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Abstract

Shadowing is a practicing strategy which requires a speaker to repeat what he/she heard as
soon as possible. Recent years, shadowing has shown its effectiveness in second language
learning, and has been adopted as a language education tool. This work mainly focuses
on the automatic assessment of shadowing speech using DNN (Deep Neural Network) -
based approaches, including DNN-based GOP (Goodness of Pronunciation) score and DNN-
based DTW (Dynamic Time Wrapping) distance. Both approaches are tested to have higher
correlation with manual scores than traditional GMM (Gaussian Mixture Model) -based GOP
scores in a relatively large shadowing speech corpora, which contains 125 speakers. In addition,
the DTW approach utilizes the model utterances only, which indicates the DTW approach has
language and transcription independency. This is very meaningful to expressive shadowing
speech automatic assessment and minor language shadowing speech automatic assessment.
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Chapter 1

Introduction

1.1 What is shadowing?

Shadowing is a rather new word, and to my knowledge, its definition has not been fixed
yet. Lambert [13] defines shadowing as a paced, auditory tracking task which involves the
immediate vocalization of auditorily presented stimuli. On the other hand, Tamai defined it
as an active and highly cognitive activity in which learners track the speech that they hear
and vocalize it as clearly as possible while simultaneously listening [9]. Briefly speaking,
shadowing is a practice strategy which requires a speaker to repeat immediately after hearing
the speech.

1.2 Shadowing in language learning

Shadowing is usually considered to include processes of speaking, listening and comprehension
of speech simultaneously [20], it has been employed as a practicing strategy among simulta-
neous interpreters to learn how to listen and speak simultaneously. Later it was also adopted
by language teachers. Recent decades have seen the effectiveness of shadowing in language
learning [8, 9, 11]. [8, 9] showed shadowing can improve students’ listening comprehension.
[8] also suggested that shadowing can enhance learners’ phoneme perception ability. [11]
showed that shadowing can improve learners’ intonation, fluency, word pronunciation and
overall pronunciation. Comparison study suggested that shadowing could be more or at least
no less effective than extensive reading, reading aloud and listening in terms of improving
speakers’ corresponding language skills, i.e. reading comprehension, speaking, and listening
comprehension [8, 22, 12].
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The reason why shadowing could benefit language learning probably has its foundation in
its processing mechanism. Other than simply repeating, shadowing has been shown to involve
complex production-perception interaction, automatic semantic and syntactic processing [21, 6],
and some people even performed sophisticated error correction during shadowing [19, 18]. This,
plus the fact that shadowing is a combined process of speaking, listening and comprehension,
suggests that analytical results of shadowing speech can represent the speakers’ overall language
proficiency better than those of reading speech [17].

1.3 The main problem of applying shadowing practices

Given the benefits of shadowing in language learning, it is getting widely adopted by teachers
in many countries, especially for English learners in Japan. In practical shadowing practices,
learners need feedbacks for their shadowing speech. This is usually given by their language
teacher. However, listening to and assessing all students’ utterances is nearly impossible for
a daily-level application. Besides, students also want to practice at home, where the teacher
cannot give suggestions immediately. Given these circumstances, A fast and precise automatic
assessment (AA) technology of shadowing speech is desirable.

1.4 Structure of this thesis

This work focuses on improving the precision automatic scoring of shadowing speech. Chap-
ter 2 introduces the basic knowledge of speech signal processing. Chapter 3 introduces the
definition of AA of shadowing speech, and some related previous works. Chapter 4 gives
the detail of the corpus used in the experiment, including how it was collected and how the
manual scores were given. Chapter 5 gives two proposed approaches in this work, DNN (Deep
Neural Network) -based GOP score and DTW distance between model and learner’s utterances.
Chapter 6 gives experiment settings and results. Chapter 7 summarizes the whole thesis and
gives some future works.



Chapter 2

Speech signal processing

This chapter gives a brief introduction to the basic knowledge in speech signal processing,
which lays the foundation of shadowing speech automatic assessment.

2.1 Feature extraction

The raw signal of human speech is difficult to analyze directly, so the first step of speech
processing is usually feature extraction. The most commonly used feature in speech recognition
tasks is MFCC (Mel-Frequency Cepstral Coefficients). Followings are typical steps to compute
MFCC features for a speech utterance:

Speech signals to short frames

The characteristics of speech signal are constantly changing, and we often only analyze signals
in a small window at a time. This window is usually referred as frame. A typical frame has a
length of 20 to 40ms, since too short frame length causes unreliability in spectral estimation,
while too long frame length gives less information of dynamic characteristics. Adjacent frames
are often overlapped by frame shift. The shift distance is typically set to 5 or 10ms.

Figure 2.1 gives an illustration of frame length and frame shift. However, at the cutting
edge of frames, signals are not continuous. This may lead to a bad spectral estimation. One way
to solve this problem is to add a window function onto the original signal, in which hamming
window is a common choice:

w(x) = 0.54−0.46cos2πx, where 0 ≤ x ≤ 1,
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Fig. 2.1 An illustration of frame length and frame shift.

Hamming window makes the change of signals in a frame more smoothly, hopefully results in
a better spectral estimation.

Compute power cepstrum

The next step is to calculate the power spectrum of each frame [4]. This is motivated by
the human cochlea (an organ in the ear) which vibrates at different spots depending on the
frequency of the incoming sounds. Depending on the location in the cochlea that vibrates
(which wobbles small hairs), different nerves fire informing the brain that certain frequencies
are present. This is similarly achieved by applying STFT (short-time Fourier transform) to
signal frames, and then transforming it from complex frequency domain into power frequency
domain.

