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ABSTRACT 

The dense stell ar matter inside a compact star offers an excellent example of 

dense plasmas in nature. Inside a white dwarf and in the outer crust of a neutron 

star, the ions obey the classical statistics since their thermal de Broglie wave­

lengths are smaller than the average in terparticle spacings. The electrons may be 

regarded as a uniform charge-background for the ions; their compressibility is neg­

ligible because they are relativistically degenerate. A classical plasma is predicted 

to freeze when the Coulomb coupling parameter r , which is the ratio of Coulomb 

energy to the thermal energy, exceeds around 180. In dense-stell ar plasmas, where 

r parameter may take on values 100- 1000, a freez ing transition may take place 

during the course of stellar evolution. Besides being one of the fundamental pro!r 

lems in stat istical physics, we remark in particular that such a freezing transition 

should alter the physical properties and the elementary processes in the plasma. 

With astrophysical applications in mind, we thus study freeiing transitions in 

classical ion plasmas mjcroscopically using computer-simulat ion method. 

We begin with investigation of the freezing transition in the classical one­

component plasmas (OCPs) . The OCP is a system of point charges embedded in 

a uniform neutralizing background. Equations of state for the OCP in fluid and 

crystalline phases have been accurately determjned mainly by the Monte Carlo 

(MC) simulation method. Comparing the free energy between the two phases, it 

has been predicted that the OCP freezes into the bee crystalline state at r m -:= 180. 

To investigate how and in what stages the ordering of particles develops in 

the freezing transition, we perform MC simulations for rapidly supercooled OCPs 



with the number of particles N = 1458. Starting from a fluid state at r = 160, we 

apply stepwise quenches to r = 300 and 400; each run continues until the system 

reaches a metastable state. At each stage of the simulations, we analyze the 

structure of particle positions in detail using various methods of representation, 

such as radial-distribution functions, distributions of coordination numbers, values 

of rotationally invariant combinations of the spherical harmonics attached to each 

bond (i.e ., a connecting line between a particle and its neighboring particle). 

Earlier, we performed MC simulations for the freezing transition in OCPs 

with N = 432. The resultant final states corresponded to glasses characterized by 

random polycrystalline mixtures of fcc, hcp, and bee structures. Examination of 

N-dependence in the freezing transition is another purpose for performing present 

simulations with N = 1458. 

As a result of these analyses, we find that layered structures emerge at 

pre-nucleation stages in the system and expedite a subsequent evolution into 

metastable states. The metastable states are bee monocrystalline states with an 

admixture of a few defects in the form of interstitials . 

The difference between the former results and the present one should originate 

from the difference in periodic boundary conditions in the MC cell which are 

directly related to values of N. The boundary conditions may affect in two ways in 

the freezing transition depending on values of N: If N belongs to one of the specific 

values associated with formation of a lattice structure, the boundary conditions 

may act to transform the system into the lattice structure for smaller N. If 

it does not, particle motions may be hindered by the boundary conditions for 

smal ler N. Numbers of particles in both simulations are chosen appropriate to 
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the bee structure. However, the choice of N at a bee number appears to bear no 

essential consequences to the freezing processes since the matastable states in the 

present simulations contain substantial numbers of imperfections from the perfect 

bee crystalline states as well as in the former simulations. 

We thus conclude that the OCPs undergo freezing in two steps: when the 

plasma is rapidly supercooled to r > r m, particle layers emerge first in an arbi­

trary direction, which would favor a fcc/ hcp local structure. If N is large enough, 

the system may transform into the bee structure in which the free energy assume 

the lowest value. 

Dense stellar plasmas are usually composed of multiple species of ions. As 

a typical example, we choose a binary-ionic mixture (BlM) and a possibility of 

phase separation in such a system at the freezing transition is studied. 

The BIM of carbon (C) and oxygen (0) is thought to constitute the inter­

nal composition of a. white dwarf in a. close binary system, which may make a 

progenitor of a Type I supernova (SNI). Accurate determination of the phase di­

agram is needed in a. prediction of the evolution scenario for a. white dwarf and 

of the mechanisms for the SNI processes. Stevenson showed how sensitive the 

phase diagram of C-0 BIMs was to the assumptions of thermodynamic models, 

and in particular pointed out a. possibility of a eutectic phase diagram resulting 

in a. chemical separation, when the random-alloy mixing model was assumed for 

the internal energy in the solid phase. 

We perform MC simulations of C-0 BIMs at various combinations of density­

temperature and molar fraction of oxygen for both fluid and bee-solid phases. We 

find that the internal energies in both phases are accurately described by the linear 

Ill 



mixing formula of the OCP internal energies. Such a finding leads to a prediction 

that the chemical separation is not likely to take place in both phases. With 

the use of results for the mixing entropy by separate variational calculations, we 

obtai n an azeotropic phase diagram for C-0 BIMs. 

Fi nally we apply the results of such phase transitions in plasmas to the astro­

physical problems. We calculate conductivities, elasticities, and nuclear reac tion 

rates accurately in each phase and clarify the effects of phase transitions in dense 

plasmas. 

T he outer crustal mat ter exhibiting possibilities of freezing may be modeled 

fai rly well by an iron OCP. The thermal conductivity in the crustal matter is 

an important quantity in the calculation of a temperature profile from inside to 

outside of a neutron star. The electric conductivity may be an essential quantity 

in a theoretical estimate for the decay rate of the magnetic fields in a neutron 

star. Applying results in the quenched simulations as well as in the separately 

MC-simulated crystalline solids to the outer crustal material of a neutron star, we 

calculate the conductivities by the Ziman formula for relativistic electrons. In the 

crys talline phase, we find that the calculated conductivities take on values smaller 

by a factor of 2-3 than those evaluated in the single-phonon approximation. The 

conductivities in the quenched solids are 20--40% smaller than those for the bee 

crystalline solids. 

A neutron star may be modeled as a three-component star consisting of fluid 

interior, solid crusts, and fluid "ocean." McDermott et a/. first analyzed noma­

dial oscillation spectra of such a star and predicted the existence of new modes 

associated with the non-vanishing shear modulus of the crusts, which have a char­

. acteristic periodicity on the order of milliseconds. The value of shear modulus 
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used in their analysis was inappropriate in that it corresponds to a specific mode 

of deformation at T = 0. We calculate the shear modulus tensors of the quenched 

and crystalline solids from first principles including the temperature dependence. 

T he calculated values of the tensorial elements are anisotropic and diminish near 

the melting conditions. Since the calculation of nonradial oscill ation spectra as-

sumes isot ropy in the crust, we introduce an effective shear modulus through 

averages on the dispersion relation for the transverse shear modes with respect to 

the polarizations and directions. Newly analyzed nonra.dial oscill ation spect ra for 

a model neutron star using the effective shear modulus show t hat the oscillation 

periods increase by less than 30% than those in the earl ier calculat ions due to 

McDermott et a/. 

Accurate determinations of nuclear reaction rates in C-0 BIMs are essential 

in a theoretical investigation of the SNI processes. Nuclear reaction rates are 

in general proportional to the contact probability of two particles. Since the 

probability is enhanced strongly by many-body correlations in the system, it is 

necessary to take a correct account of the physical conditions invol ved. Those 

include whether the system is in fluid or in solid phase and whether it is a OCP 

or a BIM. We accurately derive the short-range screening potentials due to many­

body correlations between ions in both fluid and solid phases. Nuclear reaction 

rates in the solid phase (pycnonuclear reaction) are obtained through the exact 

solution to the resultant Shrooinger equation. As a result, we find blocking effects 

of "0" nuclei against pycnonuclear reaction of "C" nuclei. Nuclear reaction rates 

in the fluid phases are determined through an average of the contact probabilities 

with respect to the relative energies. 
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In the aforementioned analyses on nuclear reaction rates, we neglec ted the 

screening effects of the electrons on the ground t hat the Fermi energy of the 

electrons is far larger than the Coulomb interaction energies . In the dense stellar 

material , however , relativistic effects soften the electrons against compression and 

may act to en hance nuclear reactions between the ions. The short- range sc reening 

effects of the electrons on Coulomb repulsion between the reacting nuclei have 

been calculated with the aid of the relativistic free-electron polarizability and the 

local-field correction for the degenerate electrons. Screening effects of the electrons 

on the long-range correlations between ions in the fluid phase are newly evaluated 

by the formula which is confirmed to have a good accuracy through comparison 

with t he MC simul ational results . We find that the electron screening brings 

about a considerable enhancement of nuclear react ions in high-Z materials such 

as C and 0, even in the limit of high densities. As an application of those reaction 

rate calculat ions, we evaluate the carbon-ignition conditions appropriate to the 

white-dwarf interiors and show them on the density vs. temperature plane. 
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GENERAL INTRODUCTION 

The dense s tellar matter inside a compac t star offers an excellent laboratory 

for a study on the physics of dense plasmas. The interior of a white dwarf (e.g., 

Shapiro and Teukolsky, 1983), one of the final stages of the s tellar evolu tion, 

consists in dense material with the mass densi ty 104- 109 g/cm3, corresponding to 

the elect ron density 1027- 1032 cm-3, at the temperature 106- 108 K. The neutron 

star (e.g., Shapiro and Teukolsky, 1983), another final stage of stellar evolution, is 

a highl y condensed material corresponding approximately to a compression of a 

solar mass(~ 2 x 1033 g) into a spherical body with a radius~ 10 km. According 

to a theoretical model st udy (e.g., Pandharipande, Pines, and Smith, 1976), it 

has a crust with a thickness of several hundred meters and a mass density in the 

range 104- 109 g/cm3, consisting mostly of iron. 

The Fermi energy of the electrons in such a dense matter takes on a value much 

greater than the binding ene rgy of an electron around an atomic nucleus; all the 

atoms are thus in pressure- ioni zed states. The Coulomb energy in the electron 

system is far smaller than the immensely large Fermi energy. The electron system 

makes an ideal neutraliz ing background of negative charges for the ionized nuclei, 

since its compressibility is negligible. 

Those atomic nuclei stripped of the electrons form an ion plasma obeying the 

classical statistics; their de Broglie wavelengths are much smaller on the aver­

age than the interparticle spacings. In the interior of a highly evolved star, the 

Coulomb coupling parameter , defined as a ratio between the average Coulombic 

and kinetic energies, usually takes on a value greater than unity and may reach 



as large a value as 103 under extreme conditions. Such a material may thus be 

looked upon as a strongly coupled plasma (Ichimaru, 1982). 

When t he Coulomb coupling parameter exceeds a critical value around 180, 

the plasma is known to solidify. This is the classical counterpart to the Wigner 

transition, predicted in the low-density degenerate electron systems (Wigner, 1934; 

Pines, 1964). T he freezing transitions are therefore an essential feature in the 

physics of dense-stellar materials. 

On the basis of the foregoing grasp of the astrophysical dense plasmas, Part 

A of this Thesis treats the problems associated with the physical mechan isms of 

freezin g transitions. In so doing, we introduce a one-component plasma (OCP) 

model of dense material , appropriate for a description of the crustal matter in 

neutron stars. The freezing transitions are approached here by a Monte Carlo 

(MC) simulation method, through applications of a series of quenches (sudden 

decreases in temperature) to the OCP sys tems. Evolutions of the interparticle 

cor relations and ordering are monitored microscopically in such a MC-simulated 

OCP. Internal developments in the freezing transitions are thereby elucidated for 

the Coulombic materials. 

In Part B, we apply the results of the freezing-transition analyses in Part A 

to the calculations of the electric and thermal conductivities in the outer crustal 

mat ter of neutron stars. The thermal conductivity of the crust is a crucial ele­

ment for a prediction on the thermal evolution in a neutron star (Gudmundsson, 

Pethick, and Epstein, 1982). T he electric conductivity may have relevance in a 

theoretical account of decay mechanisms for the stellar magnetic field . 

Treated also in Part B is the mechanical property of the crustal matter, rep­

resented by the shear modulus tensor of the Coulomb solids . First principles 
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calculations for the shear modulus tensor are presented for the bee crystalline and 

rapidly quenched Coulomb solids prod uced by MC simulations for temperatures 

up to the melting conditions. The neutron star has a feature unique in astrophys­

ical objects in that it may be modeled as a three-component star consisting of a 

fluid interior, a solid crust, and a fluid "ocean." T he nonvanishing shear modulus 

of t he crustal solid leads to a novel prediction for the associated bulk and inter­

fac ial modes in the spectra of the nonradial oscillations (McDermott et al., 1985, 

1988). 

Part C analyzes another kind of freezing transition problems in dense matter, 

namely, the possibilities of phase separations assoc iated with freezing in dense 

binary-ion.ic mixtures (BIMs ). Specifically we consider a core material in a white­

dwarf progenitor of Type-I supernova, modeled as a dense mixture of two ionic 

species: carbon and oxygen (Starrfield et a/., 1972). The phase diagrams of such 

a multi-component material at the freezing transitions are the fac tors that es­

sentially affect the developments in the internal structures of white dwarfs and 

thereby control the resultant supernova mechanisms (Canal, Isern, and Labay, 

1982; Mochkovitch , 1983). 

The phase diagrams depend quite sensitively on the equations of state for the 

strongly coupled BIMs. We perform MC simulations at various combinations of 

the BIM parameters and thereby set accurate constraints on the BIM equations 

of state. A phase diagram will be predicted, and its astrophysical implications 

will be discussed. 

Finally in Part D, we present most accurate calculations to date for the nuclear 

reaction rates in astrophysical dense materials , again with the a.id of elaborate MC 

simulation st udy of the screening potentials. 
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The reaction rates generally depend on the s trength of overlapping between 

wave functions of the two reacting nuclei (e .g., Salpeter and Van Horn, 1969) , 

and as such are closely related to joint probability functions between the two 

particles (albeit at a short distance, i. e., in the nuclear-force range). Such a joint 

probability function is in turn strongly influenced by the states of a dense material 

under consideration. Elements of distinction involved in the present context are, 

for instance, whether the matter is a OCP or a BIM, whether it is in a frozen 

state leading to pycnonuclear reactions or in an itinerant fluid state leading to 

thermonuclear reactions, and to what extent the electron screening may influence 

the rates of nuclear reactions. In each of those distinct cases, the microscopic 

interparticle correlations exhibit different features, resulting in varied predictions 

on the reaction rates . The results of these calculations are applied to dense carbon­

oxygen BIMs with and without electronic screening; ignition curves are thereby 

obtained through balancing the resulting energy-production rates with energy-loss 

mechanisms such as neutrino-processes. 
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Part A: CRYSTALLIZATION IN RAPIDLY 

QUENCHED ONE-COMPONENT PASMAS 

I. Introduction 

Solidification such as crystallization a nd glass transition is one of the most 

interes ting events in the thermal evolution of a many-body system. Accumulation 

of the effort by many investigators notwithstanding, microscopic understanding 

of such a transition has remained an outstanding problem. Theoretical treatment 

is difficult since the transition occurs catastrophically as a result of many-body 

correlations; it is nei ther easy to trace the dynamic evolutions of the microscopic 

structures in a laboratory experiment. 

Computer simulation study of a simple sys tem (e.g., Hansen and McDonald, 

1986) where particles interact via binary and spherical ly symmetric potentials 

has a long history. More than three decades ago, Monte Carlo (e.g., Binder, 

1979) (MC) and molecular dynamics (e.g., Ciccotti eta/., 1987) (MD) simulation 

methods were first applied to the hard core systems (Alder and Wainwright, 1957, 

1959). Later these methods were extended to other cases of the potentials, such 

as soft core (e.g., Hansen and McDonald, 1986) and Lennard-Jones (e.g. , Hansen 

and McDonald, 1986). Available size of the simulations has rapidly increased as 

the computer capabilities develop. Simulation studies of crystallization and glass 

t ransition for these systems have contributed much to the explanation for physical 

properties of the solids. 

Classical one-component plasma (Baus and Hansen , 1980; Ichimaru , Iyetomi , 

and Tanaka, 1987) (OCP), one of the most fundamental in simple systems, is 
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a statistical system where N particles of single species with charge Ze interact 

via Coulomb potentials in a volume V with uniform neutralizing charges. Since 

the Cou lomb potential has no characterist ic length , thermodynamic properties of 

the OCP with number density n = N /V depend only on the Coulomb coupling 

parameter 

where 

a= (-3 )I/3 
411"n 

(A.1) 

(A.2) 

is the ion-sphere radius. The OCP is distinct from other simple systems in at 

least two respects: First, Coulomb potential is long-ranged; hence it is necessary 

to assess the effects of the boundary conditions carefully. Second, no volume 

fluctuations exis t in the OCP at a fixed value of N since the background charges 

are incompressible; the OCP keeps its volume constant through the process of 

solidificat ion. 

The OCP has been treated not only as a basic model in the statistical me-

chanics but as a realistic model for the· dense matter in the outer crust of a neutron 

star (e.g., Van Horn, 1990; Shapiro and Teukolsky, 1983). The main constituent 

of the outer crust is iron in the density-temperature regime, Pm = 104- 109 g cm-3 

and T = 106- 108 K; hence r = 100- 1000. Electrons in the crusts are relativisti-

cally degenerate and may be regarded as forming a uniform charge-background for 

the iron ions. Physical properties of the outer crust such as conductivities (Ogata 

and Ichimaru, 1990a) and viscoelasticity (Ichimaru and Tanaka, 1986; Ogata and 

Ichimaru, 1990b), are essential ingredients in the analyses of the internal structure 

and the evolution of the star. 
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Equation of slate for the OCP has been investigated accurately in the fluid 

(Brush, Sahlin, and Teller, 1966; Hansen, 1973; Slattery, Doolen, and DeWitt, 

1980, 1982; Ogata and lchimaru, 1987) and in the bee (Brush et a/., 1966; Hansen, 

1973; Slattery et a/., 1980, 1982) and fcc (Helfer, McCrory, and Van Horn, 1981) 

crystalline phases mainly by the MC simulation method, including dependence 

on the particle number, N. Comparing the Helmholtz free energies between the 

fluid and crystal line phases, it has been found (Slattery et a/., 1982; Ogata and 

Ichimaru, 1987) that the fluid OCP freezes (Wigner transition) into the bee crystals 

at r m = 178- 180. 

It is not clear, however, what the final stale of a OCP is when a rapid quench is 

applied tor > r m· It is instructive in these connections to compare the Madelung 

energies (e.g., Brush et a/., 1966) of the OCP between the crystalline structures: 

{ 

-0.895929r, 

EM -- = -0.895874r, 
NksT 

-0.895838r, 

(bee) 

(fcc) 

(hcp) . 

(A.3) 

We thus find (Ercc- Ebccl/ N = 0.010ksT and (Ehcp- Ebcc)/ N = 0.016ksT at 

r = 180; the differences are only 1- 2% of the thermal energy. 

