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PAPER

Minimax Geometric Fitting of Two Corresponding Sets
of Points and Dynamic Furthest Voronoi Diagrams

Keiko IMAIf, Shigeo SUMINO'!, and Hiroshi IMAI'", Members

SUMMARY This paper formulates problems of fitting two
corresponding sets of points by translation, rotation and scal-
ing, and proposes efficient algorithms for the fitting. The algo-
rithms are based on the theory of lower envelopes, or Davenport-
Schinzel sequences, and linearization techniques in computa-
tional geometry, and are related to dynamic furthest Voronoi
diagrams.

key words: computational geometry, lower envelopes, lineariza-
tion, Davenport-Schinzel sequences

1. Introduction

Matching or fitting two similar sets of n points is a
fundamental problem in image processing and pattern
recognition. Generally, the main step in solving this
fitting problem is to establish a good correspondence
between the two sets. However, there are cases in prac-
tice such that a one-to-one correspondence between two
sets of points, S and T, is given in advance, and the S
set of points must be fitted with the T' set of points by
applying geometric operations to S such as translation,
rotation and/or scaling.

Such problems arise in an industrial robot attach-
ing a pin-grid-array type LSI (large-scale-integrated-
circuit) chip to a board by using visual sensors[15].
The robot first takes an image of the pins of the LSI
chip using a visual sensor. Then it tries to fit the LSI
package to the corresponding patterns on the board in
the best way by translating and rotating the LSI chip,
matching the image with stored patterns (scaling the
image is sometimes required). The patterns are a col-
lection of disks or squares of the same size arranged
according to a regular grid. Figure 1 illustrates the case
with square patterns. Recent ball-grid-array type LSI
chips correspond to the disk case.

This problem is a geometric fitting problem of a
set S of points representing pins with a set 7' of reg-
ular grid points. This geometric fitting problem is of
the minimax type. That is, the maximum among the
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distances between two corresponding points in S and T'
should be minimized by the geometric operations. This
is because the pins can be attached to the corresponding
patterns correctly if this minimax distance is not greater
than the radius of the disks or half the side length of the
squares, and a minimax location gives the most reliable
attachment of the LSI chip. If the patterns are disks, Eu-
clidean distance suffices as the distance between points
in this problem, while if the patterns are squares, L.,
distances with respect to the axis of the set 7' must be
used. This geometric fitting problem is a special case
of a calibration problem in image processing, where fit-
ting is done nonlinearly (e.g., see[12],[23]). The case
for pin-grid-array and ball-grid-array type LSIs corre-
sponds to the minimax type fitting problem under stan-
dard geometric transformations, and this enables us to
solve the problem optimally and efficiently.

This paper thus considers the following problems:
Given two sets of points in a plane, § = {s; | i =
1,...,n}tand T = {¢; | i = 1,...,n}, such that s; is
associated with ¢;, translate, rotate (or transform in a
more complicated way) and/or scale the set of points
S simultaneously so that the maximum of the Lo or
Lo distances between ¢; and the transformed s; is min-
imized. The algorithmic complexity of geometric fit-
ting problems is dependent upon which geometric op-
erations are used in each problem, so that the following
notation will be used. There are basically three op-
erations: Translation, Rotation, and Scaling, which are
abbreviated as T, R, S, respectively. As noted above, for
calibration in image processing, a more general trans-
formation is needed instead of rotation, which is repre-

Translation, Rotation, Scaling

[T N

Fig. 1 Geometric fitting of distorted grid points with regular
grid points in Lo, norm.
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Table 1
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Summary of the time and space complexity of geometric fitting problems where

(t(n), s(n)) means the time complexity is O(¢t(n)) and the space complexity is O(s(n)).

geometric operations

Lo distance Lo distance

(translation/rotation)

T (translation) (n, n)[13]8 (n, n)§
TS (translation/scaling) (n(logn)*loglogn,n) [147§ (n, n)[13]§
TR (n2X7(n)logn, n)t (nlogn, n)

or (n®logn, n3)i

TG (translation/general transform)

(n3log* nlogmn, n)

(nlog* nlogn, n)

TSR (translation/scaling/rotation)

(n*logn, n*)i

(TLZ, n2)§

TSG (translation/scaling/general transform)

(n*log* nlogn, n*)t

(n*(log" n)?, n*(log* n)*)q

§these cases can be reduced to existing problems; tAs () is the maximum length of (n, s) Davenport-Schinzel sequence and Ags41(n) =
O(n - a(n)?@™* ™) for s > 2, where a(n) is the functional inverse of Ackermann’s function, and As(n) = O(nlog*n) when s is
regarded as a constant (e.g., see[21],[22]); these are based on the output-size sensitive convex hull algorithm by Seidel [18], and these
bounds are in the worst case, hence practical bounds would be better; §another kind of output-sensitive algorithm.

sented by low-order polynomials or rational functions.
This general operation will be abbreviated as G. Then
a geometric fitting problem with some of these four op-
erations will be denoted by placing the corresponding
characters before the term “fitting.” For example, a geo-
metric fitting problem with translation and rotation will
be referred to as the TR-fitting problem (see Table 1).

