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Finite Generation of Adjoint Ring for Log Surfaces

By Kenta Hashizume

Abstract. We prove the finite generation of the adjoint ring for
Q-factorial log surfaces over any algebraically closed field.
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1. Introduction

In this paper, we prove

Theorem 1.1 (Main Theorem). Let π : X → U be a proper morphism

from a normal Q-factorial surface to a variety over an algebraically closed

field and let ∆• = (∆1, · · · ,∆n) be an n-tuple of boundary Q-divisors. Then

the adjoint ring of (π,∆•)

R(π,∆•) =
⊕

(m1, ··· ,mn)∈(Z≥0)n

π∗OX(�
n∑

i=1

mi(KX + ∆i)�)

is a finitely generated OU -algebra.
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Key words: Adjoint ring, finite generation, log surfaces, minimal model program,

abundance theorem.
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As a corollary, we have

Corollary 1.2. Let π : X → U be a proper morphism from a nor-

mal surface to a variety over an algebraically closed field and let ∆• =

(∆1, · · · ,∆n) be an n-tuple of Q-divisors such that (X,∆i) is log canonical

for every 1 ≤ i ≤ n. Then the adjoint ring R(π,∆•) of (π,∆•) is a finitely

generated OU -algebra.

Theorem 1.1 is a generalization of [Ft, Corollary 1.5] and [FT, Corollary

1.3]. In higher dimension, the finite generation of the adjoint ring is known

by Birkar, Cascini, Hacon and McKernan [BCHM] when π : X → U is a

projective morphism of normal quasi-projective varieties over the complex

number field and ∆• = (A + B1, · · · , A + Bn), where A ≥ 0 is a general

π-ample Q-divisor and Bi is an effective Q-divisor such that (X, A + Bi) is

divisorial log terminal for any i. We emphasize that (X,∆i) is not neces-

sarily log canonical in Theorem 1.1.

Let us summarize the history of Theorem 1.1. In [Ft], Takao Fujita

established Theorem 1.1 under the assumption that X is nonsingular, U

is a point, and n = 1. More precisely, he proved that the positive part of

the Zariski decomposition of KX + ∆ is semi-ample by using the notion

of Sakai minimality when X is a nonsingular projective surface and ∆ is a

boundary Q-divisor on X, that is, a Q-divisor on X whose coefficients are

in [0, 1]. As an easy consequence, he obtained the above mentioned special

case of Theorem 1.1. In [F2], Osamu Fujino established the minimal model

program (MMP) and the abundance theorem for Q-factorial log surfaces

and log canonical surfaces over an algebraically closed field of characteristic

zero in full generality. Theorem 1.1 with n = 1 in characteristic zero follows

immediately from the minimal model program and the abundance theorem

for Q-factorial log surfaces [F2]. We note that Fujino’s approach based on

[F1] heavily depends on vanishing theorems of Kodaira type. Therefore, we

can not directly apply his arguments in positive characteristic. Fortunately,

in [T], Hiromu Tanaka generalized the results in [F2] for Q-factorial log

surfaces and log canonical surfaces in positive characteristic. Consequently,

we know that Theorem 1.1 holds true over any algebraically closed field

when n = 1.

As we mentioned above, we are now able to use the minimal model

program and the abundance theorem for Q-factorial log surfaces, which need
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not be log canonical. In this paper, we prove Theorem 1.1 in full generality

by using the minimal model program and the abundance theorem for Q-

factorial log surfaces established in [F2] and [T] (see also [FT]). We will

use Shokurov’s ideas in [S] in order to reduce Theorem 1.1 to the case when

KX + ∆i is semi-ample over U for every i. Note that we have to use the

minimal model program and the abundance theorem for R-divisors to carry

out Shokurov’s ideas.

The contents of this paper are as follows. In Section 2, we recall the defi-

nition of log surfaces and collect some other basic definitions and notations.

In Section 3, which is the main part of this paper, we discuss a certain cone

decomposition of the cone of pseudo-effective divisors. See Lemma 3.1 for

details. In Section 4, we reduce the proof of Theorem 1.1 to the case where

KX +∆i is semi-ample for every i. To carry it out, we use some basic prop-

erties of graded rings and rational polytopes, which are rather technical.

In Section 5, we complete the proof of Theorem 1.1 and Corollary 1.2. In

Section 6, which is Appendix, we collect some basic results on graded rings

and rational polytopes used in Section 4 for the reader’s convenience.

Throughout this paper, we work over an algebraically closed field of any

characteristic.

Acknowledgments. The author would like to thank his supervisor

Osamu Fujino for various suggestions and warm encouragement. He is

grateful to the referee for many valuable comments. He also thanks his

colleagues for discussions.

2. Notations and Definitions

In this section we collect some notations and definitions. Let k be an

algebraically closed field. A variety is a separated integral scheme of finite

type over k. Let X be a normal variety and let π : X → U be a morphism

from X to a variety U .

(1) WDivR(X) is the R-vector space with canonical basis given by the

prime divisors of X.

(2) An R-divisor D on X is Q-Cartier (resp. R-Cartier) if D is a Q-linear

(resp. an R-linear) combination of Cartier divisors.

(3) X is Q-factorial if every Weil divisor is Q-Cartier.
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(4) Two R-divisors D and D′ on X are Q-linearly equivalent (resp. R-

linearly equivalent), denoted by D ∼Q D′ (resp. D ∼R D′), if D − D′

is a Q-linear (resp. an R-linear) combination of principal divisors.

(5) Two R-divisors D and D′ on X are Q-linearly equivalent over U

(resp. R-linearly equivalent over U), denoted by D ∼Q, U D′ (resp.

