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Abstract

Task parallel programming makes it easy for programmers to write parallel applications
by removing the burden of dealing with low-level details of thread management, task
scheduling, and load balancing. Since task parallel run-time systems employ dynamic
work-stealing scheduler for running an application on multiple threads, the performance
modeling of a task parallel program, i.e. how the program performs as the number of cores
increases or how long it executes on a different input, is hard to predict with conventional
analytical models.

Regression can be used to build a performance model when formulating reliable an-
alytical model is unfeasible. First, we run the target application multiple times to learn
the execution time for differing input parameters and worker counts. Then a regression
model is built using that training data.

However, past such models, mainly developed for well load-balanced applications,
perform poorly when applied to task parallel applications where there is much uncertainty.
Also, the accuracy of those models significantly decreases when the number of workers
used in the prediction target execution becomes bigger than the number of maximum
workers used during the training.

We build performance models with much better generalization than current methods,
exploiting not only the execution time but also the additional information gathered during
the training profilings.
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Chapter 1

Introduction

1.1 Background

From 1985 to 2005 the performance of CPUs increased dramatically, on average 50% per
year [17]. This fast growth meant that users and programmers could often simply wait
for the next generation of processors to obtain increased performance from an application
program. However, this growth has flattened since 2005 due to physical difficulties such
as power consumption and heat dissipation. Since then, development of mainstream
computer hardware has shifted from increasing the clock speed of a single-core CPU to
increasing the number of cores integrated into a multi-core CPU.

Due to this trend in computer hardware, parallel programming is becoming more and
more ubiquitous. However, explicitly specifying all the details of a parallel application
is a complicated and tedious work for programmers. Conventional parallel programming
methods, such as POSIX Threads (pthreads) [23] and the message passing interface stan-
dard (MPI) [26], require developers to deal with low-level details of thread management,
load balancing, and task scheduling. This makes writing parallel programs very difficult
as both programs and the hardware get more sophisticated.

Task parallel programming models are recently gaining interest to remove this burden
from programmers and make writing parallel applications easier. In task parallel pro-
gramming, programmers use tasks to express computations and their logical order. Then
task scheduler is responsible for running these tasks on multiple processors dynamically.

1.2 Motivation

The dynamic nature of task parallel run-time systems makes it difficult to predict scal-
ability behavior of task parallel applications. Therefore, performance modeling tools for
task parallel applications are in high demand.

There are many uses for performance models. One use case for a performance model
is that it enables to gauge the execution time of parallel applications on large many-core
systems. On big systems where full hardware availability is scarce, it is important to know
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CHAPTER 1. INTRODUCTION 6

execution time without running to make hardware reservations appropriately or to notice
performance bottlenecks of the application before conducting an expensive execution.

Another example usage of performance models, especially for task parallel applica-
tions, is that they can be used choose optimal configuration parameters which will min-
imize the execution time of the application. Many task parallel applications have con-
figuration parameters which do not affect the program’s output value and correctness
but significantly affects execution time of the application. Task parallelism is well-suited
for divide conquer applications; task cutoff threshold determines when to create a new
separate task or to just process the divided part inside the current task. Choosing cor-
rect cutoff values is important because if we create too many tasks, the program will
suffer from excess task creation overhead. Conversely, if we do not create enough tasks,
it cannot exploit enough parallelism available in the system. The number of cores to
run an application is also a configuration parameter because in some cases using only
80 cores on a 100 core system may result in the shortest execution time. There are
also application-specific configuration parameters. For example, the sort application
included in Barcelona OpenMP tasks suite (BOTS) [18] takes three configuration param-
eters, which each define when to do following algorithm transitions: parallel mergesort
→ serial mergesort → serial quicksort → serial insertion sort.

Existing modeling techniques can be divided into two main types: profiling based
performance models specifically designed for certain programming models and general-
purpose regression based performance models. Profiling based performance models use
the information gained during its profiling phase with analytical models or simulators to
predict the execution time for the target number of workers. However, the prediction
is only limited for inputs seen in the profiling phase. General purpose regression-based
performance models, on the other hand, execute many training runs to train a regres-
sion model. These models can estimate the execution time for unseen inputs, but the
estimation by currently existing models does not extrapolate well if the input size or the
number of workers is beyond the training range.

Our goal is to build a regression based performance model which generalizes accurately
on unseen inputs and extrapolates reasonably.

1.3 Organization of The Thesis

Chapter 2 introduces the basics of task parallel programming with its directed acyclic
graph (DAG) model, a widely used analytical modeling method of task parallel programs.
This chapter also presents several representative task parallel programming implementa-
tions with examples. In Chapter 3, we introduce several theoretical formulations in which
the performance modeling problem can be seen as. Chapter 4 introduces the major per-
formance modeling methods. The past works are divided into profiling based techniques
(Section 4.1) and regression based techniques (Section 4.2). several representative works
about performance modeling of task parallel programs as well as other parallel program-
ming models in general.

We propose our direct regression based performance model in Chapter 5. In Chapter 6,
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we present two different performance models based on profiling assisted regression. They
employ two-step linear regression and multi-task neural networks regression respectively.
These two profiling assisted regression methods exploit some additional information which
we can gather during the training, such as the number of tasks created, work, and the
task-stealing overhead, to improve generalization.

Chapter 7 discusses the results of our performance modeling techniques and compare
the results with some past works. The paper finishes with the summary and introduction
of future works in Chapter 8.



Chapter 2

Task Parallel Programming Models

Conventional parallel programming languages and frameworks such as the message pass-
ing interface standard (MPI) [26] and Pthreads [43] provide programming models based
on the direct abstraction of hardware. In these programming models, programmers need
to explicitly specify when and where each computation should be executed and how the
computations communicate, load balance, and synchronize with each other. This puts
high burden on programmers and decreases the productivity heavily. The burden is
becoming heavier as machines become more hierarchical and more sophisticated.

Task parallel programming model is recently proposed to address these issues. In task
parallel programming, programmers ubiquitously use tasks to express logical tasks and
their order. Tasks can be nested and created at arbitrary points of execution. Then it
should be left to the runtime environment, or the scheduler, to decide how to actually
divide the tasks between underlying hardware processors.

2.1 Distinguishing Characteristics

Less Burden on Programmers

Since programmers ubiquitously use tasks to express computation without any hard-
ware specific synchronization and hardware allocation, it is much easier for programmers
compared to the conventional programming models.

Better Performance

Some conventional programming models use operating system (OS) threads. Due to their
relatively expensive context switching and synchronization mechanisms, their overhead is
very large and efficiently leveraging a massive degree of parallelism with these solutions
may be difficult. However, task parallel programming implementations use dynamic
scheduling and lightweight user-level threads, offering efficient context switching and
synchronization operations. The overhead of user-level threads is much smaller than
the OS-level threads because the thread management does not require system calls.

8
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Figure 2.1: A DAG Representation of Multithreaded Application

2.2 The Directed Acyclic Graph (DAG) Model

The directed acyclic graph (DAG) model [10] for multithreading provides a general and
precise quantification of parallelism. The DAG model views the execution of a multi-
threaded program as a graph of vertices called strands, sequences of serially executed
instructions containing no parallel control, with graph edges indicating ordering depen-
dencies between strands. An example of DAG is shown in Figure 2.1. This DAG contains
2 spawns and 9 strands in total. The dependencies between strands are represented by
graph edges. If a strand x must complete before a strand y can begin, we say that x
precedes y and write x ≺ y. If neither x ≺ y nor y ≺ x, we say that x and y are parallel
and write x ∥ y. For example, 2 ≺ 3, 2 ≺ 7 ≺ 8, 3 ∥ 7, and 3 ∥ 8 in Figure 2.1.

The DAG model provides two measures for describing program’s parallelism quanti-
tatively. These two measures are explained in the following sections.

2.2.1 The Work Law

The first measure for describing parallelism is work, which is the total time spent in all
the strands. The execution time of the program on P processors is usually denoted as
Tp. The work is equal to the execution time on one processor, thus, we denote it as T1.
The work for the example DAG in Figure 2.1 is 9 if we assume that all strands can be
executed in unit time.

In a simple theoretical model of Work Law, P processors can execute at most P
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instructions at a time. Thus, the following inequality holds for Tp.

Tp ≥ T1/P (2.1)

The above inequality provides a lower bound for the parallel execution time on P pro-
cessors TP and is called work law.

