


ARAKI-KUDO OPERATIONS ON INSTANTONS AND MONOPOLES 

YASUHIKO KAMIYAMA 

§1. I NTRODUCTION 

Let SU(2) .__, Pk --> S4 be the principal SU(2) bundle of degree 

c
2
(Pk) = k and let Ik (resp. Ak ) be the set of anti-self-dual connections 

(resp. SU(2) connect ions) over Pk. The restricted gauge group (consist­

ing automorphisms which are the identity on the base point oo E S
4

) 

acts on Ik and Ak· We define Mk and Bk to be the orbit space of Ik 

and Ak by the restricted group respectively. Mk is called the framed 

moduli space of instantons of degree k and Bk the framed moduli space 

of SU(2) connections of degree k. Let 

(1.1) 

b e the inclusion. 

It is known [2] that Bk is homotopically equivalent to ntS3
, the space 

of all based continuous maps from S3 to itself of degree k . So, we can 

define a loop sum and homology operations in EB H.(Bk; Zp) (p a prime 
k 

number). In the case p = 2, the homology operations are usually called 

the Araki-Kudo operations. 

Recently Boyer and Mann [4] introduced a loop sum and homology 

operations in EB H.(Mk; Zp) which are compatible with i. and thus con­
k 

st ructed new homology classes in H.(Mk; Zp)· 

In another direction, Hattori [8] computed H*(M2 ; Z) and H*(M2 ; Z2 ). 
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In the first half of this paper, we combine these results to obtain 

further homological information about M2 . 

Next we consider the monopoles. Recall that the moduli space of 

monopoles of monopole number k is homeomorphic to F;(S2
, S2

), the 

space of based holomorphic maps of degree k from S2 to itself (7]. More 

generally, we consider F;(S2 ,CPm), the space of based holomorphic 

maps of degree k from S2 to cpm. Any element of F; ( S2
, cpm) is 

clearly an element of nrcpm ' the space of all based continuous maps 

from S2 to cpm of degree k. Let 

(1.2) 

be the inclusion. Segal (10] showed that j is a homotopy equivalence up 

to dimension k(2m- 1). 

As in the case of Mk , Boyer and Mann also introduced a loop sum and 

homology operations in (f]H.(F;(S2
, CPm); Zp) which are compatible 

k 

with j. (5] and thus constructed new homology classes in (f]H.(F;(S\ 
k 

CPm); Zp)· 

In the second half of this paper, we consider the case p = 2. Then our 

main result is stated as follows. The homology classes constructed by 

Boyer and Mann generate the homology groups when k and m satisfy 

one of the following conditions. (i) k = 2 and m 2: 1. (ii) k = 3 and 

m 2: 2. (iii) m 2: k + 1. 

I would like to express my gratitude to Professors A.Hattori and 

Y .Matsumoto to whom many of the basic ideas of this article are due. 
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I. SOME REMARKS ON THE HOMOLOGY OF MODULI 

SPACE OF INSTANTONS OF DEGREE 2 

§2. KNOWN RESULTS 

In this section, we recall the results about M 2 . First we state a result 

of Boyer and Mann [4]. 

THEOREM 2.1. H.(M2 ; Z2 ) contains the following homology classes. 

Here Zq (q = 1, 2, 3) are the generators of Hq(M1 ;Z2 ) (it is well known 

that M 1 is diffeomorphic to S0(3) xR5 [3]) , [1] the generator of H 0 (M1 ; Z2 ) 

and Q; (i = 1, 2, 3) the Araki-Kudo operations defined by Boyer and 

Mann. 

Next we state the results of Hattori [8]. 

THEOREM 2.2. The cohomology groups of M 2 with Z coefficients are 

given by the following table. (We follow the notations of [8]). 

q 1 2 3 I 4 5 6 

H•(Mz; Z) 0 Zz Zz I z3 Ell z4 Zz Zz 
generators {3 'Y I p*z {j f3'Y {36 

7 8 9 

Z Ell Zz 0 Zz 
?f!V 'Y{j f3'Y{j 
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THEOREM 2.3. The cohomology groups of M 2 with 12 coefficients are 

given by the following table. 

q 1 2 3 4 

Hq(M2; 12) 12 12 EB 12 12 EB 12 12 EB 12 

generators u .U2 v u" uv w 1.l2v 

5 6 7 8 9 

12 EB 12 12 EB 12 12 EB 12 12 12 

uw u 3 v u2w vw u3 w uvw u~vw u 3 vw 

The choice of the elements u and v will be specified later. 

§3. MAIN RESULTS 

We first study the following problem. Do the elements of Theorem 

2.1 generate H. (M2 ; 12)? 

PROPOSITION 3.1. The elements of Theorem 2.1 generate H.(M2 ; 12) 

and the following relations hold. 

(1) Ql(zl) + ZJ * Z2 + Z3 * [1] = 0 

(2) Q2(z1) = Z J * Z3 

(3) Q1(z2) + Z2 * ZJ + Q3 (z1) = 0. 

