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Introduction 

Lung Adenocarcinoma 
Lung cancer is the most prevalent cancer in the world and is the leading cause of death in both 

developing and developed countries [Charles S. Dela Cruz 2011]. Many environmental risk factors, 

including air pollution and the history of smoking have been indicated. However, despite the decrease in 

the exposure of risk factors, the incidence rate of lung cancer; especially, among patients who have never 

smoked is proportionally increasing, suggesting complex mechanism underneath. 

Lung adenocarcinoma is a major histological subtype of lung cancer for both smokers and non-

smokers and contributes half of the overall lung cancer incidents and it has been a subject of intensive 

studies [Charles S. Dela Cruz 2011] [TCGA 2014]. This is in contrast to the declining rate of squamous 

cell lung carcinoma, which is associated with patients who are smokers, as the number of smokers 

continue to decrease. These facts make the cancer research into lung adenocarcinoma worthwhile. 

Many of the recurrent driver mutations unique to the adenocarcinoma subtype, such as 

nucleotide(s) substitutions or deletions in EGFR or KRAS and the gene fusions in ALK or RET has been 

identified. These advances in scientific research make lung adenocarcinoma one of the better well-

characterized cancers regarding its causative driver mutations. For lung adenocarcinoma, several 

successful anti-cancer drugs have been developed [Hughes 2015], by using the causative driver mutations. 

Despite these successes, the majority of genetic causes of lung adenocarcinoma remain elusive [TCGA 

2014]. Moreover, even the most powerful driver mutations are not solely responsible for the 

carcinogenesis process [Potter 2010] as long-term accumulation of other somatic mutations are required 

for thorough transformation of the cancer cell.  

Figure 1 Map showing prevalence of Lung Cancer of all types in 2012. From Pao and Hutchinson 2012 Nature Medicine 



 

Figure 2 Recurring Driver mutations detected in Lung Adenocarcinoma worldwide (Adapted from The 

Cancer Genome Atlas Research Network 2014 Nature). 

Interestingly, the mutation patterns seem to be significantly distinct depending on the ethnic 

background of patients. Recent studies had shown that, for East Asian patients, including Japanese and 

Chinese, have higher incidence of mutations in the EGFR gene (11.3% vs up to 50% reported in East Asia 

[Shiyong Li 2016]) and ALK fusion (1.3% vs 10% reported in East Asia [Shiyong Li 2016]) with lower 

incidence on KRAS mutations (32.2% vs 10% reported in East Asia [Shiyong Li 2016]) compared to 

Western counterparts. These studies claimed the necessity in collection of the mutation information from 

diverse ethnic background groups for comprehensive understanding of lung adenocarcinoma.  

Through investigation of driver mutations or other genetic alterations, many carcinogenesis 

pathways have been identified, with the goal of explaining the molecular mechanism underlying the tumor 

development, as exemplified in Figure3 (Adapted from Chan BA, Hughes BGM 2015 Translational Lung 

Cancer Research). Genes with targeted drug therapies in development are shown in green and genes with 

developed targeted drug therapies are shown in red (EGFR mutations and ALK fusion). In addition to 

these lung adenocarcinoma specific mutations, other non-specific targets, such as VGFR, are also 

subjected to the feasibly studies for drug development [Hughes 2015]. These drug developments and lack 

of understanding of genetic alterations that cause carcinogenesis suggest the benefits of identifying 

undiscovered driver mutations or functionally relevant mutations to expand the chance for the 

development of effective cancer treatments.  

Recent Attempts of Cancer Genome Analysis 
Recent short read sequencing, or so-called next generation sequencing, has provided us with a 

high-throughput method to study genomic mutations. Recently, several large-scale projects, including 

those by The Cancer Genome Atlas (TCGA) (The Cancer Genome Atlas 2014) and International Cancer 

Genome Consortium (ICGC) (International Cancer Genome Consortium 2010), have been established to 

characterize the genetic alterations, where many mutations in various cancer types have been identified 

and catalogued. Those studies focused their attention on the protein coding regions, many of which belong 

to tyrosine kinase family, since mutations in this family of genes would give pivotal information on the  
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design of the anti-cancer treatment regimens, one prominent example is the anti-EGFR drug in lung 

adenocarcinoma treatment. This demonstrate the impacts of large scale somatic mutation studies.  

 

 

Figure 3 Purposed cascaded constructed from frequently mutated genes in Lung Adenocarcinoma. 

Adapted from Chan BA, Hughes BGM 2015 Translational Lung Cancer Research. Potential components 
for targeted therapy are shown in green. Genes with current Targeted therapy usage are shown in red. 

Previous studies including large international consortia have predominantly focused on protein-

coding genes. According to the current reference human genome (UCSC hg38 human genome assembly) 

only around 2% of the genome are the protein coding regions, consisting of at most 32,958 genes 

[Matthew L. Speir 2016]. It became clear that sequences and mutations in coding region alone could not 

explain the numerous observed phenotypes either at cellular level or the complex organismal level. 

Moreover, it is now widely accepted that nucleotides sequences outside of the coding regions also contain 

important information crucial to the genome, including the regulatory roles controlling genes expression 

patterns (Figure4). To document the role of the non-coding regions, many novel techniques have been 

developed [David S. Johnson 2007] [Nele Gheldof 2011] [Jason D Buenrostro 2013] and employed in 

projects such as ENCODE [ENCODE 2017] and ROADMAP [ROADMAP PROJECT 2017] . The 

achievements of these efforts have yielded the data archives, which serves as the pivotal database when 

any genome-wide researches in the gene expression regulations are conducted.  



 

Figure 4 Theorized effects of non-coding variant on gene regulation, noted that the focus have been put on 

cis-regulatory elements (Adapted from Ekta Khurana et al. 2016 Nature Review Genetics) 

One of the most unique and useful aspects of those databases is that the epigenome statuses in the 

region termed promoter and enhancer regions are represented. Various chromatins statuses, which are 

defined by specific histone modifications that bind those regions, are thought to play a major role in gene 

expression regulations [Ekta Khurana 2016]. Those specific histone modifications were detected by 

chromatin immunoprecipitation sequencing (ChIP-seq, see Table1 for details) analysis and form the body 

of the databases. While somatic mutations in these regulatory regions are widely detected in many cancer 

genomes, their functional relevancies remain elusive. It is supposed that changes in both sequences [13] and 

histone modifications [12] of these region could lead to alteration of cellular function and play less 

important roles in carcinogenesis than the mutations in protein-coding regions themselves. 

Table 1 shows examples of chromatin immunoprecipitation antibodies targets, their function and related 

regions. 

MARKINGS EFFECTS REGION 

POLYMERASE-II Transcriptional Activations RNA-Polymerase 

H3K4ME1 Transcriptional Activations Enhancer 

H3K4ME3 Transcriptional Activations Promoter 

H3K9ME3 Repression Heterochromatin and repetitive elements 

H3K9_14AC Transcriptional Activations Promoter Preference 

H3K27AC Transcriptional Activations Enhancer 

H3K27ME3 Repression Repressive Domain and Silencing 

H3K36ME3 Transcriptional Elongations Transcribed Regions 



 Multi-omics Analysis of Cancers 
 Many works, such as conducted by ENCODE or ROADMAP, have demonstrated that different 

cancer phenotypes that are associated with different “epigenome” landscapes, such as mutations in the 

promoter or enhancer regions or changes in histone modifications. However given the large size of non-

coding region and variety of possible modifications, it is still difficult to select the cancer relevant of 

individual mutation and/or modification and conduct the validation analysis. 

  According to the current model of carcinogenesis, not every somatic mutations detected 

contribute to the process of carcinogenesis. These so-called “passenger mutations”, while can be used as 

clonal marker, have little or no functional relevance [Potter 2010]. One of the ways to filter out these 

passenger mutations is to evaluate if the mutation in question has a functional relevance, a task that is still 

difficult even with current board knowledge of landscapes. Unlike the mutations in coding regions, 

annotations in non-coding regions are not always straightforward and sometimes not fully reliable. 

 To reveal functional relevance of mutations in promoter and enhancer regions, I intended to 

integrate epigenome and transcriptome data with the genomic mutation data in cancers, I expected that 

such multi-layered omics analysis would enable me to narrow the gap between observed phenotype and 

non-coding mutations 

Allelic Phasing as another Crucial Information 
 Another important barrier which potentially prevents the data integration between the genomic 

mutations with the transcriptome and epigenome data is the lack of allele specific information on the 

relative position of the promoter and enhancer regions and their regulating genic regions  [ENCODE 2017]. 

Due to the technological limitation, allelic information was lost during conventional short-read 

sequencing; however, these information were indispensable when examining the biological relevance of 

the mutations in the regulatory regions. The allelic information is important as somatic mutations are 

commonly heterozygous, meaning that only gene expression from one allele may be affected, and by 

losing the allelic information, the gene expression inference is diluted. 

Recently, novel technology that allow the synthetic long read to be constructed through short-read 

sequencers, through 10x Genomics’ GemCode (10x Genomics) [Grace X Y Zheng 2016] . This 

technology complements the drawback that is inherent to the current short-read sequencing technologies 

through the uses of molecular barcoding technology, which allows allelic phasing of the human genome. 

In this method, large DNA fragments are confined in oil droplets together with gel-embedded barcodes 

(GEMs). By hybridization extension, each unique molecular identifier (UMI) is added to the DNA 

fragments within the droplet. Large-barcoded DNA fragments are, then mixed, sheared and then subjected 

to sequencing by Illumina short-read sequencer. Long read sequences originated from the large DNA 

fragments within a single droplet then could be computationally re-assembled based on the each unique 

molecular identifier (UMI). The read used in anchoring the fragments are called “linked reads” and play a 

key role in this so-called “synthetic long read sequencing”. 

Another novel development in long read technology is MinION from Oxford Nanopore 

Technologies, where instead of indexing and barcoding each read, this new technology physically read the 

long DNA sequences. In this sequencer, unlike the short-read sequencers, a long strand of DNA, which 

often reach tens of kilo bases long, passes through a small pore. Distinctive ion current disturbances 

caused by each of the four DNA bases are then analyzed in time-lapse manner. 

Taking advantages of the both long read technologies, I attempted to obtain and validate the 

positional relationship between the SNVs in regulatory regions and the corresponding transcripts' 



SNPs/SNVs. The goal of including phasing information into multi-omic analysis was to provide direct 

evidence for functional relevance of the mutation and its effects on gene expression regulation. 

However, both of the long read technologies are very recent methods and have their own 

significant technical difficulties; therefore, they required technical optimisation before I could apply these 

methods for the analyses of cancer omics dataset. The 10x GemCode technology, is an indexing and 

barcoding-based system which was mainly designed to phase the diploid human genome, its direct 

adaption for usage in aneuploidy cancer genome was considered error-prone. On the other hand, the 

MinION sequencer’s fidelity and throughput might not be sufficient for application in large cancer 

genome sequencing. Because of these potential drawbacks, I developed a series of tools for both methods 

to be used in this study. I generated the first phasing information based on the 10x GemCode technology 

then referenced and optimized the work flows by utilizing MinION sequencing dataset. 

