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Chapter 1 

Introduction 

Since the prediction of negative differential conductivity and Bloch oscillations 

due to the negative mass effect in semiconductor superlattices by Esaki and Tsu 

in 1970,' the properties of semiconductor heterostructures have been one of the 

most important subjects in solid state physics for about twenty years. Schematic 

band diagrams of these structures are shown in Fig. 1. Molecular beam epitaxy 

(MBE) and liquid phase epitaxy were thought to be suitable for synthesis of these 

structures. In 1976, it was confirmed by X-ray diffraction, 2 transmission electron 

microscopy, and the electron beam diffraction3 that superlattices can be made by 

MBE. Later, superlattices with good quality were made also by the metal-organic 

chemical-vapor-deposition. Among various combinations of different materials, the 

GaAs/ Al,Ga1 _,As system is most studied up to now. 

Optical experiments are the most powerful method to investigate the elec-

tronic structure of semiconductors. Generally, in quasi-two-dimensional struc-

tures, such as inversion layers in silicon metal-oxide-semiconductor (MOS) struc-

tures, quantum levels due to the confinement of carriers are formed and the den-

sity of states becomes a step like function of energy. Quantized energy levels are 

expected also in the present structures. Figure 2 shows absorption spectra of 

Al0.2 Ga0 .8 As/GaAs/ Al0.2 Ga0.8As multiple quantum wells, constructed by piling 

up many single quantum wells, observed at 2K by Dingle et a/. 4 The spectra are 
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Figure 3 (a) and (b) Schematic illustration of the interface roughness in 
a quantum welL (a) Model for a sample grown at low temperature with 
growth interruption. (b) Model for a sample grown at high temperature 
without growth interruption. (c) Photoluminescence spectra of a sample 
with four quantum wells with different thickness grown at sgo•c with 
2-min growth interruption. (d) Photoluminescence spectra of a similar 
sample but grown at 720°C without growth interruption.6 

\ 
1.7 

There are four series of peaks each of which corresponds to one of the four quan-

t urn wells. In the case of Fig. 3( c), the spectrum of each quant urn well has several 

peaks corresponding to the variation of the well thickness by integral multiple of 

one monolayer thickness, a/2, where a is the lattice constant. On the other hand, 

the spectrum from each quantum well of Fig. 3(d) has a single broad peak. The 

sample of Fig. 3(c) was grown at 590°C and the growth was interrupted at each 

interface for 2 min, long enough for surface diffusion of atoms, and that of Fig. 

3( d) was grown at 120• C without any growth interruption. Because of the growth 

interruption and the low temperature growth, the lateral size of growth islands of 
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Figure 4 (a) Current and voltage characteristics of resonant tunnel-
ing observed in an Alo.sGao.7As(80A)/GaAs(50A)/ Alo.sG&o.7As(80A) 
double-barrier structure for the first time by Chang et a/.,8 (b) in 
an Alo.sG&o.7As/GaAs/ Al0 .sGao.7As double-barrier structure observed 
more recently by Huang et a/.9 

the sample of Fig. 3(c) is expected to be larger than the exciton diameter ("-'150A) 

as schematically illustrated in Fig. 3(a), while that of the sample of Fig. 3(d) is 

expected to be much smaller than the exciton diameter as illustrated in Fig. 3(b). 

The resonant-tunneling effect in a double-barrier structure was observed first 

by Chang et a/.8 and later been a subject of intensive studies. Figure 4(a) shows an 

example of current-voltage characteristics observed by Chang et a/.8 and Fig. 4(b) 

more recent experimental results of Huang et a/.9 A current maximum is observed 

at the applied voltage where the Fermi energy of the electrode coincides with the 

quasi bound state in the potential well. The ratio of current at maxima and that 

at minima has reached 3.9 at 300K and 14.3 at 77K for an Al0 .3 Gao.7As/GaAs 

system9 and 30 at 300K and 63 at 77K for an InGaAs/ AlAs/InAs system.10 Many 

electronic devices based on this structure were invented11 •ll and are still being 
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Figure 5 Temperature dependence of the Hall mobility of Alo.3sGao.asAs 
/ GaAs single heterostructure (open circles), together with some of land-
mark samples in the history of modulation-doped GaAs (closed circles).16 

pursued. The negative differential conductivity and Bloch oscillation due to the 

negative mass effect, which were predicted in the original paper by Esaki and 

Tsu,l have not been observed. All experimental data of negative differential con-

ductivity in superlattices have been interpreted by a microscopic high-field-domain 

formation. Quite recently Sibille et a/. 13 observed a reduction of differential con-

ductivity due to the negative mass effect, but could not find negative differential 

conductivity. 

Conduction of electrons in the direction parallel to layers was studied in 

GaAs/AlzGa1_zAs superlattices by Chang et a/. 14 for the first time in 1977. The 

observed electron mobility p. was merely 1200 cm2v-td-t, which is even smaller 

than that of bulk GaAs. In the next year, Dingle et al.U proposed the modulation-

doped structure, in which only AlzGa1 _zAs barrier layers are doped and carriers 

are introduced in GaAs potential wells spatially separatr.d from the ionized impuri-

ties. Owing to the modulation doping and more importnntly the progress of crystal 

growth techniques, the low-temperature mobility was improved considerably. Re-

cently, Pfeiffer et a/. 16 succeeded in achieving the highc~t mobility observed so far 

in a GaAs/ Alo.3sGao.65 As single heterostructure. As shown in Fig. 5, the observed 

mobility exceeds 107 cm 2V- 1s- 2 below 2 K. 
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Figure 6 Schematic illustration of the high-electron-mobility transistor . 
The current between source and drain electrodes is controlled by the 
voltage of the gate electrode. 

The high-mobility two-dimensional electron system attracted much attention. 

From the viewpoint of pure physics, this system is ideal for the study of various 

phenomena which are easily disturbed by impurity scattering and usually unob-

servable in other systems. The fractional quantum Hall effect was for example 

observed in this system for the first time.17 

In device application, the electron mobility ts one of the most important 

factors that determine the performance of electron devices. For example, the speed 

oflogic circuits constructed by field-effect transistors is determined by the charging 

and discharging time of the gate electrodes. These times are nothing but the 

traversal time of carriers in each transistor, i.e., the size of the transistor divided by 

the effective carrier velocity. Because the carrier velocity is usually proportional to 

the effective mobility, the high mobility in modulation-doped structures is certainly 

an attractive feature. 

In 1980, Mimura et a/.18 invented the high-electron-mobility transistor shown 

schematically in Fig. 6. Electrons are located close to the GaAs/ AlzGa1 - zAs in-

terface in the GaAs layer, separated from the donors in the AlzGa1-zAs layer. 

This high-performance device is now being used for · amplifiers in parabolic anten-

nas of the satellite television system. Integrated circuits with this device are being 

pursued. 
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Figure 7 Temperature dependence of the Hall mobility (for magnetic 
field 5kG) for three n-type bulk GaAs samples with donor densities 
5xl013cm-3 (A), 1015cm- 3 (B), and 5x10 15 cm- 3 (C).19 The open cir-
cles represent experimental results and dashed lines calculated results 
separated into contributions of different processes. 

Owing to extensive theoretical and experimental studies the low-temperature 

mobility in heterostructures parallel to the layers is now well understood. However, 

usual devices function around room temperature. Figure 7 gives the temperature 

dependence of electron mobility in bulk GaAs, which shows clearly that the polar-

optical-phonon scattering is dominant in determining the mobility above liquid-

nitrogen temperature. Therefore, it is necessary and desirable to understand the 

electron-optical-phonon interaction in heterostructures. At early stages, many cal-

culations were performed within a bulk-phonon model in which the usual Frohlich 

interaction with bulk LO phonons of the material of the well layer is assumed. 20 - 23 

It is known that optical phonons are strongly modified by the presence of 

interfaces. The simplest model that can demonstrate this fact is the so-called 

dielectric continuum model,24 - 28 in which each layer is replaced by a dielectric 

medium having a frequency-dependent dielectric constant. This model gives two 

kinds of modes, confined modes and interface modes. The confined modes have 

amplitudes only in one kind of layers and frequencies of either bulk LO or TO 
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Figure 8 Damping rate, i.e., (scattering rate) x h/2, of polarons in an 
AlAs/GaAs/ AlAs quantum well at 300K calculated in the dielectric con-
tinuum mode!.30 rc is the contribution of confined modes, r S+ and r 5-

are those of two kinds of interface modes, and r,., is the total damping 
rate, i.e ., r ••• =rc+rs++rs-· rs is the result calculated in bulk-
phonon model. 1'loA• is the change of wave vector for the LO phonon of 
GaAs which is almost independent of a. 

phonons. The interface modes, sometimes called the Fuchs-Kliewer modes, 29 have 

frequencies strongly dependent on the wave vector direction and amplitudes in 

both kinds of layers decaying exponentially away from interfaces. 

Various aspects of the electron-phonon interactions have been investigated in 

the dielectric continuum model. For example, Mori and Ando30 calculated the 

polaron scattering rate and magneto-phonon-resonance spectra for a GaAs/ AlAs 

single heterostructure and quantum well. Their result for the polaron scattering 

rate in a single quantum well is shown in Fig. 8. They found that the contribution 

of the confined modes decreases and that of the interface modes increases with 

decreasing layer thickness. The total scattering rate turned out to be very sintilar 

to that of the bulk-phonon model. 22 They showed that this is closely related to a 

sum rule existing among the form factors for the electron-phonon matrix element . 

Phonons in superlattices have been observed directly in Raman-scattering 

experiments and results have been analyzed based on a linear-chain model. In spite 

-9-



of the simplicity, this model is usually sufficient in describing modes with wave 

vector perpendicular to layers. It was applied to GaAs/ AlAs superlattices and 

showed that optical phonons are completely confined within either GaAs or AlAs 

layers.31 -~0 This result is consistent with that of the dielectric continuum model, 

since only confined modes are present even in the dielectric continuum model 

when the wave vector is perpendicular to layers. However, if we look at the results 

more carefully, they are completely in contrast to each other. In the dielectric 

continuum model, the displacement of ions in the z direction perpendicular to the 

layers becomes extremal at the interfaces. In the linear-chain model, however, the 

displacement vanishes at the interfaces. 

This disagreement between the result of the dielectric continuum model and 

the linear-chain model has led to a strong doubt on the validity of the former model 

and proposals of various new phonon models. Sawaki41 calculated the scattering 

rate in GaAs/ AlAs superlattices, assuming that electrons interact only with LO 

phonons confined to the same layer, i.e., those having nodes at the interfaces. The 

results showed that the scattering rate decreases with narrowing of the well layer 

in contrast to the result in the dielectric continuum model. Ridley41 imposed an 

artificial boundary condition on the confined modes of the dielectric continuum 

model that the z component of the displacement and the z derivative of the parallel 

components should vanish at the interfaces based on the result of Babiker.43
• The 

resulting scattering rate increases almost linearly with increasing layer thickness 

but its absolute value is much smaller than that obtained in the dielectric contin-

uum model. Huang and ZhuH proposed another boundary condition that both 

value and z derivative of the potential associated with lattice displacement should 

vanish at interfaces. This leads to vanishing displacement at the interfaces in 

agreement with the linear-chain model. This model was used also for the calcula-

tion of the scattering rate and gave another different answer.~ 5 Figure 9 illustrates 

schematically the displacements of a typical phonon with longest wavelength in 

these different models. 

The purpose of this thesis is to resolve such confusions and controversies and 

clarify the electron-optical-phonon interaction in semiconductor superlattices. We 
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Figure 9 Schematic illustrations of displacements of confined phonon 
modes with longest wavelength in models proposed by (a) Sawaki,41 (b) 
Ridley,42 and (c) Huang and Zhu .44 Dashed lines represent the result in 
the dielectric continuum model. The abscissa shows the z direction. 

proceed as follows: Firstly, we perform a !at tice-dynamical calculation of phonons 

in GaAs/ AlAs systems and clarify their essential features. Secondly, we develop a 

continuum approximation which reproduces the results of this calculation for long-

wavelength optical phonons dominating the electron-phonon interaction. Finally, 

we calculate the electron-phonon scattering rate using this model and compare the 

results with those obtained in different models. 

The organization is as follows: In Sec. 2-1, a brief review of the simple models 

for phonons is given. A lattice-dynamical method for calculating phonon spectra is 

presented in Sec. 2-2. Calculated results for GaAs/ AlAs superlattices are presented 

in Sec. 2-3. We develop an envelope-function approximation which reproduces the 

results obtained by the lattice-dynamical calculation quite well in Sec. 2-4. The 

results on GaSh/ AlSb and GaP/ AlP superlattices are presented in Sec. 2-5. Using 
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the envelope-function approximation, we calculate the electron-phonon interaction 

in GaAs/AlAs superlattices in Chapter 3. In Sec. 3-1, the method of calculation 

is presented. Numerical results are shown and are compared with the results in 

the bulle-phonon model and the dielectric continuum model in Sec. 3-2. In Sec. 