Generally, the ratio T1/Tp is called the speedup of a program. Work law implies that
the speedup never exceeds P . When T1/Tp = P , it is called linear speedup. Although
it is rare, if linear speedup is achieved the program is perfectly scalable. Sometimes the
speedup becomes bigger than P due to some practical factors, such as caching, which is
not accounted in the work law. It is called super-linear speedup.

2.2.2 The Span Law

The other measure span is the maximum time to execute along any path in the DAG.
With the simplified assumption that it takes exactly unit time to execute a strand, the
span of the DAG in Figure 2.1 is 6. It corresponds to the paths 1 ≺ 2 ≺ 3 ≺ 5 ≺ 6 ≺ 9
or 1 ≺ 2 ≺ 3 ≺ 4 ≺ 6 ≺ 9. This path is also called critical path of the DAG.

Span is usually written as T∞ because it is the fastest possible time the DAG could be
executed on a machine with an infinite number of processors. Obviously, a finite number
of processors can not perform better than an infinite number of processors. Thus, span
provides the following lower bound for the P -processor execution time.

Tp ≥ T∞ (2.2)

2.2.3 Parallelism

The ratio of work to span, T1/T∞, is called parallelism. For example, the parallelism
of the DAG in Figure 2.1 is 9/6 = 1.5. Using the work and laws we can conclude that
perfect linear speedup cannot be achieved if the number of processors P is greater than
the parallelism T1/T∞. Intuitively it can be explained that if the parallelism is less than
P , there won’t be enough work to keep the P processors busy all the time.

2.2.4 DAG Recorder

DAG Recorder is a profiler included in MassiveThreads [41] which records the directed
acyclic graph of a program execution with timestamps and worker ids at each computation
node (strand). In order to capture the DAG structure, DAG Recorder instruments mea-
surement code at start and end of a task. Then it builds the directed acyclic graph of the
entire computation with timestamps and worker ids at each computation node (strand).
The graph recorded by DAG Recorder can be visualized with DAGViz tool [28].

Along with the DAG file, DAG Recorder also generates a stats text file that sum-
marizes various pieces of aggregate information from the execution. The following list
explains some of the aggregate metrics.



CHAPTER 2. TASK PARALLEL PROGRAMMING MODELS 11

• create task: The number of times tasks are created, not including the main task.
• wait tasks: The number of times wait operations are issued. Each wait may wait
for multiple tasks, so this number may not match create task.

• work (T1): The cumulative time (clock cycles) spent in executing the application
code. Total across all cores. This does not include time spent in the runtime system
(e.g., task creation overhead). If the application perfectly scales, this number should
be constant no matter how many cores you used for execution. It is same as the
work introduced in Section 2.2.1.

• delay: The cumulative time available tasks are not executed despite there are
〝spare〟cores not executing any task. This value would be zero under a hypothetical
greedy scheduler, a scheduler which immediately dispatches any available task to if
any available core, without any delay.

• no work: The cumulative time cores spent without available tasks.
• critical path (T inf): Critical path of the DAG, i.e, the longest path in the
DAG.

2.3 Implementations

There are many languages, framework, and libraries which supports lightweight threads
task parallelism, such as Cilk Plus [1], Intel threading building blocks (TBB) [46], Java
fork/join framework [35], Nanos++ [2], Qthreads [55], and Argobots [48].

In this section, OpenMP and Intel Cilk Plus, two of the most famous task parallel
programming models, are introduced. Each programming model is introduced with an
example implementation of quicksort in that model; thus it may be useful to look at the
corresponding implementations to see differences between the programming models.

2.3.1 OpenMP Tasks

OpenMP (Open Multi-Processing) is an application programming interface (API) for
shared memory multithreaded programming in C, C++, and Fortran languages. It sup-
ports most major platforms, operating systems, and processor architectures. OpenMP
consists of three main components: a set of compiler directives for specifying parallel be-
havior in an application’s code, run-time library routines, and environment variables for
altering the execution features of an application. It is standardized by a joint committee
of most major computer hardware and software vendors, such as Intel, ARM, AMD, and
IBM. Therefore, most C/C++ and Fortran compilers support OpenMP preprocessing
directives, including GNU C compiler (GCC) and Intel C++ and Fortran compiler (icc
and ifort).

An OpenMP implementation example of quicksort algorithm is shown in List 2.1.
OpenMP specific directives starts with keyword #pragma. The #pragma omp parallel

for directive on line 23 spawns a group of threads equal to the number of cores in the
underlying system, or a specified value if the OMP NUM THREADS environment variables
is set, then divides the following loop iterations between the spawned threads. There
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are two main types for how loop iterations are divided into threads: static and dynamic
scheduling. The static scheduling divides the loop into equal-sized groups and each thread
executes a single group. The dynamic scheduling uses an internal work queue to give loop
iterations to threads dynamically [3]. Here, other details of the scheduling policies are
left out for simplicity. Again #pragma omp parallel directive creates a group of threads
equal to the number of cores in the underlying system. Following #pragma omp single

directive suppresses these threads so that only one thread executes the following state-
ment. The suppressed threads will be used when a task is spawned from the currently
active thread.

The #pragma omp task directive on line 13 spawns its next statement, i.e. line 14,
as a separate task, so that it may be executed by a different thread. On the other hand,
the task on line 15 is executed on the current thread. Then the #pragma omp taskwait

directive on line 16 synchronizes these two tasks. These two new task parallel directives,
#pragma omp task for task creation and #pragma omp taskwait for synchronization of
created child tasks, are supported since OpenMP version 3.0 [5].

List 2.1: Parallel Quicksort Implementation in OpenMP [5]

1 #include <algorithm>

2 #include <iterator>

3 #include <functional>

4 #include <math.h>

5 #include <omp.h>

6

7 using namespace std;

8

9 template <typename T>

10 void quicksort(T begin, T end) {

11 if (begin != end) {

12 T middle = partition(begin, end, bind2nd(less<typename iterator_traits<T>::

value_type>(), *begin));

13 #pragma omp task

14 { quicksort(begin, middle); }

15 quicksort(max(begin + 1, middle), end);

16 #pragma omp taskwait

17 }

18 }

19

20 int main() {

21 int n = 100;

22 double a[n];

23 #pragma omp parallel for

24 for (int i = 0; i < n; i++) {

25 a[i] = cos((double) i);

26 }

27

28 #pragma omp parallel

29 #pragma omp single

30 quicksort(a, a + n);

31 }



CHAPTER 2. TASK PARALLEL PROGRAMMING MODELS 13

2.3.2 Cilk Plus

Intel Cilk Plus [1] is an extension to the C and C++ languages which supports the task
parallel programming model. The Cilk Plus extension is supported through Intel C++
compiler and GCC with Cilk Plus extensions.

A Cilk Plus implementation example of quicksort algorithm is shown in List 2.2. Cilk
Plus extension keywords are cilk for, cilk spawn, and cilk sync. Unlike OpenMP,
programmers do not need to declare a parallel region creation at the beginning of their
Cilk Plus application. The special clauses cilk for, cilk spawn, and cilk sync are sim-
ilar to OpenMP’s #pragma omp parallel for, #pragma omp task, and #pragma omp

taskwait respectively. The cilk for is implemented by calling cilk spawn in divide-
and-conquer pattern.

List 2.2: Parallel Quicksort Implementation in Cilk Plus [1]

1 #include <algorithm>

2 #include <iterator>

3 #include <functional>

4

5 #include <math.h>

6

7 using namespace std;

8

9 template <typename T>

10 void quicksort(T begin, T end) {

11 if (begin != end) {

12 T middle = partition(begin, end, bind2nd(less<typename iterator_traits<T>::

value_type>(), *begin));

13 cilk_spawn quicksort(begin, middle);

14 quicksort(max(begin +1, middle), end);

15 cilk_sync;

16 }

17 }

18

19 int cilk_main() {

20 int n = 100;

21 double a[n];

22 cilk_for (int i = 0; i < n; i++) {

23 a[i] = cos((double) i);

24 }

25

26 quicksort(a, a + n);

27 }



Chapter 3

Problem Formulation

The ultimate goal of performance modeling is to be able to estimate the required execution
time for the application for any given load (input parameters) and hardware (number of
cores) combination. We can fulfill this goal using many We can interpret this performance
model in many different ways. In this section, we introduce several such interpretations.
It should be noted that the problems formulated are not mutually exclusive.

3.1 Regression

We first measure several different execution times of the target program on varying num-
ber of processors and varying inputs. Using these measurement results as a training data,
we build a regression model which can estimate the execution time for the application for
any unseen input parameters and number of processors combination. This enables us to
interpret performance modeling as a regression problem.

