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Proof for the Equivalence between Some Best-First

Algorithms and Depth-First Algorithms for

AND/OR Trees

Ayumu NAGAI†, Nonmember and Hiroshi IMAI††, Regular Member

SUMMARY When we want to know if it is a win or a loss
at a given position of a game (e.g. chess endgame), the process
to figure out this problem corresponds to searching an AND/OR
tree. AND/OR-tree search is a method for getting a proof solu-
tion (win) or a disproof solution (loss) for such a problem. AO*
is well-known as a representative algorithm for searching a proof
solution in an AND/OR tree. AO* uses only the idea of proof
number. Besides, Allis developed pn-search which uses the idea of
proof number and disproof number. Both of them are best-first
algorithms. There was no efficient depth-first algorithm using
(dis)proof number, until Seo developed his originative algorithm
which uses only proof number. Besides, Nagai recently developed
PDS which is a depth-first algorithm using both proof number
and disproof number. In this paper, we give a proof for the equiv-
alence between AO* which is a best-first algorithm and Seo’s
depth-first algorithm in the meaning of expanding a certain kind
of node. Furthermore, we give a proof for the equivalence be-
tween pn-search which is a best-first algorithm and df-pn which
is a depth-first algorithm we propose in this paper.
key words: AND/OR tree, AO*, pn-search, df-pn

1. Introduction

Alpha-Beta has been the most popular algorithm for
searching minimax trees, even though there are more
efficient algorithms (e.g., SSS* [21]) from a viewpoint
of the number of nodes visited. There are two rea-
sons for this. First, since Alpha-Beta has an advantage
that they are adaptable, it is easy to improve its ef-
ficiency [16] by various enhancements, such as history
heuristics [15], transposition table [20], iterative deep-
ening [20], etc. Second, as Alpha-Beta is a depth-first
algorithm, it uses less memory space and its actual
search speed is often faster. To be specific, it can run
under memory space of O(d), where d is the search
depth. However, best-first algorithms, such as SSS*,
must preserve in memory all the explored positions and
the whole information that each of the position has.
It requires large memory space of O(w

d
2 ) [14], where

w is the branching factor, or the average number of
moves each position has. To put it simply, the naive
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best-first algorithm SSS* may search efficiently than
the naive depth-first algorithm Alpha-Beta with no en-
hancements from a viewpoint of the number of nodes
visited when we have sufficient memory space. How-
ever, Alpha-Beta with some enhancements is easier to
handle and may search faster than SSS* in actual exe-
cution time, since 1) there are very few enhancements
for SSS* and since 2) actually it is common that we
only have insufficient memory space. Moreover, SSS* is
an algorithm for searching fixed-depth tree. Therefore,
most of the top level programs have adopted depth-
first algorithms, such as Deep Thought (predecessor of
Deep Blue) [5] which is a top level chess machine, Lo-
gistello [3] which is a top level Othello program, and
Chinook [17] which is a top level Checkers program.
Similarly, also with AND/OR-tree search, depth-first
algorithms are surely more desirable than best-first al-
gorithms, since depth-first algorithms are so adaptive
that many enhancements are useful. As mentioned
later, df-pn, the algorithm we propose in this paper,
is a depth-first algorithm.

There is a trend to use a depth-first algorithm so
as to behave the same as a best-first algorithm. For ex-
ample, IDA* is a depth-first algorithm for single-agent
game trees which behaves the same as the best-first
algorithm, or A*. Another example is MT-SSS* (MT-
DUAL*) [13]. MT-SSS* (MT-DUAL*) is a depth-first
algorithm for minimax trees which behaves the same as
the best-first algorithm, or SSS* (DUAL*). Based on
these studies, Plaat developed MTD(f) [13] for mini-
max trees. Although Scout algorithm [12] is still a most
widely used algorithm, MTD(f) is a significant algo-
rithm not only from the viewpoint of practical use but
also from the viewpoint of its basic principle. That is, a
depth-first algorithm, which is constructed so as to be-
have the same as a corresponding best-first algorithm,
searches as efficient as the best-first algorithm, and at
the same time, is so adaptive that many enhancements
are useful. As mentioned later, df-pn, the algorithm for
AND/OR trees we propose in this paper, is a depth-first
algorithm that behaves the same as pn-search which is
a best-first algorithm.