The MC simulations for rapidly quenched OCPs with N = 432 were per­

formed and reported earlier in Ogata and Ichimaru (1989a) (referred to as Pa­

per I) . The resultant final states corresponded to glasses characterized by random 

polycrystalline mixtures of fcc , hcp, and bee crystalline structures. In those glasses, 

we found development of layered structures (Ogata and Ichimaru, 1989b) over the 

MC cell. Emerged out of those simulations are the problems: Do the layered struc­

tures have any relation with the periodic boundary conditions ? How and in what 
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stage are the layered structures formed? Is it possible to obtain a monocrystalline 

state, rather than a polycrystallinc state, by the MC simulation method ? 

To answer these problems and to apply the quenched states to the investiga­

tion on the physical properties of the neutron star crusts, we have performed new 

MC simulations for rapidly supercooled OCPs with a significantly increased value 

of N. The periodic boundary conditions depending on N may have two kinds of 

effects on the solidification. Under the periodic boundary conditions, any particle 

must move collectively with all of its images which form a simple cubic lattice 

with the lattice constant L ex N 113 . For a smaller N, the boundary conditions 

may hinder the motion of particles and the resultant ordering of particles. How­

ever, if N takes on a value specific to the lattice structures, such as a bee number 

2!3 or a fcc number 4!3 (I is an integer), the boundary conditions may assist in 

transforming the system into the respective lattice structure; such an effect may 

be more efficient for a smaller N. We remark that N = 432 in Paper I is one of the 

bee numbers. To examine those two effects separately, we have chosen N = 1458, 

another bee number; this number is more than three times as large as that in 

Paper I. The resulting side length of the MC cell is L = (41rN/3) 113a = 18.3a. 

In Part A of this Thesis, we thus report detailed analyses on the results of 

these newly performed simulations (Ogata, 1991). We find a formation of particle 

layers in the pre-nucleation stages. Internal energies at the metastable states are 

very close to the bee crystalline value. Unlike the glass structures obtained in 

the former simulations, we find bee monocrystalline structures in the resultant 

metastable states. Preliminary results have been reported in Ogata and Ichimaru 

(1989c, 1989d). 
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The organization of Part A is the following: In Sec. A.II quenching processes 

are described. In Sec. A.III we introduce bond-oricntational order parameters 

to monitor the development of nucleation. In Sec. A.IV the main results are 

presented. Section A.V is devoted to a description of a separate simulation, where 

a supercooled fluid state is obtained. Discussion and concluding remarks are given 

in Sec. A.Vl. 

II. Quenching processes 

We perform MC simulations with the usual Metropolis algorithm (Metropolis 

et a/., 1953): First a randomly selected particle is displaced tentatively by 6.1' 

with probability P(j6.rj); the new configuration is accepted with the probability 

exp( -6.U /ksT), where 6.U is an increment of the internal energy between the 

new and the original configurations (all the cases with 6.U < 0 are accepted). 

The procedure just described constitutes a single step in the MC simulations; the 

number of configurations so generated is denoted by c. In Appendix I, we explain 

a technique to accelerate computation of internal energies. 

For the probability density of particle displacements, we have adopted the 

form same as that in Paper I, that is, 

P(r) = f!-r (~r exp [-~ (~r] (A.4) 

with the normalization J0
00 P(r)dr = 1. If the concept of "MC elapsed time" 

applies, we may estimate the elapsed time via the relation (Ogata and Ichimaru, 

1988) , 

wpt = 0.12 cfN . 

9 

(A.5) 



The quenching processes are schematically depicted in Fig. A.l. Starting 

with a fluid equilibrium state at r = 160, we apply stepwise quenches by t.r =50 

at every c/ N x 10-4 = 1.25, except ing for t.r = 40 at c = 0, until r reaches 

300 (Fig. A.1 (top)) and 400 (Fig. A.1 (bottom)). Phase evolution is monitored 

until c/ N x 10-4 = 25 .0 in both cases. Stepwise quench to r = 800 is applied 

subsequently to the final state obtained at the quench to r = 400; simulation has 

been continued until c/N x 10-4 = 35.0. If we assume the relation Eq. (A.5) 

for the estimation of the elapsed t ime, the rates of quenches to r = 300 and 400 

should be the same as those in the cases of "gradual quench" in Paper I. 

III. Bond-orientational order parameters 

Orders in t he particle configurat ions are described in terms of the orientational 

correlations between "bonds," which are connecting lines between a particle and 

its "neighboring particles." We define the "neighboring particles" as particles 

inside a sphere of rad ius r/a = 2.3 around a given particle; particle positions 

are averaged over a sequence of t.cf N x 10-4 = 0.069 to reduce the thermal 

fluctuations. The radius r/a = 2.3 corresponds approximately to the first bottom 

of the radial distribution functions g(r) both in the fluid phase near the freezing 

condition shown in Fig. A.2 (left) and in the bee crystalline phase shown in 

Fig. A.2 (right). The number Nc of neighboring particles, which we shall call 

"coordination number," is 14 for the bee cluster; and 12 for the fcc, hcp, and 

icosahedral clusters. In the fluid simulation at r = 160, Nc = 12- 14 for almost 

all the par ticles. In the bee crystalline simulation at r = 400, Nc = 14 for a ll 

the particles. We associate a set of quantities {Qim(?J} to each bond in terms of 
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Fig. A.l Variation of 1/f in the MC simulation runs: (upper) is the quench tor= 300; 
(lower) is the quench to r = 400 and subsequently to r = 800. 
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the spherical harmonics: Q,m(i'l = Yim(l:l(r), ¢(r)), r is the cent ral position of a 

bond, B(r) and ¢(;') are its polar angles. 

T he local bond-orientational o rder parameters (Steinhardt, Nelson, and 

Ronchetti, 1983), which are rotationally invariant combinations in the second 

and the third order, are introduced via 

(A .6) 

(A.7) 

T he coeffi cients in Eq. (A.7) are the Wigner 3j symbols (e .g ., Landau and Lifshitz , 

1976). The average Q1m(r) in Eq. (A.7) is carried out with regard to all the bonds 

around a give n particle; ( ) in Eq. (A.6) means an analogous average with respect 

to such bonds over all the MC particles. Quantities Q, and W1 play the key 

part in the cluster "s hape spectroscopy" in fluids and solids (Steinhardt et a/. , 

1983) . Since Q4 ass umes a first nonvanish.ing value (other than Q0 ) in samples 

with cubic symmetry, and Q6 in icosahedral systems, we take l = 4 and 6 in the 

present analyses. 

The quantities (Q4 , Q6 ) take on values (0.1909, 0.5745) for the fcc, (0 .0972, 

0.4848) for the hcp, (0, 0.6633) for the icosahedral, and (0.0364, 0.5107) for the bee 

clusters. We observe that Q4 differ significantly from each other for the four types 

of clusters, while Q6 remain almost the same. It is ascertained that (Q4, Q5) take 

on much smaller values, (0.01 , 0.03) , in the fluid simulation at r = 160 than the 

bee crysta lline simulation values (0 .04, 0.5). 
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Fig. A.2 The radial distribution functions in the fluid and bee crystalline OCPs: . (left) 
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r = 100 . 
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The quantities W4 and W6 assume significantly different values between the 

clusters: (W4, W6) = (-0.1593, -0.0132) for the fcc, (0.1341, - 0.0124) for the hcp, 

(0, -0.1698) for the icosahedral, (0.1593, 0.0132) for the bee clusters. We remark 

that W 4 is not a well defined quantity for the icosahedron since Q4 = 0. The 

magnitude of W6 is substantially larger for the icosahedron than for the other three 

types of clusters. We find that the local bond-ori entational symmetries around a 

particle can be discerned through its location on the two-dimensional (W4, WG) 

map. Figure A.3 depicts such a map for clusters with Nc = 12 (left) and 14 (right) 

at the fluid phase, and Fig. A.4, for clusters with Nc = 14 at the bee crystalline 

phase. In the fluid phase, locations of (W4, WG) for clusters with Nc = 12 and 14 

scatter rather uniformly in the region JW4/ :S: 0.15 and JWGJ :S: 0.16 . In the bee 

crystal line phase, all the clusters assume Nc = 14. In Fig. A.4, we observe that for 

a substantial fraction of clusters the bond-orientational parameters deviate from 

t he bee values especially for w4 parameter owing to thermal fluctuations. 

Extended bond-orientational symmet ries (Steinhardt eta/., 1983) are stucli ed 

in terms of the correlation functions 

Fig. A.3 
(A.8) 

where Go(r) = 47r(Qoo(i'JQoo(D)). Gt(r) take on fir st nonvanishing values at 

I = 6 for the bee structure. We find in Fig. A.5 (left ) that G6 (r) :::: 0 in the 

fluid simul ation at r = 160, indicating absence of an extended order. In the bee 

crystalline phase at r = 400, G5(r):::: 0.3 as shown in Fig. A.5 (right), confi rming 

14 

w6 w6 
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Two-dimensional (W4, WG) maps in the fluid OCP at r. = 160: (l~ft) is ~h~ 
particles with Nc = 12 shown by open circles; (nght) IS the parllcles ;t 
N - 14 shown by closed circles. Diamond markers correspond to (W4, G) 
v~u~s for the fc c, hcp, icosahedral, and bee clusters; for the icosahedron, we set 

w4 = 0 here. 
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Fig. A.4 Two-dimensional (W4, Ws) map in the bee crystalline OCP at r = 400 for the 
particles with Nc = 14. Diamond marker cor responds to (W4, W6 ) value for 

the bee cluster. 
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the existence of a long-range extended order. 

IV. Development of crystallization 

(a) Excess internal energies 

Excess internal-energy (Ichimaru, lyetomi, and Tanaka, 1987) is a primary 

quantity in characterizing the states of OCP since its volume is fixed. Evolution 

of the excess internal-energy per particles, averaged over a sequence of 6c/ N x 

w-4 = o.oo7, 

= _u_ = j_n_jdr(Ze)2['(7·) -1]) 
u_ NksT \2k8T r 9 ' (A.9) 

where (iii is an integer vector) 

n§(r) = ~ 'L Lo(r;- i'j- r) + 'L L o(r;- rj + iiiL- i") N { N N } 

i=t jf.i mf.oJ=l 

(A.10) 

is shown in Fig. A.6 for the quench to r = 300 and in Fig. A.7 for the quench to 

r = 400. 

In each figure , dashed lines imply the extrapolation values of the fluid internal 

energy formula, 

u = -0.897744r + o.95043r114 + o.18956r-114 - o.81487 (A.ll) 

due to Slattery et a/. (1982) for the upper line, and 

u = -0.898004r + o.96786r114 + o.2207o3r-t/4 - o.86097 (A.12) 

due to Ogata and Ichimaru (1987) for the lower. The dot-dashed line means the 

bee crystalline value according to the formula (Slattery et a/., 1982) 

u = -0.895929r + 1.5 + 3225r-2 . (A.13) 
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We note that the fcc crystalline value (Helfer et al., 1981) of u are higher than the 

bee one only by 0.01 - 0.02 for r = 300-400. 

In the case of the quench to r = 300, u stays arou nd the fluid extrapolation 

value for c/ N X w-4 = 2.5-6.0. It gradually decreases as c increases for c/ N X 

w-4 = 6.0- 8.0, and decreases abruptly at c/ N X w-4 = 8.0- 9.0 and at 11.0-

12.0; after c/ N x w-4 :::: 12.0, it is metastable though jitters are observed . The 

evolution of u for the quench tor = 400 is similar to that for the case with r = 300; 

u stays around the fluid extrapolation for c/N x 10-4 = 5.0- 7.5. It gradually 

decreases as c increases for c/ N x 10-4 = 7 .5- 15.0, and decreases abruptly at 

c/N x 10-4 = 15.0- 17.0; after c/N x 10-4 :::: 17.0, it is metastable. The deviations 

of u at the metastable states from the bee crystalline phase are 0.08 (f = 300) 

and 0.21 (f = 400). Those are far smaller than the values 0.25 (f = 300) and 0.4 

(f = 400) for the glassy states in Paper I. 

Five stages for the quench to r = 300 are defined in Fig. A.6: (a) at c/ N X 

10-4 = 4.6, (b) 7.0, (c) 8.6, (d) 9.5, (e) 24.9. For the quench to r = 400, four 

stages are also defined in Fig. A.7: (a) 7.3, ((J) 12.1, ('r) 15.8, (a) 19.5. Stages 

(c) and (I) correspond to a midst of the abrupt decreases in u for the quenches 

to r = 300 and 400, respectively. 

(b) Radial distribution functions 

Evolution of g(r) = (g(r)} averaged over 6.c/ N x 10-4 = 0.21 is displayed in 

Fig. A.8 for the quench to r = 300, and in Fig. A.9 for the quench to f = 400 . 

For the quenches tor= 300 and 400, g(r) exhibits a smooth feature analogous 

to that in a fluid simulation (see Fig. A.2 (left)) at the stages before the abrupt 

decreases in u ((a), (b), (a), and ((J)). For the quench to r = 300, the second 
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and the third peaks of g(r) have shoulders at radii corresponding to the bee peaks 

at the stage (c) . The system seems to have acquired a substantial degree of the 

bee local structures at the stage (c). We find no substantial change in g(r) from 

the stage (c) to (d). At the stage (e), g(r) is quite similar to the one in the bee 

crystalline simulation (see Fig. A.2 (right)) . Though positions and heights of the 

peaks in g(1·) at the stage (e) resemble those in the bee crystalline simulation, we 

find a clear difference at the first bottom of g(r); finiteness of g(r) at the first 

bottom indicates a deviation from the bee crystalline structures (see Fig. A.2 

(right)). For the quench to r = 400, g(1·) retains a smooth feature at the stage 

('y), though u decreases abruptly at this stage. Stage ('y) may be considered as 

an initial stage for the transition to the local bee structures. Some degrees of 

deviation from the bee crystalline structures still exist at the stage (6) since the 

first bottom of g(1·) takes on a nonvanishing value. 

Features of g(r) for the metastable states in both quenches are quite different 

from those for the simulations with N = 432. We found no peaks corresponcling 

to the bee structures in all the cases of the quench with N = 432. In one case, 

a few peaks appeared at the radii corresponding to the fec-hep structures. In 

other cases, however, we found several little peaks at those raclii which have no 

correspondence to the fee-hep and bee structures. 

(c) Local bond-orientational orders 

Evolutions of the local bond-orientational order parameters (Q4 , Qs) are de-

picted in Fig. A.lO for the quench to r = 300 and in Fig. A.ll for the 

quench to r = 400 . For the quench to r = 300, the rate of increase in 

Q6 steepens at e/ N x 10-4 = 6.0- 7.0, followed by the first abrupt decrease 
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Evolution of the radial distribution function for the quench tor= 300. 
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in u at c/ N x 10-4 = 8.0- 9.0. At the second abrupt decrease in u around 

c/ N x 10-4 = 11.0- 12.0, Q6 increases stepwise to Q6 :::: 0.41. In regard to 

Q4 , we find its increase at one time, c/N x 10-4 = 8.0- 9.0, corresponding to the 

first decrease in u; thereafter, Q 4 :::: 0.035. For the quench to r = 400, both Q 4 

and Q6 increase concurrently with the decrease in u . Q6 reaches 0.45 after its 

abrupt increase at about c/N x 10-4 = 15.0-17.0. Also for the quantity Q4 , it 

jumps up to 0.039 at c/N x 10-4 = 15.0-16.0. Final values of (Q4,Q6) in both 

quenches are approximately the bee values (see Sec. A.III). The aforementioned 

difference in the evolu tional processes of Q6 between the two quenches indicates 

that the local orders in the two quenches develop in different ways. 

We have thus found that the metastable states have a long-ranged bond­

orientational order extendi ng over the entire MC cell at the same level as that in 

a bee crystal line state. Comparing the evolution of Q4 with that of Q6 in both 

quenches, we might remark that Q4 is a parameter insensitive to the freezing in 

OCPs; this may be connected with the fact that Q4 = 0 for icosahedron, one of 

the close-packing structures. 

Since the values of Nc differ between clusters, it would be instructive to look 

into the the evolutions in the fractional numbers of the particles with Nc = 12, 

13, and 14 in Fig. A.12 for the quench tor= 300 and in Fig. A.13 for the quench 

to r = 400. For the fluid state at r = 160, the fractional numbers are 0.30, 0.45, 

0.20 for Nc = 12, 13, 14 , respectively. For both cases of quenches, the fractional 

number with Nc = 14 increases at the stages where u decrease abruptly. Finally, 

about 95% of clusters in the metastable state have Nc = 14 for the quench to 

r = 300; about 83% for the quench to r = 400 . These fractional numbers for 
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Nc = 14 in both quenches are much larger than the values 10- 50% in the cases 

with N = 432. 

Evolutions of the two-dimensional (W4, Ws) maps for clusters with Nc = 12 

and 14 are plotted in Fig. A.14 for the quench tor= 300 and in Fig. A.15 for the 

quench to r = 400. In the figures, the (W4, Ws) values for the reference clusters 

are likewise displayed by the diamond markers. 

For the quench tor= 300, (W4, Ws) values are distributed almost uniformly 

in the region IW41 :S 0.15 and IWsl :S 0.16 at the stages (a) and (b); this is a 

typical behavior in a fluid (see Fig. A.3) . We find that substantial proportion of 

clusters with Nc = 14 has local bee symmetry at the stage (c); distribution of these 

clusters resemble that of the bee crystalline simulation (see Fig. A.4). We may 

interpret several sub-peaks of g(1·) at radii corresponding to the bee peak positions 

at the stage (c); a certain degree of local bee symmetry is manifested. At the stage 

(d), distribution of clusters with Nc = 14 is centered at around Ws ~ 0.013, the 

bee value, concurrent with the decrease in number of clusters with Nc = 12. At a 

subsequent stage (e), we observe an increased degree of local bee symmetry in the 

distribution of clusters with Nc = 14. 

For the quench to r = 400, distributions of clusters with Nc = 12 and 14 

at stages (a) and (/3) resemble those for the fluid phase. At the stage ('y), some 

fractions of clusters 'vith Nc = 12 coalesce at the fcc marker; at this stage, a 

concentration to Ws ~ 0.013 takes place for clusters with Nc = 14. The smooth 

feature of g(r) observed at the stage ('y) may be attributed to such a coexistence 

of the local fcc and bee symmetries. At the stage (6), only a small number of 

clusters with Nc = 12 which have no fcc or hcp structures remaining, and clusters 

with Nc = 14 have the bee symmetry to a large extent. 
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All the analyses on the local orders mentioned above consistently show that 

the metastable states in both quenches have almost perfect local bee structures. 

T he metastable states in the present quenches , therefore, have local structures 

quite different from the rn.ixture of local fcc, hcp, and bee structures for the glass 

states obtained in Paper I. 