PROOF: Direct computations show that each element of Theorem 2.1 is 

non-trivial and differs to each other in H.(B2; 12) except for i.Q2(z1) = 

i.(z1 *z3). So, by using Theorem 2.3, we see that the elements of Theorem 

2.1 generate H.(M2 ; 1 2 ) and there must be one relation for q = 3, 4 and 

5. 

[4, Proposition 9.10] shows that there are the following relations. 

(i) i.(Ql(z1 ) + z1 * Z2 + Z3 * [1]) = 0 

(ii) i.(Q2 (z1 ) + ZJ * Z3) = 0. 

By using Cartan formula and Adem relation [6], we also see the following 
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relation. 

Now by using Theorem 2.3, we see that the relations (i)- (iii) imply 

the relations (1) - (3) in Proposition 3.1. 

Next we shall study the Kronecker products of the elements of Theo­

rems 2.1 and 2.3. On account of Proposition 3.1, we can take a basis of 

Hq(M2 ; Z2 ) for q = 3, 4 and 5 as follows. 

q=3 QJ(ZJ) ZJ*Z2 

q = 4 Z~ z1 * Z3 

THEOREM 3.2. The Kronecker products of the elements of Theorems 

2.1 and 2.3 are given by the following table. 

q 1 I 2 
Kronecker < u, ZJ * [1) >- 1 

I 
< u', zf >- 0 < v,zi >- 1 

products < u2,z2 * [1] >= 1 < V, Z2 * [1] >= 0 

3 4 
< uJ,QI(zi) >= 0 < uv,Q1(z1 ) >= 1 <w,z2>=1 < u'v,z2 >= 0 
<u3,ZJ*Z2>=1 < UV, ZJ * Z2 >= 1 < W, ZJ * Z3 >= 0 < u2v, z1 * z3 >= 1 

5 6 
< uw, QJ (z2) >= 1 < u"v, Ql (z2) >= 0 < u'w,z5 >= 0 < vw,z5 >= 1 
< UW, z2 * ZJ >= 1 < U

3
V, z2 * ZJ >= 1 < u2w, Q2(z2) >= 1 < vw, Q2(z2) >= 0 

7 s I 
< u"w,Q3(z2) >= 1 < uvw,Q3(z2) >= 0 
< u3w,Q 1 (z3) >= 0 < uvw,Q1 (z3) >= 1 

9 

In the above table we denne v by < v, z? >= 1, < v, z2 * [1] >= 0. Note 

that < u2, z? >= 0, < u2, z2 * [1] >= 1. We also deflne w by< w, z~ >= 
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1, < w, z1 * Z3 >= 0. Note that < u2v, z~ >= 0, < u2 v, z1 * z3 >= 1. 

PROOF: Let 6. : Mk -t Mk x Mk be the diagonal. Then we can easily 

show the following relations. 

(3.3) 6..z1 = z1 0 [1] + [1]0 z1 

6..z2 = Z2 0 [1] + Z1 0 ZJ + [1]0 Z2 

6..z3 = z3 0 [1] + Z2 0 ZJ + z 1 0 Z2 + [1]0 ZJ. 

The following relation is known [6]. 

r,s 

where 6-.a = I:. a~ 0 a~. Theorem 3.2 follows easily from these facts. 

Next we shall study the integral classes. On account of Theorem 2.2, 

there exists an element cr which generates Z4 in H3(M2 ; Z) and T which 

generates H 7 (M2; Z) = Z. Let 

be the mod 2 reduction. Then we have the following 

THEOREM 3.4. j.cr = Z3 * [1], j.T = Q3(z2). 

PROOF: Let {E:} be the mod 2 homology Bockstein spectral sequence 

of M 2 . The following Nishida relation is known [6]. 
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where (3 is the Bockstein operation. By using Nishida relation, we com­

pute E; as follows. 

I ~ I ~ I 
3 4 7 8 

z~ Z3 * [1] 0 

Theorem 3.4 follows easily from this table. 

Next as an application of Proposition 3.1 and Theorem 3.2, we shall 

prove the following 

THEOREM 3.5. The elements of Theorem 2.2 satisfy the following rela­

tions. 

(1) (32 = 28 

(2) 82 = 0 

(3) , 2 = (38. 

Note that Theorem 3.5 completely determines the ring structure of 

PROOF: (1) is shown in [8] . As H 8(M2 ; Z) = 0, (2) follows. We shall 

prove (3). Let 

be the mod 2 reduction. All we need to show in order to prove (3) is 

the fact j./2 =J 0. Let u, v, w be the elements in Theorem 2.3. We see 

j./ equals to either u 3 or uv or u 3 + uv. We shall show that)./ = u3 

cannot occur. 

AssERTION 3.6. u 4 = 0, v2 = w . 

In fact, in the same way as the proof of Theorem 3.2, we see the 

following Kronecker products. 

< u4 ,z~ >= 0,< u4 ,z1 * z3 >= 0 

7 

9 
0 



< v 2
, z~ >= 1, < v2

, z1 * z3 >= 0. 

