The timing of bud flush and bud set of the sub-boreal conifers *Abies sachalinensis*, *Picea jezoensis*, and *P. glehnii* dominant in Hokkaido, Japan

Susumu Goto

北海道に優占する亜寒帯性針葉樹、トドマツ、アカエゾマツ、エゾマツの 開芽期と冬芽形成期

後藤 晋

1. Introduction

In boreal or sub-boreal conifers, bud phenology is essential for regulating the growth period and avoiding frost damage (Aitken and Hannerz, 2001; Howe *et al.*, 2003; Ogawa *et al.*, 2010). Numerous data on bud phenology, including bud flush date and bud set date, are available for major forestry species, such as *Pinus sylvestris*, *Picea abies*, and *Pseudotsuga menziesii* distributed in boreal or sub-boreal forests of the Northern Hemisphere (Oleksyn *et al.*, 1998; Aitken and Hannerz, 2001; Howe *et al.*, 2003).

Three conifers, *Abies sachalinensis*, *Picea jezoensis*, and *P. glehnii*, dominate the natural forests in Hokkaido, northern Japan. Geographic or altitudinal variation of bud phenology has been reported in *A. sachalinensis* (Okada *et al.*, 1970; Kurahashi and Hamaya, 1981), *P. jezoensis* (Kurahashi *et al.*, 1996; Kisanuki and Kurahashi, 1999; Nakagawa *et al.*, 2003), and *P. glehnii* (Okada, 1975; Kurahashi *et al.*, 1996). In most previous studies, the observation of bud phenology was conducted only for a single species. Kurahashi *et al.* (1996) investigated the bud flush dates of *P. jezoensis*, *P. glehnii*, and a hybrid at the same site and found that the bud flush of *P. jezoensis* was apparently earlier than that of *P. glehnii*, whereas that of the hybrid was intermediate. However, the relationships between other species remain incompletely understood.

In the present study, the timing of bud flush and bud set were investigated for three conifers during the same season and the same site. Bud phenology and growth period were then characterized for each conifer by comparison among species.

2 Susumu Goтo

2. Materials and Methods

Plant materials

Cones of the three conifers were collected in 2011 from the University of Tokyo Hokkaido Forest (hereafter, UTHF), Graduate School of Agricultural and Life Sciences, The University of Tokyo. Cones of *A. sachalinensis* were collected from a seed orchard in compartment 72-A consisting of 16 clones selected throughout the UTHF. Cones of *P. glehnii* and *P. jezoensis* were collected from 13 and 11 mother trees naturally-distributed in compartment No. 10-B [800m above sea level (asl)] in the UTHF, respectively.

Seeds of each species were sown in the nursery at UTHF (43°13′ N, 142°23′ E, 230 m asl) on the 31th October, 2012. The seeds germinated during the spring of 2013 and grew during two growth seasons in the seed bed. The seedlings were then transplanted to another position within the nursery during mid-May 2015. During early April 2016, 30 seedlings per species were selected and identified by attaching plastic tags with individual ID numbers.

Phenology observation

Observation of phenology was conducted twice a week by visual inspection from the 26th April to 30th September in 2016. The phenology status was recorded as follows: (0) winter buds before bud flush, (1): bud flushing, (2): bud setting, (3): secondary flushing, and (4): bud set of secondary flushing. The dates (days of year, hereafter DOY; Table 1) of first bud flushing, bud setting, secondary flushing, and bud set of the secondary flushing were defined as "bud flush date," "bud set date," "second flush date," and "second bud set date," respectively. The growth period was calculated by subtracting the bud flush date from the bud set date. If secondary flushing occurred, the period was calculated by subtracting the second bud flush date from the second set date, and this period was added to the growth period for the diagnostic seedling.

Apr Date DOY 1 153 1 183 1 214 2 215 5 218 6 219 7 220 10 101 12 103 14 105 76 17 108 19 110 20 21 22 23 24 25 26 27 28 29 21 112 24 115 29 29 28 119 29 120 29 29 28 241 29 242 30 121