In this study, I intended to elucidate the transcriptional consequences of somatic mutations 

detected in the regulatory regions. Previous works [Ayako Suzuki 2014] at our laboratory identified a large 

number of mutations, in both coding and regulatory regions in 26 Lung Adenocarcinoma-derived cell 

lines. In addition, the multi-omics data from same materials have been collected and they include: histone 

modifications, transcriptional start sites and transcriptomes and I selected the candidates for the somatic 

regulatory mutations, by examining biased expression in variant tags between reference and alternative 

alleles in ChIP-seq and RNA-seq datasets. Then I associated those candidates’ regulatory mutations with 

their regulating transcripts variants by the long read technologies. 

 



Material and Methods 

Cell lines used in this study 
 A total of 26 human lung adenocarcinoma cell lines were either cultured in RPMI medium (RPMI 

1640, Nissui), Dulbecco’s Modified Eagle’s medium (Nissui) or Eagle’s minimal essential medium 

(Nissui) along with 10% FBS, MEM Non-essential Amino acid solution (SIGMA) and antibiotics 

supplementation (Antibiotic-Antimycotic, GIBCO) and were kept at 37◦C and 5% CO2 condition. Three 

cell lines were tested positive for mycoplasma contamination and were excluded from this study. The 

basic cell line information and reported mutations [Forbes 2014] are shown in Table2. 

Table 2 summarized the cell lines used in this study. Average ploidy and mutations were retrieved from 
COSMIC cell line project 

Cell 

Line 

Sexes Ethicity Distributor Catalogue 

Number 

Average 

Ploidy  

Mutation Reported by 

COSMIC 

A427 Male Caucasian ATCC HTB-53 3.13 KRAS, MSI 

A549 Male Caucasian ATCC CCL-185 2.76 KRAS, SMARCA4 

ABC-1 Male Japanese JCRB JCRB0815 2.39 TP53, ALK 

H322 Unspecified Caucasian ATCC CRL-5806 2.35 ALK, ERBB2, TP53, 

BRCA1 

H1299 Male Caucasian ATCC CRL-5803 4.75 NRAS, SMARCA4, TP53, 
KMT2D 

H1648 Male African ATCC CRL-5882 2.44 TP53, ARID1A, BRCA2 

H1650 Male Caucasian ATCC CRL-5883 1.99 EGFR, TP53, SMARCA4 

H1703 Male Caucasian ATCC CRL-5889 2.32 CDKN2A, TP53, ROS1, 

BRCA1 

H1819 Female Caucasian ATCC CRL-5897 - - 

H1975 Female Unspecified ATCC CRL-5908 2.83 EGFR, TP53, PIK3CA 

H2126 Male Caucasian ATCC CCL-256 3.24 TP53, SMARCA4 

H2228 Female Unspecified ATCC CRL-5935 3.74 RET, ALK, KMT2C, TP53 

H2347 Female Caucasian ATCC CRL-5942 3.76 KRAS, ALK, TP53, NRAS 

II-18 Unspecified Japanese RIKEN 
BRC 

RCB2093 - - 

LC2ad Female Japanese RIKEN 

BRC 

RCB0440 3.37 RET, TP53, TET2 

PC-9 Unspecified Japanese RIKEN 
BRC 

RCB4455 - - 

PC-14 Unspecified Japanese IBL - 3.14 CDKN2A, CCND2, TP53, 

EGFR, KMT2S 

RERF-

LC-Ad1 

Male Japanese JCRB JCRB1020 - - 

RERF-

LC-Ad2 

Male Japanese JCRB JCRB1021 - - 

RERF-

LC-KJ 

Male Japanese RIKEN 
BRC 

RCB1313 2.72 EGFR, TP53. BRCA2 

RERF-

LC-MS 

Unspecified Japanese JCRB JCRB0081 4.33 FGFR2, TP53 



VMRC-

LCD 

Male Japanese JCRB JCRB0814 2.4 ARID1A, TP53, KDM5A, 

MAP2K4 

RERF-

LC-OK 

Unspecified Japanese JCRB JCRB0811 - - 

 

Multi-omics dataset for each cell line 
 For each cell line, the FASTQ files for Whole Genome Sequencing, ChIP-seq on H3K9me, 

H3K9_14Ac, H3K4me3, H3K4me1, H3K36me3, H3K27me3, H3K27Ac, Polymerase-II and input DNA, 

Whole Transcriptomes Sequencing and Transcriptional Starts Sites Sequencing (TSS-seq) were retrieve 

from the previous publication [Ayako Suzuki 2014].Statistics for the dataset as reported in this paper is 

shown in the below Table 3,4 . Annotations for coding regions were obtained from KERO database for 

UCSC hg38 human genome reference (http://kero.hgc.jp/). 

SNPs/SNVs from Whole genome sequence data 
 The FASTQ files for whole genome sequencing in each cell line were re-mapped to UCSC hg38 

human genome reference [Matthew L. Speir 2016] by using bwa [Durbin 2009] (version 7.15) by aln 

algorithm with default setting. PCR-duplicates were then removed by samtools [Li H. 2009] (version 

1.18). SNPs/SNVs were called by GATK [McKenna A 2010 ] (version 3.3) with default parameters. The 

SNPs/SNVs called by GATK with more than 5 supporting tags and variant frequency greater than 5% 

were selected. The variant frequency were calculated by samtools (v1.18) mpileup command with default 

setting. (see Table 3 for details) 

Regulatory Regions defined by ChIP-seq 
 ChIP-seq data for 7 histone modification (H3K9me, H3K9_14Ac, H3K4me3, H3K4me1, 

H3K36me3, H3K27me3 and H3K27Ac) and polymerase-II were processed. The FASTQ files were re-

mapped to UCSC hg38 human genome reference using bwa (version 7.15) and aln algorithm with default 

setting. PCR-duplicates were then removed by samtools (version 1.18). Each dataset peak were calculated 

by MACS2 [Zhang Y 2008] broad-peak calling with default parameters against input DNA as background 

control. Peaks that were within 150 kb of transcription start site according to TSS-seq data were treated as 

regulatory regions. If there was multiple transcriptional start sites, the closest transcriptional start site was 

selected for the peak. (see Table 3 and 4 for details) SNVs that were within the peaks were then defined as 

regulatory SNVs. The number of regulatory SNVs were count collectively, if any SNVs were associated 

with multiple peaks, those SNVs would be counted multiple times and treated as separated SNVs. 

Whole Transcriptome Sequencing 
FASTQ files for RNA-seq were re-mapped to UCSC hg38 human genome reference by GSNAP 

using default parameters. Splice sites and intron were provided by KERO database. (see Table 3 for 

details) 

Transcriptional Start Sites Sequencing 
 For transcriptional start sites, resulted from 26 cell lines and 1 small airway epithelium cell 

samples were compared and merged. The clusters used were generated from the merged dataset. Promoter 

region for each gene was defined as region of 500bps upstream to 500bps downstream of the 

transcriptional start sits clusters. The resulted promoter positions were treated as regulatory regions in 

ChIP-seq dataset. 



Background Germline Variants Filtering 
SNPs/SNVs called by GATK in whole genome sequence that were within the regulatory regions 

were treated as candidates for regulatory SNVs. These were filtered by NCBI’s dbSNP (v142 note that 

background germline SNPs were not available) 

Synthetic long reads library preparation by 10x GemCode 
 From 23 cell lines, high molecular weight DNA were extracted and quantify by Qiagen 

MagAttract HMW kit according to manufacture recommendation (10x Genomics, Qiagen #67653).  

For each cell lines, 1x106 cells were suspended in 200 μl of PBS buffer, 20 μl of Proteinase K. 

Mixture, 4 μl of RNAase A and 150 μl of buffer AL.The samples were then incubate at 25◦C for 30 

minutes. 15 μl of Qiagen MagAtrract susupension G were added to each sample along with 280 μl of 

buffer MB. The samples were mixed and incubated at 1400 rpm at (15–25 °C) for 3 minutes. To wash the 

beads, sample were put on the magnetic rack for 1 minute and the clear supernatant were discarded. The 

beads were removed from the magnetic rack, suspended into 700 μl of Buffer MW1, mixed and incubated 

at 1400 rpm at (15–25 °C) for 1 minute, the samples were put on to the magnetic rack and the procedure 

was repeated once. After Buffer MW1, samples were then washed by 700 μl of Buffer PE twice. Beads 

with Buffer PE were put on the magnetic rack for 1 minute. The supernatant were removed on the 

magnetic rack, 700 μl of Nuclease-free water were added and incubated for 60 seconds, supernatant was 

discarded and the processes were repeated once. After the beads were washed with Buffer MW1, PE and 

Nuclease-free water twice, the beads were removed from the magnetic rack and 150 μl of Buffer AE were 

added to the bead pellets. The samples were mixed and incubated at 1400 rpm at (15–25 °C) for 3 minutes. 

The samples were put on the magnetic rack and held for 1 minute. The supernatant was transferred and 

stored at 4 ◦C for DNA Quantification by Qubit dsDNA HS Assay kit (Thermo Fisher Scientific) at target 

the concentration of 10-20 ng/μl. 

 For GemCode library preparation, partitioning was performed by GemCode Gel-Beads and Chip 

(10x Genomics). Indexing and library preparation was performed by GemCode library preparation Kit 

(10x Genomics) according to the manufacturer’s instructions. In brief, quantified High Molecular Weight 

DNA were further diluted by nuclease-free water to concentration of 1 ng/μl, and 1.2 μl were used. 

Sample Mix were prepared by adding the 1.2 μl of diluted genomic DNA to the Master Mix, consisting of 

Nuclease-free water, GemCode Reagent Mix, Primer Release Mix and GemCode Polymerase supplied in 

GemCode Reagents Kits. The Sample Mix, Gel beads and partitioning Oil were applied onto GemCode 

Chip. The GemCode Chip was loaded in to the GemCode instrument.  

Gel Beads In Emulsions (GEMs) were retrieved from the instrument according to manufacturer’s 

recommendation and transferred to a 96-well plate for a designated thermal cycling amplification. For the 

post cycling recovery, 1 μl of Additive 1 and 125 μl of Recovery Agent was added and mixed to each 

GEMs according to manufacturer’s instructions. The aqueous solutions were transferred and recovery 

Agent and Partitioning Oil removed. Mixture of Recovery Agent and Partitioning Oil at the bottom was 

first remove by 135 μl of pipetting. The leftover were removed with DynaBeads MyOne SILANE beads 

and 0.6X SPRI solution on the GemCode magnetic rack. Beads were washed with Elution Buffer I 

(Elution Buffer, 10% Tween-20, Additive 2) with SPRI reagent twice and washed with Elution Buffer II 

(Elution Buffer, Additive 2) once. 

The barcoded samples were subjected to library construction by shearing by Covaris system. The 

fragmentation was performed with target peak of 250 bp for the whole exome and regulome sequencing 

and 800 bp for the whole genome sequencing. End repair and A-tailing were performed by thermal cycling 

of the fragmented DNA with the End Repair and A-Tailing Buffer and Enzyme Mix supplied by 



GemCode library preparation Kits (10x Genomics). Products from End repair and A-tailing were ligated 

by thermal cycling with Adaptor Mix and DNA Ligase. Post ligation cleanups were performed by 0.8X 

SPRI solution on the GemCode magnetic rack. Sample indexing PCR by P5 primer were conducted. The 

post PCR cleanups were performed by 1.0XSPRI cleanup on the GemCode magnetic rack. 

