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Proof of Unsolvability of q-Bessel Equation Using
Valuations

By Seiji NISHIOKA

Abstract. In this paper, we prove unsolvability of the g-Bessel
equation associated with one of the ¢-Bessel functions, J,Es), using the
notion of the difference field extension of valuation ring type.

1. Introduction

The unsolvability of the Bessel equation with the value of the parameter
v satisfying v — 1/2 ¢ 7Z is well-known. On the other hand, we know the
unsolvability of the ¢-Bessel equation associated with one of the g-Bessel
functions only when the value of v is a rational number, for a transcendental
number q. Here the ¢-Bessel function is written as

v+1.
JzSS) ; — (q ’q)oowu 07 1/+1; , .’L’2
(25 9) N7 101(0;¢"" 5 ¢, q7)
v+1. - —1)7gn(n—1)/2
_ (q aQ) xuz : ( ) q (q$2)n,

(Do = (@ aOn
and satisfies the ¢g-Bessel equation,
gu(qz) + (2% /4= ¢ — ¢ )gu(@) + gu(xg™) =0, gu(z) = I (2q""*; ).

The g-Bessel functions are introduced in the book [5] by G. Gasper and M.
Rahman, and they are ¢-difference counterparts of the Bessel function. In
this paper, we study the unsolvability of the above g-Bessel equation with
an arbitrary value of v.

The unsolvability of a differential equation means that any non-trivial
solution cannot be contained in a differential field extension over C(x)
obtained by successive adjoining algebraic elements, primitive functions
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and/or exponential of primitive functions. This extension is called a Li-
ouville extension (see [6, 12]). For the unsolvability of the Bessel equation,
Galois-theoretical proof is well-known. E. R. Kolchin proved in his paper
[7] that the Galois group of the Bessel equation is SLy(C) iff. v —1/2 ¢ Z.
In the case v — 1/2 € Z, we find a fundamental system of solutions which
are exponential over C(z) (cf. [7]).

There is another approach to unsolvability, which uses valuation rings.
This idea originated with M. Rosenlicht [13]. The proof of unsolvability of
the Bessel equation which uses valuation rings will be seen in K. Nishioka’s
book [9] written in Japanese. In that proof, she defined a differential field
extension of valuation ring type, which is a generalization of the Liouville
extension, and proved that there is no non-trivial solution contained in
such an extension. By the general results on the extension of valuation ring
type, we only have to prove that there is no algebraic solution to the Riccati
equation associated with the Bessel equation.

For difference equations, C. H. Franke developed his Galois theory of
linear difference equations and defined a difference counterpart of the Li-
ouville extension in his papers [3, 4]. In this paper, the unsolvability of a
difference equation means that any non-trivial solution cannot be contained
in Franke’s Liouvillian extension over C(x). The author proved in his paper
[11] that the above ¢-Bessel equation is unsolvable when the value of v is
a rational number, for a transcendental number g. As in the case of dif-
ferential equations, he developed a general result by using valuation rings
and proved that there is no algebraic solution to the iterated difference Ric-
cati equations associated with the ¢-Bessel equation. A difference Riccati
equation is a equation of the form,

a(x)y(x) + b(zx)

y(r(a)) = D) £ )

c(x)y(z) + d(z)

However, there was a technical problem to prove the non-existence of alge-

braic solutions for an arbitrary value of v.
The solution we adopt here is to use the fact that o = ¢¥ + ¢ has

7(z) = x + 1, gz, ete.

only finitely many zeros and poles when it is algebraic over the rational
function field Q(q). We will study the algebraic independence of g, (qx)
and g, (z) over Franke’s Liouvillian extension, and prove that the ¢-Bessel
equation with an arbitrary value of the parameter v is unsolvable, for a
transcendental number q.
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We use the notion of the difference field extension of valuation ring type,
which was introduced in the author’s paper [11] and advanced in the paper
[10] by K. Nishioka and the author. In those papers, almost all the difference
fields are assumed to be inversive. Since such requirements are not essential
and they restrict the functions contained in the extension of valuation ring
type, we will eliminate them.

Notation. Throughout the paper every field is of characteristic zero.
When K is a field and 7 is an isomorphism of K into itself, namely an
injective endomorphism, the pair K = (K, 7) is called a difference field.
We call 7 the (transforming) operator and K the underlying field. For a
difference field K, K often denotes its underlying field. For a € K, the
element 7"a € K (n € Z), if it exists, is called the n-th transform of a
and is sometimes denoted by a,. If 7K = K, we say that I is inversive.
For an algebraic closure K of K, the transforming operator 7 is extended
to an isomorphism 7 of K into itself, not necessarily in a unique way. We
call the difference field (K, 7) an algebraic closure of K. For p € Zwq, K@)
denotes the difference field (K, 7P). For difference fields K = (K, 7) and
K' = (K',7"), K'/K is called a difference field extension if K'/K is a field
extension and 7’| = 7. In this case, we say that K’ is a difference overfield
of K and that K is a difference subfield of K’. For brevity we sometimes
use (K, 7’) instead of (K, 7'|k). We define a difference intermediate field in
the proper way. Let K be a difference field, £ = (L, 7) a difference overfield
of K and B a subset of L. The difference subfield K(B), of L is defined
to be the difference field (K (B,7B,7%B,...),7) and is denoted by K(B)
for brevity. A solution of a difference equation over K is defined to be an
element of some difference overfield of IC which satisfies the equation.

