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PAPER

Variance-Based k-Clustering Algorithms by Voronoi

Diagrams and Randomization

Mary INABA†, Nonmember, Naoki KATOH††, and Hiroshi IMAI†, Regular Members

SUMMARY In this paper we consider the k-clustering prob-
lem for a set S of n points pi = (xi) in the d-dimensional space
with variance-based errors as clustering criteria, motivated from
the color quantization problem of computing a color lookup table
for frame buffer display. As the inter-cluster criterion to mini-
mize, the sum of intra-cluster errors over every cluster is used,
and as the intra-cluster criterion of a cluster Sj ,

|Sj |α−1
X

pi∈Sj

‖xi − x̄(Sj)‖2

is considered, where ‖·‖ is the L2 norm and x̄(Sj) is the centroid
of points in Sj , i.e., (1/|Sj |)

P
pi∈Sj

xi. The cases of α = 1, 2

correspond to the sum of squared errors and the all-pairs sum of
squared errors, respectively. The k-clustering problem under the
criterion with α = 1, 2 are treated in a unified manner by charac-
terizing the optimum solution to the k-clustering problem by the
ordinary Euclidean Voronoi diagram and the weighted Voronoi
diagram with both multiplicative and additive weights. With
this framework, the problem is related to the generalized primary
shatter function for the Voronoi diagrams. The primary shatter
function is shown to be O(nO(kd)), which implies that, for fixed
k, this clustering problem can be solved in a polynomial time.
For the problem with the most typical intra-cluster criterion of
the sum of squared errors, we also present an efficient random-
ized algorithm which, roughly speaking, finds an ε-approximate
2-clustering in O(n(1/ε)d) time, which is quite practical and may
be used to real large-scale problems such as the color quantization
problem.
key words: geometric clustering, Voronoi diagram, randomiza-
tion

1. Introduction

Clustering is the grouping of similar objects and a clus-
tering of a set is a partition of its elements that is chosen
to minimize some measure of dissimilarity. It is very
fundamental and used in various fields in computer sci-
ence such as pattern recognition, learning theory, im-
age processing and computer graphics. There are var-
ious kinds of measure of dissimilarity, called criteria,
in compliance with the problem. Hence, this introduc-
tion first defines general clustering problems, summa-
rizes existing results for the various types of clustering
problems, and then proceeds to describing the variance-
based clustering problem with its rigorous definitions
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and statements of our results in the following subsec-
tions.

1.1 Definition of the k-Clustering Problem

The general k-clustering problem can be defined as fol-
lows. A k-clustering is a partition of the given set
S of n points pi = (xi) (i = 1, . . . , n) in the d-
dimensional space into k disjoint nonempty subsets
S1, . . . , Sk, called clusters. A k-clustering is measured
by the following two criteria.

(Intra-cluster criterion) For each cluster Sj , the
measure (or error) Intra(Sj) of Sj , representing
how good the cluster Sj is, is defined appropriately
by applications. Typical intra-cluster criteria are
the diameter, radius, variance, variance multiplied
by |Sj | (sum of squared errors) and variance mul-
tiplied by |Sj|2 (all-pairs sum of squared errors) of
point set Sj .

(Inter-cluster criterion) The inter-cluster criterion
defines the total cost of the k-clustering, which is a
function of Intra(Sj) (j = 1, . . . , k) and is denoted
by Inter(y1, y2, . . . , yk) where yj = Intra(Sj).
Typical function forms are max{ yj | j = 1, . . . , k }
and

∑k
i=1 yk.

Then, the k-clustering problem is to find a k-clustering
which minimizes the inter-cluster criterion:

min{ Inter(Intra(S1), . . . , Intra(Sk)) |
k-clustering (S1, . . . , Sk) of S }

1.2 Previous Results Concerning Diameter and Ra-
dius

In computational geometry, many results have been
obtained for the clustering problem. The diameter
and radius problems are rather well studied. They
include an O(n log n)-time algorithm for finding a 2-
clustering of n points in the plane which minimizes
the maximum diameter (Asano, Bhattacharya, Keil
and Yao [1]), an O(n2 log2 n)-time algorithm for find-
ing a 3-clustering of planar point set which minimizes
the maximum diameter (Hagauer and Rote [7]), and
an O(n log2 n/ log logn)-time algorithm for finding a 2-
clustering which minimizes the sum of the two diame-
ters (Hershberger [12]). When k is regarded as a vari-
able, most k-clustering problems become NP-hard (e.g.,
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see Megiddo and Supowit [20], Feder and Greene [5]).
For fixed k, the k-clustering problem using the diameter
and radius as the intra-cluster criterion and a monotone
function, including taking the maximum and the sum-
mation, as the inter-cluster criterion can be solved in a
polynomial time (Capoyleas, Rote and Woeginger [4]).