3-3, the completeness of phonon modes is shown to be the origin of the fact that 

scattering rates calculated in different models do not differ very much. Chapter 4 

is devoted to a summary. 
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Chapter 2 

Phonons in Superlattices 

2-1 Simple Models 

2-1-1 Linear-Chain Model 

One simple model for phonons in semiconductor superlattices is a linear-chain 

model with only nearest-neighbor interaction.1 - 9 This model is explained in many 

elementary textbooks of solid-state physics.1° For longitudinal phonons with wave 

vector along the [100] direction in crystals having the zinc-blende structure, each 

atomic layer perpendicular to the wave vector moves rigidly. Therefore, we can 

replace each atomic layer by one atom as shown in Fig. 1. The same is applicable 

to transverse modes with displacements in the [110] or [110] direction. A unit cell 

contains two atoms, which satisfy the following equations of motion 

(2.1) 

where M; and u; are the mass and the displacement, respectively, of atom i ( = c, a), 

c and a denoting cation (positive ion) and anion (negative ion) , respectively, ft 
and !2 are force constants, and • is the coordinate denoting cell number. We have 

ft = !2 for longitudinal modes and ft i= f2 for transverse modes. Usually ft ~ f2 
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or ft ~ f, because of the nature of the tetrahedral bond structure (see Fig. 16 of 

Sec. 2-3-3, for example). Substituting the solution of traveling wave 

(2.2) 

in Eq. (2.1), we obtain 

(2.3) 

where a is the lattice constant, q is the wave vector, w is the angular frequency, 

and U; = VM;u; is reduced displacement of atom i. Diagonalizing the dynamical 

matriz which is the coefficient of ul and u2, we obtain 

and 

4 M, + M4 2 2/th [ a w- MM (ft+h)w + MM 1-cos(q-2 )]=0, 
c a. e a 

a/2 

~I 
M c f I Ma M c f I Ma 

S- I s S+l 

Figure 1 A schematic illustration for bulk material with two atoms in a 
unit cell. 
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L____j 

m-1 
L____j 
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L____j 
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L____j 

1-1 
L____j 

0 

Figure 2 A schematic illustration for a superlat tice with l atomic layers 
of material 1 and m atomic layers of material 2. 

Turning now to the case of the superlattice shown in Fig. 2, the conventional 

method of lattice dynamics requires diagonalization of a 2n x 2n dynamical matrix 

with n=l+m. This model with ft=h was applied to GaAs/ AlAs superlattices 

for the first time by Tsu and Jha1 for calculations of phonon and polariton modes 

in 1972. They found that there are many optical modes in superlattices. Merz et 

a/. 2 and Barker et a/. 3 used it for analysis of Raman spectra and pointed out that 

ft and h should be different for TO modes. Figure 3 shows atomic displacements 

calculated in this model by Sawaki and Akasaki.4 They claimed that the envelope 

of the displacement can be described by sinusoidal curves having nodes at a plane 

in the vicinity of the interfaces. In general, this model gives the following results . 

In the frequency region where the bulk frequency of modes with the same symme-

try of two constituents overlap each other, phonon modes exhibit dispersion and 

the displacements extend through the whole crystal. On the other hand, in the 

frequency region where the bulk frequencies do not overlap, phonon modes are 

confined to either layer, exhibit no dispersion, and the displacements drop to zero 

at the interfaces. Similar results will be obtained in the lattice-dynamical calcu-

lation in Sec. 2-3. Note that this model is not applicable when the wave vector is 

not perpendicular to the layers. 

For superlattices with long period, the direct numerical diagonalization of the 

dynamical matrix is quite time consuming. Jusserand et al.6 proposed a convenient 

method in which solutions of bulk phonons are matched at the interfaces and the 

· problem is reduced to an eigenvalue problem of 4 x 4 matrix. See Appendix A for 

more details. 

- 17-



-~-~~~ 4953mc~~--~·~.~ 
---

GaAs •""Q. 

48.1 8 mcV j. 
,-~: 

•Ga o AI • As 

Figure 3 Dispersion relation and displacement of ions of some LO modes 
in a (GaAs)-t(AlAs) 4 superlattice calculated in the linear-chain model.i 

2-1-2 Elastic Continuum Model11 - 14 

If each layer is much thicker and the wave length is much larger than the lattice 

constant, we can use an elastic continuum model for acoustic modes. An elastic 

wave propagating along the z axis is then subject to the equation 

(z/
2
u(z) = !!_[C(z/u(z)], 

p {)t 2 {)z {)z 
(2.6) 

where p(z) is a mass density, C(z) is an elastic constant, and u(z) is an atomic 

displacement at z. More explicitly 

(I= 1, 2), (2.7) 

which has a solution 

( ) _A i [q,(w)z-wt] + B -i [q,(w)z-wt] u1 z - 1e ze . (2.8) 

-18-

Substituting this solution into Eq. (2.7), we obtain 

w ~~ --= -=vz. 
qz(w) PI 

(2.9) 

We impose two boundary conditions at each of two interfaces: the continuity of 

the displacement 

and the continuity of the stress 

u1(z) = u2(z), 

C 8u1 _ C 8u2 
1 {)z - 2 {)z . 

(2.10) 

(2.11) 

These conditions give a 4x4 secular equation, which leads to the dispersion relation 

[ ( d
1 d2 )] <'

2 
• ( wd1 ) • ( wd2) cos( qd) = cos w - + - - - sm -- sm -- , 

v1 v2 2 v1 v2 
(2 .12) 

with 

P2v2 - P1 v1 
<' = (p2v2P1 v1)1/ 2 ' (2.13) 

where q is the wave vector, d1 and d2 are the thickness of the layer and 2, 

respectively, and d = d1 + d2 is the superlattice period. This dispersion is similar 

to that of the Kronig-Penney model for electrons. Because <' is usually small 

(<2 /2~10- 2 for GaAs/AIAs), the second term in the right hand side ofEq. (2.12) 

can be neglected and we obtain 

(
dl d2) 

q(d1 + d2) = ±w - +- + 21rv, 
v1 v2 

v=O, ±1, ±2 ... (2.14) 

which corresponds to an average of the elastic dispersions of two materials folded 

at new Brillouin zone boundaries. The sound velocity is given by the following 

average 

v1 v2 ( d1 + d2) 
v = d1 v2 + d2v1 · 
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(2.15) 



If we take into account nonvanishing €, small gaps open up at the center and the 

edges of the folded Brillouin zone. This result will be confirmed by the lattice-

dynamical calculation in Sec. 2-3 . 

2-1-3 Dielectric Continuum Model 

In the frequency region of optical phonons, we can adopt another continuum model 

called "a dielectric continuum model." 15 - 19 This model can be used only in the 

long wavelength limit, where the dispersion of optical modes can be ignored com-

pletely. 

We write the displacement of cations and anions as ue(r, t) and ua(r, t), re-

spectively. The equations of motion are given by 

Meiie(r, t) = - f [ue(r, t)- Ua(r, t)] + ZeE(r, t), 

Maiie(r, t) = f [ue(r, t)- Ua(r, t)]- ZeE(r, t), 

(2.16) 

(2.17) 

where Me and Ma are the mass of cations and anions, respectively, f is the force 

constant, Ze is the effective charge, and E is the electric field. With the reduced 

mass M = MeMa/(Me+Ma) and the envelope of the relative displacement u = 

-w 2 Mu(r,t) = -Mw?0 u(r, t) + ZeE(r,t), (2.18) 

where WTo = .jTfM is the TO phonon frequency. The displacement of anions 

and cations are determined by Ue = Mau/(Ma +Me) and Ue = -Meu/(Ma +Me), 

respectively. 

The polarization P is determined by 

P = nZeu + a;E, (2.19) 

where the second term represents the effect of the deformation of ions, a; is a 

appropriate coefficient, and n is the number of cation-anion pairs in a unit volume, 
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i.e., n = 4/a
3 

for zinc-blende crystals. Combining Eqs. (2.18) and this equation 
-~~ ' 

p = (M( (:e)2n 2) + a;)E. 
WTO -w (2.20) 

The electric displacement D becomes 

D = E + 4,..p = €(w)E (2 .21) 

where €(w) is the dielectric constant at frequency w, given by 

(2.22) 

with €oo the high frequency dielectric constant and wLo the LO phonon frequency. 
We have 

and 

€oo -I 
O'i==~, (2.23) 

(2.24) 

with €o the static dielectric constant. Th LO fr e equency wLo is given by the 
Lyddane-Sachs-Teller relation 

and the displacement is related to the electric field through 

I 
u = 4;;;Ze-(€(w)- €oo]E. 

This model is equivalent to Maxwell's equations 

rotE= 0, 

divD = 0. 
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(2.25) 

(2.26) 

(2.27) 

(2.28) 



In terms of the electrostatic potential ~. defined by 

E = -v~. 

we obtain 

~(w) b. ~(r) = 0. 

In superlattices, ~ can be expanded as 

~(r) = L ~q11 (z)ei(qu•u-w<), 
qll 

(2 .29) 

(2.30) 

(2 .31) 

where '111 is the component of wave vector parallel to the layers. Substitution of 

Eq. (2.31) into Eq. (2.30) yields 

(2.32) 

This equation is satisfied for 

~(w) = 0 (2.33) 

or 

(2 .34) 

For solutions satisfying Eq. (2.33) in layer 1, for example, we obtain w = wr.o 

from Eq. (2.22). In general, the LO phonon frequencies in layers 1 and 2 are 

different . Then, in layer 2, the potential must satisfy Eq. (2.34) . The continuity 

of z component of D requires that the z derivative of~ vanishes at the interfaces, 

leading to ~ = 0 in layer 2. Moreover, the continuity of the potential at the 

interfaces requires that the potential inside layer 1 vanishes at the interfaces. We 

choose the coordinate system in such a way that one layer of l = 1 occupies region 

0 < z < d1 and that of l = 2 occupies region -d2 < z < 0. Then, the potential ~q11 in 

these layers can be writ ten as 

~q11 (z) ex: sin(~~ (z- zc,d) m = 1, 2,3 ... , (2 .35) 
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where zc, 1 = 0 and zc,2 = -d2. For simplicity, we assume that qll is in the zz plane. 

The displacement can be obtained from Eq. (2.26) as 

(2.36) 

where u is a normalization coefficient. These modes are infinitely degenerate, since 

their frequency is independent of m. There are also infinitely degenerate transverse 

modes with frequency WTo and nonzero amplitude only in one of the layers. These 

modes are all called "confined modes." 

Next, we consider solutions of Eq. (2.34) which are called "interface" or 

"Fuchs-Kliewer" modes. 20 We have 

(2.37) 

m each layer, where ZJ,t = dt/2, ZJ,l = -dl/2, C's are coefficients to be deter-

mined, and subscripts A and S denote symmetric and antisymmetric components , 

respectively. The boundary conditions of continuity of the parallel component of 

E and the perpendicular component of D can be written as 

(2.38) 
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with ez( w) the dielectric function of bulle material l. This set of equations has a 

solution if and only if 

(2.39) 

In the following, we will confine ourselves to the case that layers 1 and 2 

have same thickness dt = d2 = d/2, for simplicity. First, we should note that 

the frequency depends on the direction of the wave vector close to the r point 

q,. =q• = q, = 0. The anisotropy is given by the equation: 

1 (e2(w) Et(w)) ( 2 ) 2 Et(w) + e2(w) =-
1 + tan2 () · (2.40) 

The displacements are independent of z within each layer and given by 

Uz = IT-[ez(w)- Eoo,zl ( ~ ) u 
1rn ze cot 4>1 

(I = 11 2), (2.41) 

where u is a normalization coefficient and </> 1 and </> 2 are determined by 

(2.42) 

When the wave vector parallel to the layer is nonzero, i.e., q,. =f. 0, the dis-

placement becomes exponentially localized, u(z) ex exp( -lq,.zl), as a function of 

the distance z from the interface. In particular, for q, =0 and q,.=f.O, i.e., ()=.,../2, 

Eq. (2.39) reduces to e1 (w) = -e2 (w) independent of q,. . The modes are dou-

bly degenerate, and their frequencies are determined by setting () = ?r/2 in the 

above equation, i.e., by the condition that e1 (w) = -e2 (w) independent of q,. . The 

displacements are given by 

(2.43) ( icoshq,.~z - z1 ,1)) u 

sinh q,.(z - ZI,l) 
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and 
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Figure 4 Phonon dispersion in a (GaAs)r(AlAs)r superlattice calculated 
in the dielectric continuum model. 

1 ( i sinh q,.(z- z1,z)) 
Uz=(-1)1

-
4 

z [ez(w)-e00 z]exp(iq,.:z:) 0 u 
1rn 1e ' · 

cosh q,.(z- ZI,z) 
(2.44) 

Figure 4 shows the phonon dispersion of a (GaAs)r(A!As)r snperlattice cal-

cnlated in the dielectric continuum model. The interface modes have a frequency 

lying between wr.o and WTO of GaAs and between WLO and WTo of AlAs. Further, 

they exhibit strong dependence on wave vector direction at the r point . There are 

infinitely degenerate confined modes at wr.o and wTo of both GaAs and AlAs. Fig-

ure 5 shows some examples of lattice displacements of GaAs like interface modes 

having larger amplitude in the GaAs layer. At the r point, the displacement is 

independent of z but its relative amplitude in the GaAs and AlAs layers varies as 

a function of() [see Eqs. (2.40)-(2.42)] . For a nonzero wave vector parallel to the 

layer, the displacement decreases exponentially away from the interfaces. 
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Figure 5 Displacements of ions for two interface modes in a (GaAs)7 
(A!As)7 superlattice (a) at the r point and the direction I) = 7r/4 and 
(b) at q = (0.2 x 211: fa, 0, 0) calculated in the dielectric continuum model. 
The solid lines represent displacement of Ga, the dotted lines represent 
that of Al, and the dashed lines represent that of As. The thin vertical 
straight lines indicate the interface position. The inset shows a part 
of the dispersion curve given in Fig. 4 and the modes are indicated by 
the arrows. (a) and (b) should be compared with the lattice-dynamical 
results given in Figs. 12( a) and 14(b ), respectively. 
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2-2 Lattice Dynamicsn 

The three models discussed in the above section give us much informa tion about 

phonons in superlattices. However, their applicability is restricted and the validity 

of these models for real superlattices remains questionable. In the following, we 

investigate phonons in superlattices by lattice-dynamical calculation and develop 

a continuum approximation for long-wavelength optical phonons. In addition t o 

the present work, several calculations of the phonon modes in realis tic models 

were reported .22 - 27 Richter and Strauch24 employed a valence-overlap shell-model , 

Ren, Chu, and Chang25 a rigid-ion model with eleven parameters. Chu, Ren , and 

Chang26 combined the linear-chain model with the dielectric continuum m odel 

to explain the origin of the interface modes. Many review articles28
-

34 on the 

phonons in superlattices have been appeared. 