The obtained products were sequenced by Illumina Hiseq2500 for whole genome sequence. For 

whole exome and regulome samples, target enrichment were performed using Agilent SureSelectXT 

protocol with SureSelect V5 plus regulome baits according to the manufacturer’s instructions (Agilent, 

10x Genomics).See Figure 5 for summarized work flow. 

 The FASTQ files were processed using 10x Genomics LongRanger (version 1.3) pipeline on 

default setting together with the pre-called SNPs. (see Table 5 for details) 

Physical long-read sequencing by MinION 
For MinION sequencing H1975, LC2/ad, RERF-LC-KJ and II-18 cell lines were used. 

High Molecular Weight DNAs were extracted in the same manner as descried above. Library 

preparations were performed according to the manufacturer’s instructions (Oxford Nanopore 

Technologies). In brief, extracted high molecular weight DNA were subjected to End repair and dA-tailing 

by NEBNext End repair/dA-tailing module (E7546S, NEB). Purifications were performed using 

Agencourt AMPure XP beads (Beckman Coulter). Ligation and Tethering were proceeded with NEBNext 

Blunt/TA Ligase Master Mix (M0367S, NEB) and Ligation Sequencing Kit 2D (SQK-LSK208, Oxford 

Nanopore Technologies). The obtained libraries were purified by MyOne C1 beads (65001, Thermo Fisher 

Scientific). Sequencing was done in 48 hours run mode by MinION Mk 1B with the SpotION Flow Cell 

(FLO-MIN106, R9.4 version, Oxford Nanopore Technologies). 2D base-calling was performed by 

Metrichor. The FAST5 files were converted into FASTQ format with poretools (Loman and Quinlan 

2014). FASTQ files were mapped to UCSC hg38 human genome reference with LAST aln with 

parameters optimized for long read sequencing and bwa (version 0.7.15) with mem algorithm and 2dONT 

optional parameter. The results from LAST aln were converted to sam format by LAST. Conversion to 

bam format and sorting were done by samtools (version1.18).See also Figure 6 for work flow. 
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Figure 6 Simplified work flow for MinION physical long read sequencing (Oxford Nanopore Technologies). 

Figure 5 Simplified work flow for 10x GemCode Library preparation System (10x Genomics). 



Cell line Whole Genome Sequencing Whole Transcriptome Sequencing Chip-seq Input Control 

Mapped Read % Mapped 

Read 

Depths Mapped Read % Mapped 

Read 

Mapped Read % Mapped 

Read 

A427 1,084,672,075 94.0% 34.62 95,046,694 97.0% 58,870,145 97.0% 

A549 577,537,022 71.0% 15.92 51,009,049 98.0% 23,063,615 80.0% 

ABC-1 1,198,942,503 94.0% 38.36 89,577,661 98.0% 4,959,932 52.0% 

H322 921,462,662 95.0% 29.13 128,407,549 97.0% 5,186,262 46.0% 

H1299 930,092,532 95.0% 29.93 121,767,233 96.0% 11,053,640 93.0% 

H1648 1,303,832,736 90.0% 40.78 86,409,901 98.0% 18,636,861 96.0% 

H1650 1,093,147,187 96.0% 34.98 66,205,127 98.0% 107,477,951 96.0% 

H1703 1,035,232,011 87.0% 31.94 190,122,574 97.0% 25,836,885 82.0% 

H1819 1,197,312,856 92.0% 38.13 180,743,242 98.0% 47,573,722 95.0% 

H1975 1,056,952,131 94.0% 33.37 76,888,082 98.0% 36,642,876 97.0% 

H2126 668,355,912 88.0% 21.31 106,874,132 98.0% 11,285,585 72.0% 

H2228 855,605,013 90.0% 27.36 129,887,384 96.0% 41,236,999 92.0% 

H2347 983,271,902 85.0% 31.62 119,783,099 95.0% 55,967,654 97.0% 

II-18 890,312,525 84.0% 26.75 153,260,052 96.0% 10,210,751 58.0% 

LC2ad 1,400,218,662 93.0% 44.78 103,957,725 97.0% 2,909,093 24.0% 

PC-9 1,326,079,008 94.0% 42.40 121,730,782 96.0% 3,845,359 29.0% 

PC-14 979,278,917 97.0% 31.33 82,194,427 98.0% 12,005,835 51.0% 

RERF-LC-Ad1 1,265,604,463 95.0% 40.60 128,209,153 97.0% 22,741,126 75.0% 

RERF-LC-Ad2 1,284,008,781 95.0% 41.10 103,865,898 97.0% 32,887,224 77.0% 

RERF-LC-KJ 1,113,739,330 95.0% 35.59 138,119,858 97.0% 8,693,898 59.0% 

RERF-LC-MS 1,319,743,295 93.0% 42.30 119,134,144 97.0% 12,701,625 66.0% 

VMRC-LCD 1,394,724,167 93.0% 44.64 109,941,326 98.0% 10,201,434 50.0% 

RERF-LC-OK 684,830,042 86.0% 21.02 78,730,703 97.0% 19,353,474 97.0% 

Average 1,068,041,554 91.1% 33.82 112,255,035 97.1% 25,362,693 73.1% 

Table 3 shows basic sequencing characteristic for whole genome sequencing, RNA-seq and Chip-seq background control 

  



Cell 

lines 

Polymerase-II H3K4me1 H3K4me3 H3K9me3 H3K9_14Ac H3K27Ac H3K27me3 H3K36me3 

Mapped 

Read 

% 

Mapped 

Mapped 

Read 

% 

Mapped 

Mapped 

Read 

% 

Mapped 

Mapped 

Read 

% 

Mapped 

Mapped 

Read 

% 

Mapped 

Mapped 

Read 

% 

Mapped 

Mapped 

Read 

% 

Mapped 

Mapped 

Read 

% 

Mapped 

A427 19,919,326 95% 35,907,915 96% 40,834,430 96% 16,099,060 98% 16,267,399 98% 45,852,658 98% 13,751,977 98% 14,511,308 98% 

A549 42,205,011 98% 24,557,168 98% 28,481,237 98% 16,398,873 93% 25,914,697 98% 13,996,665 98% 24,826,664 97% 33,981,484 98% 

ABC-1 30,106,498 97% 23,448,072 96% 32,348,875 97% 24,035,880 95% 15,643,097 98% 28,957,286 96% 25,120,033 96% 42,806,924 97% 

H322 20,592,481 95% 19,565,669 98% 29,291,795 97% 48,815,268 95% 22,819,233 97% 39,589,006 97% 28,757,036 97% 23,973,241 98% 

H1299 15,517,082 92% 15,500,143 91% 6,845,054 89% 23,174,212 94% 26,347,198 98% 25,902,379 98% 11,715,556 92% 7,919,777 93% 

H1648 42,151,483 96% 29,424,483 97% 26,008,969 96% 31,893,831 96% 20,124,185 97% 32,995,085 95% 16,764,970 96% 34,563,616 97% 

H1650 34,512,016 95% 25,494,598 96% 38,951,570 95% 49,297,255 82% 21,953,905 98% 42,526,121 97% 21,855,198 82% 21,719,937 98% 

H1703 33,931,810 91% 34,798,266 98% 17,985,220 91% 33,066,974 97% 27,913,705 98% 31,111,917 98% 18,727,226 98% 21,500,912 98% 

H1819 14,617,601 97% 35,015,007 97% 17,947,000 96% 38,744,549 93% 22,921,204 95% 23,747,865 97% 19,250,082 91% 27,777,531 94% 

H1975 34,211,588 98% 33,758,149 98% 18,206,422 95% 29,297,788 96% 25,467,485 98% 22,661,866 97% 16,865,773 97% 29,859,308 97% 

H2126 27,096,982 96% 13,390,733 98% 16,108,148 96% 18,365,403 95% 34,921,354 98% 14,662,278 97% 27,126,917 97% 37,864,976 97% 

H2228 34,065,433 97% 40,528,026 98% 18,474,115 96% 45,956,295 97% 26,180,133 96% 33,453,676 97% 26,892,026 97% 24,160,581 98% 

H2347 36,045,314 97% 30,548,297 83% 24,573,340 96% 44,156,118 97% 32,312,697 97% 36,153,407 83% 20,204,256 96% 39,717,531 97% 

II-18 33,022,666 96% 23,130,969 95% 22,114,574 97% 20,440,344 93% 13,650,439 98% 41,775,051 97% 38,796,482 98% 33,065,234 96% 

LC2ad 32,914,384 95% 54,113,092 98% 29,315,441 96% 11,690,048 86% 14,170,753 92% 35,788,989 98% 40,973,180 97% 24,914,911 95% 

PC-9 36,269,970 97% 24,034,872 98% 32,779,453 95% 25,383,329 89% 13,592,966 98% 20,925,733 97% 61,498,760 97% 15,533,061 96% 

PC-14 43,079,306 91% 36,150,087 98% 29,881,364 92% 42,868,733 97% 14,871,279 96% 37,398,511 97% 36,399,198 96% 35,516,283 98% 

RERF-

LC-Ad1 

31,866,960 96% 42,742,931 97% 29,130,354 92% 29,272,804 92% 25,338,362 97% 26,551,483 97% 13,240,117 96% 25,750,673 97% 

RERF-

LC-Ad2 

32,740,273 94% 44,180,544 98% 32,501,541 93% 22,862,593 87% 13,817,685 98% 33,367,124 96% 13,408,679 95% 28,652,285 96% 

RERF-

LC-KJ 

29,962,594 94% 26,907,433 97% 43,186,043 95% 27,254,351 93% 20,979,344 97% 29,811,965 98% 23,546,066 93% 38,833,258 95% 

RERF-

LC-MS 

21,367,869 97% 20,275,585 96% 33,129,718 86% 23,077,592 94% 12,496,785 98% 17,481,918 92% 20,814,990 94% 16,599,485 91% 

VMRC-

LCD 

35,513,867 97% 22,012,353 97% 32,101,470 94% 29,637,264 96% 14,310,001 97% 23,498,455 97% 40,330,632 97% 42,317,596 98% 

RERF-

LC-OK 

23,185,350 97% 38,441,077 97% 64,308,969 96% 19,515,810 92% 25,671,164 97% 27,821,894 97% 19,185,968 97% 65,905,050 97% 

Average 31,376,285 96% 29,950,476 96% 29,389,005 94% 28,752,719 93% 21,125,630 97% 30,103,794 96% 25,490,987 96% 29,984,883 97% 

Table 4 shows sequencing statistic for individual Chip-seq Antibodies for each cell line. 

