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On the Coefficients of Multiple Walsh-Fourier Series

with Small Gaps

By Bhikha Lila Ghodadra

Abstract. For a Lebesgue integrable complex-valued function f
defined over the m-dimensional torus I

m := [0, 1)m, let f̂(n) denote the
multiple Walsh-Fourier coefficient of f , where n =

(
n(1), . . . , n(m)

)
∈

(Z+)m, Z
+ = N ∪ {0}. The Riemann-Lebesgue lemma shows that

f̂(n) = o(1) as |n| → ∞ for any f ∈ L1(Im). However, it is known
that, these Fourier coefficients can tend to zero as slowly as we wish.
The definitive result is due to Ghodadra Bhikha Lila for functions
of bounded p-variation. We shall prove that this is just a matter
only of local bounded p-variation for functions with multiple Walsh-
Fourier series lacunary with small gaps. Our results, as in the case
of trigonometric Fourier series due to J.R. Patadia and R.G. Vyas,
illustrate the interconnection between ‘localness’ of the hypothesis and
‘type of lacunarity’ and allow us to interpolate the results.

1. Introduction

In 1949, N. J. Fine [3] proved using the second mean value theorem that

if f is of bounded variation on [0, 1] and if f̂(n) denotes its (one dimensional)

Walsh-Fourier coefficient, then f̂(n) = O( 1
n), for all n �= 0. In [11] we have

studied the order of magnitude of Walsh-Fourier coefficients of functions of

various classes of generalized bounded variation and extended the result of

Fine to these classes. Further, in [6] we have studied the order of magnitude

of Walsh-Fourier coefficients of functions of various classes of generalized

bounded variation and given lacunary analogues of our results in [11]. For a

function of two variables several definitions of bounded variation are given

and various properties are studied (see, for example, [12, 1]). In 2002 F.

Móricz [13] studied the order of magnitude of double Fourier coefficients

with the help of Riemann-Stieltjes integral of functions of two variables
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and in 2004 V. Fülöp and F. Móricz [4] studied the order of magnitude of

multiple Fourier coefficients of functions of bounded variation in the sense of

Vitali and Hardy (see [2]) in a straightforward way without using Riemann-

Stieltjes integral. In [8], we have defined the notion of bounded p-variation

(p ≥ 1) for a function from a rectangle [a1, b1] × · · · × [am, bm] to C and

studied the order of magnitude of trigonometric Fourier coefficients of such

functions from [0, 2π]m to C. We have also studied the order of magnitude

of trigonometric Fourier coefficients of functions from [0, 2π]m to C having

lacunary Fourier series with certain gaps and are of bounded p-variation

only locally [9]. Then in [10] we have studied the order of magnitude of

Walsh-Fourier coefficients for a function of bounded p-variation from [0, 1]m

to C having non-lacunary multiple Walsh-Fourier series. Here we study the

order of magnitude of multiple Walsh-Fourier coefficients of functions from

[0, 1]m to C which are of bounded p-variation locally and having lacunary

multiple Walsh-Fourier series having small gaps. Our results, as in the case

of trigonometric Fourier series [14] and for a single Walsh and Vilenkin-

Fourier series [6, 7], illustrate the interconnection between ‘localness’ of the

hypothesis and ‘type of lacunarity’ and allow us to interpolate the results.

Thus our results of this paper generalizes and gives lacunary analogue of our

earlier results [10, Theorems 3 and 4]. For n = 1, our new results give our

earlier results [6]. Also, for p = 1, our results give the lacunary analogue for

multiple Walsh-Fourier coefficients of the results of Móricz [13] and Fülöp

and Móricz [4], except possibly for the exact constant in their case.

2. Notations and Definitions

In [8] we have defined two concepts of bounded p-variation for functions

of several variables that generalize the definitions of bounded variation for

functions of several variables given by Vitali and by Hardy. For the sake of

completeness, here we rewrite those definitions.