When R is a ring and 7 is an isomorphism of R into itself, the pair
R = (R, 7) is called a difference ring. Let R = (R,7) and R = (R/,7’)
be difference rings. A homomorphism ¢ of R to R’ is called a difference
homomorphism of R to R’ if 7 = 7'¢ (cf. the books [2, §]).

Let F'/K be an algebraic function field of one variable. A place P of F'//K
is the maximal ideal of some valuation ring of F//K. The valuation ring and
the normalized discrete valuation associated with P is denoted by Op and
vp, respectively. A discrete valuation of F//K is a function v: F — ZU{oo}
with the following properties.

(i) v(z) =00 <= z=0.
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(i) v(zy) =v(x) +v(y) for all z,y € F.
(iii) v(x 4+ y) > min{v(z),v(y)} for all x,y € F.

(iv) There exists an element z € F* with v(z) # 0 (v(z) = 1 for a normal-
ized discrete valuation).

(v) v(a) =0forall 0 #a € K.

For a rational function field K(z)/K, P,, a € K, denotes the place which
has the prime element = — «.

In Section 2, we define a notation representing difference Riccati equa-
tions. In Section 3 and 4, we define the refined difference field extension of
valuation ring type and study a solution of a difference Riccati equation in
it. In the final section, we study the unsolvability of the ¢-Bessel equation.

2. Difference Riccati Equation
For a second-order linear difference equation,
y2 +ay1 +by =0,

by setting z = y1/y, we obtain the following first-order difference equation,

—az—b
7= —
z

We call this the difference Riccati equation associated with the above equa-
tion. By iterations, we can express z; in terms of z such as

(ara —b1)z + aib
—az—0b '

9 =

Here, we introduce a notation about those iterations.
Let K = (K, 1) be a difference field, and let

A= (‘CL 2) € My(K),

a® b | |
Ai:< | bA>:(T”A)(712A)-.-(TA)A (i=1,2,...).
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In this paper, Eq(A4,7)/K denotes the equation over K,
We easily see the following.

LEMMA 1. If f is a solution of Eq(A,k)/K in a difference field exten-
sion L/IC, f € L is also a solution of Eq(A,ki)/K (i =1,2,...).

LEMMA 2. Let B = Ay, and B; = (r*0-VUB)(+*-2B)...B (i =
1,2, PN ) Then Bl‘ = A]m

LEMMA 3. For any k,l,m € Z~o,
f € L is a solution of Eq(Ag,lm)/K®
—f e LW is a solution of Eq(A, m)/K*),
where L is a difference overfield of K.

3. Difference Field Extension of Valuation Ring Type

The following is the definition of the difference field extension of valua-
tion ring type.

DEFINITION 4. Let N/K be a difference field extension, where N =
(N, 7). We say that N'/K is of valuation ring type if there exists a chain of
difference field extension,

K=K¢cKiC---CKu.1CK,=N,
such that each KC;/KC;_; satisfies one of the following.
(i) K;/K;—1 is algebraic.
(ii) K;/K;_1 is an algebraic function field of one variable, and there exists

a place P of K;/K; 1 such that 77 P C P for some j € Z~q.

REMARK. The above definition differs from the one in the author’s
former paper [11]. In that paper, the second condition is the following.
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K; and K,_; are inversive, K;/K;_1 is an algebraic func-
tion field of one variable, and there exists a valuation ring O of
K;/K; 1 such that 770 C O for some j € Z~y.

Since K; and K;_; are inversive, 770 C O implies 77O = O. Hence the
maximal ideal P of O satisfies 77 P = P. As a result, the former extension
is of valuation ring type in the sense here.

In the following proposition and corollary, we introduce some elementary
examples of difference field extensions of valuation ring type.

PROPOSITION 5. Let IC be a difference field, and let

A= (‘CL Z) € GLy(K),

a® ) L ,
Aﬁ(cu) d<z~>>=<7 LAY (r2A) A (i=1,2,0),

Suppose b*) = 0 or ¢*¥) = 0 for some k € Zsg. Let f be a solution of
Eq(A,1)/K transcendental over K, and let L = (L,7) = K(f). Then we
obtain the following.

