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Abstract 

A decaying cosmological constant is one of many approaches to solve the cosmological 

constant problem. The approach tells us that the effective cosmological constant decnys 

like ~ t- 2 asympt.oticn.lly. ln accordance with this, the present cosmological constant 

is extraordinary small clue to the olclness of our universe. The crucial ingredients are 

a. generalized scn lnr-tensor theory and a carefu l analysis of conformal transformations. 

After a con formal tnt.nsformation to make the gravitational constant strictly constant, 

the cosmological constant turns into the potential of the gravitational scalar. The 

model, hence, is regard ed as one of the new inflationary models. The model reproduces 

successfu l cosmology by exploiti ng degrees of freedom of a generalized scalar-tensor 

theory. Sufficient reheating is obtained with introducing couplings of the gravitational 

sca lar to another scalar fi eld like 11. Higgs sca lar. As it turns out, non- linear effects, 

like a relaxation oscillation, play important roles in the cosmological sol utions. This 

behavior is expected to provide a key feature to explain the recent analysis indicating 

the presence of a small but nonzero cosmological constant. 
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Chapter 1 

Introduction 

The cosmological constant has brought some desirable and undesirable consequences to 

both cosmology and particle physics ever since it was introduced by Einstein for the first 

time. The "cosmological constant problem"[!] is an extremely serious and fundamenta l 

problem but has been poorly understood for a long time. Many efforts have been 

attempted from di fferent points of view. But none of them has reached a complete 

success. T he idea of a decaying cosmological constant.[2][3)[4][5], the main issue in this 

paper, is just one of such approaches with on ly partial success so fa r. We still believe 

that the approach is viable as a natural solu tion of the problem, and deserves furth er 

development. 

Historically Einstein introduced the cosmologica l constant first to obtain the solution 

of a static universe. In those days most of the people, including himself, were obsessed 

J,y a belief that our unive rse is static and does not expand nor shrink. Then Hubble 

discovered that our universe is in fact. expanding, making it no longer necessary to have 

a static solu tion of the universe. Einstein finally withdrew his own proposal to introd uce 

the cosmological constant.. 

Friedmann discovered a class of solutions expand ing with on ly maller distribution 

and with no cosmological constant.. This model is called Friedmann model or FRW 

model, for Robertson and Walker contr ibuted to the stud ies of its line element.. Fried-
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mann model is still of central importance in modern cosmology. With the success of the 

Big Bang cosmology which embodies Friedmann model, the potential importance of a 

cosmological constant has been almost forgollen. T he cosmological constant recently 

reemerged, however, in an entirely new context through the effort to combining particle 

physics and cosmology. 

When we app ly particle physics to cosmology, the vacuum energy begins to have an 

important meaning. In Minkowski space-t ime vacuum energy is not a physical observ­

able; on ly the difference in energy between a state and the vacuum slate is observable. 

T he vacuum energy, hence, can be ignored. In cu rved spa.ce-lime, however, the vacuum 

energy is not simply ignored and behaves like a cosmological constant. If a theory is 

applicable to an energy scale A
6

, we may naturally expect the vacuum energy density 

with a scal e of A),. Since general relativ ity may be probably applicable to the Planek 

scale, it is naturally expected that Pv ~ m~1 ~ 1076 GeV 4 where mPI is the Planck mass 

~ 1019GeV. 

On the other hand , the observation gives a very strin gent upper bound of the cos­

mological constant . Since any energy density must be smaller than the critical density 

P";lic•l = 3H5/87rG ~ l0-46 GeV 4 ~ 10- 120m~1 , the present vacu um energy density or 

the present cosmological constan t has an upper bound eq ual to P";'; '"1• The expectation 

for the cosmological constant from particle physics, hence, is la rger than the observa­

tional limit by some 120 orders of magnitude. This requires an ex treme fin e-tun in g or 

cancellation to the unimaginable order of 120 or so. This is called the cosmological 

constant. problem. Many approaches to solve this problem have been tried; for example, 

supersymmetry, supergravity, supers tri~ g, anthropic consideration, changing grav ity, 

quantum cosmology and a decaying cosmological constant (adjustment mechanism). 

Particle physics brings not only the disgusting cosmological constant problem but 

also blessed inflationary paradigms to cosmology. Inll ation[6] was or igina lly born by 

combining the grand unified theories with cosmology and can so lve many cosmologi-
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ca l puzzles which the Big Bang cosmology fail s to explain. An e ffect ive cosmological 

constant in the early universe leads naturally to an inflationary expansion, so inflation 

seems to be almost a common phenomenon of theories with phase transition. However 

the end of inflation is far more difficult to achieve in a natural way than in its onset; 

this is called the "graceful ex it" problem. Any mechanism for ending the inflationary 

era which does not en tail a reasonable solution to the cosmological constant problem 

would seem to be seriously incomplete at best. Because inflation solves some impor­

tant cosmological problems, including the horizon problem, it is des irable if we have a 

so lution of the cosmological constant problem which allows for inflation . In this sense 

the cosmological cons tant problem is closely connected to the inflationary model. This 

means that we need to kn ow the behav ior of the effec tive cosmological constant on I he 

cosmic time. But most of the approaches to the cosmological constant problem have not 

answered the time beha vior of the effective cosmological constant saying only that the 

cosmological constant becomes zero. Moreover these answers a re far from perfect. A 

decay ing cosmological constant, however, seems to be a more promising possibility than 

other approaches because it describes dynamical decay of the cosmological constant. 

The purpose of the present paper is to investigate a decay ing cosmological constant in 

conside rable detail based on our own work[2][4][5]. 

A decaying cosmological constant ass umes an e ffect ive Lagrangian in four dimen­

s ional space-t ime as the start ing point . This Lagrangian sho uld be de termined by more 

fundamental th eo ries, like superstr ing theory, for example. Unfortunately, few of such 

fundamental theo ries have resulted in low-energy effective Lagrangians of suffi cient de­

l a ils . We not ice, however ,many of these th eo ri es suggest some generalization o f Einstein 

gravity[7]. We, hence, investigate a decaying cosmological consta nt from a rather "phe­

nomenological" view point. The mechanism of a decaying cosmological constant 1s 

fo rmulated usua lly in terms of a scalar fi eld called the gravitational scalar fi e ld ¢>(1) . A 

fin e- tuning to a n unimag inable accuracy of 120 o rders or so can be avoid ed because the 
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effect ive cosmological constant behaves like r 2 a.symptotically and the present age of 

t.he unive rse is very old (iP, =:: 14Gyr ~ 1060 tP1 where tP
1 

is the Planck time~ 10-43sec). 

In addition, A is expected to be large enough in th e past to cause infl at ion. In sp ite of 

th ese advantages it ha.s been criticizccl that , among other reasons, it is not known how 

the mecha.nism a.pplies to successive cosmologica l pha.se transitions, each of which may 

crea.le a new cosmological constant. Certain ly yet another novel idea will be neccled for 

t he expected repetition to be real ized. Nevertheless, as a basis o f futu re deve lopments, 

t heoret ical attempts for a s in gle occurrence as they stand seem promisin g enough to 

dese rve furth er stud ies. If we s tand on this point of view, we find that the effect ive 

gravitational constant. G,ff also decays in this mechanism. One may thereby criticize 

t.ha.l obviously th ere is no need to worry about a nonzero cosmological constant in a. 

world with th e gravitational interaction s turned off. Even accepting that G,ff is not 

reall y zero at the present time, the calcul ated rate of the change of G,ff is beyond th e 

obse rvational upper bound[S]. We point out, however, th a t G by itself is not s ubject to 

direct physical measurements; it is (almost) always multiplied by masses: Gm2 o r Gm .. 

This observat ion raises a possib ility that the decrease of G can be compensated by an 

increase of masses of elementary par ticles. 

It is also important to not ice that we can always go to a conformal fr ame (CF) 

111 which G is a true constant. Analysis will often be simpler in this CF. In addi t ion, 

we point. out that a.ny nontrivial t heory of gravitation is not invariant under a con­

fo rmal transformation: g
1
'" --+ !l(x) 2 g

1
'". Different CFs describe t he sa me p hysics in 

different manners. In th e CF with G constant, the e ffect ive cosmological constant is no 

longer constant and becomes a potential of the grn.v itational scalar fi e ld . T he effect ive 

cosmological constant, hence, decays like l- 2 asymptotically. T his solu t ion of t he cosmo­

logical cons tant problem is almost sat isfacto ry from the view point of particle physics, 

but successful cosmology requires various restrictions because the effec tive cosmological 

cons tant st ill remain s to some extent. This feature may prevent us from obtainin g mu ch 

6 



success of the Big Bang cosmology. Primordial nucleosynthesis is particularly sensitive 

to this feature and may restrict our model stringent ly. 

Our model in new CF can be regarded as one of many inflationary models. Prescrip­

tion for inflationary models is, hence, applicable to ours. But ou r model has two ser ious 

rlifferent features from usual inflationary models. The gravitat ional scala r interacts with 

usual matter fi e lds far weaker than an usual inflaton does. If the gravitational scalar 

has a Yukawa coupling to a fermion represen ting usual matter, the magnitude of this 

coupling constant is 0(10- 19 ). The other feature is a shape of the potential o f the grav­

itational scalar. This potential cannot have any stable points to avoid fin e- tuning of the 

cosmological constant . The gravitational scalar fi eld does not osc illate around a s tal>le 

point whereas a usual inflaton does. We wonder if our model has suffi cient reheating , 

beca use we cannot expect that the energy of the gravitational sca lar converts matter 

energy sufficient ly. In this paper we consider an interact ion between the gravitational 

sca lar a nd a sca lar fi eld like a Higgs scalar. We introd uce a dissipative term based on 

this interaction as quantum effect. 

Solving the cosmological equations, we find that non-linear effect plays an important 

role . We, hence, inves tigate these e']uations with numerical calculations. We found very 

inte res ting behaviors of solutions , which is generally called a relaxation oscillation. A 

relax at ion osc ill a tion which is a universal phenomenon in nature, has not been well 

unders tood yet because of the non linearity. In our model this phenomenon occurs 

rat her common ly. 

Recen t analysis about the cosmologica l parameters[9] reports that the cosmologica l 

consta nt may be nonzero. If this is true, the cosmological constant. has a lower bound 

and the cosmologica l cons tant problem becomes much more difficult. We have to explain 

the nonzero a1;d extraordin ary small cosmological constant without fine-tuning . At the 

present time no approach has been tried to solve this "new" cosmological constant 

problem . . We app ly a decaying cosmological constant model to this "new" problem in 
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two ways. One way is "soft" fine-tuning of parameters in our simple model. This way 

gives ra.t.her interest ing time behavior o f the effect.ive cosmologicnl constant. The oth<'r 

way is introducing another scalar field which has a a rt ifi c ia l potential to mimic the 

"suspending" cosmologica l constant for a time[JO]. 

In Chap.2 we discuss th e cosmological consta nt problem following mainly Wein­

berg [1 ]. In Chap.3 we outline t he basic idea. of infl ation and the cosmologica l puzzles 

which infl at ion elegantly solves. Chap.4 is a. main part of t his paper where we present 

a. decaying cosmo log i c~tl constant model. We apply our model to cosmology. We derive 

a dissipative term which plays an important role in the reheat ing epoch. We find inter­

est ing behaviors of th e solutions. In Cha.p .. 5 we di scuss the model of nonzero A from a 

point of view of a decaying cosmological cons ta nt. 
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Chapter 2 

The cosmological constant problem 

E ins te in equ a tion is given by 

1 1 
R,,.- 29••R- Ag"" = StrG T,,., (2.1) 

where R"" is a Il.i cci tensor and R is scalar curvature. T he third term of the left-hand side 

is called a cosmological term. On right-hand side, T,,. is a n energy-momentum tensor of 

ma tter fi elds. Q uantum fi eld theory tells us th at the occurrence of th e cosmological term 

is a lmost inevitab le. In qu antum fi eld theory the vacuum in itself has energy in general 

with its density act ing jus t like a cosmological constant . In Minkowski space- time th e 

ene rgy-momentum tensor of the vac uum is given by 

(2.2) 

where p. is the energy density of the vacuum. The occurrence of 'I"" is a consequen ce 

of Lo rentz inva ri ance. In curved space- time (2 .2) is expected to be genera lized to 

(2 .3) 

Before we estimate the vacuum energy, we study a crude experiment al upper bound 

on A or p. prov ided by measurements of cosmological redshift.s z as a func tion o f dis­

ta nce, the program initiated by Hubble in the late 1920 's. We assume Robertson- Walker 

metric 

(2.4) 
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where k = -1, 0, 1 represents the s ign of spat ial curvatu re. T he beha.vio r of t he cosm ic 

scale facto r a is govern ed by the 00-com ponent. of (2.1) 

(iz )2 
k BtrG 1A - +- =--p+ - ' 

a a 2 3 3 
(2 .5) 

where p is t he energy density of matter <tnd · me<tns time de ri vat ive. T he exp<tnsion 

m t.e today is est im ated as 

(~) II0 = lOOhkm /sec/Mpc 
a P' -

(2.G ) 

wit.h h ~ 0.5 ~ 1. Since no gross effec ts of curvature is obse rved we find ro ughl y 

T he energy density of matte r is not. mu ch grea ter t.h a.n its c ri t ical v<tlue 

(2.8 ) 

li enee (2. 5) shows 

(2.!l) 

o r 111 physics units, 

(2. 10) 

Th e observationa.l upper bound 1Q- 47 Ge V4 is extraordin ary small compa red with 

any theoreti cal estimates of p •. For ex ample, summing the ze ro- point energies of all 

no rmal modes of some fi eld of mass m up t.o a wave number cut-off AE ~ m yields a 

vacuum energy density (with h = c = 1) 

(2.1 1) 
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I[ we believe general relativity up to the Planck sca le, then we might take AE ;:::, (81rG) 1!2 , 

which would give 

p.;:::, T 107r-•c-2 = 2 x I071 GeV4
. (2.12) 

T he difference of energy scale between observational upper bound and theoretical esti­

mate of p. is as large as 120 orders or so. l\loreover our uni verse has experi enced many 

phase transitions s in ce its birth . Whenever a phase transition occ urred , P. is expected 

to have changed by th e value with different AE substituted in (2.11). It is quite unnatu­

ral to ex pect that the vacuum energy has reached the present extraordinary s mall value 

as a final result of many phase transitions. It appears as if nature req uires an ext reme 

fin e- tun ing or cance llation to the unimaginable order of 120 or so. This is called the 

cosmologica l constant problem . 