ASSERTION 3 .7. j.(3 = u2 

In fact, j.(3 = Sq 1u = u 2
. 

Now suppose j./ = u 3 . The table in Theorem 2.2 shows that j.(f3'Y) # 

0. But by Assertions 3.6 and 3.7, we have 

This is a contradiction. Hence j./ equals to either uv or u3 +uv . Anyway 

This completes the proof of ( 3). 

REMARK 3.8. Whether 1 2 = 0 or not is left unknown in [8]. 

Now by using the above results, we can completely determine H* (M2; Z2). 

THEOREM 3.9. H" (M2;Z2) = Z2[u,v]/(u\v4
) and Sq 1v = uv. Note 

that the A(2)-module structure of H" (M2; Z2) is completely determined. 

PROOF: The ring st ructure follows from Theorem 2.3 and Assertion 

3.6. By using Theorem 3.2 and the following Kronecker products, we 

can easily prove Sq1 v = uv. 

§4. APPENDIX 

The proof of [4, Proposition 9.5] seems incomplete. By using Theorem 

2.3 , we shall give an explicit proof of this proposition. 
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PROPOSITION 9.5. [4] z; * [1] = Q;[1] (i = 1, 2, 3) hold in H.(M2; Z2). 

PROOF: The proof of z1 * [1] = Q 1 [1] is given in [4]. First we shall prove 

Z2 * [1] = Q2[1]. It is known [6] that H2(B2; Z2) = z2 E& z 2 and a basis is 

Ql[1j2 * [-2] and Q2[1]. By Theorem 2.3, H2(M2; Z2) = Z2 E& Z2. Note 

that zi, Q2[1] and z2 * [1] are elements of H2(M2; Z2). 

( 4.1) 

are given in [4, Theorem 8.6]. So, i.z? = QJ[1j2 * [-2], i.Q2[1] = Q2[1] . 

Hence i. : H 2(M2; Z2) -> H2(B2; Z2) is an isomorphism. As we know 

i.(z2 * [1]) = Q2[1] by (4.1) , z2 * [1] = Q2[1] holds. 

Next we shall prove Z3 * [1] = Q3 [1]. Let f : S0(3) -> M2 be the 

composite of 

and let g : S0(3) -> M2 be the composite of 

so(3) _, S3 x {1 x 1} _, S 3 x {M1 x Md.! M2 
Z2 z 2 

here{) is defined in [4] . 

We can easily prove j.z; = z; * [1] and g.z; = Q;[1] fori = 1, 2 and 3. 

We have shown 

( 4.2) 

By Theorem 2.3, all we need to prove is the following equalities. 

These equalities follows easily from (3.3) and ( 4.2). 
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II. THE MODULO 2 HOMOLOGY OF THE SPACE 

OF RATIONAL FUNCTIONS 

§5. STATEMENT OF RESULTS 

Before we state the main Theorems, we recall some results of [5], [6] 

and [10]. First we state the result of [10]. 

THEOREM 5.1. The inclusion 

is a homotopy equivalence up to dimension k(2m- 1), i.e. the induced 

homomorphism j. : 7rq(F;(S2,CPm)) --> 7rq(D.1CPm) is bijective for 

q < k(2m -1) and surjective for q = k(2m- 1). 

Next we describe the Pontryagin ring structure of H.(iJ2CPm; Z2 ). 

Let i2,._1 be the generator of H2m- 1(D.fcPm;Z2) = Z2 and let [1] be 

the generator of H0 (iJfCPm; Z2 ). Then, according to [6], we can state 

THEOREM 5.2. H.(iJ2 CPm; Z2 ) = Z2[[1J,i:2m-1, QJ,(i2m-d] 

the polynomial algebra over Z2 , under loop sum Pontryagin product, on 

generators [1], i2m-l and QI,( i2m- l) = Ql Ql ... Q1(i2m - 1 ), where l1 

has length I and I is an any natural number. 

Finally we review some results of [5]. If we regard a function belonging 

to Fk ( S 2 , cpm) as a holomorphic function f : S 2 
--> cpm of degree k 

such that J(oo) = [1, . .. , 1], then F;(S2
, cpm) can be described in the 

following form. 

(5.3) F;(S2,CPm) = {(p0(z), ... ,pm( z)]; p;(z) are moille polynomi-
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als of degree k such that there exists no a E C which satisfies p0 (a) = 

0, .. . ,Pm(a) = 0.} 

In the case m = 1, we write :i;~ for (po(z),P!(z)]. 

Note that Ft(S2, CPm) is homotopically equivalent to S2m-l by (5 .3) . 

Let '2m-! be the generator of H2m-1 (Ft(S2, CPm); Z2). If we start 

with L2m-l and compute iterated operations on t 2m-l and loop sums 

of such elements, we may construct many non-zero homology classes in 

H.(Ft(S2,CPm);Z2)· Then by combining Theorems 5.1 and 5.2, the 

following Theorem is known. 