(i) L/K is an algebraic function field of one variable.
(ii) There is a place P of L/K such that T"P C P.

(iii) L/K is of valuation ring type.

PROOF. The proof is essentially the same as the proof of Proposition
5 in [11], except that we take

P={p/q|p,qec Klg], degq—degp > 0},
where g = f if ¢®) =0 or g =1/f if ¥ #£0. 0

COROLLARY 6. Let K be a difference field, and f a solution of y; =
ay+b, a,b € K, a # 0, transcendental over K. Then KC(f)/K is of valuation

ring type.
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a b
a=(5 1)

we find the required by Proposition 5. [J

PrROOF. Letting

We will show a theory of reduction.

LEMMA 7. Let L/K be a difference field extension such that L/ K is an
algebraic function field of one variable and there exists a place P of L/ K
satisfying TiP C P for some j € Z~g, where L = (L, 7). Let L= (L,T) be
an algebraic closure of £ and K the algebraic closure of K in L. Let

A:C QeMﬂm,
m:(ﬁ M>=w4mw4mmA(ﬁﬂgny

Suppose b #£ 0 and ¢V £ 0 fori=1,2,.... If Eg(A,1)/K has a solution
f € L, then Eq(A,k)/K has a solution in K for some k € Z~g.

PRrROOF. The solution f satisfies (7f)(cf+d) = af+b. We may suppose
f & K. Then f is transcendental over K. Since we supposed ¢ # 0, we
find 7f = (af +b)/(cf +d) € K(f) C L(f). Let M = L(f). Since L/K
is an algebraic function field of one variable and M = L(f) C L, M/K and
MK /K are algebraic function fields of one variable. Choose a place P of
L/K such that 77 P C P for some j € Z~y.

Step 1. We prove that there exists a place P’ of MK /K such that
P’ D P and 7P’ C P’ for some k € Z~g. Let Pi,..., P, (n > 1) be all
of the places of MK /K such that P, > P. Note that 7/(MK)/7/K is an
algebraic function field of one variable. Let v; = vp,|_; (MEK) then v; is a
discrete valuation of 7/ (M K) /7K. In fact, for a prime element ¢ € L of P,
it follows that 79t € 7/ P C P C P;, which implies v;(17t) = vp, (77t) > 0.

Let P, = PN 7/(MK), then P; is the place of 7 (MK)/T7K associated
with v;. We find

PPCcPNTLCPNT(MK)=DP,.
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Since 7/ P, ..., 7/ P, are all of the places of 7/(MK)/7/K such that 7/ P; D
7 P, we obtain the sequence,

PIZTjH17 ‘Pll:’rj‘le (lgllgn)

Let lo = 1. For any i € Z~g, 7P, = P, , C P,_,. Choose m,m’ € Z
such that [, = l,,, and m < m/. Then we find

T(m’*m)jﬂm, C T(mlimil)jﬂmlfl c---C ]Dlm — Bm,.

Step 2. Let P’ be the place in the previous step. Then 7P’ ¢ P’ for
some k € Zg. We prove 7*Opr C Opr. Assume 7°Opr ¢ Ops. There exists
x € T*FOp/ \ Ops, which satisfies vp/(z) < 0. Let s be a prime element for
™" P'. By s € TFP' C P, we obtain vp/(s) =n > 1, and so

vpr(x"s) = nvp (z) +vpr(s) < —n+n=0.

This implies s ¢ P’. On the other hand, we have € 7*Op/ and s € TFP’,
which imply z"s € 7* P’ € P’. We obtained a contradiction.

Step 3. Let t be a prime element for P’, and let e = vp/(7Ft) > 1.
We prove that for any + € MK, vp(t%x) = evpr(z). We may suppose
r # 0. Let z = t"u, n € Z, u € Op,. By u,u”t € Opr, we obtain

*u, (tFu) =t = rFu=1 € 7*Op, C Ops, and so 7%u € OF,. Hence

vpr (Tkx) =vps ((Tkt)”Tku)

= H’Up/(Tkt) + ’UP/(Tku)
=en—+0

= evpr(x).

Step 4. Let ¢: MK — K((t)) be the embedding, and let ¢(7%t) =
S mitl, 1 € K, re #0. Then ¢: (MK, %) — (K((t)),0) is a difference

isomorphism, where

o (Z aiti> = ZTk(ai) <Z rltl) .
i=0 =0

l=e
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Since f € L is a solution of Eq(A,1)/K, f € L is also a solution of
Eq(A, k)/K. Hence f satisfies

Fo(c®) £ 4 dB) = g0 1 ).