Apply the mel filterbank

According to [4], the power spectrum still contains a lot of information not required for Au-
tomatic Speech Recognition (ASR). In particular the cochlea cannot discern the difference
between two closely spaced frequencies. This effect becomes more pronounced as the frequen-
cies increase. For this reason we take clumps of periodogram bins and sum them up to get
an idea of how much energy exists in various frequency regions. This is performed by Mel
filterbank: the first filter is very narrow and gives an indication of how much energy exists
near 0 Hertz. As the frequencies get higher our filters get wider as we become less concerned
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Fig. 2.2 An illustration of Mel filterbank.

about variations. We are only interested in roughly how much energy occurs at each spot. The
following gives a formula from frequency to Mel scale:

M( f ) = 1125ln(1+ f/700),

and Figure 2.2 gives an illustration of mel filterbank.
Once we have the filterbank energies, we take the logarithm of them. This is also motivated

by human hearing: we don’t hear loudness on a linear scale [4].

Take the DCT

The final step is to compute the DCT (Discrete Cosine Transform) of the log filterbank energies
[4]. This is because our filterbanks are all overlapping, the filterbank energies are quite
correlated with each other.

After taking DCT, keep the first 12 coefficients (expect c0) instead of all of them. This is
because the higher DCT coefficients represent fast changes in the filterbank energies and it turns
out that these fast changes actually degrade ASR performance, so we get a small improvement
by dropping them [4]. Finally, those taken out coefficients are called MFCC.

2.2 Acoustic model

After extracting features, the next thing we need is a bidirectional mapping between human
language notations to features. This is generally modeled by probabilistic models. Assume the
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intended phoneme sequence is X , the observed features are O, we model their relationship as
P(O,X). This can be further broken down into:

P(O,X) = P(O|X)P(X),

where P(O|X) is usually called acoustic model and P(X) is called language model.
In this section, the traditional GMM-HMM acoustic model and recently popular DNN

acoustic model will be explained. The language model will be introduced in the next section.

2.2.1 GMM-HMM model

The HMM is the most popular and successful stochastic approach to speech recognition
in general use [7]. The existence of elegant and efficient algorithms for both training and
recognition may be the main reason. The HMM, the acoustic model, is required to determine,
in conjunction with the language model, the most likely word sequence given some speech
data. Specifically within this process, the acoustic model is required to give the probability of
each possible word sequence.

A typical three-emitting-state HMM is shown in Figure 2.3. Emitting state cannot be
observed directly, but can be estimated by the emitted features. The relationship is modeled by
GMM. Suppose fm is the probability distribution associated with emitting state sm when given
feature vector x, then GMM modeled fm can be expressed as:

fm(x) =
N

∑
n=1

an
1

(2π)K/2|Σn|1/2 exp
(
−1

2
(x−µn)

T
Σ
−1
n (x−µn)

)
,

where N is the mixture component number, K is the dimension of feature vector, an is the
weight, µn and Σn are the mean vector and variance matrix for component n, respectively.

Then the GMM-HMM model can be characterized by [7]:

1. N, the number of states in the model. Si represents state i in HMM.

2. A, the state probability transition matrix, where ai j represents the transition probability
from state Si to S j.

3. B, the output probability distribution associated with each emitting state, where

bm(x) = fm(x),

if Sm is the current emitting state and x is observed feature vector.
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Fig. 2.3 An example of three-emitting-state HMM [7].

4. π , the initial state distribution.

All standard HMMs can be described using above parameters. However, in most speech
recognition tasks, HMMs are constrained into left-to-right HMMs. That is, the probability
transition matrix A is not full. This is consistent with the structure of phoneme pronunciation,
and can help prune the HMM structure.

HMMs are usually built for every phoneme, and can be combined together to generate
word/sentence phoneme. Figure 2.4 shows an example of combined HMM for two phonemes,
/y/ and /i/.

Under all of the assumptions in GMM-HMM model, now we can write the formula P(O|X)

for HMM:

phmm(O|X) = π

M

∏
m=i

fτm(Om)aτm−1τm,

where M is the number of feature frames, Om is the feature at frame m, and τm is the emitting
state number at frame m.

The parameters can be estimated using EM (Expectation–maximization) algorithm, proba-
bly with ML (Maximum Likelihood) criterion [7].

2.2.2 DNN model

According to [10], over the last few years, advances in both machine learning algorithms
and computer hardware have led to more efficient methods for training deep neural networks
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Fig. 2.4 A combined HMM for phone /y/ and /i/ [24].

(DNNs) that contain many layers of non-linear hidden units and a very large output layer. The
large output layer is required to accommodate the large number of HMM states that arise when
each phone is modelled by a number of different “triphone” HMMs that take into account
the phones on either side. Even when many of the states of these triphone HMMs are tied
together, there can be thousands of tied states. Using the new learning methods, several different
research groups have shown that DNNs can outperform GMMs at acoustic modeling for speech
recognition on a variety of datasets including large datasets with large vocabularies.

Technically speaking, a DNN is a neural network with more than one hidden layer. Fig-
ure 2.5 gives an illustration of DNN. The left-most layer is called input layer, which accepts a
vector (where its dimension is the same as the number of units in input layer) as input. Layers
in the middle are called hidden layers, which take the output of its last layer as input, and pass
the output to the next layer. The right-most layer is called output layer, which handles the real
output of the whole network. Forward-feeding is probably the most common task for DNN.
When the parameters in DNN are fixed, DNN accepts a vector as input, passes it through all
the hidden layers and gives the result in output layer. The formula for hidden layers i+1 is:

xi+1, j = h(∑
q

w(i)
iq xiq +b(i)j ),

where xi j is the value of j-th unit in layer i, w(i) is the weights for layer i, b(i) is the bias for
layer i, and h is the activation function. Finally, in the output layer, these units are usually
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Fig. 2.5 An illustration of a two-hidden-layer DNN.

normalized by, for example, the softmax function:

s(xi j) =
exi j

∑k exik
.

One of the most important part in DNN is the activation function. This function is the only
non-linear part in a standard DNN. Depending on tasks, the following activation function are
used:

1. identity: h(x) = x

2. sigmoid: h(x) = 1
1+e−x

3. tanh: h(x) = ex−e−x

ex+e−x

4. ReLu: h(x) = max(0,x)

All of these activation functions are differential (except for ReLu at 0), which makes them
suitable for DNN training. More details about DNN training and integrating DNN and HMM
can be found in [10].

