

東京大学大学院新領域創成科学研究科
社会文化環境学専攻

2017年度
修	
 士	
 論	
 文

CNNを利用した非都市地域における建物の抽出手法に関する研究
Identification of Buildings in Rural Environment based on

Convolutional Neural Networks

2017年 7月 18日提出
指導教員	
 柴崎	
 亮介	
 教授

郭	
 直霊

Guo, Zhiling

The University of Tokyo

Master’s Thesis

Identification of Buildings in Rural
Environment based on Convolutional

Neural Networks

Author:

Guo Zhiling

Supervisor:

Prof. Shibasaki Ryosuke

A thesis submitted in fulfilment of the requirements

for the degree of Master of Philosophy

in the

Shibasaki Lab

Department of Socio-Cultural Environmental Studies

July 2017

http://www.u-tokyo.ac.jp
https://guozhilingblog.wordpress.com/
http://shiba.iis.u-tokyo.ac.jp/
Research Group Web Site URL Here (include http://shiba.iis.u-tokyo.ac.jp/)
Department or School Web Site URL Here (include http://sbk.k.u-tokyo.ac.jp)

Declaration of Authorship

I, Guo Zhiling, declare that this thesis titled, ‘Identification of Buildings in Rural Envi-

ronment based on Convolutional Neural Networks’ and the work presented in it are my

own. I confirm that:

� This work was done wholly or mainly while in candidature for a research degree

at this University.

� Where any part of this thesis has previously been submitted for a degree or any

other qualification at this University or any other institution, this has been clearly

stated.

� Where I have consulted the published work of others, this is always clearly at-

tributed.

� Where I have quoted from the work of others, the source is always given. With

the exception of such quotations, this thesis is entirely my own work.

� I have acknowledged all main sources of help.

� Where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself.

Signed:

Date:

ii

THE UNIVERSITY OF TOKYO

Abstract

Graduate School of Frontier Sciences

Department of Socio-Cultural Environmental Studies

Master of Philosophy

Identification of Buildings in Rural Environment based on Convolutional

Neural Networks

by Guo Zhiling

Since accurate building maps are often unavailable or outdated in undeveloped rural

environment, building identification in such areas has gradually become a significant

research field in remote sensing. Due to the high price-performance ratio, many re-

cent corresponding studies are performed based on open high-resolution remote sensing

(HRRS) data such as Google Earth (GE) images. However, most existing classification

methods applied for identification of building in rural environment identification can only

generate low- or middle-level image features with limited representation ability, which es-

sentially prevents them from achieving good performance in various scenes. Meanwhile,

in image classification field, the preponderance of Convolutional Neural Network (CNN)

has been proved owing to its advantages such as efficiently generating high-dimensional

abstract feature. In this dissertation, we present a specific CNN model which elaborately

formulated based on state-of-the-art structures to identify buildings in rural environment

from open HRRS images. First, the feasibility of proposed CNN based method is proven

by comparing with other machine learning methods. Second, In order to optimize and

mine CNN’s capability for rural environment mapping and also be compatible with our

classification targets, the basic model is carefully modified and adjusted based on a se-

ries of rigorous testing results. Third, the methods such as Transfer Learning, color

balance and Data Augmentation are implemented to enhance the robustness of model.

Finally, the generated model is applied in a pixel-level classification frame to generate

high accuracy identification results. Experimental results of the test area at developing

countries prove that the proposed CNN model significantly outperforms the previously

best stated results, improving the overall accuracy from 96.30% to 99.26%, and Kappa

from 0.56 to 0.86. For implementation on GPGPU and cuDNN, the required processing

time accelerated approximately 30 times compared with CPU case.

University Web Site URL Here (include http://www.u-tokyo.ac.jp)
Faculty Web Site URL Here (include http://www.k.u-tokyo.ac.jp)
Department or School Web Site URL Here (include http://sbk.k.u-tokyo.ac.jp)

Acknowledgements

I would like to thank all the people who contributed in some way to the work described

in this dissertation. First and foremost, I thank my academic supervisors, Professor

Shibasaki Ryosuke and Shao Xiaowei, for accepting me into Shibasaki Lab, engaging me

in new ideas, helping and encouraging me when I face difficulties. Additionally, I would

like to thank my vice supervisor Kobayashi Hiroki for this help in my work.

I would like to acknowledge Shao’s group member: Ph.D. Xu Yongwei, Ph.D. Chen Qi

and Wu Guangming. I greatly benefited from their keen scientific insight and attitude

of life.

I am grateful for the project sources that allowed me to pursue my master studies:

GRENE-ei (Green Network of Excellence, Environmental Information), the Ministry of

Education, Culture, Sports, Science and Technology (MEXT) in Japan.

I would like to thank the various members with whom I had the opportunity to work and

have not already mentioned: Miyazaki Hiroyuki, Ohira Wataru, Song Xuan, Sengoku

Hiroaki, Hamada Tsuyoshi, Chen Quanjun, Fan Zipei, Yuan Wei, Saurav Ranjit, Jiang

Renhe, Xia Tianqi, Huang dou, Huang Shuzhe, Hoshi Tomonori, Koga Yohei, Dou Jie. . .

I would like to acknowledge the University of Tokyo and the Department of Socio-

Cultural Environmental Studies. My study experience here would greatly benifit my

whole life.

Finally, I would like to acknowledge my dear friends, family and girlfriend Cloris who

always supported me during my time here.

. . .

iv

Contents

Declaration of Authorship i

Abstract ii

Acknowledgements iii

Contents iv

List of Figures vi

List of Tables viii

Abbreviations ix

1 Introduction 1

1.1 Research Background . 1

1.2 Related Works . 4

1.3 Outline of the Dissertation . 6

2 Dataset 7

2.1 Study Area . 7

2.2 Data . 8

3 Methodology 10

3.1 Workflow . 10

3.2 Machine Learning Approaches . 12

3.2.1 Introduction . 12

3.2.2 Random Forest . 13

3.2.3 Adaboost . 14

3.2.4 Neural Networks . 16

3.2.5 Super Vector Machine . 18

3.3 Convolutional Neural Networks . 19

3.3.1 Introduction . 19

3.3.2 Basic Structure . 21

3.3.3 Architecture Modification . 22

v

Contents vi

3.3.3.1 Iteration . 24

3.3.3.2 Filter . 25

3.3.3.3 Depth . 27

3.3.3.4 Window Size . 29

3.3.4 AlexNet-like . 32

3.3.5 VGGNet-like . 34

3.3.6 GoogleNet-like . 35

3.3.7 SqueezeNet-like . 37

3.4 Transfer Learning based CNN . 39

3.5 Other Processing . 43

3.5.1 Data Augmentation . 43

3.5.2 Color Balance . 43

3.6 Experimental Platform . 44

4 Result and Discussion 47

4.1 Result of Adaboost . 48

4.1.1 Color Feature . 48

4.1.2 Haar-Like Features + Color Features 49

4.2 Result of Basic CNN . 50

4.3 Compare Adaboost and Basic CNN . 51

4.4 Basic CNN Implementation . 52

4.5 Different Structures Result . 54

4.6 Color Balance . 59

4.7 Transfer Learning . 60

5 Practical Application 63

6 Conclusions and Future Works 68

6.1 Conclusions . 68

6.2 Future Works . 69

Bibliography 71

List of Figures

1.1 Building information in Google Maps and OpenStreetMap 2

1.2 Buildings in rural environment . 3

1.3 Visual interpretation . 4

2.1 Study area . 8

2.2 Testing dataset examples . 9

3.1 Workflow . 11

3.2 Random Forest . 13

3.3 Adaboost . 15

3.4 Neural Networks . 16

3.5 Super Vector Machine . 18

3.6 Pooling and Padding . 20

3.7 Convolutional Neural Networks . 21

3.8 Bias and Variance . 23

3.9 Influence of iteration . 25

3.10 Influence of filter amount . 26

3.11 Gradient vanishing . 27

3.12 Influence of filter, depth and Dropout . 28

3.13 Window size: scenario 1 . 29

3.14 Window size: scenario 2 . 30

3.15 Window size: scenario 3 . 31

3.16 Window size: scenario 3 with simple structure 31

3.17 Window size: scenario 3 with complex structure 32

3.18 AlexNet-like architecture . 32

3.19 VGGNet-like architecture . 34

3.20 GoogleNet-like architecture . 35

3.21 SqueezeNet-like architecture . 37

3.22 Transfer Learning . 39

3.23 Transfer Learning trial . 40

3.24 Transfer Learning “memory curve” . 41

3.25 Transfer Learning in building identification 42

3.26 Other processing . 43

3.27 Color Balance . 44

3.28 CPU and GPU comparison . 46

4.1 Basic CNN result . 51

4.2 Classification results 1 of basic CNN . 52

vii

List of Figures viii

4.3 Classification results 2 of basic CNN . 53

4.4 Learning curve of different structures . 55

4.5 Different structures result comparison . 56

4.6 Kenya tesing result comparison . 57

4.7 Two different datasets . 58

4.8 Kenya testing result . 58

4.9 Balance image color . 59

4.10 Result of transformed image . 60

4.11 Transfer Learning illustration . 60

4.12 Transfer Learning learning curve . 61

5.1 Result illustration 1 . 63

5.2 Result illustration 2 . 64

5.3 Result illustration 3 . 65

5.4 Result illustration 4 . 66

6.1 Building age predition . 69

6.2 Catastrophe maps Generalization System 70

List of Tables

3.1 Basic CNN structure settings . 21

3.2 Relationship between iteration and accuracy 24

3.3 Relationship between filter amount and accuracy 26

3.4 Relationship between depth and accuracy 27

3.5 Relationship between depth, filter, Dropout and accuracy 29

3.6 AlexNet-like architecture . 33

3.7 VGGNet-like architecture . 35

3.8 GoogleNet-like architecture . 36

3.9 SqueezeNet-like architecture . 38

3.10 Transfer Learning hypothesis . 40

3.11 Transfer Learning result in MNIST . 41

3.12 Transfer Learning “memory curve” result 42

3.13 Experimental Platform . 45

3.14 Deep Learning libraries . 45

3.15 Keras . 45

4.1 Confusion Matrix . 47

4.2 Adaboost training . 49

4.3 Adaboost testing . 49

4.4 Training data of basic CNN . 50

4.5 Comparison of accuracy based on basic CNN 50

4.6 Confusion matrix based on bisic CNN . 50

4.7 Different training data using basic CNN 52

4.8 Comparison of accuracy based on basic CNN 52

4.9 Accuracy assessment of all the testing data in Figure 4.2 based on basic
CNN . 54

4.10 Training result by different structures . 54

4.11 Testing result by different structures . 55

4.12 Kenya testing result by basic and VGGNet-like structure 57

4.13 Two different datasets . 57

4.14 Comparison between balanced model and original model 59

4.15 Transfer Learning result . 62

ix

Abbreviations

GNSS Global Navigation Satellite System

OSM OpenStreetMap

TM Landsat Thematic mapper

ETM+ Enhanced Thematic Mapper Plus

NOAA National Oceanic and Atmospheric Administration

AVHRR Advanced Very High Resolution Radiometer

LiDAR Light Dection And Ranging

HRRS High Resolution Remote Sensing

GE Google Earth

RF Random Forest

Adaboost Adaptive Boosting

NN Neural Networks

SVM Super Vector Machine

NDBI Normalized Difference Build-up Index

CNN Convolutional Neural Networks

NLP Natural Language Processing

SGD Stochastic Gradient Descent

CUDA Comput Unified Device Architecture

cuDNN NVIDIA cuDA Deep Neural Network library

UAV Unmanned Aerial Vehicles

GIS Geographic Information System

xi

Dedicated to Peaceful World. . .

xiii

Chapter 1

Introduction

1.1 Research Background

With the rapid development of urbanization processes, maps used to illustrate buildings

and their distribution are significant and required in a wide range of fields. Important

applications include environmental monitoring, resource management, disaster response,

and homeland security [1].

In urban areas, accurate maps are often available, but this is not always the case for rural

environment [2]. Although the rural environment such as villages around the world have

been significantly improved owning to the increasingly speed up development over the

past decades, compared with relatively informationalized urban areas, the deficient and

lagging behind information system would be a vital constraint, which prevents village

from being developed into a higher lever. As an very important geoinformation, building

maps are often insufficient, and there may be no digital version available.

The deficiency building map information in rural environment would bring the incon-

venience and several negative consequences. First of all, building maps in catastrophe

are quite indispensable. For instance, during catastrophic events such as the Wenchuan

earthquake in 2008, disaster relief could not be conveniently provided due to inadequate

rural information and because the location of residential buildings was uncertain, which

resulted in serious loss of life and property [3]. A swift update of building information

is very important and essential during catastrophes [4] because secondary disasters such

as tsunamis, avalanches, and landslides may follow [5], causing swift changes to land

conditions. Another important usage of building maps is their contribution to global

navigation satellite system (GNSS). As a surface feature complement, building maps can

provide accurate and convenient instruction, the popular GNSS such as Google Maps

1

Chapter 1. Introduction 2

and OpenStreetMap(OSM) highly based on building maps [6]. Figure 1.1 shows the

rural environment maps of the same area in Foxdale Britain by Google maps and OSM

respectively, we can find out the building information in Google maps compared with

OSM is quite insufficient, witch would bring the inconvenience. This is even the case

in developed country, and there’s no doubt that in developing countries the condition

would be more severe. Rural environment building maps also play an important role in

medicine and hygiene filed. For example, HIV has speared through the whole world in

recent decades, as the most severe infected area, developing countries in Africa need to

be focused on [7]. In order to investigate the disease, hygiene conditions and also avoid

further spearing, residential settlements are usually be chosen as important inquire area.

However, the residential settlements in Africa are quite scattered, and usually there is

no map available which makes them hard to be find out even from the satellite images.

Moreover, In rural environment area planing, which aims to benefit the inhabitants, pub-

lic facilities also need to be developed on the basis of residential buildings’ distribution

information [8].

a) b)

Figure 1.1: Map of Foxdale, Isle of Man on Google Maps(a) and OSM(b) respectively
(2016.07).

In contrast to densely packed urban buildings, buildings in rural environment, as shown

in Figure 1.2, own their characteristics such as sparsely scattered, arbitrarily change lack

of regulation and architecture feature not distinct [9]. Also, corresponding buildings usu-

ally mixed with complex and diverse land features such as agriculture lands, mountains,

rivers, etc. Hence, by considering both usage of building maps and such complexity

of spatial and structural patterns makes rural environmental building identification a

fairly challenging problem, and the tools used to identify buildings must provide rapid,

accurate, efficient, and time-sequenced results.

Rather than fieldwork and ground investigation, identify buildings in rural environment

depending on the remote sensing image would be more convenient and efficient. With

Chapter 1. Introduction 3

Buildings

Land Features

River

Agriculture

Mountain

……

Image Problems

Stitching

No Information

Cloud and Blur

……

Figure 1.2: Buildings in rural environment.

the help of remote sensing satellite images [10–12], earth-observation activities on re-

gional to global scales can be implemented owing to advantages such as wide spatial

coverage and high temporal resolution [13, 14]. First, in terms of satellite categories,

most previous studies that focus on rural environment mapping commonly use low-

and medium-spatial resolution satellites such as Landsat Thematic Mapper (TM), The

Enhanced Thematic Mapper Plus (ETM+), and National Oceanic and Atmospheric Ad-

ministration (NOAA)/ Advanced Very High Resolution Radiometer (AVHRR) [15–17],

whereas in recent years, high-resolution satellites such as QuickBird, Ikonos, and Rapid-

Eye facilitate high-accuracy identification. Unfortunately, considering the high cost of

data acquisition, images provided by these high-resolution satellites are generally utilized

in a specific small region and are rarely applied in large ones [18]. Second, different image

data source categories such as widely used light detection and ranging(LiDAR), Hyper-

sectral and Multispectral images, might provide high accuracy result in some specific

conditions [19], but corresponding data source is usually not available in our condition.