  



WES+R Sequencing Statistics 
 

Phasing Statistics 

Cell Line Number of 

Reads 

Mapped 

Read% 

PCR Duplication Bait 

Coverage 

Depths Longest Phase 

Block 

N50 Phase 

Block 

SNPs 

Phased 

A427 99,593,100 99.5% 3.01% 99.4% 59.65 835,114 116,420 11.50% 

A549 95,848,264 99.5% 3.21% 99.3% 56.27 729,146 76,070 11.80% 

ABC-1 94,462,990 99.4% 17.60% 99.0% 52.33 1,049,789 106,062 11.80% 

H322 88,136,374 99.5% 3.56% 99.1% 51.35 1,249,705 112,172 11.50% 

H1299 103,133,700 99.4% 5.63% 99.4% 61.15 1,087,437 88,677 11.50% 

H1648 85,929,520 99.5% 3.46% 99.4% 51.49 1,073,574 94,214 10.70% 

H1650 85,269,994 99.5% 5.59% 99.0% 50.05 769,042 89,937 10.00% 

H1703 97,084,096 99.4% 5.52% 99.3% 54.65 781,297 104,174 11.80% 

H1819 93,562,794 99.3% 6.80% 99.2% 52.51 709,032 95,635 11.50% 

H1975 83,093,898 99.2% 2.63% 99.1% 48.99 652,676 84,566 9.51% 

H2126 95,109,618 99.4% 7.52% 99.3% 53.93 918,379 125,972 11.40% 

H2228 91,567,448 99.2% 3.15% 99.4% 54.40 896,157 123,272 10.20% 

H2347 93,224,434 99.4% 8.65% 99.3% 53.37 811,704 100,329 10.60% 

II-18 85,938,160 99.5% 1.75% 99.1% 50.97 468,750 78,308 10.60% 

LC2ad 87,391,948 99.1% 3.19% 99.3% 51.01 1,085,664 130,385 10.20% 

PC-9 93,671,674 99.1% 8.50% 98.9% 55.43 909,689 98,398 10.80% 

PC-14 85,912,630 99.5% 2.15% 99.3% 51.62 559,312 88,049 9.15% 

RERF-LC-Ad1 95,459,772 99.5% 3.49% 99.3% 55.92 773,885 98,237 11.00% 

RERF-LC-Ad2 85,929,050 99.5% 3.56% 99.4% 51.22 781,428 97,919 10.10% 

RERF-LC-KJ 102,867,672 99.4% 5.20% 99.5% 60.16 793,178 87,920 11.90% 

RERF-LC-MS 73,659,054 99.4% 4.91% 99.1% 41.65 748,538 103,805 9.16% 

VMRC-LCD 83,375,866 99.4% 5.12% 99.1% 47.48 876,641 89,340 10.30% 

RERF-LC-OK 101,048,218 99.5% 3.86% 99.4% 60.36 622,497 90,476 10.50% 

Average 91,269,545 99.4% 5.0% 99.2% 53 826,778 98,131 10.7% 
Table 5 shows sequencing and phasing characteristics for 10x GemCode synthetic long read whole exome with regulome sequencing. 

 



Results and Discussion 

Mutations Detected in Lung Adenocarcinoma cell lines 
 For all of the 23 cell lines, the whole genome sequencing data were re-analyzed. On 

average, I detected 1,375,802 SNPs/SNVs per cell lines. Using the KERO database, published by 

our laboratory, I identified an average of 1,375,802 SNPs/SNVs in coding region per cell line with 

an average of 19,086 SNPs/SNVs in exon regions. Regulatory regions were defined by ChIP-seq 

and TSS-seq. The germline SNPs in regulatory regions were further filtered out by NCBI’s dbSNP. 

The final number of potential regulatory SNVs is 46,149 SNVs on average per cell line (see Table 6 

for details). To specify potential function of regulatory SNVs, I considered every SNV with at least 

one overlapped peak. 

Statistic of detected SNPs/SNVs are shown in Table 6, I constantly detected higher amount 

of SNVs in my current work compared with result for pervious publication using same dataset. I 

considered this due to changes in SNPs/SNVs calling procedure, the update of reference genome 

and larger number of ChIP-seq antibodies analyzed. 

Cell line All 

SNPs/SNVs 

Coding 

SNPs/SNVs 

Exon SNPs/SNVs Regulatory 

SNVs 

A427 4,024,063 1,397,615 18,775 70,336 

A549 3,762,488 1,007,875 16,143 37,976 

ABC-1 3,918,935 1,359,715 18,666 16,068 

H322 3,710,129 1,273,472 17,904 20,721 

H1299 3,910,954 1,343,074 18,287 49,799 

H1648 4,834,699 1,701,139 24,819 55,458 

H1650 3,738,924 1,272,227 17,280 68,525 

H1703 3,908,849 1,340,392 18,276 48,520 

H1819 4,169,230 1,441,883 19,326 61,870 

H1975 4,026,746 1,333,864 19,389 36,275 

H2126 4,233,027 1,457,113 19,789 76,104 

H2228 4,407,002 1,512,216 19,312 80,690 

H2347 3,265,345 1,316,041 18,102 37,756 

II-18 4,122,525 1,428,765 20,231 37,923 

LC2ad 3,955,271 1,372,090 18,855 9,568 

PC-9 3,949,215 1,368,717 18,717 43,016 

PC-14 3,712,268 1,259,609 17,977 10,717 

RERF-LC-Ad1 4,368,425 1,514,733 20,936 68,911 

RERF-LC-Ad2 4,213,008 1,449,905 19,887 70,040 

RERF-LC-KJ 4,135,667 1,426,828 19,961 33,263 

RERF-LC-MS 3,949,142 1,348,821 17,980 48,424 

VMRC-LCD 4,078,677 1,383,592 19,613 36,918 

RERF-LC-OK 4,011,742 1,333,768 18,749 42,540 

Average 4,017,667 1,375,802 19,086 46,149 

Table 6 summarized SNPs/SNVs detected by GATK 



Multi-omics Analysis reveals imbalance in allele expression  
I considered that one of the main indicator of biological relevance of the promoter and 

enhancer variants, is by examining whether the mutations could activated or repressed their 

regulating gene’s transcripts. One of the methods to observe these effects is to look for changes in 

expression of variant in the transcripts. Activating mutations in regulatory regions should increase 

the number of corresponding transcript, while repressive mutations should lower them. I expected 

such regulatory somatic mutations should have occurred in a heterozygous manner, evidenced by 

well-known heterozygous driver mutation such as EGFR and KRAS missense substitutions. I 

considered comparison of the ratio of the regulated transcripts regarding their heterozygous allele 

expressions to be the most straightforward way to evaluate the potential of regulatory SNVs; under 

the assumption that heterozygous functional regulatory SNVs, either activating or repressive, 

should result in detectable uneven allele expression of their corresponding heterozygous transcripts 

on the same allele. The heterozygosity of the transcripts can be identified by presence of genomic 

heterozygous SNVs/SNPs within the transcripts. The ratio of transcript variant expression should be 

detectable, as the ratio of variant frequency of heterozygous SNPs/SNVs in RNA-seq. Similar 

approach had been taken in several papers aiming at discovering imprinted genes (Baran, et al. 

2015). 

However, cancer genomes, especially those that have been transformed into cell lines, 

usually undergo heavy alteration regarding their ploidy. Most (see Table 2) of the cell lines used in 

this study are known to have aneuploidy genomes. I was concerned that this fact might make the 

interpretation of the detected allele expression ratio difficult to be used as the indicator of bias in 

expression levels between the alleles. I intended to circumvent this problem by considering variant 

tag frequencies in the whole genome sequence dataset. Genomic variant frequency may represent 

the degree of aneuploidy at that region of the genome and might prove useful in normalizing the 

expression ratio in ChIP-seq and RNA-seq. 

To calculate the frequency in the genomic variants,.I calculated variant tags for both the 

reference nucleotide and the alternative nucleotide(s) of SNPs/SNVs in whole genome sequencing 

datasets (see Material and Methods for details). Variant frequency of regulatory SNVs and 

transcripts SNPs/SNVs in whole genome sequencing could be calculated in 2,874 RefSeq annotated 

genes on average per cell line, within those genes 10,721 regulatory SNVs from every regulatory 

regions were detected and total of 4,123 transcript SNPs/SNVs detected (see Table 8 for details).  

RNA-seq’s allele expressions was also calculated using similar methods. For regulatory SNVs, 

variant frequency were calculated in each ChIP-seq antibodies, bias in at least one marker was 

considered positive result and the SNVs were counted in a collective manner, if any SNVs were to 

shown to have more than one activities bias, each bias would be treated separately. I expected the 

results to represent genome ploidy, bias in transcript expression and bias in any regulatory activity. 

Figure 7 on the next page visualizes the idea.  



 

Figure 7 Strategy in detecting Allelic imbalance expression. Genes with both bias in transcript 
allele and regulatory SNVs are first selected, then if 1). The difference in variant frequency of the 

SNPs/SNVs is significant (P<0.05, fisher’s exacts test) and 2). The difference is larger than 2 fold 

changes for both regulatory and transcript regions. I classify the regulatory SNVs potentially 
functional SNVs. Genes without coverage for all omics were not considered.. 

For the genes where the frequencies of the genomic variants were calculated, I intended to 

evaluate the bias in the allelic expressions and bias in the allele regulatory activities. For the 

potential regulatory SNVs, variant frequencies detected from the ChIP-seq data were calculated 

and,  normalized against their respective variant frequency in the whole genome sequencing. For the 

transcript SNPs/SNVs, the variant frequencies of SNPs/SNVs in RNA-seq were calculated and 

normalized against their variant frequency of the SNPs/SNVs in the whole genome sequencing. For 

both of the detected biases in the regulatory activities and those in transcript allele expressions, 

genes for which the variant frequency could not be calculated, in any of the three omics dataset 

were excluded from this study. As a result, 1,600 RefSeq genes on average per cell line remained, 

containing 2,360 Regulatory SNVs and 1,946 transcript SNPs/SNVs. 

In prior to the normalization, bias in the allelic expression and that in the regulatory activity 

were evaluated as the observed differences in the based variant tag frequencies in the respective two 

omics datasets; ChIP-seq dataset for the regulatory SNVs and the RNA-seq dataset for the 

transcripts, respectively. Statistical significance was evaluated in the 2x2 contingency table between 

two omics studies by fisher’s exact test with the cut off P value of 0.05. Those selected cases 

(P<0.05) were further screened by minimum coverage of 5 in the number of the variant tags. Also 

the ratio of the variant tags against the alternative tags in RNA-seq and Chip-seq must change by at 

least two fold from the whole genome sequencing to be considered valid. By doing so, I expected 

that the effects from the possible aneuploidy would be canceled. 



The genes for which at least one allele-biased expressions and one allele-biased regulatory 

activity were detected were further considered for the potential candidates having a functionally 

relevant regulatory mutation. For SNPs/SNVs, which were located both in the transcript and 

regulatory regions, and those that overlapped with multiple RefSeq (Entrez) gene groups were 

counted multiple times. For one SNP/SNV could hold more than one function. As a result, the 

genes of the “allele imbalance expression” were selected. 

Table 7 shows a summary of the allele imbalance expression genes. On average, I detected 

270 RefSeq genes per cell line, consisting of 524 potentially functional SNVs and 590 transcripts 

SNPs/SNVs. The cell line harboring the smallest number of such genes was PC-9 at 112 genes with, 

176 potentially regulatory SNVs and 208 transcript SNPs/SNVs. The cell line with highest number 

of imbalance expression genes was H1648 with an un-proportionally large number of genes at 

1,341 genes with 1,910 potential regulatory SNVs and 2,647 transcript SNPs/SNVs. Closer 

inspection revealed an exceptionally high number of coding SNPs/SNVs (24,819 vs average of 

19,086, Table 6) was detected and annotated together with also a large number of potentially 

regulatory SNVs from ChIP-seq markers (55,458 vs average of 46,149, Table 6). Individually, 

manual inspections of some of the genes detected in this cell line showed no relevant difference 

compared to others cell lines. In this particular cell line, some unknown event might have taken 

place, making several –omic datasets distinct from other cell lines. 