THEOREM 5.4. (5] Any element (of H.(F;(S2,CPm);Z2) with deg( 

< k(2m- 1) can be constructed by loop swns and iterated operations 

on L2m-l· 

Now we state the main Theorems. 

THEOREM 5.5. The elements constructed by loop sums and iterated 

operations on LJ form a basis of H.(F2*(S2, CP 1 ); Z2)· 

THEOREM 5.6. Form ::::: 2, the elements constructed by loop sums and 

iterated operations on t 2m_ 1 form a basis of H.(F;(S2, cpm ); Z2 ) . 

THEOREM 5. 7. Form ::::: 2, the elements constructed by loop sums and 

iterated operations on L2 m-l form a basis of H.(Fj(S2
, CPm); Z2 ). 

THEOREM 5.8. Form::::: k + 1, the elements constructed by loop sums 

and iterated operations on t 2m- l form a basis of H.(Ft(S2
, CPm); Z2 ). 

The rest of this paper is organized as follows. In §6 we shall give a 

strategy of proving Theorems 5.6-5.8 . In §7 we shall prove Theorems 
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5.5 and 5.6. In §8 we shall prove Theorem 5.8. In §9 we shall prove 

Theorem 5.7. 

§6. STRATEGY OF PROOF 

We shall give a strategy of proving Theorems 5.6-5 .8. A strategy of 

proving Theorem 5.5 is slightly different. So it will be postponed to §7. 

In the following, all homology groups, cohomology groups and com­

pact support cohomology groups have coefficients z2 . 
In order to prove Theorems 5.6-5.8, it will be enough to compute 

Hq(F;(S2 , CPm)) for q ~ k(2m- 1) by virtue of theorem 5.4. 

Let us filter F;(S2 , CPm) by the closed subspaces 

(6.1) 

where 

(6 .2) Xn = {[po(z), ... ,Pm(z)] E F;(S2
, CPm); po(z) has at most 

n distinct zeros.} 

Let H; be the compact support cohomology group. Assume that we 

have some informations about H;(X,._1) and H; (Xn -Xn-1), then we 

obtain new informations about H;(Xn) by using the following compact 

support cohomology exact sequence of the pair (Xn,Xn-1)· 
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Moreover assume that we have some informations about H;(Xn+l -

Xn), then we obtain new informations about H;(Xn+l) by using the 

compact support cohomology exact sequence of the pair (Xn+l, Xn). 

We repeat this process. Then finally we obtain new informations 

about H;(F;(S2
, e pm )) which can be converted to those of H.(F;(s2, 

CPm)) by the Poincare duality. In particular if k and mare taken to 

be in Theorems 5.6-5.8, then we can determine H9(F; (S2 , epm)) for 

q~k(2m-1). 

§7. PROOF OF THEOREMS 5.5 AND 5.6. 

First we prove Theorem 5.6 by using the strategy given in §6. Note 

that in degrees greater than or equal to 4m-2, the elements constructed 

by loop sums and iterated operat ions are given by L~m-l and Qt(L2m-t) 

(which are non-trivial by Theorem 5.2). Hence it will be enough to show 

the following proposit ion in order to prove Theorem 5.6. 

q = 4m - 2, 4m - 1 

q ~ 4m. 

PROOF: We filter Fi(S2
, CPm) as given in §6. 

LEMMA 7.2. X1 is homeomorphic toe X em X (em)•. 

In fact if (p0 (z), .. . ,pm(z)] belongs to X1 and Po(z) has a multiple 

root a, then p;(z) (1 :::; i :::; m) are completely determined by giving 

p;(a), p:(a) which are arbitrary except for the constraint (p1(o), . . . , 

Pm(o)) f. (0, .. . , 0). 

Let Cn be the space of ordered distinct n-tuples in C. 
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LEMMA 7.3. X2- X1 is the quotient of {(Cm)• X (Cm)*} X C2 by a 

free action of the symmetric group I:2. 

In fact if [po(z), . . . ,pm(z)) belongs to X2 - X1 and Po(z) has roots 

at, a 2, then p;(z) (1 ~ i ~ m) are completely determined by giving 

p;(a1), p;(a2) which are arbitrary except for the constraint (p1(a1), . . . , 

Pm( at)) ;f (0, . .. , 0) and (PI (a2), . . . ,Pm(a2)) ;f (0, ... , 0). 

Note that X 1 is homotopically equivalent to S2m-l by Lemma 7.2. 

Hence we see Hq(Xt) = 0 for q ~2m. Note also that dimRX1 = 4m+2. 

Hence by the Poincare duality, we see 

(7.4) HZ(X1 )=0 for q~2m+2. 

Note that x2 -XI is homotopically equivalent to (S2m-l )2 X S 1 by 
r:, 

Lemma 7.3. We consider the Serre spectral sequence of the fiber bundle 

(7.5) (s2m-1)2-+ (S2m-1)2 X sl-+ st. 
r:, 

As H2(2m-1l((S2m-l )2) = z2, the action of 7ri(St) on H2(2m-1l((S2m-t )2) 

is trivial . By using this fact, spectral sequence argument shows 

q = 4m - 2, 4m - 1 
(7.6) 

q ~ 4m. 