The geometric fitting problem has been investigated
in computational geometry by Alt, Mehlhorn, Wagener
and Welzl [2] in connection with the congruence prob-
lem. In fact, the optimization version of the approx-
imate congruence problem that they considered is ex-
actly the geometric fitting problem that we have defined
so far. In that paper, the decision version is also consid-
ered, which determines whether two corresponding sets
of points can be fitted so that the maximum distance
between the corresponding pairs of points is less than
or equal to a given tolerance e. They show that the de-
cision version of the geometric fitting problem between
two corresponding sets of n points in Ly and Lo, norms
can be solved in O(n3logn) time, which would yield an
O(n®(log n)?)-time algorithm for the optimization prob-
lem. In this paper, we give a much better algorithm
for the Lo, problem and a slightly better algorithm for
the Ly problem. Our approach, which is described be-
low, is quite different from theirs. With regard to the
cited paper [2], it should be mentioned that the approxi-
mate congruence problem for two sets of points without
any prescribed correspondence is also discussed, and
polynomial-time algorithms for it are given there.

The geometric fitting problem can be regarded in
general as the problem in dynamic computational ge-
ometry introduced by Atallah[3]. In fact, the fitting
problem in Ly norm will be treated as a smallest en-
closing circle problem for moving points. Some special
cases of the fitting problem then reduce to existing prob-
lems in (dynamic) computational geometry as shown in

the above part of Table 1. Especially, it is noted that
the TS-fitting problem in Ly norm coincides with the
dynamic minimum enclosing circle problem considered
by Megiddo [14].

In this paper, we formulate the geometric fitting
problem as that of finding a minimum point on the
upper envelope of n multivariate functions, and give ef-
ficient algorithms for TR-, TSR-, TG- and TSG-fitting
problems in Ly and Ly, norms. Our results are summa-
rized in Table 1. Note that some of them are “output-
size sensitive” algorithms, and would behave better in
practice.

The combinatorial complexity of the upper enve-
lope of multivariate functions has been a hot research
topic[17,[3],[5]-[9],[17],[20]-[22]. In fact, our anal-
ysis of the TR-fitting problem in L, norm gives an algo-
rithm to construct furthest Voronoi diagrams for mov-
ing points together with an upper bound of the com-
binatorial complexity of such diagrams (for dynamic
Euclidean Voronoi diagrams, see also[1],[7]-[9] and
an original conference paper version [ 10] of this paper).
In our analysis, nice structures of this practical fitting
problem are used to decompose the problem into one-
dimensional Davenport-Schinzel sequences or to apply
a linearization technique (using this linearization tech-
nique was suggested to the authors by Sharir[19]).

The analysis using the Davenport-Schinzel se-
quence provides a slightly worse time bound in some
cases than linearization for the rotation operation, but
besides rotation it can be applied to a general trans-
formation. The result for the general transformation is
obtained by simply replacing the result for the rotation
along this line. Also, it should be noted that by rotation
and general transformation, L, norm may change, but,
as is seen from Fig. 1, we have a meaningful direction
in our problems and it is invariant in this sense.
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2. Preliminaries on Envelopes

Let f; be a d-variable real-valued function on a domain
DCR? (i =1,...,n). Define a function f on D taking
the maximum value of f; at each point, i.e.,

flz) = ,max fi(z) (x € D)
The graph y = f(z) of f(z) is the upper envelope of the
graphs y = f;(z) of f;(z). With each point = € D, asso-
ciate an index set I(z) of indices attaining the maximum
in f,ie, I(z) = {¢ | f(z) = fi(z)}. Divide the domain
D into a subdivision of maximally connected regions of
pairs (z, I(z)). The obtained subdivision of D is called
the maximum diagram of f; (i = 1,...,n). In other
words, the maximum diagram is obtained by projecting
the pointwise maximum of f; onto D. The maximum
diagram consists of k-dimensional faces (k= 0,...,d).
The combinatorial complexity of the maximum diagram
is defined to be the number of all faces. If a point z is
efficiently located in the maximum diagram to find I(z),
f(z) can be efficiently computed as f;(z) for i € I(z).

In the case of d = 1, the combinatorial complex-
ity of the upper envelope has been investigated in terms
of Davenport-Schinzel sequences. The following is a
primary result: When f; (i = 1,...,n) is a continuous
function on D, and each pair of the function intersects at
most a constant s times, the combinatorial complexity of
the upper envelopes is bounded by As(n), the maximum
length of (n,s) Davenport-Schinzel sequence. \s(n) is
an almost linear function in n, and in fact is O(nlog* n).
When f has a constant number of discontinuous points,
the combinatorial complexity is bounded by A i2(n).
See[21] for details.