(d) Extended bond-or ientational orders 

Evolution of the extended bond-orientational symmetries are displayed in 

terms of G6(r) in Fig. A.l6 for the quench to r = 300 and in Fig. A.l7 for the 

quench to r = 400. For the quench to r = 300, no extended order exists at the 

stage (a). At the stage (b), bond correlations extend themselves approximately 

two thirds of L. At the stage (c), G6(r) ""0.1 in the entire MC cell ; hence, the 

system exhibits a degree of long-range order. For t he quench tor= 400, G6(r) is 

short-ranged at the stage (a). At the stage ((3) bond-correlation length extends 

to a half of L. Bond-orientational correlation becomes long-ranged at the stage 

(-y) to the same degree as with the stage (c) for the quench to r = 300. Final 

values of G6(,·) in bot h quenches are about two thirds of the bee value. 

(e) Laye r ed structures 

One of t he main concerns in the present simulations has been a possible 

formation of the layered structures and their relation to t he periodic boundary 

conditions. For elucidation of such an issue, two-dimensional projection maps 

of part icles have been constructed from various directions, to illustrate possible 

layered structures. We begin with isolating those particles inside a sphere of radius 

L/2, then rotate these as a whole by an angle (around they axis and by '7 around 
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the z axis; the resulting configuration is projected onto the y- z plane. (Note that 

the particle positions are averaged over a sequence of 6c/ N x 10-4 = 0.069.) 

For each of the stages (a)- ( e) and (a) - (8) , we have thus constructed maps from 

various angles((, 17) = (iiJi, fiTj) with i,j = 1, 2, · · · , 20 . 

Such a collection of maps at a pre-nucleat ion stage (a) for the quench to 

r = 400 is shown in Fig. A.18. We find particles forming a layer-like structure in 

the map with ( (, 17) = ( ¥f, lf ). Also at the stage (a) for the quench to r = 300, 

we find layered structures emerging at different angles ( (, 17) = ( f, i) from those 

for t he quench to r = 400. 

Evolutions of such particle layers are depicted in Fig. A.19 for the quench 

tor= 300 viewed at the same angles ((,17) = (¥f,lf) and in Fig. A.20 at 

((, 17) = (f, i) for the quench to r = 400. Particle layers develop over a half 

of the sphere at the stages (b) and (fl). We find nearly perfect layers already at 

the stage (c) for the quench to r = 300. For the quench to r = 400, we find 

two domains at the stage (1'): in one domain , particles are well-ordered forming 

a nearly perfect layers; in the other domain, particles show a rather disordered 

feature . At the stage (8) , the domain of well-ordered particles spread over the 

cell. Such an emergence of two domains at the stage (I') may be understood as a 

result of the coexistence of local fcc and bee symmetries seen in Fig. A.15. 

If the formation of layered structures has anything to do with the periodic 

boundary conditions in the cell, orientations of emerged layers would have a cubic 

symmetry. We single out the two cases, where the layered structures are found 

at the pre-nucleation stages. The two values of the angle ( are very close to each 

ot her and approximately take on f, a half the characteristic angle for the cubic 
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Fig. A.20 Evolution of layered structures for the quench to r = 400 viewed at angles 

{(.ry)={f,fl 

I t r - 300 viewed at angles P'ig . i\ .19 Evolution of layered structures for the quenct o -

((,ry) = (1jf, ¥-l· 
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symmetry. On the other hand , the values of the angle 77 in both cases are multiples 

off, characteri stic angles for the five-fold symmetry. Fur ther investigation on the 

relation between the periodic boundary condition and the emergence of layered 

structures in a pre-nucleation stage would require an increased number of samples. 

In the metastable states for the quenches with N = 432, we found layers at 

angles((, 17) = (iiJ, ;), (%, 0), and ( l{f, {o). In these cases, we could not detect 

such an indication of possible cubic symmetry. 

Since all the particles reside on layers at the fin al stages (e) and (o) as in the 

case of a lattice structure, two-dimensional particle positions on the laye rs may 

contai n some imperfections. We inves tigate the character of the final states, (e) 

and (o), Crom the point of view of intralaye r correlations by the two-dimensional 

radial dist ri bution function 92(r), and the correlation of bond a ngles P(e) around 

a particle. Here, bonds are redefined as the connecting lines between a particle 

and its neighboring particles on a layer inside the circle of radius 2.5a, which 

correspond approximately to the first minimum of 92(r). We note that about 97% 

of the particles have 6 particles inside a circle of r/a = 2.5 at the stages (e) and 

(o). 

Figure A.21 shows 92(r) and P(e) at the stages (e) (upper) and (o) (lower) . 

At the bottom of the figure, intralayer correlations on the most closely packed 

planes for each structure are shown: vertical solid-lines depict the correlations for 

the fee-hep hexagonal planes; vertical dashed-lines, for the bee {110} planes. Peak 

positions and heights of g2(r ) and P(e) are nearly identical to the bee struc tures. 

Nevertheless, we find substantial degrees of deviat ion fro m the bee structures: for 

instance, P(e) around e ~ 1r/2 and 92(r) around r ~ 2.5a do not vanish. Bot h 
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for t he stages (e) and (o), imperfections are found in the particle correlations on 

the layers. 

(f) Motion of defects 

Since u shows transient behaviors in the metas table region, it appears prob-

able that the final state may transform into a purely bee crystalline state by a 

further extension of t he MC samplings. To estimate the probability of such a 

transition , we investigate the character of the intralaye r imperfections a nd their 

dynamics during the metastable state by tracing the motion of particles. 

Following three per iods are defined in terms of e/N x 10-4 : (1) 12.6- 16.7, (2) 

16.7- 20.8, (3) 20.8- 24.9. In each of the three periods, we first single out particles in 

a laye r (exemplified in Figs. A.l9 and A.20) at the final configuration, and project 

t hese (solid circles) on the x-z plane. Then their positions are traced back to the 

beginn.ing of the period (open circles) with an equal interval of !J. c/ N x 10- 4 = 

0.21. Such maps, extended to the size 2L x 2L to see the linked motion of particles , 

are depicted in Fig. A.22 for the quench to r = 300: (top) corresponds to the 

period (1); (middle) , for the same layer as top, but to the period (2) ; (bottom), 

for the same layer as top, but to the period (3). The pairs of vertical noisy lines 

depict the projections of the particle positions during the corresponding period 

on a y-z plane: the left line is for x < 0 particles; the right , for x > 0 particles. 

For the quench to r = 400, we depict in Fig. A.23 such a map for the period (3). 

The imperfections found in these analyses can be classified into three types: 

(A) a particle outside the layer (belonging mostly to one of the adj acent layers) in 

the open-circle configurations , (B) an interstitial (or an extra particle outside the 

adjacent layers) in the layer, and (C) a vacancy in the open-circle configurations. 

41 



4~----~--~--~--~~ 

3 
2 
1 P( e) o (-____j_~~~---!-__:_::,.__-t---~ 
3 
2 
1 
o~~_d~~~L_~~~~ 

0 
8~----~--~~~~--~~ 

6 
4 
2 

92(ng 

Fig. A.2 1 

4 
2 
o~~_L~~~~~~~--~ 

0 1 2 

Bond-angle distribution P(B) and two-dimensional radial distribution function 
g2(r) between intralayer particles in the stages (e) (upper] and (.5) Uower]. The 
bottom figures show the corresponding quantity for the bee (d!l;Shed lines) and 
for the fcc, i.e., hexagnal , (solid lines) lattices. 
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Fig. A.22 
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Motions of particles in and near a layer (size: 2L x 2L) projected onto a x-z 
plane for the quench to r = 300 during the periods c/N X 10-4 = 12.6-16.7 
(top), 16.7-20.8 (middle), and 20.8-24.9 (bottom). The open circles denote t~e 
positions at the begi nning of a period, the solid circles, those at the end; m 
between 19 particle positions follow at an equal interval of !J.c/ N x 10-4 = 0.21. 
Examples of type (A), (B), and (C) imperfections are shown. The pairs of · 
vertical noisy lines (left for x < 0, righ t for x > 0) depict the projections of the 

particle motions onto a y- z plane. 
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Fig. A.23 
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Moti ons of particles in and near a layer (size: 2L x 2L) projected onto a x- z 
plane for the quench to r = 400 during the periods c/ N X 10-4 = 20.8-24.9. 
T he open circles denote the positions at the beginning of a period, the solid 
circles, those at the end; in between 19 par ticle positions follow at an equal 
interval of D.e/ N x 10-4 = 0.21. A example of type (B) imperfection is shown. 
The pair of vertical noisy lines (left for x < 0, right for x > 0) depicts the 
projec tions of the particle motions onto a y-z plane. 
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For the quench to r = 300, we find real t ransitions du ring the period (1) (top 

of Fig. A.22) in the forms of merges between (A) and (C) a nd between (B) and 

(C), and of a transformation (or a se ttling) fro m (A) to (B) , as well as vi rtual 

transitions within (B) ; the virtual transition usually ceases a t a return to the 

original intersti t ial configurations. We attri bute these real t ransitions as the causes 

of the tra nsient behaviors of u around e/ N x 10- 4 = 14.0. During the periods 

(2) and (3) (middle and bottom of Fig. A.22), however, no imperfections of the 

types (A) and (C) appear to remain in the sys tem; transient behaviors in u arise 

onl y through the virtual transit ions within (B). For the quench to r = 400 (Fig. 

A. 23), we find on ly vi rtual transitions within type (B) im perfect ions in the period 

(3). The ji tters observed in the metas table states shown in Figs. A.6 and A.7 a re 

attri buted to those incidents of the virtual transitions . 

We thus characterize the imperfections at the final s tates in both quenches 

as int ralayer interstitials. An annihilat ion of such an isolated interst itial by the 

MC sampling processes would call for a slight but homogeneous compression of 

a configuration of particles that surround the interstitial in the layer, concurrent 

wit h appropriate compressions of the particle configurations in the neighboring 

layers , in such a way as to preserve the overall bee-crystalline st ructures. We 

speculate the probabili ty of such a sampling, if not zero, would be ext remely 

small. 

(g) Quench to r =800 

One expects a possibili ty that a further increase in r might introd uce some 

addit ional changes to the fin al state since the deviation of Madelung energy in 

45 



units of ksT from the purely bee-crystalline state grows proportional to r. Be-

sides, a state where r parameter is as large as 1000 may become necessary when 

application of the MC results is considered in the t he outer crustal matter of 

the neutron stars. We therefore perform an add itional MC simulation for a fur-

ther quench. Starting from the final state for the quench to r = 400 (i.e ., at 

cf N X w-4 = 25.0), we increase r stepwise through 600 to 800, and maintain it 

until e/ N x 10-4 = 35 .0 as shown in Fig. A.1 (bottom) . 

Excess internal-energies u, depicted in Fig. A.24, stay about 0.2 above the bee 

value (dashed line), though transient behav iors are seen at around c/N x 10- 4 = 

28.5 and 33.0. No change in g(r) is observed during the run after the quench to 

r = 800. Figure A.25 shows such a g(r ) at e/N X 10-4 = 32.4. In Fig. A.26, 

motion of particles in the same layer as in Fig. A.23 is described on a x-z plane 

from open circles to solid circles during the period efN x 10- 4 = 30.7- 34.8 with 

an equal interval of C!. c/ N x w-4 = 0.21. A pair of vert ical noisy lines depict the 

projections of the particle positions onto a y-z plane: the left line is for x < 0 

particles; the right, for x > 0 particles. We find that motions of particles are 

locked around their original positions. 

It has not been possible to remove the defects produced during the rapid 

quenches through application of a further quench to the system. 

V. Supercooled fluid state 

T he OCP has the lowest free energies for t he bee phase at r > r m = 180. MC 

simulations with N ~ 1024, however , indicates t hat the supercooled fluid OCP at 

r = 200 appears stable. T he stability of the OCP in the supercooled fluid state 

would be attributed to a limited span of simulations and to the periodic boundary 
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Fig. A.24 
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Evolution of the normalized excess internal-energy for the further que~ch to 
r = 800 . The dashed lines indicate the levels predicted from the extenswnst~f 
the fluid internal-ene rgy formulas (upper: Eq. (A.ll), lower: Eq. (A .l2)]; e 
dot-dashed line, the bee crystalline level via Eq. (A.l3). 
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Fig. A.25 The radial distribution function at /N -4 to f = 800. C X l0 = 32.4 for the additional quench 

48 

., 

. ' 
I > 

Fig. A.26 Motions of particles in and near the same layer (s ize: 2£ x 2£) as in Fig. A.23, 
projec ted onto a x-z plane [or the additional quench to r = 800 during the 
pe riod c/ N x 10- 4 = 30.7- 34.8. T he open ci rcles denote t he positions at the 
beginning of a period , the solid circles , those at the end; in between 19 particle 
positions follow at an equal interval of !::.c/ N x 10-

4 
= 0.21. The pair of vertical 

noisy lines (left for x < 0, right for x > 0) depicts the projections of the particle 

motions onto a y-z plane. 
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condit ions. We study the stability of the supercooled fluid OCP with N = 1458 

by performing an additional long run. Starting with the fluid state at r = 160, 

we apply a sudden quench to r = 200 at c = 0. T he evolution is monitored until 

c/ N x 10-4 = 7.5. 

Figure A.27 shows u as a function of c/ N. u stays at the flui d extrapolation 

level (dashed lines) immediately after the quench to the final configuration . During 

c/N x 10-4 = 0.6- 7.5, g(r) continues to exhibit a smooth feature. F igure A.28 

depicts g(r) at cfN x w-4 = 7.2, near the last configuration. Distributions of 

(W4 , W6) values for clusters with Nc = 12 and 14 scatter as in the fluid case at 

r = 160. Bond correlation is short-ranged since G6 (r) c:: 0.0 as shown in Fig. A.29. 

Diffusive motions of particles are traced in F ig. A.30 from at c/N x w-4 = 5.7 

(open circles) to at 7.3 (solid circles) with an equal interval t..c/N x 10- 4 = 0.21 

for t hose inside a slab of width t..z = 2.0a at t he open ci rcl e confi gurations. In all 

the analyses, we found no indications of phase transitions. 

VI. Discussion and concluding remarks 

In the present simulations, rapidly quenched OCPs have solidified into bee 

monocrystalline states with defects. Microscopic structures in these final states 

are significantly different from those in the polycrystalline glasses obtained in the 

former simulations with N = 432. Since the quenching procedures are almost the 

same in both simulations, the difference in the final s tates should be attributed 

to the difference in N. The choice of N at a bee number appears to bear no 

essential consequences to the solidification processes since substantial numbers of 

imperfections from the perfect bee crystal line states have been observed in both 

metastable states. By considering the effects of the periodic boundary conditions 
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Fig. A.27 
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Evolution of the normalized excess internal-energy for the quench tor== 200. 
The dashed lines indicate the levels predicted from the extensions of the fluid 
internal-energy formulas (upper: Eq. (A.ll), lower: Eq. (A.l2)]; the dot­
dashed line, the bee crystalline level via Eq. (A.13). 
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Fig. A.28 The radial di stribution function at cf N x 10-4 = 7.2 for the quench tor= 200. 
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Fig. A.29 Bond-orientational correlation function G6(r ) at c/N x 10-
4 

= 7.2 for the 

quench to r = 200. 
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Fig. A.30 Motion of particles inside a slab of width 6.z = 2.0a for the quench to r = 200 
during the per iod cf N x 10-4 = 5.7-7.3. The open circles denote the positions 
at the beginning of a period, the solid circles, those at the end; in between 8 
particle positions follow at an equal interval of 6.c/N x 10-4 = 0.21. 
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as to hinder the motion of particles for smaller N, we may explain the mecha-

nism of the format ion of the metastable states in both simulations: When the 

OCP is rapidly quenched to r > r m, particle laye rs emerge first in an arbitrary 

direction, which would favor a fee-hep local st ructures. Subsequently the system 

may transform itself into a bee crystalline state if N is large enough, since the 

Helmholtz free energies assume the lowest values in the bee phase. In case that 

N is not large enough, however, the motion of particles would be hindered by the 

boundary conditions resulting in a mixture of fcc, hep, and bee structu res; this 

would be the case for the simulations with N = 432. 

Emergence of layered structures preceding the nucleation may be a character-

istics of the solidification processes in OCPs. Experiments (Gilbert, Bollinger, and 

Wineland, 1988) and computer simulat ions (Rahman and Schiffer, 1986; Schiffer, 

1988) have discovered that the charged particles in an external confining field 

freeze into a state in which shell (layer) structures are formed in the field direc-

t ion. The long-ranged ness of the Coulomb force, which is a feature conunon to 

both systems, might be a cause for the emergence of a laye red structure in these 

rapidly quenched systems. 

In the present simulations, the temperature is lowered by about ~ during 

the very short span of time wpt ~ 3 x 103 (evaluated through Eq. (A .5)). To 

obtain metastable glassy states in the MC simulations with a large number of N 

(~ 1458), a OCP would have to be quenched to a value of r much higher than 

300-400. 
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Part B: CONDUCTIVITIES AND SHEAR MODULI 

OFTHEQUENCHEDSOLIDS 

I. Introduction 

The crustal matter, forming an outer envelop of a neut ron star with a thick­

ness of several hundred meters (e.g., Shapiro and Teukolsky, 1983), may be mod­

eled fairly well by a OCP consisting mostly of Fe (Z = 26, A = 56) with a mass 

density Pm and a temperature T in the ranges of 104- 109 g/cm3 and 106-108 

I<, where Z and A refer to the charge and mass numbers. The r 5 parameter of 

electrons, ratio of the Wigner-Seitz radius to the Bohr radius, takes on a value, 

7' - 1 8 x 10-2 Pm 
(
z) -1/3 (A)1/3 ( )-1/3 

s - · 26 56 10sg/cm3 ' (B. I) 

ra nging 10- 2- 10-1 The Fermi energy of electrons, Ep = me2[Vl + 0.0002r; 2 -

1], is ~ !Mev at rs = 0.01 and is far larger than mz2e4 /2h2 ~ 10 kev, the 

characte ri stic interaction energy between an electron and an ion. The system 

of electrons may thus be regarded as a uniform background of negative charges 

neutralizing the average space charge of the positive ions. The screening effects of 

relativistically degenerate electrons on the Madelung energy will be investigated 

quantitatively in Sec. B.II. 

The Coulomb coupling parameter of ions, defined in Eq. (A. I), is written as 

r = (Ze)2 = 4 x 102 (!._) 2 (~) -1/3 ( T ) -1 ( Pm ) 1/3 
akBT 26 56 107K rosg/cm3 . (B.2) 

Freezing transition of ions is well expected in the cooling process of a neutron star, 

since the transition to a bee-crystalline phase is predic ted to occur at r = 178-180. 
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It has been shown by Gudmundsson, Pethick, and Epstein (1982) that the Pm -

T regime specified above overlaps bulk of the sensitivity strip, where the opacity 

is needed most precisely in the calculation of a temperature profile from inside 

to outside of a neutron star. The electric conductivity of the crustal matter is 

essential in a theoretical estimate for the decay rate of the magnetic field in a 

neutron star. 