D ∼R, U D′), if there exists a Q-Cartier (resp. an R-Cartier) divisor E

on U such that D −D′ ∼Q π∗E (resp. D −D′ ∼R π∗E).

(6) Two R-divisors D and D′ on X are numerically equivalent over U (or

π-numerically equivalent) if D−D′ is R-Cartier and (D−D′) ·C = 0

for every proper curve C on X contained in a fiber of π.

(7) An R-divisor D on X is pseudo-effective over U (or π-pseudo-effective)

if D is π-numerically equivalent to the limit of effective R-divisors

modulo numerically equivalence over U .

(8) An R-Cartier divisor D on X is nef over U (or π-nef) if (D · C) ≥ 0

for every proper curve C on X contained in a fiber of π.

(9) An R-divisor D is semi-ample over U (or π-semi-ample) if D is an R≥0-

linear combination of semi-ample Cartier divisors over U , or equiva-

lently, there exists a morphism f : X → Y to a variety over U such

that D is R-linearly equivalent to the pullback of an ample R-divisor

over U .

(10) For a real number α, its round down is the largest integer which is not

greater than α. It is denoted by �α�. If D =
∑

αiDi is an R-divisor

and the Di are distinct prime divisors, then the round down of D,

denoted by �D�, is
∑

�αi�Di.

(11) An R-divisor D on X is a boundary R-divisor if D is effective and

whose coefficients are not greater than one.

(12) Let KX be the canonical divisor on X and let V be a finite dimensional

affine subspace of WDivR(X). Then we define EU (V ) as

EU (V ) = {∆ ∈ V | KX + ∆ is π-pseudo-effective}.
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(13) A pair (X,∆), where X is a normal variety and ∆ is an effective R-

divisor on X, is said to be log canonical if KX + ∆ is R-Cartier and

for any proper birational morphism f : Y → X from a normal variety

Y , every coefficient of KY − f∗(KX + ∆), where KY is the canonical

divisor on Y such that f∗KY = KX , is greater than or equal to −1.

(14) Let D• = (D1, · · · , Dn) be an n-tuple of Q-divisors on X. Then we

define the sheaf of OU -algebra R(π,D•) as

R(π,D•) =
⊕

(m1, ··· ,mn)∈(Z≥0)n

π∗OX(�
n∑

i=1

mi(KX + Di)�)

and call it adjoint ring of (π : X → U,D•). We note that R(π,D•)
is a finitely generated OU -algebra if there is an affine open covering

{Vi = SpecAi}i∈I of U such that R(π,D•) |Vi is the sheaf associated

to a finitely generated Ai-algebra for every i ∈ I.

Next, we recall the definition of log surfaces.

Definition 2.1 (Log surfaces). Let X be a normal surface and let ∆

be a boundary R-divisor on X such that KX + ∆ is R-Cartier. Then the

pair (X,∆) is called a log surface.

Finally, we recall the definition of weak log canonical models and mini-

mal models of log surfaces.

Definition 2.2 (cf. Definition 3.6.1 [BCHM], Definition 3.6.7

[BCHM]). Let π : X → U and π′ : Y → U be projective morphisms

from a normal surface to a variety. Let f : X → Y be a birational mor-

phism of normal surfaces over U and let D be an R-Cartier divisor on

X such that f∗D is also R-Cartier. Then f is D-non-positive (resp. D-

negative) if E = D − f∗f∗D is an effective f -exceptional divisor (resp. an

effective f -exceptional divisor and the support of E contains supports of all

f -exceptional divisors). Let (X, ∆) be a log surface and f : X → Y be a bi-

rational morphism over U . Then f is a weak log canonical model (resp. min-

imal model) of (X,∆) over U if f is (KX +∆)-non-positive (resp. (KX +∆)-

negative) and KY + f∗∆ is nef over U .
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Remark 2.3. Let π : X → U , π′ : Y → U and f : X → Y be as above

and let V be a finite dimensional affine subspace in WDivR(X). Then we

can easily check that the set

{∆ ∈ V | f is a weak log canonical model of (X,∆) over U}

is a closed convex subset in V .

3. Cone Decomposition

In this section, we discuss a certain cone decomposition of the cone

of pseudo-effective divisors by using the minimal model program and the

abundance theorem for Q-factorial log surfaces. This cone decomposition

will play a crucial role in Section 4. For the definition of rational polytopes

and their faces, see Definition B.1.

Lemma 3.1 (cf. [S]). Let π : X → U be a projective morphism from

a normal Q-factorial surface onto a quasi-projective variety. Let V be a

finite dimensional affine subspace of WDivR(X), which is defined over Q,

and let V ′ be the set of the boundary R-divisors on X contained in V . Let C
be a rational polytope in V ′. Then there are finitely many proper birational

morphisms fi : X → Yi over U and finitely many rational polytopes Wi such

that C ∩EU (V ) = ∪iWi and if ∆ ∈ Wi, then fi is a weak log canonical model

of (X,∆) over U . In particular, C ∩ EU (V ) is also a rational polytope.

Proof. Without loss of generality, we may assume that C spans V by

replacing V with the span of C. We proceed by induction on the dimension

of C.

If dim C = 0, then we may assume that {D} = C∩EU (V ). Then, by [FT,

Theorem 1.2], there exists a minimal model f : X → Y of (X,D) over U .

By Definition 2.2, a minimal model of (X,D) over U is a weak log canonical

model of (X,D) over U . Thus f and W = {D} satisfy the conditions of the

lemma. So we may assume that dim C > 0.