Each node of a minimax tree may be evaluated to
any integer (or even real number) [10]. A minimax tree
is a model of a two-player zero-sum game with per-
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Table 1 Relation of the four algorithms.

information using
only proof number and

proof number disproof number

best-first AO* [11] pn-search [2]
depth-first Seo’s algorithm [18] df-pn

fect information [1], i.e. Chess and Othello. A minimax
tree such that each of the node value ultimately falls
on either of the two values (i.e., true and false, nor-
mally standing for win and lose, respectively) is called
an AND/OR tree. An AND/OR tree is a model of an
endgame of a two-player zero-sum game with perfect
information. AO* [11] is a representative algorithm for
AND/OR-tree search and is intensively studied. In this
paper, we let AO* indicate a limited version, proposed
by Elkan [4], of the original AO*. Allis developed a new
algorithm (pn-search [2]) which uses both proof number
and disproof number. Pn-search may be said that it is
a refined version of AO*. Since pn-search is an ele-
gant algorithm and is easy to understand, it attracts a
great deal of attention. Both AO* and pn-search are
best-first algorithms. There was a predominant precon-
ception that there are no efficient depth-first algorithm
for AND/OR trees.

However, Seo accomplished a significant break-
through and developed a new depth-first algorithm [18].
His depth-first algorithm behaves in the same way as
AO* in the meaning of always expanding a certain kind
of node. This fact was mentioned in several places such
as [6], but no rigorous statement and proof has been
made as far as we know (see Table 1). This is ac-
complished by the idea of Multiple Iterative Deepen-
ing, which is a series of iterative deepening performed
not only at the root but also at some internal nodes.
Moreover, df-pn, which is a depth-first algorithm us-
ing both proof and disproof numbers we will propose
in this paper, behaves the same as pn-search, which
is a best-first algorithm, in the meaning of always ex-
panding a certain kind of node (see Table 1). This is
accomplished by the idea of Multiple Iterative Deep-
ening at all nodes. Our purpose is to give rigorous
proofs that these two pairs of search algorithms behave
in the same way under the assumption that sufficient
memory is available (Sect. 2 and Sect. 3). This type of
equivalence is very important because of the adaptabil-
ity and extendibility of depth-first algorithms. That
is, if a best-first algorithm and a depth-first algorithm
behave in the same way, it is certainly better to adopt
the depth-first algorithm, because many enhancements
can be used efficiently, as mentioned in the first two
paragraphs of this introduction. Finally we will have a
conclusion (Sect. 4).

2. Algorithms Using only Proof Number

The purpose of this section is to 1) explain AO* and

Seo’s algorithm and 2) give a proof that the two algo-
rithms behave in the same way.

An OR node is a position with the first player’s
turn and an AND node is a position with the second
player’s turn. A leaf node is a node at the tip (or an
unexpanded node) of the current search tree and an
internal node is a node which is not a leaf node (or an
already expanded node). A terminal node is a leaf node
unable to expand.

2.1 Original AO*

AO* is a best-first algorithm using the following two
kinds of information at each node.

g(n): cost incurred so far from the root to node n
h(n): estimation of the cost from n to any solution

Definition 1: g, h are defined recursively in the
following way.

• When n is a leaf node

g(n) = 0

h(n) =
{

0 (n ∈ solution)
estimation (n /∈ solution)

That is, h may be some kind of heuristic evaluation
function.

• When n is an internal OR node

g(n) = cost(n, nc) + g(nc)
h(n) = h(nc)

where

nc ∈ { x |x ∈ children of n ∧
∀nchild ∈ children of n,

g(x) + cost(n, x) + h(x) ≤
g(nchild)+cost(n, nchild)+h(nchild)}

To put it simply, nc is a child with minimum
g + cost + h. cost(m,n) is the cost from m to
n. Actually, cost may be some kind of heuristic
evaluation function.

