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Abstract 

In (2+1)-dimensions if particles are coupled with the Chern-Simons (CS) gauge 

field the particles acquire magnetic fluxes and become composite objects of the charge 

and the fiLLX. Statistics of such particles is changed because of the Aharanov-Bohm 

phase. When the attached flLLx is 27rm (m is an odd integer), fermions become bosons 

and vice versa. This is called the bose-fermi transmutation. In this thesis we clarify 

this transmutation both in a non-relativis~ic case and in a relativistic case. In the 

rerativistic case the Cherri-Simons gauge fie ld gives an effect not only on the statistics of 

the particles but also on its spin. We also discuss one of the most important applications 

of the bose-fermi transmutation to the fractional quantum Hall effect (FQHE), which 

is a "macroscopic" quantum effect in a. two-dimensional system of electrons subjected 

to a strong magnetic field. 
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1 Introduction 

Two different quantum statistics of ident ical particles are known, Bose-Einstein 

statist ics and Fermi-Dirac stat istics. At low temperatures the statistics play an im­

portant role in its dynamics. For example bosons can condense into a " macroscopic" 

wave function (bose condensation). On the other hand the Fermi statistics assures the 

stabili ty of matters . Then natural questions arise. 

Are th~re exot ic statistics which will give new exot ic phenomena? 

Can we transmute the statistics by interactions? 

Recently in (2+ 1) dimensions many studies have been done for these questions . It 

w.as shown that particles with fractional statistics, called anyons, exist and they can 

be constructed from bosons by interacting with the Chern-Simons (CS) gauge field. 

Historically Leinaas and Mylheim[1] proposed a theoretical possibility of particles with 

the fractional statistics in two-spacial dimensions . Later Wilczek and Zee[2] showed 

that a soli ton in 0(3)- <J model with the Hopf term has a fractional statistics and a 

fractional spi n. These works were followed by many papers [3,4]. 

These st udies were partly st imulted by the two-dimensional condensed matter phy­

dics. A system of electrons in an effect ively two dimensional space have been s tudied 

extensively and many interesting physics were discovered. Quantum Hall effect and 

High-Tc superconductivity are two of them. These phenomena are believed to be closely 

connected with the fractional statistics and the stat is tical transmutation 1
. 

Here we briefly explain why the statistics of a charged boson is transmuted to the 

fractional stat istics by interact ing with the Chern-Simons gauge field. The Chern­

Simons gauge field does not have a n ordinary kinetic term. Its action is given by 

(1.1) 

If a charged boson current ]" is coupled with this gauge fi eld , the equations of motion 

for the gauge fi eld a is 

( 1.2) 

10f course the mechanism of High-Tc superconductivity is not yet discovered and nobody knows 

what the truth is. 
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The configurat ion of the gauge field is determined complete ly by this equations and 

there are no independent degrees of freedom for t he gauge field. In particular the J.1. = 0 

component relates the magnetic flux b with the source density p : 

4·d 
b(x) = -p(x). 

e 
(1.3) 

After integrating the gauge field the particle becomes a composite object of a charge 

e and a flux 4tr J /e. T herefore when we interchange such two particles, an Aharanov 

Bohm phase ( = 2tr J) 2 appears and the statistics of particles are changed. 

For general J the phase is fractio nal and the system describes anyons . The dynamics 

of anyons were first studied by Laughlin [5]. In the random phase approximation 

(RPA) he s howed that a system of anyons behaves as a superconductor. This work 

was followed by many people [6] as a candidate of the High-Tc superconductivity. 

If J is an integer the phase is 0 (mod 2tr) and stat istics does not change. 

If J is a half integer (J E Z + 1/2) the original bosonic particle becomes a fermion 

and vice versa. This is called the bose- fermi transmutation. The bose-fermi transmu-

tation has the following t hree interesting properties: 

(1) In the relativistic case, not on ly the statistics b ut the spin is transmuted. For this 

purpose we must treat the self-i nteract ion induced by the Chern-Simons gauge field 

carefully. 

(2) The bose- fermi t ransmutation has an important application to the fractional quan­

tum Hall effect (FQHE). 

(3)' T he bose-fermi transmutation can be a mechanism of making anyons. This sounds 

strange but it is well known that the vortex excitation of the FQHE is an anyon. A 

charged particle acquires magnetic fluxes t hrough the CS gauge field and the statistics 

is changed. On the other hand a particle with a unit flux a lso couples wi th the CS 

gauge field and acquires a fractional charge. As a result it becomes an anyon. 

2Thinking naively it is 4~J because not only a charge moves around a flux but also a fl.ux move 

around a charge. It is indeed true if we can get rid o f a cont rib ution from the gauge field itself. The 

gauge field itself contributes to the phase, however, and the true phase is a hal f of the naive value[7]. 

We come ba.ck to this problem later in chapter 2. 
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The purpose of this paper is to clarify the above three properties of the bose-fermi 

transmutation. 

(1) was pointed out by Polyakov [8]. There are some unclear points and problems, 

however. In chapter 3, we prove the Polyakov's conjecture exactly and extend it to 

the field theories. (2) was discussed by Girvin[34] and there are many papers that 

have followed. In chapter 4, we review it shortly and also present a new interpreta­

tion of the FQHE. The FQHE is shown to be a many-body system of electrons in a 

two-dimensional "phase" space. For such a system, the CS gauge field changes the 

symplectic structure on the phase space besides ch<tnging .the statistics of the particles. 

In the following we explain (1) and (2) in more details. 
. . 

(1) In the non-relativistic case the effective interactions by the Chern-Simons gauge 

field between particles are topological. That is, t he interactions depend only on the 

linkings of the particles and not on the continuous relative coordinates between par­

ticles. In this sense the CS gauge field gives an effect on ly on changing the statistics. 

Here we neglected the self-energy corrections. Several authors studyi ng the CS theory 

as a topological field theory use the point sp litting regularization in order to extract 

topological invariant informations of a knot from the self-energy [11,12]. Polyakov 

[8](and also [10)) evaluated the self-energy more care full y and claimed that the CS 

gauge field lransmu tes also the spin of particles. He showed that a new term pro­

portional to the torsion of a path is induced from the self-energy. Since the torsion 

term contains a higher derivative of the particle's position the particle may acquire a 

new degree of freedom [9]. This can be identi[ted with the spin degree of freedom. He 

suggests that the propagator of a charged scala r particle effect ively becomes that of a 

Dirac particle. From the relativistic view point hi s clai m is plausible because it is con­

sistent with the spin-statistics theorem. In Polyakov's paper, however, many problems 

still remain. The self-energy should be treated more carefully. Also the measure in the 

functional integral over random paths is not clearly defined. Further the transmutation 

of the spin and the statist ics in a quantum field theory cannot be fully understood in 

his language. To solve these problems is the purpose of chapter 2 [13]. 

(2) Fractional quantum Hall effect is a kind of a "macroscopic" quantum effect 
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in an effectively two dimensional system of electrons subjected to a strong magnetic 

field [24]. Soon after the discovery by Tsui et al.[25], Laughlin proposed trial wave 

functions of the incompressible quantum liquid for the ground state and the excited 

states [26] . Despite its qualitative and also quantitative successes, there are many 

unsolved problems: e.g., whether there is a phase transition, or what stabilizes the 

Laughlin wave function ... etc. One of these is a fundamental one; 

What is indeed the FQHE? ( 1.4) 

or 

Can we make a Ginzburg-Land au theory for the FQHE7 (1.5) 

For these questions one answer was proposed that the FQHE is a new kind of a bose­

condensation [34]. Superflu idity can be thought of as a bose condensation of He-4 

which is a bose particle. Superconductivity is also a bose-condensation of bound states 

of electrons called Cooper pairs, which is of course a boson. In two-spacial dimensions, 

as we discuss in chapter 2 and 3, fermions can be bosonized by coupling with the 

Chern-Simons gauge field or in other words by attaching fluxes to particles. Such 

bosonized fermions can be bose-condensed. All qualitative features can be explained 

from this picture. Although it is unfortunately only a phenomenology and there are 

no accepted microscopic derivations, Ginzburg-Landau picture will be very powerful 

when we find new phenomena such as the flux quant ization or Josephson effect. These 

are discussed in chapter 4. 

Also another interpretation of the FQHE is presented. If we restrict the Hilbert 

space of the electrons on the lowest Landau level, a system of electrons subjected to 

a strong magnetic field is equivalent to a many-body system on a two dimensional 

"phase" space. Only a little attention has been taken to it before. If we couple the CS 

gauge field to such a system, not only the statistics of particles but also the symplectic 

structu re on the phase space is changed. The symplectic structure determines the 

number of stales of particles. We give a new interpretation of the FQHE from this 

picture. 
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The organizatio n of this paper is as foll ows. In chapter 2 we discuss the transmu­

tation of statistics in a non- relativist ic case. We prove the equ ivalence of the grand 

canonical partition function of charged bosonic particles and that of free fermions. In 

chapter 3 we treat the self-energy corrections carefull y and show that in a relativistic 

case a charged particle acqu ires a spin degree of freedom. We also discuss a funct ional 

integral for relativistic spinning particles. In chapter 4 we apply the bose-fermi trans­

mutation to the FQHE. In chapter 5 we summarize the results of this thesis and discuss 

future problems. 
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2 Non-relativistic case 

In this chapter we discuss the bose-fermi transmutation in a non-relativistic case. 

The coefficient J of the Chern-Simons action {1.1) is restricted to J E Z + 1/2. At 

these values of the coefficients bosons are transmuted into fermions and vice versa. In 

t he canonical formalism bosons are quantized by commutation relations and fermions 

by anti-commutation relations. It can be shown that the commutation relations are 

changed to the anti-co~utation relations by the Chern-Simons gauge field [4]. For 

generali-zations to anyons or to the relativistic case, however, the path-integral for­

malism is more convenient than the canonical forma lism. In this chapter we prove 

. the following equivalence of g rand canonical partition functions in terms of the path­

integral quantizations. 

We show that a grand canonical partition function of non-relativistic bosonic par­

ticles coupled with the C hern-Simons gauge field < Z8 {a) >cs is equal to that of free 

non-relativistic fermionic particles ZF : 

where 

and 

< Za(a) >cs 

ZF 

< tra e-P(H.-pN) >cs 

trF e - {J(Ho-pN) 

1 p2 
H.=

2
m(p - a) 2 - a0 , H0 =-

2m 

< · · · >cs= j V a e•Scs (- · ·). 