A promising alternative solution is offered by 3 bands high-resolution remote sensing

(HRRS) images such as Google Earth (GE) and Bing Maps, which provides open, highly

spatially resolved images suitable for building identification in rural environment [20–

23]. However, GE images and Bing Maps have rarely been used as the main data source

in corresponding filed. Such images are limited to a three-band color code (R, G, and

B), which is expected to lower the classification performance due to its poor spectral

signature [24]. Actually, the potential for the classification of spatial characteristics

by GE images and Bing Maps have been underestimated [25]. By analyzing the tone,

Chapter 1. Introduction 4

texture, and geometric features in the image [23, 26], experts can recognize village

buildings with high confidence. Consequently, we believe that GE images can provide a

good data source for village mapping.

1.2 Related Works

In terms of classification technique, many methods have been studied by consulting

published literatures. Note that the traditional visual interpretation of remote sens-

ing images is a very complex and time-consuming process. Although with very high

accuracy, it is not suitable to large-scale automation projects. The Figure 1.3, which

implemented by a medical group [27] in Nagasaki University, shows the building identifi-

cation result based on visual interpretation in Kenya. The manual visual interpretation

work was taken several weeks and the related massive implementation seems impossible.

a) b) c) d)

Figure 1.3: Identification of buildings in rural Environment based on Google Earth
via visual interpretation.

In order to provide automatic and high accuracy identification result, with the help of

image processing and feature extraction techniques, various machine learning algorithms

[28] such as Random Forest (RF) [29], Adaptive Boosting (AdaBoost) [30, 31], Neural

Networks (NN) [32] and Super Vector Machine (SVM) [33, 34] in remote sensing have

been implemented. For instance, Zhang et al. [35] combine the K-means method with

AdaBoost to classify buildings, and the overall accuracy is about 90%. Zongur et al.

[36] utilize satellite images to detect an airport runway using AdaBoost with a circular-

Mellin feature. Using an improved Normalized Difference Build-up Index (NDBI) and

remote sensing images, Li et al. [37] dynamically extract urban land. Cetin et al. [38]

use textural features such as the mean and standard deviation of image intensity and

gradient for building detection. For the identification of forested landslides, Dou et

al. [39] utilize a case-based reasoning approach and Li et al. [40] adopt two machine

Chapter 1. Introduction 5

learning algorithms: RF and SVM. When dealing with classifying complex mountainous

forests via remote sensing images, Attarchi et al. [41] verify the performances of three

machine learning methods: SVM, NN, and RF. For mapping urban areas of DMSP/OLS

nighttime light and MODIS data, Jing et al. [42] also utilize SVM.

As shown above, most existing classification methods applied for rural environmental

building identification can only generate low- or middle-level image features with limited

representation ability, which essentially prevents them from achieving good performance

in various scenes. Meanwhile, in image classification field, the preponderance of con-

volutional neural networks (CNN) [43] has been proved in recent years owing to its

advantages such as efficiently generating high-dimensional abstract feature. In the field

of remote sensing detection, using the CNN method [44], Chen et al. [45] address ve-

hicle detection, Li et al. [46] focus on building pattern classifiers, and Yue et al. [47]

use both spectral and spatial features for hyperspectral image classification. To predict

geoinformative attributes from large-scale images, Lee et al. [48] also choose CNN, and

Sermanet et al. [49] utilize the CNN method to identify house numbers. Other impor-

tant works such as Marmanis et al. [50] use pretrained CNN model and big dataset

to classification land features while Ding et al. [51] add data Augmentation into CNN

for SAT based building recognition. In high-resolution image processing, the innovated

works conducted by Hu et al. [52], who use transfer learning to enhance obtained model

in order to identify land features from HRRS and achieved an overall accuracy of ap-

proximately 98%, also Martin et al. [53] classify buildings using multiple CNN layers,

pretrained model and K-meaning.

To the best of our knowledge, there is no existing research by combining HRRS images

and CNN to identify buildings only focusing on rural environment. Considering the

characteristics of GE images and Bing Maps, we herein explore the feasibility of rural

environmental building identification using CNN. In order to prove the effectiveness of

the proposed CNN based method, we compare CNN result with other supervised ma-

chine learning approaches, here we choose Adaboost as an example, while others methods

delivered similar performance to Adaboost and required much longer computation time,

therefore, we only introduce but exclude these methods in the present analysis. Both

CNN and Adaboost adopt different feature extraction schemes, enabling full exploita-

tion of the texture, spectral, geometry, and other characteristics in the images. The

AdaBoost algorithm focuses on the color and textural information of the buildings and

their surrounding areas; hence, it utilizes both color information and a large number of

Haar-like features.

The performance of the AdaBoost method largely depends on the quality of feature

selection, which is itself quite challenging. In contrast, the CNN method achieves more

Chapter 1. Introduction 6

robust and stronger performance than AdaBoost because it mines the deeper repre-

sentative information from low-level inputs [44]. With multilayer networks trained by

a gradient descent algorithm, CNN can learn complex and nonlinear mapping from a

high- to low-dimensional feature space.

In this dissertation, we first constructed a basic four layer CNN to describe the char-

acteristics inside an 18 x 18-pixel window and applied it to the identification. After

analyzing the classification result, we modify CNN based on some state-of-the-art mod-

els and vigorous principles, and explore their potential in building identification respec-

tively. Considering the limitation of available datasets, we also use data augmentation

[54] method to increase diversity and quantity of data. What’s more, we utilize transfer

learning [55] in order to enhance our obtained models’ capability, and some other image

processing methods are also implemented as post processing in identification results.

1.3 Outline of the Dissertation

This chapter introduced the rural environmental buildings identification problem, and

described its key importance and difficulties. It then continued with a background

introduction of building detection condition in machine learning, outlined our approach

to the problem, and summarized our main contributions. The remaining chapters are

organized as follows:

• Chapter 2: Describes the study area and the experimental dataset.

• Chapter 3: Introduces the principle of different machine learning methods, de-

scribes basic and state-of-the-art transformed CNN structures, and also proposes

transfer learning, data augmentation, color balance, etc. The experiment platform

is also briefly introduced.

• Chapter 4: Compares the experimental results of each algorithms, discusses the

capability of proposed CNN structures, also shows the result enhancement after

transfer learning, color balance, etc.

• Chapter 5: Shows the practical application of our proposed method by testing

several images

• Chapter 6: Concludes our work and presents some proposals for future works

List of Figures – lists all the figures for the thesis.

List of Tables – contains all the tables’ name and related location.

Chapter 2

Dataset

In contrast to densely packed urban buildings, buildings in rural environment tend to be

more sparsely scattered. In this study, we define rural environmental buildings as any

settlement with size less than 2 km.

2.1 Study Area

In terms of study area, to test the feasibility of proposed method in different regions, we

choose rural environment in some developing countries such as Laos, Kenya and Thai-

land. One of study area (Figure 2.1), is located at the Savannakhet province (Figure

2.1c) in Laos. The remote top-view RGB image of Kaysone has a size of 3600 × 4500

pixels with a resolution of 1m, which was captured from Google’s satellite map in Febru-

ary 2015. Its longitude and latitude range from E104◦47′22” to E104◦49′54” and from

N16◦34′28” to N16◦36′26”, respectively, showing an area of approximately 19.44 km2,

the study area is a complex and rural region with many different types of landscape,

including abundant natural components such as mountains, rivers, and vegetation cover

as well as artificial areas such as villages, roads, and cultivated land, which are typical

in rural areas. As another study area, Kwale is a small town in the capital of Kwale

County, Kenya. It is located at around S4◦10′28” and E39◦27′37”, 30 km southwest of

Mombasa and 15 km inland. The data source is obtained from Bing Maps with res-

olution 1.2m in May 2015, the corresponding area mainly covered by forest and other

desolated landscapes, where the buildings are quite scattered. To compare the influence

of resolution on the experiment, we also own dataset with resolution up to 0.6m captured

in January 2016 Kenya, where the buildings and other land features could show more

details. Besides, Ratchaburi is one of the western provinces of Thailand, 80 kilometers

west of Bangkok, the HRRS images in this area also generated from Bing Maps with

7

Chapter 2. Dataset 8

Figure 2.1: Study area example (a); located in Savannakhet Province, Laos (b).
Panels (c) and (d) are enlarged views of typical village areas; and (e) and (f) show
mountain and vegetation areas with similar tones to buildings. The resolution of all

images (except (b)) is 1 m.

resolution 1.2m in May 2015. The projection of above datasets are in the UTM Zone

48N system and Datum WGS 84.

2.2 Data

In general, dataset in supervised machine learning methods [56] can be divided into

training dataset and testing dataset. training dataset is a set of data used to discover

potentially predictive relationships, here refers to original RGB HRRS images and the

corresponding ground truth information. Testing dataset is a set of data used to assess

the strength and utility of a predictive relationship, here refers to remote sensing images

which need to be tested.

In details, As the training dataset in Laos, we selected four typical village/non-village

areas (see Figure 2.1) from the original image in Laos. Each image was sized 600 ×

Chapter 2. Dataset 9

900 pixels. Figure 2.1c,d in rich in rural environment building information, showing

features such as buildings, roads, rivers, and cultivated lands. Figure 2.1f contains

forests and mountains, whereas Figure 2.1e features crop and vegetation cover. The test

data are contained within the entire area of Figure 2.1a. Within this area, the ground

truth map of the village buildings was manually drawn beforehand using a polygon-

based interaction tool. This ground truth map contains accurate information of the

land categories and is chiefly used in sampling and result detection. Similar with Laos,

training dataset in Kenya and Thailand also selected by considering the characteristic

and diversity of landscape.

a) b) c)

Figure 2.2: Testing area examples. (a), (b) and (c) locate in Laos, Kenya and Thai-
land respectively.

Testing dataset contains several different types of landscapes, and the land feature in

different countries and areas shows the distinctive characteristics. As shown in Figure

2.2, lands features in Laos(a) and Thailand(c) is more abundant than Kenya(b). The

diversity and complexity of image also bring the difficulty in identification task, which

makes classification model need to adopt all these conditions.

Chapter 3

Methodology

To conduct CNN, which is a supervised machine learning algorithm, preparing training

samples and their relevant labels is the first step; then, rigorously elaborate CNN archi-

tecture in order to implement the training procedure; After training, the CNN classifier

is generated; in order to verify the feasibility and stability of model, cross validation

is implemented in the next step; then, the testing result and the corresponding figure

will be generated by testing the provided dataset via obtained classifier. Finally, post

processing is needed to improve result accuracy.

3.1 Workflow

In details, an elaborate workflow is formulated which mainly contains the flowing 6 parts:

• Step 1: Training dataset preparation

In general, a training dataset is a set of data used to train classification model

and discover potentially predictive relationships. As mentioned in Chapter 2,

the training dataset contains two parts in our experiment: 3 bands RGB HRRS

images and the corresponding ground truth labels. What’s important, the training

dataset need to be prepared by considering the complexity and characteristics of

identification target, the diversity is quite important. Moreover, color balance

method is conducted when image facing severe unbalance problem in spectrum,

while data augmentation method is proposed to prevent over-fitting [57].

• Step 2: Model Creation

There are different choices of machine learning models for classification and regres-

sion problem. Although each of methods can be viewed as a blackbox, each model

11

Chapter 3. Methodology 12

HRRS	

Images	

Ground	

Truth	

	
 	

Input	
 Data	

Label	
Samples	

Training	
 data	

Feature	
 Extractor	

Mul?layer	
 Perceptron	

Back	
 Propaga?on
	

CNN	

Classifier	

Cross	
 	

Valida?on	

data	

Cross	
 	

Valida?on

Low
	
 Accuracy	

Retraining	

Generate	

Hi
gh
	

Ac
cu
ra
cy
	

Input	
 tes?ng	
 data	

Tes?ng	
 Data	

HRRS	

Images	

Test	

Result	

Assessment:	

Overall	
 Accuracy	

Kappa	
 Coefficient	

Output	

Gradient	
 Descent	

CNN	
 architecture	

Figure 3.1: workflow.

comes from a different algorithm approaches and will perform different under dif-

ferent datasets. In this study, we present CNN model to identify village buildings

from open HRRS images. In order to optimize and mine CNN’s capability for

rural environmental building identification and also be compatible with our clas-

sification targets, some state-of-the-art CNN structures are carefully modified and

adjusted based on a series of rigorous testing results. We also create models which

generated by other machine learning methods to be the comparison. What’s im-

portant, transfer learning model can be proposed to train new model with limited

dataset.

• Step 3: Model Training

The machine learning algorithm will learn from the training dataset patterns that

map the variables to the target, and it will output a trained model that captures

these relationships. In this experiment, depending on propagation and gradient

decent, a CNN model can be generated by training, which own the capability to

identify buildings in rural environment.

• Step 4: Cross Validation

Chapter 3. Methodology 13

Cross validation is the best way to verify the feasibility and determine which model

perform best on the test dataset. In order to avoid over-fitting and other problems,

when any classification parameter needs to be adjusted, it is necessary to have a

validation dataset in addition to the training and testing datasets. If good result

can be generated in cross validation processing, the corresponding model can be

used in practical, otherwise, the model need to be retrained. Here, To evaluate the

accuracy and reliability of result, confusion matrix, Kappa Coefficient and Overall

Accuracy are utilized in our experiment.

• Step 5: Testing

Utilizing generated CNN model, buildings in rural environment can be identified

via prepared testing HRRS dataset.

• Step 6: Post Processing and others

The basic workhorse of morphological noise removal method such as close, can get

rid of noise in the result, and make result more smoothly.

3.2 Machine Learning Approaches

3.2.1 Introduction

As a subfield of computer science, machine learning gives computers the ability to learn

without being explicitly programmed. It evolved from the study of pattern recognition

and computational learning theory in artificial intelligence and explores the study and

construction of algorithms that can learn from and make predictions on data [58]. The

important application fields including image processing, trajectory analysis [59] and

natural language processing (NLP) [60], etc.

Machine learning approaches can be divided into two broad categories: supervised and

unsupervised. In general, unsupervised learning methods infer to function to describe

hidden structure from unlabeled dataset, also known as a type of machine learning

algorithm used to draw inferences from datasets consisting of input data without labeled

response [61]. The most common unsupervised learning method is cluster analysis.

In our experiment, the unsupervised learning methods are rather hard to learn the

characteristics of GE images to a satisfactory level because of their limited distinguish

ability and lack of prior knowledge. In contract with unsupervised learning, supported

by training data, supervised learning methods usually deliver better classification results.

In this study, CNN is employed as classifier and the feature extraction step is designed

accordingly. In order to analyze the feasibility and efficiency of using CNN, we also

Chapter 3. Methodology 14

employed other powerful supervised machine learning methods to be the comparison,

such as RF, Adaboost, NN and SVM.

Considering the limitation and characteristic of our training dataset, we utilize trans-

fer learning, which focus on storing knowledge gained while solving one problem and

applying it to a different but related problem.

Moreover, color balance and data augmentation methods also implemented to enhance

our model. Some other image processing methods can used to get rid of paper-and-salt

in result.

3.2.2 Random Forest

Evolved from Decision Tree [62], RF [63] is a popular method for various machine learn-

ing tasks, and the basic principle can be easily understood by its lively name. In terms

of ‘Random’, it can be clarified in two aspects. First, rather than putting the whole sam-

ples into decision tree, only a part of them are randomly selected. Second, the amount

of features is randomly chosen, which makes every decision tree owns its specific charac-

teristics. ‘Forest’ means the method generated by combining several decision trees, and

each Decision Tree can be seem as a weak classifier. For a input sample, every Deci-

sion Tree can generate a corresponding output respectively. The final result is decided

by voting, which means choose the most prevalent output to be the final classification

result.

Input Forest Output

Figure 3.2: Random Forest.

As shown is Figure 3.2, the tree and grown fruit here refers to Decision Tree and the

output result respectively. while input fertilizer here means input sample, and exterior

appearance of tree means the selected feature. The name, which means final output, of

Chapter 3. Methodology 15

a specific forest is decided by the most prevalent species, for instance, the peach forest

means the forest which mainly grown peaches although some other species mixed inside.

The principle of RF makes it owns many advantages. Owning to the result decided by

several weak classifiers, RF model usually has very high stability and accuracy. Also,

due to only part of samples are input in each decision tree, big dataset can be involved

without using excessive memory. What’s more, the algorithm can also evaluate the

importance of each feature without descending dimension.