Note that dimRX2 = 4m + 4. Hence by using (7.6) and the Poincare 

duality, we see 

q = 5,6 
(7.7) 
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By using (7.4) and (7.7), the compact support cohomology exact se­

quence of the pair (X2 ,X1 ) shows 

q = 5,6 
(7.8) 

Proposition 7.1 follows easily from (7.8) by the Poincare duality. 

Next we shall prove Theorem 5.5. We write F; for F;(S2 ,CP 1). Let 

(1] be the generator of H0 (Ft') . Then the elements constructed by loop 

sums and iterated operations are given by t1 * (1], ti and Q1 (t1 ) (which 

are non-trivial by Theorem 5.2). Hence it will be enough to show the 

following proposition in order to prove Theorem 5.5. 

{ 
z2 

PROPOSITION 7.9. Hq (Fi) = O 
q = 0,1,2,3 

PROOF: Note that 7r1(F:i) = Z by Theorem 5.1. Hence if we follow the 

proof of Theorem 5.6 in order to prove Theorem 5.5, we will encounter 

some difficulties. So we first consider the universal covering of F2. 
We define 

(7.10) R: F2 -t C* 

as follows. Let ~ be an element of F.; and let a 1, a2 be the roots of 

p(z), (3 1 ,(32 be the roots of q(z) . Then R(~) is defined by D(a;- (3i)· 
>,} 

Let Y2 be R- 1 (1). Then it is known that (7.10) is a fiber bundle with 

simply connected fiber Y2 (10]. 
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First we shall compute H• (Y2 ) . We define the closed subspace Y1 of 

y2 by 

{ ~~ . } Y, = q(z) E Y2 ; q( z ) has a multiple root. 

L EMMA 7.11. Y, is homeomorphic to C2 ll C2
. 

In fact if :~; l belongs to Y1 and q( z) has a multi pie root {3, then p( z) is 

completely determined by giving p({J), p'({J) which are arbitrary except 

for the constraint R( ~) = p(f3)2 = 1. 

We think of C' as {(~ 1 ,~2) E (C')2
; ~1~2 = 1}. 

LEMMA 7.12. Y2 - Y1 is the quotient ofc• x C2 by a free action of the 

symme tric group ~2-

In fact if ~ belongs to Y2 - Y1 and q( z) has roots {31 , {32 , then p( z) is 

completely determined by giving p({31 ) , p(f32) which are arbitrary except 

for the constraint R( ~) = p({31 )p(f32) = 1. 

We define the involution r on 5 1 x 5 1 by 

1 
(z,w)r = (-,-w) 

z 

Then by Lemma 7.12, we see that Y2 - Y1 is homotopically equivalent 

to 5 1 x 5 1 fr. Note that 5 1 x 5 1 /r is Klein's bottle . 

Now by Lemma 7.11 and the Poincare duality, we see 

(7.13) { 

z2 EB Z2 q = 4 
HHY,) = 0 

otherwise. 

16 



By Lemma 7.12 and the Poincare duality, we see 

q = 4,6 

(7.14) q=5 

otherwise. 

Note that H 1 (Y2 ) = 0. (In fact Y2 is simply connected). Hence by the 

Poincare duality, we see 

(7.15) 

Now by using the compact support cohomology exact sequence of the 

pair (Y2, Y1 ), we see by (7.13)-(7.15) that 

q = 4,6 
(7.16) 

otherwise. 

By the Poincare duality, we see 

q = 0,2 
(7.17) 

otherwise. 

We consider the Serre spectral sequence of (7.10). As H 2(Y2) = Z2, 

the action of 1r1 ( C*) on H 2 (Y2 ) is trivial. By using this fact, spectral 

sequence argument shows Proposition 7.9. 

As a Corollary of Theorem 5.5, we shall determine the A(2)-module 

structure of H* (F2) . Note that {[2],t1 * [1],ti,Q1 (t1 )} form the basis 

of H,(F2) by Theorem 5.5. Let u E H 1 (F2) be the dual of t1 * [1] and 

v E H 2 (F2) be the dual of ti. Then we have the following 

17 



COROLLARY 7.18. H*(F;) = f\(u,v), the exterior algebra over Z2 on 

generators u and v. Sq 1v = uv. 

PROOF: Note that the following relation holds in H 1 (F2) by Theorem 

5.1. 

(7.19) QJ[1j = il * [1]. 

Let 6. : F; __, F; x F; be the diagonal. Then the following relations 

are well known [6]. 

(7.20) 

where ~.a = L:, a~ ® a~. 

(7.21) (Nishida relation) [3Qi(a) = (j -1)Qi- 1 (a) 

where f3 is the Bockstein operation. 

Then the ring structure is proved by observing the following Kronecker 

products. 