Let R be the rectangle R = [a1, b1]×· · ·×[am, bm]. By a (finite) partition

P of R we mean the set P = {R1, . . . , Rk}, in which Ri’s are pairwise disjoint

(no two have common interior) subrectangles of R having their sides (faces)

parallel to the standard coordinate hyperplanes and whose union is R. Let

f = f(x1, . . . , xm) be a real or complex-valued function on R. For any

subrectangle R′ = [α1, β1] × · · · × [αm, βm] of R with ai ≤ αi < βi ≤ bi for
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all i = 1, 2, . . . ,m, we define ∆f(R′) as follows: when m = 2 we put

∆f(R′) : = ∆f([α1, β1] × [α2, β2])

= f(β1, β2) − f(β1, α2) − f(α1, β2) + f(α1, α2);

for m = 3

∆f(R′) : = ∆f([α1, β1] × [α2, β2] × [α3, β3])

= [f(β1, β2, β3) − f(β1, α2, β3) − f(α1, β2, β3) + f(α1, α2, β3)]

− [f(β1, β2, α3) − f(β1, α2, α3) − f(α1, β2, α3) + f(α1, α2, α3)]

= ∆[α3,β3]∆f([α1, β1] × [α2, β2]), say;

and successively for any m ≥ 3

∆f(R′) : = ∆f([α1, β1] × · · · × [αm, βm])

= ∆[αm,βm]∆f([α1, β1] × · · · × [αm−1, βm−1]).

Definition V. For p ≥ 1 we say that f is of bounded p-variation over

R (written as f ∈ BVV
(p)(R)) if Vp(f ;R), the total p-variation of f over R,

is finite, where

Vp(f ;R) := sup

{ k∑
i=1

|∆f(Ri)|p
}1/p

,

in which the supremum is taken over all partitions {R1, . . . , Rk} of R.

Remark 1. As noted in [8], for p = 1 our Definition V is equivalent to

that Vitali (see, for example, [2], [4]). Also, the class BVV
(p)(R) contains

functions for which the m-dimensional Lebesgue integral over R fails to

exist. The following notion of bounded p-variation is motivated by this

fact.

Definition H. In case m = 2, we say that a function f = f(x1, x2)

is of bounded p-variation over R := [a1, b1] × [a2, b2], in symbol: f ∈
BVH

(p)(R), if it is in the class BVV
(p)(R) and if the marginal functions

f(x1, a2) and f(a1, x2) are of bounded p-variation on the intervals I1 :=

[a1, b1] and I2 := [a2, b2], respectively in the sense of Wiener [17].
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In case m ≥ 3, the notion of bounded p-variation over a rectangle R

can naturally be defined by the following recurrence: f ∈ BVH
(p)(R) if

f ∈ BVV
(p)(R) and each of the marginal functions f(x1, . . . , ak, . . . , xm) is

in the class BVH
(p)(R(ak)), where k = 1, . . . ,m and

R(ak) = {(x1, . . . , xk−1, xk+1, . . . , xm) ∈ R
m−1 : aj ≤ xj ≤ bj

for j = 1, . . . , k − 1, k + 1, . . . ,m}.

This definition can be equivalently reformulated as follows: f ∈ BVH
(p)(R)

if and only if f ∈ BVV
(p)(R) and for any choice of (1 ≤)j1 < · · · < jn(≤

n), 1 ≤ n < m, the function f(x1, . . . , aj1 , . . . , ajn , . . . , xm) is in the class

BVV
(p)(R(aj1 , . . . , ajn)), where

R(aj1 , . . . , ajn) := {(x�1 , . . . , x�m−n) ∈ R
m−n : aj ≤ xj ≤ bj

for j = �1, . . . , �m−n}

and {�1, . . . , �m−n} is the complementary set of {j1, . . . , jn} with respect to

{1, . . . ,m}.

Remark 2. When p = 1 our Definition H is equivalent to the definition

given by Hardy (see, for example, [2, 4]).

Let {rn}, n = 0, 1, 2, . . . , denote the class of Rademacher functions de-

fined by

r0(x) = 1 (0 ≤ x < 1/2), r0(x) = −1 (1/2 ≤ x < 1),

r0(x+ 1) = r0(x), rn(x) = r0(2
nx) (n = 1, 2, 3, . . . ).

The complete orthonormal Walsh system [16], say {ϕn}, n = 0, 1, 2, . . . , as

ordered by Paley [15], is then given by

ϕ0(x) ≡ 1, ϕn(x) = rn1(x)rn2(x) · · · rnk
(x)

if n = 2n1+2n2+···+2nk , in which n1 > n2 > · · · > nk ≥ 0. For the functions

ϕn, degϕn denotes the degree of ϕn defined by : degϕ0 = 0 and degϕn =

n1 + 1, if ϕn is represented as the product of Rademacher characters as

in preceding lines. Accordingly, for each j ∈ N we have ϕ2j−1 = rj−1 and

degϕ2j−1 = deg rj−1 = j. The degree of any real linear combination of
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finitely many elements ϕn (n = 0, 1, . . . ) (that is, a polynomial in functions

ϕn on [0, 1]) is the maximum of the degree of the elements ϕn appearing in

it.