{2.1) 

{2 .2) 

{2.3) 

{2.4) 

To show the above equality it is convenient to express the partition functions in terms 

of summation ove r random paths. 

At first let's review how to derive a path-integral representation of a grand canonical 

partition fun ct ion of free non-relativistic bosonic particles: 

{2.5) 

The trace tr8 is taken over symmetric N particle states (N 2: -o). T he partition 
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(2.6) 

where 

s = ro~ dt I: mxf 
Jo i 2 ' 

(2.7) 

and whose boundary conditions are 

x;(,B) = Xa;(O) (i = 1, .. , N). (2.8) 

Any permutation in SN can be factorized into cycles with c1 1-cycles, c2 2-cycles ... 

which satisfies L:::"~ 1 vc" = N. For example a permutation 

a = (124)(36)(57) E 57 (2.9) 

has c2=2 2-cycles and CJ=l 3-cycle. The number of permutations with c" v-cycles is 

(2.10) 

Therefore the partition function can be expressed in terms of a path integral with a 

periodic boundary condition with a period v,B 

1 !a
"~ mx2 

h" = . . Vx exp(- -dt) 
pertodtc 0 2 

(2.11) 

as 

Zs 

"' ( e"~)" h 
exp(L ---") = ew•. 

v=l 11 
(2.12) 

This form is easily understood since W 8 contains only connected paths with a period 

v,B. 
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Of course the same formula can be derived directly from a field theoretic expression 

of the partition function 

(2.13) 

Next almost same formula can be derived for free fermions. In this case the trace 

trF is taken over anti-symmetric states; 

where 

Zr trr e-fJ(Ho-"N) 

e"~N j " LN ---;:;-1 d-:z:l · ... d2:z:N L (-1)'(a) 
aEStv 

x < :z:1 .. :z:Niexp(-:-.BI: pf )lx ... .. xa,v > 
i 2m 

Therefore the grand canonical partition function for free ferrnions is 

(2.14) 

(2.15) 

(2.16) 

The difference from the bosonic case is a minus sign ( -1)v+ 1 for a path with a period 

v,B. 

When a gauge .field couples, only a slight modification is necessary. The path­

integral representation of a transition" amplitude 

(2.17) 

includes an expectation value of the Polyakov loops, which wrap a time torus. The 

grand canonical partition function of charged bosons coupled with the Chern Simons 

gauge field < Zs(a) >cs is written by using a replaced h"(a) 

(2.18) 
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as 
w "" (e"i3)"hv(a) 

< Z 8 (a) >cs=< e •<•) >cs=< exp(I; ) >cs. (2.19) 
11=1 1/ 

Now let's prove the equivalence of (2.16) and (2.19). For proof of the equivalence it 

is enough to show both that there appears an extra minus sign ( -1)-+ 1 for each path 

with a period v {3 

(2.20) 

and that there are no interaction~ between two disconnected paths. The expectation 

value of a Polyakov loop with a period v{3 (2.20) can be calculated by using classical · 

solutions of (1.2) in the Coulomb gauge 

(2.21) 

af'(x) 

The left hand side of the eq.(2.20) becomes 

r/3 
< exp(i lo a"(x(t))x"(t)dt) >cs 

= exp(~ {!3 a~x"(t)dt) = e'P[z(<ll . (2 .22) 

Note the 1/2 factor in front of f.{/3 a~1 x"dt. T his a rises because the Lagrangian includes 

not only the minimal coupling term a"x" but also the Chern-Simons term itself. This 

is the reason why the true A-B phase is a half of a naive A-B phase, which I commented 

in the footnote in page 5. At each time there are v particles described by x(t + 1{3), 

0 :<:; I :<:; v- 1. The source currents which contribute to the classical solutions (2.21) 

are 
v-1 

J"(y) = I: 6(2l(y- x(t + 1{3)) x"(l + t{3). (2.23) 
1::1 

Here we dropped the self-energy part(/ = 0). In t he next chapter this self-energy 

becomes important when we consider the transmutation of "spi n". 

Inserting (2.21) and (2.23) into (2.22) the phase factor P[x(t)] becomes 

v-
1 r/3 t,1(x(t)- x(t + /{3)); , . -

P[x(t)] = J ;flo lx(t) _ x(t + lf3)l 2 (x(t)- x(t + 1{3)); dt. (2.24) 
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This can be evaluated easily by using a unit vector 

y~'l(t) = (x(t)- x(t + 1{3)); E 51 
' - lx(t)- x(t + 1{3)1 

(2.25) 

as 
v-1 {j v-1 

P[x(t)] = J I; { t;; ?il'l(t)y;')(t)dt = J I; J(') 

1=1 ° 1=1 

(2.26) 

The integral f(l) is a topological invariant which is quantized by 21f. These invariants 

represent winding numbers of vl'l around a circle 5 1
• From an identity 

(2.27) 

· . it is easy to show 

(2.28) 

and if 11 is an even integer 

[<vf2l E 21f X (2Z + 1). (2.29) 

Therefore the phase factor has the following form: 

P[x(t)] E 21fl(v- 1) x (2Z + 1). 

Since we are considering the cases J E Z + 1/2, (2.20) is proved; 

(2 .30) 

It is also easy to prove that there are no interactions between two disconnected paths. 

Now we have proved the equality of the grand canonical partition functions of non­

relativjstic particles; 

< Zs(a) >cs= Zp. (2.31) 

Note that we have neglected the self-energy part because we are interested in only the 

transmutation of "statistics". 

The system coupled with the Chern-Simons gauge field has a symmetry 

J--+J+l. (2.32) 

This is because we have neglected the sel f-energy. In the next chapter we take account 

of the self-energy and the symmetry is lost. 
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3 Relativistic case 

In the previous chapter the equality of the grand canonical partition function of Ute 

charged bosons and that of free fermions is shown in the non-relativistic case. In this 

chapter we will show the same equality in a relativistic case(13]. There are many 

similarities. Many differences exist, however, and the proof of the latter is much 

more non-trivial. The most different point is that we must cons ider not only the 

transmutation of statistics but also that of spin. As shown in chapter 2, the effective 

interaction between particles is "topological" in the sense that it depends only on the 

way of link:ings of particles. Evaluat in of the self-energy correction is more subtle 

becuause it needs some regularization. Some people have used the point-splitting 

regularization in order to extract a topologically invariant information (self-linkings) 

from the self-energy. More careful treatment reveals that the self-energy has more 

informations than the topological invariant one. It will be shown in this chapter that 

the expectation value of a Wilson line is not quantized as it was in the previous chapter 

and is related to the so called "spin factor". The spin factor is a necessary tool when 

we describe a spinning particle in terms of a bosonic path integral. As a result particles 

coupled with the Chern-Simons gauge field become to acquire a spin degree of freedom. 

Another difference is that we must treat the measure of the functional integral carefully 

so as to keep the relativistic invariance. 

In this chapter, by clarifying these points, we show the following three equalities: 

A dressed bosonic propagator by the Chern-Simons gauge field is equal to a Dirac 

propagator, a partition function of charged scalars is equal to that of free fermions, 

and anN-point correlation function of currents of charged scalars is equal to that of free 

fermions . The first one is proved by conside ring summation over random paths with 

fixed boundary conditions and the latter two are proved by considering summation 

over random closed paths with periodic boundary conditions. 

This chapter is organized as follows. In section 1 we calculate the expectation value 

of a Wilson line and show how to deal with the self-energy. In section 2 the spin factor 

is introduced and an important relation between the self-energy and the spin factor is 
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derived. In section 3 a reparametrization invariant formulation of a path integral of a 

spinning particle is given. In this section we prove that a bosonic path integral with 

the spin factor describes a spinning particle. We then show that a dressed bosonic 

propagator by the Chern-Simons gauge field becomes a Dirac one in the long distance 

limit. In section 4 we discuss the bose-fermi transmutation at the level of the second 

quantized field theory and show the equality of partition functions and that of the 

N-point functions of currents. 

The metric is Euclidean in this chapte r. 
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3.1 Gauss-Linking Number and Self-Energy 

In this section we study the expectation value of a Wilson line in a relativistic case. 

We must treat the self-energy correction carefully, which is neglected in the previous 

chapter. 

We consider a charged scalar field coupled with the Chern-Simons gauge field. The 

field theoretical action is 

5 = Smatt - iScs, (3.1) 

where 

As in the non-relativistic case, the partition function can be represented by path­

integrals over random paths of charged particles. 3 Here we consider the following path 

integral 

L e-mL(P) K(P), 
p 

(3.2) 

where summation is taken over closed paths P, L(P) is the sum of their lengths and 

(3.3) 

As we want to keep relativistic covariance in this chapter, we use the covariant gauge 

instead of the Coulomb gauge. The functional averaging over a" is performed as follows: 

(3.4) 

where 
!' !' . . "">. X>.(s)- Y>.(t) 

I=- Jo ds Jo dt x"(s)y"(t)E lx(s)- y(t)13' (3.5) 

Here we have used a two point function of the Chern-Simons gauge field in the covariant 

gauge 

(3.6) 

3The details are shown in section 3.4 
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Now we fix the particle number at n. Then the expectation value of the Wilson 

lines is 

K(P) = exp(iJ L IJ!,1 + iJ f IJ!;;), 
1:$i<;~n 2 i=l 

(3.7) 

where 

(3.8) 

x;(s) denotes a position vector of the i-th path. The first part of the exponentiate 

of K(P) repre;;ents . the effective interactions between particles and is shown to be 

quantized by 4,- J. The second one is the self-energy which we neglected in the previous 

chapter. Evaluation of the self-energy is subtle because the form of the self-energy looks 

singular at s· = t. Several authors studying the Chern-Simons theory as a topological 

field theory use the point-splitting regularization (or the loop splitting regularization) 

in order to extract topologically invariant information of a knot from the self-energy 

[11,12]. In our treatment we use another regularization. The self-energy part is shown 

to be related to the spin factor introduced in the next section. 

