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1. Introduction

1.1. Overview

Figure 1.1.: Examples of the first-person video (left) and that with points-of-
gaze (right). (Left) the first-person video shows that the wearer is interested
in the book on the desk. (Right) a point of gaze explicitly shows that the camera
wearer is looking at the book. Without the point of gaze, one might take the hat
in the middle of the view for the object of interested.

Shifts in attention are one of the primal behaviors during everyday social interac-
tions. For instance, we look at various targets of objects including speakers, hand-
outs, and a projector screen during a meeting in an o�ce. When multiple people
cooperatively assemble something big, they continuously pay attention to various
objects such as parts to be assembled and tools in their hands. To understand such
interactions, we need to find objects commonly viewed by multiple people. Such
objects of shared attention1 reflect what people attend to from moment to moment
and can be used as a cue to understand group activities [FRR11, XML+15]. For
instance, a set of objects of shared attention tells what event is going on (e.g., a
speaker, handout, projector screen, then it’s a meeting or presentation). Shifts of
objects of shared attention in cooperative work tell us how the work proceeds; that
is, what is built by workers, how its appearance changes as the work goes on, and
which tools are needed in each step. In the context of computer-supported cooper-
ative work, the ability to extract objects of shared attention allows us to evaluate
how systems mediate collaborative work of people [Ver99]. For instance, we can test
1There are several di�erent definitions for shared attention [OBT06, Eme00]. Throughout this
thesis, we define shared attention as people’s attentions commonly focussing on something at
the same moment (see Section 3.1).
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Chapter 1 Introduction

a system whether or not it really helps workers to easily understand which objects
they are going to manipulate. If the extracted objects of shared attention are the
desired one, then it follows that the system is helpful.

In this thesis, we employ computer vision technologies to discover such objects
of shared attention. In particular, we utilize wearable cameras and eye trackers
mounted on the head of people during interactions. First-person points-of-view
videos, or first-person videos, recorded by such cameras can clearly capture what
people see (Figure 1.1(left)) and thus can be used for action recognition [FHR12,
PR12] and activity summarization [APS+14, CSJ15, YGG12, LG13, XML+15].
More importantly, points-of-gaze data measured by an eye tracker often illuminate
the parts of the wearer’s field of view that receive attention (Figure 1.1(right)).
This enables localizing important objects spatially and temporally [FLR12, FRR11,
SRSM13, XML+15, YPS+13].

Motivated by these advantages of wearable cameras and eye trackers, we propose
a method to discover objects of shared attention using multiple wearable cameras
and eye-trackers worn by each of interaction parties. With such first-person videos
and points-of-gaze data recorded during interactions, our method discovers when
a shared attention on objects occurs. The proposed algorithm proceeds as follows.
Using .... across multiple videos. Some results from our experiments are illustrated
in Figure 1.2. Using points-of-gaze data of each camera wearer, we segment first-
person videos into subsequences (called shots) by detecting eye movements from one
object to another. Then, we perform a commonality clustering to find shots that
contain objects with similar appearances across multiple videos (highlighted frames
in the figure).

1.2. Challenges and Contributions

Given points-of-gaze data, it is natural to extract visual features from the region
around points of gaze to describe objects being viewed. We may then perform a
commonality clustering on such feature vectors to discover objects of shared atten-
tion across videos. A fundamental problem that arises here is how to appropriately
define a region in first-person videos, from which we extract features to describe ob-
jects being viewed. Although points of gaze tell us which point the wearer is looking
at, they do not tell which part is the region of objects. The region of objects around
points of gaze largely depends on object sizes and viewpoints. While some studies
use regions of a specific fixed size around points of gaze [FRR11, LYR15, XML+15],
comparing directly between fixed-size regions does not always work well due to the
variability in the size of objects in first-person videos. In our everyday life, we see
from a small tool in our hands to a large poster on the wall. The size of these objects
changes even more drastically in first-person videos because the objects can be seen
from di�erent distances. As a result, features extracted from fixed-size regions can
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1.2 Challenges and Contributions

Person 1’s first person video

Person 2’s first person video
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Figure 1.2.: An illustration of objects of shared attention discovery. Objects of
shared attention are discovered in multiple first-person videos recorded during
interactions (highlighted frames). Points of gaze of camera wearers are annotated
by crosses.

only describe a limited part of objects or are a�ected by plenty of irrelevant back-
ground regions. In the former case, it is impossible to match objects across views
when each of the observers is looking at the di�erent parts of the same object; in
the latter case, backgrounds have a large e�ect on the result of matching, and thus
di�erent backgrounds lead to false negative matching and similar backgrounds lead
to false positive matching.

Using improper size of region for extracting object features also becomes problematic
for temporal segmentation of videos. We particularly consider a straightforward
approach to the segmentation by thresholding similarity of consecutive frames with
their regions around points of gaze. Ideally, the similarity sharply drops when the
gaze shifted from an object to another one, and thus the videos are segmented into
shots each of which covers an attention to one and only one object. Note that it
is not unusual that one shifts his/her attention among several important parts of
a single object. For instance, when we are reading a paper, we might shift our
gaze from a figure to the main text describing the figures. It is desirable that
such shifts on a single object are covered by a single shot so that we can extract
features of the object by taking into account whole parts of an object. However,
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Chapter 1 Introduction

with improper size of region for extracting object features, it becomes di�cult to
achieve such segmentation reliably. Let us consider an example where a too small
region is considered as a region of object for a large object. In that case, a small gaze
shift from a part of the object to another part of it can lead to wrong segmentation
of the video; that is, the video may be segmented into two shots: One shot before
the gaze shift and the other shot after the gaze shift.
To address the aforementioned problems, we introduce a multiscale approach for
object-feature extraction. In the proposed method, visual features are extracted
around points of gaze with several di�erent areas to take into account the size
variability of objects (Figure 3.1(upper row)). These visual features are further
used to segment an input video into shots based on several di�erent a�nity criteria
so that for each attention on objects there is at least one shot that properly covers
the attention on a single object. This approach allows us to generate as a candidate
of objects, several di�erent scales of spatiotemporal tubes around points of gaze,
where some of them are expected to match closely actual regions of objects being
viewed. A group of tubes with similar features is discovered for each scale via
unsupervised commonality clustering (Figure 3.1(middle row)). Discovery results
are finally integrated across scales to find various sizes of objects of shared attention
reliably (Figure 3.1(bottom row)).
The main contributions of this thesis are summarized as follows:

• We introduce a new task of discovering objects of shared attention from first-
person videos and points-of-gaze data. To the best of our knowledge, this
is the first work that deals with multiple first-person videos recorded with
points-of-gaze data. Objects of shared attention tend to reflect contexts of
social interactions and thus discovering such objects provide cues that capture
the semantics of first-person visions.

• We present a method to discover objects of shared attention using multiscale
spatiotemporal tubes as object candidates. Our method addresses the main
challenge that arises in the task of discovering objects of shared attention:
object-size variability among objects and views.

• We collect a novel dataset containing multiple pairs of first-person videos and
points of gaze data to validate the e�ectiveness of our approach. The dataset
contains two- or three-person interactions and various kinds of interactions in
several formations of people. To the best of our knowledge, there has been no
other dataset that uses multiple points-of-gaze sources in first-person vision
tasks.