• When n is a internal AND node

g(n) = Σ
nc ∈ children of n

(
cost(n, nc)+g(nc)

)

h(n) = Σ
nc ∈ children of n

h(nc)

2.2 AO* in This Paper (Elkan’s Algorithm) [4]

AO* is originally an AND/OR graph-search algorithm
which uses g and h (or cost and h from the viewpoint
of evaluation function it uses). Strictly speaking, they
are different from proof number defined by Definition 3.
However, if cost and h are defined in the following way,
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then AO* will become an algorithm incorporating proof
number. To put it concretely, by defining cost and h
in this way, no evaluation function is needed.

Definition 2: cost and h

∀n, cost(n, nc) = 0

∀n ∈ leaf node, h(n) =




0 (n ∈ solution)
∞ (n is unsolvable)
1 (n otherwise)

This limited version of the original AO* is the same
as the algorithm which Elkan proposed in [4]. In this
paper, we let AO* indicate this limited version.

Before showing that this is an algorithm using
proof number, we define proof number.

Definition 3: pn(n) : Proof number of a node n

1. When n is a leaf node

a. When the value is true (n is a solution)

pn(n) = 0

b. When the value is false (n is not a solution)

pn(n) = ∞
c. When the value is unknown yet

pn(n) = 1

2. When n is an internal node

a. When n is an OR node

pn(n) = Min
nc ∈ children of n

pn(nc)

b. When n is an AND node

pn(n) = Σ
nc ∈ children of n

pn(nc)

Intuitively speaking, proof number indicates the
least number of leaf nodes, whose winning solution (for
the first player) must be found in order to find the win-
ning solution for the root position. If proof number
of a node is large, the effort to find winning solution
becomes large. When proof number is 0, the value is
true, meaning that winning solution is already found.
When proof number is ∞, the value is false, mean-
ing that there is no winning solution, that is, the first
player loses the game.

Now it is easily shown that AO* with cost and
h defined by Definition 2 is the algorithm using proof
number, since g = 0 and h = pn.

We define a most-proving node in the context of
AO*. The smaller proof number of a node is, the larger
the possibility of a winning solution to be found within
less effort becomes. Therefore, the first player is in-
terested in the child node with small proof number.
Most-proving node in the context of AO* is defined as
follows.

Definition 4: Most-proving node in the context of

Fig. 1 Selection of most-proving node as with AO* (numbers
are the proof numbers of corresponding nodes). c, e, f , g are
most-proving nodes in the context of AO*.

AO* is a leaf node selected by tracing from the root in
the following way.

• For each OR node, trace the child with minimum
proof number.

• For each AND node, trace any child with non-zero
proof number.

As there is arbitrariness at each AND node, and
as there is arbitrariness at each OR node when there
are more than one child with minimum proof number,
most-proving node is not necessarily uniquely deter-
mined. (See Fig. 1.)

After all, AO* is a best-first algorithm using proof
number. Its search procedure is as following:

Procedure AO*:

step 1) Select a most-proving node by following Defi-
nition 4.

step 2) Expand the most-proving node. Calculate
proof number of all the generated children by fol-
lowing Definition 3.

step 3) Update proof numbers of all the nodes on the
path from the most-proving node up to the root.

Repeat this until the proof number of the root becomes
0 or ∞.

Theorem 1 (Characteristic of AO*): When expand-
ing a leaf node in AO*, the leaf node is always one
of most-proving nodes defined by Definition 4.

Proof. Procedure AO* shows that it is obvious that
AO* always expands a most-proving node defined by
Definition 4. ✷

The concept of AO* is that most-proving node de-
fined by Definition 4 is always expanded because AO*
regards a most-proving node as the nearest node to the
solution. AO* is a best-first algorithm because of its
manner in selecting the most-proving node.

2.3 Seo’s Algorithm [18]

Seo’s algorithm is a depth-first algorithm using proof
number. Each node n has a threshold thpn(n).