Predicting real-valued attributes is called regression in the statistical literature, and it
is researched widely in both machine learning and statistics. Other alternative names used
for regression are functional prediction, real value prediction, continuous class learning,
and function approximation.

3.1.1 Linear Regression

One of the most widely used models for regression is linear regression. This assumes that
the response variable is a linear function of the inputs as in the following equation.

y(X) =
D∑
j=0

wjxj + ϵ (3.1)

where X is the input features vector, w = (w0, . . . , wp) is the weight vector, and ϵ is the
residual error between linear predictions and the true response. We usually set x0 = 1 to

14
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create a constant intercept term. Then the goal of linear regression is to find the weights
that best fits the given training data.

The simplest linear regression technique (ordinary least squares) finds weights that
minimize the mean squared error (MSE) between the predicted and actual values:

min
w

∥Xw − y∥22 (3.2)

Whereas, more advanced techniques like Ridge (L2-regularized) regression and Lasso
(L1-regularized) regression minimizes following values respectively.

min
w

∥Xw − y∥22 + α∥w∥22 (3.3)

min
w

1

2nsamples

∥Xw − y∥22 + α∥w∥1 (3.4)

These techniques impose a penalty on the size weights to prevent from overfitting.
Here, α ≥ 0 is a parameter that controls the amount of regularization.

Linear Regression With Nonlinear Terms

With linear regression, we can only model a linear relationship between the input features
X and the response y. The simplest way to create a nonlinear relationship between the
them is to create extra predictor variables that are transforms of some x. For example,
if we add a predictor that is the square of x1 we get the following model.

y = w0 + w1x1 + w2x1
2 (3.5)

Now, if just substitute x2 = x1
2 we get following usual linear model.

y = w0 + w1x1 + w2x1
2 = w0 + w1x1 + w2x2 (3.6)

Therefore, if know the relationship formula between the input features X and the
response y, we can fit the model using linear regression.

3.1.2 Nonparametric Regression

Linear regression is simple to fit; its results are easy to understand, methods for inference
are well established, However, if there is an unknown nonlinear relationship between
the response and one or more input features, linear regression fails to account for this
important feature of the data. In such cases, nonparametric regression methods may
be more appropriate. Unlike to parametric regression techniques like linear regression,
nonparametric regression do not impose any strong parametric assumptions on the model,
hence the name. Instead nonparametric methods “let the data speak for itself”. However,
the definitions of parametric and nonparametric are a bit ambiguous and there is no
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precise and universally acceptable definition of the distinction between two terms [52]. It
is common to classify some of the techniques introduced here as parametric model.

Nonparametric regression techniques are theoretically more complex than the usual
linear and nonlinear parametric modeling methods. Also, they are computationally more
rigorous and require a large amount of data sets. Thus, nonparametric regression methods
are not used widely in practice.

There are many nonparametric regression techniques in literature, such as, kernel
smoothing, Gaussian process regression, and neural network regression.

In this section

k-Nearest-Neighbors Regression

k-nearest-neighbors regression uses an average of the k nearest neighbors (k is an fixed
integer), sometimes weighted by the inverse of their distance. If we have training data
set of pairs (Xi, yi), the prediction can be written as follows:

ŷ(X) =
1

k

∑
i∈Nk(X)

yi, (3.7)

where, Nk(X) is the set of indices of X1, . . . , Xn which are closest to X.
While this is not a bad estimator and widely used in practice because of its simplicity,

it has a few limitations. First, the regression output always has sudden steps because of
the discontinuity. Also, the definition of k-nearest-neighbors is vague when the input is
multi-dimensional and its sensitive to input normalization.

Kernel Smoothing Regression

Kernel smoothing regression generalizes k-nearest-neighbors using a kernel covariance
function. Kernel covariance function is a function satisfying following conditions.

∫
K(x)dx = 1,

∫
xK(x)dx = 0, 0 <

∫
x2K(x)dx < ∞ (3.8)

Then given a bandwidth h > 0, the response is estimated as follows using Nadaraya-
Watson kernel regression [40], [54].

y(x) =

∑n
i=1K

(
x−x′

h

)
yi∑n

i=1K
(
x−x′

h

) (3.9)

The kernel regression usually suffers from poor bias at the boundaries of the domain
of the inputs x1, . . . , xn.

Some popular kernel functions are as follows. The de-facto radial basis function (RBF)
kernel:

KRBF (x, x
′) = σ2 exp(−(x− x′)2

2l2
), (3.10)
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where σ2 is the output variance and l is called lengthscale.
d-degree polynomial kernel,

Kpoly(x, x
′) = (xTx′ + c)

d
(3.11)

where c ≥ 0 is a parameter specifying the ratio of influence of higher-order versus lower-
order terms. This kernel is called linear kernel when d = 1.

Rational quadratic (RQ) kernel which is equivalent to adding together many RBF
kernels with different lengthscales.

KRQ(x, x
′) = σ2(1 +

(x− x′)2

2αl2
)

−α

, (3.12)

where α is the determines the relative weighting parameter.
Periodic kernels shown below allows to models periodic functions.

Kper(x, x
′) = σ2 exp(−2 sin2(π|x− x′|/p)

l2
), (3.13)

where p is the parameter specifying the distance between repetitions and l is the length-
scale.

Epanechnikov kernel [20]:

KEpanechnikov(x, x
′) =

{
3/4(1− (x− x′)2) if|x| ≤ 1

0, otherwise
(3.14)

Sigmoid kernel:

Ksig(x, x
′) = tanh(xTx′ + c) (3.15)

It is common to combine these kernels to get a kernel more suitable for the problem
at hand.

Support Vector Machine Regression

Support vector machines (SVM) are a set of famous supervised learning methods widely
used for classification and regression. Support vector machines result from minimizing
the hinge loss (1− yiw · xi)+ with ridge regularization.

min
w

∑
i

(1− yiw · xi)+ + λ||w||2. (3.16)

The intuition behind this is to find a function that has at most ϵ (predefined constant)
deviation from the actually obtained targets yi for all the training data, at the same time
using the simplest form of function as possible. There have been many methods for
finding the optimal functions for SVM efficiently.
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Figure 3.1: Neural Network Regressor With Two Hidden Layers

Gaussian Process Regression

The Gaussian process is also a famous nonparametric kernel based learning method,
which can be used in regression [57, 58, 56, 47].

Neural Networks Regression

Neural network regression is technically not a nonparametric method since the number
of parameters in a neural net does not change with the number of sample data. However,
due to the fact that neural networks with nonlinear activation functions are universal ap-
proximators [16, 51], it is common to label them as nonparametric. Although neural nets
are mostly used in classification problems, they can be used in regression too (Figure 3.1).

Recently, it became preferred to use neural networks with more than one hidden
layers. For example, Delalleau and Bengio [7] showed that a shallow network requires
exponentially many more sum-product hidden units than a deep sum-product network in
order to compute certain families of polynomials.

3.2 Domain Adaptation

In most cases, we do not want to conduct multiple training executions on p cores to
predict the execution time on just same p cores. Alternatively, we also do not want
to measure execution times with input loads as large as that of the target prediction.
Because that will take longer than just running the target execution.

Therefore, the ideal prediction model must be capable of extrapolating outside its
training range. In most cases, machine learning regression models assume independent
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and identically distributed (i.i.d.) which in our case means that the training and test
input distribution should be same. This causes the regression models to be poor at
extrapolating.

3.3 Multi-task Learning

Multi-task learning [12] is a branch of transfer learning [44] whose main goal is to improve
generalization performance by leveraging the domain-specific information contained in the
training signals of related tasks. It does this by training tasks in parallel with a shared
representation. The training signals for the extra tasks serve as a regularization. The
effectiveness of multi-task learning is proved in many literatures [12].

In our regression approach, during the training executions, we can record metrics other
than plain execution time using profiling tools. Then by utilizing these other metrics as
extra tasks, we formulate our performance prediction as a multi-task learning problem.

Multi-task learning approaches assume that individual models for related tasks should
share some parameters or prior distributions of hyperparameters. Since multi-task learn-
ing tries to learn both the main and extra tasks simultaneously, weights of the loss
functions for the source and target data are usually the same. In some instances, we can
generalize it to give more weight to the loss on the main task.

Multi-task learning approaches are applied in many regression frameworks as listed
below.