Higher-dimensional cases are more difficult to ana-
lyze, and in fact the problem treated in this paper is con-
cerned with these cases. For related results, see[1],[7]-

[9].
3. Problem Formulation

Here we formulate the TSR-fitting problem. The TR-
fitting problem is a special TSR-fitting, whose scal-
ing factor is fixed at 1. Recall that we are given two
sets of points, S = {s; = (z;,y;)|j = 1,...,n} and
T = {t; = (uj,v;)|j = 1,...,n}, where s; is made to
correspond to ;. The problem is described so far by
fixing 7' and translating/rotating/scaling S. However,
scaling 1" by a factor a(> 0) is equivalent to scaling S
by a factor 1/a, and makes no problem in discussing
the maximum of L, and L., distances, so we will scale
T below.

The problem can be stated compactly by consider-
ing it in the complex number plane. Identify s; and ¢,
with complex numbers z;+iy; and u;+iv;, respectively.
Rotating the set S of points by an angle 8 (0 < 6 < 2m)
and then translating it by making the origin z = = +1iy,
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point s; is mapped to s;e! — z. Scaling the set T' of
points by a factor o = 0, point ¢; is mapped to at;.
Hence, the L, distance between mapped s; and ¢; is
|sje’® — at; — z||,, where || - ||, denotes the L, norm.
Thus the TSR-fitting problem in L, norm is expressed
as follows:
i s:e? —at; — 2
e 0<dBR azo B2, 8" — oty = 2l

Defining a point p;(0, ) = z;(6, ) + iy;(#, ) in the
complex number plane by

x,(0,0) = xjcos0 — y; sinh — au,
y;(0, ) = x;sin 0 + y; cos — av;

the problem is rewritten as

oco B0 (mzm jmax p;(8,@) — 2Hp>
Fixing 6 and o, the problem becomes the minimum en-
closing circle and square (parallel to the axis) problem
for n points p; (0, o) in the case of p = 2 and oo, respec-
tively. As p;(0,a) (j =1,...,n) move in the plane by
two parameters § and «, the minimum circle enclosing
them changes, and we want to find the smallest.

When a general transformation G, mentioned in
the introduction, is used instead of rotation in this for-
mulation, p; (6, &) should be changed as

xj(e’a) = fzj,yj (0) — Uy

Yi (0, &) = gayy;(0) — av,

where fz].,yj(é‘) and ga; .y, (0) are low-order polynomial
or rational functions of 6 with coefficients determined
by z; and y; (0 does not correspond to an angle here,
and these two functions depend on a model used in cal-
ibration and hence this 8 is a parameter independent of
the scaling factor o). We assume that these functions
are well behaved and that the degrees of these functions
are constants independent of n.

Finding a solution to this kind of problem requires
the solution of a system of polynomial equations whose
size and degree are constants independent of n. We as-
sume that ideally such a system can be solved in a con-
stant time.

4. Geometric Fitting Problem in L, Norm

This section describes two algorithms for each of the
TR- and TSR-fitting problems in L, norm. Results for
the TG- and TSG-fitting can be obtained by modify-
ing one of two algorithms for the TR- and TSR-fitting
problem. The TR-fitting problem is first related to con-
structing furthest Voronoi diagrams for moving points,
and an algorithm for traversing the diagram efficiently
in linear space is given. Also, applying the linearization
technique, the problem is reduced to enumerating the
faces of the intersection of n halfspaces in 7-dimensional
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space. For the TSR-fitting problem, a completely differ-
ent approach is first taken which can be used in the min-
imax problem for multivariate convex functions. Lin-
earization is also demonstrated as useful in solving this
problem.

4.1 TR-Titting Problem in L, Norm

In the TR-fitting problem, the scaling factor « is set to
be 1, and, throughout this subsection, p;(8, «) = p;(6,1)
will be written simply as p;(#). Rewriting the general
formulation given in Sect. 3 to this case, the problem is
stated as follows:

min 0,x
O§9<27r,z,yf( ’ ’y)

where
fi(gux7y) = (.’11 - .'171(9, 1))2 + (y - yz(a) 1)>2

f(8,z,y) corresponds to the upper envelope of n func-
tions f;(6,z,y) with three variables. Fixing § = ¢,
consider the upper envelope of n functions f;(6',z,y)
of x and y. As is well known, the maximum diagram of
fi(0',z,y) for fixed ¢ is the furthest Voronoi diagram
of points p;(¢’) (¢ = 1,...,n)[4],[16]. The furthest
Voronoi diagram for n fixed points in the plane can be
constructed in O(nlogn) time, and, given the diagram,
the minimum enclosing circle of the points can be com-
puted in linear time (see again[4],[16]). We will make
use of this property for the dynamic case.