There are also proposed approximate algorithms
for the diameter and radius whose approximation ratio
is theoretically guaranteed. Feder and Greene [5] gave
optimal approximate algorithms whose running time is
O(n log k) for n points in the d-dimensional space for
fixed d, and whose worst-case ratio is 2. It should be
noted here that this constant worst-case ratio might
be seen as a more powerful method for clustering, but
in the case the sum of squared errors has statistical
meanings the diameter clustering does not necessarily
guarantee producing a good clustering since the objec-
tive function to minimize is completely different from
the statistical viewpoint.

1.3 Motivation for the Variance-Based Clustering

In this paper, we consider the k-clustering problem with
variance-based measures as an intra-cluster criterion.
This is motivated from the color quantization prob-
lem of computing a color lookup table for frame buffer
display. Typical color quantization problems cluster
hundreds of thousands of points in the RGB three-
dimensional space into k = 256 clusters. Since k is
large, a top-down approach to recursively divide the
point set into 2 clusters is mostly employed. In this
problem, the diameter and radius are not suited as an
intra-cluster criterion, and the variance-based (Wan,
Wong and Prusinkiewicz [22]) and L1-based (median
cut; Heckbert [11]) criteria are often used. In [11], [22],
the top-down approach is used and in solving the 2-
clustering problem both only treat separating planes
orthogonal to some coordinate axis. These algorithms
are implemented in rlequant of Utah Raster Toolkit,
and ppmquant of X11R5 or tiffmedian of Tiff Soft. Al-
though these implementations run rather fast in prac-
tice, roughly speaking in O(n logn) time, there is no
theoretical guarantee about how good their solution k-
clusterings are.

1.4 Rigorous Definition of the Variance-Based Clus-
tering

Therefore, it is required to develop a fast 2-clustering
algorithm and to determine the complexity of the k-
clustering problem for the variance-based case. Be-
fore describing the existing computational-geometric
results concerning variance-based case, let us define the
variance-based intra-cluster criterion in a rigorous way.
The variance Var(S) of points pi = (xi) in S is defined
by

Var(S) =
1
|S|

∑
pi∈S

‖xi − x̄(S)‖2

where x̄(S) is the centroid of S:

x̄(S) =
1
|S|

∑
pi∈S

xi.

For a parameter α, define Varα(S) by

Varα(S) = |S|αVar(S).
Var0 is exactly the variance itself. Var1 is represented
as

Var1(S) =
∑
pi∈S

‖xi − x̄(S)‖2

and hence is the sum of squared errors with respect to
the centroid of S. Var2 is represented as

Var2(S) = |S|
∑
pi∈S

‖xi − x̄(S)‖2

=
∑

pi,pl∈S, i<l

‖xi − xl‖2

and hence is the all-pairs sum of squared errors in S.
Adopting Varα as the intra-cluster metric, as α becomes
larger, the sizes of clusters in an optimum k-clustering
becomes more balanced.

1.5 Previous Results on the Variance-Based Cluster-
ing

For the variance-based criteria, unlike the diameter and
radius, the k-clustering problem adopting the maxi-
mum function as the inter-cluster criterion becomes
hard to solve. For this inter-cluster criterion with
the all-pairs sum of squared errors, only a pseudo-
polynomial approximation scheme is known (Hasegawa,
Imai, Inaba, Katoh and Nakano [9]). Also, in applica-
tions such as the color quantization problem, the sum-
mation function is adopted as an inter-cluster crite-
rion [22]. In this paper, we consider only the summation
case, that is, the k-clustering problem to minimize the
summation of variance-based intra-cluster costs over
clusters.