We show the assertion in the lemma assuming that there is an R-divisor

∆0 ∈ C ∩ EU (V ) such that KX + ∆0 ∼R, U 0. We first show that there is

a Q-divisor ∆′ in C ∩ EU (V ) such that KX + ∆′ ∼Q, U 0. Indeed, we may

write KX + ∆0 =
∑k

i=1 αi(fi) +
∑l

j=1 βjπ
∗Fj for some αi, βj ∈ R, principal

divisors (fi) and Cartier divisors Fj on U . Let T be the finite dimensional
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R-vector space in WDivR(X) spanned by (fi) and π∗Fj . Then T is defined

over Q. Therefore, the set

{∆ ∈ C | KX + ∆ ∈ T}

is a rational polytope and contains ∆0. In particular, this set is a non-

empty rational polytope. Then a rational point ∆′ in this set satisfies KX +

∆′ ∼R, U 0, and so ∆′ ∈ EU (V ). Since KX + ∆′ is a Q-divisor, we obtain

KX + ∆′ ∼Q, U 0. By replacing ∆0 with ∆′, we may assume that ∆0 is a

Q-divisor and KX + ∆0 ∼Q, U 0. Pick D ∈ C with D �= ∆0. Then there is a

divisor D′ on the boundary of C such that D − ∆0 = λ(D′ − ∆0) for some

0 < λ ≤ 1. Then

KX + D = λ(KX + D′) + (1 − λ)(KX + ∆0) ∼R, U λ(KX + D′).

In particular, KX + D is pseudo-effective over U if and only if KX + D′ is

pseudo-effective over U . Moreover, the pairs (X,D) and (X,D′) have the

same weak log canonical model over U by [BCHM, Lemma 3.6.9]. Let ∂C
be the boundary of C. Since ∂C consists of finitely many rational polytopes,

there are finitely many proper birational morphisms fi : X → Yi over U

and finitely many rational polytopes W ′
i such that ∂C ∩ EU (V ) = ∪iW

′
i and

if D ∈ W ′
i , then fi is a weak log canonical model of (X,D) over U . Let Wi

be the cone spanned by ∆0 and W ′
i . Then fi and Wi satisfy the conditions

of the lemma. So we are done.

We now prove the general case. Since V ′ is compact and C ∩ EU (V ) is

closed in V ′, it is sufficient to prove the lemma for every ∆0 ∈ C ∩ EU (V )

and a sufficiently small neighborhood C0 of ∆0 in C, which is also a rational

polytope. By [FT, Theorem 1.2], there exists a minimal model f0 : X → Y0

of (X,∆0) over U . Since a minimal model of (X,∆0) over U is (KX + ∆0)-

negative, possibly shrinking C0, we may assume that for any ∆ ∈ C0, f0 is

(KX +∆)-non-positive. We put W = f0∗(V ) and C′ =f0∗(C0). Then C′ ⊂ W

is a rational polytope containing f0∗∆0 and dim C′ ≤ dim C.

By [F2, Theorem 8.1] and [T, Theorem 6.7], KY0 + f0∗∆0 is semi-ample

over U . Then there exists a projective morphism φ0 : Y0 → Z0 onto a

quasi-projective variety Z0 over U and an ample R-divisor A over U such

that KY0 + f0∗∆0 ∼R φ∗
0A. Since KY0 + f0∗∆0 ∼R, Z0 0, there are finitely

many proper birational morphisms hi : Y0 → Yi over Z0 and finitely many

rational polytopes Wi such that C′ ∩ EZ0(W ) = ∪iWi and if D ∈ Wi, then
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hi is a weak log canonical model of (Y0, D) over Z0. Possibly shrinking C0,

we may assume that f0∗∆0 ∈ Wi for any i. Let φi : Yi → Z0 be the induced

morphism. Pick a vertex ∆ of Wi. Then KYi + hi∗∆ is nef over Z0 and by

[F2, Theorem 8.1] and [T, Theorem 6.7], KYi +hi∗∆ is semi-ample over Z0.

Therefore KYi +hi∗∆+nφ∗
iA is semi-ample over U for a large integer n. In

particular KYi + hi∗∆ + nφ∗
iA is nef over U . If 0 < ε < 1/(n + 1), then

hi∗(KY0 + ε∆ + (1 − ε)f0∗∆0) ∼R ε(KYi + hi∗∆) + (1 − ε)φ∗
iA

is nef over U . Considering all vertices of all Wi, we may find a sufficiently

small neighborhood C′′ of f0∗∆0 in C′, which is a rational polytope, such

that if D′ ∈ C′′∩Wi, then hi is a weak log canonical model of (Y0, D
′) over U .

Then KYi +hi∗D′ is nef over U . In particular, KYi +hi∗D′ is pseudo-effective

over U . Since hi is (KY0 +D′)-non-positive, KY0 +D′ is also pseudo-effective

over U . On the other hand, a pseudo-effective divisor over U is also pseudo-

effective over Z0. Therefore, ∪i(C′′ ∩ Wi) = C′′ ∩ EZ0(W ) = C′′ ∩ EU (W ).

Set C̃ = (f0∗)−1(C′′) ∩ C0 and W̃i = (f0∗)−1(Wi ∩ C′′) ∩ C0. Then C̃ is a

neighborhood of ∆0 in C0 and a rational polytope. If ∆ ∈ C̃ ∩ EU (V ), then

f0∗∆ ∈ C′′ ∩ EU (W ). Therefore we have ∆ ∈ ∪iW̃i. On the other hand, if

∆ ∈ ∪iW̃i, then f0∗∆ ∈ C′′ ∩ EU (W ). In particular, KY0 + f0∗∆ is pseudo-

effective over U . Since ∆ ∈ C0, f0 is (KX + ∆)-non-positive. Therefore

∆ ∈ EU (V ). Thus, we see that C̃ ∩ EU (V ) = ∪iW̃i. We can also check that

if ∆ ∈ W̃i, then hi ◦ f0 is a weak log canonical model of (X,∆) over U . So

we are done. �

4. Reduction to the Special Case

In this section, we reduce Theorem 1.1 to the case where KX + ∆i is

semi-ample over U for every 1 ≤ i ≤ n.