1.3. Thesis Outlines

This thesis is organized as follows. In Chapter 2, we show an overview of the recent
work on first person vision, i.e., computer vision using first-person videos, including
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1.3 Thesis Outlines

those dealing with single first-person video, multiple first-person videos, and gaze
information. We also introduce recent commonality discovery methods, which try to
discover commonalities from multiple images or videos. In the subsequent sections,
we show more details of several recent studies that are most relevant to our work. We
then present our method in Chapter 3. In each section, three main building blocks of
our approach are described step by step (Figure 3.1): generating multiscale temporal
tubes, performing commonality clustering, and aggregating the results of di�erent
scales by voting. In Chapter 4, we evaluate our method and show its superiority
over other baseline methods. Current limitations are also presented and possible
solutions and other modifications are discussed. Finally, Chapter 5 summarizes this
thesis. In Appendix, we provide the mathematical background of the commonality
clustering, and also show whole graphical results that are omitted in the main part
of the thesis.
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2. Related Work

2.1. Overview
In this chapter, we review some prior work related to the task of discovering objects
of shared attention from first-person videos using points of gaze information. Be-
cause wearable cameras and eye trackers have become available at a reasonable price,
first-person vision is now one of the emerging topics in computer vision. Similar to
our work, Park et al. [PJS12, PJS13, PS15] proposed detecting a social focus of
attention during group interaction using multiple first-person videos. In their work,
the location of social focus was found as an intersection of people’s viewing direc-
tions computed from 3D camera poses and positions. One important problem is
that such intersections may not correspond to a true social focus. For instance, two
people’s viewing directions can intersect while they are looking at di�erent things
behind the intersection. In addition, the use of 3D camera poses and positions often
requires a 3D model of the scene that may not always be available.
Points-of-gaze data act as a salient cue to boost various computer vision tasks.
Because points of gaze are indicative of important parts in images, they have been
used to recognize objects [YPS+13] and actions [FLR12, SRSM13] or to summarize
videos by detecting important shots [XML+15]. To the best of our knowledge, our
work is the first to use multiple points-of-gaze sources to discover important objects
across multiple videos.
The ability to discover commonalities across multiple images or videos has also been
adopted in a variety of computer vision tasks, such as object co-segmentation [JBP10,
RMBK06, ZJS14], co-localization [TJLFF14], and temporal commonality discov-
ery [CZD12]. Perhaps the most relevant work presented is common-interest person
detection from multiple first-person videos [LAZ+15]. Accurate human detection
is required to generate candidates of co-interest people. In comparison to this ap-
proach, we make use of points-of-gaze information to generate candidates of common
objects and do not require any object detectors. This enables co-localizing any cat-
egories of objects in a scene.
In the following sections, we introduce four important studies that are closely rele-
vant to our work. The first two studies [PS15, LAZ+15] addressed the problem of
discovering a common interest in a group of people equipped with wearable cam-
eras. Although neither of them utilizes gaze information, their goal is very similar
to ours. The rest two studies [CZD12, TJLFF14] presented methods for commonal-
ity discovery; that is, methods to retrieve objects or actions that commonly appear
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Chapter 2 Related Work

across images or videos. These two methods will be used as baselines in Chapter 4
to evaluate the e�ectiveness of our method.

2.2. Social Saliency Discovery

Park et al. [PS15] presented a method to predict social saliency, i.e., the likelihood
of joint attention1. They provided an example of an artificial agent that is trying to
go through the crowd of people in a social scene. The agent is expected to plan its
trajectory not only to avoid colliding with people but also avoid occluding sights of
people. To this end, the agent must understand where is attracting the attention of
the social group, i.e., social saliency.
Given a social group and location of each member, they compute social dipole mo-
ment, which describes the direction of joint attention from the center of the mass
of the social group. Social formulation feature is defined in order to describe the
distribution of a social group. The authors trained a binary ensemble classifier from
a collection of social formation features. With the classifier, a continuous social
saliency map of the target scene is generated, which can be regarded as a probabilis-
tic map of the likelihood of joint attention. The authors also presented a method to
assort people into their social groups based on their geometric relationship. They
first generate candidates of social groups based on the spatial distribution of social
members. Then, they solved a minimization problem to select proper set of social
groups. The minimization is designed so that the center of di�erent social groups is
not too close and also nobody belongs to no more than one group.

In the experiments, they evaluated their method with various social interaction
scenes captured by first-person videos. They used the 3D reconstruction of first-
person videos to measure joint attention, locations of associated members, and di-
rections they are facing to over time. Their experiments demonstrated that their
method is able to discover places in social scenes that attract attentions of people.
However, since they do not use gaze information, their method is only able to o�er
where is attracting the attentions of people, but cannot o�er what is attracting the
attentions. In our daily life, it is not unusual that many objects are closely located.
People’s interest can be shifted from objects to objects with subtle head pose change.
For instance, in the Figure 1.1(right), the camera wearer is not looking at the hat in
the center of his view, but at the book. This information cannot be obtained with-
out points of gaze. In this way, it is di�cult to tell which object is focused on by
people without points-of-gaze and just by knowing the social saliency. Furthermore,
their work requires 3D models of the social scenes, which are not alway available.
In contrast to their work, this thesis presents a method to discover objects of shared
attention, where points-of-gaze data illuminate which part in first-person vision the
wearers are attended to over time.
1Joint attention in their work is similar notion to shared attention in this thesis. See Section 3.1.
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2.3 Co-interest Person Detection

2.3. Co-interest Person Detection
Lin et al. [LAZ+15] proposed a new problem of discovering co-interest person (CIP)
from multiple first-person videos. They defined a co-interest person as that who
attracts the attentions of other people. CIP usually plays a central role in the ongo-
ing event of interest, and thus it provides useful information to deal with multiple
first-person videos: discovering a person with abnormal behavior for surveillance,
detecting a kid with strange behavior for an early finding of development issues, and
summarizing discussion for e�cient information management and retrieval.
They considered it di�cult to identify CIPs with appearance-based matching, so
they used motion patterns of people. The main challenge of discovering CIP is that
such motion patterns appear in a di�erent way across views. Furthermore, camera
motions and person motions are mixed up in first-person videos. In their method,
they defined an energy function, and reduce the problem to an energy minimization
problem of the Conditional Random Field. The energy function is designed so that
the relative position and size of CIP should be consistent, and motion patterns
of CIP are correlated across views. Since horizontal flows appear in the inverted
directions from the opposite view, opposite horizontal motion directions are merged
(e.g., North-West and North-East directions are regarded as the same direction).
In their experiments, each of subjects wore a wearable camera, and perform some
actions as a CIP in turn. To demonstrate the e�ectiveness of motion patterns, all the
subjects were in similar clothes. Although their method performs well in discovering
CIP, it cannot be extended to general objects in a naive way. Their method generates
CIP candidates by using a human detector, but it is much more di�cult to construct
a general object detector that copes with cluttered scenes including occlusion and
harsh lighting conditions. In addition, jointly attended objects are not necessarily
moving, while the authors exploit motion patterns to discover a CIP. In our case,
we try to discover general objects including objects in static or moving and persons
or non-persons. We deal with such general objects by utilizing points of gaze to
localize them. Since points of gaze do not provide the whole region of objects, we
use multiscale approach and find regions that tightly cover the objects.

2.4. Temporal Commonality Discovery
Chu et al. [CZD12] introduced a new problem of discovering the temporal common-
ality between a pair of videos. For instance, there should be scenes of kisses in
romance movies, and their method discovers such scenes as a temporal common-
ality across videos. More formally, their method, named TCD, tries to find pairs
(bi, ei), (i œ {1, 2}) of the start point and end point of the most similar subsequence
pairs between two videos.
The main challenge is its computational complexity. Testing all possible combina-
tions requires a huge computational cost. The authors proposed the branch and
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Chapter 2 Related Work

bound algorithm to e�ciently find the optimal solution. The authors first defined
a rectangle set R = [B

1

, E
1

, B
2

, E
2

], where Bi is the range of the start point to
be considered in the i-th video, and Ei is the counterpart at the end point. They
then start from a rectangle set that includes all possible rectangles. In the iterative
fashion, a rectangle set is split into two new rectangle sets and evaluated the range
of similarity they can take. Rectangle sets with higher similarity are evaluated in
preference to others. The search terminates when there is only one rectangle in the
rectangle set to be considered.
TCD su�ers from the scalability problem. When it deals with three or more streams,
its computational cost sharply increases. More precisely, when it deals with N
videos where each of video has ni, (i = 1, 2, . . . , N) frames, then its computational
complexity in the worst case is O

1rN
i=1

n2

i

2
(though their branch-and-bound-based

approach is rather e�cient in practice). That does not suit for our task where
commonality in a group of people are dealt with. On the other hand, our approach
is more e�cient than their one. Instead of considering all videos at a time, we first
consider pairwise commonality between each of video pairs and integrate them later.
Furthermore, we segment videos into shots based on the attention on objects, which
greatly reduces the number of feature vectors to be considered compared to directly
considering whole frames.