3.2.3 Adaboost

The AdaBoost classification method [31, 64] has gained great popularity due to its high

accuracy, low complexity, and ability to recognize salient features. Based on the sample

data, this algorithm iteratively adjusts the weights of many weak classifiers and builds

these weak classifiers into a strong classifier. The samples are defined as:

(x1, y1), ..., (xm, ym) (3.1)

where m refers to the number of samples, and x ∈ X, yi ∈ Y = {−1,+1} .Note the

inclusion of both positive and negative input samples. Initially, all samples are equally

weighted as follows:

W1(xi) = 1/m (3.2)

The weight is adjusted after checking the performance of the weak classifier. If a sample

cannot be correctly classified, its weight is increased. The details of the AdaBoost

algorithm are shown below:

For t = 1, ..., T :

Train weak learner using distribution Wt.

• Get weak hypothesis ht →: X{−1,+1}, with error :

εt = Pr[ht(xi) 6= yi] (3.3)

• Choose:

αt =
1

2
ln

(
1− εt
εt

)
(3.4)

Chapter 3. Methodology 16

• Update:

Wt+1(xi) =
Wt(xi)

Zt
×

e−αt if ht(xi) = yi

eαt if ht(xi) 6= yi

=
Wt(xi)exp(−αtyiht(xi))

Zt

(3.5)

Where T is the total number of weak classifiers and Zt is a normalization factor,

which is chosen such that Wt+1 is a distribution.

Output the final hypothesis:

H(x) = sign

(T∑
t=1

αtht(x)

)
(3.6)

where αt indicates the weight of a weak classifier ht. If αt is large, the corresponding

weak classifier plays an important role in the final combination, indicating a relatively

the important feature.

Manually extracting the relevant features of village buildings is a challenging task. To

improve the classification accuracy, the AdaBoost algorithm instead constructs the weak

classifiers from a large number of simple features. Meanwhile, although the input di-

mension is quite high, the AdaBoost algorithm is robust to over-fitting problems [65]. In

our experiment, we automatically generated 500 weak classifiers by applying the sample

data to a three-layer decision tree.

Figure 3.3: Haar-like feature’s size change and movement: (a) Original 2 × 1 feature;
(b) movement of original feature; (c) 4 × 2 feature; and (d) 6 × 3 feature.

Color Feature – To optimize the classifier for detecting the characteristics of color-

coded GE images, we utilized four kinds of input samples from the images in Figure 2.1,

varying the window size from 1 × 1 to 7 × 7 pixels to show the color information of

Chapter 3. Methodology 17

specific blocks. Given an m × n sized color image patch, AdaBoost organizes the color

feature by reshaping the color of each pixel in the patch into an m × n × 3 vector.

Haar-like Feature – Haar-like features are proven to be efficient tools for detecting

textural and structural information of buildings [31]. In this study, a large number of

Haar-like features are generated for classification. By considering not only the target

pixel but also the pixels inside its neighborhood window, the texture and structural

characteristics of buildings can be well recognized. The Haar-like features were gen-

erated by adopting several basic Haar filters and shifting and scaling them inside the

neighborhood window. Figure 3.3 demonstrates the application of a 2 × 1 Haar filter.

Here, w and h denote the width and height of the filter, respectively. The original filter

is presented in Figure 3.3a. Shifting this filter inside the window, we obtain the various

features shown in Figure 3.3b. Similarly, some results of shifting and scaling operations

are presented in Figure 3.3c,d. In these panels, the original filter was enlarged to 4 × 2

and 6 × 3, respectively.

3.2.4 Neural Networks

Inspired by the biological neural networks that constitute by the biological neural net-

works, artificial Neural Networks offers an alternative way to perform machine learning

when we have complex hypotheses with many features [66].

x1

x2

x3

x0

a1

a2

a3

a0

Input Hidden Output

Figure 3.4: Neural Networks.

Intuitively, the structure of basic neural networks as shown in the Figure 3.4. based

on a collection of connected units called artificial neurons, like neurons in brain, each

Chapter 3. Methodology 18

connection between neurons can transmit a signal to another neuron [67]. After receiving

signal, the neuron can process the signals and conduct further propagation. All of

neurons are organized in layers, and there is no connection within a same layer. Different

layers may perform different kinds of function such as extracting different features, the

signals propagate from the first input layer to the last output layer.

We use sigmoid in equation 3.7 as an example to be the activation function to implement

classification [68], and θs parameters are also called weights, intermediated layers of

neurons between input and output layers are called hidden layers. We label these hidden

layer nodes as al0, ..., a
l
n and call them activation units.

g(x) =
1

1 + exp−θT x
(3.7)

Final hypothesis use hθ(x). Only consider input and output, a simplistic representation

looks like: 
x0

x1

x2

x3

→

a2

1

a2
2

a2
3

→ hθ(x) (3.8)

ali here refers to the activation of neuron i in layer l, and Θ means matrix of weights

controlling function mapping from layer l to layer l + 1. The values for each activation

neuron is obtained as follows:

a
(2)
1 = g

(
Θ

(1)
10 x0 + Θ

(1)
11 x1 + Θ

(1)
12 x2 + Θ

(1)
13 x3

)
a

(2)
2 = g

(
Θ

(1)
20 x0 + Θ

(1)
21 x1 + Θ

(1)
22 x2 + Θ

(1)
23 x3

)
a

(2)
3 = g

(
Θ

(1)
30 x0 + Θ

(1)
31 x1 + Θ

(1)
32 x2 + Θ

(1)
33 x3

) (3.9)

Final output hΘ(x) generated by:

hΘ(x) = a
(3)
1 = g(Θ

(2)
10 a

(2)
0 + Θ

(2)
11 a

(2)
1 + Θ

(2)
12 a

(2)
2 + Θ

(2)
13 a

(2)
3

)
(3.10)

In our experiment, we train the model by inputing HRRS images and relative ground

truth labels. Hypotheses result obtained by signals forward propagate from the first

layer to the end layer. Generated by comparing hypotheses with ground truth labels,

residual error used to implement the back propagation and adjust the weight between

each layer. The corresponding process will be iterated several times until the model

converge into a promising status. Like other machine learning methods, test procedure

can be easily implemented by putting HRRS images, feature in which can be extracted,

after propagating to final, the classified result can be generated.

Chapter 3. Methodology 19

Except for using in computer vision field, Neural networks also have been used in fields

including speech recognition, video games and many other domains.

3.2.5 Super Vector Machine

The machine learning methods such as support vector machine (SVM) [34], which max-

imizes the margin in high-dimensional feature spaces using kernel methods for the sam-

ples, are introduced for classification. In general, an SVM training algorithm makes a

plain called hyperplain in the space by given a set of training examples which marked

as belonging to one or the other of two categories. As shown in Figure 3.5, two cat-

egories: green square and blue triangle, are divided by a clear gap that is as wide as

possible. When new examples come, they also mapped into the same space separated

by red hyperplain and predicted to belong to a category based on which side of the gap

they fall.

x2

x1

M
axim

um
-m

argin

Hyperplane

Figure 3.5: Super Vector Machine.

Here take linear SVM as example, a training dataset of n points of the form:

(~x1, y1), ..., (~xn, yn) (3.11)

are given, where yi are category labels 1 or -1, indicate the class to which the point ~xi

belongs. Target of SVM is to find the “maximum-margin hyperplane” that can separate

all the ~xn which belongs to label 1 from the rested dataset. The hyperplane can be

written as the set of points ~xn satisfying:

~θ · ~x− b = 0 (3.12)

Chapter 3. Methodology 20

where ~θ is the normal vector to the hyperplane. In case the data are not linearly

separable, the loss function can be formulated as:[
1

n

n∑
i=1

max(0, 1− yi(~θ · ~xi − b))
]

+ λ‖~θ‖2 (3.13)

where λ is the regularization part used to avoid over-fitting.

In our experiment, first, features of building and non-building objects are extracted, and

then, SVM makes a hyperplain to separate all these features depending on ground truth

labels. Buildings in testing dataset can be identified in the same way.

3.3 Convolutional Neural Networks

3.3.1 Introduction

CNN was inspired by biological entities. When multilayer networks are trained with

gradient descent algorithms, they can learn complex nonlinear mappings from a high-

to a low-dimensional feature space, where classification is evident [69]. Importantly, the

simplified low-dimensional space can largely restore the information of high-dimensional

features, and it mines deeper information of the input high-dimensional features. CNN

vertically concatenates an m × n RGB image patch into a 3m × n matrix. Here,

we briefly introduce the framework of CNN; the details are provided in [44]. When

implementing CNN, we utilized the DeepLearnToolbox and Keras library developed by

[70] and [71] respectively.

To simplify the high-dimensional feature, the approach utilizes a multilayer system,

including convolution and subsampling layers, as shown in Figure 3.7. Convolution can

enhance the raw signal while decreasing the noise signal; the subsampling layer can

utilize the correlation of the contiguous pixels, pooling the feature into lower dimensions

without losing meaningful information (Figure 3.6). With the increase of layers, the

dimension decreases but the number of features increases.

To restore the information of high-dimensional features to the greatest extent, the key

point is back propagation [72]. Similar to neural networks, to connect layers i and j,

one important parameter is the propagation weight Wij , and another is the bias bi. At

the beginning, Wij and bi are randomly decided as 0. Then, we perform step-forward

propagation

z(l+1) = W (l)a(l) + b(l) (3.14)

a(l+1) = f
(
z(l+1)

)
(3.15)

Chapter 3. Methodology 21

Average
Pooling

Max
Pooling

Average value Max value

Zero Padding

Figure 3.6: Pooling and Padding.

where z(l) denotes the total weighted sum of inputs to all the units in layer l, f(X) is

the activation function, such as a sigmoid, a(l) denotes the activation (meaning output

value) of all the units in layer l. After the iteration, output hW,b(X) is produced. Due

to the primitive definition of Wij and bi, there must be some error between the result

and the true value. Two kinds of error are important, which can measure the accuracy

of the network.

δ
(l)
i =

(sl+1∑
j=1

W
(l)
ji − δ

(l+1)
j

)
f ′
(
z

(l)
i

)
(3.16)

δ
(nl)
i =

∂

∂z
(nt)
i

1

2
‖y − hW,b(x)‖2

= −
(
yi − a(nl)

i

)
f ′
(
z

(nt)
i

) (3.17)

where δl refers to the error in each output unit i in each layer l; it measures how far the

corresponding node is responsible for any error in the output. δnl denotes the error for

each output unit i in the output layer nl. In addition to the error to get the optimum

solution of Wij and bi, we utilize an efficient iteration algorithm called a gradient descent,

W
(l)
ij = W

(l)
ij − α

∂

∂W
(l)
ij

J(W, b) (3.18)

b
(l)
i = b

(l)
i − α

∂

∂b
(l)
i

J(W, b) (3.19)

where α is the learning rate and the definition of J(W, b) is an average sum-of-squares

error term. We can efficiently compute the solution of the partial derivatives using back

propagation. Incorporating δ
(nl)
i and δ

(l)
i , we can get

∂

∂W
(l)
ij

J(W, b) = a
(l)
j δ

(l+1)
i (3.20)

Chapter 3. Methodology 22

∂

∂b
(l)
i

J(W, b) = δ
(l+1)
i (3.21)

After the iteration, Wij and bi are updated into the optimum solution; then we can

calculate the optimum classification hW,b(X).

Figure 3.7: Convolution and Pooling process.

3.3.2 Basic Structure

Based on the multilayer networks, the parameters of convolution subsampling and other

related cores are very significant. In our experiment, we formulated a simple architecture

to compare the CNN with other machine learning methods.

In this basic architecture, the sequence of middle layers contains four layers Conv1,

Pool1, Conv2, and Pool2. The data of each layer and some other information set is

shown in Table 3.1, and the concrete process is shown in Figure 3.7.

Layer Output Shape Kernel Size Scale Param

Input (18,18,3) - - -
Conv 1 (14,14,6) (5,5) - 456
Pooling 1 (7,7,6) - 2,2 0
Conv 2 (4,4,12) (4,4) - 8118
Pooling 2 (2,2,12) - 2,2 0
Flatten (48) - - 0
Dense (1) - - 49
Activation (1) - - 0

Total params: 1,669

Table 3.1: Basic CNN structure settings

Chapter 3. Methodology 23

Both the kernel size and pooling scale can turn the sample from a high- to low-dimensional

feature space. As set initially, the size of sample window is 18 × 18 in 3D; after going

through the convolution for the first time, the size changes to 14 × 14, which becomes 7

× 7 after the first pooling; in the following procedure, convolution 2 and subsampling 2

are similar to the previous ones, whereby the size becomes 4 × 4 and 2 × 2, respectively.

As observed from the result, size can be scaled to low dimensions after the corresponding

process. Output maps decide the number of kernel core, influencing the number and

category of the training data.

Although the preceding basic structure might own good feasibility in exploring feature

and classification, actually, it is far away from mining the potential capability of CNN.

In this experiment we plan to propose other architectures to achieve better result.

ImageNet [73], which organized according to the WordNet hierarchy is a large visual im-

age dataset designed for use in visual object recognition research. As the most attractive

point, characteristic of very large-scale would be tremendously helpful to researchers.

Category here means any object possibly described by multiple words or word phrases,

and ImageNet aims to provide on average 1000 images to illustrate each category, what’s

more, images are quality-controlled and human-annotated. This existing large-scale im-

age database provides researchers convenience and help to tackle problems such as data

collection and labeling.

Based on ImageNet, From 2010, An annual competition called ImageNet Large Scale

Visual Recognition Challenge(ILSVRC) [74] held where research teams submit programs

that classify and detect objects and scenes. It’s important to note that in 2012, AlexNet

[75] achieved the error rate from previous best stated 25% to 16%, and in the next couple

of years, higher accuracy pattern recognition result achieved by famous models such as

GoogLeNet [76], VGGNet [77], SqueezeNet [78] and ResNet[79].

To make the most of these mentioned state-of-the-art models, we carefully modified

the their architectures by considering the characteristics of input HRRS image and our

identification targets. Here, we propose self-designed structures called AlexNet-like,

GoogLeNet-like, VGGNet-like and SqueezeNet-like, and utilize them to implement the

identification.

3.3.3 Architecture Modification

In general, the principle of modifying CNN architecture is highly based on analyzing

learning curve of both training and cross validation results. Except accuracy, there are

two important index need to be pointed out: Bias and Variance. The bias is error from

Chapter 3. Methodology 24

erroneous assumptions in the learning algorithm. High bias can cause an algorithm

to miss the relevant relations between features and target outputs. The variance is

error from sensitivity to small fluctuations in the training set. High variance can cause

over-fitting: modeling the random noise in the training data, rather than the intended

outputs.

Intuitively, here we take target practice as an example. As shown in the Figure 3.8, in

case a shooter cannot shoot central target, the shooting result far away from the center

and clustered in other place is called bias; while the shooter can shoot target, but results

are quite scattered around the center is called variance.

a) b)

Figure 3.8: Bias and Variance.

In this experiment, both Bias and Variance will course severe problems. There’s no

meaning of adding training samples when the model suffers from high bias, and the

buildings can not be identified correctly both in training and cross validation. Here are

some ways to solve it:

• Modify the input training data accuracy. It means the training HRRS images and

corresponding labels both in buildings and other land features must be as accurate

as possible.

• Decrease the regularization coefficient [80] λ, which can solve under-fitting prob-

lems.

• Add feature amount, just like use more complex CNN structures.

When we face the problem of Variance, the training result is rather good while the cross

validation curve is bad or unstable. In details:

Chapter 3. Methodology 25

• Add more training samples would be helpful. The data augmentation such as

adding more training HRRS images dataset considering the diversity.

• Increase the regularization coefficient λ, which can solve over-fitting problems.

• Decrease the feature amount, can use the method such as Dropout [81].

Here, we modify our model depends on the preceding principles. We take VGGNet-

like(will be introduced in later section) structure as an example to explore how to con-

figure the CNN architecture based on the characteristics of VGGNet. The final promising

structure is generated by gradually enhance a sample initial structure. Considering the

experimental requirement, the four parameters to be evaluated in our experiment are

iteration amount, number of filters, the depth of architecture, and sample window size.