We use a rigid-ion model containing three parameters. The short-range forces 

are treated in the valence-force-field model , in which the potential energy for bond 

stretching, 6E0 , and for bond bending, 6E1, is given by 

1 (6d) 2 

6Eo = 2Co d (2.45) 

where Co and C1 are force constants, d is the equilibrium bond-length, and 61) 

the deviation from the equilibrium angle between adjacent bonds. The long-range 

Coulomb force is taken into account by a rigid-ion model characterized by an 

effective charge Ze and calculated by using the conventional Ewald method . Since 

€ 00 of bulk III-V compound semiconductors do not differ much, we neglect the 

small image potentials. 

The three parameters C0 , C1 , and Z are determined as follows. First, we ne-

glect the effective charge Z. The frequency of LO and TO phonons at the r point 

is given by w~ =64(Co+8Ci)j9Ma2 , where M is the reduced mass of cation and 

anion, and a is the lattice constant. This frequency is fitt ed to Jwl0 /3+2wi0 /3 
where wr.o and WTo are the observed LO and TO frequencies, respectively, at the 

r point. The dispersion in the r-X direction or the band width of the TO phonons 

is determined by the ratio C1/C0 • The observed dispersion along r-X direction 
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is well reproduced by choosing Cl/Co ::::; 0.025 for both GaAs and Ge, for which 

reliable experimental results are available. The same ratio is chosen for AlAs be-

cause the amount of the dispersion is not well known and the short-range force 

constants are expected to be only weakly dependent on the constituent atoms. 

Strictly speaking, the phonon spectra are subject to additional modifications by 

the introduction of the effective charge. For example, the Coulomb interaction 

gives rise to a slight increase of the amount of dispersion of TO phonons along the 

r-X direction. However, such effects are small and the main role of the Coulomb 

interaction is to cause the splitting of LO and TO modes. The effective charge 

Z is thus determined easily so as to reproduce the splitting of LO and TO pho-

nons at the r point. The parameters are given in Table . For the calculation 

in superlattices the parameters C0 , C1 , and Z at the interface are also required. 

The interface parameters are determined simply by an arithmetic average of the 

corresponding bulk values. 

Figure 6 shows the phonon dispersion along r-X of bulk GaAs and AlAs 

calculated using the present parameters, together with experimental results.35 - 38 

The first Brillouin zone is given in Fig. 7 (a). The frequency is given in units 

of THz (1THz=10 12Hz=4.14meV). The present model reproduces all important 

characteristic features of the phonon modes. There remain some disagreements, 

especially for the frequencies at the X point of GaAs. This insufficiency is inherent 

to the valence-force-field model and cannot be overcome without increasing the 

number of parameters. In spite of this slight inadequacy the present model is 

certainly sufficient for the present purposes. 

2-3 GaAs/ AlAs Super lattices 

2-3-1 r-z Direction 

Figure 8 shows calculated dispersion relation of a (GaAs)r(AlAs)r superlattice. 

The first Brillouin zone is given in Fig. 7 (b). Let us first concentrate on the 

dispersion along the r-z direction (the left panel). The results are essentially 

the same as those calculated in a simple linear-chain model with nearest-neighbor 

force constants, which is reasonable because the present model comes down to 
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Me {a.u.) Ma {a.u.) Co (eV) C1 (eV) z <'oo 
GaAs 69 .72 74.92 38.38 0.96 2.18 10.9 
AlAs 26.98 74.92 38.93 0.97 2.23 8.16 
GaP 69.72 30.97 39.62 0.99 2.06 8.38 
AlP 26.98 30.97 39.56 0.99 2.28 7.5 

GaSb 69.72 121.75 39.11 0.98 2.99 14.44 
AISb 26.98 121.75 37.84 0.95 1.86 9.88 

Table I Parameters used for the present calculations. The mass of 
anions and cations are denoted by Me and Ma, respectively, Co and C1 
~re t~e force constant for bond-stretching and bond-bending, respectively, 
m umts of eV, and Ze is the effective charge. 

(a) 
GaAs 10011 

10 o Raman 
o Neutron 

1.0 
Wave Number (units of 2 1r/a ) 

N" 
:r: 
':::::. 
>-
" c .. 
:::> 
0" .. 

c::: 

(b) 

0.5 1.0 
Wove Number (units of 21'7"/o) 

~igure 6 Disp~rsio~ relation of phonons in bulk GaAs (a) and AlAs (b) 
m the (001] direchon calculated in the valence-force field model with 
three parameters Co, C1, and Z together with experimental results. The 
circles in (a) are determined by Raman scattering35 and the squares by 
neutron scattering.36 The circles and squares in (b) are both determined 
by Raman scattering,37

•
36 but the latter in superlattices with different 

AlAs layer thicknesses. 38 
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Figure 7 (left) The Brillouin zone in bulk (a) and in a (GaAs),.(AlAs),.,. 
superlattice with n+m an even integer (b). The point X, in (b) is the 
same as the X point in the qz direction in (a). 

Figure 8 (right) Calculated phonon dispersions in a (GaAs)7(AlAs)7 su-
perlattice grown in the [001] direction. The left panel shows the dis­
persion along the r-z direction (See Sec. 2-3-1), the middle panel the 
dependence on the direction of the q vector at the r point (Sec. 2-3-2). 
The right panel shows the dispersion along the r-X,. The modes denoted 
by arrows are interface modes (Sec. 2-3-3). 

a linear-chain model with force constants up to next nearest-neighbor ion pairs. 

The long-range Coulomb interaction turns out to be not important because its 

force range is effectively reduced and its role is only to slightly modify nearest-

neighbor and next nearest-neighbor force constants. In the region where the bulk 

frequencies of GaAs and AlAs overlap, acoustic modes are obtained by folding in 

reciprocal space and adding a very small level repulsion at mode crossings (except 

for modes with different symmetries), as discussed in Sec. 2-1-2. All the other 
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AlAs GoAs AlA s 

Figure 9 Calculated displacements of ions for the highest-energy LO mode 
(top) and TO mode (bottom) confined to the GaAs layer at the r point. 
The closed circles show the displacement of As ions, the open circles 
that of Ga ions, and the squares that of AI. The inset shows a part of 
the dispersion curve given in Fig. 8 and the modes are indicated by the 
arrows. The dashed lines represent the displacements calculated in the 
envelope-function approximation to be introduced in Sec. 2-4. The thin 
vertical straight lines indicate the position of interfacial As planes and 
the vertical dotted lines the interface position in the envelope-function 
approximation. 

modes for which bulk frequencies do not overlap, i.e., all the optical modes and 

some of TA modes, are confined to either GaAs or AlAs layers and exhibit only 

small dispersions. 

Figures 9 and 10 give calculated displacements of ions for highest energy LO 

and TO phonons confined to the GaAs and the AlAs layer, respectively, at the 

r point (the wave vector approaches the r point in the z direction) . The TO 

phonons are doubly degenerate and the figures show the modes having vanishing 

amplitude in the y direction at the center of the GaAs or AlAs layer. Strictly 

speaking, a small amplitude in they direction in the vicinity of the interfaces does 

remain. The envelopes of displacement of individual ions are well approximated 
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Figure 10 Calculated displacements of ions for the highest-energy LO 
mode (top) and TO mode (bottom) confined to the AlAs layer at the r 
point. 

by srne curves with nodes between As and AI atomic planes for the GaAs-lilce 

mode and at Ga atomic planes for AlAs-like modes. Calculations for different 

cases reveal that in general the effective thickness for GaAs-lilce LO modes is 

(n+0.5) x (a/2) for (GaAs)n(AlAs),. superlattices. On the other hand, in the 

case of AlAs-like LO phonons, the effective thickness is (m+1) x(a/2). The latter 

is in agreement with but the former is quite in contrast to previous suggestion39 

that the thickness is always larger by one monolayer than that of the GaAs or 

AlAs layer. For transverse modes, the effective thickness is larger than that for 

longitudinal modes, i.e., ~ (n+0.7) x (a/2), ~ (rn+ 1.3) x (a/2), for GaAs- and 

AlAs-like modes, respectively. Further, the thickness increases slightly for shorter 

wave lengths in case of GaAs-like modes. Ren et a/. 25 have obtained a similar 

conclusion for GaAs-lilce modes but claimed that the thickness for AlAs-like modes 

is also given by (m+0.5)x(a/2). On the other hand, Richter et az.2 4 have obtained 

the conclusion that the effective thickness is one monolayer larger for both GaAs-

and AlAs-like modes in agreement with the linear-chain model. These results 

suggest that the effective thickness depends strongly on models. 
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Various experiments have already demonstrated the confinement of optical 

phonons in GaAs/AIAs and GaAs/ Al.Ga1 _.As superlattices.3 •5 - 8 There have 

also been some attempts to determine experimentally the effective thickness for 

the GaAs- and AlAs-like optical modes in (GaAs)n(AIAs),. superlattices. Sood 

et a/.'0 compared observed Raman spectra of GaAs-lilce optical phonons in su-

perlattices with the bulle dispersion determined by neutron experiments. Similar 

experiments have been carried out also by Ishibashi et a/. 41 In these experiments, 

the observed spectra have been explained reasonably well by the bulle dispersion 

for small wave numbers, by assuming a simple confinement effect corresponding to 

the effective thickness na/2. For large wave numbers, however, there remain sig-

nificant discrepancies which strongly suggest that the effective thickness should be 

larger than na/2. Ishibashi et alY observed Raman spectra for AlAs-like modes 

and demonstrated also that the effective thickness should be larger than rna/2 . 

Wang et a/. 38 determined by similar experiments the dispersion in bulle AlAs, 

shown in Fig. 1(b ), assuming the effective thickness ( rn+ 1)af2. 

2-3-2 Dependence on Wave Vector Direction 

As is shown in the middle panel of Fig. 8, there are essentially four modes which 

exhibit a strong dependence on the direction of the wave vector q, in terms of 

the angle 6, defined by tan 6 = q.fq, with q = Jq! +q;-> 0. These modes lie in 

energy roughly between the TO and LO phonons of bulk GaAs and AlAs. The 

four strongly 6-dependent modes correspond to the interface modes appearing in 

the dielectric continuum model discussed in Sec. 2-1-3, as has already been noticed 

by Richter et az.24 and Ren et a/. 25 

Figure 11( a) gives the 6 dependence of the optical modes with frequency close 

to that of the optical phonons in bulk GaAs, together with the results calculated 

in the dielectric continuum model. The presence of dispersion causes splittings of 

phonons with different number of nodes in the GaAs layer. The highest frequency 

mode at 6=0 (v=8.71THz), which is longitudinal, has no node, and is lowered in 

frequency at 6 = 0 by the confinement effect, exhibits strong 6 dependence. The 

longitudinal mode with the second highest frequency at 6=0 (v=8.56THz) with a 
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Figure 11 Dependence of the frequency of the modes lying in the vicinity 
of the 10 and TO phonons in bulk GaAs (a) and in bulk AlAs (b) on 
the wave vector direction at the r point . The angle 0 = 0 corresponds to 
the z direction, i.e., [001], and 0 = 1rj2 the z direction, i.e., [100]. The 
solid lines represent the lattice-dynamical results (VFF), the dotted lines 
those of the conventional dielectric continuum model (DCM), and the 
dashed lines those of the envelope-function approximation (EFA) to be 
introduced in Sec. 2-4. 

single node is independent of 0. In general, all modes with odd nodes do not exhibit 

any 0 dependence at alL The third mode (v = 8.33THz at 0 = 0) has two nodes, 

shows a small 0 dependence, but interacts strongly with the Fuchs-Kliewer modes 

at 0 = 1r: / 2. The mode with v = 8.03THz at 0 = 0 is a long-wavelength transverse 

phonon, i.e., with no node in the GaAs layer. It exhibits a 0 dependence quite 

similar to the lower-branch Fuchs-Kliewer mode. The results for AlAs-like optical 

modes are shown in Fig. ll(b) . 