We put Di = KX +∆i for every i. We note that π : X → U is projective

since X is a Q-factorial surface (see [F2, Lemma 2.2]). By taking the Stein

factorization, we may assume that π∗OX = OU . Furthermore, we may also

assume that U is an affine variety by the definition of finitely generated

OU -algebras. Set A = H0(X,OX) = H0(U,OU ). Then it is sufficient to

prove that

R(π,∆•) =
⊕

(m1, ··· ,mn)∈(Z≥0)n

H0(X,OX(�
n∑

i=1

miDi�))
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is a finitely generated A-algebra. Let V (resp. C) be the affine subspace

(resp. convex hull) in WDivR(X) spanned by ∆1, · · · ,∆n.

Lemma 4.1. To prove Theorem 1.1, we may assume that dimV =

dim C = n− 1,

Proof. We prove it with several steps.

Step 1. In this step, we reduce Theorem 1.1 to the case that ∆i is a

vertex of C for every i and ∆i �= ∆j for any i �= j.

Suppose that there is an index i such that ∆i is not a vertex of C or

there are two indices i and j such that i �= j and ∆i = ∆j . By changing

indices, we may write ∆n =
∑k

i=1(ai/q)∆i for some 1 ≤ k ≤ n−1, ai ∈ Z>0

and q ∈ Z>0 such that
∑k

i=1(ai/q) = 1. Then we have qDn =
∑k

i=1 aiDi.

By Lemma A.2, it is sufficient to prove the finite generation of

⊕
(m1, ··· ,mn)∈(Z≥0)n

H0(X,OX(�(
k∑

i=1

miaiDi +
n−1∑

i=k+1

miDi + mnqDn)�))

as an A-algebra. By Lemma A.3, it is sufficient to prove that

⊕
(m1, ···

j
∨··· ,mn)∈(Z≥0)n−1

H0(X,OX(�(
k∑

i=1
i�=j

miaiDi +

n−1∑
i=k+1

miDi + mnqDn)�))

is a finitely generated A-algebra for every 1 ≤ j ≤ k and moreover we can

reduce it to the finite generation of

⊕
(m1, ··· ,mj−1,mj+1, ··· ,mn)∈(Z≥0)n−1

H0(X,OX(�(
n−1∑

i=1, i�=j

miDi + mnDn)�))

as an A-algebra for any 1 ≤ j ≤ k by using Lemma A.2 again. By repeating

this discussion, we may assume that ∆i is a vertex of C for any i and ∆i �= ∆j

for any i �= j.

Step 2. Assume that ∆i is a vertex of C for every i and ∆i �= ∆j for

any i �= j. In addition, suppose that dimV + 1 < n. The goal of this step
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is to decrease n, the number of the boundary Q-divisors, under the above

assumption.

Let Cj be the convex hull spanned by ∆1, · · · ,∆j−1,∆j+1, · · · ,∆n for

every j. We can pick a Q-divisor ∆n+1 such that ∆n+1 ∈ Cj for any 1 ≤
j ≤ n by Lemma B.2. Set Dn+1 = KX + ∆n+1. If

⊕
(m1, ··· ,mn+1)∈(Z≥0)n+1

H0(X,OX(�
n+1∑
i=1

miDi�))

is a finitely generated A-algebra, then it is obvious that R(π,∆•) is also a

finitely generated A-algebra. Moreover, by Lemma A.2 and Lemma A.3, it

is sufficient to prove that

⊕
(m1, ··· ,mj−1,mj+1, ··· ,mn+1)∈(Z≥0)n

H0(X,OX(�
n+1∑

i=1, i�=j

miDi�))

is a finitely generated A-algebra for any 1 ≤ j ≤ n. Since ∆n+1 ∈ Cj ,
by using Lemma A.2 and Lemma A.3 again, we can reduce it to the finite

generation of

⊕
(m1, ···

j
∨···

j′
∨··· ,mn+1)∈(Z≥0)n−1

H0(X,OX(�
n+1∑

i=1, i�=j, j′

miDi�))

as an A-algebra for any 1 ≤ j, j′ ≤ n with j �= j′.

Step 3. By repeating the discussion of Step 1 and Step 2, we may

assume that dimV + 1 = n. So we are done. �

By Lemma 4.1, we may assume that dimV = dim C = n− 1, or equiva-

lently, any point of V is represented uniquely by the R-linear combination

of ∆1, · · · ,∆n, where the sum of coefficients is equal to one. Next we prove

the following lemma. For simplex coverings, see Remark B.4.

Lemma 4.2. Suppose that there is a finite (n−1)-dimensional rational

simplex covering {Σλ}λ∈Λ of C such that

(i) C = ∪λ∈ΛΣλ, and
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(ii) if Ψλ1, · · · ,Ψλn are the vertices of Σλ, then

Rλ =
⊕

(m1, ··· , mn)∈(Z≥0)n

H0(X,OX(�
n∑

i=1

mi(KX + Ψλi)�))

is a finitely generated A-algebra for any λ.

Then R(π,∆•) is also a finitely generated A-algebra.