These parameters are connected in a way that determines the total number of units and

the weight values in the whole structure.

The original architecture is based on the basic CNN structure 3.1, in which, the size

of sample window is 18 × 18, 2 convolutional layers followed by average pooling are

implemented with 6 and 12 filters respectively. To enhance the previous architecture,

the iteration amount is chosen amount t = [50 150 300 600 1000]; the window size s is

the surrounding area around the pixel to be classified and is chosen from 14 to 30 with

interval = 2; number of filters is configured by multiplying the original filter amount,

f = [3 9 25 50 100] is the multiple; the added convolutional layer amount y from 2 to

12 with interval = 2. We evaluate the effect of each parameter depends on both the

result and computation time, and then integrate all the optimal settings to obtain the

promising VGGNet-like architecture finally.

3.3.3.1 Iteration

First, we evaluate the influence of iteration on the accuracy, and the CNN structure is

based on the original one. Table 3.2 shows the relationship between iteration and result,

while Figure 3.9 shows the learning curve depends on Accuracy and Loss error.

Training Testing

Iteration Acc% Kappa Epoch(s) Total(s) Acc% Kappa Total(s)

50 93.02 0.79 1.49 74.29 94.58 0.42 1.74

300 95.31 0.86 1.41 424.20 97.29 0.60 1.59

600 97.14 0.92 1.37 819.72 97.05 0.60 1.77

1000 97.06 0.91 1.38 1376.66 96.61 0.57 1.67

Table 3.2: Relationship between iteration and accuracy

Chapter 3. Methodology 26

From the result, it infers that after about 400 iterations accuracy dose not increase

anymore in cross validation result. There’s no over-fitting and the result even unstable

more than 1000 iterations. According to the principle, we need to increase feature

amount by adding layer and filter quantity.

a)a) b)

c) d)

Figure 3.9: Influence of iteration.

3.3.3.2 Filter

In general, the more filters, the more features can be extracted. Here we gradually add

feature amount from the original to f = [3, 9, 25, 100, 200] times. As shown in the

Table 3.3, when the filter amount reach 25 times, the best training and testing result

can be generated, and the model can achieve 98.98% and 0.83 in testing accuracy and

Kappa respectively. Also, from the learning curve (Figure 3.10), until 200 and 300 times

the model can still do not face over-fitting problems, it infers that the feature amount

Chapter 3. Methodology 27

has not reached saturated yet. When adding mode filters, the model attend to converge

faster, but considering both accuracy and computation time, the filter amount which

can obtain enough good result would be suitable.

Training Testing

Str Para Acc(%) Kap Epoch(s) Total(min) Acc(%) Kap Total(s)

Ori 1669 95.31 0.86 1.41 7.06 97.29 0.60 1.59

× 3 11917 98.94 0.97 1.57 7.85 98.15 0.72 1.93

× 9 97957 99.19 0.98 2.29 11.46 98.22 0.73 3.31

× 25 0.73M 99.73 0.99 7.09 35.44 98.98 0.83 10.16

× 100 11.57M 99.69 0.99 83.09 415.46 98.79 0.80 88.00

× 200 46.18M 97.54 0.92 299.06 1459.27 98.14 0.70 5.67

Table 3.3: Relationship between filter amount and accuracy.

Although the high accuracy could be achieved, the model still suffer from unstable

convergence, and it can not be stable even add 200 times filter amount. In the next

part, we will exploring the influence of architecture depth.

Original Filter x 3 Filter x 9

Filter x 25 Filter x 100 Filter x 200

Figure 3.10: Influence of filter amount.

Chapter 3. Methodology 28

3.3.3.3 Depth

Convolutional Neural Networks, as a very important branch of Deep Learning, its pre-

ponderance highly based on the depth of architecture. by mining deeper and abstracter

features and information from identification target, usually network in high depth could

achieve better accuracy. Resent years, owning to the improvement of computation ca-

pability and hardware, the possibility of construct and compute very deep network has

come possible. The recent state-of-the art architecture such as VGGNet [77] and ResNet

[79] make the most of this principle.

Training Testing

Structure Para Acc(%) Kap Epoch(s) Total(min) Acc(%) Kap Total(s)

Ori 1669 93.02 0.79 1.49 74.29 94.58 0.42 1.73

+ 2 Con 4891 96.30 0.89 2.06 103.16 96.84 0.58 2.60

+ 4 Con 8133 96.21 0.88 2.73 136.93 98.06 0.68 3.55

+ 6 Con 11335 97.45 0.92 3.44 172.09 98.18 0.70 4.65

+ 8 Con 14557 97.54 0.92 4.16 208.19 98.14 0.70 5.67

+ 10 Con 17779 97.80 0.93 4.94 247.03 97.67 0.65 6.73

+ 12 Con 21001 78.97 0.00 6.18 308.87 97.53 0.00 7.81

Table 3.4: Relationship between depth and accuracy.

In this experiment, we explore the effect of depth on CNN model of identification build-

ings in rural environment. We add convolutional layers from original 2 layers to 14 layers

with interval = 2 . Both training testing settings and results as shown in the Table 3.4.

Figure 3.11: Gradient vanishing.

At beginning, model accuracy become higher and higher with the increase of depth.

However, when convolutional layer amount bigger than 12, the network becomes stocked

Chapter 3. Methodology 29

and even lose the identification capability anymore (Figure 3.11). After rigorous analysis,

such problem would be caused by gradient vanishing [82].

Caused by different factors, gradient vanishing is an usual problem appears in CNN. As

we know, CNN is based on gradient decent and back propagation, when implementing

gradient decent, activation function is also be derivative, signal will be activated into

saturated or diverged region. After that, with propagation processing, such phenomenon

will be propagated in the whole model, and will cause the corresponding gradient van-

ishing and exploring.

The gradient vanishing in this experiment is also cased by the preceding reasons. There

are several ways of solving it. For instance, use unsaturated activation such as Relu can

relief the problem to a certain degree; Also, we can use batch normalization [83] which

conducting feature scaling after convolution and could void the model fall into vanishing

and exploding region; In this experiment we choose the simplest way by adding depth

to the most suitable degree, which would get promising result while avoid suffering from

gradient vanishing problem. Considering the efficiency and accuracy, here we add 4

convolutional layers into original structure and achieve the testing accuracy and Kappa

with 98.18% and 0.70 respectively.

Over-fitting
Unstable

Very over-fitting
stable

Over-fitting
Better than add Con only

stable

Over-fitting
But not severe

Relatively stable

+2 Con + 4 Con + 4 Con + F x 3
+ 4 Con + F x 3

 + Dropout (0.3)

a) b) c) d)

Figure 3.12: Influence of filter, depth and Dropout.

Summarizing and comparing the previous factors, here we choose the model with 6

convolutional layers, two pooling layers and 3 times filter amount comparing with the

original model. However, by analyzing the learning curves (Figure 3.12c) we find that

the model severely suffered from over-fitting problem. Here we add Dropout processing

(Figure 3.12d) which git rid of 30% feature amount after the final flatten layer, which

relief over-fitting to a certain degree and achieve overall accuracy and Kappa with 99.26%

and 0.86 respectively as shown in Table 3.5.

Chapter 3. Methodology 30

Training Testing

Structure Para Acc(%) Kap Epoch(s) Total(min) Acc(%) Kap Total(s)

+2 Conv 4891 98.31 0.95 2.25 11.12 98.87 0.80 2.53

+ 4 Conv 8133 99.60 0.99 2.78 13.91 98.52 0.76 3.60

+ 4 Conv
3×Filt

33283 99.76 0.99 4.54 22.72 99.07 0.84 6.53

+ 4 Conv
3×Filt

Dropout
33283 99.56 0.99 4.62 23.12 99.26 0.86 6.57

Table 3.5: Relationship between depth, filter, Dropout and accuracy.

3.3.3.4 Window Size

In window slide based identification, size of input sample is a very significant factor.

Considering the image resolution and characteristics of rural environmental buildings,

the ideal window size need to be a little bit bigger than the ordinary buildings, mean-

while, the information of building’s surroundings also need to be included.

Figure 3.13: Window size: scenario 1.

The input sample window size of our original basic architecture is 18 × 18. According

to the principle of window slide, here we present three scenarios for exploring window

size. First, change size from 14 to 50, while use the original structure. Second, change

size from 14 to 50, use more complex structure based on the previous principles such as

filter and depth adding. Finally, we focus on some typical window size such as multiple

relation. The best sample size is get by train different models based on different window

size. Here we provide 10,000 positive and 40,000 negative samples to conduct training

respectively.

Chapter 3. Methodology 31

Window size in the first scenario ranges from 14 to 50 with interval equals to 2, and

the parameter amount increases along with window size increasing. Due to the unstable

condition of model (samples are randomly chosen), we did the experiment for 3 times

and get the average result in red line, as shown in the Fiture 3.13. although the results

are different between each other, there’s some information can be picked up: result is

unstable, and the model fluctuates after size equals to 30, however, the overall trend is

accuracy increasing. It means original 18 × 18 window size maybe not the best choice.

Figure 3.14: Window size: scenario 2.

Then, we conduct the second scenario, and explore influence of window size by imple-

menting complex model, it means more features and information can be used. As shown

in the Figure 3.14, like in first scenario, model is unstable, always fluctuate, and the

best result come from size equals to 26. But whether size in 26 × 26 is the best choice

or not still need to be explored.

Here, we propose scenario 3 by comparing the effect of window size in multiple relation,

such as size 14 with 28, 16 and 32, etc. As shown in Figure 3.15, focus on result of

multiple relation sizes with the same structure: double size will contain the information

of small one, and the blue part is their common part.

From the testing result (Figure 3.16), by implementing simple structure, double size

window could get better result, because it not merely contains the information of small

size, but also owns other abundant information. However, if we implement complex

structure, although double window size contains more information, can not get better

result any more (Figure 3.17).

Chapter 3. Methodology 32

Con Pool Flatten

Con Pool
Flatten

Small
Size:

Double
Size:

Similar

Figure 3.15: Window size: scenario 3.

In conclusion, with a same CNN structure, bigger window size can obtain more features

and parameters, but other methods such as adding filters and depth can also increase

feature amount. In scenario 1, accuracy gradually increases due to the insufficient fea-

ture; in scenario 2, accuracy becomes fluctuate, and almost have no difference between

14 16 18 20 22 24
0.94

0.94

0.95

0.95

0.96

0.96

0.97

0.97

0.98

0.98

0.99

Accuracy variety

Small Double

14 16 18 20 22 24
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Kappa variety

Small Double

Figure 3.16: Window size: scenario 3 with simple structure.

each window size; the scenario 3 can infer that when the feature is insufficient, double

size samples include all the information of small ones, which would lead good result, how-

ever, when we use complex structure which contains sufficient feature, bigger window

size can no longer lead good result. Therefore, too big window size might get redundant

and useless feature, which lead bad results. In this experiment, Choose a window size

half bigger than the ordinary buildings, with enough feature and depth is important.

Chapter 3. Methodology 33

14 16 18 20 22 24
0.98

0.99

0.99

0.99

0.99

0.99

1

Accuracy variety

Small Double

14 16 18 20 22 24
0.77

0.78

0.79

0.8

0.81

0.82

0.83

0.84

0.85

0.86

0.87

Kappa variety

Small Double

Figure 3.17: Window size: scenario 3 with complex structure.

3.3.4 AlexNet-like

AlexNet [75] is a revolution architecture of CNN. The parallel and merged structure

makes it able to extract two sets of features while sharing information between each

other. The Deep Convolutional Neural Networks is elaborately formulated with very

high accuracy, in case modify the structure even in a little will influence its capability.

Moreover, by running on GPUs implemented in CUDA, training CNN model depending

on large-scale dataset become feasible.

3
30

30

Input Feature Extractor

0
1

Output

Conv1_1 Pool1_1

 Dense1

Conv1_2 Pool1_2

Conv2_1

Conv2_2

Pool2_1

Pool2_2

Conv3_1

Conv3_2

Conv4_1

Conv4_2

Conv5_1

Conv5_2

Pool3_1

Pool3_2

FC_1

FC_2

Multilayer Perceptron

Figure 3.18: AlexNet-like architecture.

There are some tricks of AlexNet in both structure and processing. First of all, Just by

conducting subsampling and feature scaling [84], the preprocessing procedure is com-

pleted. Then, rather than saturated activation method, AlexNet implements Relu:

f(x) = max(0, x) (3.22)

Chapter 3. Methodology 34

which is very efficient and 6 times faster than tanh [85], can avoid gradient vanishing and

exploding to a certain degree. Third, with the help of parallel structure, AlexNet can

be efficiently trained on multiple GPUs, and every GPU shares half kernels. To reduce

over-fitting, AlexNet uses tricks such as data augmentation, Dropout and overlapping

pooling structure. Finally, Stochastic gradient descent (SGD) method [86] is used with

configuration such as weight decay, momentum and learning rate gradually reduce.

In this experiment, we rigorously modify the AlexNet into AlexNet-like architecture

(Figure 3.18) according to the settings in Table 3.6. To match our target, we reduce

the input size to 30 × 30, and modify some intern settings such as quantity of filter and

kernel size based on the modification principle, which make the total parameter reduces

from about original 60 million to 67,665.

Layer Output Shape Kernel Size Scale Param Connect to

Input (30,30,3) - - 0 -
Padding 1 (32,32,3) - 1 0 Input
Conv 1 1 (28,28,9) (5,5) - 684 Padding 1
Conv 2 1 (28,28,9) (5,5) - 684 Padding 1
Pooling 1 2 (13,13,9) - 3,2 0 Conv 1 1
Pooling 2 2 (13,13,9) - 3,2 0 Conv 2 1
Conv 1 3 (13,13,9) (5,5) - 2034 Padding 1 2
Conv 2 3 (13,13,9) (5,5) - 2034 Padding 2 2
Pooling 1 4 (6,6,9) - 3,2 0 Conv 1 3
Pooling 2 4 (6,6,9) - 3,2 0 Conv 2 3
Merge 1 1 (6,6,18) - - 0 Pooling 1 4

Pooling 2 4
Merge 1 2 (6,6,18) - - 0 Pooling 1 4

Pooling 2 4
Conv 1 5 (6,6,18) (4,4) - 5202 Merge 1 1
Conv 2 5 (6,6,18) (4,4) - 5202 Merge 1 2
Conv 1 6 (6,6,18) (4,4) - 5202 Conv 1 5
Conv 2 6 (6,6,18) (4,4) - 5202 Conv 2 5
Conv 1 7 (6,6,18) (4,4) - 5202 Conv 1 6
Conv 2 7 (6,6,18) (4,4) - 5202 Conv 2 6
Pooling 1 8 (2,2,18) - 3,2 0 Conv 1 7
Pooling 2 8 (2,2,18) - 3,2 0 Conv 2 7
Flatten 1 9 (72) - - 0 Conv 1 8
Flatten 2 9 (72) - - 0 Conv 2 8
Merge 2 (144) - - 0 Flatten 1 9

Flatten 1 9
Flatten 3 (100) - - 14500 Merge 2
Dense (1) - - 101 Flatten 3
Activation (1) - - 0 Dense

Total params: 51,249

Table 3.6: AlexNet-like architecture

Chapter 3. Methodology 35

3.3.5 VGGNet-like

3
30

30 5

5

1830

5

5

18
26

5

5

1830

13
36

4

4

18
36 36

Input Feature Extractor

0
1

Multilayer Perceptron Output

4

4

4

4

Conv1 Conv2 Conv3 Conv4 Conv5 Conv6 Pool2Pool1 FC

Figure 3.19: VGGNet-like architecture.

VGGNet [77] is the abbreviation of Very Deep Convolutional Networks. As its name

mentioned, VGGNet addresses the important aspect of Convolutional Networks archi-

tecture design: its depth, which makes it be able to mine very deep and abstract features.

