Figure I-1: Index map of the Japan Sea. Bathymetric contour interval is 500 m .

Figure I-2: Track chart of the single-channel seismic profiling line-
7 and line-8 of KH-86-2 cruise (wavy lines), Ocean
Research Institute, University of Tokyo.

Figure I-3: Single-channel seismic profile of the line-7, displayed in upper. Geostructural interpretation is displayed in lower. The acoustic basement is cut by several normal faults which do not reach to the sea floor.

Line 7

Figure I-4: Single-channel seismic profile of the line-8, displayed in upper. Geostructural interpretation is displayed in lower. The acoustic basement is cut by several normal faults which do not reach to the sea floor.

Line 8

Figure I-5: Compiled heat flow data around the Japan Sea. The heat flow values of Japan Basin show regional variety. Northeast Japan Basin shows a little bit high values, average value is $114.4 \mathrm{~mW} / \mathrm{m}^{2}$, which can convert to the formation age, $18-20 \mathrm{Ma}$. Southeast Japan Basin shows much colder than the Northeast Japan Basin, average value is $85 \mathrm{~mW} / \mathrm{m}^{2}$, which estimated as $31-35 \mathrm{Ma}$ of formation age.

$$
\begin{aligned}
& \text { Average: } 114.4 \\
&=2.67(\mathrm{HFU}) \ggg \ggg 18-20 \mathrm{Ma}
\end{aligned}
$$

$$
\begin{array}{lllllll}
\text { OW J ipgn B asin (mW/m2) } \\
\\
50 & 73 & 89 & 88 & 87 & 78 & 79 \\
94 \\
54 & 86 & 84 & 95 & 94 & 88 & 141 \\
59 \\
85 & 85 & 84 & 95 & 54 & 98 & 120 \\
102 \\
89 & 89 & 59 & 89 & 87 & 71 & 119
\end{array} 90
$$

एWSE-IE

$$
\text { A verage: } 85.0
$$

JAPAN SEA HEAT FLOW DATA

Figure I-6-(1): Whole track chart in the Yamato Basin. Dashed line shows the multichannel seismic survey lines taken by Ocean Research Institute, University of Tokyo. Solid line shows the single-channel seismic survey lines which investigated by Geological Survey of Japan. (2): Track chart around the Site 794. All multichannel seismic profiles are investigated by Ocean Research Institute, University of Tokyo.
(1)

Figure I-7: Flow chart of the reflection seismic data processing of Ocean Research Institute, University of Tokyo.

Field Tape (SEG-B format)

DEMUX
SEG-X or Y format

GEOMETRY INPUT

SCALE

SORTING

DECON
 FILTERS

VELOCITY ANALYSIS
NMO
STACKING

AUTOMATIC STATICS

MIGRATION
 PLOTTING adrode

Figure I-8: Site location map of the ODP Legs 127 and 128. Site $794,795,796$, and 797 were drilled by Leg 127. The other were done by Leg 128. Site 794 situate in the norther edge of the Yamato Basin, and the Site 797 locate southwestern end of the basin.

Figure I-9: Illustration shows sampling and measurement procedure for physical properties during the Leg 127.

Freeze-dry

(1) Quantochrome Helium Penta-Pycnometer
(2) Scientech 202 electronic balance

Figure I-10: Bathymetric map of the Yamato Basin. The topography of the basin shows fearfully flat topography except the Yamato Seamount Chain which locating in the center of the basin.

Figure I-11: Columnar sections of the Sites 794, 795, and 797 which were drilled by Leg 127, were displayed with the type section of NE Japan. The lithological sections were divided into five units as described in text. Dashed lines mean the iso-age line and the solid lines mean the lithological boundaries.

Figure I-12: Figure shows index properties of the Site 794. All plots are coordinated with depth (mbsf). The plotted data were smoothed by five points running mean method, each smoothing weight was $0.5,0.8,1.0,0.8$, and 0.5 .