Figures 12 and 13 give corresponding atomic displacements oflong-wavelength 

optical modes with frequencies close to the optical-phonon frequency of bulk GaAs 

at 0 = 1r /4 and 0 = 1r j 2, respectively.· [The displacements at 0 = 0 have already 
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Figure 13 Calculated displacements of ions for two modes at the r point 
and the direction 0 = 1r /2. v = 8.43THz (top) and v = 8.28THz (bottom) . 

been given in Fig. 9.] All these figures show that the displacement in the AlAs 

layer is nearly independent of the position, in agreement with the prediction of 

the dielectric continuum model. However, the displacements in the GaAs layer 

strongly depend on position and cannot be described by the dielectric continuum 

model except for a few modes whose displacements in the z direction are nearly 

independent of z. Although not shown explicitly in the figures, these modes exhibit 

small displacements also in the y direction, especially in the vicinity of interfaces. 

The same applies to the modes with nonvanishing qz . Figure 14 gives displace-

ments of a GaAs-like Fuchs-Kliewer mode at q = (0.2 x27r/a, 0, 0) with v=8.30THz 

and 8.14THz. The displacements in the AlAs layer decrease exponentially with 

distance from the interface, but those in the GaAs layer are much more compli-

cated and cannot be described by Eqs. (2.43) and (2.44). 

Figure 15 shows displacements of an AlAs-like Fuchs-Kliewer mode at q = 

(0.2 x 21rja, 0, 0) with v = 11.20THz, which turns out to be quite similar to the 

GaAs-like modes. Again, it is clear that the results cannot be reproduced by the 

dielectric continuum model. A more appropriate approximation is highly desirable 
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Figure 14 Calculated displacements of ions for two modes with wave 
vector (0.2 x 21rja, 0, 0). (a) v = 8.30THz and (b) v = 8.14THz. The 
displacements in the AlAs layer decay exponentially with increasing dis-
tance from the interface in agreement with the prediction of the dielect ric 
continuum model . In the GaAs layer, however, they are quite different 
from those predicted in the dielectric continuum model. 
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Figure 15 Calculated displacements of ions for a mode with wave vector 
(0.2 x 21rja,O,O). v=11.20THz. 

and will be introduced in Sec. 2-4. Richter and Strauch24 made similar comparisons 

of their results and pointed out some similarity with the dielectric continuum 

model. 

2-3-3 Interface Modes at Transverse X Point 

Let us next concentrate on the dispersion along the (100] direction shown in the 

right panel of Fig. 8. The dispersion curves resemble those of bulk AlAs and GaAs 

after folding in the (001] direction. At the transverse X point, there are three 

modes (each of which is doubly degenerate in frequency) localized at the interface 

(indicated by arrows in Fig. 8), although two of them cannot be identified easily 

because their frequencies are embedded in the frequency region of other modes. 

Figure 16 shows atomic displacements for the isolated mode at 6.75 THz. The 

displacements are confined in three atomic planes consisting of Ga, interfacial As, 

and Al. The As ions in the planes sandwiching the three planes remain fixed . 

This characteristic is applicable to all six interface modes and can be understood 

in terms of the nature of the tetrahedral bond structure. The Ga and Al atoms 
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Figure 16 Atomic displacements for a localized interface mode at the X, 
point (v= 6.75THz). The interfacial As atoms move in the (001] direct ion 
and the Ga atoms below move in the TJ direction for which the restoring 
force from the lowest As layer is smallest. The same is applicable to the 
Al atoms lying above the interfacial As atoms, i.e., they move in the ~ 
direction. The As atoms sandwiching the Al, As, and Ga layers exhibit 
essentially no displacement . Displacements for the other two interface 
modes are obtained by changing the phase of the oscillations of the Ga 
and Al atoms. 

Interface Mode 2 3 
Present Calculation 10.25 6.75 2.89 

Molecular Model 10.23 6.74 3.00 

Table I Comparison of frequencies of interface modes (THz) at the X, 
point with a three-plane molecular model consisting of AI, interfacial As, 
and Ga planes. 

move in the direction where the force from the As planes sandwiching the vibrating 

Ga-As-Al planes is small. As a matter of fact, it turns out that the six interface 

modes at the transverse X point are well reproduced by a molecular model in which 

the interfacial As atoms move only in the z direction and the adjacent Ga and Al 

atoms move only in~ or TJ directions, where ~=(z+y)/../2 and TJ= (-z+y)j../2. 

The long-range Coulomb force is not important and may therefore be neglected 
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completely. Table II compares frequencies calculated in the molecular model with 

the present results. Finally it is noted that similar interface modes can appear 

also at other symmetry points. 

2-4 Envelope-Function Approximation 

In the previous section, it has been demonstrated that the phonons in GaAs/ AlAs 

semiconductor superlat tices, which originate from bulk optical phonons of each ma-

terial, show a complex behavior. Neither the linear-chain model nor the dielectric 

continuum model alone can reproduce the spectra estimated from a microscopic 

calculation. As a matter of fact, the linear-chain model is only applicable when 

the wave vector is perpendicular to the growth direction. The dielectric contin-

uum model, on the other hand, fails to properly describe the confinement of the 

amplitudes in each layer, although it can successfully describe some features of the 

interface or Fuchs-Kliewer modes with amplitudes in both layers. 

The long-wavelength optical phonons are known to play vital roles in var-

ious phenomena involving electron-phonon interactions. Therefore, it is highly 

desirable to develop an approximation scheme that can fully reproduce the impor-

tant features of such optical phonons. We propose the following envelope-function 

approximation: 

(i) We employ the continuum approximation in which we consider only the en-

velope u(r ), which satisfies the equation: 

(w 2
- wi-0 )u(r) = H(qz,qy, .

8
8 )u(r)- ZeE(r) . 

1Z M 
(2.46) 

with E(r) being the macroscopic electric field determined by the polarization 

P(r)=4(Zefa3 )u(r) through the integral, 

E(r) = 'i1 fdr' 'il'. P(r')' 
~oolr- r'l 
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(2.47) 

A( x 1o-•) B( x 10 "1 ) C( x 1o · •) WTo(THz) 
GaAs -1.88 -1.02 -1.64 8.05 
AlAs -1.65 -0.87 -1.37 10.82 
GaP -1.70 -0.92 -1.44 10.95 
AlP -2.17 -1.09 -1.83 13.17 

GaSh -1.52 -0.90 -1.37 6.91 
AlSb -1.04 -0.70 -0.88 9.56 

Table III Empirical parameters for the effective Hamiltonian matrix in 
Eq. (2.48) in units of WTo 2a 2. 

where H is a 3 x 3 matrix Hamiltonian given by 

and M is the reduced mass 

Cq~q• 
Aq;+B(q:+q;) 

Cq,q• 

(2.48) 

(2.49) 

The parameters A, B, and C are determined so as to reproduce the bulk 

dispersions in the long-wavelength limit, calculated by neglecting terms de-

scribing macroscopic electric field in the dynamical matrix, i.e ., those giving 

rise to the splitting of LO and TO phonons at the r point. For GaAs, we 

have A~ -1.88 x 1o-•, B ~ -1.02 x 10 - 2 , and C ~ -1.64 x 10- 2 in units of 
2 l p 

WToa • arameters for the other materials are given in Table III. 

(ii) w e neglect the presence of dispersion of phonons in the AlAs layer, i.e., set 

A = B = C = 0 in Eq. (2.48), when calculating GaAs-like optical phonons, 

and vice versa. This approximation is valid since the amount of dispersion, 

i. e., the band width , of bulk phonons is smaller than the energy separation 

between optical phonons in bulk GaAs and AlAs. 

(iii) We impose the boundary conditions that the envelopes should vanish at an 

appropriately chosen boundary plane. As has been discussed in the previous 
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section, the boundary plane for the GaAs-like modes is chosen at the midpoint 

of As and AI atomic planes, and that for the AlAs-like modes is chosen at 

the Ga atomic plane. For practical purposes, such as in discussing electron-

phonon interactions, such fine distinctions are not necessary and the boundary 

plane can be chosen at the interfacial As plane as well . 

(iv) A further simplification is obtained by neglecting the anisotropy of the disper-

sion. The dispersion becomes isotropic when A= B+C. Since the anisotropy 

is small, we may, for example, make the replacement, 

A-+A+5, 

B-+B-6, (2.50) 

C-+C-6, 

with 

6=(B+C-A)j3, (2.51) 

to obtain the parameters for an isotropic model. In this simplification, lon-

gitudinal and transverse modes are completely decoupled for wave vectors in 

non-symmetry directions. 

The validity of these boundary conditions described in (iii) was carefully ex-

amined by Akera and Ando42 using lattice dynamics. They are easily justified 

when the wave vector is perpendicular to the layers, because the problem reduces 

to that of a linear chain. For general directions of the wave vector, the condi-

tions are modified by the presence of a macroscopic electric field, but the effects of 

such modifications are shown to be negligible for normally confined modes.42 The 

only exceptions are the Fuchs-Kliewer or interface modes exhibiting a strong angle 

dependence at the r point. However, these modes are essentially determined by 

the macroscopic electric field alone and details of the boundary conditions are not 

important. The detailed explanation of their results is given in Appendix B. Fur-

thermore, the numerical results given in the previous section confirm the validity 

of these boundary conditions even for the interface modes. 
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Figures 9-15 already contain the result s calcula t ed in the envelope-function 

approximation. In this calculation, anisotropic phonon dispersion was used. This 

approximation is not only clearly superior to the simple dielectric continuum 

model, but it almost exactly reproduces the results calculated directly using the 

valence-force-field model. 

Unfortunately, the present approximation cannot directly be applied to 

GaAs/ AlzGat-zAs superlattices, which have been subject of many experimen-

tal studies on phonons and electron-phonon interactions. In these superlat tices, 

the alloy AlzGat-zAs layer is known to have two distinct branches of optical pho-

nons, one close to the optical phonon in bulk GaAs and the other close to that 

in AlAs. So far, only a limited number of theoretical investigations on phonons 

in such alloy cases have been reported . Arora et a/.'3 investigated Fuchs-Kliewer 

modes in the dielectric continuum model in which the AlzGa1_zAs layer has a di-

electric function with two poles and two zeros corresponding to the two branches 

of optical phonons in AlzGa1-zAs. Kobayashi and Roy44 calculated the density of 

states of several GaAs/ AlzGat-zAs superlattices within a model of nearest- and 

next nearest-neighbor force constants for large but finite clusters. Jusserand et 

a/. 45 calculated phonon modes in a linear-chain model in which the AlzGat-zAs 

layer is replaced by a fictitious material having an optical phonon corresponding 

to the GaAs branch. Babiker46 proposed a continuum version of this model and 

extended it to general wave vectors. The validity of such models still remains to 

be justified, however. 

2-5 GaSb/ AlSb Superlattices 

It has been shown in the previous section that optical phonons in GaAs/ AlAs 

superlattices are well confined to GaAs or AlAs layers except for the presence of 

interface modes having amplitudes in both layers, and that all long-wavelength 

phonons are reproduced almost exactly by the envelope-function approximation. 

These results are a direct consequence of the fact that the frequencies of the optical 

phonons of the constituent materials do not overlap and are therefore valid in many 
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Figure 17 Dispersion relation of phonons in bulk GaSh (solid line) and 
A!Sb (dashed line) in the [001] direction calculated in the valence-force 
field model with three parameters Co, Ct, and Z · 

different systems which fulfill this condition. As demonstration we investigate 

strained GaSh/ A!Sb systems in this section. 

The lattice constants of bulk GaSh and A!Sb are 6.059 and 6.135 A, respec-

tively, and their difference, i.e ., the lattice mismatch, is 1.2 % and quite large. It 

is assumed here that in a superlattice grown using these materials, the lattice mis-

match between layers is totally accommodated by strain in the layers, so that no 

misfit defects are generated at the interfaces. The maximum allowable layer thick-

nesses of such a strained-layer superlattice is a function of the lattice mismatch. A 

(GaSb)r(A!Sb)r superlattice, considered in the following, is well below this limit. 

For simplicity, we assume the lattice constant to be an arithmetic average of GaSh 

and A!Sb and neglect changes in the force constants and effective charges caused 

by the strain. This approximation is sufficient for the present purpose. 

The dispersion relations of bulk GaSh and AlSb in the r-z direction calculated 

in the valence-force-field model are shown in Fig. 17. Corresponding parameters 

-44-

7.4 ..----,----.----, 
-VFF 
--- - EFA 

7.3 ········ OCM 

N 
I 
f-

~ 7.2 ··••c::::::.···- ---· --- ···-----··---··---

>-
u c 
!?5 5 
CT 
<1> 

t.:= 

z o·rso· 

f-

>-
u c 
~ 7.1 
CT 
<1> 

t.:= 

7.0 

··. 

0 30 60 
8 (degl 

Figure 18 (left) Calculated phonon dispersion relation in a (GaSh h 
(A!Sb)r superlattice grown in the [001] direction. 

Figure 19 (right) Dependence of frequency for modes lying in the vicinity 
ofLO and TO phonons in bulk GaSh on the wave vector direction at the 
r point. 

are given in Table I. As is clearly seen in the figure, the frequency of optical 

phonons is much larger in A!Sb than in GaSh. 

Figure 18 shows the calculated dispersion relation of a (GaSb)r(A!Sb)r su-

perlattice. The results have the same features as those of GaAs/ AlAs, i. e. the 

presence of four direction-dependent interface modes and the confinement of all 

optical modes in either GaSh or A!Sb layers. Figure 19 gives the() dependence of 

optical modes with frequency close to that of optical phonons in bulk GaSh to-

gether with the results calculated in the envelope-function approximation and the 

dielectric continuum model. Figure 20 gives the displacements due to a GaSh-like 

optical mode at q = (0.2 x 2,. fa, 0, 0) with v = 6.88THz calculated in lattice-

dynamics and the envelope-function approximation. All these results show clearly 

that the envelope-function approximation reproduces the !at tice-dynamical results 
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Figure 20 Calculated displacements of ions for a mode with wave vector 
(0.2x2?rja,O,O) in a (GaSb)T(AlSb)T superlattice. v=6.88THz. 

almost exactly. The same holds for AlSb-like modes, though the results are not 

shown here. 

