else if S T AT E = B then
22 if ω(3, 4) ≤ 1 (B-1) then
23 U[t,t+2] ← S W(U[t,t+2]); t ← t + 3; S T AT E ← E
24 else (B-2) S T AT E ← C;
25 else if S T AT E = C then
26 if ω(5, 6) ≤ 1 (C-1) then
27 U[t,t+2] ← S W(U[t,t+2]); U[t+2,t+4] ← S W(U[t+2,t+4]);
28 t ← t + 5; S T AT E ← E
29 else if there exists i ∈ {1, 2} such that ri,[t+3,t+6] ∈ {±7} (C-2) then
30 U[t,t+2] ← S W(U[t,t+2]); t ← t + 3; S T AT E ← D

31 else (C-3) U[t,t+2] ← S W(U[t,t+2]); t ← t + 2;
32 else if S T AT E = D then
33 Let i ∈ {1, 2} be an integer such that ri,[t,t+3] ∈ {±7}.
34 U[t,t+1] ← ZF(U[t,t+1]); U[t+3,t+1] ← S W(U[t+3,t+1]);

Ri,[t+4,t] ← DI(Ri,[t+4,t]) if ri,t+4 � 0;
35 if rī,t+4 = 0 (D-1) then
36 t ← t + 5; S T AT E ← A
37 else (D-2) t ← t + 4; S T AT E ← B;
38 else
39 if Ut = 0 (E-1) then t ← t + 1; S T AT E ← A;
40 else if there exists i ∈ {1, 2} such that ri,t � 0 and rī,[t,t+2] = 0 (E-2)

then
41 U[t,t+2] ← S W(U[t,t+2]); t ← t + 2; S T AT E ← A
42 else if there exists i ∈ {1, 2} such that ri,t � 0 and rī,[t,t+1] = 0 (E-3)

then
43 U[t,t+2] ← S W(U[t,t+2]); t ← t + 2; S T AT E ← B
44 else (E-4) S T AT E ← B;
45 Go to Line 2, if there is more bits to process

Algorithm 2: An algorithm for width-3 joint sparse form
with our modifications marked by asterisks (*)

Algorithm 2 is clearly a better algorithm, when we
compare dynamic memory usage. The algorithm can finish
a computation without using additional working memory.

Because of that, the authors of [6] claim that Algorithm 2
is suitable for an environment with limited computation re-
source, such as smart cards. However, this if-case-based al-
gorithm is complicated. Although we try our best to shorten
our java code, the algorithm needs around 300 lines before
our modification in Sect. 2. After our modification, the code
length is 453 lines. To store the program in the smart card,
we have to store it in its static memory such as ROM. Since
it is discussed in [8] that the smart card in our current tech-
nology does not contain a static memory larger than a few
hundred Kilobytes, we strongly believe that it is hard to de-
ploy Algorithm 2 to that environment.

While the algorithm in [5] use more dynamic memory,
the length of the code for the algorithm is around 9 times
shorter than Algorithm 2. Because of that, we suggest to
use Algorithm 2 in the computation environment with lim-
ited dynamic memory, and the algorithm in [5] in the com-
putation environment with limited static memory.

5. Conclusion

Although our algorithm in [3] is not the best algorithm in all
aspects, the results can be applied to several classes of num-
ber representations (e.g. [9]). Because of that, the results can
be useful, when researchers develop an efficient algorithm
for a minimum weight representation. They can compare
their results with ours to check the difference between their
solutions and the optimal solutions. They can also use our
solutions to find the way to improve their algorithm, in the
similar way we have done in this letter.
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Appendix

In this section, we will explain how we construct the Markov
chain in Fig. 4 in detail. When we reach Line 45 of Al-
gorithm 2 and there are more bits to process, we will
loop back to Line 2 of the algorithm. We will consider
the value of variable S T AT E at the beginning of each
loop. By denoting the value of S T AT E at τth iteration
of the algorithm as S T AT Eτ, the transition probabilities
can be written as Pr{S T AT Eτ = s′|S T AT Eτ−1 = s} for
s, s′ ∈ {A, B, B′,C,C′,D, E}. For simplicity, we refer to
Pr{S T AT Eτ = s′|S T AT Eτ−1 = s} as ps,s′ .

For most transitions, the probabilities that we will get
into each condition, (A-1), ..., (E-4), does not depend on
how we process the inputs in the previous iteration. In other
words, each condition does apply on different bits of inputs.
Because of that, we can calculate the transition probabilities
by assuming that the input distribution is uniform. The tran-
sitions that we can assume that uniformity are edges depart-
ing from nodes A, B,C,D, E. By the uniformity, we can use
the transition probabilities calculated in [6] for those edges.