If we assume vp/ (f) < 0, we find vp/(f) = evp/(f) < 0. On the other hand,
the above equation implies

evp (f) +vp(f) = v (f),

a contradiction. Hence we conclude vp:(f) > 0.
Let ¢(f) = 372 hit', h; € K. Then

Ofi) = o(9(f)) = 3 7 (h) (Zr,ﬂ> |
1=0 l=e
Comparing the coefficients of t° of the equation,
o(fie) (Vo (f) +dV) = aDo(f) + 0,
we obtain
7 (ho) (¢®hg + d®)) = M hg + b8,
This implies hg € K is a solution of Eq(A4, k)/K. O

THEOREM 8. Let K = (K, 7x) be a difference field, and let
a b
A= (C d) S MQ(K),
@) p@) . .

Suppose b % 0 and ¢ £ 0 fori = 1,2,.... Let k € Zso. Suppose
Eq(A,k)/K has a solution in a certain difference field extension N /K of
valuation ring type. Then Eq(A, ki)/K has a solution in IC for somei € Z~g,
where K is the algebraic closure of K in an algebraic closure N of N.

ProoOF. The proof is essentially the same as the proof of Theorem 2
n [11]. The place P plays the same role as the valuation ring O did. O
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The following lemma is used in the next section. Afterwards, we intro-
duce Franke’s Liouvillian extension (cf. the papers [3, 4]). We recall that
K®) denotes the difference field (K, 77) for K = (K, 7).

LEMMA 9. Let N/K be a difference field extension, and let p € Zsg.
If N/K is of valuation ring type, then N'®)/K®) is also of valuation ring
type.

PrROOF. By definition, there exists the chain of difference field exten-
sions,

K=KycC---CK,=WN.
We think of the chain,
Kcp) — /C(()P) CoCKP) = N

In the case that C;/K;_1 satisfies the condition (i) in Definition 4, namely
K;/K;_ is algebraic, ICZ(p)/ICl@l satisfies the same condition. In the case
that /IC;/IC;—1 satisfies the condition (ii), K;/K;_1 is an algebraic function
field of one variable, and there exists a place P of K;/K; 1 such that 7/ P C
P for some j € Z~g. Then (7P)/P = (77)PP C P, which implies that
ICZ(p ) / ICZ(T_) )1 satisfies the condition (ii). Hence N'®) /K(®) is of valuation ring
type. U

In the following definition, the symbol * is used. For a inversive dif-
ference field K and an element e, K(e)* denotes the difference overfield of
K whose underlying field is K(...,e_2,e_1,€,e1,€9,...). It is called the
inversive closure of K(e).

DEFINITION 10. Let A/K be a difference field extension of inversive
difference fields. We say that N /K is a generalized Liouvillian extension
(GLE) if there exists a chain of extensions of inversive difference fields,

K=KoC- CKn=N,

such that for each i = 1,2,...,n, K; = K;_1(e®)*, where e satisfies one
of the following.
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(i) e is algebraic over K; i,
(ii) egi) = e 4 j for some 3 € K;_1,
(iii) egi) = ael® for some o € K;_;.
Let p € Zwg. We say that N'/K is a pLE if N®) /K®) is a GLE.

LEMMA 11. Let N/K be a difference field extension of inversive dif-
ference fields. If N/K is a GLE, then N'/K is of valuation ring type.

PROOF. This is proved in the same way as Lemma 6 in [11]. O
4. Algebraic Independence

In this section, we will show a theory of algebraic independence for
solutions of a system of linear difference equations.
Let K = (K, k) be a difference field, and let

a b
A= <C d> S GLQ(K),
a@®  p) i i .
Ai = (c(i) d(i)> = (g 1A)(TK 2A) A (i=1,2,.00).

Suppose b #£ 0 and ¢ #£ 0 for i =1,2,....

DEFINITION 12. Let M = (M, 7)) be a difference overfield of K, and
R = MY, Z] a polynomial ring. We define the homomorphism Th: R — R

Ty _ (Y
TmZ) zZ)
Since we supposed det A # 0, it follows that M[T\Y,TmZ] = MY, Z].

Hence T\Y and T\ Z are algebraically independent over M, which implies
that T\ is injective. By

(1) (;ﬁ?) = A; <}Z/> (i=1,2,...)

by Tam|ar = Tar and
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and det A; # 0, we find that T /i\/tY and T /i\/lZ are algebraically independent
over M.

LEMMA 13. Let M = (M, 1) be a difference overfield of K, R =
MY, Z] a polynomial ring, and let P € R\ M satisfy TpmP = wP, w € M.
Then there exist i € Z~qo and a solution (f,g) # 0 of the equation over M),

(5)=4()

PROOF. Let T denote T for brevity, and let P = P{* ... P/ be an
irreducible decomposition of P. Then

such that P(f,g) = 0.

wP =TP = (TP)"---(TP,)"™.