For the variance-based clustering problem with the
summation function as an inter-cluster metric, the fol-
lowing are known. Concerning Var1, the sum of squared
errors, it is well known that an optimum 2-clustering
is linearly separable and that an optimum k-clustering
is induced by the Voronoi diagram generated by k
points (e.g., see [3], [9], [22]). Using this characteriza-
tion together with standard computational-geometric
techniques, the 2-clustering problem with Var1 as the
intra-cluster metric can be solved in O(n2) time and
O(n) space, and the k-clustering problem is solvable
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in a polynomial time when k is fixed [9]. Concern-
ing Var2, the all-pairs sum of squared errors, an op-
timum 2-clustering is circularly separable (Boros and
Hammer [3]), and a finer characterization by using the
higher-order Voronoi diagram is given in [9]. Using this
characterization, the 2-clustering problem with Var2

as the intra-cluster metric can be solved in O(nd+1)
time, and also it is seen that the k-clustering prob-
lem for this case can be solved in a polynomial time
O(n(d+1)k(k−1)/2) when k is fixed [8].

There is also proposed an approximate algorithm
for the k-clustering problem with Var1 as an intra-
cluster metric. Hasegawa, Imai, Inaba, Katoh and
Nakano [9] gave an O(nk+1)-time algorithm for fixed
d whose worst-case ratio is 2. This algorithm solves
the k-clustering problem with constraining the repre-
sentative point of each cluster to be one of points in
the cluster.

For the k-clustering problem with Var1 as an intra-
cluster metric, the iterative improvement algorithm,
known as the k-means algorithm [6], [21], is widely used.
The approximation algorithms mentioned so far can be
used to produce an initial good k-clustering, to which
the k-means algorithm is applied, as was checked in
[22].

1.6 Results of This Paper

In this paper, theoretical analyses on the k-clustering
problem from the viewpoint of algorithmic complexity
and approximation ratio are presented.

First, The k-clustering problem under the intra-
cluster criterion Varα with α = 1, 2 is treated in a uni-
fied way by characterizing the optimum solution to the
k-clustering problem by the ordinary Voronoi diagram
and the weighted Voronoi diagrams with both multi-
plicative and additive weights.

With this framework, the problem is related
to the generalized primary shatter function for the
Voronoi diagrams, which is roughly the number of
partitions of n points in the d-dimensional space in-
duced by the Voronoi diagram generated by k gener-
ator points. The primary shatter function of the Eu-
clidean Voronoi diagram is shown to be O(ndk), and
that for the Voronoi diagram with additive and mul-
tiplicative weights O(n(d+2)k). Based on these, the k-
clustering problem for n points in the d-dimensional
space with a variance-based criterion can be solved in
O(nO(dk)) time. This greatly improves the previous
bound O(nO(dk2)). We have thus given a polynomial-
time algorithm for the case of fixed k, but its degree is
large even for moderate values of d and k.

To cope with the problem with large k, it is of-
ten used to apply a 2-clustering algorithm recursively
in a top-down fashion. To solve such 2-clustering prob-
lem for general d, we develop a practically useful ap-
proximation algorithm having some theoretical guar-

antee bounds. For the problem with the most typi-
cal intra-cluster criterion of the sum of squared errors,
we present an efficient randomized algorithm which,
roughly speaking, finds an ε-approximate 2-clustering
in O(n(1/ε)d) time, which is quite practical and may
be used to real large-scale problems such as the color
quantization problem. In the analysis, a fact that this
intra-cluster cost has its statistical meanings by defini-
tion is used. This randomized algorithm can be easily
generalized to the k-clustering problem. Some prelimi-
nary computational results are given in Inaba, Imai and
Katoh [13], where results of applying the k-means algo-
rithm for a computed k-clustering obtained by recursive
application of this randomized 2-clustering algorithm
are also reported. The connection of such an approach
with a continuous clustering problem is mentioned in
Inaba and Imai [15].

2. A Unified Approach to the Variance-Based
k-Clustering by Weighted Voronoi Dia-
grams

The variance-based k-clustering problem is described
as follows:

min




k∑
j=1

Varα(Sj) | k-clustering(S1, . . . , Sk) of S




In [9], a parametric characterization was given for the
case of α = 2 (all-pairs case) by using a general para-
metric technique for minimizing quasiconcave functions
developed by Katoh and Ibaraki [18], which enabled us
to characterize an optimal 2-clustering for α = 2 by
means of higher-order Voronoi diagram, and to obtain
a pseudo polynomial approximation scheme for the 2-
clustering problem for Var2 and the maximum function
as the inter-cluster metric.

In this paper, we concentrate on the case where
the summation function is adopted for the inter-cluster
criterion, and give a more direct characterization for
the problem with α = 1, 2.