2.5. Co-localization

Tang et al. [TJLFF14] proposed a method for the co-localization problem, the goal
of which is simultaneously localizing an object common across multiple images. The
distinct point of their method is that it allows input images to contain noisy images,
i.e., images that do not contain the same object with (most of) the others.
In their method, they first generate bounding boxes in each input image using
an o�-the-shelf object proposal method. Each bounding box is a candidate that
potentially contains a common object across images. The authors then introduced
various objective functions based on saliency-based priors, similarity across images
and boxes, and discriminability within each image and box. Finally, they solved a
minimization problem for the co-localization that is formulated by aggregating all
the objective functions above.
Note that their method for co-localization is not tailored for videos but for images.
Although a video can be seen as a sequence of images (or frames), their method
cannot be simply applied to our task of discovering objects of shared attention
from multiple videos. The first reason is that their method will not keep temporal
consistency; that is, common objects across frames should appear for sensible length
of time interval across multiple videos. Furthermore, without points-of-gaze, there
can be common objects across videos but not interested by people. Another problem
is that their co-localization method assumes that the backgrounds of objects are
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2.5 Co-localization

di�erent, but this is not the case of our problem. It is highly possible that people
looking at the same or di�erent objects in similar backgrounds. In Chapter 4, we
will apply this co-localization method for our task and demonstrate that it only
shows a limited performance even when points-of-gaze data are used.
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3. Proposed Method

3.1. Definition of Shared Attention

Throughout the thesis, we define shared attention as events that multiple people are
looking at the identical object within a certain time interval. Here objects include
boxes, tables, walls, persons, projected screens, and so forth. Interactions among the
people are not required (while these are expected to exist). According to [OBT06,
Eme00], shared attention requires that people attending to objects are mutually
aware of the attentions of other people to the objects. However, we here do not
force our definition of shared attention to satisfy this requirement, because it is
di�cult to know whether people are actually aware of attentions of others. In our
dataset introduced in Section 4.1, we collected shared attentions during interactions
among people, where the mutual attention requirement is hopefully satisfied, but the
existence of interactions was not taken into account when the ground truth labels
were manually annotated.

Shared attention is another term that is closely related to shared attention. While
Emery [Eme00] distinguished join attention from shared attention as a special case
of shared attention, the author also mentioned that these two terms had been
used interchangeably in the literature. In the field of first-person vision, Arev et
al. [APS+14] and Park et al. [PS15] used shared attention instead of shared at-
tention. Similar to our definition, there used shared attention to refer to people’s
simultaneous attention during interactions, but they did not provide any specific
definition.

3.2. Problem Setting

Suppose that N persons are involved in interactions. During the interactions, they
commonly attend to objects such as a book at passing one from another, projected
screen on the wall at a meeting, and snacks on a table at break time. If the time
interval where people are looking at such objects is given, we are able to identify
objects of shared attention by referring to points of gaze during the interval. There-
fore, our goal is now to discover time intervals where objects are commonly attended
by people, from N pairs of first-person videos and points-of-gaze data recorded by
head-mounted cameras and eye-tracker worn by each of the people. In other words,

17



Chapter 3 Proposed Method

(1) Generate multi-scale spatiotemporal tubes

(2) Generate multi-scale spatiotemporal tubes

Step1. Generating spatiotemporal tubes for various scales
FVP1 (Person 1)

Step3. Voting the results across scales

Confidence histogram
= Likelihood of joint attention

=
�

for all scale pairs

× Confidence;  
affinity in cluster
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… …

FVP2 (Person 2)

Person 1

Person 2

Cluster of commonality

Commonality 
clustering

Step2. Commonality clustering for each scale

Joint attention interval             

time

Generated by different scales

Generated by 
different scales

Figure 3.1.: Pipeline of the proposed method

our method accepts as input such N pairs of first-person videos and points-of-gaze
data and outputs time intervals where the same object is viewed in all of the N
videos (i.e., an object of shared attention). More formally, given N pairs of first-
person videos and points-of-gaze data {(Vk, gk)}k=1,...N , where Vk and gk are lists of
frames and two-dimensional points at each time t œ T = [1, 2, . . . , T ], our goal is to
obtain a time interval J µ T where all image frames {Vn,t | t œ J , n œ [1, 2, . . . , N ]}
contain instances of the same object around the corresponding point of gaze gn,t.

In the subsequent sections, we describe each of the key steps of our method as
illustrated in Figure 3.1. In Section 3.3, we first explain generating multiscale spa-
tiotemporal tubes from videos to describe objects being viewed. Then, in Section 3.4,
we describe how to perform unsupervised commonality clustering on the tubes to
discover time intervals where shared attention is likely to occur for each scale. Fi-
nally, we introduce a voting scheme to integrate the discovery results across scales
in Section 3.5.
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3.3 Generating multiscale Spatiotemporal Tubes

time

Small radius, tight affinity threshold

time

time

(A)

(B)

(C)

Small radius, loose affinity threshold

Large radius, loose affinity threshold

Figure 3.2.: Concept figure of multiscale spatiotemporal tubes. Colored time axes
represent time intervals split with several pairs of a radius and an a�nity thresh-
old. (A, B) Smaller radius of tubes is more appropriate to extract features from
the object on the left side; (C) Larger radius and longer length are needed to cover
the object on the right.

3.3. Generating multiscale Spatiotemporal Tubes

When we see objects, points of gaze are often distributed over important parts of
the objects. If we properly segment videos into a sequence of shots (sub-sequences
of image frames) by detecting eye movements from one object to another, we can
then extract visual features from regions around points of gaze to describe objects
of focus in each shot. However, the size of regions that match closely to important
parts of objects should di�er depending on the apparent object sizes in videos. We
need to define a proper spatial range around points of gaze for feature extraction
so that we can reliably segment videos into shots and compare instances of objects
across multiple videos.

We address this problem by generating spatiotemporal tubes along points of gaze at
various scales from which we extract features of objects being viewed. As illustrated
in Figure 3.2, we expect that an appropriate combination of spatial and temporal
ranges will cover important parts of objects correctly. Let us denote by F(Vn,t) a set
of features extracted from the region around a point of gaze gn,t in the image frame
Vn,t. We consider a set of spatial ranges R = {r

1

, . . . , rNr} that control a radius of
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spatiotemporal tubes. For each r œ R, a feature vector of what people see in Vn,t is
then described by

s(r)n,t = H({f œ F(Vn,t) | Îl(f) ≠ gn,tÎ < r}),
where l(f) œ R2 is a spatial location that the feature f is extracted from, and H
is a certain feature-aggregation operator that takes as an input a set of features
around points of gaze, such as a naive histogram and deep features of deep neural
networks [LSD15, SZ14, SLD16].
A time interval where spatiotemporal tubes are defined is given by temporally seg-
menting videos into shots based on a frame-wise feature s(r)n,t with multiple thresholds.
Specifically, we compute a�nities between consecutive frames s(r)n,t≠1

, s(r)n,t and find
shot boundaries where the a�nities are below one of a set of a�nity thresholds
◊ œ �. These multiple thresholds allow us to segment videos into shots based on
objects of focus while considering a variety of similarities among multiple objects in
a scene.
As a result, we obtain a sequence of spatiotemporal tubes for each video given a
certain combination of spatial range and a�nity threshold parameters. We describe
the time interval of the k-th tube by j

(pn)
n,k µ T , where pn = (rn, ◊n) œ R ◊ � is a

specific combination of parameters used for extracting features from the n-th video.
Finally, visual features of objects being viewed in the k-th shot are extracted by
aggregating features in the tube:

s(pn)n,k = H({f œ F(Vn,t) | Ît œ j
(pn)
n,k , l(f) ≠ gn,tÎ < rn}).