The s ituation shows that our understanding of fi eld theory or particle physics is far 

from complete. Many proposals have been tried to so lve this problem. None of them 

has solved the problem perfec tly. In this paper we focus upon one of the proposals; a 

d ecaying cosmological consta nt. 

llecent ly the obse rvational cosmology suggests that th e cosmological constant may 

have a lower bound. llecent analysis on the mass dens ity and dark matter indi­

cates strongly that the mass parameter n0 = pf puilical at the present tim e is con­

s ide rably smaller than 1. A detailed analysis of the number count of faint galax­

ies taking the evolution effec t into account suggests that the universe of nonzero A 

(.X = (A/(81rG)j Pc,,,,ca1 = 0.9, no = 0.1, k = 0) is even bet ter than the open universe 

of A = 0 and no = 0.1. Galaxy formation based on cold dark matter (CDM) also 

indicates that a nonzero A is des irable to loosen the restriction from the isotropy of 

cosmic microwave background radiation (Cl\!Bil)[11J. Another suppor t for a nonzero A 

comes from the age of the universe determined from Hubble parameter is comparable 

with the age of some celestial bodies , for exa mple , a globular cluste r. 'We are close 

to a danger that the age o f the universe based on a JJ
0 

is shorter than the age of the 
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globular cluster. A nonzero A can avoid this contradiction because the cosmologica l 

cons tant can lengthen the age of the unive rse as inferred from TT
0 

a.lone[l2]. All these 

c ircumstantia.l ev idences point to a suggestion that the cosmolog ical constant is nonze ro 

having a lower bound. If the cosmological constant should have a lower bound, the cos­

mologica.l constant problem might be far more difficult than the one without a. lower 

bound. Most of th e approaches have tried to make the cosmologica l consta nt st rict ly 

zero; They are not prepared to confront with t he "new" problem. On the other hand , a 

decaying cosmological constant allows some nonzero valu e, making it better suited for 

the " new" problem. 
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Chapter 3 

Inflation 

3.1 Big Bang cosmology 

The standard Big Bang cosmology[l3][14] has achieved greal success. ll explains primor­

dial nucleosynlhesis and CM Bll among olher things. We hence slarl wilh accepting Big 

Bang cosmology. The re are, however, many cosmologica l puzzles[GJ[l3] which cannot be 

explained by Big Bang cosmology. The horizon problem[l5], lhe flatness problem[l6] 

and lhe monopole problem are main puzzles of theirs. Before we disc uss lhese problems, 

we mention Big Bang cosmology briefly. 

The standard Big Bang cosmology is based on a homogeneous and iso tropic H.obe rl-

50 11 Walker met ric (2.4). The malt.er energy-momentum tensor is given by 

whe re p is lhe energy density and p is lhe pressure. The I' 

co11servalion of lhe slress energy (T''~v = 0) gives 

p = -3H(p + p), 

(3.1) 

0- componen t of lhe 

(3.2) 

where fi is llubble parameter a/a. For lhe simple equation o f slate p = (p, where ( 

is i11dependenl of lime, lhe energy density evolves as p <X a-3( 1+0. For exampk, t.h e 

radiation energy density behaves p, <X a-•, lhe non-relativistic mat.ler energy density 

behaves Pm <X a-3 and lhe vacuum energy density behaves Pv ~ consl. 
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We solve (2.5) wilh A= 0 

(
")

2 

k 1 - +- = -p 
a a 2 3 ' (3.3) 

where we use t.h e unit. syst.em 81rG = c = h = I (see Appendix A) . Wh en t.he enrrgy 

density p , sat is fying p = (p, is dominant in lhe universe willt spa tially llal. k = 0, the 

sca le fact.or a evolves like a~ t21i3(I+01. 

Th e s tandard cosmology says I. hal. I. he radiation energy had brcn do minant in it.ially 

a11d t.he non-rela.t.ivisti c e nergy ca ughl up wit.h l he radiation e nergy. Since then p,, 

tnrani11g I. he non -rrlalivis l.ic mal.l.er energy density, has been dominant. Th e sca le fa ctor, 

h<>nce, behaves like 

a~ { tl/2 t < l,q 
t213 t > l,q ' 

\\'here l,q is "lhe eq ual lime" meaning p,::: Pm and is give n by 

(3 . 1) 

I o-6
' and n = 0.0 l ~ I. The relatio n between t.he radiation e n<'rgy d ens ity and the 

t. e mperat.ure of th e unive rse is given by 

2 

p, = ; 09.(T)T', (3.6) 

where g.(T) is t.he l.ol.al number of effect ive ly massless degrees of freedom, given hy 

(3.i) 

\\'here!/. is a fu11 ctio 11 ofT a11d l.he sum runs ove r on ly !.hose spec ies wit.h mass m, « T, 

for example g.~ 100 al. GUT scale. lncidenl.ally lhe entropy d ens ity is a.lso given by 

27r2 
s = 45,q·ST3, (:J.S) 

"'here 

(3.D) 
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Th e redshifL at. 1"1 is g iven by 

"r' 3 . o•" / 2 I + z," = - = 2. x l "o ' . 

"'" 
(3.10) 

In Lh e early unive rse Lh e m alter and rad iation were in good Lh en nal conla.cl, but. 

eventually Lhe density o f free elec trons became too low to maintain thermal contact and 

mat.ler a nd radia tio n decoupled. Roughly speaki ng this occurs when 1\ ~ If whe re 1'
1 

is the inte raction rat e of th e p hoton, given by 

(3.ll) 

whe re n, is th e n11111be r d ens ity of free elec trons and "T is the Thomson cross section 

~ G.G5 x 10- 2'cm2
. We kn ow th e reds hift at the photon decoupling is given by 

(LP' 1 + zd = - ~ 1100. 
ec (L 

doc 

(3.12) 

Conseq 11 ently t he C~IBR carries information at zdec· 

3.2 The horizon problem 

In this wa y Ri g Ran g cos lllo logy is based upon the assumptio n of homogene ity and 

i,.;o tropy of the nniverse. Moreover the C~IBH. which is uniform to 6TjT ;S 10- • 011 

ang11lar scales from 10" to 180' s hows that the universe has been unbeli evably iso tropic 

and ho mogeneo 11 s since tir e time of photon deconpling. 

If the e ntire obse rvable 11niverse were in ca 11 sal conlacl al th e epoch of photon 

<k co 11plin g, microphys ical processes like Compton scaltering , could ha ve smoothed o 11t 

the who le observai,J e 11niverse and then lhe CMBR could have been unifo rm very m11 ch. 

ll owever , within th e sta ndard cosmology it is very dirTi c11ll to imagine that tl1i s has 

happened beca11 se of th e ex istence of particle hori zo ns. The particle horizon is defined 

hy 

1' dt d11 (t) = a(t) -. 
0 (L 

(3.1 ;1) 
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Atlhe radiation dominant era, d
11

(t) is 

(HI) 

\Ve discuss lhe horizon in lhe lwo ways, One way uses lir e entropy wit hin a horizon 

volume[6][13] and lhe other way uses conformal diagrams whe re lh e li ght cone is ~tl 

±45'[15] . 

The size of lire particle hori zo n al a g iven epoch is conventionally expressed in te rms 

of lir e entropy within a hor izo n volume: 

6.30g; 112(mE/T) 3 t ;S t," 
3 x 10B7(flo h2t 3f2 (1 + zt3/2 t ;::: t,q (3 .15) 

Note tlral lhe entropy conta ined within th e hori zon al ea rly limes was mu ch less than 

th at today, about 1088
. The entropy within !.he horizo n at deconpling , whe n typical 

photons in the CMBR last scaltered, was S 11011 ( zd,c ~ 1100) ~ 1083 . We thus find l11al 

l he present Hubble volume cons isted of about 10' causally disconn ected regio ns at lir e 

d ecouplin g. Causal processes could nol have effec ted lhe s moot hn ess consequ entl y. Th e 

c~ u sa.lly connected region at lh e decoupling, the reby, occ upies only an a11gle of only 

about 0.8' on lhe sky today though lh e C MBR is uniform across lhe sky. Th ere is no 

physical exp lanation for why the universe on very large scale is so very s mooth. This is 

ca ll ed th e Horizon problem. 

We d iscuss the horizon problem in a not he r approach us ing conformal diagrams. Th e 

maximum coordinate clis la.n ce which any s ignal could have traveled up lo now is equal 

to the con fo rmal lime at the prese nt lime; 

1
,,, dt 

!I - -
ph - o a' (3 .16) 

b ecause lhe light cone is at ±45• in the conformal di ag ram. ttrh' giving lhe pa rticl e 

horizon drh = a{tr,)urh' is divided into two parts: ttph = !tvh + u pph' wlr<'re 

(~ . 17) 
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and 

u = !''" ~-
pph Jo a (3.18) 

u is called the coordinate distance of visual horizon because it is a maximum coordinate ,h 

distance from here to the farthest place we can see through light. upph is, so to speak, 

I he primeval particle horizon. If the coordinate distance between two different events at 

decoupling is smaller than upph' these two events are considered to be causa lly connected. 

Therefore the number of causally disconnected regions of the universe at decoupling is 

given by ( 'ltvh/upp/.)
3

. 

Although, st rictly speaking, l,q f Idee (zeq ~ 104 and zdco ::::: 1100), we assume 

l ,q =Ideo here for simplicity. The scale factor is given by 

( 3.19) 

where a and 1I is contin uo us at ld« and a
1 

is a constant. Then ttpph and u,h is 

U = 2adec 
pph ai J 

(3.20) 

and 

[ 

1/2 l " = 4 ad« (~) - I 
vh a2 a 

I d<>< 

(3.21) 

This gives finally 

(3.22) 

This result is consistent with the previous result us ing e ntropy. 

3.3 The flatness problem 

For FH.W models the quantity n0 , along with Jf
0

, specify our present cosmological 

model, in that n0 and If0 determine the radius of curvature a~"" = J[02 fino- 1 I and 

the observat ion says no li es in the inte rval [0.01, few]. This fa ct implies that acuc. ~ H0 1 

and the matter energy density p0 is nearly equal to Pcc;,;cal· 

17 

This may not seem so remarkable, but when one takes account of the fact that n 
changes with time 

where 

1 
n(t) = 1- x(l)' (3.2:1) 

(3.24) 

n implies quite unacceptable initial "fial.ness". Since n vnries as 1/(l- x), earlier II 

was close to unity: at t he Planck time 

(3.25) 

which implies that. the radius of c urvature of t.he universe was enormous compared In 

the l!ubble radius: 

(3.26) 

Though no law of physics precludes such fantastic initial data, this suggests that o ur 

FH.\V model was very special indeed, characte rized by the foll ow ing initial data as the 

Planck time 

l(k/a2 )1/(p/3) :S O(L0-60
), 

(3.27) 

(3.28) 

(3.20) 

If all o f t.he above quantities were given by order unity at the Planck time, the univNse 

would have either recollapscd in a "j iffy" (few x 10-43sec) for k = +I, or reached a 

temperature of 3K at t.he age of 10- 11 sec for k = -1. We, hence, arc thus today dur t.o 

quite ex traordinary fiat initial cond ition. This is called the flatn ess problem. 

3.4 Inflation 

Inflationary sccnarios[G][13][17] are capable of avoiding the horizon and flatn ess prnb-

I ems in a sophisticated manner. At present there are many different versions of I he 
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inflationary scenario. T he main feature of all these versions are common and sometimes 

ca ll ed the infl ationary paradigm. It requires the ex istence of an epoch when the effec­

tive cosmological constant was the dominant component of th e energy density of th e 

un1verse. The scale faclor, hence, grew exponentially (or quas iexponenti all y) during 

I his epoch. Such an expansion is called inflation. The key point of infl ation to so lve 

so me cosmologica l puzz les is t hat a small , smooth, and causally coherent patch o f size 

less than fl - 1 can grow to such a size it easily encompasses the comoving volume that 

becomes the entire obse rvable uni verse today dming an epoch of infla.t ion. The impor­

laul po int of inflationary scenario to lake not ice is that most of ene rgy of the effect ive 

cos mological conslaul couverts energy of maHer after inflation. This nonadiabatic pro­

cess is c;;lled "reheat ing", implying the enormou s entropy has been produced because 

the vacuum energy hard ly decays during inflation. As a result the universe becomes hot 

like a "big bang" after inflation (again) . 

This enormous entropy increase thereby solves some cosmological puzzles. First it 

cau so lve the hori zon problem s ince the smooth patch, which contained only a small 

fra ct ion o f th e entropy of th e presently observed universe before inflation, after inflation 

contains an entropy that is many times greater than that of the observable universe 

du e to reheating. T he comov ing vo lume that encompasses all that we can see today fit s 

eas ily within the smooth patch after infl at ion. 

We would like to see this situation with the con formal diagram[15]. We consider th e 

primordia.! infl at ion for simplicity. During inflation the scale factor a evolves from a; to 

a1 = Z a; and the cosmic lime passes from t; = 0 to t
1

, where Z means the s ize of th e 

infl ation. We may neglecl space cu rvature term k/a2 of (3.3) for s implic ity and assume 

t he fl at space (k = 0) where we regard the effeclive cosmological consta nt as the energy 

density of vacuum . 

During inflation the scale faclor behaves like 

(3.30) 
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wit h the Hu bble parameter H = H; = /PJ3. After inflat ion , the uni ve rse becomes 

radiat ion dominant because of reheating. During the radiation dominant era the scale 

faclor is given by 

( 
t- t ) 1/2 

a =a1 t,-:. 
and th e Hubble parameter is 

1 1 
If =---

21- t. 