Procedure Seo’s Algorithm:
Assign thpn(r) = 2 where r is the root, since ini-
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tially pn(r) is 1.

step 1) At each node n, the search process continues to
search below n until pn(n) defined by Definition 3
satisfies pn(n) = 0 or pn(n) ≥ thpn(n) (we call it
ending condition).

step 2) When n is an OR node, all the children nchild is
searched sequentially with assigning its threshold
thpn(nchild) = thpn(n) if ending condition at nchild

is not satisfied (precisely, if pn(nchild) �= 0 and
pn(nchild) < thpn(nchild) = thpn(n)).

step 3) When n is an AND node, select any child with
non-zero proof number and search below it with as-
signing thpn(nchild) = pn(nchild)+1. This process
is iterated (iterative deepening) until the ending
condition of n is satisfied.
This kind of iteration is called Multiple Itera-
tive Deepening, since iterative deepening is per-
formed not only at the root but also at all AND
nodes. The search process goes deeper until satis-
fying the ending condition. That is, it is a depth-
first algorithm iterating on thresholds, instead of
depths.

step 4) If the ending condition is satisfied, the search
process returns to the parent node of n. If n is the
root, then assign thpn(r) = pn(r) + 1.

Iterate this whole process until pn(r) = 0 or pn(r) =
∞ with assigning thpn(r) = pn(r) + 1 each time.

Now we explain the search process of Seo’s algo-
rithm and Multiple Iterative Deepening by using the
example shown in Fig. 2. Assume the situation that
the search process is at the root a after some itera-
tions. Assume still more that proof number of the root
pn(a) is 9 and its threshold thpn(a) is assigned to 10.
Then, the search process goes under b which has the
minimum proof number with assigning thpn(b) = 10.
At b, assume that the search process goes under e with
assigning thpn(e) = 3, and that e was solved causing
pn(e) to became 0. Assume that f was selected for
the forthcoming search process. If we do not use Mul-
tiple Iterative Deepening, we can assign thpn(f) = 6,
because thpn(b) = 10 and pn(g) = 4. However, by
using Multiple Iterative Deepening, we look at pn(f)
being 3 and assign thpn(f) = 4. If f still can not be
solved, and if pn(f) ≥ 6 after searching f , then the
search process returns to a, since the ending condition
of b satisfies. Otherwise, if pn(f) = 4 (5), then f is
searched iteratively by assigning thpn(f) = 5 (6). In
this way, at an internal OR node n (not only the root),
assignment of its threshold is thpn(n) = pn(n)+1, and
the nodes in the range of that threshold is searched.
The reason why thpn(f) = 6 is not assigned from the
beginning is as follows. If thpn(f) = 6 is assigned in
the case where actually f can be solved with assigning
thpn(f) = 4, the solution is certainly found, but with
many additional nodes expanded. In order to mini-

Fig. 2 Seo’s algorithm uses multiple iterative deepening (the
numbers are the proof numbers).

mize the number of nodes expanded, the threshold is
assigned thpn(n) = pn(n) + 1.

By adopting Multiple Iterative Deepening, the fol-
lowing lemma holds. (Sufficient memory space is as-
sumed.)

Lemma 2: When the search process goes from a par-
ent node to its child n, the relation between pn(n) and
thpn(n) is as follows.

pn(n) + 1 = thpn(n)

Proof. We show it by proof by contradiction. Assume
that

pn(nc) + 1 �= thpn(nc) (1)

is satisfied when search process goes from a parent n
to its child nc. Step 3) of Procedure Seo’s algorithm
shows that n is not an AND node, so nc is an AND
node. Expression (1) shows that either of the following
two expression holds.

pn(nc) + 1 > thpn(nc) (2)
pn(nc) + 1 < thpn(nc) (3)

When Expression (2) holds, the search process does not
go toward nc, since the ending condition at nc is already
satisfied. There is no such case. Hence Expression (3)
holds. As n is an OR node, pn(n) is equal to the
minimum among proof numbers of its children. Then
the following expression holds.

pn(n) ≤ pn(nc) (4)

Step 2) of Procedure Seo’s algorithm shows

thpn(n) = thpn(nc). (5)

Expressions (3),(4),(5) lead to

pn(n)+1 ≤ pn(nc)+1 < thpn(nc) = thpn(n). (6)
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However, n is an OR node. Step 3) of Procedure Seo’s
algorithm shows that

pn(n) + 1 = thpn(n). (7)

Expressions (6) and (7) conflicts each other. Therefore,
Lemma 2 is proved by proof by contradiction. ✷

Lemma 3: When the search process goes from a par-
ent OR node to its child AND node, the child node is
the child with minimum proof number among its sibling
nodes.