4.1.1 Algorithm Using Davenport-Schinzel Sequences
of a Single Variable

In this paper we assume that, for any 0, p;(8) (i =
1,...,n) are pairwise distinct, to simplify our discus-
sions.

The minimum enclosing circle of points in a plane
has at least two points on its boundary. To solve the
dynamic problem for moving points pg(6), we may con-
sider the following constrained problem: Find the min-
imum enclosing circle of moving points px(6) (k =
1,...,m; 0 £ @ < 2r) having p;() and p;(6) on its
boundary for a given pair of ¢ and . For fixed 6, such
an enclosing circle having p;(6) and p;(0) on its bound-
ary may not exist. However, if p;(6*) and p,;(6*) is on
the boundary of the optimal enclosing circle of the dy-
namic problem, that enclosing circle is also an optimal
solution to the constrained problem. Hence, solving
this constrained problem for every pair of 7 and 7 among
(Z) pairs, the original problem can be solved simply by
picking the smallest.

Fix 7 and j. Firstly, let us investigate when there
exists an enclosing circle of py(6) (k = 1,...,n) with
pi(#) and p;(#) on its boundary. This corresponds to
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Fig. 2 A Voronoi edge of p1(8) and pa(d), where gt(8)
g5 (0), g7(8) = g5(0), g4 (6) = g5(6) = +oo, g5 (6)
g4 (8) = —oo.

the existence of a Voronoi edge of p;(6) and p,;(f) in
the furthest Voronoi diagram.

The center of a circle having p;(6) and p;(6) on
its boundary lies on the perpendicular bisector of line
segment p;(6)p;(#) connecting p;(6) and p;(#). When 6
varies, this bisector also moves. We orient this bisector
so that, with respect to the oriented bisector, p;(f) is in
its right side and p;(#) is in its left side. Regard this
oriented bisector as a coordinate axis, with the middle
point of the line segment p;(8)p;(6) as its origin.

Then, for k # 1, j, points p on this axis satisfying

d(p, px(0)) < d(p, p:i(0)) = d(p,p;(0))

is given as an interval

[9: (6), 91 (0)]

where d(-,-) is the Euclidean distance between two
points, and g, () and g} (¢) may take a value of —oco
and +oo. Note that this interval is the Voronoi edge of
p;(0) and p,;(#) in the furthest Voronoi diagram. See
Fig.2. When pg(6) is collinear with p;(6) and p;(6)
and is not on the line segment connecting p;(0)p;(6),
the interval is empty, and we regard g; (f) = +oo and
gi (0) = —oo. Define g7 (#) and g~ (0) by

g7 (6) = min g () g7 (6) = max g (9)
Then, the following lemma holds, which states the re-
lation between the furthest Voronoi diagram and the
minimum enclosing circle (e.g., see[16]).
Lemma 4.1: (1) For fixed 0, there exists a circle con-
taining all py(#) and having p;(6) and p,;(6) on its
boundary if the intersection of all the intervals for pg(6)
is nonempty, i.e., g~ (0) < g7 (9).

(2) When such a circle exists, the center of the mini-
mum enclosing circle with p;(#) and p;(6) on its bound-
ary is at

gt it gm(6) < g*(0) <0
0 if g7(f) <0< g%(0)
g~ if 0<g(0) <gt(0)
on the axis. O
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Thus, having g% (6) and g (9) at hand, the con-
strained problem for ¢, j can be solved. These two func-
tions correspond to the lower and upper envelopes, re-
spectively, of graphs of gi (6) and g; (9), and can be
computed using the theory of Davenport-Schinzel se-
quences (see Sect. 2).

When a pair of these functions among g; (¢) and
gy, (0) intersect (not at +o0), the corresponding four
points, including p;(¢) and p;(#), become cocircular.
The following lemma bounds the number of intersec-
tions.

Lemma 4.2: Four points among px(8) (k = 1,...,n)
become cocircular at most six times.

Proof: Four points px(9) (k = 1,2,3,4) become cocir-
cular when the following holds:

1 21(0,1) vi(0,1) z1(0,1)% +y1(6,1)?

1 22(0,1) w2(0,1) z2(8,1)% +y2(0,1)% | 0
1 .’1?3(9, 1) y3(0,1) 933(0, 1)2 +y3(9,1)2 -
]. 1174(9, 1) y4(9,1) .’E4(0,1)2 +y4(9,1)2

In the fourth column, all the quadratic terms cos? # and
sin” @ disappear, since cos? 0 +sin? § = 1. Then, the de-
terminant is a six-degree polynomial of cosf and sin¥,
and there are at most six roots. a

Lemma 4.3: The combinatorial complexity of gt and
g~ is O(Ag(n)). These functions can be computed in
O(M7(n)logn) time.

