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On the Polynomiality of the Multiplicative Penalty
Function Method for Linear Programming and

Related Inscribed Ellipsoids

SUMMARY The paper proves the polynomiality of the
multiplicative penalty function method for linear programming
proposed by Iri and Imai®?. This is accomplished by considering
ellipsoids determined by the Hessian at an interior point and
centered at the point, and showing that, for any interior point,
there is such an ellipsoid contained in the feasible region in
which the penalty function is well approximated by a linear
function determined by the gradient at the point.

1. Introduction

Linear programming is a general optimization
method, including many discrete optimization
methods as special cases. Recently, a nonlinear
approach has been shown to be efficient for large-scale
linear programming problems, and the so-called inte-
rior method is now recognized as a powerful method
for linear programming.

The multiplicative penalty function method,
proposed by Iri and Imai®, is an interior method
which minimizes the convex multiplicative penalty
function defined for a given linear programming prob-
lem with inequality constraints by the Newton method.
In Ref.(2), the local quadratic convergence of the
method was shown, while the global convergence
property was left open. Zhang and Shi* proved the
global linear convergence of the method under an
assumption that line search can be performed rigorous-
ly.

This paper shows, in a compact way, how well the
multiplicative penalty function at any interior point
may be approximated by a linear function defined by
the gradient on an ellipsoid determined by the Hessian
at the point. This result, combined with a proposition
in Ref.( 2 ), implies that the number of main iterations
in the multiplicative penalty function method is
O(m*L), thus showing the polynomiality of the
method. Iri further investigated the method, espe-
cially properties of the Newton direction, with chang-
ing the penalty parameter, and gives a better bound.
However, the result of this paper may be still of theo-
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retical interest, since it provides a large ellipsoid
contained in the feasible region, and gives a good
estimate of the function along any direction, not
restricted to the Newton direction.

2. Preliminaries

We consider the following linear programming
problem :

min ¢’x
st. Ax=b

where ¢, XER", B&R™ and AS R™". In the sequel,
we assume the following (cf. Ref.(2)) :
(1) The feasible region X ={x | Ax= b} is bounded.
(2) The interior Int X of the feasible region X is
not empty.
(3) The minimum value of ¢%x is zero.

Consider the multiplicative penalty function for
this linear programming problem :

F(x)z(ch)”‘“/i]in[l(aiTx—bi) (xEInt X)

where a/& R” is the i-th row vector of 4. This function
is introduced in Ref.(2).Under these assumptions,
when F(x)—0, the distance between x and the set of
optimum solutions converges to zero. The multi-
plicative penalty function method directly minimizes
the penalty function F(x) by the Newton method,
starting from some initial interior point.

Define n=75(x) and H =H(x) for xEInt X by

7;<xE VFF(S;) =[(log F(x)>

N4 z a;
=(m-+1 — !
( ‘eTx iglafx—b,-

B(x)=1"*(log F(x))=F5(x)

* Zhang S. and Shi M.: “On Polynomial Property of
Iri-Imai’s New Algorithm for Linear Programming”, Manu-
script (1988).
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F?F(x)

HO=T70G)

We often consider the quadratic form £”B(x)& and &7
H(x)& for &, which are expressed as follows (cf. Ref.
(2)).

E7B(x)E=—(m+1e(x, &'+ alx, £ (
E7H (2)§=m(m+1)(e(x, &)~ alx, )Y
+3(ax O—alx OF  (2)

alx, )= ax, &)
é(x, )=

Asis seen from Eq. (2) and the assumptions, H(x) is
positive definite, and F(x) is strongly convex.