Table 1. The relationship between calendar date and DOY (Days of Year) in 2016

3. Results and Discussion

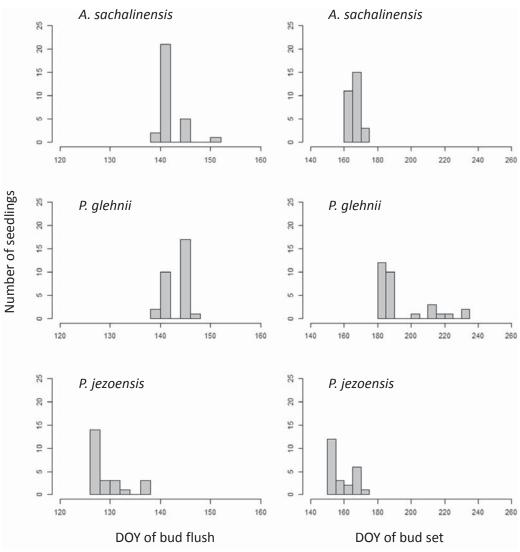
Terminal buds were damaged in one and four seedlings in *A. sachalinensis* and *P. jezoensis*, respectively. Furthermore, the bud flush date of one seedling in *P. jezoensis* could not be identified due to human error. Then, the numbers of seedlings observed for *A. sachalinensis*, *P. glehnii*, and *P. jezoensis* were 29, 30, and 24, respectively (Table 2), the medians of their bud flush dates were 141, 145, and 127, respectively, and the medians of their bud set dates were 166, 189, and 157, respectively. Bud flush date and bud set date of *P. jezoensis* were clearly earlier than those of *A. sachalinensis* and *P. glehnii* (Table 2; Fig. 1). The width of the distribution peak for bud set date in *A. sachalinensis* was narrow, whereas that in *P. glehnii* was wide (Fig. 1). No seedlings exhibited second flushing in *A. sachalinensis* (Table 3). In contrast, one seedling and three seedlings exhibited second flushing in *P. glehnii* and *P. jezoensis*, respectively (Tables 4 and 5). The medians of the growth periods in *A. sachalinensis*, *P. glehnii*, and *P. jezoensis* were 24, 45, and 30, respectively.

4 Susumu Gото

Table 2. Statistics of bud flush date, bud set date and growth period in three conifers, *Abies sachalinensis*, *P. glehnii*, and *P. jezoensis*

Phenology	A. sachalir	nensis $(n = 29)$	P. glehn	nii (n = 30)	P. jezoensis (n = 24					
	Mean	Range	Mean	Range	Mean	Range				
Bud flush	142 (5/21)	138-152	143 (5/22)	138-148	130 (5/8)	127-138				
Bud set	166 (6/14)	162-173	194 (7/12)	180-232	159 (6/7)	152-173				
Growth period	24	17-32	51	35-87	31	17-49				

DOY and calendar date in parenthesis are shown.



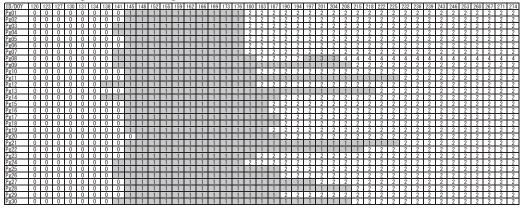

Fig.1. DOY (Days of year) of bud flush and bud set for three sub-boreal conifers

Table 3. Phenological data for Abies sachalinensis

ID/DOY	120	123	127	130	131	134	138	141	145	148	152	155	159	162	166	169	173	176	180	183	187	190	194	197	201	204	208	215	218	222	225	232	236	239	243	246	253	260	267		274
As01	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
As02	0	0	0	0	0	0	0	1	1	1	1	1	1	1	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
As03	0	0	0	0	0	0	0	1	1	1	1	1	1	1	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
As04	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
As06	0	0	0	0	0	0	0	1	1	1	1	1	1	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
As07	0	0	0	0	0	0	0	1	1	1	1	1	1	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
As08	0	0	0	0	0	0	0	1	1	1	1	1	1	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
As09	0	0	0	0	0	0	0	1	1	1	1	1	1	1	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
As10	0	0	0	0	0	0	0	1	1	1	1	1	1	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
As11	0	0	0	0	0	0	0	1	1	1	1	1	1	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
As12	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
As13	0	0	0	0	0	0	0	0	1	1	1	1	1	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
As14	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
As15	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
As16	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
As17	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
As18	0	0	0	0	0	0	1	1	1	1	1	1	1	1	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
As19	0	0	0	0	0	0	0	1	1	1	1	1	1	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
As20	0	0	0	0	0	0	0	1	1	1	1	1	1	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
As21	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
As22	0	0	0	0	0	0	0	1	1	1	1	1	1	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
As23	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
As24	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
As25	0	0	0	0	0	0	0	1	1	1	1	1	1	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
As26	0	0	0	0	0	0	0	1	1	1	1	1	1	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
As27	0	0	0	0	0	0	0	1	1	1	1	1	1	1	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
As28	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
As29	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
As30	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
As29	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	2	2	2	2	2	2	2	2	2	2	2	2	2	- 4	2	2	2	2		2	2	2	2	2	2	2 2

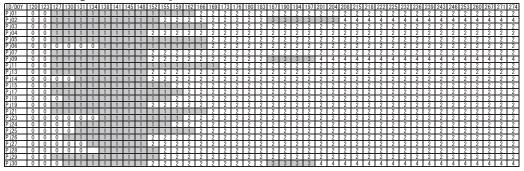

0: winter bud, 1: bud flushing, 2: bud set, 3: second flushing, 4: bud set of second flushing, As05: terminal bud was damaged.