For a periodic f = f(x1, . . . , xm) with period 1 in each variable and

Lebesgue integrable over the m-dimensional torus I
m := [0, 1)m, in symbol

f ∈ L1(Im), its formal multiple Walsh-Fourier series is given by

f(x1, . . . , xm)(2.1)

∼
∞∑

n(1)=0

· · ·
∞∑

n(m)=0

f̂
(
n(1), . . . , n(m)

)
ϕn(1)(x1) . . . ϕn(m)(xm)

where f̂
(
n(1), . . . , n(m)

)
≡ f̂(n) is the nth multiple Walsh-Fourier coefficient

(see, for example, [5]) of f defined by

f̂(n) =

∫
Im

f(x1, . . . , xm)ϕn(1)(x1) . . . ϕn(m)(xm)dx1 . . . dxm.

Given a subset E ⊂ (Z+)
m

, a function f ∈ L1(Im) is said to be E-spectral

(or, said to have spectrum E) if and only if f̂(n) = 0 for all n in (Z+)
m \E.

In what follows, we consider a set E ⊂ (Z+)
m

described in the following

way: for each j = 1, 2, . . . ,m consider sets E(j) = {n(j)
0 , n

(j)
1 , n

(j)
2 , . . . } ⊂ Z

+

with {n(j)
k }∞k=1 strictly increasing for each j and satisfying the small gap

conditions(
n

(j)
k+1 − n

(j)
k

)
≥ qj ≥ 1 (k = 1, 2, . . . ; j = 1, 2, . . . ,m);(2.2)

and then put E =
∏m

j=1 E
(j). Now ns = (n

(1)
s1 , n

(2)
s2 , . . . , n

(m)
sm ) denotes the

typical element of E. When m = 1, E will be taken to be E(1) with the

superscript in n
(1)
k ’s omitted.

3. Results

We need the following lemmas which are proved in [8].

Lemma 3. Let f ∈ BVV
(p)(R), where R = [a1, b1] × · · · × [am, bm].

Let {R1, . . . , Rk} be a partition of R. Then f ∈ BVV
(p)(Ri) for each i =

1, . . . , k, and that
k∑

i=1

(Vp(f ;Ri))
p ≤ (Vp(f ;R))p.
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Lemma 4. Let f ∈ BVH
(p)(R), where R = [a1, b1] × · · · × [am, bm].

Then the discontinuities of f are located on a countable number of (m− 1)-

dimensional hyperplanes parallel to some of the coordinate hyperplanes.

Here we prove the following theorem.

Theorem 5. Let E ⊂ (Z+)
m

be described as above and f : R
m → C

be 1-periodic in each variable. Let f ∈ BVV
(p)(I) ∩ Lp(I) (p ≥ 1), where I

is the rectangle I = [i12
−N1 , (i1 + 1)2−N1 ] × · · · × [im2−Nm , (im + 1)2−Nm ]

in which 0 ≤ ij < 2Nj and 2−Nj ≥ 1/qj for each j. If f is E-spectral and

nk = (n
(1)
k1
, . . . , n

(m)
km

) ∈ (Z+)
m

is such that n
(j)
kj

is sufficiently large for each

j, then

f̂(nk) = O


 1(∏m

j=1 n
(j)
kj

)1/p


 .(3.1)

Remark 6. This theorem gives a lacunary analogue of our earlier re-

sult [10, Theorem 3]. Since BVH
(p)(I) ⊂ BVV

(p)(I) ∩ Lp(I) in view of

Lemma 4 (see [8]), above theorem is true if we replace the assumption

“f ∈ BVV
(p)(I)∩Lp(I)” by “f ∈ BVH

(p)(I)”. In that case it gives lacunary

analogue of our earlier result [10, Theorem 4] and simultaneously Walsh

analogue of our earlier result [9].