We may make use of partitions of n points induced
by weighted Voronoi diagrams. Consider k points
qj = (µj) in the d-dimensional space with multiplica-
tive weight νj and additive weight σj (j = 1, . . . , k).
Define the Voronoi region Vor(qj) of qj by

Vor(qj) =
k⋂

l=1

{p = (x) | νj‖x − µj‖2

+ σj ≤ νl‖x − µl‖2 + σl}
For any point in Vor(qj), qj is the closest point among
ql (l = 1, . . . , k) with respect to the weighted distance.
Vor(qj) (j = 1, . . . , k) partitions the space, which is
called the weighted Voronoi diagram generated by these
k points qj . When σj = 0 and νj = 1 (j = 1, . . . , k),
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this weighted Voronoi diagram reduces to the ordinary
Euclidean Voronoi diagram.

By the Voronoi diagram generated by these k
weighted points, n points in the given set S are natu-
rally partitioned into k clusters (we here ignore the case
in this definition where a point in S is equidistant from
two points among these k weighted points). We call
this partition a Voronoi partition of n points in S by k
weighted generators. Apparently, not all k-clusterings
are Voronoi partitions. In fact, we can characterize op-
timal k-clusterings by the Voronoi partition. The case
of α = 1 is well known, and its characterization is stated
as follows (see [3], [9], [22]).

Theorem 1: Suppose that (S∗
1 , . . . , S∗

k) is an opti-
mum k-clustering for the k-clustering problem with
Var1 (α = 1) as the intra-cluster metric. Then, an
optimum k-clustering is a Voronoi partition by the ordi-
nary Euclidean Voronoi diagram for k points qj = (µ∗

j )
(µ∗

j = x̄(S∗
j )). ✷

Now, we prove the following theorem for the case
of Var2, i.e., all-pairs sum of squared errors.

Theorem 2: Suppose that (S∗
1 , . . . , S∗

k) is an opti-
mum k-clustering for the k-clustering problem with
Var2 (α = 2) as the intra-cluster metric. Then, an opti-
mum k-clustering is a Voronoi partition by the weighted
Voronoi diagram for k points qj = (µ∗

j ) (µ
∗
j = x̄(S∗

j ))
with multiplicative weight ν∗

j = |S∗
j | and additive

weight σj defined by σj =
∑

pi∈S∗
j
‖xi − x̄(S∗

j )‖2.

Proof: First, observe the following relation.
∑

pi∈Sj

‖xi − x‖2

=
∑

pi∈Sj

‖(xi − x̄(Sj)) + (x̄(Sj)− x)‖2

= |Sj | · ‖x − x̄(Sj)‖2 +
∑

pi∈Sj

‖xi − x̄(Sj)‖2

where it should be noted that
∑

pi∈Sj
(xi − x̄(Sj)) = 0.

Now, suppose that, in the weighted Voronoi dia-
gram above, a point pi ∈ S∗

j is not contained in Vor(qj)
for qj = (x̄(S∗

j )), and is in Vor(qj′). Then, moving
pi from S∗

j to S∗
j′ , the total cost is strictly reduced

from the above formula (note that Var2 is the all-pairs
sum of squared errors), which contradicts the optimal-
ity of (S∗

1 , . . . , S∗
k). Hence, each pj ∈ S∗

j is contained in
Vor(qj) for j = 1, . . . , k, and the theorem follows. ✷

By Theorem 1 and Theorem 2, the variance-based
k-clustering problem with α = 1, 2 can be solved by
enumerating all the Voronoi partitions of n points gen-
erated by k weighted points, and finding a partition
with minimum one.

The number of distinct Voronoi partitions has
strong connection with the generalized primary shatter

function for k-label space introduced by Hasegawa [8],
[10] which has applications in computational learn-
ing theory. For the rigorous definition of the gener-
alized primary shatter function, we refer to Hasegawa,
Imai and Ishiguro [10]. In this case, the correspond-
ing generalized primary shatter function is the number
of Voronoi partitions multiplied by k!, and hence, re-
garding k as a constant, these two are of the same or-
der. Hasegawa [8] shows that this generalized primary
shatter function is O(ndk(k−1)/2). We here improve the
bound on this number by showing that Voronoi parti-
tions are duals of arrangements of algebraic surfaces in
the O(dk)-dimensional space.