3.4. Commonality Clustering on Tubes

To discover objects of shared attention, we perform unsupervised commonality clus-
tering on feature vectors s(pn)n,k extracted from spatiotemporal tubes. In what follows,
we particularly focus on the two-person case (i.e., N = 2) for the sake of simplic-
ity. We will discuss in Section 3.5 how our method can be extended to more than
two-person cases.
For each combination of scale parameters p

1

, p
2

, we aim to find a “co-cluster” of
spatiotemporal tubes that have similar features. To this end, we first define an
a�nity matrix between tubes across a pair of videos.

A =
A

O C
C€ O

B

, (3.1)

where the (i, j)-th entry of the matrix C is given by the a�nity between s(p1)
1,i and

s(p2)
2,j . A concrete a�nity function will be given in Section 3.6. Similar to normal-

ized spectral clustering [NJW01], we also introduce a degree matrix D: a diagonal
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matrix where the i-th diagonal element is given by the sum of the entries in the i-th
row of A. Then, as described in [CSJ15], co-clusters can be obtained via spectral
clustering with the Laplacian matrix L = D ≠ A. Refer to Appendix A for the
details. In practice, we perform the two-class clustering and select one co-cluster
whose members have higher a�nities. Note that in a particular situation where
objects of shared attention are observed sparsely during interactions, the maximal-
biclique-based approach proposed in [CSJ15] can also be applied.
Given the co-cluster of tubes for scale parameter combination p

1

, p
2

, the time in-
terval where an object of shared attention is likely to be observed, J (p1,p2) µ T ,
is determined as follows. Let us denote by Kn a set of tube indices in n-th video
belonging to the discovered co-cluster. Recall that the k-th tube of n-th video is
defined in interval j(pn)n,k µ T . The interval J (p1,p2) is then obtained by finding all
the intersections of intervals between a pair of videos:

J (p1,p2) = (fikœK1j
(p1)
1,k ) fl (fikœK2j

(p2)
2,k ). (3.2)

Note that co-clusters discovered using the a�nity A in Eq. (3.1) always contain
tubes from both of the two videos. If no intersections are found in Eq. (3.2) at
a certain combination of scales (p

1

, p
2

), the result from that scale setting is just
ignored in the subsequent voting scheme.

3.5. Voting across Multiple Scales

Finally, we integrate discovered time intervals J (p1,p2) across all the scale combina-
tions R◊ � to discover objects of shared attention with the variability in their size.
To this end, for each scale setting, we weigh how likely the discovered co-cluster
of spatiotemporal tubes includes objects of shared attention. More specifically, we
design a confidence score c(p1,p2) computed by the sum of a�nities among spatiotem-
poral tubes corresponding to j

(pn)
n,k µ J (p1,p2). This score increases when tubes in the

co-cluster are more similar.
The confidence scores are then summed up per frame t œ T to construct a confidence
histogram. This histogram is aimed at describing in which time intervals we observe
more confident co-clusters:

ct =
ÿ

p1,p2œR◊�
c(p1,p2)”(t,J (p1,p2)),

”(t,J (p1,p2)) =
Y
]

[
1 t œ J (p1,p2),

0 otherwise.
(3.3)

The time interval including objects of shared attention J is derived by binarizing
c
1

. . . , cT with a certain threshold.
This voting scheme can be extended to cases where more than two people are present,
as follows. We first conduct the commonality clustering presented in Section 3.4 for
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all the pairs of videos. Then, the confidence histogram is built by aggregating
confidence scores over multiple scales as well as multiple video pairs. Intuitively, the
more people see the same object in a certain frame t, the higher the score is given
to ct. We show in Section 4.4 how this voting scheme works on three-person cases.

3.6. Implementations

In this section, we describe details of the implementation of our method. We first
briefly describe important implementations in Sections 3.6.1 and 3.6.2, and then
provide other minor implementations in Section 3.6.3.

3.6.1. Features

To describe appearances of objects, we used HSV color histogram, a deep feature of
Fully Convolutional Network (FCN; [LSD15, SLD16]), and time interval.

HSV color histogram We used HSV color histograms as a low-level appearance-
based feature robust for spatial fluctuations and rotations. In our task, objects can
be looked at in di�erent views, and thus spatial information is not always helpful. For
instance, when an object is passed from a person to another person, the object will be
viewed upside-down from the receiver. We discretized each color channel into 16 bins
and normalized them independently. They were then aggregated and normalized
again to form 48-dimensional histogram vectors. For features of spatiotemporal
tubes, we used the histogram vector of a frame that is the nearest to the mean of
the frames in each shot.

FCN deep feature To introduce high-level information, we used deep features
extracted a layer of FCN. FCN used here was trained for object classification, and
thus it extracts abstract information that takes into account spatial details and
ignores unnecessary spatial noise for classification. We expect HSV color histograms
and FCN deep feature to complement each other. We utilized the output of the
pool4 layer of the FCN as an FCN deep feature. A 512-dimensional vector was
constructed by taking the spatial average of the 3D tensor of the output of pool4
layer, and then flattening. We used an FCN model with three-stream and eight-pixel
prediction stride net, which were pre-trained on PASCAL VOC dataset [EGW+] and
distributed by the authors [LSD15, SLD16]. We adopted FCN rather than widely
used VGG model [SZ14] for its two advantages: (1) it takes into account spatial
detail of input images and (2) it fully consists of convolutional layers so that any
size of images can be input.
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3.6 Implementations

Time interval We took into account time intervals to avoid matching tubes ob-
served at a completely di�erent time. A time interval of a shot j(pn)n,k is represented by
a T -dimensional feature vector, whose t-th element takes 1Ò

|j(pn)
n,k |

if t œ j
(pn)
n,k (where

|j(pn)n,k | is the number of image frames in j
(pn)
n,k ) and otherwise zero. All these features

are aggregated to form feature vectors s(pn)n,k .

3.6.2. A�nity matrix

Suppose the i-th frame si (or shot) are described by k features
Ó
s(1)i , s(2)i , . . . , s(k)i

Ô
.

We defined the distance w̃ij between si and sj as follows:

w̃ij =
kÿ

l=1

al
Îs(l)i ≠ s(l)j Î

÷l
,

where ÷l is the mean of all distance values with respect to l-th feature, and ai is the
tunable hyper-parameter for providing di�erent weights for each feature . The ÷l was
introduce to rescale distance values so that all distance values vary similar range in
each feature. We then defined the a�nity between si and sj by exp (≠flÎs

1

≠ s
2

Î),
where Î ·Î is the Euclidean distance and fl is set to the median of all distance values.