Genes with detected allelic imbalance expression 
Table 8 shows the top 12 autosomal genes with the allele imbalance expression in the most 

recurrent manner among the cell lines. At the bottom, top 3 genes located in X-chromosome 

exclusively recurred in female cell lines, thus may be influenced by X chromosome inactivation, the 

most recurring gene, NBPF1 encodes neuroblastoma break point protein 1. Functions of this protein 

are associated with development of neural system. Some connections to cancer development had 

been made but mainly to tumors of neural system. It would be intriguing if similar mechanisms 

could also take place in lung adenocarcinoma as well. The second most frequently effected gene is 

TYW1, which encode the protein Wybutosine, a hyper modified guanosine in tRNA processing 

pathway, little is known in its relation to cancer development in any cancer type. 

Despite difficulties in making the biological interpretations of the detected genes, I believe 

that the merit of these cases lies further in depth understanding of the regulatory mutations and their 

effects rather than direct functional relevance of encoded proteins. To that end, I intended to further 

my analysis, focusing on the regulatory SNVs themselves.   



 

Table 7 shows detailed detected allele imbalance in each cell line, please note that for each cell line a single SNPs/SNVs could be counted multiple times due to 

associations with multiple markers or RefSeq transctripts.

Cell Line RefSeq Gene with whole genome variant 

frequency (ploidy known) 

RefSeq Genes with all three omics’ 

variant frequency calculated 

RefSeq Genes with Allelic Imbalane 

Expression 

# RefSeq 
Genes 

# Regulatory 
SNVs 

# Coding 
SNPs/SNVs 

# RefSeq 
Genes 

# Regulatory 
SNVs 

# Coding 
SNPs/SNVs 

# RefSeq 
Genes 

# Regulatory 
SNVs 

# Coding 
SNPs/SNVs 

A427 3,644 15,956 4,986 1,360 1,941 1,509 221 457 437 

A549 2,289 5,737 3,005 1,102 1,336 1,199 181 242 412 

ABC-1 1,459 2,739 2,067 1,095 1,546 1,250 141 299 304 

H322 1,608 3,865 2,226 1,098 1,650 1,294 141 357 342 

H1299 2,676 9,386 3,634 837 888 956 126 143 329 

H1648 6,101 21,455 9,776 3,222 4,182 4,384 1,341 1,910 2,647 

H1650 1,896 9,149 2,904 943 1,390 1,186 132 245 275 

H1703 2,621 10,056 3,529 1,188 1,592 1,356 130 209 263 

H1819 3,002 14,793 4,693 1,500 2,630 2,091 195 822 677 

H1975 4,184 18,914 5,646 2,114 2,996 2,535 354 697 774 

H2126 2,361 7,099 3,544 1,102 1,421 1,328 171 266 356 

H2228 4,346 19,104 5,966 2,261 3,003 2,702 327 558 782 

H2347 4,425 22,059 6,202 2,631 4,236 3,196 377 726 829 

II-18 2,192 7,315 2,904 1,453 2,341 1,662 193 392 393 

LC2ad 1,280 1,700 1,975 1,165 1,341 1,433 139 208 253 

PC-9 1,252 1,718 1,678 993 1,137 1,047 112 176 208 

PC-14 2,497 7,981 3,658 1,607 2,564 2,015 230 481 584 

RERF-LC-Ad1 4,073 17,398 5,881 2,444 3,571 2,940 318 616 775 

RERF-LC-Ad2 3,411 15,828 5,035 2,000 3,200 2,523 304 579 641 

RERF-LC-KJ 2,786 7,596 4,150 1,908 3,149 2,438 309 704 620 

RERF-LC-MS 2,043 7,603 2,933 767 878 1,020 175 220 331 

VMRC-LCD 2,917 9,540 4,200 1,960 3,504 2,296 249 810 556 

RERF-LC-OK 3,046 9,589 4,242 2,061 3,784 2,408 344 924 793 

Average 2,874 10,721 4,123 1,600 2,360 1,946 270 524 590 



 

Autosome  # of detected Cell lines  SNPs/SNVs detected 

RefSeq Gene 

Symbol 

All (23) Female 

(5) 

Male 

(12) 

unknown 

(6) 

# Coding 

SNPs/SNVs 

# Regulatory 

SNVs 

NM_017940 NBPF1 18 4 10 4 77 173 

NM_018264 TYW1 17 3 10 4 11 89 

NM_145109 MAP2K3 15 4 8 3 19 25 

NM_170606 KMT2C 15 4 8 3 40 26 

NM_001005751 FAM21A 14 4 7 3 13 119 

NM_014675 CROCC 14 2 8 4 31 47 

NM_001128223 ZNF717 12 5 4 3 188 560 

NM_003174 SVIL 11 4 6 1 24 41 

NM_030653 DDX11 10 1 6 3 16 20 

NM_004399 DDX11 10 1 6 3 16 20 

NM_152438 DDX11 10 1 6 3 17 20 

NM_002568 PABPC1 10 2 6 2 18 29 

Chromosome X # of detected Cell lines SNPs/SNVs detected 

RefSeq Gene 

Symbol 

All (23) Female 

(5) 

Male 

(12) 

unknown 

(6) 

# Coding 

SNPs/SNVs 

# Regulatory 

SNVs 

NM_002139 RBMX 4 3 0 1 10 3 

NM_001448 GPC4 2 1 0 1 2 3 

NM_031407 HUWE1 2 1 0 1 2 5 

Table 8 shows top12 autosomal imbalance expression genes and top 3 X-chromosome imbalance 
expression genes. No male cell line allele imbalance genes were detected on X-Chromosome. 

Allele Expression imbalance in X-inactivated and imprinted allele.  
The most well-known mechanism that would produce allelic imbalance expression is X-

inactivation or Lyon hypothesis. For humans, this phenomenon happens exclusively in normal X-

chromosome of female cells. This process, by epigenetic control or randomly inactivating one of the 

alleles of the X-chromosomes, compensates an “extra” copy of X-chromosome presented in the 

female genomes. I attempted to utilize this phenomenon as the positive control.  

Among 23 cell line in this study, 12 were known to came from male, 5 from female and 6 

were unknown. From female cell line, H2347 made a good example for the genes located on X 

chromosome. 56 out of 377 allele imbalance expression genes (Figure 8) were identified on X-

chromosome. In another cell line of unpecificed gender, RERF-LC-OK I also detected 18 out of 

326 allele imbalance expression genes located on X chromosome. Figure 9 and Figure 10 illustrates 

the example of allele specific expression that were assiciated with X- inactivation. 



 

Figure 8 shows number of allele imbalance expression genes located on X chromosome(blue) 

compared to autosome(red). Only H2347 and RERF-LC-OK were found to have a good number of 

genes. 

 

 

Figure 9 demonstrate Single SNP/SNV X-inactivation for GRIPAP1 at chrX: 49002196 for H2347 

female cell line. Only one allele (“G”) is regulatory and transcriptional activated. 



 

Figure 10 demonstrate Enhancer and Coding SNPs/SNVs pair X-inactivation for ZNF75D at 

chrX:135345400 (Enhancer) and chrX:135287187 (Coding)  in H2347 female cell line. Only one 

allele is active. 

 

Figure 11 demonstrate detection of Paternal Imprinting of PEG3 in H1975 cell line, its enhancer 
SNVs chr19:56765618 is marked by H3K4me3 and H3K27Ac and its coding variant is are detected 

in exon number 9 at chr19: 56814572, chr19: 56815602 and chr19: 56816135. Even though 

located on autosome, this genes also shows imprinting effects. 



Autosome could also exhibit allele specific expression by imprinting in the wild type 

contexts. Similar to the X-activation, only one of these alleles would be active. One of the well-

known imprinted genes is the paternally imprinted PEG3, encoded a zinc protein family 

transcriptional factor, its imbalance expression was detected in H1975 cell line and shown in Figure 

11. 

These cases, if detected, would provide solid evidence that functional regulatory elements 

could be identified in the proposed manner. By further excluding the natively imprinted genes, I 

assumed that genes with allele imbalance expression could also be explained by regulatory elements 

with somatic regulatory SNVs as one of the candidates. I inspected each of the cases and found 

some intriguing SNV, which might directly influenced oncogenic development in their respective 

cell lines. Two of these were the KMT2C and MAP2K3 genes, which will be exemplified in the 

next section.  

Potential Functional Relevance of Regulatory SNVs in imbalanced genes 
The first example is KMT2C. KMT2C encodes lysine methyltransferase 2C which main 

function is the methylation of Lysine 4 of Histone 3. Disruption of this gene had been documented 

as oncogenic (Dou 2015). I detected imbalance of this gene in 15 out of the 23 cell lines, figure 12 

shows the visualization in H1975 cell line. It is well known that histone modifications by this 

protein are important factors of epigenetic control in many genes in various cellular circumstances. 

Knock-down of genes in this family were reported to have resulted in changes in methylation level, 

attenuated growth in cell lines (Changcun Guo 2013) and deletion of KMT2C/D were reported to 

had a more favorable outcomes in pancreatic ductal adenocarcinoma (Joshua BN Dawkins 2016). 

Another example was MAP2K3. RAS pathway is one of the most recurrently impaired 

pathways in lung adenocarcinomas. The function of this pathway is related to a broad biological 

events and activation of this pathway is mediated by many factors. One of the factors is active form 

of MAP2K3, a member of kinase family, which is activated during stressful or mitogenic events 

(NCBI 2017). From analysis of 23 cell lines, I detected 15 cell line with allele imbalance expression 

of this gene. Figure 13 shows imbalance expression of this gene in H322 cell line. This result 

implied that aberrant accumulation of the MAP2K3 invoked by impaired transcriptional regulation 

might trigger the over activation of RAS pathway. However, in MAP2K3, discrepancies were 

encountered in both potential regulatory SNVs and transcripts SNPs/SNVs. For the regulatory 

SNPs/SNVs, a portion of assumed inactivated variant was left over in ChIP-seq dataset, while most 

the transcripts’ un-transcribed allele were not expressed. In one of the transcript SNPs/SNVs, the 

allele imbalance expression was not observed, even though others SNPs/SNVs, which assumed to 

be on the same transcript were all exhibit allele imbalance expression. These finding raised my 

concern that conclusion regarding SNPs/SNVs allele configuration could not be correctly made 

without implementation of SNPs/SNVs phasing and these mistake could lead to misinterpretation of 

the results.  



 

Figure 12 shows allele imbalance expression in KMT2C in H1975. The regulatory SNVs were 3 
insertion, defined as enhancer by H3K4me1 marker at chr7: 152402604, chr7: 152402626 and 

chr7: 152402630. Multiple coding SNPs/SNVs were detected, shown here are exon18’s 

chr7:152229936 and chr7: 152229941 and chr7: 152273771 on exon7. 

 

Figure 13 shows allele imbalance expression in MAP2K3 in H332 cell line, the relation between the 

regulatory SNVs and Coding SNPs/SNVs cannot be fitted into diploid model. The regulatory SNVs 

were marked by H3K27Ac at chr17: 21287464- 21287465 and the transcripts were identified by 16 
coding SNPs/SNVs shown here are SNPs/SNVs in exon5 at chr17:21300875, chr17: 21300880, 

chr17: 21300898, chr17: 21300945, chr17: 21300954 and chr17: 21300978. 