(3.31) 

(3.32) 

where we choose t. = t
1

- (1/2)H;-1 in order that a and If are continu ous at tf" AftN 

I. «~, the universe becomes non-relativ istic ma.lt.er dominant; 

where we choose 

a=a __ b_ 
( 
t- t ) 2/3 

eq l eq - t b 

2 I 
H=---

3 t- tb 

- (l·q- t•)l/2 - 1/2 
a.q - a1 _ - a1[21f;(t.q- t.)] , 

l J t. 

and lb = -(1/3)teq + ( 4/3)t. in order that a. and H are continuous a t t,q· 

(3.33) 

(3.35) 

\Ve assume t,q = Idee for s implicity again. In this case u rrh consis ts o f two pa.rts: 

tf.infl and 'Unoninfl wh ere 

{'' dt 1 ( 1 ) 
uinfl = Jo -; = aJfi 1 - Z ' (:! .36) 

and 

!. ''" dt 1 1 (ad ) 
Un on infl = t -; = a.JJ .Z ~ -l · 

I I I f 
(:! .37) 

T herefore u""" is given by 

1 ( 2 a 1) u = u. + u . = -- 1 - - + ~- . 
pph mfl nomnfl a./f. z a z 

' ' J 

(3.38) 

20 



And u,
1
, is given by 

<,, dt 2 a dec [( ap,) l/2 
] u - - - --- -- - 1 '" - J. a - Z2 a2 H . a du t 1 dec 

(3.39) 

Note t hat (3.39) is much smaller than (3.21) withal' a,, If, ~ 0(1) beca use of infl at ion. 

In t his case the ratio of u,h and upph is given by 

(3.10) 

If th e rate of ex pansion durin g inflation is suffi cient la rge (Z ~ 1) , u,Jupph becomes 

(3 .<1 I) 

(
t ) 

1

1
2 

___Q£f 

t I ( ) 

1/2 1/ 2 

tp, (Idee ) 
t I tP, 

(3.42} 

beca use we may reasonab ly ass ume that t
1 
~ 0(1) and tP, ~ [f01 ~ 1060 . As the final 

result we obtain 

~ 
'U.pph 

(3.43} 

If a ll the reg ion we can see today through ligh t fils within an uniq ue causally con­

nec ted reg ion at decoup ling, u,J"rrh is smaller than 1. T his in equality is the necessa ry 

condition for sufricienl inflation, giving Z > 3 x 1028 ~ e66 in this case. 

Nex t infl a tion so lves the fl atness problem: Right after infl at ion the ene rgy density of 

th e universe was reheated lo comparable temperature with that before inflation, while 
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the cur vat ure radius grew exponentia ll y during infl ation. T he ra.l. io x = (k/a2)/(pj:l) 

decreased by a factor o f about Z2 accord ingly. T hus, the radius of curva.lure o f the 

uni verse today thereby should still be much greater than the present Hu bble radi us. 

Conseq uently infl ntion expla ins the fl atness of the unive rse and ~tlso may predict that 

!1
0 

should be close to l. 

lnfl at ion also solves the problem of unwanted relics, for exampl<' , monopole: An 

unwa nted relic that was produced before inflation, with an abu ndance given by (n xl·•), 

where nx means number density of an unwanted rel ic X is reduced exponent ia ll y by th e 

sa me factor that the entropy increased like (nx/s)
1 

= z-3 (nx/s}, afl<'r infl at ion. Note 

that the in ilia.! entropy of the universe is irrelevant because the heal we see today was 

all produced during reheating . Need less to say, the baryon asym metry of the universe 

must be produced aft er inflat ion, which requires that the reheat temperature is enough 

high for ba ryoge nesis to occur in th e usual way. 

Inflationary models having such mer its are formul ated usua ll y in trrms of a scala r 

field, p roposed originally by Sato and G ulh in l!l81[6]. In the origin a l mod el, referred to 

as "old inflation", inflation is driven by a lliggsscalar fi eld at the GUTsrn le. This mo(l<'l 

has a difri culty, a graceful exit problem. In thi s scena.rio infl at ion end s with completion 

of a firs t-ord er phase transition . But the first-order phase tran sition never catches up 

with expansion of the universe because th e expan sion is too fast; inflation never ends 

and the universe becomes very inhomogeneous. New infl a tionary model is pro posed 

in order to avoid this problem by Linde[18], and by Albrecht and Ste inh ardt[l9]. T he 

essence of this model is a second-order pha.~e transit ion instead of the first-order pha.~e 

transition. The fi eld driving infl at ion which is also a Higgs scalar roll s over t he potenti a l 

s lowly. This fi eld is oft en call ed an inflalon. This model has, however, anot her problem 

lhal density perturbation requires fin e-luning of couplin g constants . C haotic in nat ion, 

proposed by Linde(20], shows, on th e ot her hand, that a ge neral scalar fi eld which is 

no t necessary a Higgs scala r can also drive inflation at th e Plan ck scale. In the more 
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recent model of extended inflation two scalars are introduced[21]. One is a lliggs scalar 

driving a inflation in the same way as in the old mode l of infl at ion that ends with 

completion of the first-ord er phnse transition. Another scala r fi eld is a JBD fi eld and 

ma.kes an expans ion slower beca use this field allows the effective grav itational constant 

vary with time. As a consequence the first-order phase transition now catches up with 

the expansion of the universe, thus solving the graceful exit problem. T he JBD scalar 

fi eld interacts with ord in ary matter fi elds as wea kly as grav ita tion does and may be 

ca lled a gravitational scala r fi eld. 

In a ny case inflationary models demand the effect ive large cosmological cons tant in 

the ve ry early universe and require that t he effective cosmologica l cons tant becomes 

a lm ost zero a ft er inflation. Any inflationary mod els, hence, need fin e-tuning of the 

cosmologica l constant; con fronting with the cosmological cons tant problem has been 

always avoided . We wo uld like to consider a mode l in which the cosmological cons tant 

is s uffi ciently large to cause infl ation in the very ea rly universe and natura ll y becomes 

extremely small in the late universe without fin e- tuning. T he cosmological constant 

must be time-dependent. 
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Chapter 4 

Decaying cosmological constant 

4.1 Mechanism of a decaying cosmological constant 

In ord er to implement the idea of a cosmological constant that decays like t - 2 , we con­

s id er a generalized sca la r-tensor t heory of gravity with a pos itive cosmologica l cons tant 

( 1.1) 

We use the unit system c = h = 81rG = 1. F
0

(<[J) and FK(<[J) are arb itrary fun ct. ions 

o f </J. We assume that t he s ize of A is Planck scale and that t his Lagrangian has no 

potential o f q, for s imp licity. Later we wou ld like to discuss th e effect of a potential o f 

</! produced by backreaction of quantum flu ctuations. T he grav itat ional scalar fi eld q, 

havi ng a nonminim al grav itational coupling is decouplcd from o rdinary matter fi elds in 

Cm•ttc.· T he las t te rm Cc rep resents a very wea k matl.e r coupling of q, as will be spec ifi ed 

s hortly. 

Tn t rocluc ing nontrivial fun ct ions of F
0

(<[J) and FK(<[J) is not an unnlllural assumptio n 

because many of the unifi ed th eories like supe rst rin g or supergravity th eo ries suggest 

the possible presence of such fun ct ions, alt hough no complete details ha ve been worked 

o ut on the explicit forms of F0 (</! ) and FI((<P) in the low-energy e ffect ive actio n in fo ur 

dimensional space-t ime[7]; if m ore fund amenta l theories or prin c iples were at hand, we 

would have been in a bet ter pos ition to dete rmin e F
0

(<[J) and F
1
<(</!). T he best we can do 

24 



at present is to choose F0(¢) and FK(¢) from a phenomenological point of view in o rder 

t h ~t the way t he cosmological consta nt decays is consistent. with reali s tic cosmology. 

We conventionally choose 

where ( is a positive constant naturally chosen as 0(() ~ 1. Since we have yet to 

find a c lue on FK(¢) and a lso the choice of FK(¢) = 1 is not consis tent with realistic 

cosmology, as wi ll be show n later, we choose conven ienlly[4] 

(4.3) 

Here x is a co nstant and the key feat ure of this FK(¢) is FK = 1 when (¢2 «: 1 and 

FK = x when (¢
2 ~ 1. Of course x = 1 corresponds to FK = 1 = consL Note that 

a degree of freedom of FK(¢ ) ca n be eaten in to a degree of fr eedom of F
0

(¢) with 

redefining ¢ to become FK = I if FK is positive defini te. Nontrivia l FK(¢) is, hence, 

meaningful if and only if FK is not positive definite. When FK is negative,¢ looks like 

a ghost fi eld in appea.rance. T his statement is not necessarily correct because ¢ is not 

a ca nonica l fi e ld. Later we choose X< 0 phenomenologically but the ensuing canonical 

field (later called o-) ca n be a normal fi eld , not a ghost. 

In cosmological applications we expect that. ¢ is spatia lly homogeneous depending 

only on th e cosmic timet. Then t.h e effect ive gravitat ional cons tant G,ff = (811'F
0

)-1 

depend s on t . 

We a.pply a conform al transformation g"" -> 9."" : 

( 4.4) 

in order that the effect ive grav it ational constant remains s tric tly consta nt in this new 

CF. There a re some reasons to favor this CF. First, theore tical analysis is more trans­

parent than in the original CF in which G is not constant . Second , the result will 

be in conformi ty with the experimental situation th at ruled out t.hc time variability of 
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G to the accuracy better th1tn 10- JJ per ycar[8]. Notice a lso F9 = F0\/~fi: and 

,q''" = F0 g!'". The term FgF
0

R is then expressed as Ff}.R. pins terms conta.ining 

the deriv1ttive fJ,,F0 = (dF0 fd¢)fJ1,¢ (sec Appendix B) . The extm terms 1tdd up to th e 

kin etic term of ¢ yield in g 

_ ~Ffi. ''" [3 (dF0 jd¢)
2 
+ FK] fJ ¢fJ ¢ 

2 9•9• 2 FJ FG ,. " ' 
(1.5) 

which c1tn be brou ght to a cflnonical form -1Ffi.g~"fJ1,o-D.o- if t he new fi eld o- is defi ned 

hy 

(Hi) 

where 

D = FJ(FG + ~ C~: r. (U) 

For t he choice (1.2) and (4 .3) , Dis given by 

(4.8) 

If this D, the inside in the square brackets in (4.5) , is negative, th en fT is a ghost. We 

avoid this by imposing a condition 

X 2: -6~, (4.9) 

to ensure th1tt o- is a normal canon ical fi eld. Notice that (4.9) a llows n n<'gative X· Then 

[becomes 

(4.10) 

The third term AF0
2 acts a~ a potential V of 1> (oro-) : 

( 4.11) 

It behaves as shown in Fig.l. The sca lar fi eld ¢(1) as a fun ct ion of t.IH' cosmic time t 

roll s down the potential hill, being driven eventu ally to infini ty. T l1is is in fact an orig in 

t. o cause t.h e effect ive cosmological consta nt to decay. 
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The matter system composed of massless fermions and gauge fi e lds is known to be 

con formally invarian t, leaving the corresponding portion of .Cmallu th e same as in lhe 

orig inal CF. Tbis is not the case with scala r fi elds, like Higgs fi e lds. Tbis is the main 

issue which wi ll be discussed in con nect ion with reheating. 

The s implest example of .Cc is 

(-1.12) 

for a sp inor field 1/> [4) . In the new CF, .Cc becomes 

(4.13) 

Fo r a slowly varying <P(t), (1 .13) gives a mass of the spinor fi eld: m = f<PFG 112 , wbich 

lends asymptotically to a constant m 00 = ~~-l/2 as <P--+ oo. In fact tbis mass becomes 

almost constant after infl ation. This is consistent with the lime non-va riability of G as 

measured by using atomic clocks. If the interaction (4.13) gives mass<'s of ordinary ligbl 

elementa ry particles like quarks and leptons in this way, m
00 

is ex pected to be order 1 

Gev or less. Accordingly lbe dimensionless coupling constant f is as small as ~ 10-19 

or less since~ turns out roughly of the order one. 

One may wonder at this point why one should not s tart with ('1.10) in the new CF, 

forgetting about (4.1) in the original CF. We could do so if we find a good reason to 

accept (4.10) as it stands. One of the crucial ingredients in (4.10) is an association of A 

witb </>. Tbe potential Vas given by (4 .11) will be shown to assume a particularly simple 

a nd suggest ive form in the limit of large IT :\f ~ e-aJ• , tl10ugh its real meaning is ye t 

to be explored. 1\!o rcover, we know lhal more fundamenta l th eories, e.g. superstring 

theories, suggest that lbe gravitational sca lar has a nonminima.l coupling to gravity 

and nontrivial kinetic factor. This may suggest that it is meaningful t.o start from the 

o riginal CF. On lhe other hand, the measurement of G/G is carried oul by using atomic 

clocks. In accordance with this, we must compare the theory with the exper iment hy 

using a CF in which m slays constant. This is precisely the new starred CF. 
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4.2 Cosmological applications 

4.2.1 Cosmological equations 

On the basis of ( 4.10) we now consid er cosmology. We simplify the ann lysis by assum ing 

a spat ially flat Robertson-Walker metric (k = 0): 

(1.H) 

where t. is the cosmic lime and a. is lh e scale factor in the new starred CF' . Tbe 

re lation lo the quantities in lhe original CF is given by dt = F;;'i 2 rlt. and a.= P;;'12a. 

because of cls2 = 1"(;1ds; Th e scalar fi eld IT(t.) also evolves as a function oft •. MaUer 

is represented by a general radiation energy density p,(t.). Notice !hal mos t part of 

!.he realis tic matter is domin a ted by spinor fi elds and gauge fi elds wbicb arc con formally 

invariant. In what follows we suppress lhe symbol * to simplify th e notations. 