Table 4. Phenological data for Picea glehnii

0: winter bud, 1: bud flushing, 2: bud set, 3: second flushing, 4: bud set of second flushing

Table 5. Phenological data for Picea jezoensis

0: winter bud, 1: bud flushing, 2: bud set, 3: second flushing, 4: bud set of second flushing, Pj08, Pj10, Pj16, Pj20, Pj22: terminal bud was damaged. P12: the bud flush date for this seedling could not be identified.

6 Susumu Gото

The bud flush dates of *A. sachalinensis*, *P. glehnii*, and *P. jezoensis* observed in the present study were consistent with those identified in previous studies conducted in the same site (Kurahashi and Hamaya, 1981; Kurahashi *et al.*, 1996; Kisanuki and Kurahashi, 1999). Data for timing of bud flush of these species were relatively abundant, whereas that of bud set were scarce. At the same site, Kurahashi and Hamaya (1981) investigated the timing of bud sets of seedlings of *A. sachalinensis* derived from different altitudes and found that the bud set ranged from the 9th to 12th July. The bud set date of *A. sachalinensis* obtained in the present study was approximately one month earlier than that of the previous study. The bud phenology significantly varied depending on the observed year (Kisanuki and Kurahashi, 1999). Therefore, bud set date should be evaluated by observation in several years in future studies.

4. Conclusion

The present study clearly demonstrated the difference in bud phenology among three conifers. *P. jezoensis* is characterized by earlier bud flush date and earlier bud set date (approximately three weeks earlier than those of the other two conifers). *P. glehnii* is characterized by mid-term bud flush date and the latest bud set date to maintain a long growth period. The relationship between *P. glehnii* and *P. jezoensis* in regards to bud flush date is consistent with findings of the previous study (Kurahashi *et al.*, 1996). *A. sachalinensis* is characterized by mid-term bud flush date and mid-term bud set date, and the width of the distribution peak of the bud set was narrow. These differences in bud phenology suggest that a strategy to maintain the growth period and to avoid frost damage should be dependent on species.

Acknowledgement

The author appreciates Y. Takashima, N. Kimura, S. Fukuoka, for the helping the phenological observation. The author also thanks Y. Ando, Y. Nakatsubo, Y. Sato, and K. Uchishiba and the staff of the UTHF for nursery management. This study was financially supported by The Mitsui & Co. Environment Fund R15-0026.

Reference

Aitken, S.N., Hannerz, M. (2001) Genecology and gene management strategies for conifer cold hardiness.

In: Bigras FJ and Columbo SJ (eds) Conifer cold hardiness. Kluwer, Dordrecht, pp22-53

Howe, G.T., Aitken, S.N., Neale, D.B., Jermstad, K.D., Wheeler, N.C., Chen, T.H.H. (2003) From genotype to phenotype: unraveling the complexities of cold adaptation in forest trees. Can. J. Bot. 81: 1247-1266
Kurahashi, A., Hamaya, M. (1981) Variation of morphological characters and growth response of Sahalien fir (*Abies sachalinensis*) in different altitudes. Bull. Tokyo Univ. For. 71:101-151 (in Japanese with

- English summary).
- Kurahashi, A., Kisanuki, H., Kimura, N. (1996) The variation in the timing of bud opening and the extraordinary growth in hybrid and back-cross pedigree between *Picea glhenii* Masters and *P. jezoensis* Carr. Trans. Meeting Hokkaido Breed. Jpn. For. Soc. 44: 117-119 (in Japanese).
- Kisanuki, H., Kurahashi, A. (1999) Temporal variation of bud opening and frost damage on the seedlings of Yezo spruce (*Picea jezoensis*) from seven provenances in Hokkaido. Trans. Meeting Hokkaido Breed. Jpn. For. Soc. 47: 58-60 (in Japanese).
- Nakagawa, M., Hirokawa, T., Shima, T., Ogasawara, S., Kurahashi, A. (2003) Effect of seed source elevation on bud opening of Yezo spruce (*Picea jezoensis*). J. For. Res. 8: 267-270
- Ogawa, H., Takahashi, K., Inukai, S., Ohya, K., Kimura, N. (2010) Late frost damages occurred in 2008 at the Tokyo University Forest Nursery in Hokkaido. Trans. Meeting Hokkaido Breed. Jpn. For. Soc. 58: 131-134 (in Japanese).
- Okada, S., Sakai, A., Mukai, H. (1970) An investigation on the provenance characteristics of Sahalien fir seedlings (V) The difference in the length of growing season among Sahalien fir seedlings and their mother trees from natural stands in seven selected localities in Hokkaido. J. Jap. For. Soc. 52: 357-361(in Japanese with English summary)
- Okada, S. (1975) Geographic variation in *Picea glehnii* (I) Differences in seedling height and bud-opening date among twelve seed sources. J. Jap. For. Soc. 57: 305-310 (in Japanese with English summary)
- Oleksyn, J., Modrzynski, J., Tjoelker, M.G., Zytkowiak, R., Reich, P.B., Karolewski, P. (1998) Growth and physiology of *Picea abies* populations from elevational transects: common garden evidence for altitudinal ecotypes and cold adaptation. Funct. Ecol. 12: 573-590