Proof. By hypothesis, for any λ ∈ Λ and any 1 ≤ i ≤ n, we may

write ∆i =
∑n

j=1(aλij/p)Ψλj and Ψλi =
∑n

j=1(bλij/q)∆j , where aλij ∈ Z,

bλij ∈ Z≥0, p, q ∈ Z>0 and
∑n

j=1(aλij/p) =
∑n

j=1(bλij/q) = 1. Then

∆i =
n∑

j=1

aλij
p

Ψλj =
n∑

j=1

aλij
p

n∑
k=1

bλjk
q

∆k =
n∑

k=1

( n∑
j=1

aλijbλjk
pq

)
∆k.

Since every ∆i is represented uniquely by the R-linear combination of

∆1, · · · ,∆n, where the sum of coefficients is equal to one, we have∑n
j=1(aλijbλjk/pq) = δik, where δik is Kronecker delta.

Pick (m1, · · · ,mn) ∈ (Z≥0)
n such that m =

∑n
i=1 mi > 0. Then there

exists a λ′ ∈ Λ such that
∑n

i=1(mi/m)∆i ∈ Σλ′ . Then

n∑
i=1

pqmi∆i = mpq
n∑

i=1

(mi/m)∆i

is uniquely represented by the R≥0-linear combination of Ψλ′1, · · · ,Ψλ′n

where the sum of the coefficients is equal to mpq. On the other hand,

n∑
i=1

pqmi∆i =
n∑

i=1

pqmi

n∑
j=1

aλ′ij

p
Ψλ′j =

n∑
j=1

( n∑
i=1

qaλ′ijmi

)
Ψλ′j

and
∑n

i=1 qaλ′ijmi ∈ Z. Therefore
∑n

i=1 qaλ′ijmi ∈ Z≥0 and so

H0(X,OX(�
n∑

i=1

mipq(KX + ∆i)�))

= H0(X,OX(�
n∑

j=1

q(
n∑

i=1

aλ′ijmi)(KX + Ψλ′j)�))
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can be identified with the A-module of homogeneous elements of certain de-

gree in Rλ′
(q). Let φmmmλ′ : H0(X,OX(�

∑n
i=1 mipq(KX +∆i)�)) → Rλ′

(q), where

m = (m1, · · · ,mn), be the natural morphism of A-modules. Similarly, for

any (m′
1, · · · ,m′

n) ∈ (Z≥0)
n, since

n∑
i=1

m′
iqΨλ′i =

n∑
j=1

(

n∑
i=1

bλ′ijm
′
i)∆j ,

where
∑n

i=1 bλ′ijm
′
i ∈ Z≥0, we get the natural ring homomorphism

τλ′ : Rλ′
(q) → R. By the definition of φmmmλ′ and τλ′ , for any f ∈

H0(X,OX(�
∑n

i=1 mipq(KX + ∆i)�)), τλ′ ◦ φmmmλ′(f) = f .

By the hypothesis, Rλ′
is a finitely generated A-algebra. Then Rλ′

(q) is

also a finitely generated A-algebra by Lemma A.2. Let gλ′1, · · · , gλ′kλ′ be

the generator of Rλ′
(q). Then there exists an A-polynomial F ∈

A[X1, · · · , Xkλ′ ] such that φmmmλ′(f) = F (gλ′1, · · · , gλ′kλ′ ). Then we have

f = F (τλ′(gλ′1), · · · , τλ′(gλ′kλ′ )) and so R(pq) is generated by τλ′(gλ′l), where

λ′ ∈ Λ and 1 ≤ l ≤ kλ′ . Then the lemma follows from Lemma A.1. �

Lemma 4.3. To prove Theorem 1.1, we may assume that each KX+∆i

is semi-ample over U .

Proof. Recall that C is the rational polytope spanned by ∆1, · · · ,∆n

and V is the finite dimensional affine subspace of WDivR(X) spanned by C
such that dimV = n− 1. By Lemma 3.1, there are finitely many proper bi-

rational morphisms fi : X → Yi over U and finitely many rational polytopes

Wi such that C ∩EU (V ) = ∪iWi and if ∆ ∈ Wi, then fi is a weak log canon-

ical model of (X,∆) over U . By applying Lemma B.3 to C, C ∩ EU (V ) and

Wi, there is a finite (n− 1)-dimensional rational simplex covering {Σλ}λ∈Λ

of C such that C = ∪λΣλ and for any λ ∈ Λ, EU (V ) ∩ Σλ is a face of

Σλ and is contained in Wj for some j. By Lemma 4.2 it is sufficient to

prove the case where ∆1, · · · ,∆n are vertices of Σλ for some λ. By chang-

ing indices if necessary, we may assume that ∆1, · · · ,∆k ∈ EU (V ) and

∆k+1, · · · ,∆n /∈ EU (V ). We note that if mi ≥ 0 for every 1 ≤ i ≤ n, then

H0(X,OX(�
∑n

i=1 mi(KX + ∆i)�)) �= 0 implies that mk+1 = · · · = mn = 0.

Indeed, in this case we see that mi is zero for all i or
∑n

i=1(mi/m)∆i is in

EU (V ) when m =
∑n

i=1 mi > 0. Therefore we may assume that ∆i ∈ EU (V )

for any 1 ≤ i ≤ n. Then we can find j such that ∆i ∈ Wj for any 1 ≤ i ≤ n.
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Pick a positive integer d such that d(KX +∆i) and d(KYj +fj∗∆i) are both

Cartier for any 1 ≤ i ≤ n. Then

H0(X,OX(
n∑

i=1

mid(KX + ∆i))) ∼= H0(Yj ,OYj (
n∑

i=1

mid(KYj + fj∗∆i)))

and by Lemma A.2, it is sufficient to prove that

⊕
(m1, ··· ,mn)∈(Z≥0)n

H0(Yj ,OYj (�
n∑

i=1

mi(KYj + fj∗∆i)�))

is a finitely generated H0(Yj ,OYj )-algebra. Since fj : X → Yj is a weak log

canonical model of (X,∆i) over U for any i, by replacing X with Yj and

KX + ∆i with KYj + fj∗∆i respectively, we may assume that KX + ∆i is

nef over U for any 1 ≤ i ≤ n. Then by [F2, Theorem 8.1] and [T, Theorem

6.7], KX + ∆i is semi-ample over U for any 1 ≤ i ≤ n. �

5. Proof of the Main Theorem and Corollary

Now we complete the proof of Theorem 1.1 and Corollary 1.2.