Scattering rates of the elect rons governing the opacities and conductivities in 

such a dense material are delicately affected by the microscopic detail of interpar-

ticle correlat ions. The conductivities in a bee-crystalline OCP were approached 

by Flowers and Itoh (1976) in the single phonon scattering approximation; those 

in a glassy OCP were considered by Ichimaru et a/. (1983) and by lyetomi and 

lchimaru (1983a). 

T he elasticity of crustal matter is essential for prediction of non radial oscilla-

tion spect ra (McDermott eta/. , 1985, 1988) in neutron stars and for investigation 

of the glitch phenomena (Pandharipande, Pines, and Smith, 1976) in pulsars. 

McDermott et a/., (1985) first analyzed nonradial oscillations of neutron stars, 

modeled as three-component stars consisting of fluid interiors, so[jd crusts, and 

fluid "oceans." Novel features in the analyses were the predictions of the bulk and 

interfacial modes , associated with the non-vanishing shear modulus of the crustal 

solid, with characteristic periodicity on the order of milliseconds . 

The value of the shear modulus used by McDermott eta/. (1985, 1988) for the 

crust was one of the "Fuchs values" (Matt and Jones, 1936) appropriate to the bee 

Coulomb crystal at zero temperature and a specific mode of deformation. Gen-

erally, however, the stress-strain relations in solids should be expressed through 
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tensors of higher order (Moll and Jones , 1936; Landau and Lifshitz, 1970) . T he 

shear modulus lensor should depend sensit ively on lhe temperature, as the melting 

lransilion is approached. The value used in lh e calculations in fac l, corresponded 

lo the largest possible val ue in the lensorial shear moduli of lhe bee Coulomb 

solids. Elucid ation of lhe lemperalure dependence of lhe shear modulus tensor 

has been an outstanding problem in condensed-plasma physics and astrophysics. 

In Parl B of this T hesis, t he conductivities and lhe shear modulus tensors are 

evaluated al various temperatures for lhe MC-simulaled solids and supercooled 

fluids. Two lypes of stales are considered for lhe solids: quenched and crystalline 

slates. The quenched (Q) states have been obtained by lhe MC simulation method 

with N = 1458 al r = 300, 400, and 800 as elucidated in Part A. We newly created 

bee crystalline (C) slates by lhe MC method wilh N = 1458. In lhe simulations, 

particles were placed initially at the bee lattice points in lhe cell , and (1 ~ 2) x 106 

MC configu rations were generated subsequently at r = 200, 300, 400, and 800. 

In each case lhermalization has been ensured. T he final states of the simulations 

maintain the cubic symmetry of the bee lalli ce. We have a case of supercooled 

fluid (F) slate at r = 200 as explained in Sec. A.V. 

The conductivities are calculated through a precise evaluation of the scatter-

ing integrals as in Ichimaru et a/. (1983a) and in Iyetomi and Ichimarn (1983) 

using the static structure factors S(k) evaluated in each state. The results pre­

dict the conductivities lower by a factor greater than ~ 3 than those with the 

single-phonon approximation. 

We present first principles study of the shear modulus tensor for Coulomb 

solids with inclusion of temperature-dependent effects. The free-energy incre­

ments (Moll and Jones, 1936; Nielsen and Martin , 1983) stemming from virtual 
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deformations of the resultant solids are then evaluated by MC samplings of the 

relevant Ewald sums; these evaluations lead lo determination of lhe temperature­

dependent shear-modulus tensors. T hen we show a way lo approximate lhe solid 

as an "isotropic" body by introducing an effective shear modulus through averages 

over directions. 

To illustrate an effect of lhe shear modulus calculations, we recompute lhe 

nonradial oscillation modes of a particular model neutron slar. T he results are 

compared wilh those in the former calculations by McDermott et a/. (1988). 

T he Parl B is organized as follows: In Sec. B.II, applicabi lity of lhe classical 

OCP model lo lhe ouler crustal maHer is exami ned by evaluating the quan­

tum effects of ions and sc reening effects of elect rons. In Sec. B.III, lhe electric 

and thermal conductivities are calculated (Ogata and Ich.imaru , 1990a). The 

lemperalure-dependanl shear-modulus tensors are evaluated by lhe MC method 

in Sec. B.IV (Ogata and Ichimaru, 1990b) . We apply lhe obtained shear modulus 

lo the computation of lhe nonrad.ial oscillation modes of a neutron star in Sec. B.V 

(Strohmayer et al., 1991) 

II. Quantum nature of ions and screening effects of 

e lectrons on the Madelung energy 

We show that the Fe ions in the outer crustal material may be treated as clas­

sical particles and that their lowest-energy configuration assume the bee structure 

at T = 0 even with lhe inclusion of electron screening. 

When the OCP is in a fluid state, the ratio between lhe thermal de Broglie 

wavelength and a, 

II. li - 2 x 10-2 (~) -5/6 ( Pm ) 1/3 (-T-) -1/2 ' (B.3) 
= (MkgT)1f2a- 56 106gjcm3 107K 
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measures the degree to which a quantum-mechanical description is necessitated 

in the behavior of the ions with mass M. For a crystal line OCP, the Einstein 

frequency in the Wigner-Seitz sphere model, 

wo = 

goes into a description of the quantum states, so that the ratio 

liwo 
Y= kaT 

measures involvement of the quantum effects. 

(B.4) 

(B.5) 

Figure B.1 compares relative magnitude of those parameters on the Pm-T 

plane for Fe materials in the outer crusts of neutron stars. Over the entire plane 

of Fig. B.1, A~ 0.1, so that quantum effects are negligible for Fe ions in a fluid 

state . We observe in Fig. B.1 that Fe solids likewise behave classically over a 

significant domain on the Pm-T plane. 

Next, let us consider screening effects of relativistic degenerate electrons on 

ions. As is listed in Eq. (A3) , the Madelung energy of the OCP assumes the 

lowest value for the bee structure. At the same time, differences of the energies 

between the fcc, hcp, and bee structures are only ~0.005%. Screening effects of 

electrons are expected to be small in magnitude in the outer crustal matter since 

rs < 0.1. However, there exists a possibility that the bee structure may not be the 

lowest-energy structure. 

We evaluate the correction term to the Madelung energy arising from the 

electron screening. In a linear response approximation, electron number density 

induced by the ion number density n(k) = I;f=1 exp(ik · rj) is expressed as 

- [ 1 ] -one(k) = ---- 1 n(k) 
f(k, 0) 

(B.6) 
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where E(k, 0) = 1- (4u 2jk2)xo(k, 0), Xo(k, 0) is the static free-electron polariza­

bility. Since electrons are partiaUy relativistic and perfectly degenerate, relativistic 

free-electron polarizability (Jancovici, 1962) should be used: 

where kTF = e,j127rmeneflikr with kr = (37r2ne) 113 , q = k/2kr, and 

b = likr - _1_ (97f) 1/3 r-1 
lneC- 137 4 5 (B.8) 

is the dimensionless relativistic parameter. So that, the screening effects of elec­

trons on the Madelung energies are (Galam and Hansen, 1976; Ashcroft and 

Stroud, 1978), 

6EM a J dk 47r [ 1 ] -
N(Ze)2ja = 2 (21r)3k2 E(k,O) - 1 S(k) (B.9) 

where 

(B.10) 

In the outer crustal matter, electron density parameter takes on values r,;S0.015 

in solid phase (see Fig. B.1). Table B.1 shows Eq. (B .9) as a function of r, for 

fcc, hcp, and bee crystals; for comparison, values for non-relativistic free-electron 

polarizability (b -+ 0) or the Lindhard polarizability (Lindhard, 1954) are also 

shown. 

We find in Table B.1 that 6EM /[N(Ze) 2ja] for relativistic degenerate 

electrons are insensitive to the difference in lattice structures compared with 
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TABLE B.l. Electron screening effects on the Madelung energies, 6EM/[N(Ze) 2 fa], for 

the fcc, hcp, and bee lattices. For comparison, those for the non-relativistic free-electron 

polarizabili ty are also listed. 

E ~ = -0.895838 
E 

N(Z;)'>fa = -0.895874; a N(zW2Ja = -0.895929 

,., relativistic non-relativistic 

fcc hcp bee fcc hcp bee 

0.0 -0.015529 -0.015531 -0.015512 0.0 0.0 0.0 

0.001 -0.015635 -0.015637 -0.015617 -0.001534 -0 .001534 -0.001531 

0.002 -0.015935 -0.015937 -0.015917 -0.003066 -0.003066 -0.003059 

0.003 -0.016398 -0.016400 -0.016380 -0.004595 -0.004595 -0.004586 

0.004 -0.016995 -0.016997 -0.016975 -0.006122 -0.006122 -0.006109 

0.005 -0.017702 -0.017703 -0.017680 -0.007647 -0.007646 -0.007631 

0.006 -0.018499 -0.018500 -0.018476 -0.009169 -0.009168 -0.009150 

0.007 -0.019373 -0.019374 -0.019348 -0.010689 -0.010688 -0.010666 

0.008 -0.020313 -0.020313 -0.020285 -0.012206 -0.012205 -0.012180 

0.009 - 0.021309 -0.021309 -0.021279 -0.013721 -0.013719 -0.013692 

0.010 -0.022354 -0.022354 -0.022321 -0.015234 -0.015232 -0.015202 

0.011 -0.023442 -0.022442 -0.023407 -0.016744 -0.016742 -0.016709 

0.012 -0.024567 -0.024567 -0.024529 -0.018252 -0.018250 -0.018214 

0.013 -0.025725 -0.025724 -0.025685 - 0.019758 -0.019755 -0.019716 

0.014 -0.026912 -0.026911 -0.026868 -0.021261 -0.021258 -0.021216 

0.015 -0.028123 -0.028122 -0.028077 -0.022762 -0.022759 -0.022714 
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EM/[N(Ze) 2 ja] in Eq. (A .3) and that lower the Madelung energies less than 

3% for rs ::; 0.015. As a result, the corrected Madelung energy assumes the lowes t 

value again in the bee structure. We add a remark that the relativistic degenerate 

electrons considerably screen the Coulomb potentials of ions even a t r 5 = 0 (Ichi-

maru and Utsumi , 1983). Such an effect becomes important in the theoretical 

evaluation of nuclear react ion rates in dense astrophysical materials especially for 

high-Z ions, wltich will be elucid ated in Sec. D.V. 

III. Electric and thermal conductivities 

(a) Static structure factors 

In the final states for the quenched OCPs (see Part A) at r = 160, 200, 300, 

and 800 as well as in the MC-simulated bee-crystal line states at r = 300 and 800, 

we evaluate the static st ructure factors via, 

S(k) =~ (I - _ L o"k,a) ( £ exp(-ik · (ri- r1)] ) 

Ge{RLV} ;,1=! 

(B.ll) 

Here the average (in angle brackets) is carried out over an interval , !J.e = 2 x 105, 

of MC configurations, and the contributions from the Bragg peaks at the bee 

reciprocal-lattice vectors, {RLV}, are subtracted. Raw data for S(k) from the 

MC sequences generated are illustrated in Fig. B.2. Those data will be used for 

the calculation of the conductivities in the following section. 

(b) Numerical results and discussion 

The electric and thermal conductivities, a and K , of the crustal matter are 

formulated (ftoh et a/, 1983) through the scattering rates of the relativistically 

64 

5 + 
I'= 300 

4 bee lattice + + 
+ 

,......_ 3 + ...!,C 
"-...../ + 
VJ + + 

2 tf. 

I'= 200 

i ... 
~ 

f\ 
+ + 

4 

! 1 

2 4 6 8 10 12 0 2 4 6 8 10 

ak ak 

5 5 

4 
I'= 300 4 

I'= 800 

+ 

------ 3 .. 
~ 

,......_3 
...!,C 
"-...../ 

t/)2 
~ .. 
'-....-' 

1 
+ 

Cr) 2 

l 1 

0 2 4 0 2 4 6 
ak ak 
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degenerate electrons against the dielectrically screened ion fields, whose structure 

factors are given by Eq. (B.ll): 

(B.l2) 

K = 2.363 X l016p6T7 1 - R ( -1 -1 T<-1) A (S) ergs em s . (B.13) 

(B.14) 

and the scattering factor is given by 

t ( k )( k )
3

[ (k) 2
] S(k) 

(S) = }0 d 2kF 2kF 
1

- R 2kF ((k/2kF )2£(k, 0)]2 (B.15) 

The screening effects of the electrons is taken into account by the static dielectric 

function, 

4roe 2 

£(k, O) = 1- y[1 - G(k)]xo(k, o) , (B .16) 

where xo(k, 0) is the static polarizability of the relativistic degenerate electrons 

given in Eq. (B.7) and G(k) is the exchange local-field correc tion (Sato and Ichi­

maru, 1989). 

Table B.2 lists the values of the electric and thermal conductivities calculated 

through the formulae (B.12) and (B.13). Separately, we have computed the same 

quantities by setting G(k) = 0 in Eq. (B.16), to see the effect of the exchange 

local-field correction. We have thereby found that the G(k) acts to decrease the 
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conductivities by a mere 1% at most, which takes place in the fluid cases of r = 160 

and 200. 

Figure B.3 compares t he present results for the thermal conductivity with 

other theoretical predictions. Analogous comparison can be made for the electric 

conductivity. We thus find that the conductivities in the present calculation take 

on values smaller by a factor of three than those in the single-phonon approxima­

tion at r = 400, and that the difference widen as r further increases. 

Reasons for the increased rates of electron scattering in the present theory 

may be traced as follows. With an accurate knowledge of the st ructure factor , 

the formula (B.lS) enables one to account for those scattering processes beyond 

the single-phonon approximation . The MC structure factors (see Fig. B.2) for the 

quenched OCPs accommodate an additional scattering effect arising from lattice 

imperfections. 

Resistivities and conductive opacities enhanced in the quenched outer crust 

should significantly affect the magnetic and thermal evolution of a neutron star. 

IV. First principles calculation of shear moduli 

(a) Elastic-constant tensors 

Free-energy increment oF resulting from application of a strain Uij ts ex-

pressed as (Landau and Lifshitz, 1970) 

1 
oF = zSij,k/UijUki . (B.17) 

Here S;j,kl is the elastic modulus tensor, the subscripts, i, j, k, and I, designate 

the Cartesian components, x, y, and z, and we adopt the summation convention 

for repeated subscripts. For an isotropic body, Eq. (B.17) reduces to 

1 2 oF= 2>-u;; + pu;kuik . 
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(B.18) 



TABLE B.2. Electric and thermal conductivities of Fe OCP at T = 107 K; [L] means 

a liquid state, [Q] quenched, and [C] crystal line lattice. The number in parentheses 

indicates a decimal exponent . 

r State (> (s-1) K. (ergs cm- 1 s-1 K-1) 

160 L 7.15 (18) 1.94 (13) 

200 Q 1.32 (19) 3.59 (13) 

300 Q 8.78 (19) 2.39 (14) 

300 c 9.49 (19) 2.58 (14) 

400 Q 1.84 (20) 4.99 (14) 

800 Q 1.12 (21) 3.05 (15) 

800 c 2.02 (21) 5.48 (15) 
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The quantities >. and fl. are Lame coefficients. 

The usual elastic constants (Molt and Jones, 1936), Crs (r, s = 1, 2, ... 6), are 

derived from the elastic modulus tensor through transformation ( ij, kl) ---+ (r, s) 

of the subscripts, (xx, yy, zz, xy, yz, zx) ---+ (1, 2, 3, 4, 5, 6), such that 

Crs = Sij,kl · (B.l9) 

For a solid with cubic symmetry, only three elastic constants remain (Laudau 

and Lif hit z, 1970): e ll = c22 = C33; CJ2 = c21 = C23 = c32 = CJJ = CJ3; 

C44 = css = C66· When such a solid is deformed without a change in the volume 

(i.e. , Li Uii = 0), one finds 

(i # k). (B.20) 

The first term on the right-hand side represents a differential between two com-

pressional deformations. 

If the cubic symmetry is destroyed, as in the case of the quenched solids, more 

independent elements should appear. In conj unction with the first term on the 

right-hand side of Eq. (B.20), it is useful to define and introduce 

6u =(2cu- c12- CJJ) /4 , 

(B.21) 

The shear modulus tensor is then represented by the elements: 6u, 622, 633, c44, 

css, c66· For an isotropic body, all of these elements take on the same value which 

coi ncides with the shear modulus fl. in Eq. (B.l8). 

(b) MC calculations of the shear moduli 

The following steps have been taken in the calculations of the shear moduli for 

the MC simulated Coulomb solids. Since the crustal matter under consideration 

is virtually incompressible owing to the high Fermi pressure of dense electrons, we 

choose deformations which induce no changes in volume elements to the desired 

second order in the infinitesimal displacement f. [cf. (2) below.] 

(1) For the crystal line-simulated solids, we choose the Cartesian axes along the 

MC ce ll. For those solids produced in the quenched simulations, we perform 

rotational transformation s of the coord inate axes so that the resultant Cartesian 

a.xes coincide with those close to symmetry axes defined in terms of the layered 

structures . Figure B.4 displays an example of such Cartesian axes chosen along a 

layer of particles (with interstitials B) for a quenched solid. 

(2) In each case of the Coulomb solids, the following set of deformations is applied: 

3 2 f 
0 1 : Uxx = f + 2f , Uyy = Uzz = -2 · 

02: (x,y ,z)---+(y, z,x),toOl. 

03: (x,y , z )---+ (z,x,y), to 01 . 

f f
2 

04 : U:ry = Uy:r = 2 , Uzz = 4 · 

0 5 : ( x, y, z) ---+ (y, z, x), to 0 4 . 

0 6: (x,y,z)---+ (z,x,y), to 04. 

In these deformations, an elementary volume is kept invariant up to order <2, so 

that the derivatives, dv/dE and d2vfdE2 [cf. (4) below], may be calculated through 

Ewald sums without changing the MC cell volume(= L3 , L = (47rN/3) 113a) . T he 

deformations, 0 1 and 0 4, are depicted in Figs. B.Sa and B.Sb. 
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(3) Let v be defined by 

1 N 
v(ulm) = 2 L \I>{rp(U[m)- rq(U[m)} + Uo(ulml, 

P'fiq 

(B.22) 

where rp denotes the position vector of the p-th MC particle. The potentials in 

(B.22) are defined and calculated as 

Here t is an integer; U[m are the elements of the strain tensors specified in (2); 

(B.25) 

with 6;k representing Kronecker's delta; the unit Cartesian vectors, ai, are analo-

gously transformed as 

(B.26) 

the vectors, a;(ulm), orthogonal to ai(u1m) are then defined as (i =f j =f k) 

(B.27) 

and the error function complement is 

2 rx 
erfc(x) = 1- .jif Jo exp(-t 2)dt. (B.28) 
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(4) In each case of the deformations Dm (m = 1, 2, ... , 6), we calculate the MC 

averages: 

(B.29) 

where d/dE = (8u;j/8E)(8f8u;j). In the absence of thermal fluctuations (i.e., 

T = 0), only the first term on the right-hand side remains in Eq. (B .29) . 