Unfortunately, we cannot assume that uniformity for
the edges departing from B′,C′, E′. We will explain the rea-
son, and calculate the transition probability in the following
lemmas and corollary. In the proof of those lemmas and
corollary, we sometimes refer to state B′,C′, E′ as B,C, E if
it is clear from the context.

Lemma 2 (Probability when S T AT Eτ−1 = B′).

pB′,C′ = 22/94, pB′,E = 72/94,

and pB′,s = 0 for s ∈ {A, B,C,D, E′}.

Proof. Since we can assume that the input is uniform when
S T AT E = A, we can fall into conditions (AA-1), (AA-2),
and (A-5) with probabilities 1/512, 1/512, and 47/256 re-
spectively. Those three conditions represent the case when
ri,t � 0, rī,t = 0. The probability that S T AT E = A, ri,t � 0,
rī,t = 0, and Ω(4, 5) ≤ 1 is 48/256 × 3/4 = 36/256, but
Ω(4, 5) is always equal to 2 in the case (AA-1) and (AA-2).
Therefore, the probability that (A-5) will be selected with
Ω(4, 5) ≤ 1 is 36/256, while the probability for Ω(4, 5) = 2
is 48/256 × 1/4 − 1/256 = 11/256.

Since t is incremented by 1 at Line 19,Ω(4, 5) becomes
Ω(3, 4) there. By the fact that the only incoming edge to B′

is (A-5), we know that the probability that Ω(3, 4) ≤ 1 when
S T AT E = B′ is 36/(36 + 11) = 36/47, and the probability
for Ω(3, 4) = 2 is 11/47.

Since the conditions (AA-1) and (AA-2) are invoked
only if Ω(3, 4) = 2, the distribution on the larger bits is uni-
form if Ω(3, 4) ≤ 1. Because of that, we can move to a node
E, when the condition (B-1) is satisfied. �

Lemma 3 (Probability when S T AT Eτ−1 = C′).

pC′,C = 5/44, pC′,D = 5/44, pC′,E′ = 17/22,

and pC′,s = 0 for s ∈ {A, B,C′, E}.

Proof. From the previous proof, the probability that ri,t � 0,
rī,t = 0, Ω(4, 5) = 2 is 12/256 when S T AT E = A. Since the
distribution is uniform, we know that those conditions with
Ω(6, 7) ≤ 1 are satisfies with probability 12/256 × 3/4 =
9/256. By that, the probability forΩ(6, 7) = 2 is 3/256. The
probability that (AA-1) or (AA-2) is satisfied, Ω(4, 5) = 2,
and Ω(6, 7) ≤ 1 is 1/512. Therefore, the probability that
(A-5) is satisfied, Ω(4, 5) = 2, and Ω(6, 7) ≤ 1 is 9/256 −
1/512 = 17/512. The probability is 3/256−1/512 = 5/512
for the case where Ω(6, 7) = 2.

By the fact that the only incoming edge to C′ is from
(A-5), (B’-2) and t is incremented by 1 at (A-5), we know
that Ω(5, 6) ≤ 1 when S T AT E = C′ is 17/(5+17) = 17/22.
The probability for Ω(5, 6) = 2 is 5/22.

When Ω(6, 7) = 2, Ω(4, 5) = 2, and (AA-1) or (AA-
2) are satisfied, the probability that (C-2) is satisfied is 1/2.
Therefore, the probability that the condition in (C-2) is satis-
fied after (A-5) does not change by the newly-added (AA-1)
and (AA-2). The probability for (C-2) is 5/22×1/2 = 5/44.
From there we know that the probability for (C-3) is also
1 − 17/22 − 5/44 = 5/44.

By (A-5) and (C-2), t is incremented by 4. The condi-
tion when S T AT E = D is imposed on bit t+4, which is t+8
when S T AT E = A. Since the newly-added conditions are
imposed from t to t + 7, they cannot interfere the condition
for S T AT E = D. We do not need to add a node D′, and the
transition from C′ by (C-2) move us to state D. Similarly, we
increase t by 3 at (A-5) and (C-3), and the condition when
S T AT E = C is imposed on t + 5 and t + 6. Since they are
t + 8 and t + 9 when S T AT E = A, they are uniform when
we get from C′ by (C-3). Therefore, that transition move us
to state C. �

Lemma 4. When S T AT E = E′, the probability that the
condition (E-1) is satisfied is 6/17.