Proof of Theorem 1.1. It is sufficient to prove that

R(π,∆•) =
⊕

(m1, ··· ,mn)∈(Z≥0)n

H0(X,OX(�
n∑

i=1

miDi�))

is a finitely generated H0(X,OX)-algebra, where Di = KX + ∆i is semi-

ample over U for any 1 ≤ i ≤ n and U is an affine variety. This follows

immediately from the following lemma. �

Lemma 5.1. Let π : X → SpecA be a proper morphism from a normal

variety to an affine variety and let D1, · · · , Dn be π-semi-ample Q-Cartier

Q-divisors on X. Then

R =
⊕

(m1, ··· , mn)∈(Z≥0)n

H0(X,OX(�
n∑

i=1

miDi�))

is a finitely generated A-algebra.
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Proof. By Lemma A.2, we may assume that Di is Cartier and free

over SpecA for any 1 ≤ i ≤ n. Thus we may assume that Di is base point

free for any 1 ≤ i ≤ n. Then there is a surjective morphism
ri⊕OX →

OX(Di) for some positive integer ri for every i. Suppose that n ≥ 2.

Set E = OX(D1) ⊕ · · · ⊕ OX(Dn). Then there is a surjective morphism
r
⊕OX → E , where r =

∑n
i=1 ri. Let p : PX(E) → X be the projective

bundle over X associated to E . Then there is a natural surjective mor-

phism p∗E → OPX(E)(1). Therefore there exists a surjective morphism
r
⊕OPX(E) → OPX(E)(1) and so |OPX(E)(1) | is base point free. Moreover,

there is a canonical isomorphism of the graded OX -algebras

⊕
l∈Z≥0

p∗OPX(E)(l) ∼=
⊕
l∈Z≥0

 ⊕
m1+···+mn=l

OX(
n∑

i=1

miDi)

 .

Therefore

R ∼=
⊕
l∈Z≥0

H0(PX(E),OPX(E)(l))

as A-algebras. So we may assume that n = 1 and then the lemma is clear. �

Let us prove Corollary 1.2.

Proof of Corollary 1.2. Let f : Y → X be a resolution of X.

Then we may write

KY + Γi = f∗(KX + ∆i) + Ei,

where Γi ≥ 0 and Ei ≥ 0 have no common components, f∗Γi = ∆i and Ei

is f -exceptional. Then Γi is a Q-divisor for any i and

R(π,∆•) ∼= R(π ◦ f,Γ•)

as graded OU -algebras. Moreover, by the definition of log canonical pairs, Γi

is a boundary Q-divisor for every i. Therefore we can reduce it to Theorem

1.1. �

6. Appendix

In this section we collect some basic results for the reader’s convenience.
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Appendix A. Graded Ring

In this part, let k be an algebraically closed field and let A be a finitely

generated k-algebra such that A is an integral domain. Let

R =
⊕

(a1, ··· , an)∈(Z≥0)n

R(a1, ··· , an)

be a graded A-algebra such that R is an integral domain with R(0, ··· , 0) = A

and let R(d) be the d-th truncation of R. More precisely,

R(d) =
⊕

(a1, ··· , an)∈(Z≥0)n

R(da1, ··· , dan).

For any a ∈ (Z≥0)
n, we identify Raaa with a homogeneous part of R by the

natural inclusion Raaa ↪→ R of A-modules. For any f ∈ Raaa, we define the

degree of f as deg(f) = a.

We introduce two well known results. For the proofs, see [ADHL, Propo-

sition 1.1.2.4] and [ADHL, Proposition 1.1.2.5].

Lemma A.1. Suppose that there are x1, · · · , xr ∈ R such that R(d) is

a A-subalgebra of R′ = A[x1, · · · , xr] for some positive integer d. Then R

is a finitely generated A-algebra.

Lemma A.2 (cf. [ADHL, Corollary 1.1.2.6]). For any

d = (d1, · · · , dn) ∈ (Z>0)
n,

the graded ring

R[ddd] =
⊕

(a1, ··· , an)∈(Z≥0)n

R(d1a1, ··· , dnan)

is a finitely generated A-algebra if and only if R is a finitely generated A-

algebra.

We close this part with the following technical result.

Lemma A.3. Let e1, · · · , en be the canonical basis of Zn. We set

e =
∑m

i=1 eji, where ji �= ji′ for i �= i′. Then the following conditions

are equivalent:
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(i) The ring

R =
⊕

(a1, ··· , an, b)∈(Z≥0)n+1

R(a1, ··· , an)+beee

is a finitely generated A-algebra.

(ii) For any i such that 1 ≤ i ≤ m, the ring

R
i
=

⊕
(a1, ··· , aji−1, aji+1, ··· , an, b)∈(Z≥0)n

R(a1, ··· , aji−1, 0, aji+1, ··· , an)+beee

is a finitely generated A-algebra.