Hence TPy, ..., TP, are the irreducible components of P. This implies that
there exists i € Z~q such that T°P; = wy Py, w1 € M*. Since (Py) is a prime
ideal, R/(P)) is an integral domain. Let L be its quotient field. Note that
L/M is a field extension. Let 7: R/(P;) — R/(P1) be the homomorphism
such that Q — T%(Q. We will show that 7 is injective. Suppose TQ = 0,
namely 7°Q € (P;). There exists D € R such that 7°Q = DP;. By
Tipl = wlPl, we find

wiT'Q = DT' P,
and so

T'Q

7ip; € )T, T'2).

-1 .
w; D=

We also find
wi'D € R= M[Y,Z] C M[TY,T'Z].

Hence it follows that wy ' D € (3, M)[T"Y,T'Z], which implies that T°E =
wy 'D for some E € R. From the above equations, we obtain
T'Q = w'DT'P, = (T'E)(T'P,) = T'(EP,),
Q =EP € (P).



Unsolvability of q-Bessel Equation 775

This implies @ = 0, and that 7 is injective.

Extend 7 to the quotient field L. Then 7 is an isomorphism of L into
itself. Let £ = (L, ), which is a difference overfield of M. By P = 0,
we find

P(Y,Z)=P =P, P =0.

n

From the equation (1), it follows that

(7))
(2)-+(2)

Hence (Y, Z) € £? is a solution of the equation over M),
0)-+()
Z1 z

Finally, we will show (Y, Z) # 0. Assume (Y, Z) = 0. Then we obtain
Py | Y and Py | Z, which imply P, € M, a contradiction. (J

which yields

THEOREM 14. Suppose that for any i € Zg, Eq(A;,1)/K® has no
solution algebraic over K. LetU = (U, 1) be a difference overfield of I, and
(f,9) # 0 a solution in U of the equation over IC,

(£)=2()

Let N/K be a difference field extension in U of valuation ring type. Then
f and g are algebraically independent over N.

PROOF. Assume that f and g are algebraically dependent over N.

Ji\ _ fa b\ [f
()= (0 ) () vrocrn

Since they satisfy
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and (f,g) # 0, we find f # 0 and g # 0.
(i) In the case that both f and g are algebraic over N, let h = f/g.
Then

:ﬁ_af—i-bg_ah—l-b

h = .
! g1 cf+dg ch+d

Hence h € U is a solution of Eq(A,1)/K. Since h is algebraic over N, the
extension N'(h) /N is algebraic, which implies that A'(h)/K is of valuation
ring type. By Theorem 8, there exists i € Z~( such that Eq(A,i)/K has
a solution algebraic over K. Hence Eq(4;,1)/K® has a solution algebraic
over K (see §2). This contradicts the assumption of this theorem.

(ii) In the case tr.deg N(f,g)/N = 1, there exists an irreducible poly-
nomial P € N[Y, Z]\ {0} such that P(f,g) = 0. It follows that

(InP)(f,9) = (PT(aY +bZ,cY +dZ))(f.g)
= P"(af + bg,cf + dg)
= P"(f1,1) = 7(P(f,9))
—0,

where P denotes the polynomial whose coefficients are the first transforms
of corresponding coefficients of P. Hence we find P | T\ P. By the definition
of T, we obtain degTyP < degP, and so TyyP = wP, w € N. Let
m = deg P(> 1), and let F' be the sum of the terms of degree m of P. It
follows that ThF' = wF. By Lemma 13, there exist ¢ € Z~g and a solution
(f,9) # 0 of the equation over N,

(5)=20);

satisfying F(f,§) = 0. Since F is homogeneous, we find
(2) F(f/g,1) =0,

where we note that § # 0 is obtained from ¢? # 0. Let h = f/§. The
above equation (2) implies that h is algebraic over N. Since h satisfies

B ﬂ a®Df+p0g  qOp 4 p@

h =2 = — _
YT c0fydig D+ dd)
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h is a solution of Eq(4;,1)/N® algebraic over N. By Lemma 9, we find
that N /K is of valuation ring type, and so N (h)/K® is of valuation
ring type. This implies that Eq(A4;,1)/K® has a solution in N (k). Hence
by Theorem 8, there exists j € Zsq such that Eq(4;,j)/K® has a solution
algebraic over K. Therefore we conclude that Eq(A;;, 1)/K%) has a solution
algebraic over K, a contradiction.

In any case, we obtained a contradiction. Thus f and g are algebraically
independent over N. [

COROLLARY 15. Under the same conditions as in Theorem 14, let
N/K be a difference field extension in U such that N is inversive, and that
N/K* is a pLE, where K* is the inversive closure in N'. The underlying
field of K* is

{z € N |tz € K for some i}.
Then f and g are algebraically independent over N.