The fact Sq 1 v = uv is proved by observing the following Kronecker 

product. 

§8. PROOF OF THEOREM 5.8 . 

We prove Theorem 5.8 by using the strategy given in §6. We filter 

F;(S2 , CPm) as given in §6. 
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In general Xn- Xn-l has one component for each partition of k into 

n pieces. Let k = v1 + · · · + Vn be one of such partitions. We shall study 

the component which corresponds to this partition. Let p1 , ... , Jl• be 

the numbers distinct to each other which appear among the v;. We can 

assume p1 appears with multiplicity i1, Jl2 appears with multiplicity i2, 

. . . , Jl• appears with multiplicity i. so that i1 + · · · + i. = n. 

We define the subgroup G of ~n to be G = ~; 1 x ~i, x · · · x ~i •. Then 

by the same argument as the proof of Lemma 7.3, we see the following 

LEMMA 8.1. The component which corresponds to the partition k = 

VJ + · · · + Vn as above is homotopically equivalent to (S2m-l )n x Cn. 
G 

By using Lemma 8.1, we shall show the following 

PROPOSITION 8.2 . Hg(Xk-l) = 0 for q :'0 2m+ k- 2. 

PROOF: We shall admit the following Lemma for a moment. 

LEMMA 8.3. HZ(X11 - Xn-!) = 0 for q :'0 n + 2m(k- n)- 1. 

Now we see by Lemma 8.3 

HZ(X1 ) = 0 for q :'0 2m(k -1) 

and 

HZ(X2- X1) = 0 for q :'0 2m(k- 2) + 1. 

Hence by using the compact support cohomology exact sequence of the 

pair (X2 ,X1 ), we see 

HZ(X2) = 0 for q :'0 2m(k- 2) + 1. 
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If we repeat this process, we can inductively prove the following fact. 

HZ(Xn) = 0 for q ~ n + 2m(k- n)- 1. 

In particular we see 

HZ(Xk-1)=0 for q~2m+k-2. 

PROOF OF LEMMA 8.3: By Lemma 8.1, each component of Xn -Xn-1 

is homotopically equivalent to (S2
m-

1 )" X Cn where G is a subgroup of 
G 

En . Note that dimR((S2
m-

1 )" x Cn) = 2mn + n. Hence we see 
G 

(8.4) Hq(Xn-Xn-1)=0 for q2:2mn+n+l. 

Note that dimRXn = 2km + 2n . Hence by the Poincare duality, we see 

H!(Xn- Xn-d = 0 for q ~ (2km + 2n)- (2mn + n + 1) 

= n + 2m( k - n) - 1. 

Next by using Proposition 8.2, we shall show the following 

PROOF : By Proposition 8.2, we know 

HZ(Xk- 1) = 0 for q ~2m+ k- 2. 

Hence by the compact support cohomology exact sequence of the pair 

(Xk,Xk-1), we see 
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Note that dimRXk = 2k(m + 1). Hence by the Poincare duality, we see 

(8.7) Hq(Xk) c:,: Hq(Xk- Xk-l) for q;::: 2k(m + 1)- (2m+ k- 2) 

= 2m( k - 1) + k + 2. 

Note that we assumed m;::: k + 1. Hence by (8.7), we see 

Hq(Xk ) c:,: Hq(Xk- Xk_ 1) for q;::: 2mk + k + 2- 2(k + 1) 

= k(2m -1). 

PROPOSITION 8.8 . We have the following isomorphism as graded Z2 

vector spaces. 

Ell Hq(Xk- Xk-1) c:,: H•(Ck(Ek) 0 Hk(2m-I)((S2m- 1 l). 
q~k(2m-l) 

PROOF: First note that Xk - Xk-l is homotopically equivalent to 

(S2m-l )k X ck by Lemma 8.1. 
E• 

We consider the Serre spectral sequence of the fiber bundle 

(8.9) (S2m-l)k __, (S2m-l)k X ck __, Ck/Ek. 
E. 

As Hk(2m-l)((S2m-IJk) = Z2, the action of 1r1(Ck/Ek) on 

Hk(2m-I)((S2m-l )k) is trivial. Note that dimRCk/Ek = 2k. Then we 

see the following facts. 

(8.10) 
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(8.11) E~·q = 0 for p > 2k. 

(8.12) E~·q=O for (k-1)(2m-1)<q<k(2m-1) 

or 

k(2m-1)<q. 

Note that we assumed m ~ k + 1. Then by (8.10)-(8.12), we see 

(8 .13) E~ , k(2m-1) ~ E~k(2m-1) for all p. 

If we use the condition m ~ k + 1 once more, we can easily prove 

Proposition 8.8 . 

Now by Propositions 8.5 and 8.8, we see 

Ell Hq (Xk) ~ H* (Ck/"£ k) ® Hk(2m-tl((S2m-t )k). 
q2:k(2m-1) 

Equivalently 

(8.14) 

Hence it will be enough to show the following proposition in order to 

prove Theorem 5.8. 