Multi-task Learning in Gaussian Processes

Bonilla et al. [11] investigated multi-task learning in the context of Gaussian Processes
(GP). It uses a covariance matrix over tasks to model inter-task dependencies, where a
GP prior is used to induce correlations between tasks. Lawrence et al. [34] also proposed
an algorithm known as multi-task informative vector machine (MT-IVM) based on GP, to
handle the multi-task learning. MT-IVM tries to learn parameters of a Gaussian Process
over multiple tasks by sharing the same GP prior. Schwaighofer et al. [47] proposed a
model which learns GP kernels for multi-task learning using the hierarchical Bayesian
framework (HB).

Multi-task Learning in Support Vector Machines

Evgeniou et al. [21] proposed a multi-task learning method for SVMs which assumed that
each task could be separated into two terms, one is a common term for all tasks and the
other is a task-specific term.

Multi-task Learning in Neural Networks

Multi-task learning is used in neural networks as a way of improving generalization by
pooling the examples arising out of multiple tasks. Caruana et al. [12] showed that
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applying multi-task learning method in real world regression problems increases the gen-
eralization ability. Collobert et al. [14] proposed a multi-task convolutional neural net-
work architecture that, given a sentence, outputs multiple language processing related
estimates, such as part-of-speech tags, chunks, named entity tags, semantic roles, and
semantically similar words. Li et al. [37] proposed a technique for estimating human
pose from an image by with deep convolutional neural network with multi-task outputs.
Zhang et al. [61] used a similar method to estimate head pose and facial attributes.



Chapter 4

Related Works

4.1 Profiling Based Performance Modeling

4.1.1 Profiling Tools

Profiling based performance analysis tools utilize runtime information which is collected
during the execution. In this subsection, we introduce several profiling tools which are
used by most of the performance analysis tools. Profiling methods can be divided into
two groups based on whether they are using sampling or instrumentation.

The sampling profiling methods collect statistical data during a profiling execution
of the application. Sampling has little overhead and usually does not require modifying
the source code. The instrumentation profiling methods collect detailed timing for the
function calls in the target application by injecting code into the binary file that captures
timing information for each function call.

Gprof [25] is a popular open-source performance analysis tool, which uses a hybrid
of instrumentation and sampling. It helps programmers investigate which parts of the
program is the bottleneck and needs optimization. The common usage of gprof is as
follows.

1. Compile and link the target program with profiling enabled.
2. Execute the program to generate a profile data log.
3. Run gprof the analyze the profile data.

There are also many other performance analysis tools which use gprof as their backend.
Kremlin [24] is a tool to identify program regions where parallelization is necessary, in
the same way gprof identifies regions requiring optimization in a serial program.

Pin [38] is a proprietary dynamic binary instrumentation tool created by Intel. It can
be used by application developers to insert instrumentation into any function call in their
application. Valgrind [42] is also a popular dynamic binary instrumentation tool which
can be extended build performance analysis tools.

The Performance API (PAPI ) is a standard application programming interface (API)
for accessing hardware performance counters on various hardware with a common inter-
face. It provides easy to use abstraction from underlying particular hardware events.

21
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4.1.2 Cilkview

Cilkview [27] is a scalability analyzer tool for multithreaded applications. Specifically,
the input to Cilkview is restricted to parallel programs written in Cilk Plus. It then
provides a lower and upper bound estimation of how the program s̓ performance will
change as the number of cores increase. The upper bound estimation of scalability is
calculated using the DAG model described in Section 2.2. On the other hand, the lower
bound estimation of scalability is calculated using their proposed burdened DAG model.

A Cilk Plus implementation of quicksort algorithm with Cilkview annotations is shown
in List 4.1. Cilkview specific annotations are highlighted in red. The target region for
analysis can be specified using cilkview::start() and cilkview::stop() functions as
in the example code. If the region is not specified, the whole program is analyzed.

List 4.1: Parallel Quicksort Implementation in Cilk Plus with Cilkview annotations

1 #include <algorithm>

2 #include <iterator>

3 #include <functional>

4 #include <math.h>

5 #include <cilkview>

6

7 using namespace std;

8

9 template <typename T>

10 void quicksort(T begin, T end) {

11 if (begin != end) {

12 T middle = partition(begin, end, bind2nd(less<typename iterator_traits<T>::

value_type>(), *begin));

13 cilk_spawn quicksort(begin, middle);

14 quicksort(max(begin +1, middle), end);

15 cilk_sync;

16 }

17 }

18

19 int cilk_main() {

20 int n = 100;

21 double a[n];

22 cilk::cilkview cv;

23 cilk_for (int i = 0; i < n; i++) {

24 a[i] = cos((double) i);

25 }

26

27 cv.start();

28 quicksort(a, a + n);

29 cv.stop();

30 cv.dump("quicksort");

31 }
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Burdened DAG Model

The DAG model introduced in Section 2.2 does not consider practical factors such as
the performance of the scheduling algorithms and the overhead of migrating tasks be-
tween threads. Cilkview tries to account these factors by introducing a new model called
burdened DAGs, which incorporates the migration overheads.

The Cilk Plus randomized work-stealing scheduler can execute a program with T1

work and T∞ span on P processors in following expected time:

Tp ≤ T1/P + δT∞ , (4.1)

where δ is a constant called span coefficient [22]. Intuitively inequality Equation (6.2)
means that, if the parallelism T1/T∞ exceeds the number of processors P sufficiently, the
bound warrants near-perfect linear speedup. It comes from the fact that if T1/T∞ ≫ P
we have T∞ ≪ T1/P . Thus, from the inequality Equation (6.2), T1/Tp ≈ P is derived.

The burdened DAG model calls the overhead of migration, such as the cost of setting
up the context to run the migrated task and the implicit costs of cache misses due to
the migration, burden. Then Cilkview assumes that this burden has a fixed value of
around 15,000 instructions. The burdened DAG model then incorporates the burden of
each continuation and return edge of the DAG into the normal DAG model. Also, the
burdened span is defined as the longest path in the burdened DAG. Then, a work-stealing
scheduler running on P processors can execute the program in expected time

Tp ≤ T1/P + 2δT̂∞, (4.2)

where T̂∞ is the burdened span. The proof of this equation can be found in the original
paper [27]. This can be further transformed to the following equation to give a lower
bound on the speedup.

T1

Tp

≥ T1

T1/P + 2δT̂∞
(4.3)

Cilkview employs this equation to compute an estimated lower bound on speedup. It
uses δ = 0.85 as the span coefficient. Thus, the final equation is Tp ≤ T1/P + 1.7T̂∞.

Implementation

Cilkview collects an application’s parallelism information, i.e. DAG and length of the
each strand’s length, during a serial execution of the application under the PIN [38]
dynamic binary instrumentation framework. The length of the each strand is measured
in instruction count instead of time. Since PIN is binary instrumentation tool, meaning
that it operates directly on the executable binary of the application as opposed to the
source code, recompilation of the application is not required.

The Cilk Plus compiler embeds metadata relevant to multithreaded execution to
into the executable binary in multithreaded executable format (MEF). Cilkview uses
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Figure 4.1: Workflow of Parallel Prophet

these metadata to know where Cilk Plus’s parallel control constructs cilk spawn and
cilk sync appear in the executable. When an application is run under Cilkview, it reads
the metadata and instruments the corresponding addresses in the binary to collect mea-
surements. Running an application under Cilkview is usually 2-10 times slower than the
normal run.

Limitations

Cilkview does not consider the limitations of memory bandwidth on its calculation of
program’s scalability. Therefore, it shows substantial inaccuracy in predicting memory
intensive applications’ scalability.

4.1.3 Parallel Prophet

Parallel Prophet [31] predicts potential speedup of a serial application from information
gathered from profiling and emulations. It answers the question of how much speedup
could be gained if the application is parallelized. Unlike Cilkview, the input to Parallel
Prophet is a serial application without any parallelization. Instead, programmers are
required to insert specific annotations in Table 4.1 into the serial application to describe
the application’s parallelism. Another main difference with Cilkview is that it tries to
account memory limitations by introducing a memory performance model.

The workflow of Parallel Prophet is illustrated in Figure 4.1. First, the annotated
program is recompiled; then interval profiling and memory profiling is performed using
the recompiled executable. It produces a program tree which contains all the necessary in-
formation for running the memory performance model and the emulators. The emulators
calculate final estimates for the program’s parallel speedup.