The three independent equations (the Einstein equation, the IT equation , and th e 

cova.riant conservation of the radiation energy) are 

3H
2 

= ~u2 + V + p, = Pv + p, 

.. . dV F ( )" IT+3ffiT+-
1 

=- diTIT, 
liT 

p, + 1!1 p, = Fd(IT)u2, 

(4 .15) 

(4 . LG) 

(~.17) 

wh ere 1I = a/a, the overdot meA-ning a de rivative with respect t.o /. \Ve includ ed a 

diss ipative term Fd(IT)U in conformity with the Bianchi identity. The radiation energy 

dens ity obeys the same equation as in the conventional calculations; t.his is permissible 

because of conformal invariance of matter, ignoring mass terms ancl the kinetic terms 

of spinless fi elds. Late r we derive P/IT) as a quA-ntum effect . This dissipa tion term 

is appreciable only during the reheating epoch. In the reheat ing cporh the IT energy, 

which might be called the vacuum energy, is transferred to the mat.t.N rncrgy p, clu e to 

this d issi pa.tion. 
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It is convenient to express the right-hand side of (4.15) as 

P = Pv + p,. (4.18) 

where Pv is the vacuum energy: 

1 . 2 
Pv = 20' + V. ( 4.19) 

We app ly (4.15) -(4.17) lo the epochs after some time (chosen to he l = 1) around 

the P Janek time. With the potential V( 1 ), as shown in Fig.l, s uppose the classical 

field 1 starts from a small initial value moving slowly toward infinity. The potential 

is rath er flat for(¢?, falling off like~ 1-4 for 1-+ oo . The solution of (4.15)-(4.17) 

will then show difl'erent types of behavior according to th e value of (1 2 in com parison 

with unity. We thus consider the three eras separately: (i) primordial inflation, (ii) 

the transient era, (iii) the asymptotic era of a power-law expansion. The first and the 

last. eras permit analytic solutions while only the numerical solution is available for the 

second era in which the major effect is reheating. No detailed analysis is attempted for 

the later epochs of the matter-dominated era because we choose parameters to make 

the asymptotic era (iii) suffi cient ly close lo the standard radiation-dominated expansion. 

One may also place , if one wishes, another radiation-dominated era prior to inflation, 

as in the GUT inflationary scenario , though the result remains essentially unchanged. 

4.2.2 Inflation 

The firs t era (i) is characterized by (1 2 ~ 1 so that F
0 

"' 1 and Fg "' 1. Then u may 

be identified with 1 because of dufd1"' 1 from (4.6). For u "'1, (4.11) gives 

V "'A(l- 2(u2
)"' A= const., (4.20) 

I dV 
V = du "' -4A(u. (4 .21) 

It may also be reasonable to choose the initial conditions such t.hat u ~ 0(1) and 

iT~ 0(1). Equation (4.15) suggests an exponentially increasing a. Dissipation may not. 
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be important, and p, will rapidly fall off according to ( 4.17), thus justifying" postNiori 

to set the right-hand side of (4.15) equal to A. In this way we find 

a(t.) = exp ( lft), (4.22) 

with If = [Ai3. By using this in ( 4.16) (ignoring the dissipative term), we obtain 

ii + v3!\ir- 4A(u = 0. (4 .23) 

This linear equation can be solved in the form 

( 4.24) 

with 

I = ~ J3A ( J 1 + 136 ( - 1) ' (4.25) 

where we h<tve discarded a. decreasing solution. Such behaviors of a and u("' 1) Me the 

same as the results in the original CF because the difference between the new starred 

CF a.ncl the original CF is a lmost. negligible in the case of (<P ~ l. 

We want a sufficient inflation with Z = exp [Ai3r ~ l where T is the duration of 

inflation, as defined by 

(4.26) 

This can be furthe r put into the form 

where x = k<-'· The desired value Z ~ e60 can be obtained (wit.h "• ~ I) for 

(1.28) 

This crude estimate of the size of inflation gives almost the same result as the technique 

ns ing the slow roll-over condition[13]. 
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Next we discuss the density perturbat ion prod uced l>y inflation[l3]. In the s tandard 

cosmology a ll t he comoving scales A cross the "horizon" H - 1 for mic rophysics only once, 

whereas A can cross it twice in the inflationary scenario. All cosmologically inte rest ing 

sca les which is initially sub-hor izon sized, cross outside JJ - 1 during inflation because !I is 

constan t . Such escaped sca les cross back inside t he "horizon" aga in a ft er inflation. Du e 

to this cosmological "good bye" and "hello agai n" feature of inflation in ref.[J3] density 

perturbations is kinematically imprinted. Iloughly speaking, quantum flu ct uations o n 

a given sca le a risen when that scale is sub-hor izon sized, "freeze in" as classical met ric 

perturbat ions after the scale crosses outs ide the horizon and finall y becomes density 

perturbations when the scale re- enter the hori zo n. 

In order to analyze the spect rum of fluctuations, we, hence, need to know when a 

g iven scale crosses outside the horizon during the infl at ionary epoch. A convenient way 

o f specifying when a given scale crossed outside the horizon is by the number of e- fold s 

between hori zon-crossing and the end of inflation N).. Fo r example, when A ~ H
0
- 1 , 

N). ~50. 

At hori zon crossin g, the am plitud e of a density perturbation wh en it crosses back 

ins ide the hor izon , (5pjp) 11011 , is known to nearly equal to the gauge invariant quantity 

(being cons tant for super-horizon sized perturbations[22]. At horizon crossing, (has a 

part icula rly simple form: ( = op j(p + p). Then (f>pjp)II OR becomes 

( op ) (or/>V') (JJ 2) - "" (N = -. 2- "" -:- ' 
p !f OR J. U N>. U Nl 

(4.29) 

wh ere we have used the fact that Pu"" V, Pu + Pu = cr2 , ocr"" H/ 21r and the s low-ro ll 

equ a tion of mo tio n, V' = - 3H cr . 

The number of e- folds from the onset of in flat ion is given by 

f' (" V(cr) 
N(cr;-+cr) = J.;ffdt= lu; -V'(cr)dcr 

~In(!!'_) 
4( "; ' (4.30) 
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from (4.20), (4.21) and s low- roll equation. T he slow-ro ll a.pprox imation is valid until 

IV"(cr, )l ""9H2
, or for 

2 I 
(cr, ""2' 

T his cond ition is, of course, compatible with (4.26). 

Using s low-roll equations it is a simple matter to eva lu ate (5pfp) 11011 , 

N(cr-+ cr) =~ In(~) = -~In [(2() 112 cr], 
< 4( " 4( 

( op ) "" ( 1~
2

) "" (~~~ ) "" r:;: exp (4(N).) , 
p 110 11 N, N, v ~ 

which for N). "" 50 leads to dens ity perturbations of order 101 wit.h ( 

( 4.:11) 

(1.32) 

(4.33) 

J.O X 10- 2 

and A = 1. ln order to seed th e observed structure in the universe, pe rturbat ions of 

amplitude lQ-5 to 10-• or so are probably required. On the basis of the measured 

iso tropy of th e CM Bil, the ampl itude can be no la rge r tha 11 lo- •. Un fortunate ly we 

find it imposs ible to ob ta in dens ity perturbations of this sm>tll in our s imple mode l from 

(4.33) . However, s ince our model with FJ( eas ily a llows power-law infl>ttion to occur, 

we reasonably expect to obtain suffi cientl y s mall density pertmbations by assuming 

somewh <t t gene ra li zed forms of FG and FI< [23]. We will discuss t his in drta.il in a future 

wo rk . 

4.2.3 Asymptotic solutions 

We 11 ow move on to the asy mpto tic solutio n in th e era (iii) fo r which (r/>2 » 1 >tnd hence 

(4 .34) 

Equation (4 .6) is now 

(4.35) 

which is integ rated to give 

(~.36) 
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where the coefficient </>
1 

is likely to be of the order one and 

(4.37) 

Notice that"- depends not only on F0 but a lso on FK. The potential (4.11) now takes 

the form 

(4.38) 

Taking also p, ~ a-• into consid eration, we find two different analytic solutions 

depending on K: 

i) 0 < "'< 1/2, namely -6~ <X < -2~ 

and 

ii) "'> 1/2, namely x > -2~ 

u(t) = 2K In t, 

p,(t) = ~(1- 4K
2)t-2

, 

P.(t) = 3K21-2
, 

a(t) ~ e·'' 

u(t) = 2Kinl, 

(4.39) 

(4.40) 

(4 .41) 

( 4.42) 

( 4 .43) 

( 4.14) 

(4.45) 

( 4.46) 

wh ere we have ignored dissipation. In both solutions </> evolves like ~ t112 from ( 4.36) 

and (4.40) or (4.44). 

The so lution (ii) fails to evo lve into the radiation-dominant universe, because the 

expouent 2K
2 

in ('1.43) is larger than 1/2 for "' > 1/2. Hence we must choose the 

,o] ution (i) for successfu l cosmology. Note the solution (i) requires a negat ive X· If we 
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na.ively chose F1< = 1, the result would have been the so lution (ii) with X replaced by 

1. Then follows K
2 > 3/8 from (4.37) and the scale factor expands faster than t314 , 

deviating dangerously away from the standa.rd expansion~ t 112 . Th is is t.he reason why 

we cons ider a generalized scalar-tensor theory with F K # 1. Of course, we do not c laim 

t he uniqueness of (4.3); it is on ly one of the convenient cand idates. One might think 

of an even simpler choice FK = X < 0. This brings in a complication, however: for 

((6~ + x)</>
2 < x, D given by ( 4.8) is negative, and hence u becomes a ghost. In t.he 

following discussion we confine ourselves to the solution (i). 

From (4.18),(4.41) and (4.42) we also obtain 

1 
Pv/P = 4K2 = 4(6 + xC'), 

which should be constrained ~ O.l for the successful analysis o f the primordial 

n ucleosy nthesis[24J [25]. 

(1.17) 

As the e ffect ive cosmological constant Pv behaves like~ C 2 from ( 1.42), the present 

effect ive cosmologica l constant becomes ~ 10-120 due to the present age of universe 

tP, ~ 10 10y ~ 1060 This explains the present extraordinary small cosmological consta nt 

naturally without fin e-tu ning. 

4.2.4 Dissipation 

During t.he transient e ra between primordial inflation and the asymptotic era of a power· 

law expansion, various non-linear effects including reheating are expected to have t11kcn 

place. As compared with ordinary new-inflationary models, we encounter two difficulties 

on the reheating process. 

One is that the gravitational scalar fi eld u interacts with ordi nary matter fi eld s very 

weakly: if the gravitational scalar has a Yukawa coupling to a spinor fi eld representing 

ordinary matter fields, the coupling constant is f ~ 10-19 . The ord inary inflaton cou­

ples to other fields rather strongly, hence producing sufficient reheating, whereas t.he 

gravitational scalar fi eld has a much weaker coupling, nearly as weak as gravity. 
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The ot.lier is that. the potential of <r has no minimum point to cause the cosmological 

constant. to decay. Tf it had a minimum point, we would have to fine-tune the height 

of the potential at. the minimum point[l]. In ordinary inflationary models, in contras t, 

the potential of the inflaton h•s a minimum point and the inflalon oscillates many 

t.imes around the minimum point during the reheating epoch. The energy stored in th e 

inflat.on can, hence, be converted effectively to the energy of ord inary matter fields. But 

the grav itationa l scalar <r does not oscillate and has only one chance that the energy 

s tored in the gravit.aional scalar is converlecl to ordinary matter. 

One may wonder if a decaying cosmological constant. model is unable to reheat the 

universe su ffi ciently. As a possible remedy, we consider co uplings of the gravitational 

sca lar to a scalar fi eld like a Higgs scalar. The couplings is produced rather nalura.lly 

unde r the conformal transformation. Note that the couplings are strong enough to cause 

sufficient reheating as, we will show in detail later. The dissipative term will be derived 

as a quantum effect. 

Dissipation may arise from p•rticle creation due to the lernporHI change of the mass 

of u; the squarecl mass as defined by the second derivative of the potential decreases 

as <r goes down the potential. The question is that the rate of reheating might be too 

weak a.s the above-mentioned. It is easy to see that the effect would be important only 

in the ea rly epoch, more specifically only cluring the period of reheating. We derive 

a di ssipative term based on this process by following the Morika.wa-Sasaki-Tlingwalcl 

rec i pe[2GJ[27]. 

Let the fi eld <r be divided into the classical background <rc and the quantum fluctu-

( 4.48) 

with the condition (u.) = 0. We substitute (4.48) into (4.10) and derive the equation 
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of motion for <rc: 

( 4.49) 

and the Lagrangian of u.: 

(4.50) 

where 

(1.51) 

The third term 4 y(3l(uc)(u~) and high er terms of <r• in (4.49) represent the backreact.ion 

of the particle production, causing dissipation. We focus upon the lowest-order terms, 

neg lecting the last term o f (4.49). 

In cosmological •pplications of quantum fi eld theory, it seems most convenient to 

use the conformal time '7 (d17 = dt /a.) and introducing the redefined fi <' ld <p =au •. Then 

('1.50) is put into the form 

(H2) 

wh ere 

the prime meaning a derivative with respect to '7- It appears as if we were in M inkowski 

space-time and the effect of spHcc-time curvature is packed into the mass term /11 2 . It 

is noticed that lvf2 is not always positive. In the foll owi ng discussion, we limit ours<'IYcs 

to <rc giving the positive M 2 

We define the creation and annihiration operators at time 17 by 

where wU'I) = k 2 + /112 ('7)[26]. The Hamilton ian is then instantaneously diagonaliz<'cl; 

(~.G5) 
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The vacuum state jO) may be defined by 

(4.5G) 

wl1ere 'lo is a conforma l time chosen appropriately. The operators ak(7J) and al('l) are 

related to ak(170) and al(7J0) by a Bogoliubov transformation. 