 Indeed, in all of the above examples, every potential candidate's were not selected from 

their somatic mutation in coding regions and these candidates were not known before. I considered 

that others genes might also are important to the cancer development even though their 

involvements were not yet documented. To further explore the function of a single regulatory SNV 

and provide answer to discrepancies in MAP2K3 case, I planned to directly associate the regulatory 

SNVs to the transcripts by mean of phasing. 

Phase Block Construction and Phasing of SNPs/SNVs 
I attempted to obtain the phasing information as the essential information for associating 

regulatory SNVs to their regulating transcripts. I considered that, with the phasing information, 

identification of functional relevant regulatory SNVs would be firstly enabled. Using the indexing 

and barcoding technologies, the 10x GemCode system is able to recover these phasing information. 

However, its default pipeline only provides the phasing information assuming the diploid genome. 

Indeed, the analysis for the cancer genome is not supported in its original publication; therefore, I 

intend to circumvent this problem by developing new pipeline, which enables the assembly of the 

phasing information from the molecular indexes (tagged with “MI”). These molecular indexes are 

the collection of the variants, which were automatically constructed from the reads with the same 

barcodes or the group of barcodes, which were determined by the LongRanger software. MIs are 

supposed to retain information representing the original high molecular weight DNAs, whose 

sequences should be originating from the adjacent genomic regions. Therefore, by further careful 

inspection of those MIs would give clues for improving the default LongRanger results, particularly 

for the presumed polypoid genomes.  

 The methods I propose are based on the exhaustive approach, in merging multiple 

molecular indexes. I examined whether if the molecular indexes were mutually consistent, and 

discrepant in regards to their member SNPs/SNVs. If the overlapped SNPs/SNVs position of any 

pair of molecular indexes all held the same variants, those pair of molecular indexes would be 

considered compatible. If any overlapped SNPs/SNVs held different variants, the pair would be 

considered incompatible. The molecular indexes without any overlapping SNPs/SNVs would not be 

considered 

I created the working database for each cell line by listing all of the SNPs/SNVs detected in 

the whole genome sequencing. I retrieved the molecular index(es), which were associated with each 

of the SNPs/SNVs from the output of LongRanger (tag “MI”). Only SNPs/SNVs from 10x 

GemCode read with mapping quality over 20 and base quality, if applicable, over 20 were included. 

For each SNPs/SNVs, I assembled the associated molecular indexes into a particular 

haplotype. The molecular index having the largest number of SNPs/SNVs was chosen as a starting 

point. The starting molecular index was merged with all of the available compatible molecular 

indexes. This finished product was termed at the “haplotype”. Other overlapping but incompatible 

molecular indexes were further used as starting point for next “haplotype”. This step of phasing was 

repeated until every available molecular index was processed and every possible “haplotype” was 

considered in an exhaustive manner. (see Figure 14 for graphic explanation) 



 

Figure 14 Phasing scheme: greedy merging and extending the molecular indexes if the SNPs/SNVs 
are compatible, considered new haplotype otherwise. Each “haplotype” was exhaustively checked 

against every possible overlapped Molecular indexes. 

By following the method as outlined above, I obtained a collection of the “haplotypes”, 

which I termed as the “phased block”. These “phase blocks” were the genomic partitions spanning a 

certain region, anchored by the SNPs/SNVs . Each individual haplotype holds a list of nucleotides 

that are linked together by the “compatible” molecular indexes. One “phase block” could hold any 

number of “haplotype” as long as the physical connections were supported by molecular indexes. 

(see Figure 15 for the graphical scheme) 

Due to the randomness in the original barcoding, it was possible that two adjacent 

SNPs/SNVs would not share the same molecular index and do not result in the same haplotype in 

the above process. Indeed, this was true for many cases, especially in the lowly covered regions. 

Practically, these cases could be identified as the case where the “phase block” contained multiple, 

short and isolated “haplotypes”. These short and isolated associations would not be particularly 

useful in the phasing of regulatory SNVs the later analysis. Therefore, I attempted to solve this 

problem by merging the short “haplotypes” together with each other to create a more complete 

“phase block”. (Figure 15, Right) 

This second merging was done internally for a given one “Phase Block” by greedy 

approach. I first determined which genomic positions are missing from each haplotypes by 

comparing the region covered by “Haplotypes” and “Phase Block”. Then for the haplotype with 

fewest missing position, greedily look for the most similar haplotypes that could fill those gap. 

Similarity for any pair of haplotypes with determined by number of compatible SNPs/SNVs 

subtracted by number of un-compatible SNPs/SNVs. Haplotypes that were considered in this step 



must all be the member of the same “Phase Block”  This process would then done exhaustively 

until every missing positions were filled. (Figure 16 and Figure15 Right to Center) 

 

Figure 15 Relations of component in phasing. Left).10x GemCode molecular index. Center). Phase 

Block consisting of 2 Haplotypes. Right). Phasing Block with multiple, short and isolated 
Haplotype. 

The relations between the SNPs/SNVs were determined by examining co-localization of the 

SNPs/SNVs in the finally merged haplotypes (Figure 15 Center). The SNPs/SNVs on the same 

haplotype were treated as cis-related. Relations of SNPs/SNVs from different phased block were 

unknown. 

Figure 16 shows filling of the haplotypes with missing position into complete ones.  



Table 9 details the statistics of the phase block. Majority of the phase block were diploid 

(Table 9, Median, also see Figure 24, Figure 25). The aneuploidy nature of cancer genome cell lines 

were shown, on average, approximately 40% (2,744 from 6,975) of the phase block contained more 

than two haplotypes. The maximum number of haplotypes was 154. Given such a high number, I 

was concerned that many might be errors, which were derived from either the flaw of developed 

phasing strategy or error in input data. They include: sequencing errors, SNPs call errors or 

barcoding errors in 10x GemCode. Extremely high number of haplotype were few, 2.8% for >10 

(Table14 and Table 15) and 0.4% for >20 (Data not shown). Therefore, I used all the constructed 

phase block in further analysis, assuming that the contributions from possible errors were minor. 

Another important characteristic of the phase blocks is the length of region of the genome 

covered by them. “Length” of the phase block was defined as the distance between the most 5' 

SNPs/SNVs and the most 3' SNPs/SNVs member of the block. In many paper, the phasing quality 

is measured as the N50, defined the genomic distance where a half of the SNPs/SNVs are phased by 

shorter than this given length. This variable is common used and provided a good scale to compare 

the performances of different benchmark tests. However, I focus on a relation between pairs (or 

more) of SNPs/SNVs, not the region in the genome itself, I felt that the length of the phase block is 

a better indicator to access the performance. Table 9 shows details on phase blocks length, and 

number of SNPs/SNVs embedded within them, on average the phase blocks were 50 kilobases long 

and contained 13 SNPs/SNVs (with maximum of 989 kilobases in length with 496 SNPs/SNVs.) 

To check reliability of utilizing length, I examine the possibility that “long” phase blocks 

might be deceiving and contain few, but far away SNPs/SNVs which might came from error 

decision in my phasing strategy. To look for those dubious cases, the relation between length and 

number of SNPs/SNVs were plotted and inspected (Figure 17). I found good correlation between 

them (R2=0.76 by least square method, see Table 9) and concluded that long phase blocks are 

mostly informative.  

Figure 17 shows a graph of number of 

SNPs/SNVs (x axis) and phase blocks' length (y 

axis). R2 = 0.76 calculated by least square 

method. 

 

 

 

 

 

 

 

 



 

 

Table 9 shows phase block characteristic, including phase blocks' haploid genomic length, number 
of member SNPs/SNVs and number of detected haplotypes. Phase block genomic Length is 

calculated by the most 3' SNPs/SNVs position  subtract by the most 5' SNPs/SNVs position, 

calculation was done on only 1 ploid. 

. 

Cell 

lines 

Phase Blocks' Length # of SNPs/SNVs in Phase 

Block 

# of Haplotypes in Phase 

Block 

Max Average Median Max Average Median Max Average Median 

A427 1,194,537 65,754 23,338 472 16 4 64 3.56 2 

A549 829,372 35,012 11,694 311 10 3 44 2.94 2 

ABC-1 1,198,524 53,875 20,988 608 13 3 103 3.47 2 

H322 1,138,518 53,459 18,296 387 14 3 43 3.41 2 

H1299 848,580 43,843 18,352 690 12 4 98 3.18 2 

H1648 1,052,406 53,067 17,726 638 15 4 100 3.40 2 

H1650 1,227,114 38,179 13,549 396 11 3 56 2.97 2 

H1703 755,716 53,745 21,890 695 14 4 112 3.49 2 

H1819 745,916 46,591 17,492 441 14 4 44 3.38 2 

H1975 1,025,195 38,330 12,983 573 12 4 94 3.03 2 

H2126 950,576 64,867 25,444 595 15 4 134 3.46 2 

H2228 1,427,558 67,865 24,282 518 16 4 55 3.46 2 

H2347 1,300,851 55,205 20,739 481 15 4 64 3.52 2 

II-18 608,739 35,312 12,450 449 11 4 78 3.17 2 

LC2ad 1,304,146 72,936 27,677 620 17 4 106 3.53 2 

PC-9 945,733 50,160 22,921 372 13 4 32 3.05 2 

PC-14 383,302 22,036 8,343 294 5 2 40 2.77 2 

RERF-

LC-Ad1 

948,045 53,509 19,925 472 15 4 69 3.47 2 

RERF-

LC-Ad2 

997,249 55,219 20,673 335 14 4 39 3.35 2 

RERF-

LC-KJ 

798,407 45,667 19,387 692 13 4 154 3.35 2 

RERF-

LC-MS 

1,208,661 54,802 21,687 506 12 4 61 3.19 2 

VMRC-

LCD 

987,944 47,138 18,998 499 13 4 95 3.39 2 

RERF-

LC-OK 

876,013 46,425 19,036 368 13 4 55 3.26 2 

Average 989,265 50,130 19,038 496 13 4 76 3.29 2 



Phase 

Block 

Length 

H1975 H2347 RERF-

LC-Ad1 

RERF-

LC-KJ 

H1648 RERF-

LC-OK 

H2228 VMRC-

LCD 

RERF-

LC-Ad2 

H1819 H1299 H1703 Average 

0-25k 5,668 4,959 4,933 4,751 4,757 4,369 3,984 4,334 4,073 4,241 4,051 3,670 3,836 

25k-50k 1,426 1,304 1,379 1,392 1,213 1,323 1,023 1,257 1,087 1,149 1,236 1,135 1,053 

50k-75k 774 855 785 780 717 689 757 712 686 633 622 659 614 

75k-100k 478 573 542 503 448 455 467 431 445 394 383 384 382 

100k-125k 292 364 371 340 300 282 323 297 297 316 273 279 263 

125k-150k 204 281 275 227 213 218 265 189 228 193 169 212 189 

150k-175k 146 207 213 148 160 149 211 165 170 149 136 140 139 

175k-200k 110 137 149 114 148 112 147 105 115 90 99 110 103 

200k-225k 63 119 121 78 103 88 116 80 99 87 79 83 81 

225k-250k 46 100 97 65 82 57 96 55 68 66 55 65 62 

250k-275k 41 84 69 60 52 49 81 51 81 55 33 69 51 

275k-300k 37 58 60 39 45 31 69 33 53 35 33 47 39 

300k-325k 20 51 47 20 43 23 53 35 39 21 27 32 30 

325k-350k 22 46 35 23 34 27 54 24 37 22 13 36 26 

>350k 55 167 153 80 182 81 250 91 141 86 53 115 114 

Total 9,382 9,305 9,229 8,620 8,497 7,953 7,896 7,859 7,619 7,537 7,262 7,036 6,981 