The architecture steadily increase the depth of networks by adding more convolutional

layers, and filter quantity also gradually increase from begging to the end. In terms of

filter, very small convolutional filters with size 3 × 3 are used in all the layers, and the

used 1 × 1 filter can be seen as a linear transformation of the input channels. Other

layers such as Zeroppading (Figure 3.6), Maxpooling, Flatten, Dense and dropout are

also increase its feasibility.

There are two kinds of VGGNets: 16 and 19 layers, which different in layer amount.

The two types own parameter quantity in 138M and 144M respectively, while the flatten

layer contains about 100M parameters. To avoid over-fitting, the method here is get rid

of redundant features via Dropout.

In this experiment, we propose a VGGNet-like architecture (Figure 3.19), which owns the

capability to identify buildings in rural environment based on HRRS images. the main

idea of modification is revising input data shape, decreasing layer and filter amount while

considering the characteristic of VGGNet. After modification, the parameter amount

decreases from 140M to 70,453 (Table 3.7), which make the model easy to be trained.

Chapter 3. Methodology 36

Layer Output Shape Kernel Size Scale Param

Input (30,30,3) - - -
Conv 1 (30,30,18) (5,5) - 1368
Conv 2 (30,30,18) (5,5) - 8118
Conv 3 (26,26,18) (5,5) - 8118
Pooling 1 (13,13,18) - 2,2 0
Conv 4 (13,13,36) (4,4) - 10404
Conv 5 (13,13,36) (4,4) - 20772
Conv 6 (10,10,36) (4,4) - 20772
Pooling 2 (5,5,36) - 2,2 0
Flatten (900) - - 0
Dropout (900) - - 0
Dense (1) - - 901
Activation (1) - - 0

Total params: 70,453

Table 3.7: VGGNet-like architecture

3.3.6 GoogleNet-like

3
30

30

Input Feature Extractor

0
1

Multilayer Perceptron Output

Conv1 Conv2

Inception

Pool2Pool1 FCPool3

Inception

Figure 3.20: GoogleNet-like architecture.

The main innovation of GoogleNet [76] is using the architecture called Inception. In

general, Inception is a network in network structure, and the optimal local sparse struc-

ture of a vision network spatially repeat from the beginning to the end. Three Inception

structures which used in different circumstances are introduced, in common, 1 × 1 con-

volutions are used in Inception to compute reductions before the expensive 3 × 3 and 5

× 5 convolutions.

Chapter 3. Methodology 37

GoogleNet provides us an inspiration of how to building high capability architecture.

Most of the progress is not only rely on more powerful hardware, large datasets and

bigger models, but mainly a consequence of new ideas, algorithms and improved network

architectures.

Learning from GoogleNet, in this experiment we build our GoogleNet-like structure

(Figure 3.20). The Inception architecture is remained, while modify the layer and filter

amount and sequence. Detailed settings in Table 3.8.

Layer Output Shape Kernel Size Scale Param Connect to

Input (30,30,3) - - 0 -
Padding 1 (32,32,3) - 1 0 Input
Conv 1 (28,28,18) (5,5) - 1368 Padding 1
Padding 2 (30,30,18) - 1 0 Conv 1
Pooling 1 (14,14,18) - 3,2 0 Padding 2
Conv 2 (14,14,18) (1,1) - 342 Pooling 1
Conv 3 (14,14,18) (5,5) - 8118 Conv 2
Padding 3 (16,16,18) - 1 0 Conv3
Pooling 2 (7,7,18) - 3,2 0 Padding 3
Conv 4 1 1 (7,7,20) (1,1) - 380 Pooling 2
Conv 4 1 2 (7,7,20) (3,3) - 3620 Conv 4 1 1
Conv 4 2 1 (7,7,20) (1,1) - 380 Pooling 2
Conv 4 2 2 (7,7,20) (5,5) - 10020 Conv 4 2 1
Pooling 4 3 1 (7,7,18) - 3,1 0 Padding 2
Conv 4 3 2 (7,7,20) (1,1) - 380 Pooling 4 3 1
Conv 4 4 (7,7,20) (1,1) - 380 Pooling 2
Merge 1 (7,7,80) - - 0 Conv 4 1 2

Conv 4 2 2
Conv 4 3 2
Conv 4 4

Conv 5 1 1 (7,7,15) (1,1) - 1215 Merge 1
Conv 5 1 2 (7,7,15) (3,3) - 2040 Conv 5 1 1
Conv 5 2 1 (7,7,15) (1,1) - 1215 Merge 1
Conv 5 2 2 (7,7,15) (5,5) - 5640 Conv 5 2 1
Pooling 5 3 1 (7,7,80) - 3,1 0 Merge 1
Conv 5 3 2 (7,7,15) (1,1) - 1215 Pooling 5 3 1
Conv 5 4 (7,7,15) (1,1) - 1215 Merge 1
Merge 2 (7,7,60) - - 0 Conv 5 1 2

Conv 5 2 2
Conv 5 3 2
Conv 5 4

Pooling 6 (1,1,60) - 7,1 0 Merge 2
Flatten (60) - - 0 Pooling 6
Dropout (60) - - 0 Flatten
Dense (1) - - 61 Dropout
Activation (1) - - 0 Dense

Total params: 37,589

Table 3.8: GoogleNet-like architecture

Chapter 3. Methodology 38

3.3.7 SqueezeNet-like

Compared with other architectures, SqueezeNet [78] owns very little parameters while

remaining the similar high accuracy. It’s amazingly achieve AlexNet-level accuracy with

50 times fewer parameters and <0.5MB model size, identify patterns with very few

parameters while preserving accuracy.

3
30

30

Input Feature Extractor

0
1

Output

Conv1

 Fire1

Pool2Pool1 Pool3

 Fire2 Fire3 Fire4

Figure 3.21: SqueezeNet-like architecture.

There are some tricks in its structure. First of all, is the structure called fire which

looks like fire blazing through match. Rather than 3 × 3 convolutional core used in

GoogLeNet, SqueezeNet replace some 3 × 3 filters with 1 × 1 filters in some layers, since

1 × 1 filters has 9 times fewer parameters than a 3 × 3. The fire module is comprised

by a squeeze convolution layer(which has only 1 × 1 filters), and the aforementioned

layer fed into an expand layer that has a mix of 1 × 1 and 3 × 3 convolutional filters.

Then, to decrease parameters, decreasing input channel quantity is a solution. Third,

downsample lately in the network so that convolutional layers can have larger activation

maps, which lead to higher classification accuracy. Finally, In stead of fully-connected

layer, the output is generated by Pooling layer directly, this structure can decrease filter

amount in a large-scale. For instance, final convolutional layer obtains the features in

size 13 × 13 × 1000, after that, Pooling layer subsampling the feature into size 1 × 1 ×
1000, and make a 1000 possibilities prediction.

In this experiment, we designed a SqueezeNet-like architecture (Figure 3.21) also begin

with a standalone convolutional layer, then, 4 fire modules followed. Emulating original

SqueezeNet structure, we also gradually increase the number of filters per fire module

from the beginning to end. Maxpooling (overlapping pooling)with stride is implemented

Chapter 3. Methodology 39

Layer Output Shape Kernel Size Scale Param Connect to

Input (30,30,3) - - 0 -
Conv 1 (30,30,18) (5,5) - 1368 Input
Pooling 1 (14,14,18) - 3,2 0 Conv 1
Conv 1 1 (14,14,16) (1,1) - 304 Pooling 1
Conv 1 1 1 (14,14,64) (1,1) - 1088 Conv 1 1
Conv 1 1 2 (14,14,64) (3,3) - 9280 Conv 1 1
Merge 1 (14,14,128) - - 0 Conv 1 1 1

Conv 1 1 2
Conv 2 1 (14,14,16) (1,1) - 2064 Merge 1
Conv 2 1 1 (14,14,64) (1,1) - 1088 Conv 2 1
Conv 2 1 2 (14,14,64) (3,3) - 9280 Conv 2 1
Merge 2 (14,14,128) - - 0 Conv 2 1 1

Conv 2 1 2
Pooling 2 (6,6,128) - 3,2 0 Merge 2
Conv 3 1 (6,6,32) (1,1) - 4128 Pooling 2
Conv 3 1 1 (6,6,20) (1,1) - 660 Conv 3 1
Conv 3 1 2 (6,6,20) (3,3) - 5780 Conv 3 1
Merge 3 (6,6,40) - - 0 Conv 3 1 1

Conv 3 1 2
Conv 4 1 (6,6,20) (1,1) - 820 Merge 3
Conv 4 1 1 (6,6,20) (1,1) - 420 Conv 4 1
Conv 4 1 2 (6,6,20) (3,3) - 3620 Conv 4 1
Merge 4 (6,6,40) - - 0 Conv 4 1 1

Conv 4 1 2
Dropout (6,6,40) - - 0 Merge 4
Conv 5 (6,6,1) (1,1) - 41 Dropout
Pooling 3 (1,1,1) - 6,6 0 Conv 5
Flatten (1) - - 0 Pooling 3
Dense (1) - - 0 Flatten
Activation (1) - - 0 Dense

Total params: 39,941

Table 3.9: SqueezeNet-like architecture

after Conv1 and Merge2, the final average pooling layer make the output categories into

two types building and non-building (Table 3.9).

The original networks is developed based on Caffe [87] framework, however, Caffe can

not support a convolutional layer that contains multiple filter resolutions(e.g. 1 × 1, 3

× 3), to make it work, we can use the zero padding to 1 × 1 filter. Instead, another

Deep Learning framework called Keras [71] can satisfy all our needs.

Chapter 3. Methodology 40

3.4 Transfer Learning based CNN

Transfer Learning [55] has become a very important method in machine learning. Gen-

erally speaking, transfer learning makes the classifier own the ability of identifying new

things. As an example shown in Figure 3.22, if we train a cat identification classifier by

providing brown cats samples only, when the black cat come, the classifier is hard to

identify the cat correctly. Obviously, the bad behavior is caused by lacking correspond-

ing training samples of black cat. However, there must be many common characteristics

of cats in different colors, and how to transfer the original model into a new one which

could identify both two color cats is important.

Brown Cat

Learned knowledge ???
Cat

Transfer

Black CatBrown Cat

Figure 3.22: Transfer Learning.

There are some things need to be pointed out. First of all, collecting well-rounded images

is impossible, which means we can not get all the cat images around the world. Second,

retraining the original model every time when some new training dataset provided would

be very time consuming. Finally, the intelligent creatures such as human beings own

the capability to identify new color cat with no doubt, while the model cannot do so.

Transfer Learning would be a method of solving these problems.

Here we explore the possibility of implementing transfer learning method in CNN based

on simple handwritten digits dataset called MNIST [88]. Our target is create an original

model which could only identify 0∼4, then make it own the capability of identifying 5∼9

while do not forget 0∼4.

As shown in Figure 3.23, first of all, we train a model which could identify 0∼4. Analyz-

ing the common characteristics of 0∼4 and 5∼9, there mast be many common features

in these two datasets. Therefore in the second step, we frozen the feature extractor

part of the original model, just make multilayer perceptron part trainable and mutable.

Then we input new dataset 5∼9 into the original model and retrain a new one.

Chapter 3. Methodology 41

28

Input Feature extractor

0
1
2
3
4

Multilayer perceptron Output

Conv1 Pool1Conv2 FC Dense14

FC Dense1

5
6
7
8
9

Frozen Mutable

Mutable

New data set

Figure 3.23: Transfer Learning trial.

By the preceding processing, the new knowledge and model are learned based on the old

knowledge and model respectively, while using the same feature extractor and extracting

similar features. In many conditions, new data (new knowledge) is very limited, and

small new data set can also generate a new classifier. Whats more, since the new classifier

get influenced by both old and new datasets, maybe own the ability of identifying all

the digits.

Here (Table 3.10) is our hypothesis in case the model owns transfer learning capability.

The original model can only identify 0∼4, while the transfered model can handle all the

digits.

Original Data Set 0∼4 New Data Set 5∼9 All Data Set 0∼9

Original Model Good Bad Bad

Transfered Model Relatively Good Good Good

Table 3.10: Transfer Learning hypothesis.

As a trial, we provide new training dataset 5∼9 which only contains 1/60 of original

amount to train a new model based on the old one. Result shows that training time

only costs 1/4 comparing with original one and with accuracy up to 88%, which means,

the new model transfered from 0∼4 classifier can identify handwritten digits from 5 to

9 in high accuracy. In order to validate our hypothesis, here we utilize our original and

transfered model to test all the dataset respectively. The result in Table 3.11 match the

hypothesis (Table 3.10) quite well.

Testing result must be highly based on the new training dataset 5∼9 amount. here we

choose new dataset with amount ratio: 1/1, 3/1, 1/6, 1/10, 1/20, 1/40, 1/60, 1/80,

Chapter 3. Methodology 42

Original Data Set 0∼4 New Data Set 5∼9 All Data Set 0∼9

Original Model 99.71% 34.71% 67.89%

Transfered Model 95.16% 89.97% 92.62%

Table 3.11: Transfer Learning result in MNIST.

1/100, 1/200 compared the original training dataset 0∼4. The result as shown in Figure

3.24, and we can infer that:

Figure 3.24: Transfer Learning “memory curve”.

• Green: original model test original data. Good result, and very stable.

• Yellow: original model test new data. Bad result, because it do not have such

knowledge.

• Pink: original model test all data. Normal performance, it can not deal with new

data set.

• Red: transferred model test original data. When new training data amount in-

creasing, transferred model tend to forget old knowledge.

• Gray: transferred model test new data. Bigger new data amount can get more

knowledge

Chapter 3. Methodology 43

• Orange: transferred model test all data. Performance like a convex, when new

data not enough, can not understand new knowledge well, when new data too

much, tend to forget old knowledge

Table 3.12 is the detailed result:

1/200 1/100 1/80 1/60 1/40 1/20 1/10 1/6 1/3 1/1

OM OD 99.72 99.72 99.72 99.71 99.68 99.76 99.64 99.72 99.74 99.74
TM OD 97.97 97.11 95.96 95.46 92.39 88.92 72.76 61.49 49.18 40.50
OM ND 33.34 32.31 29.63 34.93 34.41 32.25 34.08 37.66 34.26 35.28
TM ND 73.11 81.53 84.87 89.90 91.45 94.95 96.94 97.78 98.40 99.33
OM AD 67.23 66.73 65.41 68.00 67.73 66.71 67.55 69.34 67.69 68.19
TM AD 85.80 89.48 90.53 92.74 91.93 91.87 84.59 79.25 73.27 69.30

Table 3.12: Transfer Learning “memory curve” result.
O=old, M=model, T=transferred, N=new, A=all, D=Data

According to the previous analysis, the CNN based transfer learning would be useful to

solve the problem in case training a new model without enough new training dataset.

With relatively short training time, the transfered model owns the capability to identify

in both old and new data set with high accuracy.

When identification buildings in rural environment, usually the model is trained by

a specific dataset, and building’s characteristics similar with training dataset can be

correctly identified. Also, new training dataset is hard to prepare which lead lacking

training data. What’s more, training a brand new model would be really time consuming.

Transfer learning would be able to provide (Figure 3.25) us a possibility to solve these

problems.

Old model Transferred model

Figure 3.25: Transfer Learning in building identification.
Put limited new training dataset into old model, retrain it and generate transfered one

Chapter 3. Methodology 44

3.5 Other Processing

Except for creating machine learning model, we usually face many other different prob-

lems in machine learning identification tasks, As shown in Figure 3.27. In general, when

lacking training data in both diversity and amount, we can consider using Data Aug-

mentation method, which can also prevent over-fitting. As mentioned in the previous

section, transfer learning can help us obtain new model with good capability efficiently.

When the testing and training dataset quite differ in color spectrum, we can consider

color balance method to make some modification. After generating result, the post

processing such as close can be conducted to get rid of salt-and-pepper noise.

Training

Data Augmentation

Color Balance

Transfer Learning

Post Processing

Training
Samples Model Testing

Samples

Transfered
Model

Testing
Result

Figure 3.26: Other processing.
Data Augmentation, Color Balance, Post Processing

3.5.1 Data Augmentation

Artificially enlarge the dataset using label-preserving transformations is the most com-

mon method to reduce over-fitting. Here we employ two forms of data augmentation

[89]. First of all, considering the diversity of building, we enrich the category by ro-

tating or stretching the training samples, in that case, many new buildings in different

structure will be generated with accurate ground truth. Then, by changing the RGB

bands sequence, building in same exterior appearance with different color will also be

obtained. The preceding Data Augmentation is randomly implemented when collecting

training samples, and 10% samples are generated by the proposed method.