We define diagonal and off-d iagonal elements of the density matrix by 

('1.57) 

and 

(4.58) 

Th<•se variables xk( 7J) and yk(17) can be represented by Bogoliubov coeffi cie nts, sat isfying 

th<' following cquations[28]: 

(4.59) 

(4.GO) 

where we have exp lic itly introdnced the the decay width l'k(17) of "• as the imaginary 

part of 11/. Hy us ing formal solut ions of these equations, (<p2(1J)) is expressed as a. 

no n- loca l function of time. Sufficient dissipation, however, will destroy long-time cor­

relatio ns, hence leav ing (<p2(17)) as a local function of"" de, a and time derivatives of 

a . 

\Ve solve these two eq uations in an adiabatic order expa.ns ion[27]. We replace 'I 

te mporarily by 171 = 11/T where Tis called the adiabatic parameter. We perform an 

expans ion of (4.59) and (·1.60) in the inverse power ofT: 

(HI) 

(4.62) 

37 

(~.G · I) 

(·I.GG) 

To the lowest order, 3?e yk(7J) is given by 

(-167) 

(~.68) 

The port.ion o f (<p2(1J)) respons ible for dissipation is now given by 

(4.G!l) 

For s implicity, we may neg lect "\('J). w~ ca uses dissipative effect beca use w~ includ ~s 

d 2 

d7Jwk 

d 
n-(k2 + 111 2

) 
dl. 

a3 
[ vCJ>(crJ&c + urv(2>(rrcl- ~- 3JI ~] . 

(4.70) 

(·1.11) 

(1.72) 

Th e decay width rk is roughly the sq uare of the coupling constant. . We fiud that t.he 

di ss ipative term wou ld be too small if the coupling of <pis as weak as the gravitational 

iut.eract.iou. Suppose, however, lliggs fi e lds are present as natural ingredients o f t.hP 

universe. Moreove r Higgs scalar field s couple to other matt.er fi e lds rath er st rongly, 
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decaying into other matter fields rather quickly. ll may suffice lo discuss o nl y the 

decaying of rrq int o a. lliggs scalar without going into details of t.he decay of a lliggs 

scalar[•!]. To simplify the argument. let. us consider a. sin gle neutral scalar field <1>. In 

the original CF, I he kinetic term of iJi is given by 

(4.7:3) 

We apply the couformalt.ransformat.ion: iJi = Fjili .. Then L:,H;, becomes (;;gain drop­

ping*) 

(<17·1) 

wl1<•re D,, = D,, + (1/2)D"(In Fe). Notice t.he emergence of lhe derivative co uplin gs. 

No s i1nilar t ennis present for gauge fie lds or sp in or fields. We a lso point. out. that. t. hc 

non invariant. tenus appear even if the ex ponent. 1/2 in l he conformal l ransformat.ion of 

y> is rep laced by so me other (noncanonical) value, unless iJi is left. unchanged. 

We pick np interaction terms for ¢ which gets suffic ient ly large toward the end of 

inflation: 

[ = F9 [-_!__g''" [) (~iji2) [) !I -
I Ill 41\: Jl 2 v q (_!__)2 g''"D rr D rr <1'2 41\, I' c II 'I 

-- - g' !I !I,.,-1 ( l ) 
2 

'"[) f) ... '] 2 tlr.: J1 (J v q ( 4.75) 

!\II the terms h;;ve dimens ion 5 or higher, being su ppressed by cousla uls of mass dimen­

s ion s, o f t. he order of mp1 though not. showu expli cilly. For t.his reason the int. eractio u 

(·1.75) is as weak as grav ity at late epochs. We use the conformal t.ime '7 a nd introduce 

if• by if;= a<l.>. Th en the iuleracl. ion terms become 

£. 
llll 

(4.76) 

wh e re h = a'ja and 00 = D/07]. We then compute l\ which rep resents the decay ra te 

of 'P into two 1/1 t.o th e one- loop order. First. we compute the iuvariant. amplitude M o f 
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M - 1
1
K a-

1 [ik · ( -i(p1 + p2 )) + ih( -2k0 + (p~ + p~))- 2h2
] 

-UJ 2 

de [2ik
0 + 2h] , ( 1. 77) 

where a particle <p with momentum k decays int o lwo tjJs with momentum p
1 

and p
2

. 

Us in g momentum conservation: k = p
1 
+ p

2
, M becomes 

(<178) 

Note that. M depends on momentum k because of the derivative couplin gs. Then IMI 2 

becomes 

(4.7!)) 

at k = Jl, + p2. Using this IMI 2
, the decay rat.e rk is formally written by 

(1.80) 

where wP = Jp1 + m 2 a.nd m is Higgs m ass and N = 1/2 because 'P decays into lwo 

id entical particles ,P[2!l] . In the rest frame r k=O is calcul aled simply giving 

N 1 I 12 r k=o = 1611" M ;\.1 k=o• (Ul) 

with 

(U2) 

where we assumes m .:g:: M. From Lorentz invarien ce, we obtain 

(1.83) 
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where we assume that A!2 > 0 and that mass of 1/; is neg ligible. Picking out the term 

proportional to de from !V(Jl(O'c)(O'~) in (4.49), we obtain the dissipative term F)O'ck c 

as fo llows 

4.2.5 Numerical example 

We solve (4.15)-(4.17) numerically by us ing (4.85), which, due to lhe condition M 2 > 0, 

e nl ers only after certain lime roughly corresponding lo lhe point o f inflection of V(O'). 

\Ve show an exa mple in Fig.2, plotting a, </>, p, / p, p.f p., p, and Pv vs. I for A = 1, 

€ = 0.8 x lQ- 2
, X= -1.48 x 10- 2 [hence 4~<2 = 0.1] and th e initial value</>= J = 1 al 

/. = I where Pv = ir2 /2- V is the "pressure" of the vacuum . \Ve have chosen this € to 

oblain suffi cient inflation and this X to obtain successful primordial nucleosynlhesis. 

We find: (i) An exponential growth of a(t) to ;(; e60 ending at t
1 
~ 103 (in units 

of the Planck lime) emerges naturally from the potential V = AF(; 2 with ( 4 .2) having 

a "platea u", with no need lo design the potenl ial of <P spec ifically, an advantage of 

I his model in which a gravitational scalar plays a role of the inflaton; we have ignored 

the c lassica l <P in the present example. From 11 to 12 ~ 1017 th e scale factor a evolves 

according to a power- law ~ 1113 and expands like~ 1112 after 12. By the way, primordial 

nuclcosy nthes is occurs at about I ~ 1045 and non-re lativis tic matter energy becomes 

don1inant at t = 1." ~ 1054
. This example, hence, reproduces successful cosmology. 

(ii) The scalar fi eld </>also grows exponentially until 11 obeying (4.24) . The asymp­

to tic solution</>~ 11
/
2 

begins at 14 ~ 1040 Nol e that</> s tays nearly constant from 1
2 

lo 
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I, owing lo non-linear e ffects. 

(iii) The curve of p,jp shows that th e radiation energy beco m<'s dominant afiN 12 

and begins to converge to the asym ptotic value (1- 4K2 = 0.9) around 1
4

• Not ice I he 

co rresponding behaviors of a and </> at 12 and 1
4

• The rat io p.f P., so to say, represenl ing 

an eq uation o f slate of the vacu um , shows a very interest in g behavior due lo non-linear 

effects. This behavior is often ca ll ed a relaxation oscillation and is one o f common 

phenomena in nature. or most inl cresls the behavior between 13 ~ 1032 and '· show in g 

thai. Pv behaves like an "suspending" cosmologica l constant. Around 1
4

, 1'./ Pv b<'gins 

l.o da.mped-oscillal.e as a fun ct ion of In I and finally settles to 1/3. 

(iv) After the end of inflation , di ss ipation quickly pus hes up p, which had SUJ)('r­

cooled. The diss ipative interaction , however, begins to dwindle, as was expected. Also 

the growth of a.(t) is st ill quite fast. As a conse<J uence p, shows a. rapid decrease, l<'av­

ing a sp ike- like behavior. It then s larl s decreasing slowly like~ t -'13 at 1
1

• Comhiuing 

thi s with the power- law expans ion a(t) ~ 1113 from 11 to 12, we find !.hat entropy pro­

du cl.ion is no longer appreciable. \Ve may de fin e th e reheat ing temperature T,.h hy 

p, at the onse t of thi s power-law behavior. According to (3.6) with g. ~ 100 we find 

T ~ 10 14 Ge V. This shows that suffi cient rehea l ing can be expected in I hi s mechanism reh 

despite th e absence of an oscillating phase. 

(v) Pv behaves like a "cosmological constant" at the beg inning and decays like~ 1- 2 

from t1 to t2 and like ~ C 813 from t
2 

to t
3

• Aga.in it behaves like a "cosmological 

constant" from t3 to 14 and th e asymptotic solution (~ 1- 2) begins after t, . This 

behavior may provide a natural explanation of th e present cosmological constant which 

is ]Q- 120 times as small as mt, . 
Many features sketched above are q uite general, insens itive to the choice o f pa­

ramete rs a.ncl initial conditions, given the rate of the inn at ionary expansion and l.h e 

ns ympl.olic value of P./ p. 
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4.2.6 Transient era 

A ]though the behavior of solutions during the transient era is very anomalous as shown 

in Fig.2, Such a behavior is rather common in the system of the cosmologica l eq uations 

(<1.15)-(4.15) with an exponential potential V ~ e-•1•. A detailed analysis will follow. 

llight a ft er inflation, K(= ~G-2 ), representing the energy density of the kinetic part 

of u, becomes dominant because u is going down a steep s lope of the potential. We 

reasonably assume f( » V » p, at t
1

. Then (4.15)-(4.17) become 

3[[2 = ~G-2(= I\). 
2 

i1+3H&=O, 

-· Pr f"V a , 

(4.86) 

(4.87) 

(4.88) 

where dissipation is neg lec ted. The potential is already V ~ e-•1• because u has grown 

exponen tially like (4.24) until t1 . Then a solution is analytically given by 

( ) 

-4/3 

p, = p" * . (4.80) 

where p" is the radiation energy at t
1 

depending on the reheating. 

Note that til e potential as a function oft is given by 

v = v (.!._) -fiJI• 
I t, (4.00) 

whereas [( = (1/3)t-
2 If"< "c = l/../6, V decays faster than t- 2 and If/ [(-+ 0. As 

we must choose " < 0.158 to obtain successful cosmology, the example in F ig.2 satisfies 

this condition " < "c· The plateau p./ p. = 1 from t
1 

to 1
3 

in Fig.2 corresponds to 

this s ituation. l~rom ( 4.80) we lind that the universe becomes radiation-dominant at 

12 ==' (3p")-
3
1

2
t;:-

2 (f\ ==' p, at t2 ). Until t2 the potential V has red uced to the value V
2 

which is much smaller tilan [( or p, 

(4.01) 
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We define a time scale tv with tv ~ V2-
112 ll oughly speaking, u lms never felt tile 

existence of the potential until lv; it is as if u Oew over the potential fr eely. This 

feature may be peculiar to an exponential potential. Surely if V were ~ u-" and [( 

were dominant satisfying (1.89), Vj[( cou ld not have decreased; rather it would have 

increased. In the case of 1t scala.r field with ~tn exponent i ~t l potenti~tl, J( and V may 

behn.vc independently of each other, and the condition " < "c is, so to say, "Oy ing-ovrr 

condition" . 

We find that If= (1/2)t- 1 after 12 s ince the universe is radiation-dominant. ~lore­

over 31! (r » -If( I> = V / "· For these reasons the behavior of u is given by 

. . ( t ) -3/2 
u= u2 - , 

t2 
(4.02) 

where u 2 = J2/3 In (t 2 /t 1 ) and &2 = J2/3t:;'. For u 2 >> G-
2

, u is nearly constant ::::e u
2

. 

This ex plains why In r/> is almost constant from t
2 

to 1
4 

in Fig.2. From [( ~ t
2
t- 3 and 

V ==' V2 , t 3 is given by t3 ~ (! 2 /V2 )
113 as [(~Vat t

3 
and KJV-+ 0 after t

3
. This shows 

the behavior of the "second cosmological constant" from /
3 

to t,. The value o f u has 

been frozen around u2 until tv because of V ~ t;;2 although V becomes comparable to 

:liED- between 13 and lv from (4.02). This tells us that t, ~tv. 

After t, th e behavior of u is expected to approach the a.nalyti c solution ('1.40) s ince 

I he pot!'ntial V begins l.o pa.rticipate in the evolution of <r again . The difference between 

u and (4.40) is defined by 

u(l) = 2"(1n t + o(t)), (4.03) 

where E is dimensionless difference fun ction oft . We substitute (4 .93) into (4.16) oh-

t.ainiug 

whe re V = "2e-•1•, and high er-order terms of c have been negkct.ed. Since this is a 

homogeneous equation, we ob tain E ~ t6 with 6 = -i ± i:Lf.. We thus find c is giviug 
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by 

c: ~ t- 1/'sin (~ lnt) , (4. 95) 

which represents a damped osc illa tion as a function of Int. T his shows how IJ approaches 

t he asymptot ic solu t ion (4.40) . T his behav ior is hard ly seen in the p lot of In if> but is 

seen clea rly in p,/ p, in Fig.2. 

We show two examples in Fig. 3 and Fig.4. fn Fig. 3 X is chosen to be "= "c and th e 

ot he r parame ters and initi al valu es a re th e same in Fig.2. T his exam ple does not have an 

anomalous behav ior like Fig.2, as might have been expec ted. In Fig .4 we appropr iate ly 

choose X= -0.04692 to make the "suspending cosmological constant" l~ about 10-no 

an d th e o ther parameters and in itial va lues are t he same in Fig. 2. This "suspending 

cos mological con s t ant"~ 10- 120 may be rela ted with the recent report on the very small 

bu t nonzero cosmological constant. We, of course, fin e- tun e x to obtain this result (cf. 

if X = - 0.04690, V2 ~ 10- JJo). Still this fin e- luning is much better than th e notorious 

fin e- luning to the orde r of 120. With this "soft" fin e- luning accepted , the approach, 

however , is not sui table for the recent ana lys is because the cosmologica l constant is not 

dominant today as shown in th e curve p,/ p in Fig.4 . This simple model cannot make 

t he vac uum energy domin ant again satisfying the recent an a lys is . 