3.6.3. Other details

In video-shot segmentation, we preliminarily applied a median filter with a kernel
size of 15 to a sequence of a�nities to cope with outliers. After the shot segmen-
tation, we removed some shots whose length was shorter than 15 frames. A set of
spatial radius parameters was set to R = {15, 25, 50} in pixels. All visual features
are extracted from rectangular regions instead of circular region. This is because
FCN is trained with rectangular images and circular boundaries are not assumed.
To maintain the input image size in moderate range, we generated an empty image
in 300x300 resolution, and bind to it a rectangular region around points of gaze.
We avoided enlarging the rectangular region to keep the object size in realistic size.
A�nity thresholds were obtained by computing 10th, 30th, and 50th percentiles of
all the a�nities for each video. Output confidence histograms are scaled so that
each of them ranges from zero to one.
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4. Experiments

To evaluate the e�ectiveness of our approach, we built a novel dataset containing
multiple pairs of first-person videos and points-of-gaze data. To the best of our
knowledge, this dataset is the first to use multiple points-of-gaze sources in first-
person vision tasks. The experiments demonstrate that our approach can outperform
several state-of-the-art commonality clustering methods on the task of discovering
objects of shared attention in various interaction scenes.

4.1. Data Collection

Our new dataset consists of 29 sequences of two- and three-person interaction scenes
recorded in three di�erent environments. Each subject was equipped with a head-
mounted camera and an eye tracker to record first-person videos and points-of-gaze
data collectively. Refer to Figures 4.2, 4.3, 4.4, and those in Appendix B for the
overview for the interactions in dataset.
During each recording, subjects were asked to establish shared attention on various
objects such as books, projector screens, and faces, like they do in their everyday
interaction. Specific types of interactions included object exchanges, pointing by
hands followed by shifts in attention, and commonly looking at a person who came
into a room. In two-person sequences, subjects took one of two formations: side-
by-side (SbS) and face-to-face (FtF). In the SbS sequences, two subjects sat next to
each other where objects of shared attention were located in front of the subjects.
As for the FtF sequences, subjects were facing each other across from the objects to
be looked at commonly. In the three-person sequences, subjects were positioned in
a triangle at di�erence distances. In the dataset, we have 14 SbS, seven FtF, and
eight triangle sequences.
We used the Pupil Lab eye trackers [KPB14] to record HD-resolution first-person
videos with points-of-gaze data at 30 fps. All videos and gaze data were synchronized
manually. While the length of each sequence varied from 40 to 120 seconds, we
downsampled all the videos and points-of-gaze data to have 500 frames per sequence.
This makes the length of time-interval feature vectors presented in Section 3.6 equal
for all the sequences. Each video was downsized to 320x180 before feature extraction
to reduce computational cost. Eye trackers were calibrated before each recording
session. Missing gaze data due to eye blinks or tracking failures were filled with
linear interpolation.
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Each sequence was manually annotated with ground truth labels of time intervals
where all subjects looked at the same object. More specifically, we annotated a
binary label to the frames based on whether objects of shared attention were located
within a 15-pixel radius around points of gaze at the 320x180 resolution.

4.2. Evaluation Scheme and Baselines

We calculate the area under ROC curves (AUC scores) on confidence histograms
and binary ground truth labels to evaluate how accurately our outputs in Eq. (3.3)
can capture correct time intervals. First, we present a comparison of our method
with some baseline methods on two-person sequences (i.e., SbS and FtF). We im-
plemented the following three methods for the baselines.

Simplified version of our method. To provide evidence for the e�ectiveness of us-
ing a multiscale approach, we implemented the simplified version of our method that
used only a single combination of a spatial radius and an a�nity threshold. In the
experiments, we manually selected one parameter combination for each formation
that produced the highest AUC score.

Temporal commonality discovery. Chu et al. [CZD12] introduced the temporal
commonality discovery (TCD) method to extract a pair of common temporal pat-
terns from two input videos via branch and bound. We performed the TCD to find
a pair of time intervals with similar object-feature patterns from a pair of videos.
We extracted HSV color histograms and FCN deep features around points of gaze
as well as a time interval feature vector for each frame. As for the FCN feature,
we used the output of pool4 layer. Similar to the aforementioned simplified version,
we manually selected one radius to extract features that produced the highest AUC
score for each formation.

Co-localization. We also adopted a co-localization method (COLOC) proposed by
Tang et al. [TJLFF14] as another baseline. Originally, the COLOC generates object
proposals for each image and finds a group of proposals that are similar. Instead
of object proposals, we used spatiotemporal tubes for each video. The tubes were
constructed and evaluated in the same way as in the simplified method.

4.3. Results

Figures 4.2 and 4.3 show some of the results of our approach in the SbS sequences
and FtF sequences, respectively. Refer to Appendix ?? for the rest of the results. In
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Figure 4.1.: ROC curves of the proposed and baseline methods

each example, subjects were involved in the following interaction: Figure 4.2(A) a
subject pointed to a camera on a table and get the other subject sitting next to him
to look at it. Figure 4.2(B) a subject looked at a projector screen and spoke to the
other subject to see it; Figure 4.2(C) two subjects saw a teddy bear from di�erent
points of view; Figure 4.3(A) two subjects saw a bottle from di�erent points of view;
Figure 4.3(B) two subjects sitting face to face exchanged a book; and Figure 4.3(C)
a subject asked the other subject in front to put a block into a cylindrical box.

We found that higher confidence scores were given to correct time intervals in many
cases. Our method worked robustly on various sizes of objects from a small bottle in
Figure 4.3(A) to a large projector screen in Figure 4.2(B). We were also able to deal
with cases when the size of object instances was drastically di�erent, as shown in
Figures 4.2(A)(C) and Figure 4.3(C). By using points of gaze to limit the location of
features to be extracted and compared, we can discover objects of shared attention
even when background scenes are greatly similar across videos, such as in example
Figures 4.2(A)(C). This unique property of our approach is unlike many standard
object co-localization and co-segmentation methods [JBP10, RMBK06, TJLFF14,
ZJS14] that assume background scenes are di�erent across images.

We also present quantitative evaluations based on ROC curves and AUC scores in
Figure 4.1 and Table 4.1. On average, our method using multiscale spatiotemporal
tubes performed the best. Among the baseline methods, the combination of scale
parameters (r and ◊) that provided the highest AUC scores were di�erent between
SbS and FtF sequences. This indicates the necessity of considering multiple scales
to cope with various sizes of objects in videos.
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Method SbS FtF Avg.
(1) COLOC (r = 50, ◊ = 10) [TL14] 0.592 0.463 0.528
(2) COLOC (r = 25, ◊ = 10) [TL14] 0.574 0.622 0.598
(3) TCD (r = 50) [CZD12] 0.577 0.409 0.493
(4) TCD (r = 25) [CZD12] 0.480 0.441 0.461
(5) Simplified (r = 15, ◊ = 10) 0.789 0.657 0.723
(6) Simplified (r = 25, ◊ = 10) 0.779 0.701 0.740
Ours 0.889 0.803 0.846

Table 4.1.: AUC scores of the proposed and baseline methods. Combinations of
spatial radius r and a�nity threshold ◊ were manually selected to provide the
highest AUC score in SbS sequences ((1), (3), (5)) and FtF ones ((2), (4), (6)) in
baselines.

4.4. More than Two-Person Cases

Figure 4.4 shows how our method can work on cases where three subjects are present
in a scene. In example (A), one subject manipulated a box and asked the other
subjects to look at the box. In (B), a teddy bear was passed from one subject to
another followed by a third subject paying attention to the interaction. For both
cases, our method successfully discovered the objects of shared attention, while the
size of object instances varied significantly among videos (e.g., larger instances in
the point of view of the person holding an object and smaller instances in the other
people’s points of view). The AUC score on the three-person sequences was 0.89.