First IJ!,1 (i f j and i = j) can be rewritten in terms of a unit vector e(s, t), 

pointing from x1 (t) to x;(s), 

x;(s)- xl(t) 
e(s, t) = I ( ) ( I E 5

2
, x' s - x1 t) 

(3.9) 

as 

IJ!;1 = [ ds [ dt[o,e x B,e]· e. (3.10) 

The integrand is the surface element of a sphere where e(s, t) li es. This form makes it 

easy to evaluate IJ! ;1 for both cases i = j and if j. 

For i f j, the vector e(s, t) sat is fies periodic boundary conditions: 

e(s + 1, t) = e(s, t + 1) = e(s, t). (3.11) 

Therefore, the integral represents the winding number from the torus to the sphere and 

is quantized by 411', an area of a unit sphere . This is call ed the Gauss-linking number; 

IJ!,1 E 4,-Z fori f j. (3.12) 
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Fori= j, we must take care of the boundary conditions of e(s, t). For convenience, 

we change the variables from (s, t) to ( u, t) by u = s- t E (0, 1]. At u = 0, we define 

e(u, t) by taking the following limit. Then e(u, t) becomes the tangent vector at t, 

. _ x'(t) 
e(u = O,t) = hm e(E,t) = e(t) = -

1
.( )I . 

•-+0 X t 
(3.13) 

At u = 1, e(u, t) becomes 

e(u = 1, t) = lim e(1- E, t) = -e(t). 
- e:-+0 - . 

(3.14) 

Therefore e(u, t) satisfies an anti-periodic boundary condition for u 

e(O, t) == - ·e(1, t) = e(t). (3.15) 

Of course it satisfies a periodic boundary condition fort 

e(u, t + 1) = e(u, t). (3.16) 

Note that singular parts in the self-energy (see (3.8)) drop out of this expression because 

of the E-tensor in eq.(3.l0)(14,12]. Because of an anti-periodic boundary condition 

(3.15), the contribution to the integral W;, from the boundaries at u = 0 and u = l 

does not cancel each other and W;; depends on the boundary value e(t) of e(u,t). 

Therefore it is not quantized. 

At J = 1/2 the Gauss-linking number W;1 (i # j), which is quantized by 4.,-, does 

not contribute to K(P) and the expectation value of the wilson lines can be written as 

jJ N 
K(P) = exp(? :Lw,;). 

... i=l 

(3.17) 

This means that there are no interactions except the self-energy. Therefore the path 

integral (3.2) of a charged bosonic particle coupled with the Chern-Simons gauge field 

is given by 

:Le-mL+if'i'[eJ, (3 .18) 
p 

where W;; is abbreviated tow for simplicity. This form is closely related to a functional 

integral with the spin factor which describes a propagation of a spinning particle in 
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three dimensions, as shown in section 3.3. In the next section we clarify the relation 

between the self-energy w and the spin factor <I> obtained from the SU(2) coherent 

state. 

Here we comment how the self-energy depends on the self-linking of a path. As we 

show in Appendix 1, the self-energy w(e] changes 8.,- if tin kings of a path (self-linking) 

changes. Therefore at J = 1/2 dependence on the self-linking also does not contribute 

to the expectation value of a Wilson line. 
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3.2 Self-Energy and Spin Factor 

In th.is section we show the relation between the self-energy correction W,; (3.10) 

and the spin factor. 

First we briefly review the spin coherent state of 5U(2) and the spin factor. The 

spin coherent state in the spin J representation [15) is defined by 

. (eo x e) 
le >= exp(-tB-

1 
--

1 
· .T)IO >, 

e0 x e 
(3.19) 

where J is an 5U(2) generator, e 0 = (0, 0, 1), B· is the angle between e and e0 and IO > 

denotes the highest weight vector in this representation. These states are parameter­

ized by points on 5 2 The spin coherent state has the following three properties: 

Partition of unity: j dele>< el = 1, (3.20) 

where de is a rotationally invariant measure on a sphere. 

Inner product : < e + 6ele >= e.JA[e,e+Oe,eo) + 0((6e)2), (3.21) 

where A[e, e + oe, e0 ) is the area of a spherical triangle with vertices e, e + oe,and c0 . 

Expectation value : < e!Jie >= Je. (3.22) 

By using these properties, we can rewrite the transition amplitude between spin co­

herent states in terms of a path integral over random paths on 5 2: 

N 

lim < erl IT(!+ L'.tJ · S(t;))le; > 
N-oo i=l 

j Vee•J<I>[<]+J j,L dte·S' (3.23) 

where S is a c-number source and 

<I>[ e) = fo dudte · [CJ.c x CJ,e). (3.24) 

e(u, t) is defined by extending the path e(t) on 5 2 as follows: e(O, t) is some fixed vector 

which does not depend on t and e(1,t) = e(t). If the trajectory of the unit vector e(t) 
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on 5 2 is closed, D is an area on 5 2 enclosed by the trajectory. This <I>[ e) is called the 

spin factor. The above path integral is a phase-space path-integral and the spin factor 

determines the symplectic structure on 5 2 The left hand side of (3.23) is a generating 

function of N-point functions of the 5U(2) generators J. Therefore eq.(3.23) shows 

that the algebra of the 5U(2) generators is given by a path integral over random paths 

on 5 2 with the spin factor. The 5U(2) generators J are represented by the vectors Je . 

In the remainder of this section we clarify the relation between the self-energy and 

the spin factor. First we show the ft>llowing formula for a closed path: 

J 
2w[e)- J<I>[e) = 21rJ (mod 47rl), (3.25) 

where w"reJ stands for the selr-"en~rgy. The self-energy is defined for a path X(t) of a 

particle in three-dimensional space-time. But after all, it depends on the configuration 

of its tangent vector e(t) and the self-lin kings. On the other hand, the spin factor is 

a functional of e(t) by definition. The left-hand side is easily shown to be invariant 

under continuous deformation of a vector field e(u, t). The difference of factor 2 in 

front of w[e) and <I>[e) arises because w[e) has two boundaries at u = 0 and u = I 

but <I>[e) has only one boundary at u = I. Any path can be deformed to a path on a 

certain plane by changing e(u, t) continuously. The resulting path is called the knot 

diagram of the original path. If the number of the crossing points of the knot diagram 

is N, w[e) for this diagram is 47rN (mod 81r), as shown in appendix A. On the other 

hand, <I>[ e) for the knot diagram is determined by a winding number M of the tangent 

vector e(O, t) of lhe knot diagram as 2<I>[e) = 47rM (mod 81r). It can be shown that 

N- M is an odd number for arbitrary loops. Thus eq.(3.25) has been proved. 4 

Eq.(3.25) shows that locally Jw[e)/2 gives the spin J symplectic structure to the 

field e(t). The difference by 27r J from the ordinary spin factor plays an important role 

in section 3.4. 

For a path with fixed boundaries, the relation between the spin factor and the 

'The same equation to eq.(3.25) was obtained by Coste, Luscher and Grundberg, Hansson eta/. 

[16,14]. They argued that the observable spin of a charged Dirac particle vanishes in the context of 

Fermi-Bose transmutation. Our results are consistent with those of them. 
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self-energy is not so simpl e as tha t for a closed path. We consider the same quantity: 

J 
6. = -w[e]- J<I>[e] 

2 
(3.26) 

for a path X(t), whose boundaries X(O) and X(1) and the tangent vectors at these 

boundaries are fi xed. If X(t) is a path connecting X(O) and X(1) straight, both w[e] 

and <I>[e] are zero and 6. = 0. Under a continuous deformation of a path the variation 

of 6. does not vanish: 

f j[(oe X 8,e) · eJ;::6dt- f j[(oe X 8,e) · eJ:::~ds 
J j[(oe X 8,e) · eJ:::~dt. (3.27) 

Here we used e(s, t) = -e(t, s). In eq.(3.18) the dominant contribution to the path 

integral comes from those paths whose lengths L(P) sati sfy L(P)- L 0 < 1/m where 

Lo = IX(1) - X(O)I. For these paths, as L0 becomes large 86. becomes small generally 

with a power of L02 Therefore in the long distance limit of L0 where L0 » 1/m, 

the sel f-energy J'll/2[e] can be identified with the spin factor Jil>[e]. By using this 

fact we s how in section 3 that at J = 1/2 the dressed propagator of a charged scalar 

par ticle becomes that of a spinning particle in the long distance limi t. On the other 

hand, if L0 ~ 1/m the self-energy is far from the spin factor. In this case, the dressed 

propagator seems not to be either that of a spinning particle or that of a scalar particle. 

Finally, we make a comment on the quantization of J. For ordinary spin factor 

<J.i[e], it has a mod 4.,- ambiguity and J must be an integer or a half-integer in order 

to define a consistent quan tum mechanics for sp in. This is nothing but the monopole 

quantization condi tion . However, for ou r w[e], it has no such ambiguity and J does 

not have to be quantized. Instead, if J is not an integer or a half-integer , a non-local 

in teractions which depend on linkings of paths remain. 
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3.3 Functional Integral for Relativistic Spinning Particles 

In this section in order to clarify the boson-fermion transmutation we study the 

bosonic functional integral over random paths for spinning particles in three dimen­

sions. Usually a path integral of spinning part icles is given by using Grassmann vari­

ables. But in three dimensions it is also given by using a bosonic functional in tegral 

with the spin factor introduced in the previous section. We treat such a path integral 

in a reparametrization invariant manner. 