Table 10 shows number of phase block distribution by length of cell line with above average block length 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18 shows graph of phase block 
distribution by length of cell line with 
above average block length 



Phase Block 

Length 

Average A427 LC2ad II-18 A549 ABC-1 PC-9 RERF-

LC-MS 

H2126 H322 H1650 PC-14 

0-25k 3,836 3,549 3,268 4,145 4,009 3,392 3,287 2,956 2,680 2,968 3,159 1,021 

25k-50k 1,053 913 876 991 980 999 1,155 802 768 825 781 195 

50k-75k 614 633 651 530 522 565 570 562 522 441 390 68 

75k-100k 382 410 419 299 279 338 377 330 312 255 218 56 

100k-125k 263 326 279 199 171 259 241 235 231 180 167 24 

125k-150k 189 196 231 140 123 173 183 171 175 163 110 10 

150k-175k 139 168 163 108 71 152 123 119 132 98 73 4 

175k-200k 103 106 161 53 66 117 90 104 98 77 46 9 

200k-225k 81 123 109 39 49 76 77 76 91 59 36 2 

225k-250k 62 74 99 39 30 58 70 54 65 55 31 1 

250k-275k 51 83 65 25 23 50 39 44 59 32 21 2 

275k-300k 39 59 54 17 19 36 28 39 41 40 17 2 

300k-325k 30 54 52 11 13 28 28 30 25 35 9 0 

325k-350k 26 39 47 9 9 32 16 14 22 22 8 0 

>350k 114 222 259 32 34 119 75 95 163 117 45 1 

Total 6,981 6,955 6,733 6,637 6,398 6,394 6,359 5,631 5,384 5,367 5,111 1,395 

Table 11 shows number of phase block distribution by length of cell line with below average block length 

 

 

 

 

 

 

 

 

 

 

 

Figure 19 shows graph of phase block 
distribution by length of cell line with 
below average block length 



Number of  

SNPs/SNV

s 

H1975 H2347 RERF-

LC-Ad1 

RERF-

LC-KJ 

H1648 RERF-

LC-OK 

H2228 VMRC-

LCD 

RERF-

LC-Ad2 

H1819 H1299 H1703 Average 

0-10 6,977 6,586 6,469 6,152 6,202 5,790 5,480 5,707 5,472 5,436 5,368 5,127 5,090 

11-20 1,030 1,037 1,053 971 876 884 907 833 810 800 787 685 734 

21-30 443 509 494 503 397 413 430 424 393 382 381 356 350 

31-40 293 291 326 307 261 263 248 236 227 233 237 212 213 

41-50 191 188 224 176 172 191 192 162 166 185 117 149 146 

51-60 126 155 142 116 116 82 123 122 117 110 94 127 102 

61-70 73 102 120 99 97 74 109 92 105 78 75 69 74 

71-80 43 95 76 67 68 46 72 59 66 71 49 54 56 

81-90 45 67 57 51 55 45 57 48 54 40 37 50 42 

91-100 36 60 63 29 42 41 51 40 36 40 29 41 35 

>100 125 215 205 149 211 124 227 136 173 162 88 166 138 

Total 9,382 9,305 9,229 8,620 8,497 7,953 7,896 7,859 7,619 7,537 7,262 7,036 6,981 

Table 12 shows number of phase block distribution by number of member SNPs/SNVs of cell line with above average member SNPs/SNVs   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20 shows graph of phase block 
distribution by number of member 
SNPs/SNVs of cell line with above average 
member SNPs/SNVs   



Number of  

SNPs/SNVs 

Average A427 LC2ad II-18 A549 ABC-1 PC-9 RERF-

LC-MS 

H2126 H322 H1650 PC-14 

0-10 5,090 4,863 4,708 5,058 5,001 4,760 4,667 4,179 3,838 4,003 3,959 1,262 

11-20 734 736 713 660 654 601 658 576 584 484 481 68 

21-30 350 379 356 287 248 288 301 270 281 261 221 32 

31-40 213 240 227 189 134 179 201 182 170 138 106 9 

41-50 146 153 147 145 110 129 129 112 113 97 99 11 

51-60 102 130 129 74 64 127 96 79 81 77 54 2 

61-70 74 72 91 45 37 66 62 68 68 58 38 2 

71-80 56 75 59 48 40 54 62 43 55 40 34 5 

81-90 42 60 59 26 24 36 38 25 34 50 18 1 

91-100 35 41 32 24 17 37 29 25 28 37 27 0 

>100 138 206 212 81 69 117 116 72 132 122 74 3 

Total 6,981 6,955 6,733 6,637 6,398 6,394 6,359 5,631 5,384 5,367 5,111 1,395 

Table 13 shows number of phase block distribution by number of member SNPs/SNVs of cell line with below average member SNPs/SNVs   

 

 

 

 

 

 

 

 

 

 

 

Figure 21 shows graph of phase block 
distribution by number of member 
SNPs/SNVs of cell line with below average 
member SNPs/SNVs 



Number of  

Haplotypes 

H1975 H2347 RERF-

LC-Ad1 

RERF-

LC-KJ 

H1648 RERF-

LC-OK 

H2228 VMRC-

LCD 

RERF-

LC-Ad2 

H1819 H1299 H1703 Average 

2 6,228 5,464 5,437 5,081 5,135 4,826 4,826 4,544 4,525 4,573 4,367 4,093 4,232 

3 1,319 1,420 1,314 1,328 1,282 1,198 1,145 1,326 1,166 1,106 1,175 1,127 1,075 

4 625 689 747 718 646 649 534 649 624 534 602 560 528 

5 349 417 449 453 390 401 341 343 360 344 339 336 317 

6 227 298 326 295 256 240 245 264 233 270 214 220 210 

7 183 228 240 203 168 152 192 166 172 160 167 158 151 

8 134 189 166 128 141 105 150 138 123 133 118 126 113 

9 90 144 145 100 121 125 97 97 113 96 81 83 86 

10 63 104 100 95 90 57 67 75 70 87 62 79 66 

>10 162 345 301 216 263 196 292 246 223 228 134 252 198 

Total 9,380 9,298 9,225 8,617 8,492 7,949 7,889 7,848 7,609 7,531 7,259 7,034 6,975 

Table 14 shows number of phase block distribution by number of haplotypes of cell line with above average member number of haplotypes   

 

 

 

 

 

 

 

 

 

 

 

Figure 22 shows graph of phase block 
distribution by number of haplotypes of 
cell line with above average number of 
haplotypes 



Number of  

Haplotypes 

Average A427 LC2ad II-18 A549 ABC-1 PC-9 RERF-

LC-MS 

H2126 H322 H1650 PC-14 

2 4,232 4,074 4,063 4,078 4,318 3,727 3,939 3,377 3,184 3,290 3,300 879 

3 1,075 1,024 934 1,082 915 1,038 1,085 973 843 777 865 290 

4 528 530 475 500 429 505 459 404 404 393 349 110 

5 317 359 323 275 233 308 276 269 261 228 179 50 

6 210 229 232 170 122 180 182 187 151 154 106 24 

7 151 157 176 155 91 132 111 117 132 118 79 18 

8 113 120 113 106 79 120 76 76 95 82 73 7 

9 86 90 85 58 58 83 70 58 70 71 43 5 

10 66 85 71 63 43 77 41 43 52 56 31 4 

>10 198 282 256 144 104 218 104 123 189 191 78 8 

Total 6,975 6,950 6,728 6,631 6,392 6,388 6,343 5,627 5,381 5,360 5,103 1,395 

Table 15 shows number of phase block distribution by number of haplotypes of cell line with below average number of haplotypes 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 23 shows number of phase block 
distribution by number of haplotypes of 
cell line with below average number of 
haplotypes 



Phasing of Known Somatic Mutation  
To validate my phasing, I selected a known case in driver mutation in the EGFR coding 

region in H1975 cell line as the example (Figure24). The substitution of G to T at codon number 

2573 causing L858R mutation has been detected in various clinical non-squamous cell lung cancers, 

including lung adenocarcinoma. The tumors harboring this mutation are sensitive to anti-EGFR 

therapy, such as gefitinib. Despite rapid initial responce, many patients quickly develop drug 

resistance to the therapy. Further investigations have identified secondary mutation in the EGFR 

binding site of the drugs. A hotspot of the secondary mutation is substitution of T to C at codon 

number 2369 causing T790M mutation. I assume that, in H1975, this secondary mutation should 

present on the same allele with the primary L858R mutation. Figure 24 shows these two somatic 

mutations detected on the same allele. Others neighboring variant spanning 132kb genomic regions 

were also phased. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 24 shows Phase Blocks and SNVs phasing of known T790M (Light Brown) and L858R (Dark 
Brown) EGFR driver mutations in H1975 cell line.consisting of 22 SNPs/SNVs with 132kb length 

In addition to small somatic mutation, I also detected larger genomic aberrations such as 

copy number alteration. Copy number alterations in the ERBB2 genes is one example. It has been 

reported that amplification of this gene is frequently identified in lung adenocarcinoma and copy 

number alternations of this gene has been proposed as one of the driver mutations. In Figure25 

extending from original diploid phasing, I identified multiple haplotypes in ERBB2 coding region 

in H1975 cell line along with other smaller somatic mutations. 
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 Phasing of Genes with detected Allele Imbalance Expression 
 All of the previous examples of allelic imbalance genes, mediated by X-inactivation, 

imprinting and potential regulatory SNVs were speculated without direct evidence of their relation 

between regulatory elements and the transcripts, In every connection diploid genome was assumed, 

which is not always the case in cancer cell lines. Indeed the allele imbalance profile of MAP2K3 in 

H322 cell line indicated that this assumption did not hold true and further evaluations of 

SNPs/SNVs phasing were needed.  

 To this end, I merged the phasing information in “Phase Blocks” constructed earlier with 

the list of SNPs/SNVs in genes with allele imbalance expression, each gene was considered 

“Phased” if at least one regulatory SNV and one coding SNPs/SNVs were presented in the same 

phase block. 

 Table 16 shows the number of successfully phased genes with RefSeq annotation and the 

SNPs/SNVs within them. On average 59 from 265 (22%) candidates genes were phased, and those 

genes covered 58 out of 516 (11%) regulatory SNVs candidates and 128 out of 582 (23%) their 

regulating candidate transcripts. The coverages of whole exome with regulome bait, which I used in 

the 10x GemCode phasing did not cover the genes of interested, especially in regulatory elements. 

Among those regulatory elements 83% (423 from 516) remained unphased. Nevertheless, a total of 

1,146 allele imbalance expression genes, in which 1,071 regulatory SNVs and 2,269 transcripts 

SNPs/SNVs were phased, were detected from 2. Cell lines taken together. I considered that a fairly 

adequate fraction of genes were phased and deserved the further analysis as the first dataset for this 

purpose.  

Figure 26, exemplifies an allele imbalance of gene CDKN1A detected in LC2ad. CDKN1A 

is an important regulator of the cell cycle regulation and have a well-reported role in carcinogenesis. 