2.3 Language model

As previous mentioned, not only the acoustic model P(O|X), the language model P(X) also
affects the probability distribution of the target P(O,X).
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Language model is a model which measures the naturalness of word sequences quantita-
tively [28]. Please consider the following examples:

1. There is a cat running on the road.

2. There is a cat flashing on the road.

Perhaps most would agree that the first sentence is more natural than the second one. Humans
can judge this using the daily life experience, but how about machines? The relationship among
observed words may be one of the criterion. In this case, the word flashing is considered
less relevant to the context cat and road than the word running, making it harder to appear in
the sentence. A machine can judge this kind of relationship statistically by feeding it a large
number of texts.

Consider a simple case of the above relationship. Every word in the word sequence is only
relevant to the words before it, then the appearing probability of the whole sequence is the
product of each word in it given the words before it. This can be quantitatively described as:

P(X) =
n

∏
i=1

P(xi|x1, . . . ,xi−1),

where X = {x1, . . . ,xn} is the word sequence.
This can be further simplified by assuming that one word is only revelant to limited words

coming before it. This simplified model is called n-gram when only the last N words are
considered. As a result, P(xi|x1, . . . ,xi−1) can be expressed as:

P(xi|x1, . . . ,xi−1) = P(xi|xi−N−1, . . . ,xi−1)

=
Count(xi−N−1, . . . ,xi)

Count(xi−N−1, . . . ,xi−1)
(2.1)

Here, Count(xi−n, . . . ,xi) is the number of appearances for word sequence xi−n, . . . ,xi in the
corpus.

This model may seem to be too simple for a good estimate of P(X), but the fact is, it works
out very well, especially when a large amount of learning corpora is provided. In addition, the
computation cost for n-gram model is very low. These features have made n-gram the most
widely used language model in automatic speech recognition tasks.

2.4 Decoding and forced alignment

There are two basic tasks for speech processing, forced alignment and decoding. They are
both commonly used in model training, speech recognition and speech assessment tasks.
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Fig. 2.6 The flow chart for a standard forced alignment [1].

Decoding is a task that when only the utterance is given, we find the most possible word
sequence for it. The most common way to do this is to build a decoding network combining
both acoustic and language models, then apply Viterbi Algorithm to search for the best path.

Forced alignment on the other hand, requires both the utterance and its transcription. The
purpose is to find the boundaries for each phoneme, as shown in Figure 2.6. The searching
algorithm is also Viterbi Algorithm. The result of forced alignment is usually used to train a
larger acoustic model.



Chapter 3

Automatic assessment of shadowing
speech

In this chapter, we will introduce the basic ideas and previous works of AA of shadowing
speech. Comparing to normal speech, shadowing speech is usually content-fixed, which means
we already know the transcriptions when assessing. Another difference is that shadowing
speech is required to be time aligned with the model speech. These features lead to some
different approaches of assessment. The purpose of shadowing automatic assessment is to give
learners manual-like feedbacks.

Basically, there two approaches to assess shadowing speech automatically: scoring and
error detection. The concepts and related works will be introduced in next two sections. Then
the purpose of this thesis will be explained.

3.1 Scoring

3.1.1 Introduction

Scoring means assessing learners’ utterances by giving scores. Although the purpose is trying
to give manual-like scores, which are usually given by language teachers, the scoring strategy
varies for different scorers. Actually, before starting scoring utterances, scorers often have
meetings to discuss, to determine which aspects will be scored and how. The same kind of
discussion is also needed for automatic scoring.

Suppose the model utterance says “I lighted a candle.”, some commonly used scoring
aspects of shadowing speech are listed below:

1. Phoneme.
Phoneme aspect is assessed based on the ability to produce each phoneme clearly. For
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example, in English shadowing, the difference between phone /l/ and /r/ cannot be
distinguished for low-level Japanese learners. Also, some unexpected phonemes may be
inserted, for example Japanese phone /ru/ may be inserted at the end of word candle for
Japanese learners. In our collected data, this happens more frequently than in reading
aloud speech recording, probably because shadowing requires higher cognitive load so
that learners don’t have time to prepare for a clear pronunciation.

In phonetics, the spectral envelope corresponds to the shape of vocal tract, and the shape
of vocal tract determines vowels and many consonants. MFCCs are often considered
as a good representation of spectral envelope, so to score the goodness of phoneme
pronunciation, MFCCs are widely used as in speech assessment tasks.

2. Prosody.
Prosody means the pitch change, or F0 change physically, of speech. It consists of
many concepts, such as tone, accent, stress and intonation. Not all of these factors are
required for a specific language. For example, English has no tone, but is very sensitive
to stress and intonation. The meaning of the word increase changes depending on its
stress position: /in’kri:s/ is a verb meaning “to become larger”, while /’inkri:s/ is a
noun meaning “an amount by which something increased”. On the other hand, Chinese
is a tone language, but less sensitive to stress. Stress in Chinese is usually used for
emphasizing specific words (or specific syllables).

Prosody is very important for communication since it has functions of indicating the
main subject and borders between semantic segments. It is thus, important for shadowing
speech scoring. Nearly all of these prosody concepts are related to pitch. This gives us
an idea that F0 information could be useful for scoring. Actually, in speech recognition
of tone languages such as Chinese, F0 can be directly fed as an input feature.

3. Correctness.
Correctness means the ability to produce correct word sequences given by the model
utterance. Correctness may contain several kinds of errors, such as grammatical errors,
omission errors, insertion errors and so on. For example, for a model utterance “I lighted
a candle.”, some possible errors in the aspect of correctness can be:

• “I lighted a . . . ”. This is an omission error.

• “I lighted some candles”. This one contains two substitution errors.

• “I light a candle”. This one is more complicated, since it could be regarded as both
an substitution or a grammatical error.
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• “I (hmm) (mirr) . . . ”. Some pronunciations are not clear enough to distinguish in
the utterance. We refer this as mimic error, since the speaker doesn’t understand
the meaning of what he heard and he is just trying to say something.