We define the functional integral rigorously for both cases of fixed and closed bound­

ary conditions. First we study the case of paths with fi..xed boundaries [11] . Path 

integral weighted by the spin factor (3.34) can be writte n in a covariant form under 

local coordinate transformations in one d imension as follows; 

(3.28) 

where 

S = l dt{m0 h + ik,.(X"- he")}- iJi!>[e]. (3.29) 

X" is a position vector of the particle with boundary conditions: 

X (O) =X;, X (1) = X 1 (3.30) 

h is an einbein and e(t) is a field on 5 2 The action is invariant under the d iffeomor­

phism 

t-+ f(t) ; f(O) = 0, /(1) = 1 (3.31) 

if the einbein h t ransforms as 

h(t)-+ jh(f(t)). (3 .32) 

Voiff denotes the volu me of this local gauge transformations. By integrating over the 

multiplier fi eld k , constraints for h and e are obta ined: 

c X" 
h=V .X.", e"= =· 

vX2 
(3.33) 

T herefore (3.28) is equal to a bosonic path in tegral with the spin factor which is a 

higher derivative of X: 

F(XJet!X,e,) = L e-mL+il<l>_ 

p 
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Boundary conditions are given by the coordina te X and its derivatives X; 

X (t = 0) = X; , 

x (t = o) 
/X(t = 0)/ = e;, 

X (t = 1) = X 1 

x( t = 1) 
/X(t = 1)/ = e/ 

(3.35) 

This is quite similar to the functional integral (3.18) which is obtained by integration 

over the Chern-Simons gauge field . The differnce is that W /2 is replaced by <I>. At 

J = 0, eq.(3.28) describes a propagat ion of a fr ee scala r particle (see Appendix 3). T he 

me<~.sures in t he functional integral should be defined by the gauge inva riant manner 

[18,19]. This can be done on the basis of the following gauge invariant norms: 

for scalar fields o<p =oX", oe", and ok", 

(3.37) 

for a 1-form oh, 

1/8(1/2 = l dt h(t)(h(t)8((t)) 2 (3.38) 

for a vector field 8(. 

Here we calculate the explici t form of th e fu nctional integ ral and show that (3.28) 

desc ribes a p ropagat io n of a Dirac particle. In order to per form the h-integral we take 

the following parameterization of the deformation of h fie ld 

oh = 8L + L8,8(, (3.39) 

where L is a zero mode of h, L = f0
1 dth(t) and 8( is a deformation by local coo r­

dinate transformations. L is the only reparamet rization invari ant quantity. In this 

parameterization, the norm of oh is 

1/ohW = oL
2 

+ f' dtL(8,8E) 2
, 

L lo 
(3.40) 

and Vd;ff = J "Df. Therefore the h-integral can be reduced to the zero mode integ ral 

as follows (see append ix 2): 

J "Dh _ i"' dL J "Dh' _ i"' dL d ,1( _2,2) --- - - - - et' -L u 
Vo;ff o VI "D(' o VI ' ' (3.4 1) 
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where the prime denotes the modes except the zero mode. In eq.(3.41), L-dependence 

of the functional determinant can be evalu ated by the gauge invariant regularization 

[19) 

(3 .42) 

for functions with fixed boundary conditions, where £ is a cut-off parameter of ul­

traviolet divergence. £ has the dimension of length in the three-dimensional space. 

The calculation of this determinant is given in Appendix 2. Then, the gauge fixed 

functional in tegral is 

(3.43) 

In eq.(3.43), we can perfo rm t he integral over X under the boundary condition (3.30). 

If we put 

X (t) = (1- t) X ; + tX1 + y(t), (3.44) 

then y( t) satisfies 

y(O) = y(1) = 0. (3.45) 

Now by insert ing (3.44) into (3.29) and in tegrating over y(t), we get 

(3.46) 

where 

S = l dt[L(m- ik ·e)- ik (X;- X1)] + iJ<ll[e]. 

Next by integrating over k except its zero mode a nd using the formula(3.42) again , 

one obtains the following expression of the propagator; 

(3.47) 

where m = m 0 - ( fi£t 1 and ko denotes the ze ro mode of k. T he formula (3.23) 

enables us to rewrite the propagator in the following form if J is a non-zero integer or 

a half-integer: 

(3.48) 

where J is an SU(2) generator. At J = 1/2, this is the Dirac propagator [20,21,22]. 
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At J = 0 we must evaluate the path integral in a different manner. As we show in 

Appendix 3, it gives the free bosonic propagator: 

1 
F(ko) = w------2 . 

"{i+m 
(3.49) 

For an integer or a half-integer J ~ 1, it describes a higher spin particle [17,23)(see 

Appendix 4). 

Next, we study the integral over closed paths, which is necessary in section 4. In 

this c~e, there are some technical differences £rom the previous case. For a closed 

path, X and the diffeomorphism have zero modes and the evaluation of the functional 

determinant should be modified. The funct ional integral over closed paths is defined 

by . 

J VXVkDeDh -s 
~v = e , 

Voiff Vspace 
(3.50) 

where S is given by eq.(3.29) and V..,.c, is the volume of the three-dimensional space . 

The divergence due to the zero mode integral of X can be removed by the factor 

V,p•c• = f dX0 in eq.(3.50). The norm of c5X is (see (3.36)) 

llc5XW = l dt L(6Xo) 2 + llc5X'W (3.51) 

and hence 

(3.52) 

Decomposing the ~(t) into the zero mode ~0 and the other modes ((t), the norm for~ 

becomes 

llo~W =!a' dt L(Lo~? = L3 (c5~o) 2 + llc5(W 

and the volume of the diffeomorph ism Vo;ff is factorized as follows: 

The h- integral can be reduced to the zero mode L- integral as 

J 
Dh ("" dL Dh' 1 

Vo;ff = lo .Ji D~' J d~0 L t 
("" ~det't(-L-28~)--1-, 

lo .Ji fd~0 L"i 
("" dL e-L/2<.fo_1 __ 

lo L f d~0 
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(3.53) 

(3.54) 

(3.55) 

Here the L- dependence of the functional determinant for a closed path is 

(3.56) 

The calculation is given in Appendix 5. The difference of this functional determinant 

from the fixed boundary case is due to the existence of twice the number of modes in 

this case. The gauge fi.xed functional integral becomes 

W = ("" dL e-L/2<-F j LfDX'DkDee-S[h=LI_1- . 
lo L f d~0 

(3.57) 

One can perform the integral over X' and k' easily and get 

(3.58) 

where S = Jd dtL(m- iko ·e)+ iJ<I>[e). The formula (3.23) for the SU(2) coherent 

states enables us to rewrite W in the operator formalism 

w Tr' ("" dL e-L( -;;-t i>·J +m) 

lo L 
-Tr'log( -ir'p · J + m) (3.59) 

Eq. (3.59) is employed to represent the partition function of the Dirac field in the 

next section. In eq.(3.59), the trace is taken over the representation of SU(2) and the 

operator p . J . 1 Tr'O = L dp < piOaoiP > -
1
-, 

0 <pp> 
(3.60) 

where :PIP>= PIP> and cr is an index of the SU(2) representation. Note <PIP>= 

~pace ( 27r) -J · 

Last ly we comment on the dressed propagator by the Chern-Simons gauge field at 

J = 1/2. The dressed propagator is described by (3.18) with fixed boundary conditions. 

As we showed in section 3.2, the following relation between the self-energy \ji and the 

spin fetor <I> holds in the long distance limit: 

J 
2w[e)- J<I>[e) ~ 0. (3.61) 

Therefore in this limit the path integral (3.18) which describes propagation of the 

charged scalars becomes equal to the path integral (3 .34) which describes propagation 
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of spinning particles. In the next section we prove the equality of the partition func­

tions . This equality holds exactly. On the other hand, as we have seen, the equality of 

the propagators holds only in the long distance limit . This may be because the dressed 

boson by the Chern-Simons gauge field is extended by quantum effect but the true 

reason is not evident at present. 
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3.4 Bose-Fermi Transmutation in the Second-Quantized The-

OrieS 

In this section we investigate the correspondence of bosons and fermions at the 

level of the relativistic quantum field theories . We show that the partition function of 

a relativistic boson theory coupled with the Chern-Simons field is identical with that 

of a free relativistic fermion theory. The action for the boson theory is given by (3.1). 

Hereafter the value of J is fixed at 1/2. Let us start with describing how to express the 

partition function Za of the boson theory in terms of summation over random paths. 

Z8 can be rewritten as follows : 

< Za >cs 

(3.62) 

where D~ = 8~ + ia~ and 

(3.63) 

Let us represent We as a sum over random closed paths. By inserting the identity 

J IX>< XldX = 1, (3.64) 

W8 can be written as 

Wa = 1"" dL j ITN dX <X le-"L(-D'+m')IX > L ) 1 ;-I , 
t ;=1 

(3.65) 

where 6.L = L/N and X 0 = X N. The infinitesimal kernels are easily evaluated: 

l 

__ e-D.L i 1 -lll· 1 +m 
( 

1 ) ' <'(X. l' - x· l ' 
4tr6.L ' 

(3.66) 
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where X
1 
= (X

1
- X 1_l)f t!.L. When we take the limit t!.L -> 0, dL/ L can be regarded 

as the measure of einbein in the proper-time gauge as we have seen in section 3.3. 

From (3.55) and (3.66) we obtain 

Wa 

We have used the formula 

!."" dL1JX - rL( lX'+m')dt i rL a·Xdt 
- e Jo • e Jo 

' L 
("" dL1JXe- j,'(frX'+m'L)dte<f,' a·Xdt 

), L 

J 1Jh1JX - i 1(.LX'+m'h)dt i r' a·Xdt ---e Jo ih e Jo 
Vo;[ 

J 1JX -m r' -/X}dt i r' a·Xdt --e Jo e Jo . 
Voi[ 

i oo dx -a2 :r-b2 /.r fi -2ab -e =-e 
o /i a 

(3.67) 

(3.68) 

when the integral 1Jh is performed in the last equality in eq. (3.67). Thus, we can 

express the partition function Z8 in the form of a particle-number series. That is, W8 

gives the contribution to Z 8 from the one-particle sector, and (W8 )n in (3.62) gives 

that from then-particle sector. 

Now let's take an average of the CS gauge field. The n-particles sector is given (see 

(3.7)) by 

< (Wat >cs J 
n 1JXi 1 n c-: 

IT v; . V exp{ -m i L V X'2dt 
i=I Dtff 5J>3Ce 0 i=l 

iJ n 

+? L W;;(e] + iJ L W;j(e]} 
.... i=l i<; 

(3.69) 

where e is the unit tangent vector along the loop. As we have seen in section 3.1, W;1 is 

the Gauss-linking number between the i-th and the j-th part icle, which takes a value 

of 411' times a.n integer. Therefore it does not contribute to (W8 )n at J = 1/2. The 

self-energy W;;(e] is related to the spin factor <I> in eq.(3.25). As a result we get 

(3.70) 

where WF is defined by 

(3.71) 

30 

Note that the minus sign in the right-hand-side in eq.(3.71). This corresponds to the 

minus sign factor for a fermion loop. It originates from the difference 211' J between the 

self-energy and the spin factor in eq.(3.25). WF is nothing but the amplitude for the 

spinning particle with the periodic boundary condition as we have shown in section 3: 

("" dL J · -tr ), L dpeL(opO'-m) 

tr j dplog( -ip · CT + m) 

Tr' log(-8 · CT + m). 

tr is a trace of the spin indices. Now we get the final result 

< Za >cs= ewr = det(-8 · u + m) = ZF. 