(5) The shear moduli are finally obtained as 

bu =(5!J - h- h)/9 , 

b22 =(5h- h- !J)/9, 

b33 =(5f3- h - h)/9 , 

c44 = 14 , css = h , css = Is · 

(B.30) 

(B.31) 

We have accordingly evaluated the shear moduli at different values of r in 

the various cases (C, Q, and F in Sec. B.I) of Coulombic systems. The results 

are Listed in Table B.3. We observe significant dependence of the shear moduli on 

temperatures and on the modes of deformations. 

At T = 0 (i.e., r = oo), the shear moduli are calculated from the first term 

of Eq. (B.29). The bee crystalline values so calculated are also in Table B.3; for 

the fcc crystal, we find bu = bn = b33 = 0.02066 and C44 = css = css = 0.1852 

in units of n(Ze)2 fa . These are identical to the Fuchs values cited in Matt and 

Jones (1936). 

We remark that the effects of the fluctuations on the elastic constants were 

formulated by Squire, Holt, and Hoover (1969) for a classical ensemble of particles 

interacting through a central potential. Fluctuation effects in the sc reened metal-

lie systems were subsequently studied (Wallace and Schiferl, 1984; Schiferl and 
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TABLE B.3. Elements of shear modulus tensors in units of n(Ze) 2 fa. The numbers in 

the parentheses denote possible errors in the last digits. Only the common values are 

entered when b's or c's are equal. 

r bu 622 b33 c44 css c66 1-'eff 

00 c 0.02454 0.1827 0.1194 

800 c 0.024 (2) 0.174 (1) 0.114 (2) 

800 Q 0.053 (2) -0.007 (1) 0.057 (1) 0.181 (2) 0.171 (2) 0.133 (1) 0 111 (2) 

400 c 0.025 (2) 0.167 (1) 0.110 (2) 

400 Q 0.059 (3) -0.009 (3) 0.062 (3) 0.170 (2) 0.169 (1) 0.121 (4) 0.107(4) 

300 c 0.025 (3) 0.157 (4) 0.104(4) 

300 Q 0.053 (1) 0.025 (2) 0.014 (3) 0.141 (3) 0.167 (2) 0.149 (3) 0.104 (3) 

200 c 0.019 (3) 0.12 (1) 0.08 (1) 

200 F -0.004 (16) 0.05 (2) 0.03 (2) 
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Wallace, 1985). The present theory treats the cases of the long-range Coulomb 

interaction for the first time, where volume ft uctuations should be avoided in the 

Ewald sums. 

(c) Effective shear modulus 

Though the elastic properties of crystalline solids are known to be anisotropic, 

it is sometimes convenient and useful for pra.ctical purposes if an effective shear 

modulus 1-'eff may be introduced approximately in the sense of Eq. (8.18). 

We have approached this problem through averages of the dispersion relations 

[or the transverse shear modes with respect to the polarizations and the directions 

of propagation. Let u be a displacement vector so that the strains are written as 

1 (au; auj) 
Uij = 2 8rj + 8r; · 

Its equations of motion are then given by (Landau and Lifshitz, 1970) 

(8.32) 

(B.33) 

where p is the mass density. Assuming plane-wave displacements , u; = 

a; exp(ik1q- iwt), and multiplying (B.33) by a; (with the summation conven-

tion), we find 

Pw2a2 -
1 

S· · · ·(a2k2 + a·a ·k ·k ·) - 2 1),1) i j ' ) ' J . 
(B.34) 

Averages of pw2jk2 over the directions of k and a (polarizations) with the con­

straint, a. k = 0, yield 

1-'eff = {2(bu + bn + b33) + 3(c44 + css + C66)}/15 . (B.35) 
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We add that the directional averages of /4 in Eq. (B.29) over all the rotations 

of the Cartesian axes lead to the same expression (B.35). The values of 1-'eff are 

likewise entered in Table B.3. 

It is instructive to note that the values of 1-'eff for the quenched solids remain 

approximately the same as those with the corresponding bee crystals, although the 

shear moduli of the former solids deviate considerably from the cubic-symmetry 

values of the latter. Analogous observation can be made also between the bee and 

fcc crystals at T = 0. Reason for these may be attributed to the relative insensi­

tivity of Conlombic Ewald sums such as Eq. (B.23) to details of the microscopic 

particle configurations after averages over directions are carried out. We recall in 

these connections that the internal energies of Coulombic systems, involving anal­

ogous Ewald sums, are approximately the same for the bee, fcc, and even isotropic 

ion-sphere configurations. 

The values in Table B.3 suggest a possibility that the supercooled fluid at 

r = 200 may su tain a non-vanishing shear modulus of small magnitude. A 

definite conclusion on this issue, however, should be deferred until the nature of 

the equilibrium ensemble of the MC configurations generated in the supercooled 

fluid state is more carefully assessed. 

V. Nonradial oscillation of neutron stars 

Earlier, McDermott et a/. (1985, 1988) calculated the nonradial oscillation 

spectra of neutron stars containing a solid crust using c44 for the bee crystal at 

T = 0 as the shear modulus of the crustal matter . To illustrate an effect of the new 

temperature-dependent shear modulus tensors, we here recompute the nonradial 

oscillation modes of a particular model neutron star (Strohmayer eta/., 1991). 
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It has been shown (e.g., Schumaker and Thorne, 1983) that non-rotating, 

non-magnetic neutron stars can sustain a wealth of different oscillation modes. 

The modes are grouped into two classes, the spheroidal and toroidal modes, on 

the basis of the angular separation of variables in the solutions for the pulsation 

eigenfunctions. The toroidal modes in a completely fluid body are all degenerate 

at zero frequency, but the presence of a solid crust in a neutron star gives them 

non-zero frequencies. Such modes have been designated tin modes, where the first 

subscript denotes the order of the spherical harmonic Ytm(e, </>) corresponding to 

that mode, and the second subscript is the overtone number, cor responding to 

the number of radial nodes in the eigenfunction. Toroidal modes in non-rotating, 

non-magnetic neutron stars are purely transverse oscillations, with no radial com­

ponent to the displacement eigenfunct ion. The periods of the oscillations are a 

few milliseconds, with the higher overtones having successively shorter periods. 

The spheroidal oscillation modes form a much ri cher class. These include the 

p-, g-, and /-modes fami liar from conventional non-radial pulsation theory (e.g., 

Unno eta/., 1989) for purely fluid stars. We designate individual modes from these 

sub-classes as /Pn, /9n, and tf modes, respectively. For each value of I ~ 1, there 

is only one f-mode, with a per iod of the order of 0.5 ms, while the p- and g-modes 

can have arbitrarily many overtones. The p-mode oscillations have periods less 

than about 0.1 ms, with higher overtones having progressively shorter periods. 

A complication in the osci ll ation spectra that occurs in neutron stars is that 

the g-mode oscillations are split into two subclasses by the presence of the solid 

crust. One subclass, the 19~ modes, is confined almost exclusively to the thin sur­

face fluid "ocean" overlying the crust. These modes have periods of the order of 
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hundreds of milliseconds, with higher overtones having longer periods. A second 

subclass, the 19~ modes, is similarl y confined to the superfluid core. Existing cal-

culations for the core g-modes are not very satisfactory, as they neglect superfluid 

effects. It is expected that the properties of these modes will be substantial ly 

modified by superfluidity. To the extent that the existing calculations can be 

trusted for these modes, they appear to have periods of several tens of seconds, 

with the higher over tones again having longer periods. 

Another complication of the oscillation spectra that is caused by the presence 

of the solid crust is the creation of several new modes. One of these, the fSn 

modes, corresponds to that polarization of the shear waves in the crust which 

is orthogonal to the toroidal 1tn modes. Like them, the s-modes have periods 

of the order of a millisecond, with higher overtones having shorter periods. The 

remaining modes associated with the solid crust are two interfacial modes, which 

have been designated 1i 1 and 1i2 . They are confined approximately to the crust-

ocean interface and to the crust-superfluid core interface, respectively. The mode 

periods refl ect the properties of the upper and lower parts of the crust, respectively, 

and are a few hundred milliseconds and a few milliseconds. 

Since the purpose of the present study is to illustrate the effects of the new 

shear modulus calculations on the different oscillation modes, rather than to con-

duct an exhaustive recalculation of the modes of different neutron star models, 

we have chosen to compute the modes of a single model. We have selected the 

NS05T7 model studied by McDermott el a/. (1988) because details of the proper-

ties and the oscillation spectrum of this model are already in the literature. This 

neutron star model consists of a fluid core, a solid crust, and a thin surface. As 
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the structure of the model is based upon the relatively "soft" equation of state 

developed by Baym, Pethick, and Sutherland (1971), it is somewhat smaller in 

radius than most currently favored neutron star models. This model has a mass 

of 0.503 M0 , a radius R. = 9.839 km, and a central temperatu re of 1.03 x 107 K. 

Since the difference in 1-'eff between the crystal line and quenched states are 

no larger than the residual errors in the MC calculations (see Table B.3), we have 

fitted the crystalline values to the follo"·ing formul a: 

0.1194 1-'eff (B.36) 
1 + 1.781 X (100/f)2 

This expression fits the MC results within the estimated numerical errors and goes 

asymptoically to the correct limiting ,·alue as r--+ oo. We apply Eq. (B.36) to all 

the region of the solid crust. 

With these resul ts, we next computed the new shear moduli for the NS05T7 

neutron star model. We did this by multiplying the value of c44 used in the 

previous calculations (McDermott eta/., 1988) by the ratio of our new f-dependent 

result to the c44 (f-independent) value. The smal ler values of the new shear 

moduli produce correspondingly smaller values of the shear speed in the crust, 

and these in turn result in correspondingly longer oscillation periods for those 

modes that are especially sensitive to this quantity. 

This can be seen directly in Table B.4, where we show the oscillation periods 

calculated for the global, non-radial I = 2 oscillation modes computed for the 

NS05T7 neutron star model using both the new and the old results for the shear 

moduli. Here, 1-'eff is the new shear modulus computed as discussed in this paper, 

and q 4 is the old shear modulus. 

These results can be summarized as follows. 
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(1) T he periods of the two interfacial (i1 and i2) modes are increased by about 

10 % compared to the previous results . 

(2) The s- mode periods are increased by about 30 %. 

(3) The periods of the f- and p-modes are hardly affected at all. This is as 

expected, because these modes are not greatly influenced by the properties of 

the crust . 

(4) T he periods of the surface g-modes also are not greatly affected. Tlus proba­

bly is also to be expec ted, because the surface g- modes are primarily confined 

to the surface fluid "ocean" layer and so are not much influenced by crustal 

proper ti es. 

(5) The toroidal t-mode periods are increased by some 20 to 25 %. This also is 

expec ted, as are the results for the spheroidal s- and in terfacial i-modes, as 

these three classes of modes are the most sensitive to the crustal proper ties. 
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TABLE B.4. Periods (nlillisecond) of neutron star osci llations: J.leff is the present shear 

modulus, c44 is the former value used in McDermott et a/. (1988). 

![Mode]n Period with J.leff Period with c44 

2'1 96.48 90.62 

2;2 7.91 7.297 

2SJ 3.114 2.427 

2s2 1.68 1.35 

2f 0.3980 0.3980 

2Pl 0.1861 0.1859 

2P2 0.1 592 0.158 

29f 236.75 232.4 

29~ 368.9 368.4 

2to 22.99 18.59 

2tl 2.32 1.88 

2t2 1.355 1.096 
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Part C: EQUATION OF STATE AND PHASE DIA­

GRAM OF DENSE CARBON-OXYGEN MIX­

TURES 

I. Introduction 

Binary-ionic mixtures {BIMs) of carbon {C) and oxygen {0) are thought 

to constitute the internal composition of the white dwarf produced by helium 

burning; such a white dwarf in a close binary system may make a likely progenitor 

of a Type-I supernova {SNI) {Starrfield et al., 1972; Whelen and !ben, 1973; Canal 

and Schatzman, 1976). It has been noted (Kirzhnitz, 1960; Abrikosov, 1960; 

Sal peter, 1961) that a dense matter in the interior of a white dwarf may undergo 

a freez ing transition as its density and/or inverse temperature increase through 

the evolu t ionary processes. 

An outstanding problem associated with such a solidification is the phase 

diagram or a possibility of chemical separation in the BIM material. Stevenson 

{1980) showed how sensitive the phase diagram of C-0 mixtures was to the as­

sumptions of thermodynamic models, and in particular pointed out a possibili ty 

of a eutectic phase diagram when the random-alloy mixing (RAM) model was 

assumed for the internal energies in the solid phase. This prediction of a eutectic 

was then foUowed by proposal of new models for white-dwarf cooling, luminos­

ity, and SN I mechanisms involving chemical separation {Canal, Isern , and Labay, 

1982; Mochkovitch, 1983) . 

The purpose of Part C of the Thesis is to present the detailed study on the 

C-0 BIM phase diagrams by MC simulations and analytic calculations {Ichimaru, 
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-
lyetomi , and Ogata, 1988; Iyetomi, Ogata, and Ichimaru, 1989). ln Sec. C.II, we 

show in particular through the MC analyses that the internal energies of BIM 

solids a nd liquids both obey accurately the linear mixing (LM) formulas, rather 

than the RAM formu la, invalidating thus the basic assumption int rod uced by 

Stevenson {1980) for his eutectic d iagram. We then car ry out nonl inear density­

functional calculations of the BIM sol ids, to derive an analytic expression for 

mixing ent ropy; for liquids, we take the ideal entropy of mixing. T hose evalua­

tions of internal energies and entropies lead to a novel prediction of an azeotropic 

phase diagram for the C-0 BIM material in Sec. C.III; consequent ly, a chemical 

separation is unlikely to take place in the solidification processes. Mindful of an 

application to evolution calculations, we evaluate numerical ly the mass-de nsity 

differences on the phase boundaries in Sec. C.IV. 

II. Thermodynamic functions 

We consider a C-0 BIM with x = no/n (the molar fraction of oxygen), 

where n = nc +no is the total number density of ions. T he mass densities are 

assumed in the range 106 :S Pm :S 1010 g/cm3, so that for the electronic pressure, 

10 10 :S Pe :S: 1016 Mbar. The dimensionless density parameter of the electrons in 

Eq. (B.1), 

T5 = 1.75p-;;,.
1

/
3 

, {C. 1) 

ranges in 10-3 :S: T g :S 10-2; hence, the electronS form a rela tivistically degener­

ate, incompressible background of negative charges (see Sec. B.II), except across 

the phase boundaries, where t>pmfPm < 10-3 {cf. Sec. C.IV). The freezing tem­

perature of carbon plasmas (Ogata and Ichimaru, 1987), 

Tc = 3.48 x 104r; 1 (K) , 
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are found in 2 x 106 ::; Tc ::; 5 x 107 K. 

T he effective Coulomb coupling constant of the BIM is formulated as (Ich.i­

maru, lyetom.i, and Tanaka, 1987) 

(C.3) 

where (ZP) = Zf(l- x) + Z~x, and 

(C.4) 

We take Z1 = 6 and Z2 = 8 for the C-0 BIM and r m = 180 for a transition to a 

bee crystal in the classical OCP (Ogata and Ichimaru, 1987). 

(a) MC simulation study 

We have performed a series of MC simulations with N = 1024, the number 

of MC particles, for the fluid and crystalline BIMs at various combinations ofT 

and x, foUowing the standard Metropolis algor ithm (Brush et al., 1966). In the 

simulations, we have implemented a possibility of interchanging two neighboring 

MC particles, in add ition to the usual random displacements of particle positions. 

We started from a randomly distributed configuration of particles in the fluid 

simulations. For the crystalline simulations, we adopted the bee-lattice positions 

as the initial configuration of all the particles. In each run , we have generated 

~ 10 7 MC configurations after the system reached equilibrium. 

In the bee lattice simulations, irrespective of the initial distribution of 0 ions 

on the lattice sites, we have found the equilibrated final states to take random 

bee-solid configurations. Figures C.l(a)- (d) show the resulting partial distribution 

functions, g1,v(r) with p, v =C, 0, for lattice simulations at (T/Tc, x) = (0.5, 0.5), 

(0.9, 0.5), (1.1, 0.61), and for fluid simulation at (T/Tc, x) = (1.1, 0.48). Both 

in the fluid and bee crystal line simulations, the ratio of the fi rst-peak position in 

goo(r) to that in gcc(r) is app roximately (Zo/Zc) 113 ~ 1.1. Such a behavior 

may be related to the fact that the ion-sphere (i.e., Wigner-Seitz) radius for an 

ion with charge Ze is proportional to zl/3. In the bee crystalline cases, peak 

positions of g"v(r·) other than the first peaks coincide with each other between 

C-C, C-0 , and 0-0 pairs; it is a result of existence of the long- ranged bee lattice 

order. Especially for the crystalline simulations at (T /Tc, x) = (0.5, 0.5) and 

(0.9, 0.5) shown in Figs. C.1(a) and C.1(b), we find that the first peak of g"v(r) 

is higher for C-0 pair than for C-C and 0-0 pairs. This finding indicates that 

t he system do not favor chemically separated state in the bee-solid phase. 

With the knowledge of g"v( r) the (normalized) excess internal-energy, u = 

Uex/ N ksT, is calculated as (Ichimaru, Iyetom.i , and Tanaka, 1987) 

(C.5) 

The MC values of u are listed in Table C.1 for the fluid and in Table C.2 for the 

random bee-solid simulations. 

In terms of the OCP excess internal-energy formula, uocp(f), the ion-sphere 

model considerations (Salpeter, 1954; Ichimaru, 1982) predict the LM formula: 

(C.6) 

The RAM model assumes that the internal energy of a BIM may be given by that 

of an equivalent OCP with Z = (Z) , so that 

(C.7) 
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TABLE C.l. Numerical comparison of the normalized excess internal-energy between the 

MC values, uMc, and the LM (Eq. (C.6)] and RAM (Eq. (C .7)] predictions in the fluid 

state. The numbers in parentheses denote the standard deviations in the last digits of 

the means in 105 configuration averages; the numbers in curly braces denote the relative 

discrepancies in percent, i.e., [(uMc- u)fuMc] x 100. 