Remark 7. Observe that n
(j)
k = k for all k and for each j =⇒ qj = 1

in (2.2) =⇒ Nj = 0 for each j in above theorem and remark =⇒ I =

[i1, i1 + 1) × · · · × [im, im + 1) ∼ I
m; and one gets corresponding results for

non-lacunary multiple Walsh-Fourier series [10, Theorem 3 and Theorem

4]. On the other hand, if the multiple Walsh-Fourier series (2.1) of an E-

spectral f ∈ L1(Im) is such that the sets E(j) satisfies more stringent small

gap conditions(
n

(j)
k+1 − n

(j)
k

)
→ ∞ as k → ∞ (j = 1, 2, . . . ,m),(3.2)

then above results hold if the rectangle I is just of positive measure and

of the form as in Theorem 5. Because if |I| > 0, by the form of I, I =

[i12
−N1 , (i1 +1)2−N1 ]×· · ·× [im2−Nm , (im+1)2−Nm ] where each Nj ∈ N can
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be taken as large as required. In view of (3.2), one gets (n
(j)
k+1 −n

(j)
k ) ≥ 2Nj

for each j and for all k ≥ k0, for a suitable positive integer k0 depending on

N1, . . . , Nm. Then adding to f(x1, . . . , xm) the multiple Walsh polynomial

k0∑
n(1)=0

· · ·
k0∑

n(m)=0

(
−f̂

(
n(1), . . . , n(m)

))
ϕn(1)(x1) . . . ϕn(m)(xm)

one gets a function g ∈ L1(Im) whose multiple Walsh-Fourier series is la-

cunary of the form (2.1) which is E-spectral with E(j) satisfying the small

gap condition (2.2) with qj = 2Nj and results are true for g. Since f and g

differ by a polynomial, results are true for f as well. Our results thus inter-

polates lacunary and non-lacunary results concerning order of magnitude

of multiple Walsh-Fourier coefficients—displaying beautiful interconnection

between types of lacunarity (as determined by qj in (2.2)) and localness

of hypothesis to be satisfied by the generic function (as determined by the

qj-dependent lengths of sides of I).

In case E(j) satisfies the gap condition (2.2) with qj ≥ 4 for each j, then

we have the following theorem.

Theorem 8. Theorem 5 holds true if the rectangle I replaced by the

rectangle J = [y1, y1 +4/q1]× · · ·× [ym, ym +4/qm] where 0 ≤ yj ≤ 1− 4/qj
(j=1,2, . . . ,m), if E(j) satisfies the gap condition

(
n

(j)
k+1 − n

(j)
k

)
≥ qj ≥ 4 (k = 1, 2, . . . ; j = 1, 2, . . . ,m).(3.3)

Remark 9. We note that Theorem 8 is better than Theorem 5 as far

as the location of the rectangle is concerned. But, unfortunately, it does not

interpolate the results in both extreme cases like Theorem 5 (see, Remark

7). As a particular case, it does give the result when the small gap condition

(3.2) is satisfied and I is just of positive measure (as in Remark 7), but it

does not give the result as a particular case when the series is non-lacunary.

This is because, when the series is non-lacunary one must take qj = 1 for

all j, which is not allowed in gap condition (3.3).
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4. Proof Of Results

Proof of Theorem 5. For the sake of simplicity in writing, we carry

out the proof for m = 2. For each j = 1, 2, consider the polynomial P
(j)
Nj

(xj)

defined as follows: if Nj = 0, put P
(j)
Nj

≡ 1 and if Nj ∈ N then put

P
(j)
Nj

(xj) =

Nj−1∏
i=0

(
1 + ri

(
ij2

−Nj
)
ri(xj)

)
.

Then, by definition of ri, we have

xj ∈
[
ij2

−Nj , (ij + 1)2−Nj
)

=⇒ ri(xj) = ri
(
ij2

−Nj
)

for all i = 0, 1, . . . , Nj − 1

=⇒ 1 + ri
(
ij2

−Nj
)
ri(xj) = 1 +

(
ri
(
ij2

−Nj
))2

= 1 + (±1)2 = 2

for all i = 0, 1, . . . , Nj − 1

=⇒ P
(j)
Nj

(xj) =

Nj−1∏
i=0

2 = 2Nj ;

xj /∈
[
ij2

−Nj , (ij + 1)2−Nj
)

=⇒ ri(xj) �= ri
(
ij2

−Nj
)

for at least one i ∈ {0, 1, . . . , Nj − 1}
=⇒ 1 + ri

(
ij2

−Nj
)
ri(xj) = 1 + (±1)(∓1) = 1 − 1 = 0

for at least one i ∈ {0, 1, . . . , Nj − 1}
=⇒ P

(j)
Nj

(xj) = 0.