Memory Performance Model

Parallel Prophet introduces burden factors to model the parallel speedup slowdown due
to increased memory traffic. The burden factor is calculated for each top-level parallel
section of an application. Then, when estimating the application’s execution time, the
burden factor is multiplied to each corresponding section.
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Table 4.1: Annotations in Parallel Prophet

Interface Description

PAR TASK BEGIN() This task may run in parallel.
PAR TASK END() The end of the task.

PAR SEC BEGIN() Parallel section begins.
PAR SEC END() The end of the current section.

LOCK BEGIN() Acquire a lock.
LOCK END() Release the lock.

Parallel Prophet makes following assumptions in their memory performance model.

• Execution time of a program can be separated into two disjoint parts: computation
cost and memory cost

• Work is equally divided among all threads.
• Memory system has following properties: only last-level cache (LLC) is present, the
latencies of memory read and write are the same, hardware multithreading is not
present, and hardware prefetchers are disabled.

• The value of LLC misses per instruction does not vary significantly between serial
and parallel execution.

• Super-linear speedup is not considered.

Using these assumptions, the execution time (in cycles) of an application can be
written as follows:

T = CPI ·N = CPI$ ·N + ω ·D, (4.4)

where N is the number of all instructions, CPI$ is the average cycles per instruction if
there are no DRAM access, D is the of DRAM accesses, and ω is the average CPU stall
cycles for one DRAM access.

The burden factor βt for a thread number t represents the performance degradation
only caused by the memory performance. Thus, βt can be expressed as the following
equation:

βt =
T t

T t
i

=
CPI t ·N t

CPI ti ·N t
i

=
CPI t$ ·N t +W t ·Dt

CPI t$,i ·N t
i + ωt

i ·Dt
i

(4.5)

where, the super-script t means the value is for t threaded execution and the sub-script

i means the value is for the execution on ideal machine with infinitely large memory
bandwidth.

Using the assumptions, the above equation can be further simplified to the following.

βt =
CPI$ +MPI · ωt

CPI$ +MPI · ω
. (4.6)
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Figure 4.2: An Example of Program Tree in Parallel Prophet

Also, Parallel Prophet assumes following relationship:

δt = Ψ(δ), ωt = Φ(δt) , (4.7)

then finds the empirical functions Ψ and Φ via a specific microbenchmark. A detailed
explanation of the rationale behind this is in the original paper.

In summary, Parallel Prophet obtains N, T,D,MPI and δ values from the profiling
of a serial program; estimates ωt from equation Equation (4.7); then finally calculates
the burden factor βt from equation Equation (4.6). Here, the memory profiling uses the
information obtained from low overhead hardware performance counters by PAPI [39].

Building a Program Tree

The profiling in Parallel Prophet is performed by running the application under PIN [38],
same as Cilkview. In the recompilation phase, the annotations – C/C++ macros – insert
trigger functions for the PIN. Then it collects the lengths of all annotation pairs in the
interval profiling phase. The length of the each annotation pair is measured in instruction
count same as the Cilkview analyzer.

Parallel Prophet uses this information to build a program tree like that is shown in
Figure 4.2. Each node in the tree contains information about its length and its node type
(section, task, computation without a lock, and computation with lock). Also, each node
for a top-level section (the tree root) has a value set for its burden factor β.

Emulation

Parallel prophet performs fast forwarding emulation of a parallel execution by traversing
the program tree. To emulate the execution of a parallel application accurately, it needs
to consider the scheduling policies of the real parallel run-time model. Also, it means
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that each run-time model needs to be separately implemented in Parallel Prophet. The
paper only implements an emulator for OpenMP.

Parallel prophet also has a program synthesis based emulator. However, it is left out
in this paper, because the merit of the program synthesis based emulator is not clear.

Limitations

The fast forwarding emulator produces significant errors in some applications. The pri-
mary reason for such cases is the frequent lock contention or frequent fork/join (spawn/wait)
in the application. In such cases, the parallel overhead is too high, making the program
tree inaccurate.

4.1.4 DraMon

DraMon [53] is high accuracy model for predicting memory bandwidth usage of multi-
threaded applications. Cilkview [27] and Parallel Prophet [31] predicts the speedup of a
whole application or a certain annotated region in the application; on the other hand,
DraMon only focuses on predicting the memory bandwidth usage. Parallel Prophet tries
to build a memory performance model for multithreaded applications; however, it makes
several aggressive assumptions about the model, which causes it to become inaccurate
in some cases. On the other hand, DraMon builds more detailed performance model by
accounting a wide range of hardware and software factors which is ignored in Parallel
Prophet. They propose two versions of DraMon: DraMon-T which uses a memory-trace,
and DraMon-R which utilizes run-time hardware performance counters.

DraMon only predicts the memory bandwidth usage of an application. However, since
its memory performance model outperforms the previous works, it can be used to improve
the speedup prediction performance of the previous works such as Parallel Prophet.

DRAM

The memory controller (MC) in a CPU is connected to several channels. A channel
consists of several ranks, i.e. a memory module. Each rank has several memory chips,
each consisting of several banks. Each bank is a cell array where a cell stores a bit.

The operations of a DRAM read cycle is shown in Figure 4.3. When data is accessed,
the row containing this data is read into the row buffer. First, the connections between
the row buffer and the bank are precharged in tRP time. Then, the memory controller
reads the row into the row buffer in tRCD time. When the row becomes ready, MC
sends the column address and locates the data in tCAS time. Lastly, the data is sent to
MC using tBurst time. A DRAM request categorized into following types, based on the
status of the target bank of the request:

• Hit : the row buffer has the requested row; the latency is tCAS + tBurst.
• Miss : the banks is precharged, but the requested row is not in the row buffer; the
latency is tRCD + tCAS + tBurst.
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Figure 4.3: A Read Cycle of DRAM [29]

• Conflict : the bank is not precharged for the request: the latency is tRP + tRCD+
tCAS + tBurst.

The Bandwidth Model

Hardware and software parameters used in the bandwidth model is listed in Table 4.2 and
Table 4.3 respectively. In the DraMon paper, hardware parameters are garnered from
the data sheets and PCI configuration registers of the used hardware [9]. The software
parameters are measured using a memory trace in DraMon-T or performance monitoring
units (PMU) in DraMon-R. Similar to the Cilkview and Parallel Prophet, it the memory
traces are collected by running the application under PIN instrumentation framework.

Memory bandwidth usage can be expressed in the following self-explanatory equation:

BW = chnlcnt ×Ratemem × Sizemem, (4.8)

where Sizemem is the size of each request and memory request rate Ratemem is the mini-
mum of memory issue rate of determined by the program and the DRAM bound limited
by the hardware, i.e.:

Ratemem = min(Rateissue, Ratedram) (4.9)

Also, following equations hold:

Ratedram =
1

Latdram
,

Latdram = Ratior × Latr +Ratiow × Latw +Owtr +Ortr. (4.10)

Furthermore, the average read and write latency can be calculated from following
equations:

Latr = Ratiohit × Latr,hit +Ratiomiss × Latr,miss+

Ratioconf × Latr,conf (4.11)

Latw = Ratiohit × Latw,hit +Ratiomiss × Latw,miss+

Ratioconf × Latw,conf (4.12)
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Table 4.2: Hardware Parameters in DraMon

Parameter Description

Sizemem size of each DRAM request
tRCD row activation time
tCAS column access time
tRP precharge time
tBurst data transfer time
tWR write recovery time
tRTRS rank switching time
tWTR write-to-read switching time
chnl cnt number of channels
bk cnt number of banks per rank
Dac row buffer auto-close distance

Finally, by combining the above equations Equation (4.15), Equation (4.16), Equa-
tion (4.10), Equation (4.11), and Equation (4.12), the following equations for bandwidth
usage is derived.

BW = chnl cnt× Sizemem ×min(Rateissue,

1

Ratior × Latr +Ratiow × Latw +Owtr +Ortr

) (4.13)

Latx =
∑
type

Ratiotype × Latx,type,

where x ∈ {r, w}, type ∈ {hit,miss, conf} (4.14)

Therefore, the bandwidth usage of multithreaded execution can be calculated by sub-
stituting the values listed in Table 4.2 and Table 4.3 into the equations Equation (6.5)
and Equation (6.6). The values not directly retrievable from Table 4.2 and Table 4.3,
such as Rateissue, Owtr, Ortr, Ratiotype, and Latx,type, can also be estimated as explained
in the paper. The detailed argumentation of how these values are estimated is left out
here.