Proof. For any homogeneous element f ∈
R(a1, ··· , aji−1, 0, aji+1, ··· , an)+beee, we put degi(f) = (a1, · · · , aji−1, aji+1, · · · ,
an, b) ∈ (Z≥0)

n and we will call it the degree of f in R
i
. Similarly, for any

homogeneous element f ∈ R(a1, ··· , an)+beee we put Deg(f) = (a1, · · · , an, b) ∈
(Z≥0)

n+1 and we will call it the degree of f in R. Note that R
i
can be iden-

tified with the A-subalgebra of R generated by all homogeneous elements

of R whose ji-th component is zero. If R is generated as an A-algebra by

finitely many elements of R, which can be assumed to be homogeneous el-

ements, then R
i
is generated as an A-algebra by the generator of R whose

ji-th component is zero. Thus R
i
is also a finitely generated A-algebra.

Conversely, suppose that R
i

is a finitely generated A-algebra for any

1 ≤ i ≤ m. For simplicity, suppose that ji = i for any 1 ≤ i ≤ m.

Let gi1, · · · , gir(i) be a generator of R
i
, where gij is homogeneous for any

1 ≤ j ≤ r(i), and let

aij = (aij1 , · · · , aij(i−1), aij(i+1), · · · , aijn , bij)

be the degree of gij in R
i
. Then

gij ∈ R
(aij1 +bij , ··· , aij

(i−1)
+bij , bij , aij

(i+1)
+bij , ··· , aijm+bij , aij

(m+1)
, ··· , aijn )

.

For any 0 ≤ s ≤ bij , let gij(s) be the element of R such that

gij(s) = gij

(
∈ R

(aij1 +bij , ··· , aij
(i−1)

+bij , bij , aij
(i+1)

+bij , ··· , aijm+bij , aij
(m+1)

, ··· , aijn )

)
,
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and

Deg(gij(s)) = (aij1 + bij − s, · · · , aij(i−1) + bij − s, bij − s,

aij(i+1) + bij − s, · · · , aijm + bij − s, aij(m+1), · · · , aijn , s) .

Then we prove that R is generated as an A-algebra by all gij(s), where

1 ≤ i ≤ m, 1 ≤ j ≤ r(i) and 0 ≤ s ≤ bij .

Pick any homogeneous element f ∈ R and let (a1, · · · , an, b) be the

degree of f in R. Pick an l which satisfies al = min{ai | 1 ≤ i ≤ m}.
Without loss of generality, we may assume that l = 1. Let f ′ be the element

of R
1

such that f ′ = f as an element of R(a1+b, ··· , am+b, am+1, ··· , an) and

deg1(f
′) = (a2 − a1, · · · , am − a1, am+1, · · · , an, a1 + b).

By the hypothesis there exists a polynomial F ∈ A[X1, · · · , Xr(1)] such that

f ′ = F (g11, · · · , g1r(1)). Taking the homogeneous decomposition, we may

assume that for any monomial αXt1
1 · · ·Xtr(1)

r(1) of F , where α ∈ A \ {0},

deg1(αgt111 · · · g
tr(1)
1r(1)) =

(
r(1)∑
j=1

tja
1j
2 , · · · ,

r(1)∑
j=1

tja
1j
n ,

r(1)∑
j=1

tjb
1j

)
= (a2 − a1, · · · , am − a1, am+1, · · · , an, a1 + b)

= deg1(f
′) .

Then
∑r(1)

j=1 tjb
1j = a1 + b ≥ b. Therefore, for each 1 ≤ j ≤ r(1) and

1 ≤ λ ≤ tj , we may find 0 ≤ sjλ ≤ b1j such that
∑r(1)

j=1

∑tj
λ=1 sjλ = b. Then

Deg(αΠ
r(1)
j=1Π

tj
λ=1g1j(sjλ))

=

(
r(1)∑
j=1

tj∑
λ=1

(b1j − sjλ),

r(1)∑
j=1

tj∑
λ=1

(a1j
2 + b1j − sjλ), · · · ,

r(1)∑
j=1

tj∑
λ=1

(a1j
m + b1j − sjλ),

r(1)∑
j=1

tja
1j
m+1 , · · · ,

r(1)∑
j=1

tja
1j
n ,

r(1)∑
j=1

tj∑
λ=1

sjλ

)
= (a1, · · · , an, b).
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Considering all monomials of F , f is expressed as a polynomial of gij(s)

with coefficients A. Thus, R is generated by all gij(s) as an A-algebra. �

Appendix B. Rational Polytope

In this part, we collect the definition and some basic properties of ratio-

nal polytopes.

Definition B.1 (Rational polytopes). Let C be a subset in a finite

dimensional R-vector space. Then C is a polytope if C is compact and the

intersection of finitely many half-spaces, or equivalently, the convex hull

of finitely many points. C is a rational polytope if C is a polytope defined

by rational half-spaces, or the convex hull of finitely many rational points.

F ⊂ C is a face if whenever
∑k

i=1 rivi ∈ F , where r1, · · · , rk are positive real

numbers such that
∑k

i=1 ri = 1 and v1, · · · ,vk belong to C, then v1, · · · ,vk

belong to F . We call F proper face of C if F � C.

By the definition, a face of a polytope (resp. rational polytope) is also a

polytope (resp. rational polytope).

Lemma B.2. Let C be a rational polytope in Rn such that dim C = n

and let p1, · · · , pm be its vertices. For every 1 ≤ i ≤ m, let Ci be the

rational polytope spanned by p1, · · · , pi−1, pi+1, · · · , pm. If m > n + 1, then

there exists a rational point p in C such that p ∈ ∩m
i=1Ci.

Proof. We prove this lemma in several steps.

Step 1. In this step we reduce the lemma to the case where m = n+ 2

by the induction on m.