Proof: For g, any two functions g,j and glJr intersect
at most six times by Lemma 4.2. Hence, the combina-
torial complexity of g7 is O(Ag(n)) (see Sect.2). For
g, similar. The time complexity follows from[6] (see
also [ 17] for output-size sensitive results). a

Theorem 4.1: All the vertices of the maximum diagram
for the collection F' of n functions f; can be computed
in O(n®XA7(n)logn) time and O(n) space, and the TR-
fitting problem in Ly norm can be solved in the same
time and space.

Proof: For each pair of 7,7, we solve the constrained
problem to find the minimum enclosing circle hav-
ing p;(#) and p;(0) on its boundary for moving px(6)
(k=1,...,n; 0 £ 6 < 2x). Then, the smallest circle
among them is an optimal solution to the TR-fitting
problem. This takes O(n?X7(n)logn) time and O(n)
space in total. O

4.1.2 Algorithm Using the Linearization Technique

This section gives an application of the linearization
technique. First, expand the objective function given in
Sect. 3:

Ip:(6,0) — =1
=2? +y? + 22 + 92 + (u? +v?)a?
H2u;ax 4 2v;0y
+2(—uiz; — viy;)ocos O + 2(uzy; — vz )asind
+2x;(—zcosd — ysinb) + 2y, (zsinf — y cos 0)
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Note that 22 + y? appears in common for each 4, and
o = 1 here. Then, the TR-fitting problem is expressed
as minimizing the maximum of linear functions under
three nonlinear constraints.

6

..... ~
st. Xa4+X2=1
Xs =—X1X3 — XoX4
Xe=X1X4 — X0 X3

where

2., .2, .2 2
aio = i +y; +up +v;

a1 = 2u;, Qg = 20;
a3 = 2(—uz; — v;y;), ais = 2(uy; — viz;)
Ay = 213, aie = 2y;
and
Xl =, X2 =1,
X3 =cosf, X,=sinb,

X5 = —xcosf — ysinb,
X = xsinf — ycosd.

This optimization problem can be interpreted nicely as
follows. Consider the upper envelope of n linear func-
tions Z = a;g + 2221 a;4X4. Then the problem is to
find a point with the minimum Z-coordinate on the
intersection of this envelope and hypersurfaces deter-
mined by three constraints. A crucial observation here
is that the size of this upper envelope is O(n?) (the up-
per bound theorem for convex polytopes; e.g., see[4]).
since it is the boundary of the intersection of n upper
halfspaces in 7-dimensional space.

A direct approach based on this formulation is to
construct the intersection of the envelope with the three
hypersurfaces, and to find a bottom point on the inter-
section. In the following, however, we take a slightly
different approach, and use this formulation to con-
struct the maximum diagram of F' described at the be-
ginning of Sect. 4.1, assuming nondegeneracies. Algo-
rithmically, these approaches are almost the same, but,
regarding our algorithm in the latter way makes it easier
to use the underlying geometric properties of the prob-
lem.

In this formulation, vertices, edges and faces of the
maximum diagram of F' correspond to the intersection
of each of d-dimensional faces for d = 3,4 and 5, respec-
tively, of the envelope with three hypersurfaces. Here,
the envelope is a 7-dimensional convex polyhedron, and
a d-dimensional face is called a d-face. In discussing re-
lations between these faces, we need a facial graph of the
envelope. Roughly, the facial graph of the envelope is
an acyclic directed graph with one source and one sink,
such that the nodes in this graph are the faces of the en-
velope and an arc connects faces ® and ¥ iff ¥ is a facet
of @ (cf. [18]). The facial graph can be constructed by
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the output-size sensitive convex hull algorithm of Sei-
del[18] using duality, which in the worst case requires
O(n®logn) time. In the worst case, the size of the facial
graph becomes O(n®) in total, but practically it would
be less. ‘

We first consider computing all the vertices of the
maximum diagram using this formulation. Consider
3-faces of the envelope. A 3-face is part of the inter-
section of four hyperplanes among n hyperplanes Z =
a0 + Zgzl a;qgXq which is bounded by upward half-
spaces determined by the other n — 4 hyperplanes. The
intersection between a 3-face and three hypersurfaces of
the constraints is a point, which corresponds to a vertex
in the maximum diagram.

Consider four hyperplanes containing a 3-face, and
further consider the intersection of these four hyper-
planes and the three hypersurfaces. This intersection
consists of a constant number of points, to be called
candidate points. Not all the candidate points really
lie on the envelope, since points on the envelope should
be contained in upward halfspaces determined by the
other n — 4 hyperplanes. A naive approach to compute
the points on the envelope among the candidates is to
check, for each candidate point, whether the candidate
point is contained in the n — 4 halfspaces. However,
since the number of 3-faces are O(n?), and the test for
each candidate by this approach takes O(n) time, this
approach requires O(n*) time.