X (Z) UMC ULM URAM 

TfTc = 1.128, r e = 8.0547 

0.16 6.32 -154.712(3) -154.695 - 153.548 

{0.011} {0.751} 

TfTc = 1.1, r e = 8.2596 

0.48 6.96 -187.863(5) -187.469 - 185.307 

{0.210} {1.361} 

0.5 7 -189.551(6) -189.269 -187. 104 

{0.149} {1.291} 

TfTc = 1.0, fe = 9.0857 

0.05 6.1 -163.938(3) -163.848 -163.389 

{0.055} {0.328} 

TfTc = 0.94, fe = 9.6656 

0.16 6.32 -186 .042(3) -186.015 -184.639 

{0.015} {0.754} 

TfTc = 0.9, r e = 10.0951 

0.42 6.84 -223.313(5) -222.979 -220.396 

{0.150} {1.306} 

0.5 7 -232.171(6) -232.782 -229.1 38 

{0.168} { 1.306} 
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TABLE C.2. Numerical comparison of the normalized excess internal-e nergy between the 

MC values, UMC• and the LM (Eq. (C .6)] and RAM [Eq. (C.7)] predictions in the solid 

state. The numbers in parentheses denote the standard deviations in the last degits of 

the means in 105 configuration averages; the numbers in curly braces denote the relative 

discrepancies in percent, i.e., [(uMc- u)fuMc] x 100. 

X (Z} UMC ULM URAM 

TfTc = 1.1, fe = 8.2596 

0.5 7 -190.241(5) -190.120 - 187.981 

{0.064} { 1.188} 

0.61 7.22 -200.436(4) -200.050 - 198.021 

{0.193} {1.205} 

T fTc = 1.0, f e = 9.0857 

0.05 6.1 -164.675(3) -164.633 - 164.179 

{0.026} {0. 298} 

T fTc = 0.94, r e = 9.6656 

0.16 6.32 -186. 768(3) -186.871 -185.508 

{ -0.055} {0 .668} 

T fTc = 0.9, r e = 10.0951 

0.5 7 -232.899(4) -232.749 -230.128 

{0.064} {1.190} 

0.77 7.54 -263.495(4) -262 .527 -260.685 

{0 .367} {1.066} 

T fTc = 0.5, r e = 18.1712 

0.05 6.1 -330.994(3) -330.935 -330.Q23 

{0.003} {0.282} 

0.5 7 -420.581(4) -420.231 -415.502 

{0.083} { 1.208} 

Tf Tc = 0.47, r e = 19.3312 

0.16 6.32 -375.213(3) -375.380 -372.645 

{ -0.045} {0.684} 
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The OCP excess internal-energy formulas are 

uocp( f) = -0.895929f + 1.5 + 3225jr2 (C.8) 

for the bee crystalline state (Slattery, Doolen, and De Will, 1982) and 

uocp(r) = -0.898DD4r + o.9678Gr 114 + 0.2207D3r- 1/ 4 - 0.86097 (C.9) 

for the fluid tale (Ogata. and Ichima.ru, 1987). 

In Tables C.1 anc C.2, we have compared the excess internal-energy values 

predicted by the mixing formulas (C.6) and (C.7) with the MC values. We have 

thus observed that the LM formula. (C.6) can reproduce the MC values very ac­

curately both in the fluid and solid states, while the RAM formula. (C.7) is not 

accurate enough to be used in the phase-diagram calculations. 

Separately, Iyetomi , Ogata., and Ichima.ru (1988) examined the validity of the 

LM formula. (C.6) analytically for the C-0 BIM fluids, through numerical solution 

to the hype rnelled chain (HNC) and the improved HNC (IHNC) schemes (Iyetomi 

and lclumaru, 1982, 1983b). The results have likewise shown the superiority of 

formula. (C.6) in the HNC and IHNC schemes. We conclude that the internal 

energies of the C-0 BIM fluids and solids can be evaluated through formula. (C.6) 

(b) Entropy of mixing 

Iyelomi and Ichimaru (1988) formulated a variational approach to the free 

energy for the OCP solids in the nonlinear density-functional method. Iyetomi, 

Ogata, and Ichimaru (1989) subsequenlly treated the free energy F(x) of the 

BIM solids, using an increased number of the variational parameters. The mixing 

entropy, 6.5c of the crystalline state is then calculated as the variational minimum 

of 

-TD.Sc = F(x)- ((1- x)F(x =D)+ xF(x = 1)] . (C.10) 

In Fig. C.2, we plot the values of 6.5c so computed a.t r e = 7 and f e = 13. 

We thus find that the calcu lated values can be parametrized accurately by the 

formula.: 

(C.ll) 

where R(r e) = 0.7204- 0.0354(f e - 10) + 0.0016(f e -10)2 near the solidification 

temperatures, and 

6.5id(x) = -Nks((1- x)ln(1- x) +xlnx]. (C.12) 

T he calculated values of (C.ll) and (C.12) are plotted in Fig. C.2, to show the 

accuracy of filling formula. (C.11). 

The entropy of mixing in the fluid phase is calculated as 

6.SF(x) = 6.5id(x)- Nks((1- x) ln(Zt/(Z)) + x ln(Z2/(Z))]. (C.l3) 

The second term of formula. (C.13) stems from the charge neutrality condition in 

the uniform background of the electrons (Iyetomi and Ichima.ru, 1986); a.t x = 0.5, 

it amounts to a. 1.5% correction to the first term. 

III. Phase diagram 

The evaluation of the thermodynamic quantities described in the preceding 

sec tion can be combined into a. construction of the phase diagram for the C-0 

BIMs. The result is shown in Fig. C.3 and implies a.n a.zeotropic phase diagram 

with the a.zeotropic point a.t TA = 0.94Tc and XA = 0.16. 
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T he appearance of an azeot rope stems physically from t he LM rule (C.6) 

and the mixing entropy (C.ll) in solid. Since 6Sc < 6SF and formul a (C.6) is 

ap plicable for both nuids and solids, the fluid phase is favored in the mixtures, 

resulting in lowering of the solidification temperatures. T he solid state, still re­

taining a considerable amount of the mixing entropy (C.ll), can sustain a mixed 

alloy phase , rather than chemically separated phases. 

Stevenson's eutectic is a res ult of assuming the RAM rule (C.7) for solids 

(while assuming the LM rule (C.6) for liquids) and adopting the ideal entropy of 

mixing (C. l 2) for both fluids and solids. Near the solid ification temperatures, the 

internal energy is overwh elmingly the major constituent of the free energy than 

the entropy term. Since formula (C.7) substantial ly underestimates the magnitude 

of the BIM in ternal energy as Table C.2 illustrates, the solidification temperatures 

decrease, and chemically separated phases are favored over mixed al loys in solids. 

As we have presently shown, however, the assumption of formula (C.7) cannot be 

justified for the C-0 BIM. 

IV. Variations of mass density across the phase boundary 

Variation of the mass density across the phase-boundary curves can be evalu-

ated through a perturbative method (Mochkovitch, 1983). In the ranges of physi-

cal parameters under present investigation, the partial pressure Pe of the elect rons 

constitute the bulk of the total pressure P of the system. The ionic contribution 

Pi then creates a difference in mass density between the coexisting solid-solution 

and fluid-mixture phase across the boundary. 

In the first-order perturbation theory, the discontinuity, 

D.pm = Pm(solid) - Pm(fluid) , (C.l4) 
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across the phase boundary is calculated as 

6.pm/ Pm = 6.ne/ne - 6.Y /Y 

= -6.PJyPe- 6.Y/Y. (C.l5) 

Here Y = (Z)/(A) refers to the number of electrons per unit of atomic mass, and 

1 =(d in Pe/dln Pm)Y is an adiabatic index. 

The results for the azeotropic phase diagram of Fig. C.3 are listed in Ta-

ble C.3. In the case of Stevenson's eutectic diagram, the disconti nuities have been 

calculated (Mochkovitch, 1983) to fall in the range of (l- 2)xl0-3 at the eutectic 

point. Hence, the present results at the azeotropic point are smaller by about an 

order of magnitude than those at Stevenson's eutectic point, predicting signifi-

cant ly reduced influences of the phase separation on the evolution of a C-0 white 

dwarf. 
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TABLE C.3. Discontinuities, 6.pm = Pm(solid)- Pm(fluid), between the co­

existing solid solution and fluid mixture phases as a function of pressure pat 

x = 0.5 (initial fluid composition) and at the azeotrope, x = xA. 

P (Mbar) 

2 X 1010 

2 X lOll 

2 X 1012 

2 X 1013 

2 X 1014 

2 X 1015 

2 X 1016 

b.pmf Pm (10-3) 

X= 0.5 X= XA 

0.57 0.11 

0.43 0.084 

0.37 0.072 

0.34 0.068 

0.33 0.066 

0.33 0.066 

0.33 0.066 
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Part D: NUCLEAR REACTION RATES IN DENSE 

BINARY-IONIC MIXTURES 

I. Introduction 

Nuclear reaction rates in dense C-0 BIMs are essential quantities govern­

ing the evolution and ignition in white-dwarf progenitors of Type-I supernovae 

(Barkat, Wheeler, and Buchler, 1972; Gra.boske, 1973; Couch and Arnett, 1975). 

Phase diagrams associated with freezing transitions in such BIMs have been elu­

cidated in Part C. The short-range correlations responsible for nuclear reactions 

in dense matter are influenced strongly by such phase properties as well as by the 

quantum and classical many-body effects. 

Enhancement of thermonuclear reac tion rates arising from Coulomb correla­

tions in dense OCPs was reviewed by lchimaru (1982). Ja.ncovici (1977) developed 

a quantum-statistical framework for a treatment of short-range correlations be­

tween the reacting pairs; Alastuey and J a.ncovici ( 1978) applied this theory for 

a. calculation of the enhancement factor with the aid of a screening potentia.! ob­

tained in the classical statistics. T heir calculations therefore superseded in the 

principles those of ltoh, Totsuji, and lchima.ru (1978), who reljed on an approxi­

mate evaluation of the WKB penetration probability with the classical potential 

of mean force. Analogous criticism is applicable likewise to an extension of the 

latter work in the BIM cases by ltoh et a/. (1979). 

In all the theories cited above, the quantities that essentially control the en­

hancement rates are the short-range sc reening potentials defined as the balances 

between the bare Coulomb potentials and the potentials of mean force. Accuracy 
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of the short-range screening potentials derived from computer simulations and 

ot herwise at that time, however, did not exactly match with the necessary level 

for the problem; this was especially the case with B!Ms. Since then, owing to 

advancement of computer capabilities, one can now treat the short-range corre-

la tions with substantially improved accuracy both for OCPs (e.g., Ichimaru and 

Ogata, 1990) and for B!Ms (Ichimaru, lyetomi, and Ogata, 1988) . 

In Part 0 , we thus present the first-principles calculations of nuclear reaction 

rates in dense C-0 BIMs in the fluid phase (thermonuclear reaction) as well as in 

t he bee crystalline phase (pycn onuclear reaction) (Ogata, Iyetomi, and Ichimaru, 

1991) . In so doing, we extend the quantum-statistical treatment, developed orig-

ina ll y by Jancovici (1977) for OCP, to the BIM situations. First, we evaluate 

accurately the short- and intermediate-range correlations in the BIMs for both 

fluid a nd bee crystalline phases by the MC simulation method in Sec. O.II. In 

Sees. O.III and O.IV, we then treat correctly the contact probabilities by an exact 

solution to the resultant Schrodinger equations for both phases. As a result, we 

discover "blocking" effect of "larger" 0 nuclei against pycnonuclear reactions of 

"s maller" C nuclei. 

In those calculations for both fluid and crystalline phases, we have neglected 

sc reen.ing effects of degenerate electrons on the ground that the dielectric screen-

ing function of the electrons would take on values close to unity for those dense 

materials. At high densities of interest, i.e., r 5 ~ 0.01, however, the relativis-

tic effects may act to enhance the screening by "softening" the electrons against 

compression (cf. Sec. B.II). In Sec. O.V, we evaluate quantitatively the possible 

enhancement due to screening effects of electrons in the fluid phase (Ogata and 
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Ichimaru, 1991) . Finally in Sec. O.VI , carbon ignition curves are obtained through 

balance between C-C reactions and neutrino losses to illust rate the effects of the 

calculated enhancement factors to the evolution of white dwarfs. Concluding re-

marks are given in Sec. O.VII. 

II. MC screening potentials 

The Coulomb coupling parameters (e.g., lchimaru, 1982) fo r C-0 B!Ms with 

mass density Pm at temperature Tare 

(0.1) 

where aij = hai+aj) (i,j = C,O), ai = zi13ae, (Z) = (1-x)Zc+xZo, 

ae = (3/41r(Z)n) l/3 is the Wigner-Seitz radius of the electrons, x is t he molar 

fraction of oxygen, and n is the total number density of ions. T hough we formulate 

the theory mostly in terms of the BIM, the OCP limit may be app roached in the 

obvious way and will be hereafter described with omission of the subscripts. 

The sc reening potentials, Hij(,·), are defined in conjunction with the join t 

probabili ty densities, 9ij(r), as 

a·. 
/lHij(r) = fij--.:L + ln[gij(r)]. 

r 
(0.2) 

In the intermediate range of r, the screening potentials can be sampled by the 

MC method (e.g. , Ichimaru, 1982). For the C-0 BIM, we have performed sixteen 

cases of fluid and crystalline simulations with N = 1024 as explained in Part C; 

in each simulation, 107 MC configurations have been generated. 

To probe further into the short-range character of the screening potentials, we 

have carried out "extra-long" OCP-fluid simulations with N = 432. The numbers 
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of MC configurations generated were 2.5 X 108 at r = 10, 0. 7 X 108 at r = 40, and 

1.0 x 108 at r = 160; these numbers are to be compared with several times 106 

configurations in some of the existing simulations (Slattery eta/., 1982; Ogata and 

Ichimaru, 1987). As Figs. D.l(a) and l(b) illustrate, we have thus been able to 

sample the screening potentials accurately over an extended domain of rfa. The 

MC results in Fig. D.1(a) exhibit significant departures from the linear behavior 

(DeWitt, Graboske, and Cooper, 1973; Itoh, Totsuji, and Ichimaru, 1978) towards 

both ends. Comparison between Fig. D.1(a) at r = 10 and Fig. D.1(b) at r = 160 

indicates a slight dependence of the slope on r. 

In the vicinity oft' = 0, the screening potentials are expanded (Widom, 1963) 

in powers of (r/aij)2, such that 

(D.3) 

Extending the OCP calculation of Jancovici (1977) to the BIM, we find that 

r .. (zt/3 + zt/3)3 
h - 'l ' J 

1 
- 16(Zi + Zj) 

(D.4) 

T he coefficient h2 is related to a mean square value of the microscopic forces acting 

on a given particle (Widom, 1963) and can be evaluated by the MC sampling 

method. As described in the Appendix II, we have carried out these samplings at 

various r values, to confirm that h2 is virtually zero, far smaller in magnitude than 

h1: This finding enables us to truncate the expansion (D.3) at the second term 

with h 1, and thereby to establish a smooth and accurate extrapolation scheme of 

the MC screening potential into the short-range domain. 

The screening potentials in the bee crystalline phases can be analyzed analo­

gously through the MC sampling method. Here we deal with the joint probability 
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Fig. D.l(a) Screening potential for OCP fluid at r = 10. The maximum extent of un~er­

tainties in the MC sampling points is 10-4 , unless explicitly shown by vertical 

bars. 
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1.2~~~~~~~~~~~~ 
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Screening potential for OCP fl uid at r = 160. T he maximum extent of uncer­
tainties in the MC sampling points is w-5 , unless explicitly shown by vertical 

bars. 
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densit ies between t hose pairs of particles located in the nearest neighbor sites of 

the bee lattice (Ichimar u and Ogata, 1990; Ogata, Iyeto mi , and Ichimaru, 1990), 

sin ce onl y those can in fact consti t ute the reacting pairs. Figure D.2 ill ustrates 

such a sc reening potential for OCP at r = 200. Ext rapolation into the short-range 

domain can be carried out analogously with the aid of (D .3). 

T he C-0 BI M screening potent ials determined through those procedures are 

expressed in paramete rized forms as 

H(,·) { A- B~ + ~exp [c fi- Dl, for 2B :<:; ar,·,· < 2, (D.5a) 
l ) _ a ,1 r y a ;j 

Z;Zi e
2
/a;j - A- B2- l (_r_)2 

for _r_ < 2B . (D.5b) 
4 a;j ' a ;j 

T he values of A, B, C, a nd D are listed in Table 0 .1 for fluids and bee crystals. 

T he coefficient of t he quad ratic term in (D.5 b) for Hco (r) is here approximated 

as 1/4, t hough acco rdi ng to (0 .4) its exac t value should have been 0.248; the 

diffe rence, however, is insignificant. 

It should be remarked tha t t he short-r ange screening potentials (D.5b) be-

tween C-C in the solid phase are here found to depend on x, the molar fr ac tion of 

oxygen. As x increases, the screening potent ia l is therefore predicted to decrease 

in the s hort ranges, implying a blocking effect of oxygen against the pycnonu­

clear reac t ion of carbon (see Sec. D.II I below). We have endeavored to look for 

analogous composition-dependent effects in the short-range screening potentials 

between C-0 and between 0 -0 as welL To t he extent and accuracy of our simula-

lion study, such a composition-dependent effect has not been seen in the sc ree ning 

potentia ls between C-0 and between 0-0 , however. T he difference between the 

charge numbers, Zc = 6 and Zo = 8, though small in magnitude, appears to be 

t he source of such a n asymmetry. 
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Fig. 0.2 Screening potential between pairs of the first nearest-neighbor particles for OCP 
solid at r = 200. T he maximu m extent of uncertainties in the MC sampling 
points is 10-4, unless explicitly shown by vertical bars. 
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TABLE 0.1. Screening potential parameters in Eqs. (0.5a) and (0.5b). 

A B c D 

FLUID 1.356 0.456 9.29 14.83 

-0.0213 ln rij -0.0130 ln rij +0.79ln rij +1.31ln rij 

SOLID (C-C) 1.183 0.350 13.2 22.1 

-0.035Jx" -0.015Jx" -10 .2Jx" -14.4Jx" 

(C-O) 1.166 0.340 13.2 22.5 

(0-0) 1.183 0.350 34 .0 51.3 

-208Jx" -29.2Jx" 
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It should be likewise noted that A, B, C, and D for fluids contain de pen-

dence on In rij· These and departures from linearity in the intermediate regime 

(2B :S r/a;j < 2) are the features unknown in the earlier analyses (DeWitt, Gra­

boske, and Cooper, 1973; [toh , Totsuji, and [chimaru, 1978; Itoh et a/., 1979) and 

constitute new findings in these elaborate MC analyses. 

In Figs. D.1(a) , D.1(b), and D.2, we compare the OCP limit of the fitting 

formula (D.5) to the MC results and find an excellent agreement between the two. 

Combining this with our proof of h2 ::e 0, we may ensure good accuracy of the 

short-range extrapolation of the MC sc reening potentials performed in (D.5b); we 

es timate errors in the values of H; j(O) so extrapolated to stay on the order of 0.1 

percent. 