4.5. Failure Cases and Possible Extensions

Figures 4.2 and 4.3 include some failure cases. Discovering objects that were barely
observed in first-person videos was di�cult (e.g., the book in hands in example
Figure 4.3(E)). Moreover, false-positive responses were observed when subjects kept
looking at textureless regions like in Figures 4.2(C). Some other failure cases were
present in Figure 4.5. In example (A), our method failed to detect a shared attention
on a bag that appeared di�erently across videos due to harsh lighting conditions.
Note that since we included FCN deep feature to describe objects, this false negative
is rather eased. In Section 4.6, we will show that without FCN feature, our method
gives much fewer votes for this time interval.
In example (B), there are an amount of false positive votes for the time interval
where two persons are looking at each other during chatting. They look similar to
each other and thus our method could not distinguish between them.
Incorporating other types of features that do not rely on object appearances is also
an interesting extension. When a geometric relationship between head-mounted
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cameras is possible by preliminarily scanning a scene like [PJS12], we will be able to
distinguish objects placed at a di�erent location. If we particularly focus on objects
in motion (e.g., objects carried by hands), motion patterns can also be a salient
cue [LAZ+15].
Another interesting extension is to use segmentation around fixation points [MAF09]
or object proposal [CZLT14] instead of spatiotemporal tubes. The former extracts
objects around points of gaze by segmentation, while the latter provides bounding
boxes for object-like regions, which both allow us to avoid the size variability issue
while considering cluttered backgrounds. However, these approaches may not be
directly applied to our problem because they are not always good at dealing with
non-salient or non-textured objects. Although our method also not so e�cient with
multiple videos,

4.6. Feature Comparison

Features SbS FtF Tri Avg.
hsv 0.910 0.803 0.832 0.848
fc7 0.713 0.604 0.729 0.682
pool5 0.642 0.597 0.732 0.657
pool4 0.783 0.595 0.771 0.717
pool3 0.783 0.595 0.769 0.716
time 0.823 0.776 0.696 0.765
hsv+time 0.900 0.814 0.846 0.853
fc7+time 0.816 0.724 0.729 0.756
pool5+time 0.780 0.722 0.718 0.740
pool4+time 0.889 0.751 0.764 0.801
pool3+time 0.829 0.680 0.782 0.774
hsv+fc7 0.903 0.799 0.851 0.851
hsv+pool5 0.871 0.810 0.847 0.842
hsv+pool4 0.899 0.771 0.818 0.829
hsv+pool3 0.829 0.762 0.843 0.811
hsv+fc7+time 0.909 0.800 0.853 0.854
hsv+pool5+time 0.899 0.805 0.873 0.859
hsv+pool4+time 0.889 0.803 0.890 0.861

hsv+pool3+time 0.899 0.796 0.883 0.859
Table 4.2.: Feature comparison among HSV color histograms, time feature, deep
features of FCN extracted from di�erent layers, and their combinations.

In this section, we compare several features and their combinations to describe the
appearance of objects. Table 4.2 shows the AUC scores of the proposed approach
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with di�erent feature sets. We tested all possible combinations among HSV color
histograms, time feature, and the FCN deep features extracted from fc7, pool5,
pool4, or pool3 layers. Refer to Section 3.6.1 for the details of the features.
The following tendencies are observed:

• HSV color histograms perform pretty nice even without combined with other
features.

• FCN deep features do not work well by themselves, but they improve the AUC
scores when they are combined with HSV and time features. Especially, the
AUC scores in the three-person sequences (Tri) largely increased.

• Among FCN layers, features extracted from pool4 works the best in most cases.
It is surprising that we can achieve high AUC scores with simple HSV color his-
tograms, even though it has only 48-dimensions. A possible reason for this is that in
our problem settings, the appearances of objects are largely di�erent across views.
In addition, the points of gaze can fluctuate with head motion or measurement
error. HSV color histograms are robust for these appearance variability and gaze
fluctuations.
The second observation implies that FCN deep features can not provide discrim-
inative features for objects that are not included in a training dataset. However,
the increase of AUC score when they are combined with others suggests that FCN
features contain complementary information from HSV color histograms.
As for the third observation, we consider that middle layer (pool4) of FCN performed
better because it balances spacial details and semantics. The lower layer (pool3) does
not extract abstract information and not reflect semantics, while the higher layer
(fc7) loses spatial details that are not useful for classifying objects into object classes
in the training dataset.
It is obvious that HSV feature cannot distinguish two di�erent objects that share
similar color distributions. Figure 4.6(A) provides an example for this problem. In
the end of the video (highlighted in blue), a subject shifted his attention from a
checker board, cylindrical box, and cardboard box, while the other subjects were
looking at a block in his hand. In this case, HSV+time voted much more than
HSV+time+FCN did. The reason is that the objects viewed by the first subject,
especially the cylindrical box and cardboard box, look similar in color to the block
in the second subject’s hand. In our dataset, there are not so many cases that
subjects pay attention at the same time to di�erent objects that are similar in color.
However, it is not unusual that such situations occur in our everyday life. Testing
in such cases is left to the future work to improve our method.
The histogram in the upper row of Figure 4.6(B) is the same one as that in Fig-
ure 4.5(A). As mentioned in Section 4.5, a bag looks in di�erent color across views
due to the lighting condition, and thus there are false negative votes for the time
interval of the first highlighted column. As can be seen from Figure 4.6(B), without
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FCN feature there are much fewer votes for the time interval. This result suggests
that FCN feature can provide information complementary to that of HSV color
histograms.

In summary, simple HSV color histograms work well in the current dataset, while
it is necessary to be tested other cases where people simultaneously pay attentions
to di�erent objects similar in color. FCN deep features contain information comple-
mentary to HSV color histograms, and those extracted from middle layer are useful
since they balance the spatial details and abstract semantics.

4.7. Limitations

In this section, we discuss several limitations of our method yet to be solved. Cur-
rently, our method can discover objects of shared attention under moderate condi-
tions. However, there are some cases where interactions are recorded in rather harsh
but not unusual conditions as follows:

• An object has largely di�erent appearances across views due to lighting con-
ditions or its design.

• There are many objects that have the same (or similar) appearances.

In the former case, it is di�cult to match objects across views by their appearances.
For example, a white bag being viewed by a person may appear much darker when
being viewed against the light by another person on the opposite side. Another
example is that a book read by a person may appear in completely di�erent way
from another person on the opposite side because of the white pages and its colorful
covers. As for the second limitations, our method will discover false positive objects
of shared attention when people pay their attention at once to objects that share
the same appearance. These two limitations are both resulted from that objects are
described only by their visual features. To remedy these problems, an interesting
extension is to incorporating other types of features that do not rely on object
appearances such as geometric relationship among people and motion patterns of
objects. When a geometric relationship between head-mounted cameras is available
by preliminarily scanning a scene like [PJS12], we will be able to distinguish objects
placed at a di�erent location. If we particularly focus on objects in motion (e.g.,
objects carried by hands), motion patterns can also be a salient cue [LAZ+15].