4.1.5 Performance Modeling Using Replay Techniques

There are several works, which use deterministic replay technique to predict application
performance on many cores. They run an application with target workload sequentially
to collect trace. Afterwards the parallel execution is simulated by replaying the trace.
These approaches take very long time because each process must be run sequentially.
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Table 4.3: Software Parameters in DraMon

Parameter Description

Rateissue,single single thread issue rate
∆ and P∆ bank reuse distances and their probabilities
Ratiohit,single single thread hit ratio
Ratiomiss,single single thread miss ratio
Ratioconf,single single thread conflict ratio
PSmRw same-row accessing probability
PSmBk same-bank-diff-row accessing probability
PSmCh diff-bank-same-channel accessing probability
PDfCh different channel accessing probability
Ratiowr write request ratio
Ratiowtr write-to-read switching request ratio
Ratiortr rank switching request ratio
rk cnt number of ranks accessed
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Figure 4.4: Workflow of Phantom

Phantom

Phantom [60] predicts performance on multiple cores using only one of the nodes. First,
it collects computation and communication traces by running each of the processes one
by one. Then, a log database is built using the recorded computation and communica-
tion traces. Lastly, a trace-driven simulator convolutes communication and computation
performance on any given number of cores (Figure 4.4).

Phantom only works on MPI based applications, since the each process should be
clearly separated. It uses PMPI profiling interface [26] for recording the traces.

ScalaExtrap

ScalaExtrap [59] is a method to automatically generate the application trace for large
numbers of nodes by extrapolation from a set of smaller traces. Then the extrapolated
trace can be replayed to assess communication performance for a larger number of cores.
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4.1.6 Others

ESTIMA [13] is performance model for extrapolating scalability of in-memory applica-
tions. They use stalled cycles as an intermediate feature. The number of stalled cycles
is modeled using a predefined function set where the function argument is the number of
cores. Then builds an execution time prediction model with an assumption that the num-
ber of stalled cycles per core have a high correlation with execution time. Stalled cycles
are divided into two types hardware and software stalled cycles. Examples of hardware
stalled cycles include frontend (instruction cache misses) and backend (resource or data
cache miss). Software stalled cycles are caused by spinning lock and software transactions

Kismet [30] is a tool to detect parallelism automatically in serial applications. It uses
hierarchical critical path analysis (HCPA) technique analyze the application regionally,
then detects parallelizable regions.

4.2 Regression Based Performance Modeling

Regression-based performance modeling techniques use results of many training runs of
the program with statistical models to create performance models which can predict
execution times for new inputs. Although, they can predict the performance for new
inputs, in most cases the prediction parameter domain range is limited to that of the
training phase. Therefore, to predict the performance of an application for big inputs
on a large system, training measurements have to be as resource intensive as prediction
target execution.

As described in detail below, Barnes et al. [6] try to use fewer cores in the training
phase than the prediction target cores by modeling computation and communication
separately. However, their technique is specific to the evaluated MPI applications only
and not effective for task parallel applications.

4.2.1 Methods of inference and learning for performance mod-
eling of parallel applications

[36] introduces performance modeling of parallel applications using two different tech-
niques: piecewise polynomial regression and artificial neural networks. Their performance
modeling techniques are very general and not limited to a specific programming paradigm.
The applications used as evaluation in the paper are all implemented using MPI.

Lee et al. employ hierarchical clustering, association analysis, and correlation analysis
to assist their piecewise polynomial regression model. Hierarchical clustering is used to
find similarity between predictors which in turn used to ensure redundant predictors are
not included in the model. Pruning the number of predictors also helps in controlling the
number of potential interactions between predictors. Association analysis examines each
predictor’s association with the response. Correlation analysis quantifies the association
relationship results. It helps to find predictors with higher rankings, which may require
non-linear transformations. Arguing that polynomials have undesirable peaks and valleys,
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their paper divides the predictor domain into knots with different polynomial fits. Since
the piecewise polynomial regression model only models the parameter domain range of
training data, it cannot predict performance for inputs and number of cores outside its
training range.

Their other model, artificial neural networks, is more automatic and does not require
statistical analysis and application specific configuration which were necessary for the
linear model. Median error rates range from 2.2 to 9.4 percent in the linear regression
model and 3.6 to 10.5 percent in the ANN model.

4.2.2 A regression-based approach to scalability prediction

Barnes et al. [6] introduced regression based technique [6] to predict the scaling behavior of
parallel programs written in MPI. They model the execution time of a parallel application
as

log2(T ) = β1log2(x1) + β2log2(x2) + . . .

+βnlog2(xn) + g(q) + error (4.15)

where,

g(q) = γ0 + γ1log2(q)org(q) = γ0 + γ1log2(q) + γ2(log2(q))
2 (4.16)

They employ three different techniques. The most straightforward technique uses
the total execution time for T in equation Equation (4.15). The second approach uses
the maximum computation time across all processors and the communication time from
that same processor. The last technique uses the parallel execution’s critical path. It
helps avoiding blocking time since any communication on the critical path is pure com-
munication. The last two techniques model computation and communication separately,
then combine the modeled computation and communication time to determine the final
execution time.

Their goal is similar to ours in a sense that the target number of cores for prediction
is bigger than the number of cores used training. However, the application parameter
domain is same in the training experiments and prediction (strong scaling), which makes
it unable to predict performance for inputs outside the training application parameter
domain. They also assume that the computational load is well balanced, which is true
in some MPI applications they evaluated, but rarely holds for task parallel applications.
Also unlike MPI applications, task parallel applications have to consider many more
factors besides just computation and communication, such as task migration overhead
and availability of parallelism.



Chapter 5

Performance Modeling With Direct
Regression

Network Structure

We use a neural network regressor with two hidden layers and one dropout layer as
illustrated in Figure 5.1. Each hidden layer has 64 nodes with ReLU activation function.
We call this model Direct NN to differentiate it from the multi-task neural network
introduced in Section 6.2. Also we denote the neural network regression model by Lee et
al. [36] by LeeNN.

Rectified Linear Unit (ReLU)

We use the rectified linear units (ReLU) as activation function as opposed to the sigmoid
function used in LeeNN. We preferred ReLU for following reasons.

• Since the output is not squashed into a limited range like sigmoid; it is more suitable
for extrapolation.

• Computation is faster.
• It converges much faster in stochastic gradient descent optimization [33]. Since our
network is not large, this point is not as important, but still, it favors ReLU.

Dropout

Building a model that will perform well not just on the training data, but also on new
unseen inputs, is a central problem in machine learning. There are many regularization
methods which are explicitly designed to reduce the test error at the expense of increased
training error.

Recently proposed by Srivastava et al. [49], dropout is a surprisingly effective regular-
ization method for neural networks. Our network has a dropout layer between the second
hidden layer and the readout layer, as shown in Figure 5.1. Nodes in the dropout layer
turns off with a predefined probability keep prob during training. This can be thought

33
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Figure 5.1: Neural Network With Two Hidden Layers And One Dropout Layer (Direct
NN )

of as a method of building a computationally cheap ensemble of many smaller neural
networks which are subsets of the original network without dropout. Therefore, since en-
semble methods improve generalization, incorporating dropout layer improved our model
performance.

Weighted Loss Function

One of the commonly used techniques in domain adaptation (Section 3.2) is use of
weighted loss function. The intuition behind this is that if the input probability dis-
tribution of the train and test set is different, we should give more importance to the
train samples which are closer to the test distribution.

Since in our case, we the number of workers is larger in the prediction target than
training, we need to give more importance the samples with a larger number of workers.
That is, we define the loss function as follows.

loss =
n∑

i=1

(yi − y(xi))
2workersi, (5.1)

where workersi is the number of workers used in sample i, yi is the multiplication of
actual execution time and workers (we denote time workers from now), xi is the input
features vector ([workload sizei, workersi, config parami, 1]), and y(xi) is the predicted
time workers.
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(a) ReLU: max(0, x) (b) Sigmoid: (1 + e−x)
−1

Figure 5.2: Activation functions

Stochastic Gradient Descent Optimization

We optimize the weights in the network with backpropagation using AdamOptimizer
(adaptive moment estimation optimizer) [32]. AdamOptimizer is a method for stochastic
gradient descent optimization with individual adaptive learning rates for each parameter.

Hyperparameter Optimization

We have to choose two hyperparameters in our neural network regressor: dropout keep
probability and initial learning rate for AdamOptimizer. During the training, we take
a small part of the training data to make a validation dataset. We randomly sample
the parameters and choose the values with smallest validation loss [8]. The dropout
keep probability is chosen uniformly random from (0, 0.9) and the learning rate is chosen
uniformly random in log scale from [10−6, 1].