It has been shown (Hoover and Poirer, 1962; Widom, 1963; Jancovici, 1977) 

that the value of H(r) at r = 0 is equal to the increment of the chemical po-

tential for the reacting pair before and after the nuclear reaction in the OCP. 

An approximate esti mate of this increment in the ion-sphere model was made 

originally by Salpeter (1954). Later, Jancovici (1977) approached this problem 

under the assumption that the mixing formula for the hypernetted-chain excess 

free energy F(N 1,N2) of N1 charges Ze and N2 charges 2Ze for fluids , proposed 

by Hansen, Torrie, and Vieillefosse (1977), was applicable accurately to such an 

ext reme case of mixture with N 1 = total number of Z e particles minus 2, and 

N2 = I. A critical exami nation of various mixing formulas has appeared only re-

cently (Ichimaru, lyetorni, and Ogata, 1988) for the excess internal-energy in light 

of accurately executed BIM simulations for fluids and solids, and in this light we 

find that the fr ee-energy mixing formula used by Jancovici (1977) lacks necessary 
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accuracy; furthermore its applicability to the extreme situation mentioned above 

remains questionable. Their resultant OCP fluid values, 

H(O) { 1.057, 

(Ze) 2/a = 1.0531 + 2.2931r-314 - (2.35 + 0.5551 Inr)jr , 

(Sal peter) 

( J ancovici) 

differ significantly from the corresponding value in this work (5 < f;S180), 

H(~) = 1.148- 0.0094ln r- 0.00017(ln r)2 . 
(Ze) fa 

(D.6) 

For reasons enumerated in the preceding paragraph, we are confident in the accu-

racy of (D .6). We might add that BIM values of H;j(O) in Table D.1 are totally 

new. 

Finally in Fig. D.2, we compare the OCP lattice screening potential in (D.5) 

with the relaxed-lattice model potential of Salpeter and Van Horn (1969). A 

reasonable similarity is observed. 

III. Pycnonuclear reaction rates 

Nuclear reaction rates between nuclei of species , i and j, per ,jffi'ffJ are given 

generally as (e.g ., Salpeter and Van Horn, 1969) 

(D.7) 

Here W;j(rN) refers to the wave function at the nuclear reaction radius rN, which 

being extremely small in the atomic scales shall be henceforth denoted as 0, the 

wave function is normalized so that 

J 2 2 n 
dr47rr j>l!;1·(r)l = ll--

n ,jffi'ffJ 
(D.S) 
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over a spherical volume n with the radius 2a;1, 8;j represents Kronecker's delta, 

and 

(0.9) 

are the nuclear Bohr radii with J.lij denoting the reduced mass between i and j. 

The cross sections a;j oi nuclear reactions between particles with relative kinetic 

energy, E = J.lijv 2 /2, is expressed as 

S· 
a;j = ;j exp( -27rry) , (0.10) 

where 17 = Z;Zje 2 jliv. The cross-section parameters for C-0 BIM are (Fowler , 

Caughlan, and Zimmerman, 1975): Sec= 8.83 x 1016 , Sco = 1.15 x 1021 , and 

Soo = 2.31 x 1027 , in units of MeV·barn. The phase diagrams associated with 

freezing transitions in such a C-0 BIM have been investigated (see Part C). The 

quantum and classical many-body effects in those various phases affect the contact 

probabilities IW;j(O)J2 and thereby the reaction rates. In this Section, we consider 

the reaction rates in BIM solids. 

When the OCP is in a fluid state (r < 180), A= li/aJMksT in Eq. (B.3) 

measures the degree to which a quantum-mechanical description is necessitated 

in the behavior of the ion with mass M. For a crystalline OCP (r > 180), the 

ratio Y = liwo/ksT in Eq. (B.5), where liwo is the Einstein frequency in the 

Wigner-Seitz sphere model, measures involvement of the quantum effects (see 

Sec. B. II). Figures 0.3 and 0.4 depict the freezing condition (r = 180) as well as 

the relat ions, A = 1 and Y = 1, on the Pm- T planes for the carbon and oxygen 
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OCPs. In both figures , we observe A < 1 in the fluid state and Y > 1 in the 

crystalline state. 

In the consideration of nuclear reaction rates in the solid BIMs, we shall 

henceforth assume that the condition for pycnonuclear reactions, Y ~ 1, is satis-

fi ed for C and 0 , so that the nuclei forming quantum solids are in the ground state 

at their equilibrium bee lattice sites. The principal problem then is the evaluation 

of contact probabilities, IW;j(O)I2, for the reaction rates (0.7) in such a quantum 

solid . 

We approach this problem by observi ng that the major contributions to 

IW;j (O )i 2 arise from the S-wave scattering acts between the reac ting nuclei. The 

factor that crucially controls such a scattering event and the resulting contact 

probability is then the effective potential between the nuclei in the short-range 

domain , where the screening potential may be regarded as isotropic, given ac-

curately by Eq. (0.5b), though the bulk of nuclei experience anisotropic lattice 

fields most of the time. Further justification for the use of uch a directionally 

averaged potential is provided by the fact that the S-wave functions sample on ly 

the spherically symmetric part of the potential. 

Introducing U;j ( r) via 

(0.11) 

with the normalization (0.8), we find that it obeys the Schrodinger equation for 

the S waves, 

{ 
fi2 d2 } 

---2 + W;1·(r)- E rexp[U;1 (r)] = 0 . 
2JJ.ij dr 
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Fig. 0.3 Freezing condition (r = 180) and comparison of the parameters A andY (cf. 
Eqs. (B.3) and (B.S)) on Pm-T plane for carbon material . 

Fig. 0.4 Freezing condition (r = 180) and comparison of the parameters A andY (cf. 
Eqs. (B.3) and (B.S)) on Pm-T plane for oxygen material . 
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Here the effective potential of scattering is give n by 

Z·Z·e 2 
W (r) = -' _J_- If · (r) t; r '1 , (0.13) 

and E is the grou nd-stale energy of t he part icle trapped around the potential 

minimum of W;j(r) at rm = 1.74aij· 

We have solved Eq. (D.12) by numerical integrations starti ng from r c= 0 up 

to r = 2a;j, under the following two exact boundary conditions: 

(1) The cusp conditions, 

. dU;j(r) 1 
hm ---=-
r~o dr 2rij · 

(D.14) 

(2) Self-consistent ground state, where U;j(,·) take on maxima at rm with the 

values E equal to the expectation values of -(t12 /2!lij)d2 /dr 2 + W;j(,·) over the 

volume 11. The solution is therefore exact without resorting to the conventional 

WKB approximation (e.g ., Salpeler and Van Horn , 1969). 

The contact probabilities, llll;j(O)I 2 = exp(2U;j(O)], are thus computed in 45 

cases for the combinations of C-C, C-0, and 0-0 in BIM solids over the range 

of the mass densities , 2 x 106 - lOll gem-a The results are then parameterized 

in analytic formulae with fitting errors in U;j(O) less than 0.06. Finally, the 

pycnonuclear reaction rates in the C-0 BIM solids are obtained from (D. 7) as 

(D.15) 

Here Ps is mass density in units of 108 g cm-3, and the parameters, a, f( , !(1, 

K2, I<3, and K 4, are listed in Table 0.2. The blocking effects of oxyge n on the 
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pycnonuclear reactions, described here by t he x dependence, enter through the 

coeffi cients, K2 and K4 ; these do not vanish with C-C reactions only. 

The OCP pycnonuclear reaction rates were calculated by Salpele r and Van 

Horn (1969) in the WKB approximation. With the relaxed-lattice model potential 

(cf. the dashed line in Fig. 0.2) , their carbon-reaction rates read 

-l 38 7/12 ( -263.3 ) 
RsvH(s ) = 1.11 x 10 p8 exp P~/6 . (D.16) 

In Table D.3, we compare the carbon OCP limit of Eq. (D.15) with RsVH at 

various mass densiti es. Numerical agreement between the two appears almost 

perfect, despite differences in the screening potentials (Fig. 0 .2) and in the ways 

the Schri:idinger equation was solved. 

IV. Thermonuclear reaction rates 

Let us proceed to consider the thermonuclear reaction rates in C-0 BIM fluids. 

In light of comparison in Figs. 0.3 and 0.4, we may assume that the semi-classical 

approximations (A< 1) are applicable for C and 0 in fluid states. 

The contact probabilities, IW;j(O)I 2, are obtained in these cases as weU 

through the solution to Schrodinge r equations (D.12) where W;j(r) are now given 

by Eq. (D.13) with the fluid screening potentials in Eq. (D.5) and E = Jlijv 2 /2 is 

the relative kinetic energy between the reac ting nuclei. The evaluations of ther-

monuclear reac tion rates R;j(T) at temperature T are then carried out by the 

thermal averages of R;j(E) in Eq. (D.7) over the Boltzmann factor , that is, 

2/33/2 ('" 
R;j(T) = .fi f o dEVEex p(-fJE)R;j(E) (0.17) 
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TABLE 0.2. Parameters in Eq. (0.15) for the pycnonuclear reaction rates. TABLE 0.3. Comparison between Rcc of Eq. (0.15) and RsvH of Eq. (0.16) . 

log to Pm (g·cm-3 ) log 10 Rcc (s- 1) log to RsvH (s- 1) 
C-C C-0 0-0 

1.30 X 10315 + ~ 1.11 X 1035~ 
7 -127.6 -130 .4 

]( 1.42x1041 3 ~x 
8 -74.9 -76.3 

a 0.397 0.421 0.455 

9 -38.9 -39.3 
j(l 257.486 327.132 414.706 

10 -14.2 -13.9 
](2 2.636 

/(3 - 15.114 -15.940 -16.192 

1(4 -0.560 

118 119 



The enh ancement factors, exp(Q;j ), of the reaction rates are defined as the ra­

tios betwee n R;j(T) and R~j(T), the latter being calcu lated with the bare Coulomb 

potentials, 

(D.18) 

substituted in pl ace of W;j(,·) in Eq. (D.12). Hence, 

(D.19) 

In the limit of classical approximations, one finds (e.g., Salpeter and Van Horn, 

1969; DeWitt , Graboske, and Cooper, 1973) 

(D.20) 

Jancovici (1977) obtained a rigorous lowest-order quantum correction to (D.20) 

for OCP with the short-range screening potential , H(r) = H(O)--;rn(Ze) 2r2/3 [cf. 

Eq. (D.5b)J. Further quantum corrections were evaluated for OCP by Alastuey 

and Jancovici (1978) by the semi-classical WKB method with an approximate 

screening potential. 

In this section we present rigorous calculations of the enhancement factors 

(D.19) for the BIM fluids through numerical solutions to Eq. (D.12). In doing 

so, we first note that with the bare potentials (D.18) the solution to Eq. (D.12) 

exac tly gives 

where 

0 1 { (7rt) } 1 (7rt) U··(O)=-- ln exp - -1 +-ln - , 
IJ 2 .jf 2 .If 

t=f*ij 
r~ . ' 

IJ 

E 
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(D.21) 

(D.22) 

(D.23) 

It then follows that with the shifted potentials, 

1 Z;Zje 2 

W;j(r) = --- H;j(O) , 
r 

the quantities corresponding to (D.21) a re 

u1 (0) = -~ ln { exp (__!_!___) -1 } + ~ln (__!_!___) 
I} 2 Vf+h 2 Vf+h > 

with 

h _ H;j(O) 
- Z;Zje 2 /a;j 

Consequently, the enhancement factors (D .19) can be re-expressed as 

where 

and 

P;j(T) = l )Q dEvEexp{-f3E+2Ui}(O)}exp(2D.U;j) , 

Pg(r) = fooo dEvEexp{- f3E + 2ug(o)}, 

(D.24) 

(D.25) 

(D.26) 

(D.27) 

(D.28) 

(D.29) 

(D.30) 

We calculate the increments (D.30) through numerical solutions to Eq. (D.12) 

as follows: First, with the boundary conditions (D.14) and assuming for the mo-

ment that U;j(O) = 0, we integrate Eq. (D.l2) starting from r = 0; the integrated 

result of U;j(r) takes on a ma..ximum value X near the raclius rc corresponcling to 

the "classical turning-point." Next, we substitute W;~(r) of Eq. (D.24) in place of 

W;j(r) in Eq. (D.12) , and calculate the corresponding maximum value X 1 with the 

resulting equation. Recalling, however, that both solutions should approach simi-

lar wave functions rep resenting a free-particle behavior asymptotically for r > rc , 
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we observe that the differences betwee n X and X 1 should in fact correspond to 

those between U;j(O) and U;~(O). Hence, 

6.U;j = ln(X/Xt). (0.31) 

We have followed these procedures for 120 cases of the parametric combina-

tions in the ranges : t = 20-200 and £ = 10- 4- 102 The results can be fitted in an 

analytic formul a, 

{ 
u3 +u4 lnr;· 

6.U;j=-texp(-Jt+0.001) Ut+u2lnr;j+ J l r- · 
c + 0.8073 - 0.1335 n ,1 

us+ u6 lnr;j } + (0.3~ 
(£ + 0.8073- 0.1335ln r;j)2 ' 

with U[ = 0.0011685, U2 = -0.0023531, UJ = 0.0020104, u4 = 0.0087516, Us = 

0.066453, and us = -0.013581. Fitting errors of Eq. (0.32) are confined within 

0.3 . 

Final ly, the results for the enhancement factors (0.27) are: 

(0.33) 

with 

Co= 1.148- 0.00944ln r;j- O.OOOJ68(ln r;j)2 , 

c1 = 1.1858, (0.34) 

c2 = -0.2472 , 

C3 = -o.o1oo9 , 
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and 

( 

2 2 ) 1/3 .. _ 277r Z;Zje (J 
r,J - 4 r~ - · 

I] 

(0.35) 

This fit is applicable for 3f;j/r;j::::; 2 with accuracy of fittin g, oQ;j::::; 1. 

The first term Cofij of Eq. (0.33) corresponds to the purely classical contri­

bution, Eq. (0. 20) . Retaining the lowest-order quantum corrections in Eq. (0.33), 

we may derive 

Q;iiLQ = (JH;j(o)- 352 r;i C~;i) 2 . (0.36) 

The OCP limit of tlus expression coincides with that obtained by Jancovici (1977) . 

Approximate calculations of Alastuey and Jancovi ci (1978) would further be re­

covered if subst itutions: C 1 + C2 ln rij -+ -0.0896 and C3-+ -0.08192, are made 

in the OCP limi t of Eq. (0.33); roughly, both would agree at r ~ 110 for the 

OCP. 

V. Screening effects of relativistic degenerate electrons on 

the thermonuclear reaction rates 

The short-range sc ree ning effects of relativistic degenerate electrons on 

Coulomb repulsion between the reacting nuclei were studied by Ichimaru and 

Utsumi (1983) with the aid of the relativistic free-electron polarizability (Jan­

covici, 1962) and the local- fi eld correction of the degenerate electrons (Ichimaru 

and Utsumi, 1981). It has thereby been shown that the kinematic effects of rei-

ativistic degenerate elect rons (e.g., Landau and Lifshitz, 1969) with inclusion of 

the Dirac positron states soften the electrons against compress ion and thus act to 

enhance the sc reening. These authors subsequently (Ichimaru and Utsumi , 1984) 

studied the screening effect of the electrons on the '1ong-range" correlation be-

tween ions over various combinations of the plasma parameters, and found that 
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the long-range screening potential at zero separation almost cancelled that due to 

the short-range correlation between ions. 

In this section we revisit the calculations of the nuclear-reaction enhancement 

factor due to the electron screeni ng of the short- and long-range correlations. 

We first present a renewed derivation of the long-range correlation effect, more 

transparent than that given earlier (Ichimaru and Utsumi, 1984). We then show 

that the short- and long-range correlations modify the nuclear reaction rates in 

different ways, and that the electron screening, as a consequence, brings about 

a considerable enhancement of nuclear reactions in high-Z materials even in the 

limit of high densities. 

(a) Screening potentials due to dense relativistic electrons 

The inter-ionic potentials, V;j(r), screened by the dense relativistic electrons 

are calculated as 

(0.37) 

Here <(k, 0) is the static dielectric fw1ction of the relativistic degenerate elec­

trons defined in Eq. (B .16) (we set G(k) = 0 here). In the short-range domain , 

Eq. (0.37) may be expanded as 

(0.38) 

where Ds = aefao with 

(
18)1/

31"" [ 1 ] - dx 1----
11"2 o <(xkp, 0) 

(0.39) 
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and kp = (9?r/4) 113fae is the Fermi wave number. The short-range screening 

parameter (0.39) has been evaluated and expressed in a parametrized form as 

(Ichimaru and Utsumi, 1983) 

OIQ = 0.1718 + 0.09283R5 + 1.591~- 3.800~ + 3.706J1i - 1.311~ (0.40) 

where Rs = 10r5 . The formula (0.40) reproduces the computed values of (0.39) 

over the domain, 0 ~ r 5 ~ 0.1, with digressions of less than 0.7%. A comparison 

between the relativistic results (0.40) and the non relativistic evalu ations with the 

Lindhard (1954) polarizability was given in Tchimaru and Utsumi (1983). 

It is noteworthy that the short-range screening distance (in units of ae), 

D s / ae = 0101
, takes on a finite value 5.8 in the limi t of high densities, r5 -+ 0. This 

finiteness is a consequence of the relativistic effects. For a comparison, we note 

that the relativistic Thomas-Fermi distance, (kTF'ae)- 1 = (4/9r.) 113J?rncf4e2, 

takes on 5.4, a similar magnitude. The effects of the electron screening thus 

remain considerable in dense stellar materials (see also Sec . B.II). 

In addition to the short-range, direct-screening effect between ions repre-

sented by OIQ, the electron screening influences the potential of mean force (e.g., 

lchimaru, 1982) through indirect , many-body effect between ions , called the long­

range correlation effect (Ichimaru and Utsumi, 1984). In the Andersen-Chandler 

(1972) approximation, the long-range screening potential (in OCP) was calculated 

as 

1 (Ze)
2 J ~ 1 [ 1 ] ~ H r(r) = -- dk-[1- S(k)J 1- -- exp(ik · i') . 

2?r 2 k2 <(k, 0) 
(0.41) 

Setting the screening potential at zero separation as 

(0.42) 
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lchimaru and Utsumi (1984) computed and parametrized the values of a0 -f3o over 

the ranges: 0::; , .• ::; 0.1, 1 ::; Z::; 26, and 1 ::; r ::; 200. Thus !chimaru-Utsumi 
TABLE D.4. Elect ron screeni ng parameters, era and f3o; and enhancement factor, Ae. 

(1984) enh a ncement factor due to the elect ron sc reening was give n by 
IU84 refers to the results of !chimaru and Utsumi (1984); !090, the present work. (Ye = 

(D.43) (Z)/(A) = 0.5 is assumed.) 