Thus, we have

P
(j)
Nj

(xj) =

{
2Nj if xj ∈

[
ij2

−Nj , (ij + 1)2−Nj
)
,

0 if xj ∈ [0, 1) \
[
ij2

−Nj , (ij + 1)2−Nj
)
.

Consider N = (N1, N2) and put PN(x1, x2) = P
(1)
N1

(x1)P
(2)
N2

(x2). Then by

the above property of P
(i)
Nj

(j = 1, 2), we have

PN(x1, x2) =




2N1+N2 if (x1, x2) ∈
[

i1
2N1

, i1+1
2N1

)
×
[

i2
2N2

, i2+1
2N2

)
0 if (x1, x2) ∈ I

2 \
[

i1
2N1

, i1+1
2N1

)
×
[

i2
2N2

, i2+1
2N2

)
.

(4.1)
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We claim that if nk = (n
(1)
k1
, n

(2)
k2

) ∈ (Z+)2 is such that f̂(nk) �= 0 then

(fPN)̂ (nk) = f̂(nk). In fact, writing (x, y) in place of (x1, x2), we have

(fPN)̂ (nk) =

∫
I2
f(x, y)P

(1)
N1

(x)P
(2)
N2

(y)ϕ
n

(1)
k1

(x)ϕ
n

(2)
k2

(y)dxdy(4.2)

=

∫
I2
f(x, y)

(
N1−1∏
i=0

(
1 + ri

(
i12

−N1
)
ri(x)

))

×


N2−1∏

j=0

(
1 + rj

(
i22

−N2
)
rj(y)

)
× ϕ

n
(1)
k1

(x)ϕ
n

(2)
k2

(y)dxdy

= f̂(nk) +

N1−1∑
i=0

ri
(
i12

−N1
)
f̂(riϕnk

) +

N2−1∑
j=0

rj
(
i22

−N2
)
f̂(rjϕnk

)

+

N1−1∑
i,j=0

ri
(
i12

−N1
)
rj
(
i12

−N1
)
f̂(rirjϕnk

)

+

N2−1∑
i,j=0

ri
(
i22

−N2
)
rj
(
i22

−N2
)
f̂(rirjϕnk

)

+

N1−1∑
i=0

N2−1∑
j=0

ri
(
i12

−N1
)
rj
(
i22

−N2
)
f̂(rirjϕnk

)

+ · · · +
(

N1−1∏
i=0

ri
(
i12

−N1
))

N2−1∏
j=0

rj
(
i22

−N2
)

× f̂(r0 . . . rN1−1r0 . . . rN2−1ϕnk
).

By our assumption the first term in the right hand side of (4.2) is nonzero.

The characters appearing in the other terms in the right hand side of (4.2)

are of the form (ϕϕ
n

(1)
k1

)(ψϕ
n

(2)
k2

) where ϕ is (a function of x alone) such that

deg ϕ ≤ N1 and ψ is (a function of y alone) such that deg ψ ≤ N2 and the

degree of at least one of ϕ and ψ is nonzero. In view of the Paley ordering of

Walsh characters, for each j ∈ N there are totally 2j−1 characters of degree

j, namely ϕ2j−1 ≡ rj−1, ϕ2j−1+1 ≡ rj−1ϕ1, ϕ2j−1+2 ≡ rj−1ϕ2, . . . , ϕ2j−1 ≡
rj−1ϕ2j−1−1 ≡ rj−1rj−2 · · ·r1r0. Consequently, total number of characters of
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positive degree ≤ N is given by 20 +21 +22 + · · ·+2N−1 = 2N − 1; they are

from ϕ1 to ϕ2N−1. It follows that when ϕ
n

(j)
kj

is multiplied by any character

of positive degree ≤ Nj the resulting character ϕmj is such that

n
(j)
kj

< mj ≤ n
(j)
kj

+ 2Nj − 1 < n
(j)
kj

+ 2Nj ≤ n
(j)
kj

+ qj ≤ n
(j)
kj+1,

in view of (2.2) and the fact that qj ≥ 2Nj . Since either deg ϕ > 0 or

deg ψ > 0, either m1 /∈ E1 or m2 /∈ E2. Therefore (m1,m2) /∈ E. Since f is

E-spectral, f̂

(
(ϕϕ

n
(1)
k1

)(ψϕ
n

(2)
k2

)