3.5.2 Color Balance

As an image filter, Wallis filter [90] scans the image and makes every pixel in the output

image have a specified mean and standard deviation. In this experiment we choose it to

be the color balance tool, and the target image will be converted into a new one based

Chapter 3. Methodology 45

on the provided template. As shown in the following equation:

g(x, y) = [f(x, y)−mc]
CVs

CVs + (1− C)Vs
+ bms + (1− b)mc (3.23)

Where g(x, y) refers to output result, f(x, y) indicates input, Vc and Vs refer to input

and template variance respectively, while ms and mc means template and output mean

values. When utilizing Wallis filter in our experiment, template HRRS image need to

be prepared, in order to calculate its variance and mean value.

Template

* =

Input Output

Figure 3.27: Color Balance.

The result as shown in Figure 3.27, the left input images are converted in a new color

space which could be balanced with the template image. We will conduct this method

in case we need.

3.6 Experimental Platform

We conduct our experiment on two sets of platforms, As shown in Table 3.13. The

first experimental platform is developed among Window 10 operation system with pro-

gramming language Matlab [91]. The Deep Learning libraries such as Caffe [87] and

DeepLearnToolbox [70] can support our experiment on the this platform. The compu-

tation core we use is CPU, which take very long time to training the model and test

image.

Chapter 3. Methodology 46

Version Platform 1 Platform 2

System Windows 10 Ubuntu 14.04

Language Matlab Python 3.5

Hardware CPU GPU + CPU

Library Deep learning box Theano + Keras

Accuracy Similar

Velocity / Epoch 123.9s 1.4s

Table 3.13: Experimental platform.

Then we change our platform into Linux Ubuntu 14.04 and Python [92] 3.5, the platform

owns the advantages such as very convenient and supported by many deep learning

libraries. Here we list the detailed information of some famous Deep Learning libraries

and frameworks in Table depending our investigation and understanding.

Framework Language CUDA Platform Install Difficulty Effi Popu

Caffe
C++

Python
Mat

Yes
Win

Ubun
OS X

Hard Middle High High

Theano Python Yes
Win

Ubun
OS X

Middle Hard High Middle

TensorFlow
C++

Python
Yes

Win
Ubun
OS X

Middle Hard High High

Chainer Python Yes
Win

Ubun
OS X

Easy Easy High Low

Torch
C

eLua
Ys

Win
Ubun
OS X

? ? ? ?

Table 3.14: Deep Learning libraries

In this experiment, we use the framework called Keras [71], which is a minimalist and

highly modular neural networks library, written in Python and capable of running on top

of either TensorFlow [93] or Theano [94]. Keras (Table 3.15) is very easy to construct

CNN architecture also can efficiently use Compute Unified Device Architecture (CUDA)

to accelerate computation.

Framework Backend CUDA Language Platform Install Difficulty

Keras
Theano

Yes Python
Win, OS X

Ubuntu
Middle Easy

TensorFlow

Table 3.15: Keras

The NVIDIA CUDA Deep Neural Network library (cuDNN) is a GPU-accelerated library

of primitives for deep neural networks. cuDNN provides highly tuned implementations

Chapter 3. Methodology 47

for standard routines such as forward and backward convolution, pooling, normalization,

and activation layers. By using cuDNN, GPU can be 30 times faster than CPU, the

comparison as shown in Figure 3.28.

a) b)

Figure 3.28: CPU and GPU comparison.

Chapter 4

Result and Discussion

During the experiment, we first trained the classification model using the sample data

and then applied the model to the test dataset. The classification performance was

evaluated by three widely used parameters.

• Confusion Matrix (see Table 4.1): This parameter comprehensively describes the

performance of a binary classification result.

True Negatives (TN) False Positives (FP)

False Negatives (FN) True Positives (TP)

Table 4.1: Confusion Matrix.

where True Positives: actual buildings that were correctly classified as buildings,

False Positives: non-buildings were incorrectly labeled as buildings, False Nega-

tives: buildings that were incorrectly marked as non-buildings, True Negatives: all

the things correctly classified as non-buildings.

• Overall Accuracy: Measures the overall performance of the classifier.

OverallAccuracy =
TP + TN

n
(4.1)

where n is the total number of pixels.

• Kappa: This parameter comprehensively describes the classification accuracy by

measuring the inter-rater agreement among qualitative items [95]. Kappa is defined

as follows:

Kappa =
2× (TP × TN − FP × FN)

TP (2TN + FP + FN) + TN(FP + FN) + FP 2 + FN2
(4.2)

49

Chapter 4. Results and Discussions 50

The performances of AdaBoost and basic CNN model are evaluated in Sections 4.1 and

4.2, respectively. All input training data are contained in the 900 × 600 pixel RGB image

shown in Figure 2.1d. The same image is used for the test data. The test results of the

two algorithms are compared and discussed in Section 4.3. In Section 4.4, we test the

entire image (Figure 2.1f, with a size of 3600 × 4500 pixels) by basic CNN. To enhance

the performance, we also alter the input training data. The accuracy of the experiment

is evaluated by comparing the result with the ground truth, which contains the tree

labels (building areas, non-building areas, and unknown areas such as cloud cover). In

section 4.4, we enhance basic CNN into stronger models and compare their feasibility

in building identification. To solve the problem of color unbalance, over-fitting, etc., we

implement color balance and transfer learning in the rest sections.

4.1 Result of Adaboost

In the training section, the positive samples contain information of the recognized target,

which herein refers to building information; conversely, negative samples are without

information of a recognized target such as trees, roads, and unknown areas.

H(x) = sign

(
T∑
t=1

αtht(x)− Terra

)
(4.3)

The confidence obtained by AdaBoost is thresholded by a parameter called Terra. How-

ever, when Terra was set to 0 (as in traditional AdaBoost methods), the performance

was greatly degraded by the large number of false positives in the classification results.

After observing the results for different values of Terra, we selected the optimal Terra

based on the Kappa criterion. The following result indicates the progress from using

color features to add Haar-like features.

4.1.1 Color Feature

As previously mentioned, the classifier was optimized by trialing four kinds of input

samples from Figure 2.1d. All the testing samples were also prepared from Figure

2.1d. There must be a one-to-one size correspondence between the testing and training

samples, as shown in Table 4.2. Since the edges are ignored, the number of testing

samples differs among the tests.

After the training procedure, four kinds of stronger classifier emerged: AdaBoost A–D.

Chapter 4. Results and Discussions 51

Training Samples
Classifier Sample Size Positive Samples Negative Samples Weak Classifiers

AdaBoost A 1×1 48,591 124,803 500
AdaBoost B 3×3 40,071 102,163 500
AdaBoost C 5×5 32,079 81,787 500
AdaBoost D 7×7 24,975 63,675 500

Table 4.2: Training data of color features.

To test the accuracy of classifiers generated in the training part, we utilize the classifiers

obtained to detect the testing samples, respectively, and the results are as follows (Table

4.3).

Classifier Testing Samples Terra Kappa Overall Accuracy

AdaBoost A 540,000 1.7 0.31 95.64
AdaBoost B 537,004 3.5 0.31 96.04
AdaBoost C 534,016 5.0 0.30 96.16
AdaBoost D 534,016 8.5 0.29 96.65

Table 4.3: Comparison of accuracy based on color features.

As we can infer from the result table, classifier B has the optimum solution, with a

Kappa of 0.31 and overall accuracy of 96.04%.

4.1.2 Haar-Like Features + Color Features

To enhance the accuracy of the classifier, we incorporate Haar-like features and color

features to mine deeper texture information of the target. Based on the feature value

theory, by calculating the entire feature value via an integral image algorithm, the

AdaBoost method can be achieved.

The training samples are captured from Figure 1e, with 111 pieces of positive sample

and 283 negative samples, all sized at 25 × 25 pixels in gray-scale. The positive and

negative samples are the gray-scale images of buildings and non-buildings, respectively.

The input training data is a matrix of Haar-like feature values. The size of the Haar-like

features can be stretched or reduced, and they can move within the entire image. The

dimension of a two-rectangle feature would reach 3,328; therefore, considering that the

dimension of the input training data is extremely large, only four kinds of common Haar-

like feature have been used. Based on the principle of Figure 3.3, the total dimension of

the input features is 3328× 2 + 2600 + 2276 = 11532. The testing data is also shown in

Figure 2.1e. After combining with the color features, the result of the identification is

enhanced to Kappa of 0.31 and the overall accuracy is enhanced to 96.22%. Compared

with the result of using color features only, this result is somewhat improved.

Chapter 4. Results and Discussions 52

4.2 Result of Basic CNN

In the CNN algorithm training process, placing the training samples and their relevant

labels together is necessary. To test the influence of the input parameters on the final

classifier, we utilize a control variate method as follows (Table 4.4).

Classifier Sample Size Positive Samples Negative Samples Iteration

CNN A 18×18 13,300 50,000 50
CNN B 18×18 13,300 50,000 300
CNN C 18×18 26,150 50,000 300

Table 4.4: Training data of basic CNN.

After the training part of CNN, three different classifiers are generated from CNN A

to CNN C. After utilizing the classifiers to test the given figure, the result and the

corresponding figure will be produced (Table 4.5).

Classifier Kappa Overall Accuracy

CNN A 0.41 93.96%
CNN B 0.43 94.13%
CNN C 0.56 96.30%

Table 4.5: Comparison of accuracy based on basic CNN.

Compared with the respective results, the obtained classifier CNN C performs well in

detecting the buildings from the given figure. Kappa is enhanced to 0.56 and the overall

accuracy reaches 96.30%. In such cases, the confusion matrix and the outcome figures

are as follows (Table 4.6).

True Negatives: 549,034 False Positives: 17,366

False Negatives: 799 True Positives: 12,540

Table 4.6: Confusion matrix based on basic CNN in pixel.

As we mentioned in the definition of the confusion matrix, in the method based on

CNN, actual buildings that were correctly classified as buildings is 12,540, non-buildings

incorrectly labeled as buildings is 17,366, buildings that were incorrectly marked as non-

buildings is 799, and number of correctly classified non-buildings is 459,034. Although

the number of non-buildings that were incorrectly labeled as buildings is a little bit high,

impacting the performance of the result, other parts of the matrix perform well.

In the outcome figure of CNN C, gray refers to the unknown part, green means the actual

buildings that were correctly classified as buildings, blue indicates the non-buildings

that were incorrectly labeled as buildings, red shows the buildings that were incorrectly

marked as non-buildings, and black denotes the correctly classified non-buildings. As

shown in the result, the CNN C classifier has high performance in detecting buildings.

Chapter 4. Results and Discussions 53

In Figure 4.1b, it can be seen that the classification error decreases stably as the iteration

increases.

Figure 4.1: Basic CNN: CNN C result.

4.3 Compare Adaboost and Basic CNN

We utilized machine learning methods including AdaBoost and CNN to identify build-

ings from remote sensing images and generated the relative testing results, as mentioned

in Sections 4.1 and 4.2, respectively. Inferring from the comparisons in accuracy, the best

result of Kappa and overall accuracy are 0.31 and 96.20% in the AdaBoost algorithm,

respectively, whereas in CNN, the result is enhanced to 0.56 and 96.30%, respectively.

According to the comparison, in the corresponding testing area, the Kappa of our CNN

method is approximately 25% higher than that of AdaBoost. For overall accuracy, CNN

also outperforms AdaBoost.

Note that the traditional visual interpretation of remote sensing images is a complex

and time-consuming process. Although it has very high accuracy, it is not suited to

large-scale automation projects. The effect of AdaBoost methods is highly dependent

on the training feature. The color and Haar-like features chosen in our experiment

cannot express all the helpful and useful features of the buildings, which impacts the

accuracy of the result. In contrast, CNN can mine and extract deeper information on

the input features of building, which can be helpful in identification.

Chapter 4. Results and Discussions 54

4.4 Basic CNN Implementation

In this section, we demonstrate how the CNN method works via the entire image in

Figure 1f, which is 30 times bigger than that in Figure 1d. We compare two kinds of

input training data and separately obtain the identification results as follows (Table 4.7).

Training Type Input Training Area Positive Samples Negative Samples

Train A Figure 4.1a,d 26,150 50,000
Train B Figure 4.1a,b,d,e 26,150 150,000

Table 4.7: Different training data using basic CNN.

The training data in type Train B contains more diverse negative sample information

than that in Train A, with 150,000 samples including information of mountains and

other types of land. The identification results are as follows (Table 4.8).

Training Type TP FP FN TN Kappa Overall Accuracy

Train A 82,578 265,923 12,306 15,009,525 0.366 98.19%
Train B 83,351 175,495 11,533 15,099,953 0.466 98.78%

Table 4.8: Comparison of accuracy based on basic CNN.

As observed from the testing result, the Kappa and overall accuracy increase when the

negative training samples are expanded. In Figure 4.1, most of the village buildings

can be identified, but the inaccuracy points are mainly distributed in the village bound-

ary and some building-like areas. From Figure 4.2b, areas such as mountains can be

identified as non-buildings areas, whereas they could not be detected in Figure 4.2a.

Figure 4.2: Classification results of basic CNN: (a) Train A; and (b) Train B.

To detect the details of the performance of Train B, we split the image into 30 small

images of size 900 × 600 pixels as follows (Figure 4.3).

Chapter 4. Results and Discussions 55

Figure 4.3: Classification results (a-D) of test areas using CNN C.

Chapter 4. Results and Discussions 56

The performance of each part is different and the accuracy comparison is as follows.

For different study areas, the overall accuracy of the CNN method can be up to 99.00%.

We only show part of the results in Table 4.9, especially those containing information

of buildings (positive pixels) where Kappa can be up to 0.89, which indicates high

performance. We can also infer that the overall accuracy of the proposed method is

considerably stable in different areas. As Kappa is relatively low in some areas, identifi-

cation accuracy can be improved by expanding the training data, as shown in previous

processes.

Study Area Positive Pixels Negative Pixels Kappa Overall Accuracy

a 41,262 307,805 0.89 97.54%
b 14,392 398,102 0.76 98.00%
c 9075 495,639 0.47 96.47%

Table 4.9: Accuracy assessment of all the testing data in Figure 4.2 based on basic
CNN.

In general, the experimental results indicate that our proposed method based on ma-

chine learning, especially on CNN, has relative high performance in remote sensing

identification of buildings.

4.5 Different Structures Result

According to the result, identification capability of basic structure is still limited, which

can not achieve very high Kappa in many testing areas. As shown in the previous

Chapter, after analyzing the learning curve, we self-design 4 kinds of structure based on

the state-of-the art networks. In this section, we compare the capability of corresponding

structures by learning curve and testing result.

Parameter Training

Structure Former New Acc Kappa Iter(s) Total(s)

AlexNet-like 60.97M 51,249 99.77 0.99 5.42 1626.95

VGGNet-like 143.67M 70,453 99.78 0.99 13.81 4142.61

GoogLeNet-like 7.00M 37,589 99.71 0.99 6.62 1986.80

SqueezeNet-like 1.25M 39,941 99.73 0.99 7.23 2171.02

Table 4.10: Training result by different structures.

Based on the principle and our former exploration about how to build a high accuracy

architecture, here we set the experiment parameters as follows: iteration = 300, window

size = 30 × 30, learning rate = 0.03, activation Relu and Sigmoid. In terms of dataset,

50,655 and 12,664 images are chosen as training and cross validation samples respectively,

Chapter 4. Results and Discussions 57

in which contains 13319 positive samples and 50,000 negative samples. As an example,

the testing image here we also choose Laos image.

The filter amount and depth are different between each architecture. Detailed settings

and training result in Table 4.10.

The results represented in overall accuracy, Kappa and confusion matrix are shown in

Table 4.11.