It’s difficult to make a complete category for these correctness errors since multiple errors
can happen at the same time and the borders of them are not clear.

Correctness can be automatically detected by using a grammar network with extra paths
for possible errors. This will be discussed in later sections.

4. Delay.
Delay is the difference between starting time positions of the model utterance and the
learner’s utterance. It is one of the major differences between shadowing speech and
other speeches, such as reading aloud and repetition. High-level shadowers can repeat
the model utterance in a very short delay, sometimes as short as 150ms [20] to 254ms
[18].

The scoring of delay is rather simple. Teachers could just compare the starting time
positions of two utterances and judge whether delay is in acceptable levels. The same
can be done for machines, using forced alignment to detect the starting and ending time
positions for each word.

Not all of these factors are needed to be taken account into. Low-level shadowers often
struggle with standalone pronunciations so more attention can be paid on the phoneme and
correctness aspects. On the other hand, high-level shadowers tend to have more grammatical
errors and insertions though the meaning of the whole sentence doesn’t change.

In the next section, a universal assessment criterion of transcribed speech will be introduced.

3.1.2 GOP score

Introduction

GOP (Goodness of Pronunciation) score is an objective score indicating the clarity of ut-
terance/word/phone. It is universal and easy to compute, and thus widely used in speech
assessment tasks.

In its computation, it is assumed that the orthographic transcription is known and that
a set of HMMs is available to determine the likelihood P(O(p)|p) of the acoustic segment
O(p) correspond to each phone p [30]. Under this assumption, GOP score is defined as the
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normalized log posterior probability of phone p when given the segment O(p). That is,

GOP(p) =
1

Dp
log(P(p|O(p))), (3.1)

where Dp is the number of frames of audio segment O(p).
Break down equation 3.1 by Bayes’ theorem and we get:

GOP(p) =
1

Dp
log

(
P(O(p)|p)P(p)

∑q∈Q P(O(q)|q)P(q)

)
, (3.2)

where Q is the set of all phones.
Assuming all phones have the same prior probability (i.e., P(q) = P(p) for all p,q ∈ Q),

and the sum in denominator can be approximated by its maximum, we have:

GOP(p)≈ 1
Dp

log

(
P(O(p)|p)

maxq∈Q P(O(q)|q)

)
. (3.3)

The numerator is exactly the likelihood of phone p. The denominator is the biggest
likelihood among all phones in Q, which is exactly the decoding likelihood of audio segment
O(p).

By this approximation, a GMM-HMM based acoustic model is capable of computing GOP
scores fast.

Application in shadowing speech assessment

Luo et al. [16] adopted GOP scores as measurements of English shadowing proficiencies of
Japanese learners. The flow chart of its computation system is shown in Figure 3.1.

First MFCC features are extracted from the raw waveforms. Then these features are used to
decode the utterance using a GMM-HMM based acoustic model and a phone-loop network
grammar. The decoded phoneme sequence and their likelihoods are computed. The likelihood
for each phoneme is the denominator of Equation 3.3. The transcription of the utterance is
used together with the MFCC features to perform forced alignment so the time information and
likelihood of each phoneme in the transcription could be determined. The likelihood here is the
numerator of Equation 3.3. Finally these likelihoods are combined together and normalized,
and then we obtain the GOP scores for each phoneme in the transcription.

There are 27 participants in the experiment. They are language teachers, intermediate
leaners and beginners from Japan. They are all asked to participate TOEIC (Test of English as
International Communication) tests so we can know their true English proficiencies. During the
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Fig. 3.1 Flow chart for GMM-HMM acoustic model based GOP computation in [16].

experiment, the participants are required to shadow 21 sentences which topic is very familiar
for Japanese. Phoneme-level GOP scores are computed first, and then the scores are averaged
in utterance-level. Finally the utterance-level GOP scores are averaged by speakers so we have
the GOP scores for all 27 speakers.

The result was quite good at that time. The best correlation of speaker-level GOP scores
and their TOEIC scores is 0.82, which is close to the inter-rate correlation between language
teachers’ manual scores. However, the size of this data set is too small to give a convincing
conclusion about the relationship between GOP scores and TOEIC scores. There are also some
other problems about this study. We will discuss them in the later sections.

3.2 Error detection

Introduction

Error detection is another way of giving feedbacks to the learners. Scoring only cares about
giving a score to the input utterance, while error detection tries to find out specific errors in it.
Usually the detected error is fed back together with some suggestions about how to improve
it. This kind of assessment is ideal for learners’ self improvements, but also very difficult to
realize.
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Table 3.1 Error definitions of shadowing speech in [27].

Name Description Example
Substitution Substitution means one word is substituted by

another.
symptoms ⇒ sentences

Omission Omission means one expected word is missed. had (been) poisoned

Grammatical
Error

Errors related to tense and grammar. works ⇒ worked

Insertion Insertion means one unexpected word is found. (the) symptoms

Repetition Repetition means a word is fully or partially
repeated.

very (very) expensive

Multi-to-one Multi-to-one means several words are arranged
to a set of syllables.

two hundred dollars ⇒
two hundo

Mimic Mimic means a word is shadowed without un-
derstanding its meaning.

Spoken noise Filled pause. <uh>, <en>

Non-spoken
noise

Noise other than spoken noise. <microphone>

Whispering Whispering means the speaker shadowed in
very low voice.

Related works

Shi et al. [27] have made a study of detecting simple omission errors and improving the
correlation between GOP scores and TOEIC scores.

The basic idea of this study is, the number of omission errors have deep relationship with
the shadowing proficiencies. To investigate this, this study first collected shadowing utterances
from 20 Japanese students (10 men and 10 women). There are 21 utterances for each speaker.
All occurrences of errors in these utterances are labeled according to a pre-defined error table
(Table 3.1). The statistics of labeled results are shown in Figure 3.2 and Figure 3.3.