2-6 GaP/ AlP Superlattices 

There are superlattice systems for which optical-phonon frequencies of constituent 

materials do overlap. One typical example is GaSb/InAs for which TO frequencies 

at the r point are quite close because the reduced mass of GaSh and that of 

InAs are almost equal. In this case the connection of the envelopes of lattice 

displacements of adjacent layers at interfaces must be considered carefully. Akera 

and Ando42 described the connection rules in terms of a set of linear relations 

between the envelopes and their first z derivatives of both materials and obtained 

explicit results in the valence-force-field model. In this section we consider the 

GaP f AlP systems which is different from both GaAs/ AlAs and GaSb/InAs. The 

lattice mismatch between these materials is only 0.2 % and can be neglected. 

Figure 21 shows the dispersion relations along the f-Z direction of bulk GaP 

and AlP calculated in the valence-force-field model for the parameters listed in 
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Figure 21 (left) Dispersion relation of phonons in bulk GaP (solid line) 
and AlP (dashed line) in the [001] direction calculated in the valence-force 
field model. 

Figure 22 (right) Calculated phonon dispersion relation in a (GaP)T 
(AlP)T superlattice grown in the [001] direction. 

Table I. The frequencies of optical phonons of these materials partly overlap each 

other, i.e., both WLO and wTo of AlP are embedded in the frequency range of 

bulk GaP optical phonons in the vicinity of the X point. Further, there is a wide 

frequency interval where only LA phonons of AlP (TA phonons of GaP) are present 

but those of GaP (AlP) are not. 

Figure 22 gives the dispersion relation of a (GaP)T(AlP)T superlattice calcu-

lated in lattice dynamics. Along the r-z direction, in the left panel, some optical 

modes exhibit dispersion because of the partial overlap of the frequencies of bulk 

optical phonons. It is difficult to determine whether each optical mode is GaP-

like or AlP-like. LA modes between 7 and lOTHz exhibit no dispersion and are 

confined to the AlP layer, because there are no longitudinal modes in GaP in this 

frequency region. Below 7THz, all LA modes exhibit dispersion and are extended 
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Figure 23 Dependence of frequency of modes lying in the vicinity of WLO 

and wTo of AlP (a) and GaP (b) on the wave vector direction at the r 
point . 

over both layers. The behavior of the TA modes is qualitatively the same as the 

LA modes. 

Figure 23(a) shows the() dependence of the optical modes with frequency close 

to that of the optical phonons in bulk AlP together with the results calculated in 

the envelope-function approximation and the dielectric continuum modeL For 

modes with frequencies close to the optical phonons of bulk AlP, the envelope--

function approximation reproduces the lattice-dynamical results almost exactly. 

Displacements of ions of an AlP-like optical mode at q = ( 0.2 x 21r /a, 0, 0) with v = 

13.94THz calculated in lattice-dynamics and the envelope--function approximation 

are shown in Fig. 24. The envelope-function approximation again reproduces the 

result obtained in lattice-dynamics almost exactly. 

Figure 23(b) compares the () dependence for modes with frequency close to 

WLo and WTo of GaP. Because WLo of GaP lies above the frequency of the LO 

phonon of AlP at the X point, the() dependence obtained by the lattice-dynamical 
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Figure 24 Calculated displacements of ions for a mode with wave vector 
(0.2x21rja,O,O) in a (GaP)r(AlP)r superlattice. v = 13.94THz . 
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Figure 25 Calculated displacements of ions for 10 modes at the r point 
denoted by the arrows in Fig. 23(b) . They are not confined to either GaP 
or AlP layers . 

calculation is quite complicated and cannot be reproduced well by the envelope--

function approximation. As a matter of fact , the number of modes lying between 

WLo and WTo of GaP is ten in the lattice dynamics (some modes are degenerate) 

in contrast to five in the envelope--function approximation. Five extra modes come 

from 10 and TO phonons of AlP in the vicinity of the X point which are coupled 
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Figure 26 Calculated displacements of ions for the highest-energy LO 
mode (top) and TO mode (bottom) of GaP-like optical modes at the r 
point . 

to LO phonons of GaP. Figure 25 gives the displacements of the ions of a mode 

which has a character of confined modes in the GaP layer and an X-like character 

in the AlP layer. This rather pathological case cannot be reproduced by the 

envelope-function approximation. 

Apart from such special modes, however, most of other modes are well de-

scribed by the envelope-function approximation. Figure 26 shows displacements 

of ions for highest frequency GaP-like LO and TO modes at the r point at 0 = 0. 

For the LO phonon, the envelope-function approximation can describe the lattice-

dynamical result quite well except in the AlP layer. For the TO phonon, on the 

other hand, the agreement is nearly perfect. The overlap of TO phonon spectra 

of GaP and AlP is small and negligible owing to the their small dispersions. 

-50-

References 

1. R. Tsu and S.S. Jha, Appl. Phys. Lett . 20, 16 (1972). 
2. J .L. Merz, A.S. Barker, Jr ., and A.C. Gossard, Appl. Phys. Lett. 31, 117 

(1977) . 

3. A.S. Barker, Jr., J.L. Merz , and A.C. Gossard, Phys. Rev. B 17, 3181 (1978). 
4. N. Sawaki and N. Akasaki, Physica 134B, 494 (1985) . 
5. C. Colvard, T.A. Gant, M.V. Klein, R. Merlin, R. Fischer, H. MorkO<_;, and 

A.C. Gossard, Phys. Rev. B 31, 2080 (1985). 
6. B. Jusserand, D. Paquet, A. Regreny, and J. Kervarec, J. Phys. (Paris) 

Colloq. 45, C5-145 (1984) . 

7. M. Nakayama, K. Kubota, H. Kato, S. Chika, and N. Sano, Solid State 
Commun. 53, 493 (1985). 

8. M. Nakayama, K. Kubota, K. Kanata, H. Kato, S. Chika, and N. Sano, Jpn . 
J . Appl. Phys. 24, 1331 (1985). 

9. B. Zhu and K.A. Chao, Phys. Rev. B 36, 4906 (1987). 
10. See for example, C. Kittel, Introduction to Solid State Phy•ic•, 5th ed . (Wiley, 

New York, 1976), p. 105. 
11. S.M. Rytov, Sov. Phys. Aeons. 2, 68 (1956). 

12. C. Colverd, R, Merlin, M.V. Klein, and A.C. Gossard, Appl. Phys. Lett. 43, 
298 (1980). 

13. J. Sapriel, B. Djafari-Rouhani, and L. Dobrzynski, Surf. Sci. 126, 197 (1983) . 
14. S. Tamura and J.P. Wolfe, Phys. Rev. B 35, 2528 (1987) . 
15. S.M. Rytov, Sov. Phys. JETP 2, 466 (1956). 

16. E.P. Pokatilov and S.I. Beril, Phys. Status Solidi B 110, K75 (1982); 118, 
567 (1983). 

17. R.E. Carnley and D.L. Mills, Phys. Rev. B 29, 1695 (1984) . 
18. R. Lassnig, Phys. Rev. B 30, 7132 (1984). 

19. M. Nakayama, M. Ishida, and N. Sano, Phys. Rev. B 38, 6348 (1988) . 
20. R. Fuchs and K.L. Kliewer, Phys. Rev. 140, A2076 (1965). 
21. T. Tsuchiya, H. Akera, and T. Ando, Phys. Rev. B 39, 6025 (1989) . 
22. S.K. Yip and Y.C. Chang, Phys. Rev. B 30, 7037 (1984). 
23. T. Toriyama, N. Kobayashi, andY. Horikoshi, Jpn. J. Appl. Phys. 25, 1895 

(1986). 

24. E. Richter and D. Strauch, Solid State Commun . 64, 867 (1987) . 
25. S.F. Ren, H. Chu, and Y.C. Chang, Phys. Rev. Lett. 59, 1841 (1987); Phys. 

Rev. B 37, 8899 (1988). 

-51-



26 . H. Chu, S.F. Ren, and Y.C. Chang, Phys. Rev. B 37, 10746 {1988). 
27. K. Huang and B.F. Zhu, Phys. Rev. B 38, 2183 {1988) ; Phys. Rev. B 38 , 

13377 {1988). 
28 . M.V. Klein, IEEE J . Quantum Electron. QE-22, 1760 {1986) . 
29. B. Jusserand and D. Paquet, in Semiconductor Hetero•tructure• and Super-

latticu, ed. by G. Allan et al.(Springer, Berlin, 1986), p. 108. 
30. J. Sapriel and B. Djaferi-Rouhani, Surf. Sci. Rep. 10, 189 (1989). 
31. J. Menendez, J. Luminescence 44, 285 (1989). 
32 . B. Jusserand, Ann. Phys. Fr. 13, 597 (1988). 
33 . D.L. Mills, in Light Scattering In Solid• V, ed. by M. Cardona, and G. 

Giintherodt (Springer, Berlin, 1989), p. 13. 
34. B. Jusserand and M. Cardona, in Light Scattering In Solid• V, ed. by M. 

Cardona and G. Giintherodt (Springer, Berlin, 1989), p. 49. 
35. A. Mooradian and G.B. Wright, Solid State Commun. 4, 431 (1966). 
36. J .L.T . Waugh and G. Dolling, Phys. Rev. 132, 2410 (1963). 
37 . A. Onton, in Proceeding• of the 10th International Conference on the Phy•ic• 

of Semiconductor•, Cambridge, 1970, edited by S.P. Keller, J.C. Hensel, and 
F. Stern (the United States Atomic Energy Commission, Division of Technical 
Information, Oak Ridge, 1970), p. 107. 

38. Z.P. Wang, D.S. Jiang, and K. Ploog, Solid State Commun. 65, 661 (1988). 
39. B. Jusserand and D. Paquet, Phys. Rev. Lett. 56, 1752 (1986). 
40. A.K. Sood, J. Menendez, M. Cardona, and K. Ploog, Phys. Rev . Lett . 54, 

2111 (1985); 56, 1753 (1986). 
41. A. Ishibashi, M. Itabashi, Y. Mori, K. Kaneko, S. Kawado, and N. Watanabe, 

Phys. Rev. B 33, 2887 {1986). 
42. H. Akera and T. Ando, Phys. Rev. B 40, 2914 (1989). 
43 . A.K. Arora, A.K. Ramdas, M.R. Melloch, and N. Otsuka, Phys. Rev. B 36, 

1021 (1987). 
44. A. Kobayashi and A. Roy, Phys. Rev. B 35, 2237 (1987). 
45 . B. Jusserand, D. Paquet, and A. Regreny, Phys. Rev. B 30, 6245 (1984). 
46 . M. Babiker, J. Phys. C 19, 683 (1986). 

-52-

Chapter 3 

Electron-Phonon Interaction 

3-1 Electron-Phonon Scattering 

3-1-1 Polaron Damping and Inter-Subband Relaxation 

The scattering rate of an electron in subband 1) (= 1 2 ) t t k , . . . a wave vee or to 
subband 1)1 by pho · · d b non errusSion an a sorption is represented by Fermi's golden 
rule as 

1 2 ... v J 
r~.~·.±(k) =r; (27r)3 2::2:: dq!M(j, 1), 1J';k, q)l 2 

J ~· 

X [n(wi(q)) + ~ ± ~] o(E,- E; ± hwi(q)), 
(3.1) 

with 

[ hw ] -1 n(w) = exp(-)- 1 
knT ' (3.2) 

where M is the matrix element of electron-phonon interaction V (- L3) · 
, - IS a 

volume of the system, Wj ( q) is the frequency of an optical phonon of mode j and 
wave vector q E- and E th 1 t · · · 

> • I are e e ec ron enerpes of mttial and final states, 
respectively, kn is the Boltzmann constant, and Tis the temperature. The upper 

and lower signs represent the contributions of phonon emission and absorption 
processes, respectively. The matrix element M can be expressed as 

M(i,1],1)
1

;k,q) = J dr,p;.,lc'fq(r)H;(j,q;r),P~,Jc(r), 
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(3.3) 



where the interaction Hamiltonian H, is written as 

H,(j,q;r) = -e<T>(j,q;r) (3 .4) 

where <T> is the potential associated with lattice displacement . 

We assume that an electron is completely confined to the well layers and adopt 

the wave function 

1 ~ If (TJ1r ) exp(ik11 . r 11 ) ,P,,k(r) = !» L...-lh(z) d sin d(z -ld) exp(ik,ld) L , 
v N 1=1 1 1 

with 

in layer 1 
otherwise, 

(3.5) 

(3.6) 

where d1 is thickness of well layers, d ( =d1 +d2 ) is the period of the superlattice, l 

(= 1,2 ... N) is the layer index, N (=L/d) is the number of the layers, k=(ku,k,) , 

and r=(ru,z). The corresponding energy is 

(3.7) 

where m• is the effective mass. This assumption is valid when the thickness 

of the barrier and well layers is sufficiently large. For GaAs/ AlAs systems, the 

critical thickness is quite small (estimated as ~ 30 A using the effective-mass 

approximation) because of the large discontinuity of the conduction band ( ~ 1 

eV). 