)
= f̂(ϕm1ϕm2) ≡ f̂(m1,m2) = 0. Thus all

the terms of the right hand side of (4.2) vanish except the first. This means

that

(fPN)̂ (nk) = f̂(nk) if f̂(nk) �= 0.(4.3)

Now, let nk = (n
(1)
k1
, n

(2)
k2

) be such that n
(j)
kj

are large enough with

f̂(nk) �= 0 and let mj ∈ N be such that 2mj ≤ n
(j)
kj

< 2mj+1 with mj > Nj

for each j = 1, 2. For simplicity in notation, let us now write k, �, s, and t

for n
(1)
k1

, n
(2)
k2

, m1, and m2 respectively. Then 2s ≤ k < 2s+1, 2t ≤ � < 2t+1

and in view of (4.3) and (4.1) we have

f̂(nk) = (fPN)̂ (nk)(4.4)

= 2N1+N2

∫ (i2+1)2−N2

i22−N2

∫ (i1+1)2−N1

i12−N1

f(x, y)ϕk(x)ϕ�(y)dxdy.

For each i = 0, 1, 2, 3, . . . , 2s and j = 0, 1, 2, 3, . . . , 2t put ai = (i/2s),

bj = (j/2t). Then, as 2s ≤ k < 2s+1, by definition of Walsh functions, ϕk

takes the value 1 on one half of each of the intervals (ai−1, ai) and the value

−1 on the other half, and hence∫ ai

ai−1

ϕk(x)dx = 0, (i = 1, 2, 3, . . . , 2s).(4.5)

Similarly, as 2t ≤ � < 2t+1, the function ϕ� takes the value 1 on one half

of each of the intervals (bj−1, bj) and the value −1 on the other half, and

hence ∫ bj

bj−1

ϕ�(y)dy = 0, (j = 1, 2, 3, . . . , 2t).(4.6)
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Next, define three functions f1, f2, f3 on I =
[
i12

−N1 , (i1 + 1)2−N1
)
×[

i22
−N2 , (i2 + 1)2−N2

)
by setting

f1(x, y) = f(ai−1, y)
(
ai−1 ≤ x < ai; i22

−N2 ≤ y < (i2 + 1)2−N2
)

for i = i12
s−N1 + 1, i12

s−N1 + 2, . . . , (i1 + 1)2s−N1 ;

f2(x, y) = f(x, bj−1)
(
i12

−N1 ≤ x < (i1 + 1)2−N1 ; bj−1 ≤ y < bj
)

for j = i22
t−N2 + 1, i22

t−N2 + 2, . . . , (i2 + 1)2t−N2 ; and

f3(x, y) = f(ai−1, bj−1) (ai−1 ≤ x < ai; bj−1 ≤ y < bj)

for i = i12
s−N1 +1, i12

s−N1 +2, . . . , (i1 +1)2s−N1 ; j = i22
t−N2 +1, i22

t−N2 +

2, . . . , (i2 + 1)2t−N2 . Then in view of Fubini’s theorem and relations (4.5)

and (4.6) we have

∫ (i2+1)2−N2

i22−N2

∫ (i1+1)2−N1

i12−N1

f1(x, y)ϕk(x)ϕ�(y)dxdy

=

∫ (i2+1)2−N2

i22−N2


 (i1+1)2s−N1∑
i=i12s−N1+1

f(ai−1, y)

∫ ai

ai−1

ϕk(x)dx


ϕ�(y)dy = 0,

∫ (i2+1)2−N2

i22−N2

∫ (i1+1)2−N1

i12−N1

f2(x, y)ϕk(x)ϕ�(y)dxdy

=

∫ (i1+1)2−N1

i12−N1


 (i2+1)2t−N2∑
j=i22t−N2+1

f(x, bj−1)

∫ bj

bj−1

ϕ�(y)dy


ϕk(x)dx = 0,

and ∫ (i2+1)2−N2

i22−N2

∫ (i1+1)2−N1

i12−N1

f3(x, y)ϕk(x)ϕ�(y)dxdy

=

(i1+1)2s−N1∑
i=i12s−N1+1

(i2+1)2t−N2∑
j=i22t−N2+1

f(ai−1, bj−1)

×
[∫ ai

ai−1

ϕk(x)dx

][∫ bj

bj−1

ϕ�(y)dy

]
= 0.