Testing Confusion Matrix

Structure Acc Kappa Total(s) TN FP FN TP

Basic 96.30 0.56 180.70 549,034 17,366 799 12,540

AlexNet-like 98.92 0.81 9.88 520,878 5803 39 13,280

VGGNet-like 99.14 0.85 24.60 52,2081 4600 26 13,293

GoogLeNet-like 98.91 0.81 12.19 520,837 5844 63 13,256

SqueezeNet-like 98.89 0.81 17.93 520,713 5968 45 13,274

Table 4.11: Testing result by different structures.

c) d)

b)

a)

a)

Figure 4.4: Learning curve of different structures.
(a)AlexNet-like (b)VGGNet-like (c)GoogLeNet-like (d)SqueezeNet-like

Chapter 4. Results and Discussions 58

From the testing result, self-design structures outperform the basic structure and in-

crease 3% of accuracy and 30% Kappa, also the confusion matrix shows that TP and

TN increase a lot while FP and FN decreased. The testing result proves the feasibility

of our modification method, and VGGNet-like architecture achieves the best.

Merely analyze model’s ability based on result is not enough, here we illustrate learning

curves (Figure 4.4) of these models in training part.

The curve shows that, although all of the architectures modified based on the current

state-of-the-art architectures own the strong ability in both training and testing, the

deliberately designed GoogleNet-like and SquezzNet-like are still relatively not stable

and also suffer from over-fitting. in contrast, AlexNet-like and VGGNet-like are stable

without over-fitting. The result comparison in visualization as shown in Figure 4.5.

c) d)

b)a)

Figure 4.5: Different structure result comparison.
(a)AlexNet-like (b)VGGNet-like (c)GoogLeNet-like (d)SqueezeNet-like

Considering the accuracy, stability and efficiency when conducting our experiment, we

choose VGGNet-like and utilize it to test more dataset. Here to compare the feasibility

of VGGNet-like and basic CNN structure, we test image in Kenya as example (Figure

4.6). And concrete accuracy, Kappa and confusion matrix as Table 4.12, also shows the

capability of our created model.

Chapter 4. Results and Discussions 59

Basic Model Testing Image VGGNet-like Model

Figure 4.6: Kenya tesing result comparison.
Left: result of basic model. Middle: Testing image. Right: result of VGGNet-like

Testing Confusion Matrix

Image Structure Acc Kappa TN FP FN TP

1 Basic 99.83 0.44 4,184,127 4,221 3059 2897

1 VGGNet-like 99.96 0.87 4,187,087 1261 451 5505

2 Basic 99.33 0.57 4,147,663 20,176 7843 18,622

2 VGGNet-like 99.77 0.82 4,223,170 6173 3552 22,913

Table 4.12: Kenya testing result by basic and VGGNet-like structure.

In oder to test the robustness of our model, we conduct the experiment using training and

testing sample in different country. What’s more, spectrum and building’s appearance

are also different in two datasets (Table 4.13).

Area Savanakhet(Laos) Kwale(Kenya)

Date 2016.02 2016.11
Resolution(m) 1.2 0.6 and 1.2

Size 1024 × 1024 10240 × 6656 and 5376 × 3328
Amount 8 2(same area with different resolution)
Quality Good Good

Table 4.13: Two different datasets.

Chapter 4. Results and Discussions 60

The training samples obtained from Laos with resolution 1.2m, the sample diversity also

taken into consideration. While Kenya testing image contains two pieces in the same

area with different resolution 0.6m and 1.2m respectively, as shown in Figure 4.7.

Training Dataset Training Dataset

Different Spectrum

Different Building
Structure

Figure 4.7: Two different datasets implemented in training and testing respectively.

After training, we utilize obtained model to test image. The learning curve indicates

that although get unstable in cross validation, the model can still achieve high accuracy

result in training part. However, relatively bad results are generated in testing (Figure

4.8), where black and white points means building and other land features respectively.

Learning Curve

1.2m

0.6m

Testing Result

Figure 4.8: Kenya testing result.

The big difference between training and testing dataset causes such bad result, and

providing training data which can match testing dataset can be obviously make sense.

However, suitable training data cannot always be available, and making new samples

Chapter 4. Results and Discussions 61

would be very time consuming. Here we propose color balance and transfer learning

respectively to solve such problem.

4.6 Color Balance

*
=

Template Input Output

Figure 4.9: Balance image color.

We balance the training and testing dataset spectrum based on the same template by

Wallis filter [90] (Figure 4.9) introduced in the previous chapter. After converting dataset

into a new spectrum, we train the model and find that balanced training dataset can

make model converge better (Table 4.14).

Balanced Original

Positive samples 57,860 57,860
Negative samples 320,105 320,105

Train Acc 99.51 99.41
Train Loss 0.01 0.17
Valid Acc 0.99 0.99
Valid Loss 0.04 0.05

Kappa 0.98 0.97

Table 4.14: Comparison between balanced model and original model.

Then we use original and balanced models to test original and balanced images respec-

tively, the result as shown in Figure 4.10. While color unbalance is a significant problem,

utilize proposed method can increase accuracy in a large degree, especially false positive

pixels can be decreased.

Chapter 4. Results and Discussions 62

1.2m

Original
Model

+
Original
Image

Balanced
Model

+
Balanced

Image

0.6m

Figure 4.10: Result of transformed image.

4.7 Transfer Learning

Except for color unbalance, other problems such as texture difference still cause bad

results and need to be solved. Therefore, in order to make model own the capability to

identify new buildings, the new training dataset must be provided although might in a

small quantity.

When a little bit new dataset come, how to learn new knowledge without training a

brand new model is a challenge. Here we propose CNN based transfer learning method

introduced in previous Chapter.

Transfer Learning
 Training Data

 Positive samples: 21282
Negative samples: 39958

Retrain

Old Model

Feature Extractor

Frozen

Multilayer Perceptron

Trainable

Transfered

Model

Figure 4.11: Transfer Learning illustration.

According to the principle, we input the new training dataset into the old model (Figure

4.11), frozen the feature extractor part and make multilayer perceptron part trainable

only. In trainable part, usually add new dense layer will increase accuracy [71]. There-

Chapter 4. Results and Discussions 63

a) b)

d)c)

e) f)

Figure 4.12: Transfer Learning learning curve.
(a)Non-frozen + Retrain, (b)Frozen + Retrain, (c)Non-frozen + Add Dense + Retrain,

(d) Frozen + Add Dense + Retrain, (e)Retrain, (f)Original

Chapter 4. Results and Discussions 64

fore, in this experiment, we compare the feasibility of transfer learning in 6 cases (Figure

4.12):

Based on the learning curve and result (Table 4.15), frozen the feature extractor and

add dense layer in multilayer perceptron can obtain the best identification ability. The

corresponding model could contain more adequate feature information and also trained

efficiently.

Non-frozen Frozen Non-frozen Frozen Original
Add Dense Add Dense Retrain

Retrain Retrain Retrain Retrain Model

Train Acc 97.97 65.32 87.26 98.15 98.50 99.39
Train Kappa 0.96 00.00 0.72 0.96 0.97 0.98
Test Acc 95.88 98.39 95.32 97.11 95.09 98.47
Test Kappa 0.34 00.00 0.30 0.40 0.29 0.21
Iteration(s) 9.47 2.71 9.52 2.76 9.24 55.81

Table 4.15: Transfer Learning result. Comparison between transfer models.

Transfer learning not only has remarkable effect on handwritten digits introduced in

previous Chapter, but also on identifying buildings in rural environment. Considering

the diversity, building itself is much more complex than digits, and frozen feature ex-

tractor part can highly reduce training time. however, when former model don’t contain

enough feature information, transfer former knowledge well is too hard. Adding addi-

tional layers in multilayer perceptron part will increase the accuracy, for it can extract

more new information. What’s more, transferred model have ability to test both former

and new building images.

Chapter 5

Practical Application

In this Chapter, we illustrate the practical applications of identification buildings in rural

environment based on CNN models. The testing dataset which in different countries

provided without ground truth, result in Figure 5.1 and Figure 5.2, while the part

owning ground truth as shown in Figure 5.3 and Figure 5.4.

HRRS Result

Figure 5.1: Result illustration 1. White: buildings, black: Non-buildings

65

Chapter 5. Practical Application 66

HRRS Result

Figure 5.2: Result illustration 2. White: buildings, black: Non-buildings

Chapter 5. Practical Application 67

HRRS Result

Figure 5.3: Result illustration 3. Green: actual buildings that were correctly classified
as buildings, blue: the non-buildings that were incorrectly labeled as buildings, red: the
buildings that were incorrectly marked as non-buildings, black: the correctly classified

non-buildings.

Chapter 5. Practical Application 68

HRRS Result

Figure 5.4: Result illustration 4. Green: actual buildings that were correctly classified
as buildings, blue: the non-buildings that were incorrectly labeled as buildings, red: the
buildings that were incorrectly marked as non-buildings, black: the correctly classified

non-buildings.

Chapter 5. Practical Application 69

In general, the experimental results indicate that our proposed method based on CNN,

has high performance in remote sensing identification of buildings in rural environment.

Meanwhile, the results also infer the land features such as roads and rivers are very

easy to be misclassified, because the exterior structure of which are quite similar with

building, solving such problems would become very significant to enhance performance

in the future.

Chapter 6

Conclusions and Future Works

6.1 Conclusions

In this dissertation, we propose a supervised machine learning method based on Con-

volutional Neural Networks for building identification in rural environment via high

resolution remote sensing images. The corresponding machine learning methods help

us obtain building identification classifiers by training the designed samples. Applying

the obtained CNN classifiers to automatically extract information of buildings from the

remote sensing images generates the identification maps of buildings.

The proposed method shows the ability of CNN in building detection, which is experi-

mentally demonstrated by including several kinds of areas in developing countries such

as Laos and Kenya. The obtained classifier can be used for all cases and no manual

interaction is needed. Our method of CNN achieves a very high overall accuracy and

Kappa, which outperforms other methods. What’s more, we reconstruct CNN model

based on state-of-the-art structures and also provide methods such as Transfer Learning,

color balance and data augmentation to enhance the robustness of building identification

classifier.

Furthermore, the proposed method can be efficiently utilized in remote sensing recog-

nition of not merely buildings. By training the prior knowledge of the corresponding

identification samples, the proposed method can generate a classifier that has the ability

to classify relative targets and leads to promising classification results. Therefore, based

on the result of this experiment, our proposed method is a promising approach that

might be applied to many potential applications in the near future.

71

Chapter 6. Conclusions and Future Works 72

6.2 Future Works

Although this study indicates the proposed method could be efficiently used in build-

ing identification, further and more detailed exploration on the method is required in

the future. First, to test the method’s stability, more extended and sophisticated areas

need to be tested. Second, to alleviate the labor-intensive task of training the data, we

will apply the learned model of one area to other areas with similar landscapes. Unfor-

tunately, the spectral characteristics of remote sensing images respond to the varying

conditions of image capture. To improve the performance in such cases, we will collect

more training dataset and consider a better transfer learning technique. Third, we will

apply the proposed method to other feature identifications in high-resolution remote

sensing images, such as roads and agricultural land. We are also interested in extending

this method to classifications of multi-class landscapes. We believe that the proposed

method has great practical value for solving diverse classification problems.

There are also many applications can be implemented in the future, such as building

age prediction by comparing buildings condition in same area via remote sensing images

obtained in different year. As shown in Figure 6.1, if we detect new buildings in the newer

HHRS image while vacant in older one, the building age can be easily predicted. And

the similar application such as automatically building amount counting and building

outline detection can also be conducted.

KASHIWANOHA

 2015 2010

 Buildings Vacant
 Compare

 Prediction

Figure 6.1: Building age predition.

Japan is one of the countries most affected by natural disasters; the catastrophes such as

earthquake, Tsunami and landslide usually cause enormous losses. As an indispensable

resource, maps used to illustrate land conditions after catastrophe are quite significant.

In this research plan, a system for automatic and real-time generalization of catastrophe

maps is proposed.

Chapter 6. Conclusions and Future Works 73

Rather than existing methodologies, which highly depend on human beings, here, by

considering the characteristics and importance of catastrophe maps, we propose a brand

new map generalization system based on combining geographic information system (GIS)

and machine learning methods, which would be capable to automatically provide accu-

rate, efficient and time-sequenced catastrophe maps.

As shown in Figure 6.2, By implementing unmanned aerial vehicles (UAV), machine

learning methods and geographic sensors, the important land features such as safe roads,

broken buildings can be identified; meanwhile, the digitalized map with accurate geo-

graphic coordinates can be generated as well. Base on the obtained results, life and

property would be saved. Furthermore, not only in catastrophe, this system could also

be used in many other map generalization conditions.

Catastrophe
Maps

Location

Important
Features

Maps

Resources

Sensors

UAV

Training
Data

Aerial
Videos

Models

Obtain

Train

Machine
Learning

Obtain

Test
Deep

Learning

GAN

Buildings
Roads

Peoples

Photographs
to

Maps

Geoinformation

Combine

Figure 6.2: System for Automatic and Real-time Generalization of Catastrophe maps.

What’s more, we can combine the proposed method with other dataset such as trajectory

to implement more promising and interesting researches in the future.

Bibliography

[1] Nicolas H Younan and Selim Aksoy. Foreword to the special issue on pattern

recognition in remote sensing. IEEE Journal of Selected Topics in Applied Earth

Observations and Remote Sensing, 5(5):1331–1333, 2012.

[2] Jaewoong Choi, Junyoung Lee, Dongwook Kim, Giacomo Soprani, Pietro Cerri,

Alberto Broggi, and Kyongsu Yi. Environment-detection-and-mapping algorithm

for autonomous driving in rural or off-road environment. IEEE Transactions on

Intelligent Transportation Systems, 13(2):974–982, 2012.

[3] Huilin Xing and Xiwei Xu. M8. 0 Wenchuan Earthquake, volume 123. Springer,

2010.

[4] Jonathan J Davies, Alastair R Beresford, and Andy Hopper. Scalable, distributed,

real-time map generation. IEEE Pervasive Computing, 5(4):47–54, 2006.

[5] Jianrong Fan, Jim X Chen, Bingwei Tian, Dong Yan, Genwei Cheng, Peng Cui,

and Wen Zhang. Rapid assessment of secondary disasters induced by the wenchuan

earthquake. Computing in science & engineering, 12(1):10–19, 2010.

[6] Lei Wang, Paul D Groves, and Marek K Ziebart. Urban positioning on a smart-

phone: Real-time shadow matching using gnss and 3d city models. The Institute

of Navigation, 2013.

[7] Rebecca Bunnell, Jonathan Mermin, and Kevin M De Cock. Hiv prevention for

a threatened continent: implementing positive prevention in africa. Jama, 296(7):

855–858, 2006.

[8] Nick Gallent, Meri Juntti, Sue Kidd, and Dave Shaw. Introduction to rural planning.

Routledge, 2008.

[9] Joan Davidson and Gerald Wibberley. Planning and the Rural Environment: Urban

and Regional Planning Series. Elsevier, 2016.

[10] Thomas Lillesand, Ralph W Kiefer, and Jonathan Chipman. Remote sensing and

image interpretation. John Wiley & Sons, 2014.

75

Bibliography 76

[11] J Richards and X Jia. Remote sensing digital image analysis: An introduction

springer-verlag. Berlin Heidelberg, 1999.

[12] Robert A Schowengerdt. Remote sensing: models and methods for image processing.

Academic press, 2006.

[13] Agnès Bégué, Elodie Vintrou, Denis Ruelland, Maxime Claden, and Nadine Dessay.

Can a 25-year trend in soudano-sahelian vegetation dynamics be interpreted in

terms of land use change? a remote sensing approach. Global Environmental

Change, 21(2):413–420, 2011.

[14] Wenbin Wu, Ryosuke Shibasaki, Peng Yang, Qingbo Zhou, and Huajun Tang. Re-

motely sensed estimation of cropland in china: A comparison of the maps derived

from four global land cover datasets. Canadian Journal of Remote Sensing, 34(5):

467–479, 2008.

[15] Xinyang Yu, Anding Zhang, Xiyong Hou, Mingjie Li, and Yingxiao Xia. Multi-

temporal remote sensing of land cover change and urban sprawl in the coastal city

of yantai, china. International Journal of Digital Earth, 6(sup2):137–154, 2013.