In general, the polaron damping rate depends on the initial energy of the elec-

tron E. However, as shown in the numerical estimation by Mason and Das Sarma\ 

its dependence is small. Thus we neglect its dependence and evaluate it at E = 0. 

Namely, we calculate the damping rate for the electron at the bot tom of the ground 

sub band due to LO phonon absorption. Figure 1( a) illustrates this process. IT the 

splitting between the ground and first excited subbands is larger than the phonon 

energy, there are no inter-subband processes. Therefore it can be calculated from 

Eq. (3.1) with M(j,1,1;0,q) and E1-E,=Ii.2q1jl2m•. We shall calculate also an 
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(a) (b) 

E E 

n=I 

F~guret·1 Pr~cesses of (a) polaron damping and of (b) inter-sub band 
re axa ton. n lS a sub band index. 

inter-sub band relaxation rate corresponding to scattering of an electron at the bot-

tom of the first excited subband to the ground sub band. There are both h 
. . p~~ 

emtsston and absorption processes as illustrated in Figure 1(b) The t 
be calculated b E (3 1) . h (. . se ra es can 

. y q .. Wit M J,2,1;0,q) and E,-E,=Et(qu)-E2(0). The 
dampmg rate r is related to the corresponding relaxation time T defined in Eq 
(3.1) through r=li./2T. . 

3-1-2 Bulk-Phonon Model 

The simplest · t' · appronma ton ts to use phonons of the bulk t . 1 r . . rna ena 10rnung the well 
layer. The mteraction with LO phonons is described by the Frohlich Hamiltonian 

(3.8) 

with 

v; _ .licvr.o (47rap) l/l 
q--t-- --JqJylu v I (3.9) 

-55-



(3.10) 

and 

(3.11) 

where €
00 

and to are the high-frequency and static dielectric constant, respectively, 

WLO is the LO phonon frequency, and bq and b! are phonon destruction and 

creation operators, respectively. More explicitly 

(3 .12) 

Substituting Eq. (3.12) for the matrix element in Eq. (3.1) and carrying out the 

integration over q, we obtain 

(3 .13) 

with 

21d' 1d, ' I~.~·(qo) = d' dz dz' e-qol•-• I 
1 0 0 

• 1],.- • 1]1 ,.- • 1]1r I • 1]1 ,.-
X sm( -d z) sm(-z) sm( -z) sm(-z'), 

1 dt d1 dl 

(3.14) 

where we have used the identity 

(3.15) 

and qo denotes i<IJ11 satisfying energy conservation. The integration of Eq. (3 .14) 

can be carried out analytically2 and yields 
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We shall investigate some limiting cases. For intra-sub band transitions ( r/ = 

17), we have 

(3.17) 

which is independent of d1 . For small layer thicknesses, the polaron damping rate 
therefore becomes 

r~ .~ -.ro[1- G- 47]~,.,)(qodt)]n(wLO) , (3.18) 

which approaches ron(wr.o) in the limit d1-+0, where 

(3.19) 

When d1 » 27]..- / qo, on the other hand, we have 

(3.20) 

which decreases as d1 1 . 

For inter-subband transitions, q0 depends on d1 . For narrow wells where the 

subband splitting 

Ti' (,.)' llE~.~· = 2m• d
1 

1'7' - 'I' ' I (3 .21) 

is much larger than the LO phonon energy, we have 

(3.22) 

and 

(3 .23) 
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Therefore, the inter-subband scattering rate is proportional to the layer thickness 

for narrow layers. With increasing layer thickness, qo becomes larger than Eq. 

(3.22) for absorption processes and smaller for emission processes. Because r ~~· 
is a decreasing function of qo, r ••. for absorption increases sub-linearly and that 

for emission increases super-linearly with d1 • 

3-1-3 Dielectric Continuum Model 

As shown in Sec. 2-1-3, there are two kinds of modes in the dielectric continuum 

model, infinitely degenerate "confined modes" and four "interface modes." The 

potential due to the confined modes are described as 

(3 .24) 

+h.c., 

where the subscript C denotes the confined modes and 1!1 = 1 in layer l and 0 in 

the other layer. Because the confined modes in layer 2 do not induce any potential 

in layer 1, they do not couple with electrons confined to layer 1. 

The normalization factor ac,n is determined in such a way that the energy 

expectation value of each mode is equal to its eigen energy. It is straightforward 

to calculate the expectation value by using the lattice displacement determined by 

Eq. (2.26) and a virial theorem. The result is 

n. t 
ac,n = { 2wr,o [q~ + (T,)2],82(wLO)} ' 

(3.25) 

with 

[!..oo.(w2 _ w2 )jl/2 
,B(w) = h LO TO 

w2- w}o 
(3.26) 

From Eqs. (3.3), (3.4), (3.5), and (3.24), we obtain 

( 
, ) eac, .. (2)1/2 

Me n,11.11 ;k,q = Nl/1£ dl 

( 1) 87171' n 
X -; {(71 + 71' )2 + n2}{(71- 71')2 + n2} 

(3.27) 
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for 11+11'+n=odd and Mc(n,71,711ik,q)=O for 71+71'+n=even. Substitution of 

this equation into Eq. (3.1) and integration over q gives 

x L 2_ qod1 [ 8717~'n ] 
2 

n(q+q'+n=odd) ,.2 (qodl)l + (n?r)2 {(71 + '7')2 + n2}{(71- '7')2 + n2} 

(3.28) 

Let us consider some limiting cases. For intra-sub band transitions 71• = 11 , the 

summation over n in Eq. (3.28) is dominated by the term with n = 1 because of 

the presence of a factor proportional to n- 2. We have the following approximate 

expression: 

(3 .29) 

This expression immediately shows that, with increasing layer thickness, the damp-

ingrate increases in proportion to the thickness, has a maximum around d1 ~ ... fqo, 

and decreases in proportion to the inverse of the layer thickness when q0 d 1 » 1. 

The vanishing damping rate for vanishing layer thickness is a direct consequence 

of the divergence of the effective phonon wavenumber, given by Jq5+(,.jd1)2, 

due to the confinement in the layer. 

For inter-subband transitions, a simplified expression can be given in the 

limit of narrow layers. In this limit, q0 is determined by Eq. (3.22) and q0 d1 is 

independent of d1. Then, the damping rate is given by 

(3.30) 

which is proportional to the layer thickness. There will be deviations from this 

linear dependence with increasing layer thickness as discussed at the end of Sec. 

3-1-2. 
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Next, let us consider the contributions of the interface modes. Choosing ru 

in the direction of <IJI, we have 

a . N . ei911''11 
<I> ·( ) = r,1 ,q ~ e•q,ld __ 

IF,1 r, q N1/2 0 L 
1=1 

x [ { Cs, 1,; cosh[q11 (z -ld- ~1 )]lh 

d1 
+CA,1 ,; sinh[qu(z -ld- 2)]lh 

d2 
+Cs, 2 ,; cosh[qu(z -ld- d1- 2)]02 

+CA,2 ,; sinh[qll(z -ld- d1 - ~2 )]02 }br,;,q + h.c.], 

(3.31) 

where j is mode index and the coefficients Cs, 1,; etc. are determined by Eq. (2.38) . 

The normalization ar,j,q is calculated as 

(3.32) 

where {31(w) and f32(w) are defined by Eq. (3.26) for WLo and WTO of layer 1 and 

2, respectively. The corresponding matrix element is given by 

Note that the normalization of the C's is arbitrary and the final results do not 

depend on the normalization. 

We do not write out explicit analytical formulas in the limiting cases q11d1 ~ 1 

and '111d1 ~ 1, since the C's are a complicated function of the wave vector, d1, 

and d2 • Instead, we confine ourselves to the case that d1 = d2 where C's are 

independent of d1 which simplifies the expressions. For intra-sub band transitions, 

both matrix element MIF and damping rate approach a constant in the limit of 

narrow layers, q0 d1 ~ 1. In the limit of wide layers we have MIF oc d~ 512 , which 
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shows that the damping rate decreases in proportion to d1 5 . For inter-sub band 

transitions and in the limit of narrow layers, q0 d1 becomes independent of d1 and 

the scattering rate becomes proportional to the thickness. 

The fact that the intra-subband damping rate decreases as d1 5 for q0 d1 ~ 1 

can be understood as follows: The potential associated with the interface modes 

decreases exponentially away from interfaces, i.e., <I> oc exp( -q0 z) for an interface 

at z = 0. The matrix element of this potential is estimated as 

(3.34) 

Taking into account an extra factor d1 arising from the normalization of phonon 

amplitude, we obtain the desired result r,.ocd1 5 . 

3-1-4 Envelope-Function Approximation 

First, we shall describe briefly how to calculate the eigenmodes in the envelope-

function approximation. For modes whose amplitude is dominant in layer [, the 

reduced envelope in layer lis expanded into sinusoidal curves which have nodes at 
the layer boundaries as 

(3.35) 

where Na is the number of layers of ion pairs m layer l (Na = m in a 

(GaAs),.,.(AlAs)n superlattice), Ca,n. is the expansion coefficient, a represents 

the direction of displacement, and we take z = 0 at the left interface. We have 

introduced a cutoff Na in order to make the number of the optical modes in this 

approximation equal to that in the actual superlattices. This cutoff is important 

only when the layer thickness is small. For simplicity, we do not take the effective 

layer thickness to be n+1 or n+0.5 as in Section 2-4 but n, which is a very good 
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approximation except for superlattices with ext remely small layer thickness. The 

reduced envelope in the other layer I' can be written as 

(3 .36) 

+Cs,a 

because we employ the dielectric continuum model in this layer, where subscripts 

S and A denote symmetric and antisymmetric components, respectively. 

We assume that the dispersion of phonons is isotropic as given by Eqs. (2.50) 

and (2.51). In this approximation, there is no mixing oflongitudinal and transverse 

modes. Therefore we can neglect the component oft he displacement perpendicular 

to the wave vector and parallel to layers, because it does not make macroscopic 

field . Errors arising from this approximation are expected to be small, since the 

anisotropy has been found to be small in Chap. 2. 

Substitution of Eqs. (3.35) and (3.36) into Eq. (2.46) leads to an eigenvalue 

problem for 2(N. + 2) unknown coefficient C's and phonon frequencies . We nor-

malize the reduced displacement in one period as 

(3 .37) 

where w(z) = w1(z) + w,.(z). Then, the reduced displacement for mode (j, q) at 

an arbitrary position can be written in a form of second quantization as 

The electric potential at r can be written as 

with polarization 

~ - (r) = _!_fdr'P;,q(r')·(r-r') 
J,q €oo !r- r'l3 ' 

P;,q(r') = Z(z')eJ M~z') W;,q(r'), 
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(3.38) 

(3.39) 

(3.40) 

where Ze is the effective charge given by Eq. (2.24) and n is the number of cation-

anion pairs in a unit volume, i.e., n = 4/a3 for zinc-blende crystals. After some 

manipulations, the matrix element becomes 

where 

=27re,_1_ fn t dz t dz' 
£oo ..j]i£ V ~ Jo Jo 

x { 1 -'·" (z) z -qu(•-•') , . exp[(q
11

- iq,)d]-1 'I'~· ..P~( )e P;,q(z )(->eq11 - e,) 

1 ( • 
+ exp[(qll + iq,)]d- 1 ,;,;.(z).,P~(z)eqll •-• Jp; ,q(z')( -ieqll + e,) 

+1/>;.(z),P,(z)eqll l• - •'lp;,q(z')( -ieq
11 

+ sgn(z- z')e.)} 

2u2 1 fn 
=-~ .;JiLY~ 

x { exp[(qll - 1iq,)d]- 1 Jl.~.~· . l ,+ [-ii2,.,, - + I2,.,- ] 

1 
+ exp[( qll + iq, )d] - 1 Il.~.~· . l,- [-ii2, .. ,+ + I2,•,+] + I3,~.~·· ' ·"' } 

I2,a,± = ld dz'P j,q( z')e±qu•' ( -ieq
11 

± e,) 

=I21,a,± + J22,a,± 
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I = 1 

I = 2, 

(3.41) 

(3.42) 

(3.43) 



with 

and 

(3.43a) 

2qll e±•u(d,+d>/ 2) (sinh(q11d2) + qlld,] 
sinh(q11d2)- q11d2 

2q11 e±•u(d,+d>/ 2) (sinh(q11d2)- qlld,]' 
sinh(q11d2) + q11d2 

I 3 ,,,, •• z =It .•.• ·.z.+[-ii22,2,-- I22, •. -l 

+Zze ~ 2:: ( d ~( )2 {n1r It,q,q' ,I,- [-iCn,2 + Cn,•] V M, n qll 1 + n1r 

-n1r( -lte-•114• Il,q,q',l,+[-iCn,2- Cn,•] 

-i2qlldtls,,,q•,n- n1rlo,q,q',n }• 

Io,,,,•,n = { r if71+71'-n=O 
if 71 - 11' + n = 0 or 11 - 11' - n = 0 
otherwise, 

(3.43b) 

(3.44) 

(3.44a) 

{ 
sn'n 11 + 11' + n: odd (3 44b) 

Is""' n = -.[(•+•')'-n'J((q q')' n>] h . . ,.,., ' 0 ot erwtse. 