We can see the most frequent error type is absolutely omission. It is easy to interprete since
shadowing is a highly cognitively loaded task so that when speakers cannot catch up with the
model utterance they simply tend to keep silent. From Figure 3.3, it can be concluded that
the higher the learner’s shadowing proficiency is, the fewer omission errors he would have
made. This suggests a strong relationship between the shadowing proficiency and the number
of omission errors. Thus this study aims to detect omission errors and utilize them to improve
the scoring result.
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An omission-tolerant aligning grammar network is prepared to detect omissions. Every
word in the network could be replaced by a short pause. Viterbi algorithm will search for the
most possible path for the whole word sequence so the short pauses in alignment result are
omitted words. The accuracy of omission detection is about 70%.

After omission detections, some extra features are computed for each utterance. For
example, the omission rate of words, the duration of silence part. The GOP scores are one of
these features, computed the same way as in [16]. Finally these features are used to estimate
learners’ TOEIC scores via SVR (Support Vector Regression).

In the experiment, the GOP scores are used as the baseline. About 40 speakers participated.
When using the same content in [16], the new approach (Corr.=0.83) just outperforms the
baseline (Corr.=0.82) a little bit. However, in the experiment of another textbook, the correlation
coefficient of baseline drops to 0.61. The new approach improves it to 0.74 at best, which is
quite effective.

This study shows us a possibility of doing error detection for shadowing speech. In the next
section, we will describe the purpose of this thesis, including the problems in previous studies
and how to improve them.

3.3 Aim of this thesis

This thesis will focus on introducing our works about automatic scoring of shadowing speech.
As previously mentioned, these previous works all suffer from the following problems:

1. Insufficient amount of data.
None of the previous experiments have more than 40 participants, which is consid-
ered insufficient for investigating the relationship between shadowing proficiency and
automatically generated scores.

In this our experiment, we collected English shadowing utterances from 125 college
students in Japan for a better examination.

2. Instability of GMM-based GOP score.
[27] has shown that the GOP score is not always well correlated with the shadowing
proficiency.

In this study, the DNN-based acoustic model is adopted so that estimation of phoneme
posterior probabilities are more accurate and the GOP score can be computed without
approximating.
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3. Reliability of TOEIC test.
Despite the fact that speaking ability is essential to shadowing, TOEIC test doesn’t
contain any speaking test. So one with high TOEIC score is not necessarily good at
shadowing, and vice versa. The reliability of adopting TOEIC score as the true shadowing
proficiency is doubtful.

In this study, we use manual scores by language teachers instead of TOEIC scores.
Manual scores also give us evaluations in sentence and phrase level, while TOEIC scores
can only be provided in speaker level.

4. Dependence on transcriptions of model utterances and acoustic models of the tar-
get language.
Although this is not a big problem for shadowing since shadowing contents are always
transcribed, some usages are limited for this kind of approach. For example, this approach
probably doesn’t work well for shadowing of minor languages such as Icelandic, because
there are no largely collected corpus to train a good acoustic model. This approach is
also not suitable for expressive shadowing, because the transcription does not contain
information about emotion control such as intonation change and vowel prolonging.

We proposed a new approach to score shadowing speech by measuring the distance
between the model and learners’ utterances instead of using GOP scores. This approach
utilizes the model utterance, not using transcription directly. It is thus suitable for
language-independent shadowing assessment and expressive shadowing assessment.

These solutions would be explained in detail in the next chapter.
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Fig. 3.2 Labeled error statistics (overall) in [27].

Fig. 3.3 Labeled error statistics (proficiency grouped) in [27].



Chapter 4

Corpus description

4.1 Corpus collecting

In order to examine the relationship between automatic scores and manual scores in a larger
scale, we collected English shadowing speeches from 125 college students from Japan. They
are all English learners from 3 universities, called University K, University S and University A.

These students are required to do parallel shadowing, which means no transcriptions are
shown. The shadowing contents are 55 sentences from 4 passages, whose titles are “My name
is Akira”, “MacDonald”, “Valentine” and “Fugu”. They are all considered familiar topics to
Japanese learners. Some of the sentences are picked up and shown in Table 4.1. As you may
see, some of them are easy and others are difficult. Each passage is shadowed 4 times (without
transcriptions). There is a small quiz between the second and third recording to help learners
understand the meaning of each passage. 4 or 5 selection questions are contained in a quiz.
Table 4.2 gives some example questions in these quizzes.

To collect the utterances fast and correctly, an online shadowing recording website is made.
This website is capable of shadowing practice and shadowing recording. Locally recorded
utterances will be sent to servers in our laboratory. Introductions and manuals are distributed to
the students before the real recording. Figure 4.1 is a screenshot for this recording website.

Because unexpected noises will affect the automatic assessment dramatically, we have
also paid attention to the recording devices to make sure that utterances are recorded in good
environments. Based on our observations, most learners are not familiar with recording devices
and do not know how to use them correctly. To solve this problem, we prepared ear-hook
type microphones to fix the distance between the speaker’s mouse and the microphone. This
prevents pop noises effectively in our tests. Figure 4.2 is a photo of such kind of microphone
set (made by ourselves).
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Table 4.1 Some sentences picked up from the shadowing contents.

Passage Sentence index Content
My name is Akira 1 Hi, my name is Akira.

My name is Akira 4 I’m studying photography too. Shall we exchange
some photos we’ve taken, and discuss them on the
Internet.

MacDonald 1 The MacDonald’s house has been broken into.

MacDonald 10 It was you who kicked the door, wasn’t it?

Valentine 1 February 14th is a day for people who have fallen
in love.

Valentine 12 People wrote their own words on the cards. Usu-
ally a kind or funny message.

Fugu 1 In 1996, three men in California were taken into a
hospital with strange symptoms.

Fugu 4 The hospital doctors thought the men had been
poisoned but couldn’t work out what’s wrong with
them.

4.2 Manual scoring

4.2.1 Introduction

Due to the unreliability of TOEIC scores, we decide to manually score each collected utterance.
However, to compare with previous works, each learner was still asked to take a mini-TOEIC
test, which contains only the listening part of the regular one. Their scores are rescaled from 0
to 100 for convenience.