In Table D.4, values of those parameters are li sted for Z = 8, 6, and 2 at various 

combinations of density and temperature. 
Pm (g/cm3) f3o Ae 

In the balance of this section, we present an alternative and transparent T(K) z r ;u:: !2..5.. C>Q 
T a 

rs !U84 I090 IU84 !090 

der ivation for the long-range sc reening parameter, f3o. In the next section, we 
108 8 72.6 0.74 2.9 0.173 0.167 0.155 2.4 15.1 

shall perform MC sampling of the long-range screening potential for an electron-
5 X 107 2 X 109 8 145.2 1.18 2.9 0.173 0.168 0.155 5.1 4.24 X 104 

screened ion system, and thereby show that the newly derived expression for 
108 6 44.9 0.74 3.2 0.173 0.168 0.157 1.6 4.91 

f3o coincides closely with the MC result . Subsequently, we shall use the MC 

scree ning potential so obtained to show that short- and long-range correlations 
5 X 107 6 89.9 1.18 3.2 0.173 0.169 0.157 2.2 7.51 X 102 

act differently in the enhancement of nuclear reactions and thereby derive a new 1.4 X 10-3 108 2 7.2 0.74 4.6 0.173 0 168 0.165 1.0 1.24 

and improved expression for Ae. 5 X 107 2 14.4 1.18 4.6 0.173 0 170 0.165 1.1 2.95 

Let us thus begin with approximating Eq. (D.37) in the form of a screened 108 8 12.4 0.1 3 2.7 0.188 0.177 0.166 1.3 1.60 

Coulomb potential as 107 5 X 107 8 24.8 0.20 2.7 0.188 0.178 0.166 1.6 2.39 

e ZiZje
2 

( r ) (D.44) 
108 6 7.7 0.13 2.9 0.188 0.176 0.168 1.2 1.26 

Vj{r) = --exp --
J r Ds 

5 X 107 6 15.4 0.20 2.9 0.188 0.179 0.168 1.3 1.53 
Figure D.5 depicts for a carbon material at r 5 = 10-3 the bare Coulomb potential, 

the equation (D.37) with the relativistic and nonrelativistic dielectric functions , 
8. 1 X 10-3 108 2 1.2 0.13 4.2 0.188 0.172 0.177 1.0 1.01 

and the equat ion (D .44). Comparison in the figure shows that Eq. (D.44) offers a 
5 X 107 2 2.5 0.20 4.2 0.188 0.177 0.177 1.0 1.03 

good approximation to the rel ativistic evaluation of the exact formula (D .37). 

In a separate contribution, Ichimaru et a/. ( 1990) approached those long-

range sc reening parameters for general cases of repulsive interparticle potentials , 
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Fig. 0.5 Inter- ionic potentials for a carbon matter at r5 = 10-3. The dotted line depicts 
the bare Coulomb potential ; the dashed line and bold dots, the non-relativistic 
and relativistic evaluations of Eq. (0 .37); and the solid line, Eq. (0.44). 
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through a solution to the hypernelled-chain equations (e.g., Ichimaru, 1982) with 

appropriate strong-coupl ing corrections. For the potential (0.44), it has thus been 

found (cf. Eq. (18) in Ichimaru et a/., 1990) that 

f3o = 1.057- 1- exp --ae [ ( a;j) ] 
a;j Ds 

(D.45) 

The values (0.45) of f3o listed in Table D.4 agree well with the Ichimaru-Utsumi 

(1984) values calculated from Eq. (0.42) . Though both calculations involve differ-

ent approximations, we find that the derivation of (0.45) is much more transparent 

than the earlier parametrization (Ichimaru and Utsumi, 1984). It is straightfor-

ward to reconfirm in the expressions (0 .38) and (0.45) the near cancell ation be-

tween the short- and long-range screening parameters, a0 -f30 ::::o 0, for a;j/ Ds < 1. 

(b) MC sampling of screening potential 

To supplement the analytic calculation in the preceding section, we have 

performed a MC simulation study of the sc reening potential in a carbon matter 

at Pm = 2 x 109 g/cm3 and T = 108 I<, assuming that the interparticle potential 

is given by Eq. (D.44). (See Table 0.4 for other parameters.) The screeni ng 

potential, H•(r), defined in conju nction with the joint probability, g(r), as 

H•(r) = v•(r) + ksT ln(g(r)) , (0.46) 

has been sampled over 5 x 106 MC configura tions generated with 500 particles in 

the periodic boundary conditions; the result is plotted in Fig. D.6. 

We have then deri ved the following analyti c formula to fit the MC data: 

lf•(r) { 0.8252-0.2312 W2 
' ~ < 0.8427' 

(Ze)
2
fa= -1.048+2.071exp ( -0 . 228~) , 0.8427:::;~<2 . 
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(0.47b) 
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The intermediate-range expression , Eq. (0.47b), stems from an actual fit of the 

MC data as shown in Fig. 0.6. Equation (0.47a) derives from the short-range 

expansion: 

He(r) == He(O)- (Z e)
2 (~) 2 

j L '!:l!.exp (-.'}}_) ) (~f 
12a Ds \ ;1'

1 
ril Ds a 

(0.48) 

The statistical average in the second term can be evaluated by the MC sampling 

in a test-particle system in which the test-particle "1" interacts with other 498 "l" 

particles via a potential 2Ve(r), while the 498 "l" particles interact with each other 

by the potential ve(r). The coefficient, 0.2312, in the second term of Eq. (0.47a) 

has been obtained through evaluation of the statistical aYerage over 3 x 106 MC 

configurations generated in such a system. With this coefficient determined, the 

first term, 0.8252, stems from a smooth extrapolation of (0.47b) towards the 

short-range domain. 

In t he absence of electron screening, the carbon OCP under consideration has 

H(O)/[(Ze)2 fa]== 1.110 from Eq. (0.6). Hence, the MC simulation data yield 

[30 == (1.110- 0.8252)/6 113 == 0.1567 , 

a value in agreement with (0.45) listed in Table 0 .4. 

(c) Enha nce m e nt of thermonuclear r eactio ns due t o 

e lectron scr eening 

In t lus section, we are concerned with the assessment of the extent to which 

elec t ron sc reeni ng affects t he contact probabili ties and the reaction rates. 

We approach this problem by observing that the electron screening effect, 

though finite and thus non-negligible, may be treated as a weak perturbation, and 
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that the WKB approxi mation (e.g., Salpeter and Van Horn , 1969) is applicable in 

the evaluation of t he enh ancement factor due to the elec t ron sc reening. T he con­

tac t probabili ties I'll ij( O)I 2 are proportional to the WKB penetra tion probabilities 

P;j(E) between reacting nuclei: 

(D.49) 

Here rc is the classical turning radius satisfying 

W;j(rc) = E, (D.50) 

W;j(r ) is the effec tive potential of scattering between the reacting nuclei, 

(D.51) 

and in light of (D.47) we set the electron-screened BIM screening potentials in the 

semicl assical approximation (A; < 1) as 

H'fj(r ) _ { 0.8252-0.2312 (;J 2
, a:i < 0. 8427 , 

Z;Zje
2
/ a;j- -1.048 +2.071exp(-0.228a:J , 0.8427:S a:i < 2. 

(D.52a) 

(D.52b) 

The penetration probabilities P;'j(T) at temperatures T with inclusion of the elec­

tron screening are then evaluated through thermal averages of (D.49) over the 

Boltzmann factor , that is, 

P;j (T) = JiT(k~T)3!2 [ " dEVEexp (- k:T) P;j(E) . (D.53) 

T he integration (D.53) usually involves a passage across the Gamow peak. 

Let P{P(T) be defined as P;j(T) evaluated in the absence of H'fj(r), that is, 

when W;j(r) is given by V;j(r) alone. We may likewise define P;j(T) and P;~(T) , 
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respec ti vely, as t he BIM penetration proba bilities wi th the bare Coulomb repulsion 

(i.e., without elec tron screening) with and without the sc reening po tentials H;j(r). 

Since the classical turning radii at the Gamow peak, r'fj :::o 3f;jaij/Tij, are 

smaller substantially than the short-range screening distance Ds (cf. Table D.4) , 

wh ere 

(D.54) 

we obtain 

(D.55) 

d~M = - r ; (ao(Z)J /3)2 _ •J - 0.091f; (ao(Z)l/3f923 _•J . 3 (3f ") ( 3f· ) 1.897 

lJ 8 J 'Tij J 7 ij 

(D.56) 

For the derivation of th e parametrized formula (D.56) , we have carried out rele­

vant WKB integrations (D .49) for 12 cases of the combin ation: ao (Z) 113 = 0.2, 

0.4, and 0.6 ; and 3f;j/Tij = 0.5 , 1.0, 1.5 , and 2.0. T he first term of (D .56) 

can also be obtained a nalytically through expansion of (D.49) with respec t to 

a 0(Z) 113 (3 f ;j/T;j)· The reaction rate resulting from the direct process be tween i 

and j is enh anced by the factor (D.55) due to the screening action of the relativistic 

electrons. 

The enhancement factors of the thermonuclear reaction rates stemming from 

the screening potentials are defined as 

and 

p e(T) 
exp(%) = pXo(T) ' 
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(D.57) 

(D. 58) 



The !alter quantity has been extensively investigated for the C-0 BIM fluids (see 

Sec. O.IV). In the present WKB calculations where the screening potentials are 

regarded as weak perturbations, we find 

(0.59) 

with 

QM [ (3r .. )] (3r· ) Q~j = 0.354 exp -0.228 Tj;] f ij Tj;] , (0.60) 

and 

(0.61) 

with 

QM 3f · 
Q-- = 0.342f; ·____!Z_ . 

l ) J 'Tij 
(0.62) 

The first terms on the right-hand sides of (0.59) and (0.61) correspond to the 

cl assical contributions. The second terms represent the quantum corrections, re-

suiting from the spatial variations of the sc reening potentials. 

Finall y, summing up Eqs. (0.55), (0.56), (0. 59), and (0 .61), we obtain the 

lola! enh ancement factor of the nuclear reaction rate due to the electron screening 

as 

Ae = exp [(ao- .Bo)(Z)l/3r;J· - DqM- QeQM + QqM] 
l) '1 l) 

(0.63) 

For the OCP, we may write tlus as 

(0.64) 

in light of (0.43), where .Bo is lo be evaluated in accord with (0.45). The main 

difference between the present evaluation of the enhancement fac tor and t hat of 
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Ichimaru-Ulsumi (1984) stems from the balance between the quantum correc-

lions with and without the electron screening. Since the quantum correct ions are 

nonlinear in plasma coupling parameters, the differences widen when the latter 

parameters are large. As Table 0.4 illustrates, the en hancement of nuclear reac-

lion due to the electron screening is significant in high-Z materials such as carbon 

and oxygen al high densities near ignition. 

VI. Carbon ignition curves 

As an example of applications for the theory of nuclear react ion rates in dense 

C-0 BIMs described in Sec. O.II and O.III, and the extra enhancement due to the 

electron screening evaluated in Sec. O.IV, we calcul ate in litis section the carbon 

ignition curves, that is, the loci of points in the density-temperature plane for 

which t he 12C + 12c energy release equals the neutrino energy loss. Followi ng 

the conve ntional treatments (Arnett and Truran , 1969; Nomoto, 1982), we assume 

an approxi mate rate of such an energy release lo be 3 x 10 17 erg g- 1 For th e 

neutrino loss rate , we use the results reviewed by Itoh et a/. (1989), both in fluid s 

and in solids. 

In Figs. 0.7 and 0.8, the carbon ignition curves in C-0 BTMs (i.e ., without 

screening) are depicted. For the reaction rates in fluids, we have considered, 

not only the cases with the enhancement factors (0 .33) (the solid curves), but 

also those with Eq. (0.20) (the dashed curves) and with Eq. (0.36) (the dot-

dashed curves). In Fig. 0 .8, where a BIM with x = 0.9 is treated , we have taken 

the solidification line at T = 1.43Tc (see Fig. C.3), where Tc is the freezing 

temperature of a pure carbon material. In Fig. 0.9, the carbon ignition curves 

obtained with (t he sol id curves) and without (the dotted curves) the elect ron 
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screening are compared for a pure carbon materi al a nd a C-0 material with x = 0.9 

in the Auid phase. 

We stress that those curves have been obtained under the specific assump-

lions about the loss processes; if other processes unaccoun ted for in the present 

calculat ions are more effective, the cu rves would na turally have to be shifted . 

We note in Figs. 0 .7 and 0.8 a small but finit e discrepancy in the ignition lines 

between the thermon uclear (i.e., Auid) and pycnonuclear (i .e., crystalline) regimes 

across the freezing transitions . The microscopic features of the correlations and 

hence the magnitude of the contact probabilities exhibit drastic changes across 

such a phase boundary; one generally anticipates such a gap to take place. We 

emphasize, however, that in each regime the reac tion rate has been evaluated in a 

way physically consistent with the microscopic states of the reacting particles in 

the fluid or crystalline substance. 

VII. Concluding remarks 

We have presented first-principles calculations of nuclear reaction rates in 

dense C-0 BIMs appropriate to Type- I supernova progenitors for fluid (thermonu­

clear) and bee crystalline (pycnonuclear) phases. The calculat ions are based on an 

elaborate Monte Carlo simulation study of the screening potentials and a correct 

treatment of the quantum-s tatistical effects through an accurate solution to the 

S-wave Schrooinger equations. In the limiting cases of the OCP, the numerical 

res ults do not differ significantly from the pycnonuclear reaction rates of Salpeter 

and Van Horn (1969) and the thermonuclear reaction rates of Alastuey and Jan-

covici (1978), but the accurate evaluations of the reaction rates in C-0 BIMs are 
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here presented for the first time, with inclusion of the blocking effect of oxygen 

against the pycnonuclear reaction of carbon. 

Furthermore, we have presented a detailed t heoretical account on the extra 

enhancement factor of nuclear reaction rates in dense OCP and BIM fluids arising 

from the screening effects of relativistic degenerate electrons. It has been shown 

lhallhe enhancement is significant in high-Z materials such as carbon and oxygen 

al high densities near ignition. Physical ori gin of these strong screening effects 

have been traced to finit eness of a0 due to relativistic softening of the electrons, 

and the resultant change in the spatial variation of the screening potenti al. T he 

electronic sc reening may thus turn out to be a signifi cant factor in the evolution 

and ignition of dense while dwarfs . 

It is expected thallhe screening effects of the elect rons substantially enhance 

the pycnonuclear reaction rates in dense OCP and BIM solids. In the solid phase, 

the scree ning functions and the resultant nuclear reaction rates should depend on 

the assumed lattice structures. To have a definite answer for the electron sc ree ning 

effects on pycnonuclear reaction rates theoretically, we need to know the stable 

structure of ions at finit e temperatures under the screening electrons . We remark 

t hat at T = 0 the bee structure take the lowes t energy for OCPs. 
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Appendix I : Fast computation of the Ewald potential 

The most time-consuming part in the simulations of Coulomb systems is the 

calculation of the Ewald potentials. In the simulations performed in the Thesis, 

we calculate the potential rapidly using the polynomial fitted formula which is 

obtained follow ing the rec ipe due to Slate r and DeCicco (1963) and Slattery et a/. 

(1980, 1982). 

The potential energy (in units of ksT) of t he OCP with N part icles in a 

volume V = L3 , L = (47rN/3) 113a is 

U aNar 1 N 

k
8

T = -21+2 L 
i¥j=l 

Ul(X ; - Xj) 
k8 T 

where 0' = 2.837297479, Xi = r;/ L is the i-th particle position, and 

'"""' _ex_,_,_p(-.- 7r,--n_!_
2

) [ - x)} 
0 rcn 2 cos 2r.n · 
;;;t(i 

Here ii is a vector with integer components and 

2 !at erfc(t) = 1 - r;;; ds exp( -s2) . 
y7r 0 

(Ll) 

(I.2) 

Since U1 (X) is periodic with respec t to X, it is sufficient to make a filling formula 

in the region where each component of X is res tricted to [-0.5,0.5). Recal ling that 

u1 (X) has the cubic sym metry, we introduce the filling formula in the following 

form: 
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+ a4(P4(X} + P4(y) + P4(.i)]X4 

+ a6[PG(x) + P6(Y) + P6(.i)]X 6 

+ a22[P22(x) + P22(Y) + P22(Z)]X22 

+ bi2Re((x + iy)l2 + (y + i.i) I2 + (.i + ix)l2]x l2 } , (!.3) 

where (x, y, z) = X /lXI a nd Pl(x) is 1-th order Legendre polynomial. The 

first three terms in Eq. (!.3) result from the expansion of U1 (X). Paramete rs 

a4, a5, · · ·, a22, and 612 are o ptimized via the leas t square method using 8000 ran­

dom points of X. 

To know the extent of relative errors of the fittin g formula, we compare the 

potential energy which is calculated using Eq. (I.3) with the exact value for 5000 

cases of random configurations and for the bee and fcc confi gurations with N = 

1024. Relative er rors are 3 parts in 108 for the random configurations; 1 part in 

107 for the bee and fcc configurations. The fitting formul a (!.3) has a sufficient 

acc uracy for MC simulations. We remark in addition that the fitting formula 

Eq . (I.3) also applies directly to the multi-component systems with appropriate 

substitutions of r and L. 
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Appendix II: MC sampling of the coefficient h2 m equa­

tion (D.3) 

Let <l>(r) be the Coulomb potential (in uruts of ksT) acting on a given test 

particle with charge 2Ze at r from all other N particles formi ng t he OCP with 

cha rge Ze. T he coefficient h2 in Eq. (0.3) is then calculated in the ensemble of 

MC generated confi gurations as 

h =~ l[( dif>) 2_ 2 d2 q,]
2

) _r2 2 384 \ dx dx2 32 ' 
(ILl) 

where x represents one of the Cartesian components of r. T he statistical average 

( ) is carried out over 2.5 x 105 configurations in the MC sequences . To exami ne 

the accuracy of the MC averaging procedure, we have also computed 

(!!.2) 

This quantity sho uld exactly take on f for OCP from Eq. (0.4). 

The computed values a re listed in Table Il.l. With the accuracy confirmed 

tn t he MC evalu a tions of u, we may conclude that h2 virtually vanishes; the 

computed values, smaller in magnitude than the extent of errors, are far smaller 

than h1 in Eq. (D.4). 
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TABLE ILL MC values of h2 in Eq. (ILl). Also li sted are ht/1 values in Eq. (II.2) 

which should lake on t from Eq. (D.4) . 

r: h2 ht/r 

10 0.006 ± 0.088 0. 2473 ± 0.0003 

40 -1.2± 1.4 0.2480 ± 0.0001 

80 -5 .3 ± 5.4 0.2478 ± 0.0002 

160 10.1 ± 21.3 0.2519 ± 0.0002 
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