(3.72) 

(3.73) 

The right hand side is precisely equal to the partition function for a free fermi theory. 

Thus we have obtained a new result which is concerned with the bose-fermi transmu­

tation in the relativistic quantum field theories. 

We can derive a similar relation between the bose and the fermi theories in the 

case that an external gauge field is coupled to the matter fields. That is, the following 

relation also holds: 

< Za[A] >cs < det- 1((8- iA- ia) 2 + m 2
) >cs 

det((8 - iA) · u + m), 

ZF[A] (3.74) 

where A, is an external gauge field. From this identity the equality of the N-point 

correlation function of the currents of the charged bosons and free fermions are shown. 

In tlus section, we have shown an equality between the partition functions of 

charged scalars and that of free fernuons in the language of the functional integrals 

over random closed paths. Also the equality of the N-point correlation function of the 

currents of charged scalars and free fermions are shown. By these results and the result 

in the previous section that a dressed scalar propagator becomes a Dirac propagator, a 

system of charged scalars coupled with the Chern-Simons gauge fi~d and that of free 

fermions are shown to be equivalent. 
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4 Application to the Fractional Quantum Hall Ef­

fect 

In this chapter we apply the bose-ferrru transmutation of non-relativistic particles to 

the fractional quantum Hall effect (FQHE) . As we briefly review in section 4.1, FQHE 

is a kind of a "macroscopic" quantum effect in an effectively two-dimensional system of 

electrons subjected to a strong magnetic field (24]. Soon after the discovery by Tsui et 

al.(25], Laughlin proposed trial wave functions of the incompressible quantum liquid for 

the ground state and the excited states (26]. His wave· functions are characterized by 

its incompressibility and the properties _of the quasi-particle (hole) excitations. These 

are reviewed in section 4.1. 

Although his approach is quite successful both qualitatively and quantitatively it 

seems that something essential has not yet been understood or discovered. One of these 

is the existence of the order parameter. Recently it was found that the FQHE can be 

explained from the idea of a new type of bose condensation. As we showed in chapter 

2 and 3, ferrruon can be bosonized by interacting with the Chern-Simons gauge field 

or in other words by attaching magnetic fluxes to the particles. The idea is that the 

FQHE is a bose condensation of this bosonized electrons. These are reviewed in section 

4.2. If the FQHE is really a bose condensation, a macroscopic wave function (order 

parameter field) should exist and an essentially new phenomena, which is related to 

the existence of the order parameter, should be found. 

The bose-condensation approach succeeded in explaining all qualitative features, 

but there are no well-accepted microscopic derivations and, moreover, there are some 

unclear points. In particular, it is not obvious in these theories whether the constraint 

for electrons being in the lowest Landau level is correctly imposed or not. In section 

4.3, by noticing an equivalence of a many-body electron-system in the lowest Landau 

level and that on a two-dimensional phase space, we propose a new interpretation of 

the FQHE from a view point of a phase-space path-integral. When we fill as many 

electrons as possible in a two-dimensional phase space, the uncertainty relation makes 

each electron occupy an area 6p · 6q = 21rli.. It is resposible for the ma.ximum electron 
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density ns = eB j21rli. in each Landau level. If some mechanism increases each occupied 

area to 21rmli. (where m is a positive odd integer), the maximum electron density 

becomes one m-th. T his state will correspond to the fractional quantum Hall (FQH) 

state with a filling factor v = 1/m. We will show, in this section, that the Chern­

Simons gauge field realizes this mechanism. Our approach has some sirrularities with 

the bose-condensation approach. Both of them, in particular, make use of the Chern­

Simons gauge field. The basic ideas are, however, quite different. The projection on 

the lowest Landau level is our starting point. 

This chapter is organized as follows. In section 4.1 we briefly review the .FQHE 

and the Laughlin wave function. In section 4.2 we show how qualitative features of the 

FQHE are derived from the bose condensation picture. In section 4.3 .we interpret the 

FQHE from the view point of a phase-space path-integral. It will be shown that the 

FQHE is a many body problemof elctrons on a two-dimensional "phase space". The 

key concept is a symplectic structure on it. 
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4.1 Laughlin Wave functions 

(1) Notations 

In a two dimensional system of electrons subjected to a uniform magnetic field, energy 

levels are split into Landau levels. Without impurities and interactions one-particle 

Hamiltonian is given by 
7r2 1 

Ho = - = -(p-eA?. 
2m 2m 

The commutation relations for 1r's are given by 

We set /i = 1. Therefore H0 describes a harmonic oscillator 

(4.1} 

(4.2} 

(4.3) 

where We is a cyclotron frequency We= eB /m and the annihilation operator is defined 

by 

In the symmetric gauge 

A=(-By Ex) 
2 • 2 

the annihilation operator a is represented as 

(4.4} 

(4 .5) 

(4.6} 

Here z is a holomorphic coordinate:z = x +iy. States in the lowest Landau level satisfy 

aw = 0 and generally they have the following form: 

(4.7) 

where f(z) is a holomorphic function. Next we define the guiding center coordinates 

[27]: 
. . 1 . 

X'= x' + -c'1 1r1 . 
eB 
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(4.8} 

the quantized azy are odd integers. It is called the odd denominator rule. The FQHE 

must be essentially due to a many body effect because there are many degenerate states 

if v is not an integer. 

(3} Laughlin's picture 

Now we explain the Laughlin1s picture of the incompressible quantum liquid. He 

proposed a trial ground state wave function for v = 1/m [26]; 

N 

Wm = IJ(z;- zj}= e--'f!L:I,,I'. (4.14} 
i<; 

m must be an odd integer because of the anti-symmetry of the wave function. By the 

technique of the plasma analogy [26], it can be shown that the filling factor of this 

wave function is indeed v = 1/m. In particular, Wm=l is nothing but a single Slater 

determinant of a completely filled state(Vandermonde determinant}: 

( 4.15} 

The most essential property of Wm is that there are no components with relative angular 

momentum less than m between any pair of particles . We will comment on it later. 

He also proposed wave functions of quasi-particle and quasi-hole excitations. Quasi­

hole excitation at z is created by inserting a flux quantum at z; 

N 

lm; z >= Wm,, = IJ (z;- z}Wm. (4.16) 
t=l 

By the plasma analogy the deficiency of the density of electrons at z is shown to be 

fip = -1/m. This can be also shown by calculating the following Berry's phase [30]. 

When we move a charged particle in a magnetic field along some loop C, a phase 

proportional to the flux enclosed by the loop C appears. In the case of the above 

quasi-hole it is evaluated as 

·fc I al e~ 'Yo=' < m;z -
0 

m;z > dz = -. 
c z m 

(4.17) 
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These variables commute with 1r and therefore they commute with Ho. The guiding 

center coordinates a re constants of motion. From the commutation relations for X's 

. -1 .. 

[X' X 1 ] = -~'1 

' eB 

the number of states of each Landau level per unit area is obtained: 

Filling factor v is defined by 

where n is the density of electrons. 

(2) Experiments 

eB 
na=-. 

27r 

n 
v=:­

na 

(4.9) 

(4.10) 

( 4.11) 

Here we shortly comment on the experiments. In a two-dimensional system under a 

magnetic field , the conductivity tenso r a for a pure system takes the following form : 

( 
0 -]f) ( 0 a= ] 
~ 0 vL 
B 2< 

-ll£.) 2• 
0 , (4.12) 

where the conductivity tensor a is defi ned by 

J =a E. (4.13) 

In 1980 von I<litzing di scovered that there are plateaus for azy at ll = 1, 2, ... and at 

these values of v, au vanishes [28]. This phenomena is called the integer quantum 

Hall effect(IQHE). 5 The quantiz atio~ of azy is quite accurate(~ 0.02 ppm). It is 

very cur ious that such an exact quantization occurs in a dirty material. Roughly 

speaking the IQHE is due to the splitting of the Landau levels and is believed to be 

a manifestation of the transport properties of a non-interacting electron system. In 

1982 more curious phenomenon was discovered [25]. In nearly impurity free samples 

at very low temperatures azy becomes to have pl ateaus at rational fillings such as 

v = 1/3, 2/3, 2/5, 2/7 .... The important observation is that the denominators of aU 

5Two dimensional electron system unde r a strong magnetic field had been ~xtensively studied by 

Japanese physicists [29]. Unfortunately, however, the exact quantization of Uzy was missed. 
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This should be identified with e"<l> where e" is a charge of this quasi-hole. Therefore 

the quasi-hole has a fractional charge efm. The statistics of t his quasi-hole is also 

known from similar Berry's phase when we move one quas i-hole around another one. 

A state with two quasi-holes at z and w is 

N 

lm; z, w >= IJ(z;- z)(z1 - w) ~I'm. ( 4.18) 

The Berry's phase is shown to be 

·i . I a I - . 27r 
-y1 = 1 < m;z,w -a m;z,w > dz = -y0 - -, 

c z m 
(4.19) 

where C is a loop around w. This shows t hat the statistics of the quasi-hole is fractional 

e = 1rjm. If m = 1, 8 = 1r and the quasi-particle is a fermion. (These two results can 

be interpreted differently from a view point of a phase space path integral in section 

4.3.) 

One of the important conclusions of Laughlin's picture is that quasi-particles(holes) 

have a fractional charge and a fractional statistics. Another important conclusion is its 

incompressibili ty. The Laughlin wave function is very stable and aU excitations should 

have a gap. Low energy excitations are usually described by collective modes, which 

are density fluctuations. As Girvin e t a!. showed [31] collective mode spectrum has gap 

at k = 0 and magneto-roton minimum at finite k. It is reminiscent of the Feynmann's 

collective mode spectrum of He-4 [32]. In that case, however, the spectr um has gapless 

linear dispersion at k ~ 0. 

The Laughlin wave function can explain the FQHE at v = 1/m very well but it 

cannot explain plateaus at othe r filling factors, such as 2/5, 2/7. These are explained 

by the "hierarchy" mechanism. 