We would like to manually score all 55 utterances for every speaker at first, but soon we
found it would be too much work to do. Then we decide to decline the amount of sentences.
Finally 10 sentences are chosen manually by an English teacher who has taught Japanese
students English for over 20 years. These sentences are chosen in a criterion of difficulty
balance. That is, both easy and high-level sentences are chosen. Furthermore, only the forth
time recorded utterances will be scored. Now we have 10∗125 = 1250 utterances to be scored
in total. By our observation, a few students tend to only shadow in the first half of a sentence,
and keep silent in the other half. This is because when they could not understand the first
part, they are most likely to miss the other part too. For this reason, we further divided every
sentence into 2 or 3 phrases depending on its syntactic structure. As a result, we have 27
phrases among these 10 sentences.
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Table 4.2 Examples of quiz questions used in shadowing recording.

Question and Choice Contents
Question-1 If you see how a person sleeps, what can you predict?

A The person’s kindness

B The person’s character

C The person’s health condition

D The person’s sleeping hours

Question-2 What is the personality of a person who sleeps like a solder?

A friendly

B outgoing

C easy-going

D quiet

The next problem is how to score these phrases. Our scorers are three language teachers
born and grown up in America. Two of them (named SA and SB) are American-Japanese
halves, while the other (named SC) has experience in teaching Japanese. All of them are
familiar with English learners in Japan, so they are able to judge those utterances objectively
from an educational perspective.

After a discussion, the scorers agree to assess in the following three aspects:

• Phoneme (P). Phoneme indicates how close the pronunciation is to standard American
English. The score ranges from 1 (worst) to 5 (best). For example, strong Japanese
accent would lead to a low score.

• Prosody (S). Prosody indicates how well the supra-segmental factors are controlled. This
includes the intonation change and the stress position. The score ranges from 1 (worst)
to 5 (best).

• Correctness (C). Correctness indicates how well the shadowing content is reconstructed.
For example, omissions and insertions of phonemes/words would lead to a low score.
The score ranges from 1 (worst) to 5 (best).

These scoring aspects very similar to the introduction in Chapter 3, except that the delay
aspect is ignored. By summing up these three scores, the total score of a phrase ranges from 3
to 15.
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Fig. 4.1 A screenshot for the shadowing recording website.

4.2.2 Analysis

We analyzed the manual scores and found some interesting results.

Statistics information

Table 4.3 summarizes the score results for all three scorers (SA, SB and SC). Mean is average
and SD is standard deviation. SA seems to score more strictly on phoneme and more loosely
on prosody and correctness than the other two scorers. SB and SC have very close result on all
three aspects. Phoneme mean score is relatively low, which is consistent with the fact that most
of the participants are low and medium English learners. Surprisingly, all three scorers give
high scores for correctness aspect. This is probably because the utterances are produced after
practicing three times, so the leaners have enough time to remember the contents.

Correlations within scorers

We also had a look into the correlations between each pair of three scorers. Table 4.4, Table 4.5
and Table 4.6 are the correlation coefficients (CC) in phrase level, sentence level and speaker
level, respectively. P is phoneme, S is prosody and C is correctness score. P+S+C is the sum of
them. Phrase level means the cor. is computed using phrase as the basic unit (i.e., the amount of
data is 125∗27 = 3375). Sentence level means we first merge the phrase scores into sentence
scores by their average, and then compute the correlation coefficients. (i.e., the amount of data
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Fig. 4.2 A photo of microphone set used in shadowing recording.

Table 4.3 Statistics from three scorers (SA, SB and SC) for each aspect.

Phoneme (P) Prosody (S) Correctness(C)
SA-Mean 1.9 4.2 4.1

SA-SD 0.61 0.56 0.54

SB-Mean 2.9 2.8 3.7

SB-SD 0.64 0.82 0.68

SC-Mean 2.7 2.9 3.7

SC-SD 0.71 0.78 0.69

is 125∗10 = 1250). Speaker level means we further merge the sentence scores into speaker
scores by their average, and then compute the cor. (i.e., the amount of data is 125).

As we expected, highest CCs are in the order of speaker, sentence and phrase level. CCs of
P+S+C are also higher than the three aspects standalone for all three levels. This is because the
more samples are, the reliable the CC is. Also, scorer SB and SC have higher CC than theirs
between SA. This is consistent with the fact that statistics (mean and SD) of SB and SC are
closer than SA. Another trend is that CC for correctness seems always higher than phoneme
and prosody. This can be backed up by the fact that the correctness scores from three scorers
are all relatively high.

Correlations with TOEIC scores

We computed CCs between speaker-level manual scores and their TOEIC scores to investigate
the reliability of TOEIC tests. Table 4.7 is the CCs between TOEIC scores and manual scores
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Table 4.4 Correlation coefficients between each pair of scorers in phrase level.

P S C P+S+C
SA_SB 0.47 0.42 0.67 0.71

SA_SC 0.43 0.47 0.65 0.69

SB_SC 0.56 0.54 0.70 0.74

Table 4.5 Correlation coefficients between each pair of scorers in sentence level.

P S C P+S+C
SA_SB 0.57 0.46 0.72 0.73

SA_SC 0.52 0.54 0.72 0.73

SB_SC 0.66 0.62 0.77 0.80

Table 4.6 Correlation coefficients between each pair of scorers in speaker level.

P S C P+S+C
SA_SB 0.74 0.63 0.85 0.87

SA_SC 0.72 0.73 0.87 0.86

SB_SC 0.84 0.72 0.86 0.87

Table 4.7 Correlation coefficients between manual and TOEIC scores.

SA SB SC SA+SB+SC
TOEIC 0.44 0.46 0.48 0.48

of each scorer. The manual scores are P+S+C, which is the sum of phoneme, prosody and
correctness scores. SA+SB+SC means speaker-level manual scores are the average of these
three.