PROOF. Since N'/K* is a pLE, N®) /K*®) is a GLE, and is of valuation
ring type. Let B = A, and

B; = (rPU-UB)(P-2B)... B (i=1,2,...).

Then we obtain B; = A, (see §2). Note that for any ¢ € Zso,
Eq(B;, 1)/K®) has no solution algebraic over K.

We will show that for any i € Zsq, Eq(B;, 1)/K*") has no solution alge-
braic over K*. Assume that there exists i € Z~ such that Eq(B;, 1)/K*®)
has a solution h algebraic over K*. Since h is algebraic over K*, there
exists P € K*[X] \ {0} such that P(h) = 0. The polynomial P satisfies
P™ e K[X]\ {0} for some j € Zg. By PTm(hj) = 0, we find that h; is
algebraic over K. Since h satisfies

hy (P h 4 APy = oPDp, 4 pPD)
it follows that

—d®)py + pPd)
h= i e € K,
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which implies that hj_1 € K(h;) is algebraic over K. In the same way,
we find that hj,h;_1,...,h are algebraic over K inductively. Hence
Eq(B;, 1)/K®) has a solution h algebraic over K. We obtained a con-
tradiction.

Finally, we note that (f,g) # 0 is a solution in ) of the equation over
o)

In fact, we obtain

from

() =)

Tg g

Hence by Theorem 14, we conclude that f and g are algebraically indepen-
dent over N. [J

5. ¢-Bessel Equation

In the book [5] by G. Gasper and M. Rahman, we find one of the ¢-Bessel
functions, J,E?’) (z;q), and the equation,

gv(qz) + (22 /4 — ¢ — ¢ ") gu(x) + gu(zq™ ") = 0,

where g, (z) = J,SS) (2q/?;¢%). In this section, we study the algebraic inde-
pendence of solutions. Note that the above equation can be rewritten as

follows,
(gy(g)) _ (—x2/4 +1qu+q—u _01) (gyg(;(;_)l))'

Let C be an algebraically closed field, and ¢ a transcendental element
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over C. Let ¢ € C*, K = (C(t), 74: t — qt), and

2
a:—ZJroz, aeC,

A= (T _01) € GLo(C(1),

@) p@) , :
a i i .
A = <C(Z) d(1)> = (T IA)(T 2A)A (Z: 1727"')'

We think of the equation over X,
(5)-2()
21 z
First of all, we will investigate relations between a® p@ @) q) - We
_ _fa —1 a —1\ (aja—1 —-ay
Az_(TqA)A_(l 0)(1 0)‘( a —1)’

and for 7 > 2,

(i—-1) (i—1)
o ' (o by a —1

obtain

1 1
_ aagi_l) + bgi_l) —agi_l)
acgz—l) +d§z—1) _Cgl_l) y
and

_ (i1 (a1 —1 =1 pi-1)
Ai =1y A iz = ( 1 0 ) (C(i—l) 461

~ (ai—1atD — 7D g p(mh) gl

B a(i_l) b(z’—l) .

Hence we obtain the following relations,
a® = q;_1aD — =)
b(i) _ 7@31'71)
, R (i>2)
) = q(i=1)

d® = pli-1)
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(i=>3)

3 2
d® = —agz ),

We will prove the following by induction,
i—1)i

(i
) i4
) = (-1) i

- % 4 (a polynomial of deg < 2i — 2).

Since o) = a = —t?/4 + o and

2 @ t*
a? =aa—1= <_Zt —i—a) <—Z+a> -1

C.l2 4

the result is true for ¢ = 1,2. Suppose ¢ > 3 and that the result is true for
smaller numbers. Then it follows that

2(:—1) . g 20E-1)
— (—q 4 t2 —+ Oé) ((—1)1_1q4Tt2Z_2 =+ (deg S 21 — 4))

— (deg < 2i — 4)

pGY
=(-1)'""—— 7 t2 4 (deg < 2i — 2),

the required. Hence we find a(? 7é 0 and dega® = 2i. By the above
relations, we also find b # 0 and ¢® # 0 for i = 1,2,.

PROPOSITION 16. Suppose that q is transcendental over Q. Then for
any i € Zsg, Eq(A;,1)/KY has no solution algebraic over K.

PROOF. Assume that there exists igp € Z~q such that Eq(A;,,1)/K00)
has a solution f algebraic over K. Let £ = K(0)(f) = (L, 7). Note that
Tk = Téo and 7t = Tgot = ¢'t. We choose i; € Zsg in the following way.
When ¢ is transcendental over Q(a), let i1 = 1. When ¢ is algebraic over
Q(a), Q(g,)/Q is an algebraic function field of one variable. We find that
Q(q, @)/Q is also an algebraic function field of one variable and an algebraic
extension of Q(q)/Q. Since « is non-zero in this case, a has only finitely
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many zeros and poles PU), ... P®) in Q(q,a)/Q. There exists i; € Zwg
such that for any ¢ > i1,

Pll/i 7é P(l) ﬂ@(Q), s aP(V) ﬂ@(q),

where 1/7 is the primitive i-th root of unity.