Proof. Because of Lemma 2 and step 2) of Procedure
of Seo’s algorithm,

pn(nc) + 1 = thpn(nc) = thpn(n) (8)

when the search process goes from the parent OR node
n to its child AND node nc. Assume that ni (�= nc) is
any child of n. If ni satisfies its ending condition,

pn(ni) ≥ (thpn(ni)) = thpn(n). (9)

(If pn(ni) = 0, then ending condition of n is satisfied,
so nc is not searched.) If ni does not satisfy its ending
condition, Lemma 2 and step 2) of Seo’s algorithm lead
to

pn(ni) + 1 = (thpn(ni)) = thpn(n). (10)

In either case of Expressions (9) or (10), Expression (8)
leads to

pn(ni) ≥ (thpn(ni) − 1) = thpn(n) − 1
= thpn(nc) − 1 = pn(nc).

It means that proof number of nc is the minimum
among all its sibling node, although nc may not be the
only node. ✷

Theorem 4 (Seo’s algorithm): When expanding a
leaf node along Seo’s algorithm, the leaf node is always
one of most-proving nodes defined by Definition 4.

Proof. In order to show a leaf node selected by Seo’s
algorithm satisfies Definition 4 (definition of most-
proving node), all the nodes on the path from the root
to the leaf node must be checked. Definition 4 essen-
tially does not claim anything at each AND node. We
only need to check the selection of a child nc at each
OR node n. Assume that pn(nc) is the proof number of
nc at the moment when the search process went to nc.
Assume that pncurrent(nc) is the current proof number
of nc. Because of Lemma 3,

pn(nc) ≤ pn(ni) (11)

where ni is any sibling node of nc. While searching
below nc, since nc does not satisfy its ending condi-
tion, proof number of nc may be smaller than the proof
number of nc at the moment search process went to nc.
Therefore,

pncurrent(nc) ≤ pn(n) = thpn(n) − 1. (12)

Expressions (11) and (12) lead to

pncurrent(nc) ≤ pn(ni).

It means that nc is the child with minimum proof num-
ber among its sibling nodes, satisfying Definition 4.
Therefore, the leaf node selected by Seo’s algorithm is
one of most-proving nodes defined by Definition 4. ✷

Note that Lemma 2, Lemma 3, and Theorem 4
hold if Multiple Iterative Deepening is in use. When
Multiple Iterative Deepening is not in use, to put it
concretely, it means that at Fig. 2, thpn(f) = 6 is as-
signed by skipping 4 and 5. Then Lemma 2 does not
hold. As Lemma 3 and Theorem 4 requires Lemma 2,
they do not hold either. Then the equivalence between
AO* and Seo’s algorithm (Theorem 5), which is the
purpose of this section, will be broken.

2.4 Equivalence between AO* and Seo’s Algorithm

Theorem 5 (Equivalence between AO* and Seo’s al-
gorithm): Seo’s algorithm behaves the same as AO*
in the meaning that Seo’s algorithm always expands
most-proving node defined by Definition 4.

Proof. Because of Theorems 1 and 4, both AO* and
Seo’s algorithm always expands one of most-proving
nodes defined by Definition 6. ✷

The feature of AO* is summarized in Theorem 1.
That is, AO* always expands a most-proving node de-
fined by Definition 4. Theorem 4 asserts that Seo’s
algorithm also always expands a most-proving node.
In this meaning, Seo’s algorithm behaves the same as
AO*.

3. Algorithms Using Both Proof Number and
Disproof Number

Allis defined disproof number in the following way [2].