We summarize the main differences between our model (Direct NN ) and LeeNN in
Table 5.1.
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Table 5.1: Main differences between LeeNN and Direct NN

LeeNN Direct NN
number of

hidden layers 1 2
number of nodes

in each hidden layer 16 64
hidden layer

activation function Sigmoid(x) = (1 + e−x)
−1

ReLU(x) = max(0, x)

cost function
mean squared

error
weighted mean
squared error

additional layer none dropout
hyperparameter
optimization none random sampled search
early stopping yes yes

weight optimization
method

full gradient descent
with RPROP

stochastic gradient
descent with

AdamOptimizer



Chapter 6

Profiling Assisted Performance
Modeling

During the training executions, we can record not only the execution time, but also other
metrics such as work, delay, create task, and critical path. Then we assist the
regression models using this extra information gained with profiling.

In this chapter, we introduce two performance modeling techniques, which exploits
this additional information. The first is a two-step linear regression model. The second
model is a multi-task regression neural network.

6.1 Two-step Linear Regression

6.1.1 Model Overview

The overall prediction process of our two-step linear regression performance model is
shown in Figure 6.1. It involves three main steps:

1. Execute the target application on measurement configurations with DAG Recorder.
It records five properties from the recorded DAG: T1 (work), delay, create task,
wait tasks, and no work; and the T1’ (serial execution work) of each execution.

2. Next, using the measured data, it trains the six intermediate models: T1 (work),
delay, create task, wait tasks, no work, and T1’ (Figure 6.3).

3. Finally, by feeding the prediction target values (problem size: n, no. of workers :
p) to the intermediate prediction models, it will predict the target execution time.
Specifically, the execution time is determined from T1 (work), delay, no work, and
Equation (2.1).

6.1.2 Model Details

We formulate each edge in Figure 6.1 using a linear equation. We find the coefficients of
each linear model using l1-regularized linear regression (Lasso) [50] The most important
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Figure 6.1: Two-step LassoLars Prediction Process Overview

property of Lasso is that it tends to produce some coefficients that are exactly zero,
making the models much more interpretable and strong for extrapolation. We find the
l1-regularization penalty coefficient using cross-validation.

We can further write Equation (2.1) as following

time(n, p) =
1

p
(T1(n, p) + delay(n, p) + no work((n, p))) (6.1)

where we denote the input problem size by n.
Our model predicts T1(n, p), delay(n, p), and no work((n, p)) separately, then applies

Equation (6.1) to determine the final execution time.

Work (T1)

We model work (T1) using following equation

T1(n, p) = T1(T
′
1(n), p) (6.2)

= T ′
1(n) + a1 · T ′

1(n) ·
p− 1

p
+ a2 · T ′

1(n) · (p− 1)

where ai are some non-negative constant values.
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The reasoning behind this model is that, when p workers participate in the execution,
some part of the serial execution work proportional to p− 1 or p−1

p
will be moved around

different cores. Therefore, the work time inflation will be proportional to p − 1 and
(p− 1)/p.

On the other hand, the work of the serial execution is modeled as follows,

T ′
1(n) =

∑
bin

jlogk(n) (6.3)

where bi are non-negative constants and 0 ≤ j ≤ 3, 0 ≤ k ≤ 2. This representation
is, of course, not exhaustive, but is sufficient in most practical applications since it is a
consequence of how most computer algorithms are designed.

Delay

In order to model delay, we utilize another two: DAG properties create task and
wait tasks. Because delay is the overhead caused by task creation and synchronization.
Also, we imagine that inter-core task movement is proportional to some combination of
p− 1 and (p− 1)/p. Consequently, we model delay as follows, where ci are application
& platform specific constants.

delay(n, p) = delay(create task, wait tasks, p) (6.4)

= create task(n) · (c1 + c2(p− 1) + c3
p− 1

p
)

+wait tasks(n) · (c4 + c5(p− 1) + c6
p− 1

p
)

On the other hand, create task and wait tasks are modeled using following general
equations, where 0 ≤ j ≤ 3, 0 ≤ k ≤ 2 (same as T ′

1(n)).

create task(n) =
∑

din
jlogk(n) (6.5)

wait tasks(n) =
∑

ein
jlogk(n) (6.6)

No work

Lets assume that the gray area in Figure 6.2 shows the available parallelism of an ap-
plication with time as x-axis. In this case, no work is the sum of the area of the green
rectangles when no. of workers is p1, that of red rectangles when no. of workers is p2.
Thus, we can see that no work is somewhat proportional to (p − 1)2. Also, if the appli-
cation has inherently serial parts, the no work caused by these parts will be proportional
to (p− 1).

Therefore, no work is modeled as follows, where

no work(n, p) =
∑

fi(p− 1)jnklogl(n) (6.7)
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Figure 6.3: Two-step LassoLars time Prediction Flow

where fi are non-negative constants and 1 ≤ j ≤ 2, 0 ≤ k ≤ 2, 0 ≤ l ≤ 1.
By combining above models, when the target n and p is given, we can predict

time(n, p) as shown in the prediction flow Figure 6.3.

6.2 Multi-task Neural Network Regression

If we have multiple (supposedly related) labels for training, we can utilize the relation by
training them with shared layers. For example, if we have 1000 samples and 10 labels for
each datum, the shared layer will be trained with 10000 different samples. This increases
the model’s generalization ability. In our model we use T1 (work), delay, create task,
wait tasks, and no work as additional tasks. We also tried using hardware performance
values (such as L1, L2 cache miss count) as additional tasks; however, it was not effective.

We use a neural network regressor with two shared hidden layers, one dropout layer,
and a separate output layer for each task as illustrated in Figure 6.5. We denote this
model Multi-task NN.

The workflow of performance modeling with Multi-task NN is shown in Figure 6.4.
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In the correlation analysis step, we choose the extra tasks from work, delay, no work,
create task, wait tasks, and critical path. Since, timeẇorkers = work + delay +
no work, we choose the two with highest Pearson correlation coefficient with time from
work, delay, and no work. create task, wait tasks, and critical path are included
automatically as extra task.

During the training, we update the weights in the network by alternatively choosing
the task randomly from extra tasks + time. Then running a backpropagation on that
task’s loss.

Other details of network are same as that of Direct NNmodel introduced in Chapter 5.

(a)	Training	
measurements	

with	DAG	
Recorder

(b)	Correlation	
analysis:	extra	
tasks	selection

(c)	Multi-task	
Neural	Network
Alternative	
Training

(d)	Prediction	
of	time	using	
trained	NN

• workload	size
• config param
• number	of	workers

Figure 6.4: Workflow of Multi-task NN performance model

h1

h1 h1 hj-1 hj 1

y

h1 h1 hi h1j 1

v1 v2 vj-1 vj

x1 x2 Xn 1

u1 u2 ui-1 ui 1

Output

Dropout	layer

(weights)

(weights)

(weights)

Hidden	layer	1

Input	features

Hidden	layer	2

(weights)

y’1 y’2

Figure 6.5: Multi-task neural network with two shared hidden layers, one dropout layer,
and one separate output layer for each task



Chapter 7

Evaluation

7.1 Model Implementation

7.1.1 Linear Regression

The Lasso regression model in Section 6.1 is implemented using Python’s scikit-learn
[45] machine learning library. It provides a efficient least angle regression (LARS) imple-
mentation of Lasso [19] as sklearn.linear model.LassoLarsCV module.

7.1.2 Neural Network Regression Models

We implement the neural network model described in Chapter 5 and Section 6.2 using
TensorFlow, open source machine learning library [4]. It allows deploying models on
both CPUs and GPUs. Since our model is not that large, we only used CPU version.
TensorFlow also provides a built-in AdamOptimizer implementation.

7.2 Experiment Overview

7.2.1 Benchmark Applications

We run experiments on four applications included in Barcelona OpenMP tasks suite
(BOTS) [18]: fft,sort, sparseLU, and, strassen. We modified the test suite such that it
can use any task parallel runtime/library instead of OpenMP. In our evaluation, we use
the MassiveThreads library [41]. MassiveThreads employs work-first scheduling strategy,
which is the most widely used strategy for task parallel runtime/system/libraries.

FFT computes the one-dimensional Fast Fourier Transform of a vector of n complex
values using the Cooley-Tukey [15] algorithm. This is a divide-and-conquer algorithm
that recursively breaks down a Discrete Fourier Transform (DFT) into many smaller
DFTs. 0In each of the divisions, multiple tasks are generated. We only used twos powers
as n, since the algorithm is optimized for such values.