Suppose that the statement is true in the case of m vertices. Then

there exists a rational point p in C such that p ∈ ∩m
i=1Ci. In the case

of m + 1 vertices, by changing indices if necessary, we may assume that

dim Cm+1 = dim C = n. Let C′
i be the rational polytope spanned by

p1, · · · , pi−1, pi+1, · · · , pm for every 1 ≤ i ≤ m. Then we have C′
i ⊂ Ci

and C′
i ⊂ Cm+1 for every 1 ≤ i ≤ m. By the induction hypothesis, there is

a rational point p such that p ∈ ∩m
i=1C′

i. Thus p ∈ ∩m
i=1C′

i ⊂ ∩m+1
i=1 Ci and so

we are done. Therefore we may assume that m = n + 2.



Finite Generation of Adjoint Ring for Log Surfaces 759

By an appropriate affine transformation and changing the indices if nec-

essary, we may assume that p1, · · · , pn are canonical basis of Rn and pn+1

is the origin. Then we may write pn+2 = (a1, · · · , an), where ai ∈ Q.

Step 2. We first prove the case where ai ≥ 0 for any 1 ≤ i ≤ n. In this

case, we have
∑n

i=1 ai > 1. Indeed, if
∑n

i=1 ai ≤ 1, then pn+2 =
∑n

i=1 aipi +

(1−
∑n

i=1 ai)pn+1. This contradicts to the hypothesis that p1, · · · , pn+2 are

the vertices of C. Set a =
∑n

i=1 ai and let p be (a1/a, · · · , an/a). Then p is

a rational point in C and

p =
n∑

i=1

ai
a
pi (∈ Ci for i = n + 1, n + 2)

=
(1

a

)
pn+2 +

(
1 − 1

a

)
pn+1 (∈ Ci for any 1 ≤ i ≤ n).

Thus p ∈ ∩n+2
i=1 Ci.

Step 3. We prove the case where ai < 0 for some i. By changing indices

if necessary, we may assume that a1, · · · , al < 0 and al+1, · · · , an ≥ 0 for

some l. Set a = −
∑l

i=1 ai and b =
∑n

i=l+1 ai.

If 1 + a ≤ b, then let p be (0, · · · , 0, al+1/b, · · · , an/b). Then p is a

rational point in C and

p =
n∑

i=l+1

(ai
b

)
pi (∈ Ci for i = 1, · · · , l, n + 1, n + 2)

=
1

b
·
(
−

l∑
i=1

aipi + pn+2

)
+
(
1 − 1 + a

b

)
pn+1

(∈ Ci for any l + 1 ≤ i ≤ n).

If 1 + a > b, then set p = (0, · · · , 0, al+1/(1 + a), · · · , an/(1 + a)). Then

p is a rational point in C and

p =
n∑

i=l+1

( ai
1 + a

)
pi +

(
1 − b

1 + a

)
pn+1

(∈ Ci for i = 1, · · · , l, n + 2)

=
1

1 + a

(
−

l∑
i=1

aipi + pn+2

)
(∈ Ci for any l + 1 ≤ i ≤ n + 1).
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Thus, p ∈ ∩n+2
i=1 Ci. �

Lemma B.3. Let C, D, D1, · · · ,Dr be rational polytopes in Rn such

that dim C = n and C ⊃ D = ∪r
i=1Di. Then there exists a finite n-

dimensional rational simplex covering {Σλ}λ of C such that C = ∪λΣλ and

for any λ, D ∩Σλ is a face of Σλ and contained in Di for some 1 ≤ i ≤ r.

Remark B.4. In Lemma B.3, the word “a simplex covering” means a

covering by simplices. In particular it does not mean a triangulation. Sim-

ilarly, the covering D = ∪r
i=1Di of D by {Di}ri=1 need not be a subdivision

of D by {Di}ri=1.

Proof of Lemma B.3. We prove it by the induction on the dimension

of C. In the case of dim C = 0, the statement is trivial. So we may assume

that dim C > 0.

Since D is a rational polytope, there are finitely many affine functions

H1, · · · , Hk such that D is the intersection of these half spaces (Hj)≥0 =

{x ∈ Rn | Hj(x) ≥ 0}. Set (Hj)≤0 = {x ∈ Rn | Hj(x) ≤ 0} and consider

C′
j = (Hj)≤0 ∩ C. Note that if dim C′

j < n for some j, then C′
j is a proper

face of C. Therefore, if we pick all indices j satisfying the condition that

dim C′
j = n, then we have C = (∪jC′

j) ∪ D.

Pick an index j such that dim C′
j = n. We note that C′

j ∩D is a rational

polytope contained in a proper face of C′
j . Fix an interior rational point p

of C′
j and let F be an (n− 1)-dimensional face of C′

j . Then F ∩D and each

F∩Di is empty or a rational polytope in Rn−1 and F ⊃ F∩D = ∪r
i=1F∩Di.

Therefore F , F ∩ D and F ∩ Di, where 1 ≤ i ≤ r, satisfy the induction

hypothesis. So there is a finite (n−1)-dimensional rational simplex covering

{Σ′
λ′}λ′ of F which satisfies the conditions of the lemma. Let Σ′′

λ′ be the

convex hull spanned by p and Σ′
λ′ . Then {Σ′′

λ′}λ′ is a finite n-dimensional

rational simplex covering of the convex hull spanned by p and F satisfying

the conditions of the lemma. Considering all (n−1)-dimensional faces of C′
j ,

we may find a finite n-dimensional rational simplex covering of C′
j satisfying

the conditions of the lemma.

Considering all C′
j and a triangulation of each Di, where 1 ≤ i ≤ r, we

get a desired covering. �
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