Figure I-13: Figure shows index properties of the Site 797. All plots are coordinated with depth (mbsf). The plotted data were smoothed by five points running mean method, each smoothing weight was $0.5,0.8,1.0,0.8$, and 0.5 .

Figure I-14: Thermal conductivity vs. depth plot of the Site 794. The data were not applied to smoothing.

Figure I-15: Thermal conductivity vs. depth plot of the Site 797. The data were not applied to smooth.

Figure I-16: Upper plot display the each velocity profile vs. depth taken by the MST logger, Hamilton Frame, and Logging respectively. Lower plot is a result of the mixing among the velocities as displayed in the upper plot.

Figure I-17: The results of synthetic seismogram calculations for the Sites 794 and 797. AI is acoustic impedance, and RC is reflection coefficient. The input data of density and velocity are used the result of the physical property measurements. Horizontal axis is a two-way traveltime in second. The list of used computer program is attached in Appendix-B.
site 794

site 797

RC: Reflection Coefficient
Al: Acoustic Impedace

Figure I-18: Figure showing a legend of the acoustic stratigraphy in the Yamato Basin. Each interval is painted as same color with the seismic interpretations.
\(\left.$$
\begin{array}{|c||c|l|}\hline \begin{array}{l}\text { Seismic } \\
\text { Interval }\end{array} & \text { Acoustic Character } & \text { Lithologic Section } \\
\hline \text { I } & \begin{array}{l}\text { weak and flat stratification } \\
\text { II }\end{array} & \begin{array}{l}\text { weak or transparent stratification } \\
\text { include Opal-A/CT BSR }\end{array}\end{array}
$$ \begin{array}{l}alternation of clay \& silty clay

w/frequent ash layers

Toyama Deep Sea Fan deposits

in the northern part\end{array}\right]\)| diatomaceous silty clay |
| :--- |
| or diatom ooze |

Figure I-19: Multichannel seismic profile of the DELP Line-A. The line runs from northeast to southwest.

DELP Line-A (4/6)

Figure I-20: Seismic interpretation of the DELP Line-A. The painted color is same as in Fig. I-18. Dotted line represents the opal-A/opal-CT boundary BSR. The profiles are continuous from the top to the bottom.

SW

Figure I-21: Multichannel seismic profile of the DELP Line-B. The line runs from southeast to northwest.

DELP Line-B (2/3)

Figure I-22: Seismic interpretation of the DELP Line-B. The painted color is same as in Fig. I-18. Dotted line represents the opal-A/opal-CT boundary BSR. The profiles are continuous from the top to the bottom.

10 km

Figure I-23: Multichannel seismic profile of the DELP Line-C, D, and E . The line runs from southwest to northeast.

DELP Line-C, D, \& E (3/6)

[^0]

Figure I-24: Seismic interpretation of the DELP Line-C, D, and E.
The painted color is same as in Fig. I-18. Dotted line represents the opal-A/opal-CT boundary BSR. The profiles are continuous from the top to the bottom.

10 km

Figure I-25: Multichannel seismic profile of the line 107, which was taken during the KT-88-9 cruise. The line runs from northeast to southwest.

己

Line 107
ふ

Figure I-26: Multichannel seismic profile of the line 108, which was taken during the KT-88-9 cruise. The line runs from northwest to southeast.

5	
8	

$\boldsymbol{\omega}$

Line 108

Figure I-27: Multichannel seismic profile of the line 109, which was taken during the KT-88-9 cruise. The line runs from southeast to northwest.

Ш

\square

Figure I-28: Multichannel seismic profile of the line 110, which was taken during the KT-88-9 cruise. The line runs from northwest to southeast.
\square
Line 110 ($1 / 3$)
Line 110 ($3 / 3$)

Figure I-29: Multichannel seismic profile of the line YJB-1, which was taken during the KT-89-15 cruise. The line runs from southwest to northeast.