Let k = 3igi; and k' = 3iy. Since f € £ is a solution of Eq(4;,,1) /K0,
f € L is a solution of Eq(AiO,k')/lC(iO). Hence f € £*) is a solution of
Eq(Ay, 1)/K®), which yields the equation,

(3) (D] +d¥) = ¥ f 40,

We obtain det Ay, = 1 from det A = 1, and so ¢¥) f + d*¥) £ 0 from the
above equation. It implies L = C(t, f,7f,..., 7 ~1f), where we note that
f is algebraic over K. Let n = [L : C(t)] < co. By Lemma 8 in the
paper [11] by the author, we find L = C(x), 2" = t. It follows that x is
transcendental over C'. By the following calculation,

(Tx)n T Tt io
T = q

xn t ’

we find 7z /x € C. Let r = 7az/x € C*, which yields 7o = rz.
We have f € C(z)* and A € Ma(Clz"]). Let f = P/Q, where P,Q €
Clz] are relatively prime. From the equation (3), we obtain

Pv a(k)g + bk ~aPP4pkQ
Qw C(k)g +dk) RBP4 dR)Q

Since P and Qs are relatively prime, the following system of equations is

obtained,
RPy =a®pP4+p0Q,

(4) e kQ R € Clzl.
RQk’ = C( )P+d( )Q,

Hence

7o) = (o w0) (0)
Qu k) gk Q)
d®)  —pR)\ [P P

7 ) (an) = (o)
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Since P and () are relatively prime, we find R € C*. From the equation
(4), we obtain

deg,(a™ P +bMQ) = deg, RPys = deg, P.
Note that deg, a(¥) = 2kn > 0, and we find

deg, aPp = deg,, b(k)Q,

and so
deg, QQ — deg, P = deg, a®) — deg, b(k)
=2kn —2(k—1)n
= 2n.
Let

0 1\
f:Z€i<E> , € €C, eqy #0.

1=2n

be the formal power series representation of f. We will show f € C(t).
Assume that there exists ¢ > 2n such that n{i and e; # 0. Let In+m (0 <
m < n) be the minimum of such numbers. We will derive a contradiction.
The following degrees are needed,

deg, a® = 2kn, deg, b*) = 2(k — 1)n,
deg, ¢ = 2(k — 1)n, deg, d® = 2(k — 2)n.

The first term of

a® £ 4 pk)

1 2n 1 in 1 In+m
m (e (1) v (D) e (1)) 0
X X X

whose exponent is not divisible by n has the exponent

—2kn + (In +m).
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On the other hand, the first term of

Fuor (W f + d®)
2n In In+m
) oeam (1 em (1 €lntm 1
(e e ()
2n In In+m
X{c(m (%@ e () s () +.._)+d<k>}
T T T

whose exponent is not divisible by n has the exponent
> —2(k —2)n+ (In+m).
Hence we obtain
—2kn + (In+m) > =2(k — 2)n + (In + m),

and so 0 > 4n, a contradiction. We have proved that for any ¢ > 2n, n {i
implies e; = 0. Hence

fec((1/zm)NC(1/z) = C(1/z") = C(1/t) = O(t).

By £ = K0)(f) and K1) = (C(t),7), we find £ = K@) and L = C(t),
the latter of which implies n = 1 and x = ¢. Hence the operators satisfy the
following relations,

_ I 1} k' _iok! _ _k
T—T\K—Tq, ™ =1 =1,

We will show e; € Q[g,1/q,a] for j € Z>3. Note that the degrees of
a® b ) 40 e Q[q,al[t] are as follows,

dega® =2k, degb™ =2(k — 1),
degc®™ =2k —1), degd® =2(k —2).

We have

(5)  (ERES 4 d®) = (ig (%)) ((k)i (%) +d<k>>

=2
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and
(6) a®f+ﬂm:a®§;q<?>+ﬂm
Comparing the coefficients of (1/t)~2**2 we obtain
(k—1)k (k—1)k
q q
0= (—1>kT€2 + (—1)]{:W7

and so es = —4. Hence the result is true for j = 2. Suppose j > 3 and that
the result is true for smaller numbers. The coefficient of (1/t)72**J of the
formula (6) is

L gk Dk
(—1) Tej + (an element of Q|q, 1/q,a]),

and the coefficient of (1/t)~2*J of the formula (5) coincides with that of

7L 1\ J—1 1\?
R e (k) i (k)
(S () (5 () o)
=2 =2
which belongs to Q[g,1/¢, a]. Hence we find e; € Q[g, 1/q, ], the required.
We define a homomorphism

¢: Qlg. o] — QY. 5],
g— 1%
a— e,
in the following way. In the case that ¢ is transcendental over Q(«), let ¢ be
the homomorphism of the polynomial ring Q[c][q] to Q[a][1'/¥] substituting

1Y/ for g. In the case that ¢ is algebraic over Q(«), we use the fact that
k = 3igi1 > i1. By the definition of i1, we find

Py £ PYNQg),....PY nQ(q).