4.3 An exceptional choice 

If the condition (4 .4 7) should hold true to a good approxim ation, on e might be templed 

to s pecula te that there is a yet- to-be- known "symmet ry" which forces X = -6( giving 

"
2 

= 0. O bvio usly, however, this is a singular limit which requires a separate an a lys is 

s t ar ling from FK = (1 - 6er/>2
) / FG, to find a surpris ingly s imple resu!t[4). 

Equat ion ( 4.8) now simplifies to D = 1, yie lding 

(4.96) 
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where we have chosen the minus s ign in (4.6). We thus obtain 

IJ = ~ arcco t ( /(,¢>), (4.97) 

by choos ing th e in tegrat ion constant such that if> __, CXJ corresponds to IJ = 0. T he 

domain o f IJ is limi ted to j~J j::; ( rr/2)~-I/2 , unlike in the prev io us ana lys is with " 2 f- 0. 

Th e po tenti al (4 .11 ) is th en 

(1.08) 

In o ur model this is a.n exceptional case in which Vmi n = 0 occurs a t a fini te value o f IJ. 

For IJ ::::: 0, V behaves like 

(1.90) 

wi t h A1 = Ae. As one notices, this is reminiscent to th e potential assumed in th e 

model of chaotic inflation. ln ref.[20), however, a question remain s why the minimum 

of th e potential should vanish. We, on the other hand , deri ve (1. 08) a nd (4.00) with out 

t he additional cosmological cons tant from th e cosmologica l constant without add itional 

po tentials in the origin al CF. 

4.4 Quantum effect 

As we h ave a lready discussed diss ipa tion as a .quantum effect, we wo uld like to d is­

cuss the radi a ti ve correc tion because almos t of all our ana lysis has been limited to th e 

class ica l fi eld equ a tions; qunntum effects may not be import ant aft er t he Planck tim t>. 

Tnking as ide suspected qu antum effec ts of if> before th e end of infla t ion , we di sc uss th e 

poss ib le radiati ve correct ion to t he s tarling Lagrangian (1.1). 

For the asymptotic era, we notice a simplification for rad ia ti ve corrections to V(~JcJ . 

fn view of (4.48), V(~Jc ) will be modified to 

(1.100) 
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where 

(4.10 l) 

The vacu um on the right-hand side depends on <rc(t), a nd does B. We may reasonably 

expect, however, that B depends on <rc only weakly not to alrecllhe original de pendence 

as indicated in (V ~ e-•1•) in any seriously manner. 

There is, however, a not her elrect which coukl be more problematic. One might ask 

how the results are a lrecled if one adds renormalizalion counlerlerms to the starling 

Lagrangia n. ln the o rigina l CF, the most important will be the quartic term ~ 14 </> 4 

due to 1/J loop if we choose th e s imple example (4.12) as [ c. During early epochs this 

l erm is unimportant because of the smallness of I~ 10- 19 . At later times sma llness 

may not be e no ugh , in fact this t erm survives the reductio n due to F'(j 2 ~ ¢> -• after 

the conformal transformation, giving a constant energy density ~ I' ~ 10- 76 which 

is damagingly too large, about 44 orders larger than the upper bound of the present 

cosmologica l co nstant. 'We point out, however, that a more ca reful analysis is needed 

in choosing a cr before the quantum theory is applied. 

ln th e original unslarred CF, the nonminimal coupling A4~</>2R in (4.1) acts 

elrect ively as a mass term of </>, giving a mass-squared -~ n which is negative in the 

inflationary era. One then introduce a vacuum expectat ion value ¢>
0

. Substituting 

</> = </>0 + J in the above nonminirnal coupling term yields a mixing te rm between the 

flu ctuating part J and some components of the gravitational fi elds. For example, in 

the wea k- fi eld approximation g1," = !)"" + h1'"' the nonminimal coupling term gives 

-€</>0(8,,J)[8)•"''- [)••( ,J•"h,., )] . A diagonalization procedure mu st be applied to obtain 

a correc t particle picture as a bas is of quantization. This is done prec isely by the 

conformal transformation, thus providing another indication that th e starred CF with 

th e canonical fi eld <r is preferred to the original CF. 
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On us in g (4.3G) the coupling term ('1.13) is approximated by (again dropping •) 

('1.1 02) 

for ~</> 2 ~ l. Accordin g to (4.36) ,(4.48) and¢>= <f>.t 112 where¢>. is a cons tant, we ohlain 

subst ituting this int.o (4.102) and expanding in to a power ser ies wit.h rrspccl. lo <rq yi r ld s 

(4.1 01) 

Th e Yukawa. coupling "constant" of ;fn/J<rq is then IC1, which is s rnaliN than th e nai ve 

ex pec tat io n I by t- 1 ~ 10- 61 at th e present t ime. fl. s a consequence th e fo rce Inediated 

by a s ing le-<r exchange is~ 120 ord ers weaker lh11.n what is e xpeclcd as 11. fift h force. 

Flrcause o f this weak coupling suppressed by the age of the uuiverse, no s izab le dfrcl s 

arise from 1/J loops iu contrast with what has heen s uspec ted o lhcrwise in th e or ig inal 

cr. 

II appears as if th e quantization and con formal tmnsforma lion arc l.wo llllll.ually non­

COinnl.able procedures . This mi ght be accepta ble in view o f \.h e confonnalno ninvarian c~ 

in o nr mod el t heo ry, though it is yet to be shown in mo re detail how lh e quantization 

progra1n is carri ed out in each CF. In \.his sense, admitted ly, our conc lus ion o f !. he s mall 

cos mo logical consta nt is still te ntative. 

4.5 Decaying A in the original CF 

In so n1 e models o f a decaying cosmolog ical cons tant , calculation is carr ied o ut in th e 

o ri ~ inal cr. /\s me ntion ed before, however , the fi eld </> in this cr is nol a canoni cal fi ~ ld 

also havin g a. mixing with part o f the metric field through the no nminin1a.l coup ling. 

T hi s prevents us from fully und ers t a ndin g the physical s itu11.tion in th e or ig inal C: F. 
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1\loreover ihe effective graviiaiional constant. changes as a fun ction oft. Ti is inte rest ing 

io study ihe difference between ihe original CF and ihe new starred CF in which om 

a nalysis has been done in detail. In this sect ion we discuss ihe same subject in ihe 

original CF on ihe basis of ihe works of Dolgov and Ford. 

The equation of motion of ,P is derived from (4.1): 

1 1 dFr 1 1 dFa 
-0</J+---' ----R=O, 

2 FK d,P 2 FK d,P 

and lhe Einste in equation 8£f8g1'" = 0 reads as 

(4.105) 

where Tm""'"'" is ihe energy-momentum tensor of ord inary mat.t.er fi elds for which we 

assume ihe radiation energy. The e ffect ive grav ilaiional constant. is (811"FG)- 1 aud ih e 

cosmologica l lerm acts effect ively as A/ Fa. 

St rict ly speaking, we do not. know how io define ihe energy-mo meuium ieusor of a 

noncanonical fi e ld with a nonminimal coupling t.o gravity. We sti ll define it. following 

Pord: 

Then (4.106) becomes 

(4.108) 

ft. looks as if ihe gmviiaiional constant. were a consiani , but. ihe tru e effective graviia­

i ional constant. which is subjec t. io observation is st. ill (811" FaJ- 1• 

£1rom our conventional choice (4.2) and (4.3), the 00-componeni of (1.108) is equiv­

alent. io 

3[[2 =A+ P.; + p" (4.10D) 
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where li =a/a and 

t,.DD 

~F1,~2 - 3H2€</J 2
- 6II€~,P . 

2 ' 

Assuming ,P = ,P(t) , ihe Klein-Gordon equation (4.105) lakes the form 

~ + 3H~ + _€_(x- FrW<P-~ (~ + II 2
) q, = 0. 

F0 F1._. \ FI< a 

(4. 110) 

(4.lll) 

Eq uations (4.109) and (4.111) are a pair of nonlinear coupled e<] uat. ions which de-

t.ermines ihe evo lu t ion of lhe homogeneous sca lar field ,P(t) and the sca le factor a(t). 

Por the early lime (€,P2 « 1), (4.109) and (4.111) become 

3H2 = ~~2 - 31I2 €,P 2
- GH€~</J +A, (4.112) 

and 

~ + 3[[ ~- 6€ ( ~ + f/ 2
) q, = 0, (4.11~) 

where higher-order terms of ,P and p, are neglected. The so lution o f t.h csc cqua.l ions arc 

approximately 

(4.111) 

and 

(4.115) 

(4.llG) 

The me t. ric is here a. de Siller met. ric determined by the cosmological consta nt.. Fl eca.JJ se 

q, is unstable, it. inilia.lly grows exponentially. Its energy density fi,. is negat ive a.nd 

in creasing in magnitude: 

( 
16 ) 2 ri,."" -A I + 3~ ~q, . (4.117) 

The negat ive sign refl ects the strange nature of a noncanouical fi eld with a non minimal 

coupling. ll is this feature, however, ihal se rves io decrease lhe positive contribution 

com in g from th e cosmological consta nt.. 
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At late times </J is expected to be suffi cient ly large (~</J 2 ~ 1) and t hen l "c;;::;, ~ </J 2 , 

F"";::;, X· Equations (4.109) and (4.111), hence, become 

and 

(4.110) 

Prom these eq uations the late-lime behavio rs of t he solutions are giving by th e 

fo llowin g asy mptot ic forms depending on x: 

i )-6~ <X ~ -2~ 

a nd 

ii)x > -2( 

a( t) ~can st., 

A-( ) A A-~ 4 
A 'I' t ~ t, - 6~ +X , 

p,(t) __, -3 2~ +X A > 0, 
6~ +X 

p~(t) __,- 6}X A(= A+ p,), 
~+x 

('1.120) 

(<1.121) 

("-122) 

(4.123) 

( 1.124) 

(4.125) 

( 4.12G) 

(4.127) 

In both case <P grows linearly in lime and the scalar field ene rgy density p ~ asymp­

totically cancels the original cosmological consta nt. 

The solution (i), corresponding to the so lution ( 4.30)-( 4.42) which serves sat isfa ctory 

results to cosmology in the new starred CF, has rather strange behaviors: The sca le 

factor a s tops the growth and the radiat ion energy density p, does not decay. One may 
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then concl ude that different CFs have different physics. This is not necessari ly correct 

if th e time dependence of part icle masses is taken into consideration. Part icle mass m is 

ex pected to beh ave like~ t asy mptot ically in t he original CF, for example, mass derin'd 

from (4. 12). If one in the o riginal CF used "Bohr radius" (h?f(me2 )) as a measurr of a 

length , he might feel as if the universe expanded because t he measure wo uld be shori N 

and s horte r as time would go. This suggest that different C Fs might have l.hr sa me 

physics, though we need fur t her study. 

Th e so lution (i i) co rresponds to (1A3)-(1.4G) in the new sta.rred Cr. 

From (4.37),(4.43) ,(1. 124) the exponent a in (1.121)is re lated to t he exponent a . = 2~< 2 

in ( 4 .13) in the new star red C F through 

1 1 
a . = 2 + 2a. ('1. 128) 

The sol ution (ii) a lso satisfies this relat ion which is consis tent with dt = F;;'i 2 dt. and 

a. = F;;tf2a. •. 
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Chapter 5 

The "suspending" cosmological 
constant 

Recent analyses on the mass density and d ark maller indicate strongly th a t n
0 

at the 

present tim e is consid erably smaller th an 1[30]. This is apparenlly in conflict with th e 

pred ict ion of th e scenario of inflation, unless the parameters in the theory are fin e­

tuued to some extent . The defi cit may be made up by a cosmological constant A. A 

de ta il ed a na lys is[!l] of the uurnber count of faint galaxies t aking the evolution effec t 

into account shows in fact th a t including A (.X= A/8-rrGp"' ''" ' = 0.9 , n0 = 0.1, k = 0) 

fits the observed result even better th an A = 0 and no = 0.1. These two fit s will be 

referred to as the "A fit" and "the open fit", respectively. A poss ible occurrences of A 

of the same order of magnitude has been discussed also in connection with the CM Bll 

aniso tropy[31J. 

From a theore tica l point of view, however, one encounters a two- fold unn a turalness 

if th e cosmological constant is a true constant. First , the value itself of the required 

cosmological coustant is about 120 orders too small compared with the theore tical nat­

ural value A0 ~ m~1 ; a well-known problem. Second , given the value of A, the ncar 

co incidence A ~ p ~ t - 2 occurs once and for all only in a n extremely short peri od in 

the entire history of the universe extending to th e enormous length of future to come; it 

is hard , if no t impossible, to believe tha t such a rare event is happening in front of us. 

53 

In t his sect ion we propose a more natural way of reconciling a sma ll n
0 

wit h in na tion 

by extending a scalar-tensor theory th a t has been developed to implement t he scenari o 

of a decayin g cosmological constan t. We show that t he goa l is achi <'vcd if we int rod uce 

t.wo scalar fi elds, one for the decay of the effective cosmological constant , th e scalar fi eld 

energy, in the overa ll time scale of th e universe and th e other for a temporary devial ion 

that. ma.kes th e effect ive cosmological constant imitate a tru e constant. We call such a 

devia tion a "suspending" cosmological constant . Notice th a t. this second scalar fidd is 

s t. ill a gravitational scalar different from the lliggs- type scalar field which played a role 

for reheating. We find it necessary also to introdnce a spccia.l potenti al, an exa rnpk nf 

which is proposed from a phenomenological point of view. As one of th e ensuin g con­

sequ ences we expect a nearly periodic but sporadic large-scale s t.ruct nre of th e univNse 

somewhat reminiscent of (but not. exaclly the same as) th e recently reported periodic 

st ructure of the universe[32] . 