Another limitation is the scalability of our method. Currently, our approach tries
all combinations of the scales and persons. With Np persons, Nr radii, and N◊

a�nity thresholds, our method find a cluster of commonality for NpC2

NrN◊ pairs.
In practical, we only need to try the small number of scales, so the main problem is
the size of group of people. While our experiments demonstrated that our multiscale
approach is e�ective for the object-size variability problem, it only works with the
moderate size of a social group. The number of pairs to consider increases as the size
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of group grows. If it is necessary for some applications to discover objects that are
being looked at by many people, then our method still has a room for improvement.
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Figure 4.2.: Confidence histograms and image frames in the SbS sequences. Time
intervals and image frames where objects of shared attention were observed are
highlighted in pink. Blue circles denote regions attended by subjects. We selected
the radius from the scale pair that gives the highest confidence score at each time
point. 33
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Figure 4.3.: Confidence histograms and image frames in the FtF sequences. Time
intervals and image frames where objects of shared attention were observed are
highlighted in pink. Blue circles denote regions attended by subjects. We selected
the radius from the scale pair that gives the highest confidence score at each time
point.34
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Figure 4.4.: Confidence histograms and image frames. Time intervals and image
frames where objects of shared attention were observed are highlighted in pink.
Circles denote regions attended by subjects. We selected the radius from the scale
pair that gives the highest confidence score at the time point. Blue, purple, and
yellow circles correspond to video pairs of video 1 and 2, video 1 and 3, and video
2 and 3, respectively.
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Figure 4.5.: Confidence histograms and image frames for failure cases. (A) False-
negative detection and (B) False-positive detection highlighted in blue.
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4.7 Limitations
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Figure 4.6.: Vote comparison between feature set with or without FCN feature.
(A) In the end of the sequence highlighted in blue, two subjects are looking at
di�erent objects that share similar color distributions. (B) FCN deep feature eases
the false negative votes that are caused by color variability in appearance due to
the lighting condition.
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5. Conclusion and Future work
In this thesis, we introduced a novel task of discovering objects of shared attention
in multiple first-person videos. Since objects of shared attention reflect the contexts
of the social interactions in our daily life, discovering such objects should be help-
ful for the further understanding of first-person visions. The main challenge to be
solved for this task is how to deal with the object-size variability across objects and
views. The key idea of our approach presented in this thesis is to segments videos
into multiscale spatiotemporal tubes. Our experimental results demonstrated the
e�ectiveness of our multiscale approach over several state-of-the-art commonality
discovery methods. For this evaluation, we collected a novel dataset that provides
multiple first-person videos and points-of-gazed data, which record various interac-
tions by two or three persons in several formations. We also obtained some insights
for which features to use: simple HSV color histograms work well; while FCN deep
features did not work well by themselves, it provides some information comple-
mentary to HSV color histograms, resulting in the increase in AUC scores when
combined with HSV color histograms; deep features extracted from the middle layer
of FCN works the best compared to those extracted from other layers.
As discussed in Section 4.7, our method has several limitations yet to be solved.
Some limitations are caused by that our method only uses the appearance-based
feature to describe objects. With such features, it is di�cult to match objects which
largely di�er in their appearances across views due to lighting conditions or object
designs. Another limitation is the scalability of our method. Currently, our method
works with interactions in a moderate size of group. In this thesis, we demonstrated
that multiscale approach is the key for this task. How to prune unnecessary person
pairs and scale pairs before conducting costly computation is one of the next key
steps for e�cient discovery.
Based on the insights we obtained from the results of the experiments, we list up
several future directions of this work.

Incorporating non-appearance-based features As already suggested in Section 4.7,
incorporating non-appearance-based features will be helpful for discovering objects
of shared attention in more di�cult cases. With geometric relationships (e.g., where
he/she is, which direction he/she is facing to) among people in a group, we can find
objects of shared attention in a more accurate way. We can avoid matching di�er-
ent objects that share similar appearance on the ground that two persons are facing
to di�erent places. We can also avoid wasteful computation with such information
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Chapter 5 Conclusion and Future work

when people are obviously looking at the di�erent places. Motions patterns also are
helpful in some cases. The object size can drastically change when objects move at
approaching, receding or being exchanged. Gaze may not be exactly on the objects
when they move fast. In such cases, correlation of the motion patterns across views
provides important cues for matching the objects.

Generating candidates of objects of shared attention via object proposals As
some results of our experiments show, there are false positive matching between
untextured parts of objects (e.g., a surface of a table and that of a wall). To
avoid such matching, it is promising to use object proposal methods [CZLT14] for
generating candidates of objects to be matched across views. We can weigh object
proposals by their size, objectness (a sort of saliency), and distance from points-of-
gaze. While it is uncertain that we can obtain nice object proposals under cluttered
background as it always the case in first-person videos, this is a still interesting
extension.

Modifying the task: Discovering objects attended by a subgroup of people In
this thesis, we aimed to discover objects of shared attention, which was defined as
those being looked at by all of the members of the group. An interesting modification
of this task is to discover objects that are looked at by part of the group. In
cooperative work, for instance, a group may split to subgroups to complete di�erent
tasks in parallel. Members of the subgroups might be split, merged or exchanged
as the work goes on. In such cases, discovering objects commonly attended to
by subgroups will provide important cues for discovering subgroups, understanding
group dynamics, and how the overall tasks are completed. In this way, this modified
task might be more challenging but can lead to another fruitful result.
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A. Mathematical Background of
Commonality Clustering

We here describe the mathematical background of the normalized spectral cluster-
ing for a bipartite graph that is used in Section 3.4 as a commonality clustering
method. First, we introduce spectral clustering, which is formulated as an eigen-
value problem of graph laplacian matrix (Appendix A.1). We then present a variant
of spectral clustering, known as normalized spectral clustering (Appendix A.2). At
the commonality discovery, what we want is similar instances across two sets (in our
case, two videos), which can be reduced to a bipartite graph. In this case, normal-
ized spectral clustering can be e�ciently conducted via singular value decomposition
(SVD) (Appendix A.3).

A.1. Spectral Clustering
Spectral clustering [NJW01, Lux07] is a widely used clustering method, which uti-
lizes spectral of an a�nity matrix of data. We here focus on two-class clustering since
our method uses two-class commonality clustering. Given a�nity matrix W œ Rn◊n

of n data points, two important matrices, degree matrix D and graph laplacian L
are defined as follows:

D :=

Q

cca

qn
j=0

w
1j

. . .
qn

j=0

wnj

R

ddb ,

L := D ≠ W,

where wij is the (i, j)-th entry of W , and D is a diagonal matrix whose i-th diagonal
entry is the sum of entries of the i-th row of W . Note that all entries of W are
assumed to be positive.
The algorithm of the spectral clustering for two-class case is as follows:

Spectral Clustering (2-class case)

1. With graph laplacian L computed from the a�nity matrix, solve the following
minimization problem:

zú = arg min
zœRn

z€Lz, s.t. z€z = 1, z€
1n = 0, (A.1)
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Chapter A Mathematical Background of Commonality Clustering

where 1n is an n-dimensional all-one vector.

2. Apply k-means clustering [Bis06] for zú (in this case, k = 2).

The i-th entry of zú is tied with the i-th data point. If the i-th and j-th entires
of zú belong to the same cluster after the second step, then that indicates the
corresponding data points belongs to the same cluster.

To understand what Eq. (A.1) means, let us see the following five properties of the
graph laplacian L:

Properties of the Graph Laplacian

1. The objective function of Eq. (A.1) is the weighted sum of square distance
among entires of z.

z€Lz = 1
2

ÿ

i,j

wij(zi ≠ zj)2 =
ÿ

i<j

wij(zi ≠ zj)2 Ø 0. (A.2)

This can be easily derived from the definition of L.

2. L is symmetric and positive-semidefinite. The symmetrisity is obvious from
the definition of L. The positive-semidefiniteness is the result of Eq. (A.2):
For arbitrary z œ Rn, z€Lz Ø 0 holds.

3. The last equality of Eq. (A.2) obviously holds when z is n-dimensional all-one
vector 1n.

4. L has n non-negative real-valued eigenvalues 0 Æ ⁄
1

Æ ⁄
2

Æ · · · Æ ⁄n, since L
is symmetric and positive-semidefinite.

5. Due to the properties 3 and 4, L has 1n as an eigenvector of ⁄
1

= 0.

With the property 1, Eq. (A.1) can be interpreted as follows.

• Minimizing z€Lz forces zi≠zj to be zero (or small) for large wij, which implies
the i-th and j-th entries of z take the same (or similar) value when the i-th
and j-th data points show high a�nity. As a consequence, these points with
high a�nity will be clustered into the same one after the k-means clustering
step.