Definition 5: dn(n): Disproof number of a node n

1. When n is a leaf node

a. When the value is true (n is a solution)

dn(n) = ∞
b. When the value is false (n is not a solution)

dn(n) = 0

c. When the value is unknown yet

dn(n) = 1

2. When n is an internal node

a. When n is an OR node

dn(n) = Σ
nc ∈ children of n

dn(nc)
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b. When n is an AND node

dn(n) = Min
nc ∈ children of n

dn(nc)

Intuitively speaking, disproof number indicates the
least number of leaf nodes, whose losing solution (for
the first player) must be found in order to find the losing
solution for the root position. If disproof number of a
node is large, the effort to find losing solution becomes
large. When disproof number is 0, the value is false,
meaning that losing solution is already found. (In that
case, proof number is ∞.) When disproof number is
∞, the value is false, meaning that there is no losing
solution, that is, we win the game. (In that case, proof
number is 0.)

As it is obvious by comparing Definition 3 and 5,
a proof number and a disproof number are dual to each
other.

The purpose of this section is to explain pn-search
and df-pn and give a proof that the two algorithms
behave in the same way.

3.1 Pn-search (Allis’ Algorithm)

We already mentioned that the first player is interested
in the child node with small proof number. Similarly,
the smaller disproof number of a node is, the larger
the possibility of a losing solution to be found within
less effort becomes. Therefore, the second player is in-
terested in the child node with small disproof number.
Most-proving node in the context of pn-search is de-
fined as follows.

Definition 6: Most-proving node in the context of
pn-search [2] is a leaf node selected by tracing from the
root in the following way.

• For each OR node, trace the child with minimum
proof number.

• For each AND node, trace the child with minimum
disproof number.

As there is arbitrariness at each OR (AND) node
when there is more than one child with minimum
(dis)proof number, most-proving node is not necessar-
ily uniquely determined. (See Fig. 3.)

The difference between most-proving node for AO*
(Definition 4) and most-proving node for pn-search
(Definition 6) is the handling at AND nodes. As it
is obvious by Definitions 4 and 6, a most-proving node
in the context of pn-search is also a most-proving node
in the context of AO*. (The converse does not hold.)
Therefore, by using disproof number, we can narrow
significant nodes properly.

Pn-search is a naive best-first algorithm using both
proof number and disproof number.

Procedure pn-search:

step 1) Select a most-proving node by following Defi-
nition 6.

Fig. 3 Selection of most-proving node as with pn-search (the
numbers at left side are the proof numbers, and the numbers at
right side are the disproof numbers). c, e are most-proving nodes
in the context of pn-search.

step 2) Expand the most-proving node. Calculate
(dis)proof number of all the generated children by
following Definitions 3 and 5.

step 3) Update (dis)proof numbers of all the nodes
on the path from the most-proving node up to the
root.

Repeat this until either proof number or disproof num-
ber of the root becomes 0.

Theorem 6 (Characteristic of pn-search): When ex-
panding a leaf node along pn-search, the leaf node is
always one of most-proving nodes defined by Defini-
tion 6.

Proof. Procedure pn-search shows that it is obvious
that pn-search always expands a most-proving node de-
fined by Definition 6. ✷

The concept of pn-search is that most-proving
node defined by Definition 6 is always expanded be-
cause pn-search regards a most-proving node as the
nearest node to the solution. Pn-search is a best-first
algorithm because of its manner in selecting the most-
proving node.

3.2 Df-pn

Here we consider depth-first algorithms using both
proof number and disproof number. Although a depth-
first algorithm using both proof number and disproof
number can be constructed simply by extending Seo’s
algorithm (we can even give a proof of its equivalence
to pn-search), in this paper we propose a more practi-
cal depth-first algorithm which we call df-pn. Df-pn is
an efficient algorithm because it uses the information of
second minimum (dis)proof number as well as the min-
imum one. Seo’s algorithm can even be improved by
this idea [19]. Even though PDS [8] is also a depth-first
algorithm using both proof number and disproof num-
ber, its basic concept differs from pn-search and df-pn.
It is not equivalent to pn-search either. (PDS is merely
asymptotically equivalent.)

Therefore, we explain what df-pn is like, and give
a proof of its equivalence to pn-search in the mean-
ing of expanding a most-proving node. As with df-pn,
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each node n has two thresholds: one for proof number
thpn(n) and the other for disproof number thdn(n).