( 4) Hierarchy 

In order to explain plateaus at filling factors whose numerators are not 1, "hierarchy" 

mechanism was proposed [33]. When the density of elect rons is increased( or decreased) 

from v = 1/m, quasi-particles(holes) are created. Effective interactions of these quasi­

particles(holes) are repul sive and they are subjected to a strong magnetic field. There­

fore these quasi-particles(holes) can be condensed into Laughlin wave fun ct ions again. 
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By noting that quasi-particles(holes) have fractional charge -e/m ( +e/m) and statis­

tics -1rjm (+1r/m), generalized Laughlin wave functions for quasi-particles(holes) are 

written as 
(4.20) 

where w;'s are coordinates of quasi-particles(holes), e" = ±e/m and P is an even 

integer. By the plasma analogy again the density of the quasi-particles(holes) of Wp is 

given by 
1 \e"\B 1 
p=~p'f~· 

Therefore the density of electrons is 

p = 
eB 1 \e"\B 1 --±------, 

21rm m 27r p 'f ;;;-

eB 
21r m 'f ~ 
eB 

- -v. 
27r 

Form= 3 and p = 2, v = 2/5 and 2/7. 

(4.21) 

(4.22) 

(quasi)2·particles(holes) of wP are also const ructed as (4.16). When these (quasi)
2

· 

d L I I. t t next hierarchical FQHE at the particles(holes) are condense into a aug 1m s a e, 

following filling factors can be explained. 

1/ == 1 . 

m=F~ 

(4.23) 

This procedtHe can be iterated. 

It is astonishing that the Laughlin wave function are so successful. There are many 

unsolved problems, however, and the FQHE is not yet completely understood. In the 

next section a bose-condensation picture of the FQHE is given. 
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4.2 Ginzburg-Landau theory of FQHE 

Judging from the fact that ary is quantized quite exactly and there are very little 

energy dissipations (au ~ 0), the QHE seems to be a macroscopic quantum effect 

such as superfluidity or superconductivity. These two phenomena (superfluidity and 

superconductivi ty) are well understood because we have Ginzburg-Landau theories for 

them. For the FQHE Laughlin's picture of the incompressible quantum liquid is quite 

successful but its essence is still unclear: 

Is there an order parameter for FQHE? (4.24) 

On analogy of the supedfuidjty .Girvin et a\.[34] discovered that Laughlin's ground state 

has a kind of off-diagonal long-range order (ODLRO) related to a bose-condensat ion 

of composite objects of a charge and a flux. This work was followed by Zhang et a\.[35] 

and Read[36), who constructed an effective theory of FQHE as a system coupled with 

the Chern-Simons gauge field. The hierarchical extension was also done[37,38]. 

Here we briefly derive qualitative properties of FQHE from the bose condensa­

tion picture. Fermions in two-spacial dimensions can be bosonized by coupling with 

the Chern-Simons gauge field. The following Lagrangian of a bose field ¢ describes 

electrons in a magnetic field; 

£ = ¢"(i80 + e(Ao + a0 ))¢- J..t\¢\ 2
- 2~ . ¢"(p- e(A +a)?¢- V(\¢\ 2

) 

e2 P .., ~ 
+ 41rm <~vo~a 8 a , ( 4.25) 

where ¢is a boson field, A is a real electro-magnetic gauge field and a is a statistical 

gauge field. Equations of motion for a is 

(4.26) 

where j~ is a matter current. The boson field¢ couples with both the uniform magnetic 

field B and the statistical magnetic field b. The fluxes of the latter are attached to 

the particles. Now assume that the boson field has a vacuum expectation value (bose 

condensation). In order to make the vacuum energy finite two magnetic fields must 
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cancel: 
21rm 

8=-b=-P 
e 

(4.27) 

The second equality is the equation of motion for the statistical gauge field(4.26). This 

equation determines the density of the electrons by v = 1/m. The Goldstone boson 

x, which is the phase of the boson field is eaten by the gauge field a and there is no 

massless mode. 

Next let 's consider the quasi-particle excitations. In this picture vortices are iden-

tified with quasi-particles(holes). If the Goldstone boson field is singular it cannot be 

gauged away. This is because the Chern-Simons action is not invariant under singular 

gauge t ransformations. In order to know how a point-like vortex couples with the 

gauge field, we write the bose field ¢>as 

(4.28) 

where x, is a singular part of the phase. When there are N vortices at x; (i = 1, ,, N) 

with strength E, (< = ±1), x, is written as 

N 

x, = I:€; e(x- x,) (4.29) 

i=l 

where e is an angle. As the flux quant izat ion in t he superconductivity the statistical 

gauge field has a singularity there; 

\lx, 
a~a+-­

e 

and the change of the statistical flux around one vortex is 

o<I> = f 'lx, = 211". 
e e 

(4.30) 

( 4.31) 

By the equations of motion for a ( 4.26) th is change of fl ux means the deficiency of the 

electron density at the vo rtex; 

e o<I> 1 
op= --= --. 

21rm m 
(4.32) 

Therefore the quasi-particle(hole) has a fract ional charge. 
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The same result can be shown more formally by inserting ( 4.30) into the Chern­

Simons action[38]. The Chern-Simons action is not invariant under singular gauge 

transformations and two new terms appear; 

£cs 

(4.33) 

The second term is a coupling between the topological current and the statistical gauge 

field 

(4.34) 

where the topological current is defi~ed .by . 

(4.35) 

This topological current is identified with the quasi-particles (holes) current. To see 

this it is enough to show 
N j K 0 (x)d 2 x =I; E,. 

1=1 

(4.36) 

The third term can be shown to be a topological invariant and represent fractional 

statistics of the vortex. This term corresponds to the Hopf term in 0(3) -a model. 

It can be rewri tten by introducing ano ther fict itious gauge fie ld a' as 

me 2 

eJ a'~- --E a'~a" '~ 11 
4

1r 1w~ a . (4.37) 

This is easily shown to be equivalent to the third term by integrating over the fictitiou s 

gauge field a'. Therefore the third term in (4.33) gives the fractional statistics e = 1rjm 

to the quasi-particles. These are consistent with the Laughlin's picture. The extension 

to hierarchy is also straightforward. 

In this section we rev iewed a phenome nological Ginzburg-Landau theory for the 

FQHE. In this picture the FQHE is a bose-conde nsation of composite objects of the 

charge and t he fltLx. There are some unclear poin ts, however. In the next section 

we give another interpretation of the FQHE, wh ich seems to be related to the bose­

condensation picture. 
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4.3 Phase-Space interpretation of FQHE 

For t he purpose of understanding t he FQHE as a macroscopic quantum effect the 

Ginzburg-Landau pict ure of t he previous section. looks very successful. But it is still 

unclear whether t here is a Josephson-like effect which is a clear proof of the " mac ro­

scopic" qua nt um effect or whether there is a phase transition. Moreover it is onl y a 

phe nomenology and there a re no accepted microscopic deriva tions. A problem is what 

is the mass M " in ( 4.25). The magnet ic field is so s trong that all electrons a re in the 

lowest Landau level (L.L. L.) and the mass cannot appear in an effective field theory. 

Indeed Read[36] showed t hat the coe fi cient is de termined by t he Coulomb potentia l. 

In t his section we propose a new approach to the FQH E. 

At first we show t hat a system of electrons in a st rong magnetic fie ld can be 

described by a many body system on a two-dimensional phase space not on a t wo 

dimensional configu ration space . T he energies of higher Landau levels a re so large t hat 

we can project its Hil be rt space on the L.L.L. 6 The kine ti c energies are degenerate 

on the L .L.L . and t he guid ing center coordin ates int rod uced in (4.8) characterize the 

degenerate states in t he L. L.L. T herefore the dynamics we must solve is given by the 

followi ng Hamiltoni an: 
(4.38) 

where V is a p rojected potential on t he L.L .L. and I.b is defined by 

(4.39) 

T his is a rela ti ve angul ar momentum opera tor between two particles because the co­

ordi nat es X and Y are canonicall y conjugate 

(4.40) 

No mass appears in this dynamics. Only the range of the po tential and the cyclo tron 

radi us can determine t he scale of its dy namics. If the potential is repulsive, a many 

swhen we discuss a transport phenome na we cannot neglect higher levels because an electric field 

mix different Landau levels. 
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body s tate wi t h higher relat ive angul ar momentum is stabler. As we commented, 

by expanding the Laughli n wave funct ion wi th eigenfunctions of a relative angu lar 

momentum of any pai r of particles there a re no components wit h relative angu lar 

momentum less than m. T his suggests that the Laughl in state is stable. 

W hen we fil l electrons completely in the ph ase space, the uncertainty relation makes 

each electron occupy the area 27fli . If some mechanism increases the occupied area to 

21rmli (where m is an odd integer), the elect ron de nsity becomes one m-th. This 

state must correspond to the Laugh lin state. We will show in -this sect ion that the 

Chern-Simons gauge fie ld reali zes the mechanism. 

(1) P hase-Space Pat h-In tegral 

In order to analyse the dynamics o((4.38) we quantize the system by a phase-space 

path-integral. F irst let's consider a one-part icle case. We define an annihi lation oper­

ator b by 

b = j"if(x - iY). (441) 

(P lease don't confuse wi th the stat ist ical magnetic fi eld b.) A coherent state is defined 

by 

(4.42) 

where bj O >= 0. This coherent state corresponds to a cyclot ron motion whose center 

is f . T hey sa tisfy the parti t ion of uni ty : 

J ' "1·1' ? lz >< zl e- .,· d ·z = 1. (4.43) 

By inser ting this ide ntity in to a part ition fun ction of a one- pa rt icle Hami ltonian, we 

obtain the following path in tegral form 

lim t r (e -~f 
N- oo 

j 7) z exp( e: j izdt - foil H(z, i)dt). 