3. Ellipsoids and Polynomiality
At an interior point x, we can consider an ellip-

soid E(x, r)(r=0) defined by the Hessian, which is
positive definite, and centered at x as follows :

E(x, )={x"| (x—x)TH(x) (x' —x)<r?}
[Lemma 3.1] Ifx+&€E(x, r), | dlx, &)1 <2r
(Proof) From Eq. (2), we have

m(m+1)(¢(x, §)—a(x, &)

+ 3 (ax, &)~ alx, Hr=r (3)

Note that the second term in the left side is m times the
variance of d;(x, )(i=1, -+, m). For a =max{ad:(x,

&)} —min{a:(x, &)}, we can easily see

S\(alx, §)—adx, )P z%

Hence, a<y2r. Since there exist both strictly positive
and negative numbers among d&:(x, &)(i=1, -, m),
which follows from the assumption that the feasible
region X is bounded, this implies | @(x, &) | <.2r.
O
[Theorem 3.1]  E(x,1/42) is contained in the fea-
sible region X.
(Proof) For x+&<E(x,1/y2),
pressed as

is ex-

| a(x, &) |
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|a iT(x“i"of)‘“bg

T
1> 1aix, 5)|ﬁ “15 i| alx—b |

and hence
al(x+&)—b;>0 (i=1,--, m). O

Thus, we can construct, at any interior point, a
large ellipsoid contained in the feasible region from
the Hessian. Next, let us consider approximating the
multiplicative penalty function by a linear function
determined by the gradient inside the ellipsoid.
[Theorem 3.2] For x+ &< E(x, a/ /2)(0< a< 1),

log F(x-+§)= log F(x) +&"y (x)+2(1—j1)2

(Proof) Since there exists some #(0< §< 1) satisfy-

ing
log F(x+ &)=log F(x+ & n(x)
+&7B(x+ 0§)E,

we have only to show that &"B(x+ 0€)& in the last
term is bounded by ma?/(1—@)*From Eq.(1), we
have

E'B(x+ 08)=—(m+1)é(x+ GE, €)?
n é alx+ 08, &)

= 2lax+ 08, &) (4)
Since x+ #&/x is in the feasible region from Theorem
3.1, we have
af(x+ 08)—b;=(1—a)alx—b;).

Hence,

- 1 - a
. < . <
where the last inequality follows from Lemma 3. 1.
Combining this with Eq.(4), we obtain the theorem.
O
For an interior point x, consider & satisfying

H(x)E=—n(x).

& is the so-called Newton direction. For this direction,
the following is shown in the proof of Proposition 5. 2
of the paper by Iri and Imai®® (see also Ref. (1)).
[Lemma 3.2] @ h=§ETH(x)é=—E&n(x)=1/2.

O

[Theorem 3.3] Suppose m=6. For the Newton
direction &, x+ &/4hm is in the feasible region, and

logF<x+ £ >—logF(x> 10

4hm m’

(Proof) By the definition of 4 in Lemma 3.2, we
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have

—l—éTH(x)§=¥< 1 :<l>2
16A*m? 16hm* = 8m* \ /2

with a=—=1—<1
2m
Then, from Theorem 3.2, x+ &/4Am is in the feasible
region, and, for a=1/(2m),

log F(x“‘im)élog F(x)— h

4h 4hm

1
T8m(I—1]/Cm))?

I 1 1 { L
<log F(x) m( 4 3(11/12)2>

since m=6. The coefficient of 1/m in the last term
above is —0.1012:+-< —1/10, and we obtain the theo-
rem. O

By the well-known arguments about the
polynomiality of the interior method (e.g., see Ref.
(3)), this theorem implies that the multiplicative
penalty function method solves a linear programming
problem in O(m®L) iterations where each iteration
requires O(m®) operations on numbers of L bits (L is
the size of the input of the problem).

4. Concluding Remarks

We have shown that the ellipsoid contained in the
feasible region is easily constructed from the Hessian in
the multiplicative penalty function method?®, and
verified the polynomiality of the method. The ellipsoid
is determined by not only d;(x, &) but also é(x, &),
that is, it naturally has connection with the objective
function besides the constraints.

To guarantee the reduction of the penalty function
value as in Theorem 3. 3, the Newton direction should
be used. However, Theorem 3. 2 in this paper holds for
any direction, and hence might be used further.
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