In th e A fit in ref.[!l] the whole energy density p consists of Pm and ph: p = Pm + ph 

where p A = A/8-rrG and Pm for th e density obeying a3pm = con s t. (nonrclal ivis tic mailer 

wh ether it is visible or not). The behavior of the scale facto r a(t) fo r the A fit is shown 

in Fig.5a. We notice a somewhat. fas te r rise as compared with the <'Onvenl ion a I behavior 

a ~ t213 for n
0 

= 1 and A = 0, a behavior that. is exclud ed as s trongly di sfavor0d in 

ref.[fl]. The same feature is also shared by the open fit. The difference among th <'S<' fi t 

is even more pronounced if we plot. the dece leration para meter q = -ii.afa2 n.s shown 

in Fig.5b, indicating that the A fit agrees wilh observation better l.han the op!'n fit 

because of its stronger acceleration towards the present lime. We as k ourselves if I hi s 

exIra acceleration can be unders tood in a reasonable manner. 

II. may appear !.hal the required fas ter growth of a(t) is s imply due t.o l.he dominant 

"dark matter" part which, not necessarily pA , obeys an eq uation of slate different from 

th e on e t.lHtl appli es t.o the ordinary pa rt Pm· According to th e relation 0' = 2/[3(1 + ( )] 

with ( = pfp for a(t) ~ t 0
, however, a> 2/3 implies ( < 0; a negative pressnr0 is 
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hardly expected from the ordin ary thermodynamical origin. An eq uivalent. effec t s till 

ensues if the dark matter cons ists largely of a spa ti a lly uniform scalar field with kine tic 

energy [( and the potential V; one finds 

which may vary from -1 to + 1. 

K-V 
(,= K+V' (5 .1) 

If(, remains negatively constant , the energy p, of the scalar field would grow fast er 

than a nd surpass p,. at. some epoch in the same way as the nonrelat ivis t ic matter does 

compared with the radiation ene rgy. In this scenario, near ly the sa me t.wo unnatural 

aspects as mentioned above with a purely constant A (( = -1) surface again. It wo uld 

be more natural if th e scalar field energy exhibits a combination of two behaviors; 

a g lobally decaying pattern ~ t - 2 and local derivations simulating a. nearly constant 

ene rgy density for some duration; the latter for the ext ra acceleration as indicated by 

t.he behavior of the deceleration parameter. 

The first behavior, which assures that p, is not too small or too large compared with 

p,., is precisely the behavior which has been shown to emerge in ChapA. that yielded 

A,ff = p, ~ 1-
2 

up. Obviously, however, the mod el lacks enough complexity accounting 

fo r the second behavior, local deviations. We expect an improvement. by introducing 

another massive scalar field which is different from the scalar fi e ld iJ> for reheating; its 

osc illation wo uld likely result in desired behavior. This would be a favored scenario, 

beca use the loca.l c.leviat.ion expect.ed for the scalar fi eld energy is then· not a single and 

iso lated event but has repealed and will repeal itself, certainly appea ling to our view 

o f naturalness. From these cons iderations we try to offer a simple model theory. We do 

this mainly from a phenomenological point. of view trying to see what. the theory should 

be like for the reconciliation scenario to be implemented . 

In the new st.a.rred CF we add a new field ci> in (4.10) (dropping*) 

r r--7: [] R 1 "{) 1 - - - l '- =v-g - --g" ufJu--g""{)iJ>fJ<I>-V(u<I>)+L 
2 2 "" 2 "" > m· (5.2) 

55 

Jn addition to AF02 we a lso include a mass term of ci>, giviug a potential 

(5.:1) 

with m and>< in (4.37) parameters basically of the order o f one in Planck units. The 

ex plicit form o f U(u) will be specifi ed later. Terms ot her t han those of <i\ were designed 

originally to implement the decaying cosmological cons ta nt. in (4.10). 

A I though the <i'> terms in (5.2) should be a lso understood to have been der ived from 

those in (4.1) before the conformal transformation, we assume the mass lerm in (5.2) is 

multiplied by exp(-<r/><) without. enter ing into dct.ails for the following reaso n. 

Without. this factor (and with a constant U), <i\ would have osc illated with a constant. 

period ~ m-
1

, with the cosmological redshift ign ored for the momr nt. From Fig.f>, 

however, we find that the expected local derivation has a. period, if thrre is any, neerly 

compa.mble with the present age itself; the uni verse has witnessed harely o ne cycle at. 

mos t. lf m
2 

is multiplied by ex p(-<r/><) ~ r 2 due to (4AO), on the other hand , one 

find s the.t <T> behaves liked a damped harmonic oscillator as a fun ct ion of In t, as will be 

shown shortly. This allows the osc illation to have occurred some numhrr o f times si nce 

the beg inning of the universe. 

Fro m (5 .2) and (5.3) follow the cosmo logical equations with k = 0: 

1 1 ~ 2 
3ff

2 = p, + Pm = 2<7 2 + 2<f) + V + p,., 

i7 + 3JJ a-

- exp (-~) r~ + ~m2 q,2 (!!._ _ dU)] = O, 
K K 2 K du 

~ + 3H~ - exp ( -~)m2 U<i> = 0, 

p", + 3Jf Pm = 0. 

Jf U is consta.nt, one find s asymptotic solutions: 
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(5A) 

(5.!i) 

(5.6) 

(5.7) 

(f>.S) 



u (l) = 2 ~ In ( V%~) , 
<i> (l) = Al-112 sin (1i"dn 1), 

Pm (l) = j(l- 3~2 )1-2, 

whe re A is a n integ ration cons tant and 

ih = 

Obviously th e energy 

1" 2 1 ( ") 2 - 2 P- =-<I> +- exp -- m <I> U(u) , 
<I> 2 2 ~ 

(5 .9) 

(5. 10) 

(5.11) 

(5.12) 

(5.13) 

d ecays like~ 1- 3
, hence no contributio n to the to t a l energy in the asympto tic era. (Th e 

correspo nding u ene rgy Pa decays like ~ 1-2 .) 

An interes ting result may fo llow, however, if we allow U to de pe nd on u. Choose 

U(u) = 1 + Bsin (wu) , (5.11) 

fo r exa mple. Th e whole potential \f(u, <i>) is illu stra ted in Fig.6. One may choose the 

" initial" values of the class ical fi elds u(l) and 4>(1) at the epoch 1. somewhat aft er th e 

e nd o f the reheating period following inflatio n. The " imaginary particle" in the u- <i> 

plane will beg in to ro ll down the valley toward u -> oo with a meand ering behavio r. 

De pending on the parame te rs in V as well as the initial conditi ons, we find two distinc t 

ty pes of behavior : 

(i) <i> shows a nearly s imple damped osc illation as with a cons tant U . The e neq;y 

p ~ d ec rease like ~ 1- 3 . 

(ii) <i> s hows some "undamped" quas i-oscillation with its (approximate) period with 

respec t to In I quite different from 7Jl- 1 or any oth er time-scale derived directly from w 

prepared in (5. 14) , with p~ decaying globally according to ~ 1-2 With th e same period 

the scale facto r a( I) shows a s poradic beh<wior. 

57 

The behavior ( ii ) seems to se rve our favored scenario, as will be ex plained below . 

ln an example sh own in Fig.7a, we obse rve a fiip-fi op behavio r of ii> (t ) repeated nearl y 

periodically if measured in Int. Somewh a t unexpected ly, <i'> (t) is s t.uck onto t he potential 

slope for some time much longer n1.-1. This is due to a com petition between the weak 

restoring force and the fri ct ion 3TT<i>. During th e period prior to an a lmos t complete 

halt of <i'>, an other fi eld u moves ahead overriding many (mo re than 20 in this cx ampk) 

crests of the sinusoid al potential. As u slows cl own , the force clue to this pote nti a l finall y 

traps the movement givin g it a s light "backwa rd kick". This trigge rs a. sudd en " fr re 

fall " of <i> towa.rd <i> = 0, caus in g a. s udden change of(,. lt is a.round t.hi s t.ime when n(l) 

is pushed away from a. smooth behavior, thus giving th e desired behavior of an <'xt.m 

acceleration (followed by dece lera t ion). The result is in fact a success io n of de vi a. tio ns of 

a.(t) from t.h e s tand ard backgro und a~ t 112 or a.~ t2i3 occurring in coinc idence wi t h th e 

free fall of <f>. These deviations might be called "anomalous" behavio rs, showin g up as 

s mall bumps in Inn plo tted agains t. In t , as in Fig.7a . Each bu m;> las t s fort!. log
10 

I ~ l , 

which is bas ically t.h e scale ~ ,;,-I We modestly tuned th e pa rame ters s uch that o ne of 

the bumps occurs around the present time chosen t.o be t
0 

= J .6 x 1060 , co rrespo nding to 

l4G yr. The deceleration paramete r q(l) is shown in Fig .7b in a ma gnifi ed scale aro und 

the present time. Comparing this with Fig.5b we find th e agreeme nt with the 1\ fit 

ra.t.her remarkable . This can be understood reasonably because p,(= A. ff) = Pa + P.~ 

remains nearly cons tant , as expected , as also shown in Fig.7b. This is essenti ally th e 

same su s pending cosmological cons tant as we obse rved in Fig.5. 

]n t.his way we arrive at the conclus ion that our mode l, which " improves" the naive 

d eca.ying cosmological constant scenario, allows solutions in which t.h e contributio n fro m 

the scalar fi elds mimics precise ly the cosmological constant s upposed to make up th e 

energy dens ity de fi cit, hence saving the infi a. tion scenario. We mus t accept, howe ve r, 

that our present e poch is in one of th e anomalous eras of de viation fro m th e global 

backgro und behavior, each las ting for a relatively short duration if vi e wed in In I (but 
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by no means short in terms of t) , which is not too unnatural. One o f the underlying 

mechanisms is the same nonlinear e ffect, known as a. "relax a tion osc illation", as in th e 

simpler model. Some comments will follow. 

We obtain n0 = 0.092 and h = 0.89 for the example in Fig.7, showing that these 

parameters and the age (chosen to be 14Gyr) a re less constrained than they are in th e 

sta ndard cosmology with A = 0. 

'We included both relat ivist ic matter p, and non relativistic matter Pn, to demons trate 

that the model can be applied to epochs mu ch earlier th an one ca n access by direct 

obse rvation like galaxy counting. We first not ice that alternat ing dom inance be tween 

the vacuum energy (the energy of the scalar fields p) and real matter p = p + p 
' rn r nr 

is a common place, though both p, and Pm fall globally like ~ t - 2 This makes it 

poss ible that the small no at presen t is fully compatible with the almost purely radiation­

dominated (p, ~ Pm ~ p,) era around the epoch of th e nucleosynthes is. (The dominance 

o f P, for 41 ;S log10 t ;S 47, i. e . l o-2 < t < 104sec as well as the coincidence p ~ p at 
rv rv r nr ' 

log 10 t ~54 in Fig.7a are a result of our choice of parameters .) On the other hand, th e 

vacuum energy might be dominant in some relatively short periods (in In t), like in the 

present epoch. It is mos t important to study wh ethe r these past anomalous beh 11viors 

have left any trace that can be observed at present. The recently reported pe riodic 

large-sca le s tructure of the universe[32] might be a phenomenon to which our theory 

applies, as will be discussed again at the end of the chapter. If, however, the neares t 

pas t bump occurred before the recombination era. as in the example of Fig.7a, the effect 

o ught to be more iud irecl. It is also worth recalling in this connect ion that the process of 

baryogenes is is known to be rather insensitive to the presence of the vacuum energy[24]. 

Notice that the overall behavior does not depend much on whethe r matter is re lativistic 

or nonrela.t ivistic. 

ln an ot her example of Fig.S a transition takes place from type (ii) to type (i) be­

havior. It is inte res ting to find that p4> oscillates nearly with in t rin sic period 2-rr/w. 
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Except in this kind of examples, no d irect effec t of w is vis ible. In t.he behav ior (ii). t.he 

only role o f U(<7) is to give a "backward ki ck"; for the rest of the time this pokntial 

is dormant.. The kicking force , however, must be "ready" to act whenever t he time is 

ripe. For this reason the oscill ati ng potential seems favored, if not absolutely necessary. 

ln fa.ct the s inusoidal form , which may look somew hat unus ual , is by no means uni qJ~<•; 

it was di scovered rather acc identally in our trial-and-e rro r approach to arrive at th e 

desired result anyway. In furth er searches we may meet with othe r more fami li a r form s 

prod ucing s imilar resu lts. No attempt is made therefore to find a theoret ica l basis of 

U( <7) , at least for the time bein g, a lth ough (5.1-1) combined with (4.36) suggests a t<'nn 

of the fo rm c•f '<i>2 + h.c., with the cons tants c and -y chose n to be complex a nd rea.l, 

respec tively, in the original Lagrangian (4.1) before the conformal transforrnat io n. We 

a lso emph as ize that a ll the constants in our model are "natural", not being mu ch away 

from th Plan ckian order of magnitude, nevertheless resultin g in e ffec ts of scales large r 

hy 111any o rde rs. 

\Ve integrated our classicitl equations star ting at an epoch t. after reheating. In 

princ iple nothing prevents us from starti ng at. the Planck time; the whole his tory of 

classical evolution from inn at ion to the present time ca n be anal yz<'d in te rms of a 

full -nedgecl two-scalar mod el. In pract ice, however , some complication is in evitable 

particularly in connect ion with dissipative interactions as was disc ussed in C hap.4 . In 

thi s chapter we have conveniently sp lit the entire period in to two, focus in g on our 

inte rest in late times . (We borrowed some of the initia l values at t. from the res ult in 

Chap.1 in which we s tarted from the Pla.nck time.) 

We assumed the occurrence of the conformal factor exp ( -<7 /n.) in front o f th e mass 

term of <i>. Th is should be derived by choosing a su itable conformal property of <l>, 

related also to a possible choice of the <}\-depend ence of the <f> kin eti c term in th e o rigin a l 

CF . A detailed discussion on point is left for future stud ies. 