T he path integral is a summa tion of all closed pat hs on a two-d ime nsional "phase" 

space . When we canonically quan ti ze the above act ion 5, the first term determines the 
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commutation relations of the phase space variables z. We define a symplectic 1-form 

by 
-ieB 

A= --zdz. 
2 

(4.44) 

This is a generalization of the canonical symplectic 1-form A = pdq. The number of 

states on the phase space is proportional to the area S. For a canonical symplectic 

st ructure A = pdq the number of states in an area Sis given by 

1 1 1 1 s - F = - dp i\ dq = -. 
27rli s 27rli s . 27rli 

(4.45) 

This is the Bohr-Sommerfeld quantization condition. For our symplectic structure it 

is 

(4.46) 

Hereafter we set li = 1. When all states are filled the density of electrons is na = 

eB/27r. (The density of states is given by the total flux divided by 21r.) The symplectic 

structure we considered above is uniform on the two-dimensional plane. The above 

result can be generalized to a non-uniform symplectic structure; i.e., the number of 

states in an areaS is given by the surface integral of the non-uniform symplectic 2-form 

F: 

(4.47) 

Note that fs F = Jc A is an imaginary part of the action. It depends only on the 

geometry of the path C. In this sense it is called "geometric" phase. 

(2) Laughlin state and Quasi-particles (holes) 

Now we consider a many-particles case . By using the coherent-state path integral the 

grand canonical partition function can be written as (see chapter 2) 

(4.48) 

wh ere the action S is given by 

p N eB N -
S = fn (-I: -.z.i. +I: V(I.b))dt 

0 o:;::;l 2 a<b 
( 4.49) 
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and whose boundary conditions a.re 

(4.50) 

As we have shown in chapter 2, the minus sign for fermion s ( -1)<(u) can be dropped if 

we couple the Chern-Simons gauge field instead; 

trF e-P(H-pN) = L (e"Pr L Jvzl·· .VZN e-s < e•f••r"dt >cs. 
N N. uESN 

(4.51) 

The coefficient m of the CS action 

S 1 J """ 'd3 cs = -- tp1.1),a u a x 
· 47rm 

(4.52) 

must be an odd integer. 

Classically fluxes 27rm of the Chern-Simons gauge field a are attached to each par­

ticle. These fluxes a.re responsible for the minus sign ( -1)'(ul. Quantum mechanically, 

however, we must be more careful because the gauge coupling term is a first order 

derivative in time and deforms the symplectic structure of the system. In other words 

the canonically conjugate momentu m changes. As a resu lt the number of states on 

the phase space also changes. (Remember (4.47)). In this case the total flux is give n 

by a. sum of the external magnetic field a.nd the statistical magnetic flux . Since the 

statistical fllLxes are attached to "particles", the change of the symplectic structure 

depends on how many particles there a.re. 

Now we set particles in some areaS and then bring another particle there. Of 

course, due to the Pauli principle, the number of stales must be less than n8 S = 

(eBj21r)S. Therefore the sta.lislica.l fluxes attached to particles must be anti-parallel 

to the uniform magnetic field B . Each particle has 21rm statistical fluxes. Therefore 

the density of stales of the particle in the area. S is given by the following geometric 

phase: 

1 j 1 j eB - F+- f=-5-mN. 
27r s 27r s 27r 

(4.53) 

This cannot be negative and determines the maximum density of electrons. It is 

determined by the condition that these two fluxes (4.53) cancel. To summarize, if the 
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Fermi statistics is substituted by couplin g with the CS gauge field with a coefficient 

m, the density of a maximumly filled state is 

(4.54) 

The filling factor of this state is 11 = 1/m. T his state may be identified with the 

Laughlin state because coupling with the CS gauge field with a coeffic ient m is, in a 

sense, equal to increasing relat ive angu lar momentum of any pair of particles by m. 

Also note that the Laughlin state has no components with relative angular momentum 

less than m. 

It is very curious that we reached different goals from the same start ing point. 

The difference will come from the substitut ion of the Fermi statistics by coupl ing. to 

the Chern-Simons gauge field. Even if the substitution is justified in path integral 

representations, it may not be an equivalent rewriting in the Hamiltonian formalism. 

The coefficient m is chosen by hands here. It should be determ ined, of course, by the 

dynamics itself. This is one of the future problems. 

Quasi-particles (holes) a.re created by inserting a. flux quantum of t he statistical 

gauge fie ld in the phase space. As we have seen, the occupied a.rea. is determined by 

the attached fluxes. For example 27rm fluxes a.re attached to the electrons and therefore 

each electron occupies 21fm area on the phase space. The above quasi-particle (hole) 

occupies unit a.rea (=27r) because a. unit Aux is attached to the quasi-particle (hole). 

As a result the charge of the quasi-particles (holes) is -efm ( +e/m). This rough 

argument can be confirmed by calculating the "geometric" phase (4.53) when there is 

one quasi-particle (hole) in the area 5. Since quasi-particles (holes) ha.ve a unit flux 

-21r( +27r) of the stat istical gauge fi eld the number of electrons Nmaz of a complete ly 

filled state is determined by 

(4.55) 

Therefore 
eB 1 

Nmaz = -5 ±- (4.56) 
27rm m 

This means that if there is a quasi-particle (hole) t he total electron number in creases 

(decreases) by 1/m. 
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Charge and statistics of the quasi-particles (holes) are also derived by the same 

equat ion as ( 4.33). Since quasi-parti cles (holes) are characterized by their unit flux, 

the coupling of the quasi-particle (hole) with the statistical gauge field is determined 

by (4.33). 

(3) Hierarchy 

Next we interpret the hierarchy by the phase-space path-integra.!. Let lm; z > be 

the FQH state of 11 = 1/m with a quasi-parti cle (hole) at z. These lm; z > are not 

orthogonal but (over) complete. Therefore we can choose the measure d2 z so as to 

satisfy 

j lm; z >< m; zl d2 z = 1. (4.57) 

(He rafter we replace lm; z > by iz > for simplicity.) In order to obtain a phase-space 

path-integral of the quasi-particle (hole) we insert the above partition of unity into the 

partition function. First let's consider a. one-particle case: 

tim tr(e-~)N 
N-oo 

li m /d2 z1 ... d
2zN < ZNie-~izN-1 >< ZN-d .... 

N-oo 

lz1 >< zde-~izN > 

j Vzexp(-l
3

(< ziftiz > +H)dt). (4.58) 

The number of states of t he quasi-part icles (holes) in a.n areaS is given by the following 

"geometric" phase: 

·1 a 
'Yo= 1 !c < zlazlz > dz. 

(The number of states is -y0 /27r.) For a. quasi-hole it is a.lrea.dy given in ( 4.17): 

eB 
'Yo = -5. 

m 

This geometric phase is also obtained from ( 4.34) . 

(4.59) 

(4.60) 

Next let's consider a ma.ny-body problem. As is seen in eq.(4.53), the "geometric" 

phase changes if there are quasi-particles (holes) in the areaS. From (4.19) if the re is 

one quasi-hole the number of states decreases 1/m. Tha.t is, one quasi-hole occupies 

at least 21f /m area on the phase space. Here we couple another Chern-Simons gauge 
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field a' to the quasi-holes. Without changing the statistics, the occupied area by one 

quasi-hole can be changed as 

27r 1 
--+27r(p+-) 
m m 

(4.61) 

where pis an even integer. The maximum density N;,.% of the quasi-hole is determined 

by (4.60) and (4.61): 

Therefore the density of the quasi-holes is 

, eB 
p=---

27rmp +;!;-

and by (4 .22) the hierarchical FQH condition is obtained. 

(4.62) 

(4 .63) 

In this section we showed that the FQHE can be interpreted from the view point 

of a many body problem on the two-dimensional phase space. Our interpretation is 

mere an interpretation at present but I believe that it can be a good starting point for 

deep understanding of the FQHE. 

Relation to the bose-condensation picture initiated by Girvin et a/. is not evident 

but there are some similarities. In both cases the density of electrons is determined by 

the condition that the external magnetic field B is cancelled by the averaged statistical 

magnetic field b. Also the quasi-particles are described as vortices with a fractional 

charge and a fractional statistics . Despite these similarities, the basic ideas are quite 

different. In our approach, we start from restricting the Hilbert space to the lowest 

Landau level and thereby the dynamics are described on . the two-dimensional phase 

space. Only a finite number of electrons can be filled in a finite area on the phase 

space. For such a system, it is uncertain that we can apply techniques or concepts of 

usual field theories by which we can deal with systems of infinite degrees of freedom. 

Rather, we should develop new techniques and concepts of a many-body problem on 

the phase space. 

Dynamics of the FQHE are not discusssed in this paper. We must first investigate 

how the collective modes are described in our approach. It is certainly possible since 

they are constructed on the ground state. In this paper, we determined the coefficient 
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of the Chern-Simons action m by hands . It should be determined, of course, by the 

dymnamics itself. This problem will be difficult since we must treat all states with a 

generic filling factor. The difficulty is a common one for all approaches. The FQHE 

is the first example of the dynamics on the phase space, which has not yet been fully 

discussed and in which some exciting phenomena are expected to be discovered. 

The future problems are to solve the dynamics and to search new phenomena from 

these pictures. 
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5 Conclusions and Discussions 

In this paper we studied the bose-fermi transmutation in (2+ 1) dimensional field the­

ories. Fermions can be bosonized by interacting with the Chern-Simons gauge field or 

in other words by attaching magnetic fluxes to particles. Also bosons are transmuted 

to fermions. In chapter 2, we discussed the transmutation in the non-relativistic case. 

Equivalence of the grand canonical partition functions of charged bosons and free 

fermions were proved in terms of the path integral language. Since we neglected the 

self-energy correction in this chapter the CS gauge field gives an effect only on changing 

the statistics of particles. 

In chapter 3 we discussed the transmutation in the relati vistic case. We stuaied the 

self-energy carefully and showed that it is closely related to the sp in factor. The spin 

factor gives the commutat ion relations of the SU(2) generators to the tangent vector 

of a pat h and t herefore a bosonic path integral with the spin factor describes spinning 

particles. As a result charged bosonic particles dressed by the CS gauge field acquires 

a spin degree of freedom. By considering the path integrals both with fixed boundary 

conditions and with closed boundary conditions we proved the following three equali­

ties: The dressed propagator of the charged scalars is equal to the Dirac propagator in 

the long distance limit, the partition function of the charged scalars is equal to that of 

the free fermions and the N-point correlation fun ction of currents of charged scalars is 

equal to that of free fermions. The equalities of the quantities including only internal 

lines of matters hold exactly such as the latter two equali t ies. For .the equal ities of 

quantities including external lines of matters, however, the treatment of the boundary 

conditions in the charged boson theory remains to be studied. 