PROPOSITION 8.15. The elements of Ell Hq(Xk) constructed by 
q2:k(2m-1) 

loop sums and iterated operations correspond bijectively to the elements 

of H.(Ck/"£k) ® Hk(2m-tJ((S
2
"'-

1 )k). 

PROOF: First we shall study the elements constructed by loop sums and 

iterated operations. We define IE N to be 21+1 > k ~ 21
. Let [s] be the 
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generator of H0 (F;(S 2 , CPm)). Then the elements constructed by loop 

sums and iterated operations are given by the following two types. 

(8.16) 

(8.17) 

for some s E N. 

LEMMA 8.18. The degree of an element of type (8.17) is Jess than k(2m-

1). While the degree of an element of type (8.16) is greater than or equal 

to k(2m- 1). 

PROOF: We prove the first half. The second half can be proved similarly. 

We assume that an element 

of type (8 .17) has degree greater than or equal to k(2m- 1 ). As x is an 

element of H.(Fk(S 2 ,CP"')), we have the following fact. 

(8.19) s + ao + 2a1 + · · · + 21a, = k. 

As deg x ~ k(2m- 1), we have the following fact . We write M for 

2m -1. 

(8.20) a 0 M +a1 (2M + 1)+ a 2 (4M +3)+ .. · + a,(21M +21-1) ~ kM. 
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Combining (8.19) and (8.20), we see 

(8.21) aoM + a 1(2M + 1) + a 2(4M + 3) + · · · + a,(2
1 
M + 21 

-1) 

2'_ sM + a 0 M + 2a1M + · · · + 21a,M. 

(8.21) is equivalent to 

(8.22) 0<1 + 3a2 + · · · + (21
- 1)al 2'. sM. 

By (8.19), we have the following inequality. 

(8.23) a 1 + 3a2 + · · · + (21
- 1)a1 :=:; k- s . 

Combining (8 .22) and (8.23), we see k- s 2'_ sM. Hence 

(8 .24) k 2'_ s(M + 1) = 2ms . 

Note that we assumed m 2'_ k + 1. Hence we sees = 0 by (8.24) . This 

is a contradiction. This completes the proof of the first half of Lemma 

(8.18). 

We write(; for Q1 ... Q1(t2m-I)· Then by Lemma 8.18, the elements 

of $ Hq(Xk) constructed by loop sums and iterated operations 
q~k(2m-l) 

correspond to 

(8.25) { (g•(f' ... (~' ; a; 2'. 0, ao + 2a1 + · · · + 21
al = k} . 

(Note that the elements of (8.25) are linearly independent by Theorem 

5.2). 

Next we shall study the elements of H.(Ck/Ek)®Hk(2m-l)((S2m-I )k). 

H.(Ck/Ek) is described in [6]. We follow the notation of [6]. 
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PROPOSITION 8.26. H.(Ck/Ek) = Zz [~j] fl. 
Wl1ere deg ~j = 2i - 1 and I is the two sided ideal generated by 

t 

(~it/' ... (~j,)k' here Lk;2j; > k. 
i=l 

By Proposition 8.26, the basis of H.(Ck/"Ek) is given as follows. 

(8.27) 

Let [(S2m-l)k] bethefundamentalclassof(S2m-l)k. Thenby(8 .27) , 

the elements of H.(Ck/Ek) 181 Hk(Zm-l)((S2m-l )k) correspond to 

(8.28) 

21k, ~ k }· 

We see that (8.25) and (8.28) correspond to each other. This com-

pletes the proof of Proposition 8.15 and, consequently, of Theorem 5.8. 

§9 . PROOF OF THEOREM 5.7 . 

In order to prove Theorem 5.7, the case we need to consider is F3(S
2

, 

CP2 ) and F
3
*(S2 , CP3 ) by virtue of Theorem 5.8 . We shall prove the 

former. The latter can be proved similarly. 

Note that in degrees greater than or equal to 9, the elements con­

structed by loop sums and iterated operations in H. (F3( S 2 ,CP2
)) are 

given by ,3 and ,3 * Q1 (,3 ) (which are non-trivial by Theorem 5.2). 

Hence it will be enough to show the following proposition in order to 

prove Theorem 5.7 in the case F3(S2
, CP2

). 
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{ 

Zz q = 9,10 
PROPOSITION 9 .1. Hq(F;(SZ,CP 2

)) = 
0 q ~ 11. 

We filter F;(S2 , CP2 ) as given in §6 . Then by the same argument as 

the proof of Lemmas 7.2 and 7.3, we see the following Lemmas. 

LEMMA 9.2 . X1 is homo topically equivalent to 5 3
. 

LEMMA 9.3. Xz- xl is homotopically equivalent to (53
)

2 
X 5

1
. 

LEMMA 9.4. X3- Xz is homotopically equivalent to (5 3
)
3 X C3. 

E, 

Note that dimRX3 = 18 , dimRX2 = 16 and dimRX1 = 14. 

First we compute H;(X2 ). 