• The constraint z€
1n = 0 forces z has both positive and negative entries. As

the result, data points corresponding to positive entries of z form a cluster,
and those corresponding to negative entries form another cluster.
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A.2 Normalized Spectral Clustering

• Minimizing z€Lz also forces wij to be small when the i-th and j-th points
belong to di�erent clusters, since zi and zj have di�erent sign and thus (zi ≠
zj)2 > 0, which inevitably increases the objective quantity. In other words, it
assigns the i-th and j-th point into di�erent clusters when their a�nity is low.

The zú that minimizes the objective function of Eq. (A.1) can be obtained by solving
eigenvalue problem.

Lz = ⁄z. (A.3)

Since z€Lz = ⁄, zú is the eigenverctor corresponding to the second smallest eigen-
value ⁄

2

.

So far, we have introduced spectral clustering for two-cluster case. For general k
clusters, one only need to take eigenvectors corresponding to the second to (k+1)-th
smallest eigenvalues. The whole procedures are summarized as follows:

Spectral Clustering (k-class case; eigenvalue problem formulation)

1. With graph laplacian L computed from the a�nity matrix, solve the following
eigenvalue problem for l = 2, . . . (k + 1):

Lzl = ⁄lzl,

where ⁄
1

Æ ⁄
2

Æ · · · Æ ⁄n.

2. Construct a matrix Z = (z
2

. . . zk+1

), whose i-th column corresponds to zi+1

,
and apply k-means clustering for Z by regarding that each row represents the
corresponding data point.

A.2. Normalized Spectral Clustering

Normalized spectral clustering [NJW01, Dhi01, Lux07] is a variant of the spectral
clustering, which takes into account di�erent cluster size among clusters. Instead of
the graph laplacian, normalized spectral clustering uses a normalized graph lapla-
cian:

L
norm

:= D≠ 1
2LD≠ 1

2 = I ≠ D≠ 1
2WD≠ 1

2 , (A.4)

where D is a degree matrix, W is an a�nity matrix and L is a graph laplacian.
Normalized spectral clustering can be done by simply replacing L with L

norm

in the
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Chapter A Mathematical Background of Commonality Clustering

spectral clustering algorithm1. The properties 2 to 4 of the L hold for L
sym

. As for
the property 1, the following relation holds:

z€L
norm

z = 1
2

ÿ

i,j

wij

Q

a ziÔ
di

≠ zjÒ
dj

R

b
2

,

where di is the i-th diagonal entry ofD. In the normalized graph laplacian case, mini-
mizing the objective quantity z€L

norm

z can be viewed as maximizing z€D≠ 1
2WD≠ 1

2z
because

z€L
norm

z = z€L
norm

z = z€
1
I ≠ D≠ 1

2WD≠ 1
2
2
z = 1 ≠ z€D≠ 1

2WD≠ 1
2z,

where the second term is always non-negative since all entries of D≠ 1
2WD≠ 1

2 are
positive. As a consequence, the eigenvalue problem Eq. (A.3) becomes,

L
sym

z = ⁄z,

≈∆ (1 ≠ D≠ 1
2WD≠ 1

2 )z = ⁄z,

≈∆ D≠ 1
2WD≠ 1

2z = ‡z, (A.5)

where ‡ := 1 ≠ ⁄. Instead of selecting the eigenvector of the second smallest eigen-
value, that of the second largest eigenvalue should be adopted. For k-class clustering,
the eigenvectors of the second to (k + 1)-th largest eigenvalues is used.
Let us look into the new objective z€D≠ 1

2WD≠ 1
2z. This can be expand to the

following form.

z€D≠ 1
2WD≠ 1

2z = 1
2

ÿ

i,j

Q

a wijÔ
di

Ò
dj

R

b zizj,

= 1
2

ÿ

i,j

Û
wij

di

Û
wji

dj
zizj.

wij/di is the ratio of wij to the sum of i-th row of W . Therefore, normalized spectral
clustering gives higher importance on pairs with larger normalized a�nity, i.e., pairs
whose a�nity covers large fraction in the rows.

A.3. Normalized Spectral Clustering for Bipartite
Graph

Suppose there are two groups of data points, and we want to perform clustering to
discover similar data across groups. What we want to consider is not the a�nity
1According to [NJW01, Lux07], it is useful to normalized each row of the matrix that constructed
by eigenvectors before k-means clustering when there is a large variance in the diagonal entries
of D. We omitted here this step since this is less likely to happen in our case.
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A.3 Normalized Spectral Clustering for Bipartite Graph

between data points within a group, but those between groups. Such situation can
be seen as clustering on a bipartite graph, where each of the group corresponds to
di�erent vertex set, and edges exists only between the vertex sets. In this case, the
a�nity matrix of data points can be modeled as follows:

W =
A

O C
C€ O

B

,

where O is zero matrix, and C œ Rn1◊n2 is a group-between a�nity matrix, whose
(i, j)-th entries is the a�nity of the i-th data of one group and j-th data of the other
group, and nk is the number of data in the k-th data group. The left hand side of
Eq. (A.5) becomes

D≠ 1
2WD≠ 1

2z =
Q

a D
≠ 1

2
1

O

O D
≠ 1

2
2

R

b
A

O C
C€ O

B Q

a D
≠ 1

2
1

O

O D
≠ 1

2
2

R

b z,

=
Q

a O D
≠ 1

2
1

CD
≠ 1

2
2

D
≠ 1

2
2

C€D
≠ 1

2
1

O

R

b z,

where Di are the degree matrices of i-th data group. By defining the first n
1

entries
of z as z

1

and the rest n
2

entries as z
2

(i.e., z :=
1
z€
1

z€
2

2€
), we obtain from

Eq. (A.5),

D
≠ 1

2
1

CD
≠ 1

2
2

z
2

= ‡z
1

,

D
≠ 1

2
2

C€D
≠ 1

2
1

z
1

= ‡z
2

.

These equations are what defines SVD of the normalized group-between a�nity
matrix C̃ := D

≠1/2
1

CD
≠1/2
2

. The z
1

, z
2

are the left and right singular vectors respec-
tively, and ‡ is the corresponding singular value. For k-class clustering, the singular
vector pairs of the second to (log

2

ÁkË + 1)- th singular value are used (Á·Ë is the
ceiling function). Not k but only log

2

ÁkË singular vector pairs are required because
each pair contains bi-modal information.

The k-class normalized spectral clustering for bipartite graph is summarized as fol-
lows.

Normalized Spectral Clustering for Bipartite Graphs

1. With the normalized group-between a�nity matrix C̃ := D
≠1/2
1

CD
≠1/2
2

com-
puted from the graph-between a�nity matrix, perform SVD and obtain the
left and right singular vector pairs of the second to (log

2

ÁkË + 1)-th largest
singular value.
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2. Construct a matrix Z =
1
Z€

1

Z€
2

2€
by vertically stacking Z

1

and Z
2

, where Z
1

(or Z
2

) is the the left (or right) singular matrix, whose columns are the left (or
right) singular vectors obtained at the previous step. Apply k-means clustering
for Z by regarding each row represents the corresponding data point2.

Refer to [Dhi01] for more details.

2According to [NJW01, Lux07], it is useful to normalized each row of Z when there is a large
variance in the diagonal entries of D. In such case, instead of the row normalization, we can
also use Z =

1
(D≠1/2

1 Z1)€, (D≠1/2
2 Z2)€

2
as [Dhi01]. We omitted here these steps since this is

less likely to happen in our case.
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B. Other Results

Here, we provide the graphical results that are omitted in Chapter 4.
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Figure B.1.: Other results omitted in the main text.
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Figure B.2.: Other results omitted in the main text.
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Figure B.3.: Other results omitted in the main text.
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Figure B.4.: Other results omitted in the main text.
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Figure B.5.: Other results omitted in the main text.
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Figure B.6.: Other results omitted in the main text.
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Figure B.7.: Other results omitted in the main text.
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