Here we comment on the intersection problem. In chapter 2 and 3, we implicitly 

assumed that particles do not intersect. If they intersect, it becomes difficu lt to cal­

culate a well-defined expectation value of Wilson lines. I guess that we can neglect 

intersections when bosons become fermions by the CS gauge field because the fractal 

dimension of fermions is 1. On the other hand since the fractal dimension of bosons 

is 2, the intersection problem will not be able to be neglected when fermions become 
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bosons. 

The idea of the bose-fermi transmutation in the two-spacial dimensions is applied to 

the fractional quantum Hall effect in chapter 4. the FQHE can be interpreted as a bose­

condensation of the bosonized electrons by the CS gauge field. All the phenomena are 

explained from this picture at least qualitatively. Although the approach is desirable for 

deep understanding of the FQHE, there are no microscopic derivations and, moreover, 

there are some unclear points. In particular, it is not obvious in this approch whther the 

constraint for electrons in the lowest Landau level is correctly imposed or not. We gave 

a new interpretation of the FQHE, using the bose-fermi transmutation and imposing 

the above constraint. If we project the Hilbert space on the lowest Landau level, a 

system of electrons subjected to a strong magnetic field is· eqi1al to a system on a two­

dimensional phase space, in which X and Y coordinates are canonically conjugate. 

The most important characteristic of an electron-system on the phase space is that 

there is the ma.ximum density for electrons. It corresponds to the density of the state 

with a filling factor v = 1. Each electron occupies a unit area 6p · 6q = 2n-!i on the 

phase space. We showed tha.t, through substituting the Fermi statistics of electrons 

by coupling to the Chern-Simons gauge field, the occupied area becomes m-times, 

2nmli, and the density of electrons becomes one m-th accordingly. It is curious that 

we reached differnt goals from the same starting point. l guess that, although the 

substitution of the Fermi statistics by coupling with the Chern-Simons gauge field is 

justified in the path integral representations, it may not be an equivalent rewriting if 

we quantize the action in Hamiltonian formalism. Quasi-particles (-holes) are created 

by piercing a hole on the phase space and inserting a unit magnetic Aux of the Chern­

Simons gauge field in it. They occupy a unit area ±2n/i on the phase space, one m-th 

compared to an electron, and acquire a fractional charge and a fractional statistics. 

The dynamics of these quasi-particles (-holes) are also described as a many-bodysystem 

on the two-dimensional phase space. The hierarchy is explained straightforwardly from 

this picture. 

There are many unsolved problems in the FQTIE. One of them is whether there 

are new phenomena which is related to the existence of the order parameter. In the 
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superconductivity Josephson effect is such a phenomena. In the FQHE Josephson 

effect may not exist but I guess an existe nce of an exotic new phenomena related to 

the edge states (39]. Another important problem is the dynamics of the FQHE . We 

have no examples of a many-body problem on the "phase" space. As the discovery of 

the renormalization group stimulated the study of the Kondo effect and the critical 

phenomena, some new method has to be developed. 
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A Appendix 

All the following appendices are those for chapter 3. 

A.l Self-Linking Dependence of the Self-Energy 

In this appendix we explain how the sel f-energy (3 .1 0) depends on the self-linking 

of a path. We consider a difference between the self-energy i[J,. of two loops almost on 

a plane (F igure 1 ,2), which are different from each other on ly at the crossing point. 

Although the tangent vector e(t) of each loop is almost. the same, the self-energy W,; 

differs by 81r. This can be shown as follows. For each loop, the unit vector e(s, t) lies 

on a plane except around two points on ·the (s, t)-parameter space, where x(s) and 

x(t) lie on t he two different lines near the crossing point (Figs .3(a) and 4(a) for loop A 

and Figs.5(a) and 6(a) for loop B) . The integrand of W,; vanishes except around these 

two points. For loop A, the contribution to the integral i[J,. from the neighborhood of 

each point is +271" because e(s, t) covers half of the sphere. Figs.3(b) and 4(b) show 

the direction of the unit vector e(s , t) around these two poin ts. Summing up these 

two contributions, the value of se lf-energy i[J,. is +471" for loop A. On the other hand, 

for loop B, the contribution to W;; from each point is -271" (Fig.5(b) and 6(b)) and 

W;; becomes -471". Therefore, the difference of i[J .. between two pat hs, whose tangent 

vectors a re almost the same but linkings are different is 81r. 

To conclude, the self-energy W;, is a sum of the continuous functional of the tangent 

vector e(t) and 81rZ which depends on the lin kings_ of the path. At J = 1/2, this self­

linking dependence does not cot ribu te to (3.18). 

A.2 det'1/
2

( -L-281) with F ixed Boundaries 

In th is appendix we calculate the Jacobian factor (3.42) 

(A.1) 
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for functions with fixed boundary conditions [8]. Reparametrization transformations 

are given by 

t ___, t' = <(!) = t - 6<(1) 

where it satisfies fixed boundary conditions 

o~(t) can be expanded as 

Each sin(mrt) is an eigenfunction of -L-2 8? with an eigenvalue An 

measure of [[o~W and [[oh'[i2 are given (see (3.38) and (3.37)) by 

[[c5~1f = [ L3(o() 2dt = L3 I;(oa,,? 

[[c5h'[[ = [ L(8,6~) 2dt = L I;(mrc5an)2 

Then 

Dn' 

and therefore 

(A.2) 

(A.3) 

(A.4) 

(7:Y The 

(A.5) 

(A.6) 

(A.7) 

(A.8) 

Now let's evaluate the determinant for functions with fixed boundary conclitions. 

We regularize the determinant by the Gaussian regularization; 

At first we rewrite the summation of n as 

~ f:e-("f)'r _ ~ 
2 _

00 
2 

1!"" ("')' 1 C 1 - e-T "dx+O(exp(--))- -
2 - oo T 2 

L c 1 
-- + O(exp(--))--
2-..fiT T 2 
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(A.9) 

(A.10) 

We t en eva uate t e eterm nant y v ng t to t e o ow ng two terms; 

- og et'(- -2 ;) = -I: e-(u)'r = + . 1oo T 11 /,"" 
(< L)' T n (< L)' 1 

( .11) 

The second term does not depend on L. By inserting (A.10) 

1
1 d-r 1 1 

-(
2 
=- -

2
) + (L-independent term) 

(<fL)' T y1rT 

L L 
( r.::- log-)+ (L-independent term). (A.12) 
tv 1r t 

Therefore 

(A.13) 

A .3 J = 0 Case 

In this appendix we evaluate (3.28) when J = 0. At first by integrating over k", the 

field on 5 2 e and einbein h are solved by 

Therefore (3.28) becomes 

x c:: 
e = [X[, h = V X

2 

F = J DX e-m J,' .,;x:;d, 
Vo;w 

This can be rewr itten by using the einbein h again as 

F _!DhDX -J.'dt(_LX'+m'h) _ --eo tn 
Vo;w · 

(A.14) 

(A.15) 

(A.16) 

Here we used the formula (3.68). Then by fixing the gauge of h(t) and using (3.42) , F 

is written by 

F = dLDXe- f, dt(.-+m') J < X' 
(A.17) 

This functional integral is equaivalent with the following transition kernel (see eq.(3.66)): 

(A.18) 

Therefore (3.28) describes a propagation of a free scalar field at J = 0. 
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A.4 Higher J 

As we see in chapter 2, a theory coupled with the Chern Simons gauge field is symmetric 

under J --> J + 1. However in a relativistic case we cannot neglect the self-ene rgy 

correction and the symmetry is broken. In this appendix we comment on what eq.(3.1) 

describes at J = 1. For higher J, see (17] . 

For spin 1 (J = 1) case, the corresponding field theory is "massive Chern Simons 

theory": 

(A.l9) 

whose propagator is 
-i ( i p v · cpv) 

-
2
--

2 
Epv)P) + -p p - tmu . 

p -m m 
(A.20) 

This theory describes a free massive scalar. For hi gher J, eq.(3.1) can be shown to 

have more than one particle. 

A.5 det'(-L-28t) with Periodic Boundaries 

In this appendix we calculate the determinant for functions with periodic boundary 

conditions (3.56). Reparametrization transformation is given by 

t ~ t' = <(I) = t - 6<(1) (A.21) 

where it satisfies periodic boundary conditions: 

o~(o) =oW) (A.22) 

In th is case eigenfunctions of -L-2 8? are e'2'"' with eigenvalues>.,= e~")2 Therefore 

rOO dr I:: e - r)~ = rOO dT I:: e-T(h1n1) 

),1 T n#O j(</ L)1 T n#O 

rOO dT (I:; e -T(4r1n1)- 1). 
j (,f£)1 T , 

(A.23) 

The sum of the above integral is rewritten as 

e-••' dx + O(exp(--)) -1 j oo 1 1 C 

-oo € 

1 c 
-- + O(exp(--))- 1. 
2.,fo"i E 

(A.24) 
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By insert ing it to (A.23) and integrating, we get 

I d '( 1 -282) L L . - n et - , = r;;;- 2 log(-)+ (L-mdependent term). 
<v 7r < 

(A.25) 

Therefore the determinant is 

d t '( L-2a?) (L ? - L e - ; = const. -)·e ;r._ 
€ 

(A.26) 
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Figure Captions 

T he figu res are used in append ix 1, where we calcul ate the se lf-linking dependence of 

the self-energy. . 

Fig.1,2 These figures represent two closed loops , whose tangent vectors are almost 

the same but their lin k:ings are different . 

Fi g. 3 (a) ,4( a) These figures are the en l arge~ figures of t he nearly-intersecting point 

of loop A. T he bold-faced lines represent unit vectors e(s, t). Only around these 

vectors, the integrand of W;; does not vanish. 

Fig.3 (b) ,4 (b) These figures represent how· the directions of unit vectors e(s, t) change 

around these two vectors of Fig.3(a) and 4(a). At the middle points, the unit 

vectors are perpendicu lar to the sheets . The contri bution to W,; from the nei­

borhood of each vector is +27r. From these two figures we know that the value 

of the self-energy W, for the loop A is 47r. 

Fig .5,6 These two figures represent t he same figures for loop Bas Fig.3 and 4 for loop 

A. The contribution toW;; from the neiborhood of each vector is -27r. T herefore 

the value of the self-energy is -47r for loop B. 
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