5 km

sw

YJB-1 (1/6)

150

100

OS

YJB-1 (2/6)

YJB-1 (3/6)

SAFAC, SET LODF LEGIz日I

[^1]
\[

$$
\begin{aligned}
& \text {-APAN SEA IDOF LEG12AI } \\
& \text { SACT \& EOO - } 1000
\end{aligned}
$$
\]

YJB-1 (4/6)

YJB-1 (5/6)

NE

0	in	0	(n)	\square
$\dot{\sim}$	$\dot{\sim}$	\dot{m}	m	$\stackrel{\square}{4}$

4.5

[^2]JAPAN SEA, IUQF LEGIzE:
SHOTA , 230

YJB-1 (6/6)

Figure I-30: Multichannel seismic profile of the line YJB-2 and 3, which was taken during the KT-89-15 cruise. The line runs from southeast to northwest.
山

\square . 0 $4 \cdot 5$
 in is

5 km
 5 km

YJB-2 \& 3 (2/6)

[^3](1)

NVY YJB-2 \& 3 (6/6)

Figure I-31: All seismic interpretations of GSJ profiles are displayed from the north to the south, from J-22 to L36. The painted color is same as in Fig. I-18.

J23

$L 40$

L39

N5

L36

Vertical Exagg. $=21$

Figure I-32: An example of the acoustic character of Toyama Deep Sea Channel and the fan deposits. The central arrow shows the axis of the Toyama Deep Sea Channel. Overbank deposits show some irregular surface topography.

Figure I-33: The distribution of the Toyama Deep Sea Fan deposits (hatched area). The thick dashed line shows the axis of the Toyama Deep Sea Channel. Ten single-channel seismic profiles which show the thickness of the fan deposits are also illustrated. The variable thickness of the fan deposits are displayed simultaneously which were taken from the single-channel seismic profiles of GSJ.

Figure I-34: An example of the reverse polarity reflector in the seismic interval III (thick dashed line).

Figure I-35: An example of the acoustic basement features. Note the low frequency reflectors and the some horizontal reflectors that are sills based on the drilling results of ODP Leg 127.

Figure I-36: An example of the opal-A/opal-CT BSR (Bottom Simulating Reflector), which clearly cuts the sedimentary reflectors. The left figure is an original seismic profile and the right is an interpretation of it.

Figure I-37: The age and temperature results of ODP Leg 127 are plotted on the figure of Tada (1990, in press) (dashed line circle). This figure clearly shows that the sediments of Japan Sea are closely relating to temperature, not time.
 (wㄱ) $H \perp d \exists a ~ 7 \forall I \forall \cap 日$

Figure I-38: Downhole temperature measurements at Site 794.
(1) Figure shows the data for each temperature measurement. The plateau temperature is adopted for the temperature at the depth.
(2) The plateau temperatures plotted versus depth. The data show fairy good linearity, and the thermal gradient is estimated as $125^{\circ} \mathrm{C} / \mathrm{km}$. The temperature of the opal-A/opal-CT boundary is $38^{\circ} \mathrm{C}$.
(1)

(2)

Figure I-39: Downhole temperature measurements at Site 797.
(1) Figure shows the data for each temperature
measurement. The plateau temperature is adopted for the temperature at the depth.
(2) The plateau temperatures plotted versus depth. The data show fairy good linearity, and the thermal gradient is estimated as $121{ }^{\circ} \mathrm{C} / \mathrm{km}$. The temperature of the opal-A/opal-CT boundary is $36^{\circ} \mathrm{C}$.
(1)

(2)

Figure I-40: Summarized figure of the thermal gradient and the temperatures at each diagenetic boundary in the Japan Sea.

site	Temperature (${ }^{\circ} \mathrm{C}$)		Thermal Gradient	
	A/CT	CT/Qz		
794	$38^{\circ} \mathrm{C}$	$49^{\circ} \mathrm{C}$	$125^{\circ} \mathrm{C} / \mathrm{km}$	Yamato Basin
795	43	57	132	Japan Basin
796	40	53	178	OKusfiri Ridge
797	36	48	121	Yamato Basin
798	40		111-83	Oкi Ridge
799	46		98	Kita-Yamato Trougn

Figure I-41: Study area in the Yamato Basin (hatched).