As we expected, TOEIC scores have low correlation with manual scores of any scorer
(CC=0.48). This means at least under the current settings of experiment conditions, TOEIC
scores are not suitable for representing learners’ shadowing proficiencies. This is very important
since we have adopted TOEIC scores in many previous works. If we could find one kind of
automatic score that has higher CC than TOEIC score with the manual scores (and as we
did), this automatic score would be very meaningful for estimating the true proficiencies of
shadowing learners.

In next chapters, we will introduce two kinds of improved automatic scores of shadowing
speech. Both of them have shown much higher correlation than TOEIC scores in our experiment.



Chapter 5

Proposed approaches

5.1 DNN-based GOP score

5.1.1 Introduction

DNN-based GOP score is an automatic score improved from GMM-based GOP score. Un-
like the GMM, DNN allows GOP computation without approximation. That is, GOP(p) =
1

Dp
log(P(p|O(p))) can be directly modeled by DNN model.
To explain how such kind of DNN works in speech recognition and assessment, we first

have to how GMM works. At first, only context-independent phones, i.e., the monophones
are modeled. For example, the feature distribution of /a/ is represented by a GMM without
considering which comes before and after /a/. This is okay when the task is simple, such as
singleton phoneme recognition. However, in more complicated tasks such as large vocabulary
continuous speech recognition, this model is too simple to handle all variations of each phone.
In real life, the physical properties of phone /a/ can be significantly affected by the phones
come before and after it. A straight forward approach is to model context-dependent phones,
for example, biphones and triphones. Biphone is a phone with another adjacent phone to it, i.e.,
/b-a/ or /a+c/. Triphone is a phone with its two adjacent phones, i.e., /b-a+c/. /b/ is the phone
comes before /a/ and /c/ is the phone comes after /a/.

Triphone model does bring improvement for modeling, but there is a new problem: we do
not have enough data for train every triphone well. Suppose we have 40 phones in English, then
there will be 40∗40∗40 = 64000 combinations for all triphones, which is too large to train
each them. Some of them have not appeared in the train corpus at all. So how do we handle
them? The most common solution is, tie similar phones together. For example, phone /b-a+c/
and /d-a+c/ are considered very similar since the central and right phones are the same, and
the left phones are both stop consonants. A decision tree is used to group triphones based on
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such kind of rules. Finally, the tied phones, usually referred as senones, are the smallest unit
possessing different GMMs. Their number could vary from hundreds to thousands, depending
on different tasks.

DNN model takes observed feature vector as its input, and outputs the posterior probability
of all senones. That is, P(s|O) for all s ∈ S, where S is the set of all senones and O is the
observed feature vector. The structure of this kind of DNN is illustrated in Figure 5.1.

Fig. 5.1 An illustration of DNN structure in GOP computation.

5.1.2 Computation steps

In this section, we will explain how to use DNN model to compute GOP scores in detail.
Figure 5.2 is a flowchart of all computation steps.

Feature extraction

The first step is to extract features from the raw waveform. Although MFCCs and its delta
features are typical features for modeling, some feature-space transformations are used for a
better result. In particular, CMN (Cepstral Mean Normalization), LDA (Linear Discriminant
Analysis), MLLT (Maximum Likelihood Linear Transform) and fMLLR (feature-space Maxi-
mum Likelihood Linear Regression) are adopted. CMN makes sure that cepstral coefficients
are summed up to 0. LDA compresses the dimension of spliced MFCC features. MLLT
compensates for the loss caused by using diagonal Gaussian variance matrices for GMM model.
fMLLR performs a speaker self adaptation for a better feature estimation. See [26] for more
details of these techniques.

GMM-HMM-based forced alignment

The next step is align the utterance to find out phone for each frame. Notice that this is done in
context-independent phone level, which means we look for the most possible phone for each
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Fig. 5.2 A flowchart of DNN-based GOP computation steps.

frame instead of senone. This is important because later the posterior calculation will be done in
senone level. We must keep the mapping relationship between senone and context-independent
phone in mind.

You may have noticed that we do not adopt DNN-HMM model to perform forced alignment.
This is because alignment results are considered accurate enough even by GMM models. But
still, we leave this as a future work.

DNN-based senone posterior

Then we compute the posterior vectors for each frame. The output posterior vector x satisfies

∑
N
i=1 xi = 1, where N is the number of senones, and xi is the posterior probability for senone i.

This can be computed simply by feeding feature vectors forward through the network since this
is just what DNN models.

GOP calculation

With all information obtained above, now we are ready to calculate the GOP score for the
utterance. The alignment result can be regarded as the “correct answer” of each frame, while the
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posterior vector can be regarded as the “actual product” of each frame. As shown in Figure 5.2,
by the definition of GOP score (Equation 3.1), we simply sum up the posterior probabilities of
senones corresponding to the phone of current frame in alignment. Because we do not want to
estimate the goodness of the speaker’s silence part, when current phone is silence, we ignore it.
Finally, the summed up probability is divided by the number of non-silence frames, and we get
the GOP score for current utterance.

Someone may ask what if the speaker missed some words. Would not the alignment result
become a mess? The answer is, even if some expected words are missing in the shadowing
utterance, the forced alignment still tries to align the missing words to some unrelated parts of
the utterance. This will probably result in a low GOP score, which is still consistent with what
we expect.

At the point, the DNN-based GOP score is complete. The result of this approach will be
introduced in next chapters. Now we will introduce another approach of scoring shadowing
utterances in the next section.

5.2 DTW distance of DNN-based posteriors

5.2.1 Introduction

If we look into GOP score deeply, we will find that its essence is to estimate how far the actual
pronunciation is from the standard phone model. In other words, we measure the distance of
the utterance and the standard acoustic model. However, this approach does not make use of
the model utterance (the utterance played for shadowers). The distance between the model
and learner’s utterances can also be one kind of scores. The problem is, how do we define
the distance between two utterances? Trivial definitions such as the difference of waveform
amplitude or MFCCs suffer from the speaker-dependent property affection and non-aligned
time position. The first problem can be solved using DNN-based senone posteriors, which
speaker identity is considered to be removed. The second one can be solved using a general
aligning technique called DTW.