We can enumerate all the vertices of the maximum
diagram in O(n?®) time, given the facial graph at hand,
as follows. In the naive approach, we test n — 4 half-
spaces. For the 3-face we are considering, these n — 4
halfspaces may really determine the boundary of the 3-
face, but in ordinary cases only some of them are truly
determining the boundary of the 3-face. In fact, the
boundary of the 3-face is determined by 2-faces incident
to the 3-face in the facial graph. By the nondegener-
acy assumption, there is a hyperplane contributing to
a 2-face incident to the 3-face but not contributing to
the 3-face. We have to test only such hyperplanes in
checking whether candidate points are on the envelope
or not.

This leads to the following lemma.

Lemma 4.4: If the facial graph of this envelope is
given, all the vertices of the maximum diagram of F
can be computed in linear time and space with respect
to the size of the facial graph (strictly, the total number
of nodes of 3- and 4-faces and arcs connecting them).
O

From this lemma, we see that, given the facial
graph, we can enumerate all the vertices of the maxi-
mum diagram in O(n®) time and space.

To compute the edges and faces of the maximum
diagram, we compute the intersection of 4- and 5-faces
with the hypersurfaces in O(n®logn) time by making
full use of the underlying geometry. We here skip the
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details of this step of our algorithm, and just state the
result:

Theorem 4.2: The TR-fitting problem in Ly norm can
be solved in O(n®logn) time and O(n®) space in the
worst case. i

4.2 TSR-Fitting Problem in Ly Norm

Following Sects. 3,4.1, the TSR-fitting problem can be
formulated as the problem of finding a bottom point on
the upper envelope of n functions f;(z,y,8, ) of four
variables for each point p; as follows:

min  max fi(z,y,6,a)
z,y,0,a i=1,..,n

where
fi<m7 Y, 97 a) = (:B - Iz(ev a))2 + (y - yi(07 a))z'

For fixed 0 = 6y, this function f;(z,y, 00, a) is convex
with respect to z, y and a. Using this property, we first
consider reducing this problem of four variables to the
one-dimensional Davenport-Schinzel sequence by intro-
ducing many new functions from f;. We then consider
applying the linearization technique to this problem.

42.1 Algorithm Using Davenport-Schinzel Sequence
of a Single Variable

The function f;(z,y, 6, &) is not convex, but, for fixed 0,
it is convex with respect to z, y and . We show below
that this convexity can be utilized to get a nontrivial
time bound for the TSR- and TSG-fitting problems in
a theoretically easy way. We first provide the following
basic lemma for convex functions. In fact, we have al-
ready used this property for fixed o = 1, and we here
omit its proof (a proof may be found in[10]).

Lemma 4.5: Let ¢;(z) be a convex function on a con-
vex domain D in R? (4 = 1,...,n). For ICS =
{1,...,n},let ¢;(x) be a function whose value at x € D
is the pointwise maximum of ¢;(x) (¢ € I). We denote
the family of subsets of S whose sizes are d+1 by Sgy1.
Then we have

B B, i) = e plpor@ .

For fixed 6, f;(z,y,0,a) is convex with respect to
z,y and «, and this lemma can be used. We define a
function r;;5(6) for i < j <k <1 by

Tighi(0) = Jn hfﬁiﬁ,lfh(””’y’g’ a).
ik (0) is the minimum, for o = 0, of the square of
the radius of the minimum enclosing circle of p;(6, @),
p;(0, ), pp(0.c) and py(6, ). Then, from Lemma 4.5,
we have the following.
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Lemma 4.6: For the TSR-fitting problem, we have

min max Ji\T 0, ) = min max 7;;5(0).
z,y,0,a i=1,..,n Z( Y7 ) 0 i<j<h<l 'Lykl( )
O

Thus, the problem is reduced to computing the up-
per envelope of O(n*) functions of one variable. By this
definition, two functions may coincide in some inter-
val. However, modifying the functions by case analysis
leads us to an ordinary problem of Davenport-Schinzel
sequences. Similarly, we can compute intersections be-
tween two functions among r;u(0) (¢ < j < k <)
by case analysis. Note that 7;;,;(6) can be represented
by the upper envelope of four functions fy(z,y,0, )
(h = 1,7,k,1), which can be computed in a constant
time.

Theorem 4.3: The TSG-fitting problem in L, norm can
be solved in O(n*log* nlogn) time and O(n?) space.
O

422 Algorithm Using the Linearization Technique

Using the linearization technique as in Sect.4.1.2, the
TSR-fitting problem is reduced to the problem of min-
imizing the maximum of linear functions of seven vari-
ables with three nonlinear constraints and an inequality
constraint as follows.

7
min Z:nll’ax,n a;o + dzl a;q X4
s.t. X§+X42:X7, X720,
X5 X7 = —X1 X3 — XoX4,
XeX7r = X1 X4 — X2 X3

where

aip = 2%

Gia = 2(UilYi — ViTs),
2 2

a7 = Uy + v

2, .2
a0 =T; +y, a1 = 2u,
azz = 2(—uim; — viyi),

ais = 214, a6 = 2Y;,

and

X, = azx, X = ay,
X3 =acosf, X, = asinb,
X5 = —xzcosf —ysinb,

Xg =xsinf — ycosb,
X7=a2.