738 Bhikha Lila Ghodadra

Using these equations in (4.4) we get

|f̂(nk)| = 2N1+N2

∣∣∣∣∣
∫ (i2+1)2−N2

i22−N2

∫ (i1+1)2−N1

i12−N1

f(x, y)ϕk(x)ϕ�(y)dxdy

∣∣∣∣∣
= 2N1+N2

∣∣∣∣∣
∫ (i2+1)2−N2

i22−N2

∫ (i1+1)2−N1

i12−N1

(f − f1 − f2 + f3)(x, y)ϕk(x)ϕ�(y)dxdy

∣∣∣∣∣
≤ 2N1+N2

∫ (i2+1)2−N2

i22−N2

∫ (i1+1)2−N1

i12−N1

|(f − f1 − f2 + f3)(x, y)|dxdy

≤ 2N1+N2

(∫ (i2+1)2−N2

i22−N2

∫ (i1+1)2−N1

i12−N1

|(f − f1 − f2 + f3)(x, y)|pdxdy
)1/p

×
(
2−(N1+N2)

)1/q
,

in view of the Hölder’s inequality (when p > 1) since f−f1−f2+f3 ∈ Lp(I),

where q is such that 1/p+ 1/q = 1. Observe that when p = 1, we don’t use

Hölder’s inequality and in that case we consider the inequality except last

step. In any case, it follows that

|f̂(nk)|p ≤ 2N1+N2

∫ (i2+1)2−N2

i22−N2

∫ (i1+1)2−N1

i12−N1

|(f − f1 − f2 + f3)(x, y)|pdxdy

= 2N1+N2

(i1+1)2s−N1∑
i=i12s−N1+1

(i2+1)2t−N2∑
j=i22t−N2+1

∫ bj

bj−1

∫ ai

ai−1

|(f − f1 − f2 + f3)(x, y)|pdxdy

= 2N1+N2

(i1+1)2s−N1∑
i=i12s−N1+1

(i2+1)2t−N2∑
j=i22t−N2+1

∫ bj

bj−1

∫ ai

ai−1

|f(x, y) − f(ai−1, y)

− f(x, bj−1) + f(ai−1, bj−1)|pdxdy

≤ 2N1+N2

(i1+1)2s−N1∑
i=i12s−N1+1

(i2+1)2t−N2∑
j=i22t−N2+1

(Vp(f ; [ai−1, ai] × [bj−1, bj ]))
p

× (ai − ai−1)(bj − bj−1)

≤ 2N1+N2

2s2t
(Vp(f ; I))p ≤ 2N1+N2+2

k�
(Vp(f ; I))p,
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in view of Lemma 3. Thus we get

|f̂(nk)| ≤ 2(N1+N2+2)/p · Vp(f ; I)

(k�)1/p
.

This completes the proof of Theorem 5. �

Proof of Theorem 8. For each j = 1, 2, . . . ,m, if we take Nj as

the largest integer satisfying 2−Nj ≥ 1/qj , i.e., 2−Nj ≥ 1/qj > 2−Nj−1,

we have 4/qj > 2 × 2−Nj . Since [yj , yj + 4/qj ] is a subinterval of [0, 1]

of length 4/qj there exists an integer ij such that 0 ≤ ij < 2−Nj and

[ij2
−Nj , (ij + 1)2−Nj ] ⊂ [yj , yj + 4/qj ] for each j. But then

I = [i12
−N1 , (i1 + 1)2−N1 ] × · · · × [im2−Nm , (im + 1)2−Nm ]

⊂ [y1, y1 + 4/q1] × · · · × [ym, ym + 4/qm] = J.

Since f ∈ BVV
(p)(J) ∩ Lp(J), we have f ∈ BVV

(p)(I) ∩ Lp(I). So, by

Theorem 5, (3.1) holds. This completes the proof of Theorem 8. �

Acknowledgements. The author thanks Professor J. R. Patadia for his

help and guidance in the preparation of this paper. The author also thanks

referee for his valuable suggestions and help in this revision of the paper.

References

[1] Adams, C. R. and J. A. Clarkson, Properties of functions f(x, y) of bounded
variation, Trans. Amer. Math. Soc., 36 (1934), 711–730.

[2] Clarkson, J. A. and C. R. Adams, On definitions of bounded variation for
functions of two variables, Trans. Amer. Math. Soc., 35(4) (1933), 824–854.

[3] Fine, N. J., On the Walsh Functions, Trans. Amer. Math. Soc., 65 (1949),
372–414.
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