Theorem 3: The number of Voronoi partitions of n
points by the Euclidean Voronoi diagram generated by
k points in the d-dimensional space is O(ndk).

Proof: In the ordinary Voronoi diagram, all multiplica-
tive weights are one and all additive weights are zero,
i.e., νj = 1, σj = 0 (j = 1, . . . , k). Parameters are µj

(j = 1, . . . , k). Consider the (dk)-dimensional vector
space consisting of µ with µ = (µ1, µ2, . . . , µk). In this
(dk)-dimensional space, we can define an equivalence
relation among points such that two points are in the
equivalence relation if their corresponding Voronoi par-
titions are identical. The equivalence relation produces
a subdivision of this space into equivalence classes.

For each pair of distinct µj1 and µj2 among µj

(j = 1, . . . , k) and each point pi = (xi) among pi

(i = 1, . . . , n), consider an algebraic surface in this dk-
dimensional space defined by

‖xi − µj1‖2 − ‖xi − µj2‖2 = 0

where xi is regarded as a constant vector. The num-
ber of such surfaces is nk(k − 1)/2. The arrangement
of these nk(k − 1)/2 algebraic surfaces coincides with
the subdivision defined by the equivalence relation from
Voronoi partitions. The number of Voronoi partitions
is bounded by the combinatorial complexity of the ar-
rangement of nk(k − 1)/2 constant-degree algebraic
surfaces, which is bounded by O(ndk) (e.g. see War-
ren [23]). Hence, the theorem follows. ✷

A further detailed analysis about the primary shat-
ter function of the k-Voronoi space is done by Ishig-
uro [17] and further to the case of generalized Voronoi
diagrams by divergence in Inaba and Imai [16]. In the
papers, the linearization technique is applied in the
analysis, and an algorithm using hyperplane arrange-
ments is given based on it. Using algorithms to con-
struct the hyperplane arrangement, the Voronoi parti-
tion can be enumerated in O(ndk+k−d−2) time [16].

A similar analysis yields the following theorem,
whose proof is omitted.

Theorem 4: The number of Voronoi partitions of n
points by the weighted Voronoi diagram generated by k
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weighted points with a multiplicative weight and an ad-
ditive weight in the d-dimensional space is O(n(d+2)k).

The weighted case can also be algorithmically
solved via the hyperplane arrangement algorithm in
O(n(d+2)k−1) time [16].

It should be noted that, from the linear separabil-
ity or circular separability, of an optimum 2-clustering
for Var1 and Var2, respectively, as shown by [3], [9], the
k-clustering problem for Var1 and Var2 is readily seen
to be solvable in O(ndk(k−1)/2) and O(n(d+1)k(k−1)/2)
time, respectively, using similar arguments in [4] for
the diameter and radius. Only with the linear/circular
separability for the 2-clustering, an algorithm of or-
der nO(dk2) may be best possible for the k-clustering
problem. Our algorithms run in O(nO(dk)) time, and
improve the O(nO(dk2)) bound greatly. This becomes
possible by the fine characterization of optimum k-
clusterings by the weighted Voronoi diagram, and by
evaluating the primary shatter function of the weighted
Voronoi partitions in a tighter manner.

3. Randomized Algorithms for the Case of the
Sum of Squared Errors

The results in the previous section are interesting from
the theoretical viewpoint, and the time complexity is
polynomial when k is considered as a constant. How-
ever, even for k = 3, 4, 5, its polynomial degree is
quite high, which makes it less interesting to imple-
ment the algorithms for practical problems such as the
color quantization problem. The k-clustering problem
is NP-complete in general when k is regarded as a vari-
able, and in this respect the results are best possible
we may expect to have.

To develop a practically useful algorithm, utiliz-
ing randomization may be a good candidate, since the
intra-cluster metric we are using has its intrinsic statis-
tical meanings. In this section, we develop randomized
algorithms for the k-clustering problem with Var1, the
sum of squared error, as the intra-cluster metric.