{ 

Zz 
LEMMA 9.5. HZ (Xz) = 

0 

q=9 

q ~ 8. 

PROOF: By Lemma 9.2 and the Poincare duality, we see 

(9.6) HHX1) = 0 for q ~ 10. 

By Lemma 9.3 and the Poincare duality, we see 

(9.7) 
q=9 

q ~ 8. 

Hence Lemma 9.5 follows from the compact support cohomology exact 

sequence of the pair (Xz, X 1 ). 
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Next we compute H*(X3 - X 2 ). Note that X 3 - X 2 is homotopically 

equivalent to (S3)3 x C3 by Lemma 9.4. In order to compute H*((S3)3 x 
~ ~ 

C3 ), we decompose the covering space 

(9.8) 

into the following two covering spaces. 

We embed Z3 in E3 as the alternating group. Note that the following 

extension holds . 

(9.9) 

Then (9.8) is decomposed as follows . 

(9.10) 

(9.11) 

As for (9 .10), we see 

(9 .12) H*((S3)3 X C3) ~ H*((S3)3 X Cd3. 
z, 

In order to compute (9.12), we need to know H *(CJ). H *(C3) is de­

scribed in [6]. We follow the notation of [6]. 

PROPOSITION 9.13. 
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(2) H 2(C3) = Z2 EEl Z2 and a basis is {a~ 1 a;1 , a~1 a;2}. 

(3) a;1 ah = a~ 1 (aiJ + ah). 

( 4) Let u = (2 3)(1 2) be the generator of Z3 . Then 

Now by using (9 .12) and Proposition 9.13, we have the following 

Let (91) be t he Gysin exact sequence of (9 .11 ) and let (g2 ) be the 

compact support cohomology exact sequence of the pair (X3 ,X2). By 

inspecting (9J) and (92 ), we shall prove Proposit ion 9.1. We write X 

for XJ- X2. 

STEP 1. H q(X) = 0 for q ;::: 11. 

In fact by the fact H q((S3)3 x C3) = 0 for q;::: 11 (Lemma 9.14), we 
Zs 

see Hq (X) ~ H 11 (X ) for q;::: 11 by (91 ). As X is a fini te dimensional 

manifold, Step 1 holds. 

In fact we see Hg(X) = 0 for q ::; 7 by Step 1 and the Poincare duality. 

Note that H Z(X 2 ) = 0 for q::; 8 (Lemma 9.5) . Hence we see Hg (X 3 ) = 0 

for q::; 7 by (92 ) . By the Poincare duality, we see Hq (X3 ) = 0 for q;:: 11. 
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In order to complete the proof of Proposition 9.1, it will be enough to 

determine H 9 (X3 ) and H 10 (X3 ) by virtue of Step 2. 

In fact by the fact H 11 (X) = 0 (Step 1) and H
10

((S
3
)
3 

x 6 3) = 12 
Za 

(Lemma 9.14), we can write (Q1 ) in the following form. 

By the exactness, Step 3 follows. 

Before we proceed to Step 4,we shall state a fact about H
8
(X3 ) . 

(9 .15) 

((9 .15) is easily proved by using Theorems 5.1 and 5.2.) 

In fact by the fact H 8 ((S3)3 x 63) = 1 2 ED 12 (Lemma 9.14), we see 
Za 

H8 (X) ,P 0 by (Q
1 

). Hence H~ 0 (X) ,P 0 by the Poincare duality. Note 

that m(X2) = 1 2 (Lemma 9.5) . Note also that H~ 0 (X3) = 0 ((9.15) 

and the Poincare duality). Hence we see H~ 0 (X) = 12 by (Q2 ). By the 

Poincare duality, H 8 (X) = 12 . 

In fact as HJ(X
2

) ~ H~(X2) = 0 (Lemma 9.5), we see H~(X) ~ 
H~(X3 ) by (Q

2
). In (Q2 ), we see H~(X2 ) ----> H~0 (X ) is isomorphism by 

Step 4. Hence we see H~(X) ~ m(X3) by (Q2)· 
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In fact by the fact H 10 (X) = Z2 (Step 3), we see H~(X) = Z2 by the 

Poincare duality. Hence we see H~(X3 ) = Z2 by Step 5. Then we see 

H 10 (X3 ) = Z2 by the Poincare duality. 

In fact by the fact H 8 (X) = z2 (Step 4), H 9 ((5
3

)
3 

X 63) = z 2 (Lemma z, 

9.14), H 10 (X) = z2 and H 9 (X) -t H 10 (X) is surjective in (QJ) (Step 

3), we can write (91 ) in the following form. 

By the exactness, we see H9 (X) = Z2 . Hence H~(X) = Z2 by the 

Poincare duality. Then H~(X3 ) = Z2 by Step 5 so H
9
(X3 ) = Z2 by 

the Poincare duality. This completes the proof of Proposition 9.1 and, 

consequently, of Theorem 5.7 in the case Fj(S
2
,CP

2
). 
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