In this case, the envelope of n linear functions of seven
variables has the combinatorial complexity of O(n?).
Again, enumerating appropriate faces in a clever way
using the structure of the maximum diagram of original
n functions of four variables, we obtain the following
theorem.

Theorem 4.4: The TSR-fitting problem in L, norm
can be solved in O(n*logn) time and O(n*) space in
the worst case. ]
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5. Geometric Fitting Problem in L., Norm

Recalling the formulation of the TSR-fitting problem in
Lo norm, if 6 and « are fixed, the problem becomes the
minimum enclosing square (parallel to the axis) prob-
lem, and so the problem is trivially solved. That is, the
TSR-fitting problem is to minimize
min max {|z:(f,0) — 2|, [%:(8, @) —yl}

for0 £ 0 < 27, a =2 0. For fixed 6 and «, this maximum
can be easily minimized for z, ¥ as

h(f, @) = max{(Tmax (9, @) — Tmin (0, @)),
(ymax(aa 04) - ymin(07 a))}/2

~—

where
Tmax (0, 0) = max 0, )
ZTmin(0, ) = 1=nlnnn z;(0, )
Ymax (0, 0) = :Hllaxn vi(0,)
Ymin(0y &) = min (0, )

Tmax and xmiy correspond to the upper and lower
envelope of n functions z;(6, ). Similarly for yya.x and
Ymin. 1hese envelopes are envelopes of functions of a
single variable in the case of TR-fitting, and those of
bivariate functions in the case of the TSR-fitting prob-
lem. If these functions Zmax, Tmin, Ymax and Ymin are
computed, the TR- and TSR-problems can be solved by
merging or overlaying four 1- and 2-dimensional subdi-
visions of the functions, respectively, and then solving
subproblems of small size. The number of subproblems
is the size of the overlaid subdivision.

5.1 TR-Fitting Problem in L., Norm

In this case, @ = 1, and Zmax, Tmin, Ymax 04 Ymin
are the upper or lower envelopes of n functions of
one variable, and any pair of functions =z;(6,1) and
any pair of functions y;(6,1) intersect at most twice.
Hence, the combinatorial complexity of these functions
is just O(n), and the final overlaid subdivision consists
of O(n) intervals. To compute these functions, it takes
O(nlogn), and afterwards it takes only O(n) time, and
the following holds.

Theorem 5.1: The TR-fitting problem in L., norm can
be solved in O(nlogn) time. O

5.2 TSR-Fitting Problem in L., Norm

In this section, we first describe a general approach that
can be applicable to the TSG-fitting problem, and then
discuss applying the linearization technique to the TSR-
fitting problem by making use of its special structures.
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5.2.1 Algorithm Using the Davenport-Schinzel Se-
quences of a Single Variable

In this section we discuss computing the maximum di-
agram of zm.x(0, ) by using Davenport-Schinzel se-
quences. Solving the TSR- and TSG-fitting problem af-
ter computing the diagrams for max, Tmin> Ymaxs Ymin
will be discussed at the end of Sect. 5.2.2.

Let V; be the region in the maximum diagram in
which the function z;(,a) attains the maximum in
Tmax (1 =1,...,n). That is, V; is expressed as follows:

Vi= () {0.a)|zi(6,0) 22,(0,0)}.
j=1,...,n
Rearranging terms in z;(6, ) > z;(0, ), we have

(u; —uj)a < (z; —zj)cos@ — (y; — y;)sin 6.

Define three sets I;, I? and I;} of indices by

7 K2

I ={jlus—u; <0}
1= (| wi—u; =0)
I,:":{jlui—uj>0}

Then, V; is expressed as

Vi= Vo ovenve

where
Vi= () {a) azhi0)}
jeI-
v = ﬂ;{w,co | (s — ;) cosf — (s — ;) sinf 2 0}
Vit :jeﬁ {(0,0) | = hy(6) }
jert
and Z

hy(0) = 2:—3 cos 0 — %sin@ (eI UL
7 j % 7

V.= (resp. V:*) can be computed from the upper
(resp. lower) envelope of functions a = h;(f), j € I,
(resp. 7 € Z;“ ). Both envelopes have a combinatorial
complexity of O(n) and the intersection of V;~ and V"
also has a combinatorial complexity of O(n), since any
pair among h;(6) intersect at most twice in [0, 27). Al-
gorithmically, the two envelopes can be computed in
O(nlogn) time, and then the intersection V;~ N V.t can
be computed in O(n) time by using the monotone prop-
erty of h;(#) with respect to 6 with the merging tech-
nique.