In this extended abstract, we mainly consider the
2-clustering problem with Var1, but most of the follow-
ing discussions carry over to the k-clustering problem.
First, let us consider how to estimate Var1(S) for the
set S of n points pi = (xi) (i = 1, . . . , n) by random
sampling. Let T be a set of m points obtained by m
independent draws at random from S. If the original
point set S are uniformly located, (n/(m − 1))Var1(T )
may be a good estimate for Var1(S). However, this is
not necessarily the case. For example, suppose that a
point pi in S is far from the other n − 1 points in S,
and the other n−1 points are very close to one another.
Then, Var1(S) is nearly equal to the squared distance
between pi and a point in S − {pi}, while with high
probability Var1(T ) is almost zero. This indicates that
Var1(T ) cannot necessarily provide a good estimate for

Var1(S).
On the other hand, the centroid x̄(T ) of T is close

to the centroid x̄(S) of S with high probability by
the law of large numbers, and we obtain the following
lemma.

Lemma 1: With probability 1− δ,

‖x̄(T )− x̄(S)‖2 <
1

δm
Var0(S).

Proof: First, observe that

E(x̄(T )) = x̄(S),

E(‖x̄(T )− x̄(S)‖2) =
1
m
Var0(S)

and then apply the Markov inequality to obtain the
following.

Pr
(
‖x̄(T )− x̄(S)‖2 >

1
δm
Var0(S)

)
< δ. ✷

Lemma 2: With probability 1− δ,

∑
pi∈S

‖xi − x̄(T )‖2 <

(
1 +

1
δm

)
Var1(S).

Proof: Immediate from Lemma 1 and the following.∑
pi∈S

‖xi − x̄(T )‖2

= Var1(S) + |S| · ‖x̄(T )− x̄(S)‖2. ✷

Thus, we can estimate Var1(S) by random sam-
pling. For the 2-clustering problem, we have to esti-
mate Var1(S1) and Var1(S2) for a 2-clustering (S1, S2)
by estimating the centroids of S1 and S2. Now, consider
the following algorithm.

A randomized algorithm for the 2-clustering:

1. Sample a subset T of m points from S by m inde-
pendent draws at random;

2. For every linearly separable 2-clustering (T1, T2) of
T , execute the following:

Compute the centroids t1 and t2 of T1 and T2,
respectively;
Find a 2-clustering (S1, S2) of S by dividing S
by the perpendicular bisector of line segment
connecting t1 and t2;
Compute the value of Var1(S1)+Var1(S2) and
maintain the minimum among these values;

3. Output the 2-clustering of S with minimum value
above.

The idea of this randomized algorithm is to use all
pairs of centroids of linearly separable 2-clusterings for
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the sampled point set T . Let (S∗
1 , S∗

2) be an optimum
2-clustering of S for Var1, and let s∗1 and s∗2 be the
centroids of S∗

1 and S∗
2 , respectively. By considering

all linearly separable 2-clusterings for T , the algorithm
handles the 2-clustering (T ′

1, T
′
2) obtained by dividing

T by the perpendicular bisector of line segment con-
necting s∗1 and s∗2. Then, from the centroids of T ′

1 and
T ′

2, we obtain a 2-clustering (S
′
1, S

′
2) in the algorithm.

Since T is obtained from m independent draws,

E(|T ′
j |) =

m

n
|S∗

j | (j = 1, 2).

From Lemma 2, Var1(S∗
j ) can be estimated by using

|T ′
j|. The sizes |T ′

j| (j = 1, 2) are determined by inde-
pendent Bernoulli trials, and is dependent on the ratio
of |S∗

1 | and |S∗
2 |. For the sampling number m, we say

that S is f(m)-balanced if there exists an optimum 2-
clustering (S∗

1 , S∗
2 ) with

m

n
min{ |S∗

1 |, |S∗
2 | } ≥ f(m),

and the optimum 2-clustering is called an f(m)-
balanced optimum 2-clustering. We then have the fol-
lowing.

Lemma 3: Suppose there exists a (loge m)-balanced
optimum 2-clustering (S∗

1 , S∗
2 ). Then, with probability

1− 2
mβ2/2

for a constant β (0 < β < 1), the following
holds.

min{ |T ′
1|, |T ′

2| } > (1− β)
m

n
min{ |S∗

1 |, |S∗
2 | }

≥ (1− β) logm.

Proof: Set µ′ =
m

n
min{ |S∗

1 |, |S∗
2 | }. For m inde-

pendent Bernoulli trials X1, X2, . . . , Xm with Pr(Xi =
1) = µ′/m ≤ Pr(Xi = 0) = 1 − µ′/m, the Chernoff
bound implies, for X = X1 + · · ·+Xm,

Pr(X < (1− β)µ′) < exp(−µ′β2/2).