42
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Sort sorts a random permutation of n 32-bit numbers with a fast parallel sorting
variation of the ordinary mergesort. As the divided array partition becomes smaller
than certain thresholds (configuration parameters), the sorting algorithm is changed in
following way: parallel mergesort → serial mergesort → serial quicksort → serial insertion
sort.

SparseLU computes an LU matrix factorization over sparse matrices of size n. A first
level matrix is composed by pointers to small submatrices whose size is also a configuration
parameter. In each of the sparseLU phases, a task is created for each block of the matrix
that is not empty.

Strassen algorithm uses the hierarchical decomposition of a matrix for multiplication
of large dense matrices with a size of n. A task is created for each decomposition. Creation
of too many small tasks is avoided by using a depth based cutoff value (also a configu-
ration parameter). The BOTS suite also includes other six applications: alignment, fib,
floorplan, health, nqueens, and uts. Those are not used in our evaluation since there is
no easy way to change the input problem size of the application (alignment, floorplan,
health, and uts) or the application has exponential complexity and running them in large
scale is not practical (fib and nqueens).

7.2.2 Datasets

We prepared two different datasets for evaluation. Dataset A has variable workload size
and number of workers. It consists of a train and a test portions. On the other hand,
Dataset B variable configuration parameter value in addition to variable workload size
and number of workers. It has a train part and three test parts. We use Dataset A
to evaluate the two-step linear regression model (Section 6.1). Dataset B is used for
evaluating the neural regression based models: LeeNN [36], Direct NN (Chapter 5), and
Multi-task NN (Section 6.2).

Dataset A

The training & test measurements description for each application in Dataset A is shown
in Table 7.1. The input parameters are chosen uniformly at log scale for fft, sort, and
strassen; at linear scale for sparseLU.

The configuration parameters used for both training and test executions are listed in
Table 7.2.

Dataset B

The training & test measurements description for each application in Dataset B is shown
in Table 7.3. The train part uses smaller workload sizes and fewer number of workers (up
to 16). On the other hand, test1 has larger workload sizes, test2 has a larger number of
worker, and test3 has both larger workload sizes and a number of workers.
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Table 7.1: Training & Test Measurements Description (Dataset A)

(a) Training (1 to 8 workers)

problem size range
no. of data points
per worker choice

FFT 210 ≤ n ≤ 227 18
Sort 213 ≤ n < 227 34

SparseLU 60 ≤ n ≤ 190 10
Strassen 210 ≤ n ≤ 212 3

(b) Test (28, 32, 36 workers)

problem size range
no. of data points
per worker choice

FFT 228 ≤ n ≤ 230 3
Sort 227 ≤ n ≤ 230 5

SparseLU 200 ≤ n ≤ 500 7
Strassen 213 ≤ n ≤ 214 2

Table 7.2: Configuration Parameter Values (Dataset A)

config params explanation
FFT None
Sort -a 512 -y 512 -b 20 algorithm change thresholds

SparseLU -m 30 submatrix size

Strassen -x 7 -y 32
runtime & app

task cut-off values

7.2.3 Environment

The experiments run on a machine with 36 physical cores (two sockets, Xeon E5-2699
v3 Haswell) and 768GB memory (PC4-17000) running Ubuntu 16.04.1 LTS (GNU/Linux
4.4.0-45-generic x86 64). Programs were compiled with GCC 5.4.0 and MassiveThreads
version 0.97.

7.3 Results

7.3.1 Evaluation With Variable Workload Size and Workers

We train the two-step linear regression model (Section 6.1) with train part of Dataset
A. The model’s prediction error on the test part of Dataset A is shown in Figure 7.1.
It is a scatter plot overlayed with box-and-whisker plots showing the error percentage of
execution time prediction. The error percentage is defined as |actual−predicted|/actual.
Red line the graph represents the median (also written in gray above) error, while the
bottom and top of the blue box are the first and third quartiles. The whiskers represent
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Table 7.3: Training & Test Measurements Description (Dataset B)

(a) Training (1 to 16 workers)

problem size range config param range
no. of data points
per worker choice

Sort 213 ≤ n < 227 512 ≤ y ≤ 2048 100
SparseLU 60 ≤ n ≤ 195 20 ≤ m ≤ 40 100

(b) Test1 (1 to 16 workers)

problem size range config param range
no. of data points
per worker choice

Sort 227 ≤ n < 230 512 ≤ y ≤ 2048 6
SparseLU 200 ≤ n ≤ 515 20 ≤ m ≤ 40 6

(c) Test2 (32 to 36 workers)

problem size range config param range
no. of data points
per worker choice

Sort 213 ≤ n < 227 512 ≤ y ≤ 2048 6
SparseLU 60 ≤ n ≤ 195 20 ≤ m ≤ 40 6

(d) Test3 (32 to 36 workers)

problem size range config param range
no. of data points
per worker choice

Sort 227 ≤ n < 230 512 ≤ y ≤ 2048 6
SparseLU 200 ≤ n ≤ 515 20 ≤ m ≤ 40 6

the lowest datum still within 1.5 IQR (1st quartile subtracted from the 3rd quartile)
of the lower quartile, and the highest datum still within 1.5 IQR of the upper quartile.
Points outside the whiskers are considered statistical outliers.

We can see that prediction error is low, except on sparselu. Figure 7.2 shows the
detailed plot comparing actual execution time versus predicted execution times. On
these actual vs. prediction plots, its x-axis represents the actual measured value and y-
axis represents the predicted value for each data point. The red line is the ideal prediction
line, meaning that points close to the line represent high-accuracy predictions. Since
time = (work+delay+no work), from the figure, it is observed that the time’s prediction
error is wholly caused by the error in predictingno work.

7.3.2 Evaluation With Variable Workload Size, Configuration
Parameter, and Workers

We train LeeNN, Direct NN, and Multi-task NN models with the train part of Dataset B.
Then the trained models are evaluated on each three test sets. The model’s prediction
error on the test part of Dataset A is shown in Figure 7.1.
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Figure 7.1: Scatter box plot showing the error percentage of time prediction made by
two-step linear model on Dataset A – test

Actual vs prediction plot by LeeNN, Direct NN, and Multi-task NN are shown Fig-
ure 7.3, Figure 7.4, and Figure 7.5 respectively. As seen from the figures, prediction by
LeeNN cannot extrapolate outside its training range. It is especially easy to see from
Test1 results.

On the other hand, Direct NN and Multi-task NN models are extrapolating well
outside their training range. The exception is Test3 – sparsely, where both model’s
median error rate is more than 50%. It is also worth noting that the Multi-task NN is
performing slightly better across most cases.

We summarize the results in Table 7.4.
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Table 7.4: Dataset B : Prediction Error Summary

LeeNN Direct NN Multi-task NN

Sort
Test1 26.56% 9.04% 10.29%
Test2 85.57% 17.47% 8.03%
Test3 17.56% 3.15% 5.52%

SparseLU
Test1 46.97% 38.82% 24.33%
Test2 18.11% 38.38% 30.19%
Test3 67.73% 70.56% 57.29%
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Figure 7.2: Actual vs prediction plot for sparseLU/BOTS application on Dataset A -
test.
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Figure 7.3: Actual vs prediction by LeeNN plot on Dataset B.
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Figure 7.4: Actual vs prediction by Direct NN plot on the Dataset B.
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Figure 7.5: Actual vs prediction by Multi-task NN plot on Dataset B.



Chapter 8

Conclusion

8.1 Summary

We presented a novel DAG-based performance model for predicting the execution time
of task parallel applications. We presented three different models for performance model-
ing. The two-step linear regression model builds intermediate models on various directed
acyclic graph (DAG) properties: work, no. tasks created, no. of task waits, delay, and no
work. Those intermediate models are combined to determine the final execution time. Di-
rect NN model predicts performance without requiring any additional information other
than the execution time of training measurements. Multi-task NN model improves the
direct neural network regression by using DAG properties as extra tasks, leading to better
generalization.

Our performance models produce accurate predictions, as conveyed by our evaluations.
Despite the prediction target being much larger than the training runs regarding both
no. of workers and input problem size, the prediction error rate is small enough that the
model is useful in practice.

8.2 Future Works

There are a few promising nonparametric regression/extrapolation techniques outside
neural networks. Especially, we want to try the Gaussian process extrapolation techniques
proposed by Andrew et al. [57, 56, 58].
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