Damping rates can be calculated numerically using Eq. (3.1). We have not been 

successful in deriving simple expression for limiting cases for the above equations. 

3-2 Numerical Results 

3-2-1 Polaron Damping 
Figure 2 compares the layer thickness dependence of the polaron damping rate 

in the GaAs/ AlAs superlattices for d1 = d2 at 300K calculated in the envelope-

function approximation, the dielectric continuum model, and the bulk-phonon 

model. It contains the separate contributions of GaAs-like and AlAs-like modes 

for the envelope-function approximation and the dielectric continuum model. The 
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Figure 2 Layer thickness d1 dependence of the polaron damping rate cal-
culated in the envelope-function approximation (solid line), the dielectric 
continuum model (dashed line), and the bulk-phonon model( dotted line) 
at 300K. Thickness of barrier layer d2 is equal to d1 . For the envelope-
function approximation and the dielectric continuum model, the contri-
bution of GaAs-like and AlAs-like modes are also shown. The thin hor-
izontal line represents the damping rate in bulk GaAs. In the hatched 
region, the assumption that an electron is completely confined to the well 
layer is invalid. 

results of these three models are very similar and increase monotonically with the 

decrease of the layer thickness. In particular, the result in the dielectric continuum 

model is almost in agreement with that in the envelope-function approximation. 

In the thin layer region ( d1 < 15A), the result in the envelope-function approx-

imation has a zigzag shape and exhibits a sudden increase. This increase is due 

to lowering of phonon energies by the confinement effect and a resulting increase 

in phonon number. However, this effect is overestimated, because of the approxi-

mation of parabolic phonon dispersion and the assumption that the effective layer 
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thickness is not (n+1)a/2 or (n + 0.5)a/2 bnt na/2. The zigzag shape is caused 

by the restriction of the number of modes as in Eq. (3.35) . Strictly spealcing, in 

the region of d1 < 30A, the results are meaningless, because electrons are no longer 

confined in the GaAs layers and it is expected that the damping rate becomes 

lower than the above results. However, both zigzag shape and sudden increase are 

expected to remain to some extent, because these are due to the change in the 

phonon properties. 

The contribution of AlAs-like modes is much smaller than that of GaAs-lilce 

modes in the thick layer region (d1 > 150A), but it increases as the layer thiclcness 

decreases and may even exceed the contribution of GaAs-lilce modes. In this figure, 

we also show the polaron damping in bulk GaAs, i.e. , that in the case that there 

is no confinement for both electrons and phonons. In the region d1 > soA, the 

damping in the superlattice is smaller than in the bulle. The diJference increases 

with the layer thickness. However, when d1 > 170A, the sub band splitting between 

the lowest and first excited subbands is smaller than the phonon energy and inter-

subband transitions strongly increase the damping rate to higher than the bulle 

value. Hence the reduction of r in the superlattice from that in bulle is at most 

about 20%. 

At 77K, r is much smaller than at 300K as shown in Fig. 3 because of the de-

crease of the number n(w) of thermally activated phonons [n(wLo) =0.33 and 0.17 

for GaAs and AlAs, respectively, at 300K and n(wLo)=4.3xl0- 3 and 5.3x10-4, 

at 77K.] Note that the diJference between r calculated in the envelope-function ap-

proximation and in the bulk-phonon model is larger than at 300K. This is caused 

by the reduction of the number of higher energy AlAs-like phonons compared to 

that of GaAs-lilce phonons. The difference of r between the envelope-function 

approximation and the dielectric continuum model is also relatively larger than at 

300K. This is again due to difference in the phonon number arising from that of 

phonon energy. Because the reduction of the phonon energy due to confinement is 

not considered, r is underestimated in the dielectric continuum model. The region 

in which the r in superlattices is smaller than that in bulle GaAs extends up to 

dl > 30A. 
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Figure 3 Layer-thiclcness d1 dependence of the polaron damping rate at 
77K. 

In Figs. 4 and 5, we show the results in the case dz = 4d1 . At 300K, the 

contribution of the GaAs-lilce modes is smaller than that in the case dz = d1 

and the contribution of the AlAs-like modes are larger. Consequently, the total 

damping rate does not change much. At 77K, the reduction of the damping rate 

from that in bulle GaAs is slightly more pronounced than for dz=d
1

. 

3-2-2 Inter-Subband Relaxation 

If the subband splitting is larger than the phonon energy, the following three 

processes are possible for scattering of an electron at the bottom of the first excited 
sub band: 

1) intra-subband transition with phonon absorption, 

2) inter-subband transition to the ground subband with phonon absorption, 
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Figure 4 Layer-thickness d1 dependence of polaron damping rate at 300K. 
Thickness of barrier layer d2 is equal to 4dl. 

3) inter-subband transition to the ground subband with phonon emission. 

Figure 6 shows calculated damping rates at 300K as a function of the layer 

thickness. The damping rate of intra-subband transitions is similar to the po-

laron damping rate given in Fig. 2. The damping rate for the inter-subband 

transition with phonon absorption is a sub-linear function of d1 and that with 

phonon emission is a super-linear function of d11 as discussed at the end of Sec. 

3-1-2. The results in different approximations are almost indistinguishable for the 

inter-subband absorption process, while in the emission process the result in the 

bulle-phonon model is slightly lower. This is due to difference of phonon number 

n(w). 

Figure 7 shows calculated damping rates at 77K. The damping rate due to 

phonon absorption process is smaller by roughly two order of magnitude than at 

300K, while that of emission processes remain almost the same. 
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Figure 5 Layer-thickness d1 dependence of polaron damping rate at 77K. 
Thickness of the AlAs barrier layer d2 equals to 4d1 • 

3-3 Discussions 

In the preceding section, it has been found that the results in the dielectric con-

tinuum model agree quite well with those in the envelope-function approximation 

and also that even the bulk-phonon model explains the layer thickness dependence 

reasonably well. In this section, we try to clarify the reason. 

For this purpose, we first separate the total scattering rate into contributions 

of different phonon modes. One way to achieve this separation is to consider 

the Eliashberg function a 2 (w)F(w) describing the contribution of phonons having 
frequency w, defined by 

r = J dwa 2(w)F(w)n(w), (3.45) 
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Figure 6 Layer-thickness d1 dependence of damping rates of an electron 
at the bottom of the first excited subband, calculated in the envelope-
function approximation (solid lines), the dielectric continuum model 
(dashed lines), and the bulk-phonon model (dotted lines) at 300K. The 
thickness of the AlAs barrier layer d2 is equal to d1. 

where n( w) is the Planck distribution for phonons, a( w) is an effective electron-

phonon coupling constant, and F(w) is the phonon density of states. For the 

polaron damping rate, we have from Eq. (3.1) 

(3.46) 

Figure 8 gives the histogram of a 2(w)F(w) given by 

(3.47) 
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Figure 7 Layer-thickness d1 dependence of damping rate of an electron at 
the bottom of the first excited sub band at 77K. The contribution ofinter-
subband transition due to phonon emission is much larger than those of 
other two processes. 

with Wn = n~w for GaAs/ AlAs superlattices with d1 = d 2 = 28 A and dt = d2 = 

113 A. For d1 = d 2 = 113 A, the histograms calculated in the envelope-function 

approximation and the dielectric continuum model are quite similar. This shows 

that the dielectric continuum model is accurate in superlattices with wide layers. 

For d1 = d2 = 28 A, the histograms with ~w = 1 me V differ between the envelope-

function approximation and the dielectric continuum model, showing that the 

latter breaks down for narrow layers, while those with ~w=10 meV do not. This 

suggests that the total scattering rate is not sensitive to the details of the model 

even though differential contributions of individual modes are quite different. This 

approximate model independence can be demonstrated analytically. 
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Figure 8 Histogram of the Eliashberg function for the polaron damp-
ingrate in a (GaAs)t0 (AlAs)t0 superlattice calculated in the envelope-
function approximation (a) and the dielectric continuum model (b) and 
in a (GaAs) 40 (AlAs) 40 superlattice in the envelope-function approxima-
tion (c) and the dielectric continuum model (d). The solid lines show 
the result when the frequency interval is 1 meV and the dashed lines 10 
meV. The dotted lines represent the result in the bulle-phonon model 
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Before proceeding further, we should note that the sum of the contributions 

of GaAs-like modes and AlAs-like modes is almost equal to that calculated in 

the bulk-phonon model. Actually, this is the reason that even the bulk-phonon 

model gives reasonable results. It should be noticed, however, that the validity 

of the bulk-phonon model is limited to the GaAs/ AlAs systems. The situation is 

likely to be quite different in superlattices consisting of other materials. Mori and 

Ando3 showed in the dielectric continuum model that the scattering rate can be 

considerably smaller than that calculated in the bulk-phonon model in AISb/InAs 

/ AlSb and Ge/InAs/Ge quantum wells . 

In general, the scattering rate by optical-phonon emission and absorption is 

written as 

1 2..-e
2 
"" 1 1 1i. --=- L..-L..-o(E;- E1 ± !i.w;(q)) [n(w;,q) +- ± -] (-) 

r~.~· ,± 1i. i q 2 2 2w;,q 

X J d1'~d1'~8 d1'id1'~8 ..p;,(rt, k + q).,P~(rt, k)..P~·(r2, k + q)..p;(r2, k) 

x K(rt,r~)K"(r2 ,r~)Z(r~)eJ M(r~) Z(r~)eJ M(r;) (div.;div.;) (W;,q(r~)Wj,q(r~)) , 
(3.48) 

where K(r, r') is a kernel which determines the potential at r for a unit charge 

density at r' . When t 00 is independent of the constituent materials, we have 

K(r,r') = 11 I' c00 r-r' 
(3.49) 

When t 00 varies between layers, the kernel becomes far more complicated because 

of image charge effects. 

Let us assume that the frequencies of all optical modes are about the same and 

can be replaced by an averaged frequency WAY. Because the energy of an electron 

is independent of k., 'Iii is determined as I qui= jq; +q~ =q0 to satisfy the energy 

conservation and q, is arbitrary. Because W;,q(r) (ex e'qn·•n) is a solution of an 

integra-differential equation for each q, we have the closure relation 

(3.50) 
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Figure 9 Dependence of the frequency of modes lying in the vicinity of 
the LO and TO phonons of Ga..As on the wave vector direction at the r 
point . The solid lines represent the results calculated in the envelope-
function approximation and the dashed lines those of the confined model 
described in the text. The results in the envelope-function approximation 
are the same as those given in Fig. ll(a.) of Chap. 2. 

where a,f3= z, y, z. Therefore , the summation over j and q. gives 

where Eisa. 3 x 3 unit matrix. This shows that the scattering rate does not depend 

on the deta.ils of the displacement of each phonon mode. 
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Figure 10 Calculated displacements of ions for a. mode at the r point and 
the wave vector direction 0=71"/4. v =8.08THz. The solid lines represent 
results calculated in the envelope-function approximation and the dashed 
lines represent those in the confined model described in the text . The thin 
vertical straight lines indicate the position of interfacial As planes and 
the vertical dotted lines the interface position in the envelope-function 
approximation. The results in the envelope-function approximation are 
the same as those given in Fig. 12(b) of Chap. 2. 

This sum rule corresponds to that noted by Mori and Ando.3 They inves-

tigated the polaron damping rate in single and double heterostructures in the 

dielectric continuum model. The damping rate has been expressed as 

r e! i :LA;(qo,;)w;(qo,;)n(w;(qo,;))F;(qo,;), 
i 

(3.52) 

where j is the mode index, q0 ,; is the norm of the two-dimensional wave vector for 

which the energy conservation is satisfied, A; is the coupling constant of mode j, 

and F; is a. form factor. In the case of I- like modes, A; = ctF,I if w; = WLO ,I and 

A; = 0 if w; = WTO ,I·3 They found that the form factors obey a. sum rule, 

(3 .53) 
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Figure 11 Layer-thiclcness d1 dependence of polaron damping rate calcu-
lated in the confined model (solid lines) and the envelope-function ap-
proximation (dashed lines) at 77K. Thickness of the AlAs barrier layer 
d2 is equal to d1 • The results in the envelope-function approximation is 
the same as those given in Fig. 3. 

where <lJI is two-dimensional wave vector and :F B is the form factor of the bulk-

phonon model. This sum rule is a direct consequence of the completeness of the 

phonon modes shown above and means that as long as A;w;n is almost inde-

pendent of j, the damping rate is close to that in the bulk-phonon model. This 

condition is approximately satisfied for GaAs/ AlAs systems. This is the reason 

why the bulk-phonon model explains the layer thickness dependence reasonably 

well. However, this sum rule alone does not explain the reason why the results in 

the dielectric continuum model agree so well with those in the envelope-function 

approximation. 

Figure 8 shows that a 2 F averaged over GaAs-like modes and over AlAs-like 

modes in the envelope-function approximation and the dielectric continuum model 
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are in good agreement. This suggests the presence of a completeness relation for 

GaAs-like modes and AlAs-like modes, separately. To prove this, we consider a 

model in which the displacement is confined to one type oflayers (say/) and where 

the other layer /' is replaced by an effective medium having dielectric constant 

€l'(wLo,z). This satisfies the completeness within the layer/. 

Figure 9 compares the resulting() dependence of optical modes with frequency 

close to that of optical phonons in bulk GaAs with the results in the envelope-

function approximation. In Fig. 10, we show the displacement for a mode at 

0 = 1r /2, where the amount of the response of layer /' is reinterpreted as the 

displacement . The calculated polaron damping rate is shown in Fig. 11 together 

with the result of the envelope-function approximation. All these figures show that 

this confined model is almost equivalent to the envelope-function approximation. 