Proof. From the previous proof, we know that the probabil-
ity that ri,t � 0, rī,t = 0, Ω(4, 5) = 2, and Ω(6, 7) ≤ 1 is
9/256 when S T AT E = A. By the proof in [6], we know
that Ut+6 = 0 with probability 1/3 under those conditions.
Hence, the probability that ri,t � 0, rī,t = 0, Ω(4, 5) = 2,
Ω(6, 7) ≤ 1, and Ut+6 � 0 is 9/256 × 2/3 = 6/256.

When S T AT E = A and (AA-1) or (AA-2) are satisfied,
Ut+6 is always not equal to 0. The probability that (AA-
1) or (AA-2) is satisfed, Ω(4, 5) = 2, and Ω(6, 7) ≤ 1 is
equal to 1/512. By that, the probability that (A-5) is sat-
isfed, Ω(4, 5) = 2, Ω(6, 7) ≤ 1, and Ut+6 = 0 is equal to
6/256−1/512 = 11/512. We also know that the probability
that (A-5) is satisfed, Ω(4, 5) = 2, Ω(6, 7) ≤ 1, and Ut+6 � 0
is equal to 3/256 = 6/512.

By the fact that the only incoming edge to E′ is from
(A-5), (B’-2), (C’-1) and t is incremented by 6 at (A-5) and
(C’-1), we know that Ut = 0 with probability 6/(6 + 11) =
6/17 when S T AT E = E′. �
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Lemma 5. When S T AT E = E′, the probability that the
condition (E-4) is satisfied is 6/17.

Proof. It is shown in [6] that Ω(0, 1) ≤ 1 when S T AT E =
E, and it is obvious that the property is also hold for E′.
Therefore, the condition (E-4) is satisfied, when ri,t � 0 and
rī,t � 0.

From the previous proof and the proof in [6], we know
that the probability that ri,t � 0, rī,t = 0, Ω(4, 5) = 2,
Ω(6, 7) ≤ 1, and r1,t+6r2,t+6 = 0 is 9/256 × 2/3 = 6/256.

When S T AT E = A and (AA-1) or (AA-2) are satis-
fied, r1,t+6r2,t+6 is always equal to 0. The probability that
(AA-1) or (AA-2) is satisfed, Ω(4, 5) = 2, and Ω(6, 7) ≤ 1
is equal to 1/512. By that, the probability that (A-5) is sat-
isfed, Ω(4, 5) = 2, Ω(6, 7) ≤ 1, and r1,t+6r2,t+6 = 0 is equal
to 6/256 − 1/512 = 11/512. We also know that the prob-
ability that (A-5) is satisfed, Ω(4, 5) = 2, Ω(6, 7) ≤ 1, and
r1,t+6r2,t+6 � 0 is equal to 3/256 = 6/512.

By the fact that the only incoming edge to E′ is from
(A-5), (B’-2), (C’-1) and t is incremented by 6 at (A-5) and
(C’-1), we know that r1,tr2,t � 0 with probability 6/(6+11) =
6/17 when S T AT E = E′. �

Lemma 6. When S T AT E = E′, the probability that the
condition (E-2) is satisfied is 5/34. The probability that the
condition (E-3) is satisfied is also 5/34.

Proof. Consider the condition statement of (E-2) and (E-3).
The only difference between those two conditions is rī,t+2.

To proof this lemma, we will show that Pr{rī,t+2 = 0} =
Pr{rī,t+2 � 0} = 0.5. That statement is true by the fact that
the only incoming edge to E′ is from (A-5), (B’-2), (C’-1)
and t is incremented by 6 at (A-5) and (C’-1). The bit t + 2
when S T AT E = E′ is t + 8 when S T AT E = A. Since the
newly-added condition (AA-1) and (AA-2) do impose the
non-uniformity on bit t to t + 6, we can assume that the bit
t + 8 is uniform when S T AT E = E′. �

Corollary 1 (Probability when S T AT Eτ−1 = E′).

pE′,A = 6/17 + 5/34 = 1/2,

pE′,B = 5/34 + 6/17 = 1/2,

and pE′,s = 0 for s ∈ {B′,C,C′,D, E, E′}.

Proof. When (E-1), (E-2), or (E-3) is satisfied, we increase
the value of t by at least 1. After the increment, the value
is larger than the value when S T AT E = A by at least 7.
Because of the non-uniformity caused by (AA-1) and (AA-
2) will affect only 7 bits, the distribution of input becomes
uniform again. We can move to state A and B after the tran-
sition.

We do not increase t when (E-4) is satisfied. However,
the bit t is not used in the condition of the next state, state
B, and the following state, state C. After we reach those
states, the value t is increased, and the distribution becomes
uniform. Hence, we can move to state B after the condition
(E-4) is selected. �
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