From the assumption,

exp(−µ′β2/2) ≤ exp(−(logm)β2/2) =
1

mβ2/2
. ✷

Theorem 5: Suppose that the point set S is f(m)-
balanced with f(m) ≥ logm. Then, the randomized al-
gorithm finds a 2-clustering whose total value is within

a factor of 1+
1

δ(1− β)f(m)
to the optimum value with

probability 1− δ − 2
mβ2/2

in O(nmd) time.

Proof: From Lemmas 2 and 3, with probability 1−δ−
2

mβ2/2 ,

2∑
j=1

∑
pi∈S′

j

∥∥xi − x̄(T ′
j)

∥∥2

≤
(
1 +

1
δ(1− β)f(m)

) 2∑
j=1

Var1(S∗
j )

holds. Furthermore, the left hand side is bounded from
below by

∑2
j=1 Var

1(S′
j), whose value is computed in

the algorithm. Hence, the minimum value found in the
algorithm is within the factor.

Concerning the time complexity, all linearly sepa-
rable 2-clusterings for T can be enumerated in O(md)
time. For each 2-clustering (T1, T2) of T , finding a pair
of centroids and a 2-clustering of S generated by the
pair together with its objective function value can be
done in O(n) time. Thus the theorem follows. ✷

We have developed a randomized algorithm only
for the 2-clustering problem so far, but this can be di-
rectly generalized to the k-clustering problem. If there
exists a balanced optimum k-clustering, similar bounds
can be obtained. It may be noted that the technique
employed here has some connection with the technique
used to obtain a deterministic approximate algorithm
with worst-case ratio bounded by 2 for the k-clustering
problem in [9].

The above theorem assumes some balancing con-
dition. In some applications, a very small cluster is
useless even if its intra-cluster measure is small. For
example, when we apply a 2-clustering algorithm re-
cursively in a top-down fashion to solve the k-clustering
problem, a balancing condition on 2-clusterings may be
imposed to 2-clustering subproblems so that the sizes
of subproblems may become small quickly and the to-
tal clustering may have nicer properties. In such a case,
the randomized algorithm naturally ignores such small-
size cluster. Also, for the case of finding a good and
balanced 2-clustering, we have only to apply a slightly
modified version of the randomized algorithm directly.
This is typical for the clustering problem in VLSI lay-
out design. See, for example, Kernighan and Lin [19].
Generalizing Theorem 5 for such cases is partially dis-
cussed in [14].

4. Concluding Remarks

We have demonstrated that optimum solutions to the
variance-based k-clustering can be characterized by the
(weighted) Voronoi diagram generated by k points, and
have evaluated the primary shatter function of the k-
Voronoi space. This primary shatter function can be
used in computational learning theory in learning k-
Voronoi spaces.

We have then presented a simple randomized al-
gorithm for the k-clustering problem with Var1 as an
intra-cluster metric. This algorithm is practically useful
when k is small and balanced k-clusterings are prefer-
able. For example, for the problem of finding an op-
timum 2-clustering for n planar points among almost
completely balanced 2-clusterings, an approximate 2-
clustering which is approximately balanced and whose
cost is within a factor of 1+1/3 = 4/3 on the average to
the optimum cost can be found by sampling 10 points



INABA et al.: GEOMETRIC CLUSTERING VIA VORONOI DIAGRAMS AND RANDOMIZATION
1205

from n points and spending O(102n) = O(n) time with
probability

∑7
i=3

(
10
i

)
/210 ≈ 0.89, or by sampling 20

points and spending O(202n) = O(n) time with proba-
bility

∑17
i=3

(
20
i

)
/220 ≈ 0.9996.

The randomized algorithm, however, is not so suit-
able to find a good unbalanced 2-clustering. Also,
although the randomized algorithm itself is valid for
large k, the running time becomes inherently large since
the primary shatter function for m sampled points is
O(mO(dk)). To solve the variance-based k-clustering for
large k practically, say for k = 256 of the typical color
quantization problem, we may apply the randomized 2-
clustering algorithm proposed in this paper recursively
in a top-down manner with sampling only a small num-
ber of points at each stage as mentioned above.

Preliminary computational reports in the two-
dimensional case are given in [13], [15]. It is observed
that a small set of sample points provide rather good
solutions, and also that the recursive application of the
2-clustering algorithm to obtain a good k-clustering
performs well. Further experiments on the higher-
dimensional spaces and other cases are required.
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