Procedure df-pn: Assign

thpn(r) = ∞
thdn(r) = ∞

where r is the root.

step 1) At each node n, the search process continues to
search below n until pn(n) ≥ thpn(n) or dn(n) ≥
thdn(n) is satisfied (we call it ending condition).

step 2) When n is an OR node, select the child nc

with minimum proof number and the child n2 with
second minimum proof number. (If there is a child
other than nc with minimum proof number, that
is n2.) Search below nc with assigning

thpn(nc) = min(thpn(n),pn(n2) + 1) (13)

thdn(nc) = thdn(n)+dn(nc)−
∑

dn(nchild). (14)

Repeat this handling until the ending condition
holds. (Multiple Iterative Deepening.)

step 3) When n is an AND node, select the child nc

with minimum disproof number and the child n2

with second minimum disproof number. (If there
is a child other than nc with minimum disproof
number, that is n2.) Search below nc with assign-
ing

thpn(nc) = thpn(n)+pn(nc)−
∑

pn(nchild) (15)

thdn(nc) = min(thdn(n),dn(n2) + 1). (16)

Repeat this handling until the ending condition
holds. (Multiple Iterative Deepening.)

step 4) If the ending condition is satisfied, the search
process returns to the parent node of n. If n is the
root, then search is over.

Lemma 7: When the search process goes from a par-
ent node t to its child tchild, each constituent node n on
the path from the root to tchild is the node with mini-
mum proof (disproof) number among its sibling nodes
if n is an AND (OR) node.

Proof. Assume that nc is a node on the path from
the root to tchild. Assume still more that nc is an OR
node and that n2 is a sibling node of nc with second
minimum disproof number at the moment when the
search process went to nc. Because of Expression (16),

thdn(nc) ≤ dn(n2) + 1.

Hence,

dncurrent(nc) < thdn(nc) ≤ dn(n2) + 1

where dncurrent(nc) is the current disproof number of
n. Therefore,

dncurrent(nc) ≤ dn(n2) ≤ dn(ni)

where ni is any sibling node of nc (ni �= nc). Therefore,
when nc is an OR node, nc is the child with minimum
disproof number.

Similarly, when nc is an AND node, Expres-
sion (13) leads to

pncurrent(nc) ≤ pn(n2) ≤ pn(ni).

Therefore, when nc is an AND node, nc is the child
with minimum proof number. ✷

Theorem 8 (df-pn): When expanding a leaf node
along df-pn, the leaf node is always one of most-proving
nodes defined by Definition 6.

Proof. Because of Lemma 7, the leaf node to expand
always matches the conditions of most-proving node de-
fined by Definition 6. ✷

Although Expressions (14) and (15) are not used in
the proof, they are necessary in order to assure that the
search process returns to node n right after the ending
condition of n held at its child nc or any descendant of
nc.

3.3 Equivalence between Pn-search and Df-pn

Theorem 9 (Equivalence between pn-search and df-
pn): Df-pn behaves the same as pn-search in the mean-
ing that df-pn always expands a most-proving node de-
fined by Definition 6.

Proof. Because of Theorems 6 and 8, both pn-search
and df-pn always expands one of most-proving nodes
defined by Definition 6. ✷

The feature of pn-search is summarized in The-
orem 6. That is, pn-search always expands a most-
proving node defined by Definition 6. Theorem 8 as-
serts that df-pn also always expands a most-proving
node. In this meaning, df-pn behaves the same as pn-
search.

4. Conclusions

There are two algorithms using only proof number,
meaning that they are old-fashioned, for searching
AND/OR trees. That is, AO* which is a best-first algo-
rithm and Seo’s depth-first algorithm. We gave a proof
that AO* and Seo’s algorithm behave in the same way
in the meaning of they always expands a most-proving
node defined by Definition 4.