V9O consists of the intersection of n regions each of
which is a vertical slab in the (0, ) domain, when we
identify & = 0 and § = 27. Hence, V has a combi-
natorial complexity of O(n), and can be computed in
O(nlogn) time.
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Hence, the combinatorial complexity of V; is O(n)
and can be computed in O(nlogn) time. Computing V;
for each ¢, we see that the maximum diagram of xax
has a combinatorial complexity of O(n?) and can be
computed in O(n?logn) time. These bounds for the
TSR-fitting problem are worse than those given in the
next section, but the arguments given so far can be ap-
plied to the TSG-fitting problem.

In the TSG-fitting problem, the combinatorial com-
plexity of each V; is shown to be O(nlog”n), and V;
itself can be computed in O(nlog* nlogn) time. This
implies that the maximum diagram of Zmay in the TSG-
fitting has complexity O(n?log* n), and can be com-
puted in O(n?log* nlogn) time. To solve the TSG-
fitting problem, we have to further compute the overlaid
subdivision of four diagrams of Ziax, Zmins Ymax and
Ymin- This step can be performed as described in the
next section, and we have the following theorem.
Theorem 5.2: The TSG-fitting problem in Lo norm
can be solved in O((n?log™ n)?) time and space in the
worst case. O

Although the worst-case time complexity becomes
almost O(n?), this seems too pessimistic, since an al-
most quadratic bound for the combinatorial complexity
of Zmax itself may not be so tight, and the complexity of
the overlaid subdivision may not be close to O((n?)?)
for some specific transformation G.

5.2.2 Algorithm Using the Linearization Technique

Using the linearization technique, computation of the
upper envelope of z,.x(8, @) can be done by consider-
ing the following:

max ;X1 +yiXe +u; X3

i=1,...,n
st X2+ X5=1, X3<0

Neglecting the constraints, this problem is to com-
pute the upper envelope of n linear functions Z =
;X1 + y; Xo + u; X3 in 4-dimensional space. In this
case, all of these functions pass through the origin, so
that the envelope essentially has a 3-dimensional struc-
ture, and hence its size is just O(n). Furthermore, since
X? + X2 < 1 determines a convex region, the subdi-
vision, maximum diagram, of ., 1S seen to consist
of O(n) elements. Using the three-dimensional con-
vex hull algorithm, this subdivision can be computed
in O(nlogn) time.

To solve the TSR-fitting problem, four subdivisions
of Tmax, Tmins Ymax and Umin must be overlaid. Let
K be the size of the overlaid subdivision. Since the
size of each subdivision is O(n), K = O(n?). Mairson
and Stolfi{11] show that two planar subdivisions can
be merged in O(K’ + Nlog N) time and O(K’ + N)
space where IV is the number of vertices in the origi-
nal subdivisions and K’ is the number of vertices in the
merged subdivision. In our case, we have to merge four
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subdivisions. We can compute the overlaid subdivision
of four in O(K + nlogn) time and O(K + n) space by
overlaying any pair of subdivisions among four by their
algorithm and then merging the computed subdivisions
by simply traversing the linked list representing the sub-
divisions. Given the overlaid subdivision at hand, the
problem can be solved in O(K) time. Thus, the follow-
ing holds.

Theorem 5.3: The TSR-fitting problem in L., norm
can be solved in O(K + nlogn) time and O(K + n)
space, where K is the number of distinct ordered four
indices (4,7, k,1) such that z;, z;, yx, v attain the ex-
tremal values in Tmax, Tmin,> Ymax> Ymin, Fespectively, for
some ¢ and a. K is O(n?) in the worst case. O

6. Concluding Remarks

We have presented efficient algorithms for several types
of the geometric fitting problem. Our approach is to
regard the problem as that of finding a minimum point
on the upper envelope of multivariate functions. We
have analyzed the combinatorial complexity of these en-
velopes, and devised algorithms to construct them.

The analysis of the TR-fitting problem in Ly norm
in Sect.3 can be used to get nontrivial bounds on the
combinatorial complexity of furthest Voronoi diagrams
for moving points directly. Also, it can be modified to
get bounds for nearest Voronoi diagrams. For exam-
ple, this approach gives an O(n®) bound on the com-
binatorial complexity of nearest and furthest Voronoi
diagrams for points moving in different fixed directions
with different constant velocity.

In this paper, we have concentrated on the geomet-
ric fitting between two corresponding sets. As noted in
the introduction, it has been shown[2] that the fitting
problem where no correspondence between two sets is
given in advance can be solved in relatively high poly-
nomial time. In[2], the Ly case and the L., case are
treated analogously, and there is almost no difference
in the results for the two cases. However, as we have
demonstrated here, in solving the fitting problem with
a given correspondence, the L., problem is easier to
solve than the L, problem. We might be able to im-
prove the results in[2] for the L., case. At least the
T-fitting problem between two sets of points with no
specified correspondence in the L., case can be solved
faster.

Another generalization of our results would be to
extend the objects from points to more complicated ge-
ometric objects. For instance, the geometric fitting be-
tween two polygons seems to be a very important and
interesting problem.
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