We can immediately derive an expression of the relaxation time similar to that 

given by Eq. (3 .51) except that the kernel K should be replaced by that corre-

sponding to the confined model and 5(z~-z;) should be replaced by 5(z~-z;)01 (zD . 

Therefore, the total contribution of GaAs or AlAs like modes is independent of 

the details of each mode as long as its frequency can approximately be replaced 

by a certain average value. The same is applicable to the dielectric continuum 

model, since a similar confined model is equally valid. This explains why the di-

electric continuum model is successful in giving the electron scattering rate even in 

superlattices with narrow layers although it cannot describe each phonon modes 

correctly. 

It should be noted that the near equivalence between the envelope-function ap-

proximation and the simpler confined model is limited to the GaAs/ AlAs systems, 

where lw~0As-wi?0A'I ~ Iwtlf·-w~~·l and lwtbA'-w~~A·I ~ IwtbA'-w~0Asl, i. e., 

the difference between the LO and TO frequencies of each material is smaller than 

the difference in the LO or TO frequencies of two materials. The envelope-function 

approximation is not subject to such limitations and has a wider applicability than 

the confined model. 

The present calculations show that the electron-optical phonon interaction 

becomes stronger as the layer thickness decreases. Opposite results were obtained 
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by some authors. In particular, Riddoch and Ridley4 calculated the scattering rate 

of electrons confined in a thin ionic slab, using the dielectric continuum model, and 

showed that it decreases as the layer thiclcness decreases. We can obtain similar 

result if we neglect contributions from adjacent AlAs layers. Sawaki5 calculated the 

scattering rate, assuming that the optical phonons are completely confined in either 

layer and the amplitude of displacement is described by sinusoidal curves vanishing 

at the interfaces. The calculated intra-subband scattering rate again decreases as 

the layer width decreases. The present study shows that the underlying assumption 

of his calculation is incorrect. 

In actual experiments, we observe the damping of an elect ron in the pres-

ence of many other electrons. Thus the so-called many-body effects might alter 

the present conclusion. Among them, the Pauli principle and the screening to 

the electron-phonon interaction are the two important effects to be considered. 

The Pauli principle can affect the damping rate at temperatures below the Fermi 

energy. However, in the high-temperature region of our interest, we can ignore 

this effect safely.1 The screening effect can also be neglected, because it is quan-

titatively small as investigated by Mason and Das Sarma.1 They showed that the 

damping rate due to phonon absorption is reduced by the static screening effect to 

at most 70% of the unscreened result at T = 300K in a single quantum well with 

thickness d1 = 100A and electron sheet density Ns = 3 x 1011cm- 2 • Actually, the 

screening process comes into play as a dynamical rather than a static one. In the 

dynamical screening, its effect is reduced further as evaluated by Das Sarma et a/.6 

According to their calculation, the damping rate with the dynamically screened 

electron-phonon interaction is close to the one without the screening at low Ns. 
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Chapter 4 

Summary 

In this thesis, I have investigated the behavior of phonons and the electron-optical-

phonon interactions in semiconductor superlattices, mainly in GaAs/ AlAs super-

lattices which have been most extensively studied up to now. 

In Sec. 2.1, I give a brief review on some simple models of phonons in super-

lattices: the linear-chain model, the elastic continuum model, and the dielectric 

continuum model. The linear-chain model and the dielectric continuum model give 

different results for the optical phonons in GaAs/ AlAs superlattices. In the linear-

chain model, all optical modes are confined in either layer and the displacement 

has nodes at the interfaces. It is applicable only for wave vectors perpendicular to 

the layers. In the dielectric continuum model, there are four modes which are not 

confined in either layer and have frequencies dependent on the direction of wave 

vector at the r point and the maximum displacement at interfaces. For modes 

confined in either layer , the perpendicular component of displacement has maxima 

at interfaces. 

In Sees. 2-2 and 2-3, I investigate the behavior of phonons in a GaAs/ AlAs 

superlattice by lattice dynamics. I employ the valence-force field model character-

ized by two short-range force constants Co and C1 and a fixed effective charge Z 

which takes care of the long-range Coulomb interaction. The overall feature of the 

spectra, i.e., the confinement of optical modes and the folding of acoustic modes 

in reciprocal space, is consistent with the results already obtained by linear-chain 
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models. There exists an important modification due to the long-range Coulomb 

force, however. It causes a large anisotropy in the dispersion of optical phonons 

in the vicinity of the r point and gives rise to Fuchs-Kliewer or interface modes 

which have nonvanishing amplitudes in both GaAs and AlAs layers. It has also 

been shown that the tetrahedral bond structure supports characteristic interface 

modes at the transverse X points. 

All features mentioned above cannot be reproduced by either the linear-chain 

model or the dielectric continuum model alone. An envelope-function approxi-

mation for long wavelength optical phonons in superlattices is developed in Sec. 

2-4. In this approximation, displacement is approximated by the envelope which 

has nodes at appropriate boundary planes. For the modes for which mainly the 

atoms in the GaAs-layer oscillate, dispersion of phonons in bulk-GaAs is approx-

imated by a 3 x 3 matrix Hamiltonian and that in bulk AlAs is ignored, and vice 

versa. The results in this approximation reproduce both frequencies and displace-

ments quite well. This approximation can be applicable to all problems related to 

elec tron-optical-phonon interactions in superlat tices. 

Calculations have been extended to GaSh/ AlSb and GaP/ AlP superlattices. 

In the former system, the optical phonons of the constituent materials are com-

pletely separated from each other and the phonon spectra are similar to those of 

GaAs/ AlAs superlattices. In the GaP/ AlP system, on the other hand, the wr,0 

and wro of GaP lie above the 10 and TO frequencies of AlP in the vicinity of X 

points. Therefore, some of confined optical phonons of GaP, especially 10 pho-

nons, are mixed with 10 phonons in AlP layers and the phonon spectrum becomes 

quite complicated. The envelope-function approximation fail s to reproduce some 

of such modes. 

In Chapter 3, electron-optical-phonon interaction in GaAs/ AlAs superlattices 

have been investigated. Methods of calculation have been shown in Sec. 3-1, in 

the bulk-phonon model, the dielectric continuum model, and our envelope-function 

approximation. In Sec. 3-2, I have numerically calculated the polaron damping 

and inter-subband relaxation rates as a function of layer thickness. At 300K, 

the polaron damping increases monotonically as the layer thickness decreases and 
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the damping is lower than that in bulk GaAs above soA. Quite different from at 

300K, the damping at 77K depends only weekly on layer thickness when < 100A. 

The inter-su bband relaxation rates increase almost linearly as the layer thickness 

increases. At 77K, the phonon emission process is dominant. It has been found 

that the results in the dielectric continuum model agree quite well with those in the 

envelope-function approximation and that even the bulk-phonon model explains 

the layer thickness dependence reasonably well . 

In Sec. 3-3, the Eliashberg function is defined and calculated in order to in-

vestigate explicitly to what extent individual modes contribute to the electron 

scattering. It shows that the dielectric continuum model is quite accurate in su-

perlattices with wide layers but fails to describe individual modes for narrow layers. 

This means that contributions of individual modes are quite different although the 

total scattering rate is the same. This approximate model-independence of the to-

tal scattering rate is understood in terms of the completeness of the phonon modes. 

As a matter of fact, the global completeness of all modes in GaAs and AlAs layers 

explains why the bulk-phonon model can give a reasonable layer-thickness depen-

dence. A simpler model is introduced in which displacements are totally confined 

in either GaAs or AlAs layers and other layers are replaced by a continuum having 

an appropriate dielectric constant independent of frequency. Its approximate va-

lidity is established by comparison with frequencies and displacements calculated 

in the envelope-function approximation. The completeness within this confined 

model explains why the dielectric continuum model gives accurate total scattering 

rates for both GaAs and AlAs like modes even in thin-layer superlattices. 
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Appendix A 

Convenient Method for the Linear-Chain Modell 

The equations of motion for the four atoms at the interfaces are 

d2u'(O) 
M~-F- = fdu:(o) -u~(O)] + f,[ua(l-1) -u~(O)], 

d2 ua(l- 1) 
Ma dt2 = Jduc(l-1)- 1La(l- 1)] + f,[u~(O)- ua(l- 1)], 

d2 uc(O) 
M<----;]jl = fdu:(o)- u~(O)] + f,[u:(l- 1)e-ikd- uc(O)], (A.1) 

d'u' (m- l)e -ihd 
M~ a dt' = ft[u~(m - 1)- u:(m- 1)]e-ihd 

+ J,[uc(O)- U:(m _ 1)e-ikd], 

where 1Lc and 1La are the displacements of an anion and a cation in layer 1 u' and 
' c 

u~ are those in layer 2, Me and Ma are the masses of an anion and a cation in 

layer 1, M~ and M~ are ones in layer 2, d is the period of this superlattice, k is 

the wave vector, and we assumed fl = f{ and f, = f~ = f; = fi for simplicity. 
Extrapolating the bulk displacement, we obtain 

d 2 u' (0) 
M~ -F- = fdu:(o) - u~(O)] + J,[u:( -1)- u~(O)] , 

d2ua(l- 1) 
Ma dt' = Jduc(l -1)- 1La(l- 1)] + f,[uc(l)- 1La(l- 1)], 

d2uc(O) . 
M<----;]jl = Jdua(O)- 1Lc(O)] + f,[ua( -l)e-•kd- 1Lc(O)J, (A.2) 

M' d'u~(m- l)e-ihd 
a dt' = fdu~(m- I) -u:(m- l)]e-ikd 

+ f,[u~(m)- u:(m -1)]e-ikd. 

Subtracting Eqs. (A.l) from (A.2), we get 

1Lc(l)- u~(O) = 0, 

1La(l-1) -u:(-1) = 0, 
(A.3) 

ua( -1) -u:(m- l)e-ikd = 0. 
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The solution can generally be written as 

(A.4) 

where q and </ are local wave vector with in layer 1 and 2, respectively, A ,B ,A' , 

and B' are coefficients to be determined, ao = a/2, and 

(A.5) 

Substituting Eqs. (A.4) into Eq. (A.3), we obtain the secular equation 

-1 
-eiq'a 0 me-ikd 

l+eiqao(l-1) 
1

_e- iqa0 (l - 1) --y~e-iq'a0 

-;~eiq'ao(m-l)e-ikd "Y+e-iqa0 -y_eiq'a 0 

(A.6) 

which has solutions for 

cos(kd) = cos(ijd) + 1) sin( qdl) sin(q' d2), (A .7a) 

with 

- qd1 + q'd2 
q = d1 + d2 , (A .7b) 

2(G+G- + G~G~) 
(A.7c) 

where d1 = la0 is the thickness of layer 1, d2 = ma0 is the thickness of layer 2, ij 

is an averaged wave vector, and 

(A.8) 

Eq. (A.7a) is very similar to eigenvalue conditions for electrons in periodic square 

potential wells, i.e. , the Kronig-Penney model. 
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Appendix B 

Boundary Condition on Lattice Displacement 1 

From the equation of motion for the interfacial As and AI atoms, we obtain a 

relation by similar procedure in Appendix A: 

u.,A(n + 1) = u.,s(n + 1) at z = -a0 /2, 

Ue,A(n+2) = uc,B(n+2) atz=ao/2, 
(B .1) 

where subscripts a and c denote anion and cation and A and B denote GaAs and 

AlAs, respectively, and ao = af4. In case of longitudinal modes, the displacements 

in the GaAs layer are 

(B.2) 

where u(z) is the envelope function. On the other hand, the displacement in the 

AlAs layers are given by a linear combination of an evanescent mode X and a mode 

..p induced by a macroscopic electric field as 

u.,s(n + 1) = XA• + ..PA., 

Ue,B(n + 2) = XAl +..PAl, 
(B.3) 

where ..PAl/"rPA, = -(MA,/MAl)(EAl/ EA,) with macroscopic electric field EA, and 

EAl at interfacial As and AI plane, respectively. Using the above equation and 

Taylor expansion u(e) = u(O) + eD.u, we have 

u(zo) = f,p (BA) 

with 

(B .5) 
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where zo is the place where X vanishes and a = XA• /X AI at the TO frequency 

of bulk GaAs is shown to be 0.77 by the lattice dynamics in bulk AlAs. Usually, 

the displacement in the AlAs layer, .,P, due to a macroscopic field is quite small 

compared to that in the GaAs layer. Therefore, Eq. (B.5) lead to the boundary 

condition that the envelope vanishes at z0 = -0.05a0 , i.e. close to the midpoint 

between the interfacial As and AI planes. Similar boundary conditions can be 

obtained for GaAs-like TO modes and for AlAs-like modes. When these results 

are applied to a (GaAs)n(AlAs)m superlattice, the effective thickness in the case 

of GaAs-like optical phonons is d(GaAs,LO)=(n + 0.5)a j2 for longitudinal and 

d(GaAs,TO)=(n + 0.8)a/2 for transverse modes. In the case of AlAs-like opti-

cal phonons, on the other hand, it is d(AlAs,LO)=( n + l.l)a/2 for longitudinal 

and d(A!As,TO)=(n + l.O)a/2 for transverse modes. These values are in good 

agreement with the results obtained in Sec. 2-3-1. 
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