There are two algorithms using both proof num-
ber and disproof number on equal weights for searching
AND/OR trees. That is, pn-search which is a best-first
algorithm and df-pn which is a depth-first algorithm
proposed in this paper. We also gave a proof that pn-
search and df-pn behave in the same way in the meaning
of they always expands a most-proving node defined by
Definition 6.
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Moreover, we asserted that depth-first algorithms
for AND/OR trees are very important similarly with
minimax-tree search. Depth-first algorithms are supe-
rior in the case where we have memory space constraint
and they have advantage of adaptability and extendibil-
ity by various enhancements. Indeed, we implemented a
program to solved Tsume-shogi (Japanese Chess Prob-
lem), by using df-pn. This program became the most
powerful Tsume-shogi program [9]. This program uses
SmallTreeGC and SmallTreeReplacement [8] in order to
remove some of the entries from the transposition table,
when it gets full.
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Appendix: Program List of Df-pn

The program list of df-pn is carried below. Proof
number at an OR node and disproof number at an
AND node are essentially equivalent. Similarly, dis-
proof number at an OR node and proof number at an
AND node are essentially equivalent. As they are dual
to each other, an algorithm of negamax view [7] can be
constructed by naming the former φ and the latter δ.

1 // Iterative deepening at the root
2 procedure Nega-df-pn(r) {
3 r.φ = ∞; r.δ = ∞;
4 MID(r);
5 }
6 // Explore node n
7 procedure MID(n) {
8 // 1. Look up the transposition table
9 Look Up Transposition Table(n, φ, δ);
10 if (n.φ ≤ φ ‖n.δ ≤ δ) {
11 n.φ = φ; n.δ = δ;
12 return;
13 }
14 // 2. Generate all the legal moves
15 if (n is a terminal node) {
16 if ((n is an AND node && Eval(n)=true) ‖
17 (n is an OR node && Eval(n)=false)) {
18 n.φ = ∞; n.δ = 0;
19 }else {n.φ = 0; n.δ = ∞; }
20 Put In Transposition Table(n, n.φ, n.δ);
21 return;
22 }
23 GenerateLegalMoves();
24 // 3. Avoid cycles by using transposition table
25 Put In Transposition Table(n, n.φ, n.δ);
26 // 4. Multiple Iterative Deepening
27 while (1) {
28 // Terminate if either φ or δ is
29 // at least its threshold
30 if (n.φ≤∆Min(n) ‖ n.δ ≤ΦSum(n)) {
31 n.φ = ∆Min(n); n.δ = ΦSum(n);
32 Put In Transposition Table(n, n.φ, n.δ);
33 return;
34 }
35 δc = φ;
36 nc = SelectChild(n, φc, δc, δ2);
37 nc.φ = n.δ + φc − ΦSum(n);
38 nc.δ = min(n.φ, δ2 + 1);
39 MID(nc);
40 }
41 }
42 // Selection among the children
43 procedure SelectChild(n, &φc, &δc, &δ2) {
44 δbound = δc;
45 δc = ∞; δ2 = ∞;
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46 for (each child nchild) {
47 Look Up Transposition Table(nchild, φ, δ);
48 if (φ �= ∞) δ = max(δ, δbound);
49 if (δ < δc) {
50 nbest = nchild;
51 δ2 = δc; φc = φ; δc = δ;
52 }else if (δ < δ2) δ2 = δ;
53 if (φ = ∞) return nbest;
54 }
55 return nbest;
56 }
57 // Look up transposition table for the entry of n
58 procedure Look Up Transposition Table(n, &φ, &δ){
59 if (n is recorded) {
60 φ = Table[n].φ; δ = Table[n].δ;
61 }else {φ = 1; δ = 1; }
62 }
63 // Record into transposition table
64 procedure Put In Transposition Table(n, φ, δ) {
65 Table[n].φ = φ; Table[n].δ = δ;
66 }
67 // Calculate the minimum of δ of n’s children
68 procedure ∆Min(n) {
69 min = ∞;
70 for (each child nchild) {
71 Look Up Transposition Table(nchild, φ, δ);
72 min = min(min, δ);
73 }
74 return min;
75 }
76 // Calculate the sum of φ of n’s children
77 procedure ΦSum(n) {
78 sum = 0;
79 for (each child nchild) {
80 Look Up Transposition Table(nchild, φ, δ);
81 sum = sum + φ;
82 }
83 return sum;
84 }
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