Let P’ be the place of Q(q,a)/Q such that P’ D> Pji., and s a prime
element of P’. Let ¢: Q[[s]] — Q be the homomorphism sending Y % h;s’
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to hg, : Opr — Q[[s]] the embedding, and ¢ the homomorphism defined by
¢ = ¢por. Since the values of ¢ — 1Y% ¢ and 1'/¥ are calculated as follows,
vprlg = 1V%) = e(P|Pu)or,, (0 = 1%) = e(P'|Ppj) > 1,
(%= (Q) = e(P/|P11/k)UP11/k (Q) = 07
vpr(11F) = 0,

we find
#(q) = ¢l — 1V*) + ¢(11/%) = 0 + 1/ = 11/%,
If we assume vpr () # 0, then P’ = P for some 1 < i < v, which implies
P =P'NQ(g) = PY NQ(g),

a contradiction. Hence we find vp(a) = 0, and so ¢(a) € Q C C. The
restriction @|qjq,q) is the required.

We will extend the homomorphism ¢: Q[g,a] — Q[1/*, 5]. First, ex-
tend it to the homomorphism of Q[q,1/¢,a] to Q[1Y/* (1%~ g] c C,
and second, to the homomorphism of Q[q,1/q, a]((1/t)) to C'((1/t)) sending
S hi(1/8) to Y2 é(hi)(1/t)". Then ¢ is a difference homomorphism
of (Qlg, 1/g,a)((1/1)),t = gt) to (C((1/1)),t = 1/5).

Let

F=o(f), a=¢@®), b=¢0W),
e=o(c®), d=g@d").

By QS(Tff) = ¢(f), we find the equation,

(7) fef+d)=af +b.

We will show f € C(t). By f € C(1/t), there exists s € Zso and mg € Zxg
such that

m > my = Fr(m,s) =0,

where F¢(m, s) = det(em+i+j)o<i,j<s is the Hankel determinant of f. Refer
to the book [1] by J. W. S. Cassels for the Hankel determinant. For all
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m2m07

Fy(m, s) = det(d(emtitj))o<ij<s
= ¢(det(emtitj)o<ii<s)
= ¢(Fy(m, s))
=¢(0) =

Hence f € C(1/t) =C(1).
Let f = P/Q, where P,Q € C[t] are relatively prime. From

é(a?) = (1)’ (11/2;“_)i + (deg < 2i — 2),
we obtain
dega = deg p(a'®) = 2k,
degh = deg (b)) = deg p(—ai* V) = deg p(a* V) = 2(k — 1),
deg é = deg ¢(c™™) = deg p(a* V) = 2(k — 1),
deg d = deg ¢(d) = deg ¢(—a{*"?) = deg p(a*"2)) = 2(k — 2),
and from det A4y, = a®d®) — pF) k) = 1,
ad —be = (1) = 1,
which implies éf 4+ d # 0. Thus from the equation (7),
g _af+b_aP+bQ
Q ef+d  eP+dQ

Since P and Q are relatively prime, the following system of equations is
obtained,

This yields

()
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and so

w0 @)-)

Since P and Q are relatively prime, we find R € C*. Hence the equation
(8) yields

which implies

o>

a—R b
0 = det )

d
1—(a+d)R+ R%

However, this contradicts dega = 2k > 2(k — 2) = degd. O

THEOREM 17. Suppose that q is transcendental over Q. Let U be a
difference overfield of IC, and (f,g) # 0 a solution in U of the equation over

K,
(5)=+()
z1 z
Let N/K be a pLE in U. Then f and g are algebraically independent over
N.

Proor. This is straightforwardly proved by Corollary 15. [J

COROLLARY 18. Suppose C = C and that q is a transcendental num-
ber. The g-Bessel equation over I = (C(t), 74: t — qt),

yo + (/4 — ¢ —q )y +y =0,

with an arbitrary value of the parameter v € C is unsolvable.
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PRrOOF. If g is a non-trivial solution contained in a pLE N/K, (f =
g1,9) # 0 is a solution in A of the equation over K,

—¢2 —
WY _a(Y), a= (TP ) L _pigrec
z1 z 1 0

However, Theorem 17 implies f,g ¢ N, a contradiction. O
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