In this case, the allele imbalance in the transcriptome showed “Leftover” allele “A” (19 tags, 16%), 

too large to be error but still much smaller than genomic portion (16% vs 33%). The ChIP-seq 

variant tags suggested the “total” imbalance without any leftover allele. This complicated the 

interpretation of the functional potential of the regulatory SNVs. In the case, further haplotype 

configuration was necessary to draw a sound conclusion. With the haplotype configurations 

acquired from my phasing analysis, it became clear that in this region there were at least triploid 

haplotype, in which the regulatory variant “A” was in cis-configuration with both coding variant 

“C” and “A” on separate haplotype. This illuminated the reason behind the “Leftover” in 

transcriptome but a “total” imbalance in ChIP-seq and supported the conclusion that variant “A” in 

this position had a transcriptional activating effects. 



 

Figure 25shows 4 haplotypes of ERBB2 gene detected by phasing SNPs/SNVs in coding region 

n.  



 

 

 

Cell Line Pre-Phasing Successfully Phased Genes Unphased Genes 

RefSe
q Gene 

Regulatory 
SNVs 

Coding 
SNPs/SNVs 

RefSeq 
Gene 

Regulatory 
SNVs 

Coding 
SNPs/SNVs 

RefSeq 
Gene 

Regulatory 
SNVs 

Coding 
SNPs/SNVs 

A427 221 457 437 70 74 110 151 362 77 

A549 181 242 412 40 36 50 141 180 88 

ABC-1 141 299 304 39 47 102 102 236 71 

H322 141 357 342 32 27 86 109 310 74 

H1299 126 143 329 29 31 80 97 98 72 

H1648 1,341 1,910 2,647 112 95 199 1,229 1610 1674 

H1650 132 245 275 31 31 56 101 200 106 

H1703 130 209 263 28 36 104 102 162 45 

H1819 195 822 677 49 52 159 146 749 245 

H1975 354 697 774 85 75 134 269 568 165 

H2126 171 266 356 39 27 46 132 215 133 

H2228 327 558 782 91 84 157 236 439 112 

H2347 377 726 829 137 136 329 240 544 151 

II-18 193 392 393 39 40 101 154 324 77 

LC2ad 139 208 253 42 31 61 97 163 57 

PC-9 230 481 584 51 44 126 179 409 128 

PC-14 4 4 5 0 0 0 4 4 5 

RERF-LC-

Ad1 

318 616 775 71 77 251 247 496 147 

RERF-LC-

Ad2 

304 579 641 80 81 152 224 456 125 

RERF-LC-KJ 309 704 620 71 72 128 238 585 112 

RERF-LC-MS 175 220 331 50 39 93 125 171 60 

VMRC-LCD 249 810 556 68 80 150 181 682 142 

RERF-LC-OK 344 924 793 98 109 263 246 763 166 

Average 265 516 582 59 58 128 207 423 175 

Table 16 shows number of successfully phased and unphased allele imbalance genes 



 

Figure 26 shows phasing of allele imbalance expression positive gene CDKN1A in LC2ad. The 
regulatory SNVs in marked by H3K4me1 at chr6:36754089 and Coding SNP/SNV is found at 

chr6:36684194. The variant “A” in regulatory SNVs was found to be in cis-configuration with both 

coding variants on the different haplotypes. Explaining the incomplete imbalance found in 
transcriptomes, supporting the functional relevance of the regulatory SNVs. 

In Table 17, I summarized the list of allele imbalance expression genes with phasing 

information, which were detected in more than 3 cell lines. CROCC was the most frequent gene. 

This gene encodes Rootletin a protein crucial in centromere cohesion although its role in cancer 

development is still unknown. One of the most interesting genes in this list was BRCA1, a tumor 

suppressor gene. This gene is one of the most important genes in breast cancers. Its mutation was 

also reported in Lung adenocarcinoma cell lines (Table 2). In my data set the mutation were found 

in A549, RERF-LC-Ad2 and RERF-LC-Ad1 cell lines. 

The relevance of the recurring genes should be interpreted in a careful manner. Further 

independent validation analysis may be need regarding the possible technical errors, such as bait 

coverage, SNPs/SNVs density and the presence of transcript SNPs/SNVs. 

During the allele imbalance analysis, I encountered the problem of polyploidy, which was 

exemplified above in the cases of the CDKN1A gene in LC2ad. Therefore, I considered that 

phasing should be the most direct approach in solving the problem. The case of H322’s MAP2K3 

(Figure 13) provided me with a good starting point to consider this approach. By following the 

same approach as I employed in CDKN1A gene, I retrieved the haplotypes from the phase block 

(see Figure 27 for full phase block). Due to a large number of the corresponding SNPs/SNVs, I 

removed any irrelevant SNPs/SNVs from the constructed haplotypes retaining only the regulatory 

SNVs and transcripts of interested. (see Figure 28 ). Using allele imbalance expression, I examined 

on which transcripts were active and if those activation were concordant with the detected ChIP-seq 



variants. For the coding SNPs/SNVs, which expression profile could not be consistently explained 

by the diploid model (Figure 28, Top, in Black Box). However this could be explained by also 

considering the phasing information. The unique localization of the variants in the haplotypes were 

revealed from there. The regulatory SNVs “GG” was first thought to be more active than “AA” 

from allele-bias regulatory activity alone (genomic 78% tags vs H3K27Ac 90% tags), and after 

considering the haplotypes, I realized that many of the “GG” variants were also on the same alleles 

with the inactive transcripts. For the “GG” variants to be detected as “active”, the frequency 

transcripts from inactive allele are required to be low, rendering the imbalance detectable for the 

transcripts. In many coding SNPs/SNVs in transcriptome, however, this is very unlikely. Frequency 

of all of the coding SNPs/SNVs in the whole genome sequencing data suggested a 50% 

heterozygous frequency for this gene (Figure 13). While functional relevance of “GG” over “AA” 

allele may be present, the imbalance observed in ChIP-seq data was more likely to be derived from 

a much stronger, undetected mechanism.  

Taken together, I concluded that phasing should provide a critical and unique piece of 

information for precise interpretations of the cancer genome in many aspects, including functional 

relevance of single nucleotide substitutions, copy number alterations and more complex polyploidy. 

In cancer genome analysis, genomic regions or genes where the polyploidy and copy number 

aberrations take place may be more likely to have functional relevance. As phasing technology is 

rapidly advancing, I believe that incorporating phasing information would become the standard 

practice in future sequencing pipeline. 

  



 

Table 17 shows list of phased allele imbalance expression genes with more than 3 supporting cell 
lines. In total there were 35 RefSeq transcript and 25 Gene Symbol. 

RefSeq GeneSymbol # Cell 

Lines 

# Coding 

SNPs/SNVs 

# Regulatory 

SNVs 

NM_014675 CROCC 10 26 43 

NM_001128223 ZNF717 7 180 498 

NM_001256139 CAPG 6 5 4 

NM_002180 IGHMBP2 6 13 10 

NM_001128592 PSMG4 5 4 8 

NM_201380 PLEC 5 31 12 

NM_001178090 ZNF454 4 2 19 

NM_022350 ERAP2 4 6 6 

NM_001008892 NIPA2 4 4 5 

NM_001008894 NIPA2 4 4 5 

NM_001008860 NIPA2 4 4 5 

NM_030922 NIPA2 4 4 5 

NM_001184888 NIPA2 4 4 5 

NM_001184889 NIPA2 4 4 5 

NM_001130140 ERAP2 4 6 6 

NM_001178089 ZNF454 4 2 19 

NM_182594 ZNF454 4 2 19 

NM_001047 SRD5A1 3 4 11 

NM_001031665 ZNF816 3 7 11 

NM_001202456 ZNF816 3 7 11 

NM_001202457 ZNF816 3 7 11 

NM_002610 PDK1 3 2 6 

NM_005742 PDIA6 3 3 5 

NM_001142645 TMEM194B 3 2 3 

NM_015311 OBSL1 3 10 2 

NM_018260 ZNF701 3 5 12 

NM_152559 WBSCR27 3 3 5 

NM_001135924 VWDE 3 18 4 

NM_001163391 ZSCAN12 3 4 3 

NM_181453 GCC2 3 2 3 

NM_005649 ZNF354A 3 3 14 

NM_007297 BRCA1 3 7 1 

NM_002568 PABPC1 3 13 15 

NM_015914 TXNDC11 3 3 9 

NM_001134647 AFAP1 3 6 11 

 

 



 

Figure 27 shows a full phase block of H322 containing MAP2K3 gene. The Block start from chr17:21261064 and end at chr17:21349068, the length of the phase block was 88kb with 161 SNVs and 12 
Haplotypes. 



 

Figure 28 shows phasing and allele imbalance analysis of H322's MAP2K3 gene. The regulatory 

SNVs (chr17: 21287464- 21287465) and coding SNPs/SNVs in exon5 (chr17:21300875, chr17: 

21300880, chr17: 21300898, chr17: 21300945, chr17: 21300954 and chr17: 21300978) as the 
SNPs/SNVs of interested. 2). Haplotypes configuration were constructed from phase block with only 

SNPs/SNVs of interested and transcriptional statuses were decieded. 3). Final regulatory SNVs-

transcripts configurations and their effects were completed. 

SNPs/SNVs outside of regulatory regions and 

current gene’s coding regions were omitted 

1

2

3



 

Conclusion and Future Plans 
 In this study, I have attempted to elucidate the function of the ubiquitous but unknown 

somatic mutations in the regulatory region of the cancer genome, in hope of gaining new insight in 

both the sophisticate process of carcinogenesis, and the even complex gene regulation systems. 

These insights would improve our understanding of cancer genomics, which in turn would provide 

us with better tools in cancer preventions and treatments. 

 By performing allele imbalance expression analysis by utilizing variant frequency in multi-

omics dataset covering genome, transcriptome and regulatory elements and the no less importantly 

adaptation of the most recent synthetic and physical long read sequencing, in study of 23 lung 

adenocarcinoma cell lines. I identified, on average, 516 potential functional regulatory SNVs in 256 

genes per cell line, and 58 of these SNVs were further delineated by the Haplotypes phasing. These 

genes included both previously established oncogenic or tumor suppressor genes such as KMT2C, 

CDKN1A or BRCA1 and novel potentially functional genes such as MAP2K3. 

 The functional regulatory variants detected in this study were only a small fraction of 

perhaps larger and more complex system of epigenetic regulations and its outputs. I believe with 

increasing number of new findings from different approaches combined, the more comprehensive 

view of such fabricated molecular regulatory network will be revealed. I believe that this work, 

although small, has paved the first step towards that goal. 

 In addition to the results, I believe that the strategies and methods developed in this study, 

especially for those used for the polypoid haplotype phasing from synthetic long read sequencing 

and allele imbalance expression analysis will help researchers to utilize those latest omics analytical 

methods in various circumstances. However, as present methods are new and are still lack of 

supporting evidences generally, fine-tuning and improvement would be necessary. The phasing 

schemes, in particular, need to be evaluated by physical long read method. 

 Nevertheless, I believe that this study had provided a solid groundwork for analyzing 

regulatory elements, starting from data collections, methodological development and finally to 

biological interpretations; thus would enable us further explore the mysteries of aberrant gene 

expression regulations in cancers. 
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