[16] Hang Zhou, Elena Aizen, and Vladimir Aizen. Deriving long term snow cover

extent dataset from avhrr and modis data: Central asia case study. Remote sensing

of environment, 136:146–162, 2013.

[17] Jordan B Long and Chandra Giri. Mapping the philippines’ mangrove forests using

landsat imagery. Sensors, 11(3):2972–2981, 2011.

[18] Andrea S Laliberte, DM Browning, and Albert Rango. A comparison of three

feature selection methods for object-based classification of sub-decimeter resolu-

tion ultracam-l imagery. International Journal of Applied Earth Observation and

Geoinformation, 15:70–78, 2012.

[19] Shaohui Sun and Carl Salvaggio. Aerial 3d building detection and modeling from

airborne lidar point clouds. IEEE Journal of Selected Topics in Applied Earth

Observations and Remote Sensing, 6(3):1440–1449, 2013.

[20] Dennis C Duro, Steven E Franklin, and Monique G Dubé. A comparison of pixel-

based and object-based image analysis with selected machine learning algorithms

for the classification of agricultural landscapes using spot-5 hrg imagery. Remote

Sensing of Environment, 118:259–272, 2012.

[21] Jianhong Guo, Lu Liang, and Peng Gong. Removing shadows from google earth

images. International Journal of Remote Sensing, 31(6):1379–1389, 2010.

Bibliography 77

[22] David Potere. Horizontal positional accuracy of google earth’s high-resolution im-

agery archive. Sensors, 8(12):7973–7981, 2008.

[23] Qiong Hu, Wenbin Wu, Tian Xia, Qiangyi Yu, Peng Yang, Zhengguo Li, and Qian

Song. Exploring the use of google earth imagery and object-based methods in land

use/cover mapping. Remote Sensing, 5(11):6026–6042, 2013.

[24] Le Yu and Peng Gong. Google earth as a virtual globe tool for earth science

applications at the global scale: progress and perspectives. International Journal

of Remote Sensing, 33(12):3966–3986, 2012.

[25] Lucian Drǎguţ, Dirk Tiede, and Shaun R Levick. Esp: a tool to estimate scale

parameter for multiresolution image segmentation of remotely sensed data. Inter-

national Journal of Geographical Information Science, 24(6):859–871, 2010.

[26] Qian Yu, Peng Gong, Nick Clinton, Greg Biging, Maggi Kelly, and Dave Schi-

rokauer. Object-based detailed vegetation classification with airborne high spatial

resolution remote sensing imagery. Photogrammetric Engineering & Remote Sens-

ing, 72(7):799–811, 2006.

[27] Chisa Shinsugi, Masaki Matsumura, Mohamed Karama, Junichi Tanaka, Mwatasa

Changoma, and Satoshi Kaneko. Factors associated with stunting among children

according to the level of food insecurity in the household: a cross-sectional study

in a rural community of southeastern kenya. BMC public health, 15(1):441, 2015.

[28] Sankar K Pal and Amita Pal. Pattern recognition: from classical to modern ap-

proaches. World Scientific, 2001.

[29] Mariana Belgiu and Lucian Drăguţ. Random forest in remote sensing: A review of

applications and future directions. ISPRS Journal of Photogrammetry and Remote

Sensing, 114:24–31, 2016.

[30] Fei Lv, Min Han, and Tie Qiu. Remote sensing image classification based on

ensemble extreme learning machine with stacked autoencoder. IEEE Access, 2017.

[31] Paul Viola and Michael Jones. Rapid object detection using a boosted cascade of

simple features. In Computer Vision and Pattern Recognition, 2001. CVPR 2001.

Proceedings of the 2001 IEEE Computer Society Conference on, volume 1, pages

I–I. IEEE, 2001.

[32] Peter M Atkinson and ARL Tatnall. Introduction neural networks in remote sens-

ing. International Journal of remote sensing, 18(4):699–709, 1997.

Bibliography 78

[33] Farid Melgani and Lorenzo Bruzzone. Classification of hyperspectral remote sensing

images with support vector machines. IEEE Transactions on geoscience and remote

sensing, 42(8):1778–1790, 2004.

[34] Alessia Mammone, Marco Turchi, and Nello Cristianini. Support vector machines.

Wiley Interdisciplinary Reviews: Computational Statistics, 1(3):283–289, 2009.

[35] Jian Zheng, Zhanzhong Cui, Anfei Liu, and Yu Jia. A k-means remote sensing

image classification method based on adaboost. In Natural Computation, 2008.

ICNC’08. Fourth International Conference on, volume 4, pages 27–32. IEEE, 2008.

[36] Ugur Zongur, Ugur Halici, Orsan Aytekin, and Ilkay Ulusoy. Airport runway de-

tection in satellite images by adaboost learning. In Image and Signal Processing

for Remote Sensing, Proceedings of SPIE, volume 7477, page 747708, 2009.

[37] Rui Li, Jiulin Sun, Juanle Wang, Lijun Zhu, and Rui Liu. The study on dynamic

extraction of urban land use cover with remote sensing image based on adaboost

algorithm. In Sixth International Symposium on Multispectral Image Processing

and Pattern Recognition, pages 74981U–74981U. International Society for Optics

and Photonics, 2009.

[38] Melih Cetin, Ugur Halici, and Örsan Aytekin. Building detection in satellite im-

ages by textural features and adaboost. In Pattern Recognition in Remote Sensing

(PRRS), 2010 IAPR Workshop on, pages 1–4. IEEE, 2010.

[39] Jie Dou, Kuan-Tsung Chang, Shuisen Chen, Ali P Yunus, Jin-King Liu, Huan

Xia, and Zhongfan Zhu. Automatic case-based reasoning approach for landslide

detection: integration of object-oriented image analysis and a genetic algorithm.

Remote Sensing, 7(4):4318–4342, 2015.

[40] Xianju Li, Xinwen Cheng, Weitao Chen, Gang Chen, and Shengwei Liu. Identi-

fication of forested landslides using lidar data, object-based image analysis, and

machine learning algorithms. Remote Sensing, 7(8):9705–9726, 2015.

[41] Sara Attarchi and Richard Gloaguen. Classifying complex mountainous forests with

l-band sar and landsat data integration: A comparison among different machine

learning methods in the hyrcanian forest. Remote Sensing, 6(5):3624–3647, 2014.

[42] Wenlong Jing, Yaping Yang, Xiafang Yue, and Xiaodan Zhao. Mapping urban areas

with integration of dmsp/ols nighttime light and modis data using machine learning

techniques. Remote Sensing, 7(9):12419–12439, 2015.

[43] Yann LeCun et al. Lenet-5, convolutional neural networks. URL: http://yann.

lecun. com/exdb/lenet, 2015.

Bibliography 79

[44] Jake Bouvrie. Notes on convolutional neural networks. 2006.

[45] Xueyun Chen, Shiming Xiang, Cheng-Lin Liu, and Chun-Hong Pan. Vehicle detec-

tion in satellite images by parallel deep convolutional neural networks. In Pattern

Recognition (ACPR), 2013 2nd IAPR Asian Conference on, pages 181–185. IEEE,

2013.

[46] Bao-Qing Li and Baoxin Li. Building pattern classifiers using convolutional neural

networks. In Neural Networks, 1999. IJCNN’99. International Joint Conference

on, volume 5, pages 3081–3085. IEEE, 1999.

[47] Jun Yue, Wenzhi Zhao, Shanjun Mao, and Hui Liu. Spectral–spatial classification

of hyperspectral images using deep convolutional neural networks. Remote Sensing

Letters, 6(6):468–477, 2015.

[48] Stefan Lee, Haipeng Zhang, and David J Crandall. Predicting geo-informative at-

tributes in large-scale image collections using convolutional neural networks. In Ap-

plications of Computer Vision (WACV), 2015 IEEE Winter Conference on, pages

550–557. IEEE, 2015.

[49] Pierre Sermanet, Soumith Chintala, and Yann LeCun. Convolutional neural net-

works applied to house numbers digit classification. In Pattern Recognition (ICPR),

2012 21st International Conference on, pages 3288–3291. IEEE, 2012.

[50] Dimitrios Marmanis, Mihai Datcu, Thomas Esch, and Uwe Stilla. Deep learning

earth observation classification using imagenet pretrained networks. IEEE Geo-

science and Remote Sensing Letters, 13(1):105–109, 2016.

[51] Jun Ding, Bo Chen, Hongwei Liu, and Mengyuan Huang. Convolutional neural

network with data augmentation for sar target recognition. IEEE Geoscience and

Remote Sensing Letters, 13(3):364–368, 2016.

[52] Fan Hu, Gui-Song Xia, Jingwen Hu, and Liangpei Zhang. Transferring deep convo-

lutional neural networks for the scene classification of high-resolution remote sensing

imagery. Remote Sensing, 7(11):14680–14707, 2015.

[53] Martin Längkvist, Andrey Kiselev, Marjan Alirezaie, and Amy Loutfi. Classification

and segmentation of satellite orthoimagery using convolutional neural networks.

Remote Sensing, 8(4):329, 2016.

[54] Patrice Y Simard, David Steinkraus, John C Platt, et al. Best practices for convo-

lutional neural networks applied to visual document analysis. In ICDAR, volume 3,

pages 958–962, 2003.

Bibliography 80

[55] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transactions

on knowledge and data engineering, 22(10):1345–1359, 2010.

[56] Sotiris B Kotsiantis, I Zaharakis, and P Pintelas. Supervised machine learning: A

review of classification techniques, 2007.

[57] Douglas M Hawkins. The problem of overfitting. Journal of chemical information

and computer sciences, 44(1):1–12, 2004.

[58] Christophe Andrieu, Nando De Freitas, Arnaud Doucet, and Michael I Jordan. An

introduction to mcmc for machine learning. Machine learning, 50(1-2):5–43, 2003.

[59] Ivo F Sbalzarini and Petros Koumoutsakos. Feature point tracking and trajectory

analysis for video imaging in cell biology. Journal of structural biology, 151(2):

182–195, 2005.

[60] Gobinda G Chowdhury. Natural language processing. Annual review of information

science and technology, 37(1):51–89, 2003.

[61] Derek Greene, Pádraig Cunningham, and Rudolf Mayer. Unsupervised learning

and clustering. Machine learning techniques for multimedia, pages 51–90, 2008.

[62] S Rasoul Safavian and David Landgrebe. A survey of decision tree classifier method-

ology. IEEE transactions on systems, man, and cybernetics, 21(3):660–674, 1991.

[63] Andy Liaw, Matthew Wiener, et al. Classification and regression by randomforest.

R news, 2(3):18–22, 2002.

[64] O Martınez Mozos, Cyrill Stachniss, and Wolfram Burgard. Supervised learning of

places from range data using adaboost. In Robotics and Automation, 2005. ICRA

2005. Proceedings of the 2005 IEEE International Conference on, pages 1730–1735.

IEEE, 2005.

[65] Freund Yoav and Robert E Schapire. A decision-theoretic generalization of on-line

learning and an application to boosting, 1995. CiteSeerX, 10(1.56):9855.

[66] Simon S Haykin, Simon S Haykin, Simon S Haykin, and Simon S Haykin. Neural

networks and learning machines, volume 3. Pearson Upper Saddle River, NJ, USA:,

2009.

[67] B Yegnanarayana. Artificial neural networks. PHI Learning Pvt. Ltd., 2009.

[68] David John Finney. Probit analysis: a statistical treatment of the sigmoid response

curve. 1952.

Bibliography 81

[69] Andrew Ng, Jiquan Ngiam, Chuan Yu Foo, Yifan Mai, Caroline Suen, Adam Coates,

Andrew Maas, Awni Hannun, Brody Huval, Tao Wang, et al. Unsupervised feature

learning and deep learning, 2013.

[70] Rasmus Berg Palm. Prediction as a candidate for learning deep hierarchical models

of data. Technical University of Denmark, 5, 2012.

[71] François Chollet et al. Keras. https://github.com/fchollet/keras, 2015.

[72] Yann LeCun, Bernhard E Boser, John S Denker, Donnie Henderson, Richard E

Howard, Wayne E Hubbard, and Lawrence D Jackel. Handwritten digit recognition

with a back-propagation network. In Advances in neural information processing

systems, pages 396–404, 1990.

[73] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-

Scale Hierarchical Image Database. In CVPR09, 2009.

[74] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean

Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexan-

der C. Berg, and Li Fei-Fei. ImageNet Large Scale Visual Recognition Challenge.

International Journal of Computer Vision (IJCV), 115(3):211–252, 2015. doi:

10.1007/s11263-015-0816-y.

[75] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification

with deep convolutional neural networks. In Advances in neural information pro-

cessing systems, pages 1097–1105, 2012.

[76] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir

Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going

deeper with convolutions. In Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 1–9, 2015.

[77] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for

large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[78] Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J

Dally, and Kurt Keutzer. Squeezenet: Alexnet-level accuracy with 50x fewer pa-

rameters and¡ 0.5 mb model size. arXiv preprint arXiv:1602.07360, 2016.

[79] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning

for image recognition. In Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 770–778, 2016.

[80] Bernhard Scholkopf and Alexander J Smola. Learning with kernels: support vector

machines, regularization, optimization, and beyond. MIT press, 2001.

https://github.com/fchollet/keras

Bibliography 82

[81] Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan

Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting.

Journal of Machine Learning Research, 15(1):1929–1958, 2014.

[82] Sepp Hochreiter. The vanishing gradient problem during learning recurrent neural

nets and problem solutions. International Journal of Uncertainty, Fuzziness and

Knowledge-Based Systems, 6(02):107–116, 1998.

[83] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep net-

work training by reducing internal covariate shift. In International Conference on

Machine Learning, pages 448–456, 2015.

[84] George Forman. Bns feature scaling: an improved representation over tf-idf for svm

text classification. In Proceedings of the 17th ACM conference on Information and

knowledge management, pages 263–270. ACM, 2008.

[85] Engui Fan. Extended tanh-function method and its applications to nonlinear equa-

tions. Physics Letters A, 277(4):212–218, 2000.

[86] Léon Bottou. Stochastic gradient descent tricks. In Neural networks: Tricks of the

trade, pages 421–436. Springer, 2012.

[87] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long,

Ross Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional archi-

tecture for fast feature embedding. In Proceedings of the 22nd ACM international

conference on Multimedia, pages 675–678. ACM, 2014.

[88] Yann LeCun. The mnist database of handwritten digits. http://yann. lecun.

com/exdb/mnist/, 1998.

[89] Sylvia Frühwirth-Schnatter. Data augmentation and dynamic linear models. Jour-

nal of time series analysis, 15(2):183–202, 1994.

[90] Armin Gruen and Haihong Li. Road extraction from aerial and satellite images by

dynamic programming. ISPRS Journal of Photogrammetry and Remote Sensing,

50(4):11–20, 1995.

[91] MATLAB. version 7.10.0 (R2010a). The MathWorks Inc., Natick, Massachusetts,

2010.

[92] Guido Van Rossum and Fred L Drake Jr. Python reference manual. Centrum voor

Wiskunde en Informatica Amsterdam, 1995.

Bibliography 83

[93] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-

jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,

Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Leven-

berg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike

Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul

Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,

Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.

TensorFlow: Large-scale machine learning on heterogeneous systems, 2015. URL

http://tensorflow.org/. Software available from tensorflow.org.

[94] Theano Development Team. Theano: A Python framework for fast computation

of mathematical expressions. arXiv e-prints, abs/1605.02688, May 2016. URL

http://arxiv.org/abs/1605.02688.

[95] Jean Carletta. Assessing agreement on classification tasks: the kappa statistic.

Computational linguistics, 22(2):249–254, 1996.

http://tensorflow.org/
http://arxiv.org/abs/1605.02688

２
０
１
７
年
度	

修
士
論
文	

C
N

N

を
利
用
し
た
非
都
市
地
域
に
お
け
る
建
物
の
抽
出
方
法
に
関
す
る
研
究	

	

	

	

	

	

	

	

	

郭	

直
霊

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