In this conn ect ion it is interest ing to note that the effect ive mass al t he present time 
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is exp ( -rr /2")m ~10 1m~ 10-32eV which is close to but about two o rde rs s maller than 

t.he value suggested by Morikawa[33] who tries to explain an osc ill atory s truct ure of the 

universe. Although this difference is within the range of adjustab le parameters, we were 

motivated primar ily by the behavior in a longer lime scale corresponding to z ;S 5 in 

re f.[OJ in contrast to z ;S 0.5 in ref.[32][33]. Also unlike the almost sinu so id a l osc illation 

of t.he scalar fi e ld (and eventually part of the Hubble parameter) in ref.[33], we obtain 

sporadic changes due to a nonlinear effect. We nevertheless observe that the two different 

calcu lations share a crucia l ingredient; behaviors in one cycle shown in ref.[33] are in fa ct 

t.he same as those in one of the anomalous e ras. Bot.h are essenti a lly acceleration followed 

hy decelerat ion (vice versa) of the scale fa ctor du e to the alternating dom inan ce of[\ an <I 

\1 of the sca lar field. \Ve may reasonably expect then t hat each o f the anomalous e ras, 

if it occ urs at a suffi ciently la te time, would result in an iso t ropic clus te ring structure. 

O ur future p rogram na.lurally includes the ques tion whether t he sho rt-period osc illation 

ca n be accommodated in our model. 
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Chapter 6 

Conclusion 

According to the model of a decaying cosmological constant, the e ffect ive cosmologicnl 

constant decays asy mptot icall y like~ t- 2 . This provides a natural understnnding of 

the cosmological constant which is sufficient large to cause infl at ion in the early epochs 

hut is smaller today by 120 orders. In other words, th e present cosmological consta nt 

is ext remely small simply because our universe is very old. 

To implement s uch an idea, th e model has two crucial in gred ients. One is n gener­

alized scalar- tensor th eory with a nonminimal gravitational coupling and an ex tended 

form of the kinetic term . The ot her is the proper se lect ion o f a CF in which the grav ita ­

tional constant is strict ly constant and particle masses are asymptotically consta nt. Of 

course it is still an open question in which CF we are in reality. However, the question 

is closely related to quantum theory. Then we expect that quantum theory will bring 

us some principles to choose a C F in the future. Even if we obta in such a prin cipl <', 

we need furth er st udy to find if we can deal with cosmologica l consta nts created hy 

s uccessive cosmologica l phase transitions. 

Our model in th e new CF may be regarded as one of the new infl at ionary models. 

Our de ta il ed calculations demonst rated that both sufficient inflation and suffi cient re­

hea ting occur in our model. In the calculations, suffi cient reheat ing is owed to couplings 

d erived from a conformal transformation , of the gravitational sca lar to a Higgs sca lar. 
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'</lie found, however, that the calc ulated density perturbation is too large to be consistent 

with the observed isotropy of CI\1Bll. We still hope that better results may emerge by 

choosing a modified form of the nonminimal grvitational coupling. 

We have also found that the gravitational scalar fi eld evolves in an unexpected but 

very interest ing manner. Such a behavior is generally ca lled a relaxation osci ll at ion. 

Trying to explain the recent analysis on a nonzero cosmological constant by exploiting 

this behavior, we found that the model with a single gravitational scalar is too simple 

to fit the req uired value of A. Pursuing the scenario further, we introduce another 

scalar field to solve this "new" cosmological constant problem and we need some special 

potential to cause a relaxation osci llation. We somehow discovered an example on a 

try-and-error basis. It is yet to be shown how unique this potential is and if there are 

o ther more natural examples. 
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Appendix A 

We lis t some numbers from convers ion table to the Plan ck unit system (G = c = h = .1). 

mP1 = 1.22 x 10 19GeV, 

!'PI= 1.61 X lQ-33cm, 

(PI = 5.4 X ] o-"sec, 

lGeV = 8.2 x 10-20 £' 

l em= 6.2 x 1032 £' 

]sec= 1.85 x l013 P 

ly = 3.2 x 107sec = 5.9 x 1050 P 

lly = 9.6 x 1017cm = 5.9 x 1050 £' 

It is also convenient to use the "mod ified" Planck unit. system(E) 111 which 811'0 = 

c = h = 1. We find 

and hence 

mE= mrJVB; = 0.1995m.r1 

rE = vs;,.PI = 5.Ql33rPI 

IE= v'8;tp1 = 5.0J33rp1 

mE= 2.44 x l0 18 GeV, 

r E = 8.09 x 10-33cm, 

lGeV = 4.12 x 10-10 E 

lcm = 1.24 x 1032 E 

IE = 2. 71 x 10-'3sec, lsec = 3.69 x 10'2E 

ly = 3.2 x 107sec = 1.2 x 1050 E 

lly = 9.G x 1017cm = 1.2 x 1050 E 
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JI0 = lOOhkm/sec/Mpc = 1.04h x 10-10y- 1 = 8.6h x 10-61 E 

T0 = 2.7K = 1.0 x 10-31 E. 
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Appendix B 

In !.his append ix we ment ion t he conformal trans formatio n, assum in g l.orsion lcss. 

i) met ric 

\Ve app ly confo rmal transformat ion g
1
'"---> g.,,.: 

(R.J) 

which is in t.er prcl.ed as changi ng a length sca le (or uni t) locall y: d.s2 ---> 0 2(x)ds 2 T h is 

l.ransforma.t ion is said l.o br ing one from a CF to a not her CF. 

T he C ristoffel connect ion trans forms int.o 

in th e* CF wi th f = ln O. 

R iema nn t.e nso r transforms in to 

+ 6: \1 ." \l • .f - 6~ \1 . 1, V.J 

+g., .. v:v .• t - g.,'" v:v.J 

+ 6,~(\l . ,.f \l • .f- g., .. v: f \1 •• /) 

- o;(v.,.JV.J- g.,'" v: JV .• fl 

+g., .• v: JV •• f - g.,'" v·' JV •• f , 

where \1 .
1
, is covari a nt derivat ive in the * CF. 
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(B.3) 



From ( 8.3), lticci tensor transforms into 

{84) 

iu four dimensional spnce-t ime. 

Finally sca lar curvature transforms into 

(8.5) 

ii) scalar fi eld <I> 

Applying the couformal lransfonnation {8.1), <li also tmnsforn1s iuto <1'>.: 

<li = !1<1'> •. (8.G) 

Tlleu t.he kinetic part of til e Lagrangian of <li transforms into 

-~ C::yy''"fJ <liD <I> 
2 v-y 1• ... 

-~ C"Cc 1'"D <1i D <I> 
2 v -Y.Y. 1, • " . , (8.7) 

with D,, = D,, + D,.f. The de rivative coupling emerges in the * CF because .C<t>;;, is not 

conformal invariant. 

iii) sp inor field ifJ 

Applying til e couformal transformation {8 .1), ,P also transforms into 1/J.: 

(8.8) 

\\'e iutrod uce tile vierbein b',, satisfying 

{8.0) 

where 0,1, = 'l,/11
1,, b/' = 91wbiv and the Greek index tn eans a space-time index aud the 

Latin index n1eaus a loca l Lorent~ fram e index. 
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{ll.IO) 

wit. II b = detb'" and 

(B. II) 

(R.I2) 

where w'~ 1 , is spin connection and 1' is 4 x 11 Dirnc matrix satisfying 

( Fl.l:l) 

( B.lO) is divided in to two parts: 

.C = -~b-T.(fA- ~)-~- ~bw .T. { k 'l},P. !/I kin 2 Y-' y; Y-' V· 8 •;,k Y" f , I (B.l ,l) 

Linder the confor111al transformation {13.1), (11.8), the first part in the rigllt-hand of 

(B.H) is trivially invariant. We see that the second part is also con fonnal invariant. 

wit.h torsionless. Assuming torsionlcss, the spin connection w,
1

,k is given by 

w =~~ - ~ +~ ) 
IJ ,k 2 ( k,l) l,jk ),lk l (A.I5) 

"'h e re ~ is flicci's rotation coefTicient defined by 
IJk • 

(B. I G) 

Usin g (A.I.5), (A.Hi), we apply the conformal transformation to w ,
1

,• 

( 8.17) 
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where D., mea ns b~,D,,. One may wonder the additional terms O['l;kD.) -11
1
kD.JJ breaks 

~onformal invariance. But these terms disappears in L:~k; .. because 

0, 

us ing (B.l3). In this way L:~k;n is confo rmal invariant with torsio n less. 

vi) gauge fi eld A,, 

Applying th e co nformal transformation (B. I) , A,, transforms into A.,,: 

A,,= A.,,. 

(B. IS) 

(B.IO) 

Then the kinetic part of the Lagrangian of A,, is trivially con formal invariant because 

( B.20) 
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Figure Captions 

Fig.1: The potential V = A(l + (<p2)- 2 given by ( 4.11) with ( 4.2). 

Fig.2: An example of the numerical solutions a, ¢>, p's and Pv plotted against 

log 10 ·t, with in units of the Planck time. (The epoch of nucleosynlhesis, the end of 

the radiation-dom ina led universe and the present age correspond roughly to 45, 54 and 

GO, respectively, on the abscissa.) Parameters chosen are A = 1, ( = 0.8 x 10-2 and 

X= -4.48 x 10-2 in the unit system of 81rG = 1. Initial conditions are given by if>= 1, 

if, = 1 and p, = l at t = 1. 

Fig.3: Another example with X = -2.67 x 10-2 with the same values of the ot her 

parameters as in F ig.2. X= -2.67 x 10-2 corresponds ton.= "c = 1/V6. 

Fig.4: An examp le with X = -4.692 x 10-2 with the same values of the other 

parameters as in Fig.2. The example shows that the "suspend ing cosmological constant" 

eq uals about JQ- 120 

Fig.5: (a) T he thick so lid curve shows the a(t) for the A fit with .A= 0.9, 0
0 

= 0.1, 

k = 0, t0 = 12.5Gyr, h = 1.0 in ref.[9], while the dashed curve is for the open fit with 

A = 0 and 0 0 = 0.1, t0 = 12.6Gyr,h = 0.7 discussed also in ref.[9]. For the sake of 

comparison, t he thin curve represents the (excluded) stanuard behavior a(t) ~ t2f3 with 

0 0 = 1, A = 0, 10 = 13.0Gyr, h = 0.5. Notice an accelerated rise of a( t) in both of the 

A fit and the open fit. (b) Deceleration parameter q = -iia/0.2 • Curves are marked in 

lhe sa me way as in (a). 

Fig.6: A bircl's-eye view of the potential V(u, <i>) as given by (5.3) and (5.14). 

F ig.7: (a) An example of our cosmological solutions exhibiting a desired anomaly, 

a bump in the scale factor a(t) around the present epoch chosen to be t
0 

= 1.6 x 

10
60 

= 14Gyr. Also shown in figure are <l>, u, q, relativ istic matter energy p, (dotted 

curve), non-re lativistic matter energy p,., (clashed), the sum of the scalar fi eld ener­

gies p, = Pu + p~ (solid). The parameters are A = 1, n. = 0.158, m = 4.75. The 
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initial concltions chosen are <T = 9.067, &- = 0, <f> = 1.837, <f> = 0, p, = 2.04 x JQ- 21 , 

Pn, = 4.46 x 10-44 at t = t. = 10 10
• The overall sca.le of a is arbitrary'. (b) Magnified 

plots of q, 0 = Pm/3ff 2 = Pmf(Pm + p,) and p' around the present time, indicated by 

the vertical line. The Hubble parameter ish= 0.89, and 0
0 

= O.OU2. 

Fig.8: An example showing a transition from the type (ii) to the type (i) behavior for 

w = 10.0. Not ice an osci llation of P., (thick solid curve) and the overall decay according 

to C 3 after t ~ 10'0 To avoid an overlapping for l ;S 1040
, the curve of log

10 
p<, has been 

shift.ecl downwards by 10. 

74 



1 
-v'f. 

v 

0 

Fig. 1 

1 
v'f. 

----,-
~/·"",-----ht~----

/ 
/ 

0~--~--~--~--~--~~~~ 
p, p ,,. ___ --

-12oo L --1~0--2~o---=3~0----:4:;::o---;:s~o--;;6o 
log

10 
t 

Fig.2 



0 
1 

0 
Pv/Pv 

-1 
0 

-60 

-120o~-1'i1 o'~2:;;-0--;:3-;;-o --4-:';:0----=5~0 _ _j6o 

Fig.3 

1401------------~ 
120 

60 ,.------- -- ------
/ In ¢ 

0 I 

/ 
/ 

/ 

--

,-----,------..----- .... ---

Pv/Pv 
-1 

0~-------------------~ 

-60 

-120 
-140 ~--;-::;----::::---=-----::---~-~~ 

0 10 20 30 40 50 60 70 

Fig.4 



c 
~-------------------, ~ 

V(cr,<I?) 

!=' 
~ 

I 
I 
I 
I 
I 
I 

:? 2 I ? I 

Fig.6 



..... b "" 0 c 0 

c 
I 

~ l 
I 
I 
I 

I 
I 

I 
I 

I 

0 I 
w I 

()q I 0 0 I 

""" 
I 

I 

~ 0 ut / .... I 2:.- ()q 0 I o...._ I, 

"" 0 

1 
C> 
0 

. I 

_, 
0 

':rj ....... 
aq 

-J 

..... ..... 
w "' "" 
0 0 

<D . 

I 
I 

I 
I 

I 

' ' I 
I 

I 
~ 

\ 

I 
I 
I 

q I, 

..... ..... 
0 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 

\ S" 
l ., 
I 
I 

\ 
I 

.:... 

I 
I 

I 
I 
I 

I 
\ 
\ 

' 

0 

4 
f\ . 2q , I ' --,r-:-..,......,.. .. ..,. __________ .... , 

I '-----

0~~~~----~~r-~----~--~----~ 

-4 

ina 

0 

I 
I 
I 
I 
I 
I 
l.o 

I 
-60 I 

I 

tv 
I ::> 

70 

' 
log

10
t 

------, --_. 
Fig.8 -, 

' 