Figure I-42: Compiled heat flow data from Yasui et al. (1966) and Yamano et al. (1987). The average heat flow value is 96 $\mathrm{mW} / \mathrm{m}^{2}$ for the hatched area. The location of sites 794 and 797 are also plotted in. The heat flow values at that drilling sites are 103 and $101 \mathrm{~mW} / \mathrm{m}^{2}$ respectively.

Figure I-43: Combined thermal conductivity data. Open circle means the Site 794. Open squire means the Site 797.

Figure I-44: Calculated heat flow data are plotted as bubbles.

Figure I-45: Histogram of the calculate heat flow values.

Figure I-46: Track chart of the DELP Line-B. Numbers include the shot number for each location.

Figure I-47: Correlation between the thermistor prove data (black arrow) and the calculated heat flow data (white arrow) on the seismic profile of DELP Line-B. The opal-A/opal-CT BSR is enhanced as a thick line. The parentheses numbers are projected from the neighboring measurements.

Yamano et al. (1987)
$\&$ Calculated

Figure I-48: Correlation between the thermistor probe data and the nearby calculated heat flow values. The each correlation was changed the mesh size, $5^{\prime}, 10^{\prime}, 20^{\prime}$, and 30^{\prime} meshes.

Figure I-49: Figure shows the selected area for the calculation of average values. It was named as North, Middle, and South for each box.

Figure I-50: Calculated heat flow values are projected into the each box of Figure I-49. AVG: Average , Std. Dev.: Standard Deviation, Max.: Maximum, Min.: Minimum.

Figure I-51: Correlation between the acoustic basement depth and opal-A/CT depth. Upper figure is plotted everything. Lower four figures show each correlation which were changed the size of mesh from 5' to 20^{\prime} (see the legend in upper figure).

Figure I-52: Isothermal planes of $50^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$ are plotted on the interpreted seismic profile of the DELP Line-A.

sw

Figure I-53: Framework of formation model for the Yamato Basin. (1): Continuous nonuniform stretching model of Rowley \& Sahagian (1986). Dark shading is crust, light shading is mantle lithosphere. Cz: thickness of crust. Lz: thickness of mantle lithosphere. d : initial horizontal width. A: asthenosphere. (2): Stretching factor and ϕ are changed from (1). Crustal subsidence is much greater than (1), however, the asthenospheric uplift is not so high. (3): Same condition with (1) except initial horizontal width.

Asthenospheric uplift is restricted in narrow area and the uplift is significantly high.

Figure I-54: Relationship between crustal subsidence and ϕ for various values of βc, taken from the Figure 2-a of Rowley \& Sahagian (1986).

Figure I-55: A possible model for explain the abnormal thermal structure of the Yamato Basin.

Plate I-1: The depth variation of the Opal-A / Opal-CT transformation boundary in two-way travel time.

Plate I-2: Contour map of the Opal-A / Opal-CT depth anomaly.

Plate I-3: Calculated heat flow anomaly. The interval of contour is $25 \mathrm{~mW} / \mathrm{m}^{2}$.

Plate I-4: Estimated isothermal plane depth $\left(50^{\circ} \mathrm{C}\right)$.

Plate I-5: Estimated isothermal plane depth $\left(100^{\circ} \mathrm{C}\right)$.

Plate I-6: Comparison between the depth of Opal-A / Opal-CT boundary and the depth of acoustic basement.

[^0]:

[^1]: L842281
 200

[^2]:

[^3]: APAN SEA LODP LEGIZAI
 SHOT: -200