DTW is a technique trying to find the “closest” mapping path of two sequences. Here,
“closest” means the minimum accumulation of local distances between each element of two
sequences. The element can be anything, for example, scalar, vector and matrix, as long as the
distance of two elements can be defined. Several works compared two utterances through DTW
after they were converted to sequences of posterior vectors [25, 29, 14, 15]. For example, [25]
adopted DTW to evaluate the accentedness of non-native speech using senone posteriors. [14]
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adopted DTW to detect mispronunciation. And of course, the same technique could be applied
to shadowing.

5.2.2 Mathematical formulation

First let us have a look at the general definition of DTW.
Suppose there are two sequences X = {x1, . . . ,xn} and Y = {y1, . . . ,ym}, where n and m are

the lengths of X and Y , respectively. Suppose a local distance Dis(a,b) ∈ R is well defined for
all a ∈ X and b ∈ Y . Then the optimization target (minimum DTW distance of X and Y ) is:

MinD = min
P

K

∑
i=1

Dis(Xp1
i
,Yp2

i
) (5.1)

Where P = {(p1
1, p2

1), . . . ,(p1
K, p2

K)}, (5.2)

(p1
1, p2

1) = (1,1),(p1
K, p2

K) = (n,m) (5.3)

P is usually called the DTW path. p1
i and p2

i are the i-th point on the path, representing
indices in X and Y , respectively. Our target is to find a path that minimizes the accumulation
distance under some constraints.

Let us look at Figure 5.3 for a better understanding. Imagine there is a board with size
n∗m. Grid (i, j) of the board represents the local distance Dis(Xi,Yj). For convenience, denote
D(i, j) = Dis(Xi,Yj). The local distance can be anything, as long as it is meaningful in terms of
measuring the distance between elements in two sequences. For example, if X and Y are both
sequences of scalars, Dis(Xi,Yj) can be defined as |Xi −Yj|. If X and Y are both sequences of
vectors with the same dimension, Dis(Xi,Yj) cane be defined as the Euclid distance between Xi

and Yj.
Now our job is to find a path from (1,1) to (n,m) which minimizes the sum of all local

distances on it. But this problem is very trivial since we can put only two grids, (1,1) and (n,m)

in it. So we need to add some constraints for the path. For example, just like in Figure 5.3,
one grid can only be located at the right, top or right-top of its last. This kind of constraints is
called local constraints. Some commonly used are listed in Figure 5.4. Type (a) is used in the
example in Figure 5.3. Now the obtained path actually represents a best mapping in terms of
least difference.

Suppose the local constraint is type (a). Define f (i, j) to be the minimum accumulation
distance from (1,1) to (i, j), then the transition equation and the border conditions can be
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Fig. 5.3 An illustration of dynamic time wrapping.

expressed as:

f (i, j) =


min( f (i−1, j−1)+2d, f (i, j−1)+d, f (i−1, j)+d) , n ≥ i > 1,m ≥ j > 1

f (i−1, j)+d, i > 1, j = 1

f (i, j−1)+d, i = 1, j > 1

d, i = 1, j = 1

(5.4)

where D(i, j) is denoted as d.
This problem can be easily solved by dynamic programming. f (n,m) will be the minimum

distance from (0,0) to (1,1). Based on the choice of min, we could track which local path is
actually passed and recover the whole DTW path. Finally, the value of f (n,m) is the DTW
path for sequence X and Y under the local distance difinition Dis.

5.2.3 Apply DTW to shadowing speech

When applying DTW to score shadowing speech, we have three things to consider:

1. Element of sequence.

2. Local distance.

3. Local constraint.
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Fig. 5.4 Some commonly used local constraint in DTW.

To eliminate the speaker identity from the utterances, we decide to use senone posteriors
as the feature of each frame, i.e., the element of sequence. One another advantage of using
senone posteriors is that we can control the granularity. For example, a typical English speech
recognition system has about 3000 senones. We can change the amount by modifying the
strategy of the decision tree. If we want a very precise comparison, we can change the amount
to 5000 or even more. On the other hand, if we want a rough comparison, we can change the
amount to 1000 or less.

As for local distance, because the posteriors are vectors, we can use Euclid distance (ED)
to measure the difference of two posterior vectors. But since posteriors are also probabilities at
the same time (i.e., ∑i ai = 1), we have some other choices. Bhattacharyya distance (BD) and
Kullback–Leibler divergence (KL-divergence or KL-div) are widely used indices of measuring
the similarity of two probability distributions. Suppose a and b are two vectors satisfying
a,b ∈ Rn, ∑

n
i=1 ai = 1 and ∑

n
i=1 bi = 1, then we can express all three metrics as following:

DEUC(a,b) =
√

∑
i
(ai −bi)2 (5.5)

DBD(a,b) = − log

(
∑

i

√
aibi

)
(5.6)

DKLx(a,b) = ∑
i

ai log
(

ai

bi

)
. (5.7)

Note that both DEUC and DBD are symmetric for a and b, while DKL is not. However, DKL

would not change much if we swap a and b.
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The final problem is which local constraint to use. Because the learner’s pronunciation
can be either longer or shorter than the model utterance, we choose the conventional local
constraint to do our experiment, type (a).

At this time point, we are already able to compute DTW distance between model and
learners’ utterances. This approach does not require to know the transcription of the model
utterance. We further extend this approach for a larger application. See the next section.

5.2.4 Language-independent scoring using DTW

Before speaking of how to implement language-independency using DTW, let us begin with the
acoustic model. Usually, there are thousands of senones in a acoustic model and such a large
number of sound classes are prepared for posterior calculation. These senones can represent
much more kinds of sound classes than those defined in phonology. English and Japanese
are usually considered very different languages. English has 15 vowels while Japanese has
only five. So in English education in Japan, English vowels are often explained by referring
to the combination of five vowels. For example, English /ei/ is not found in the Japanese
vowel system but it can be approximately produced by intermediate Japanese vowel /e/ and
/i/. This means that English /ei/ could probably be found in a Japanese utterance saying /eiei/
because of co-articulation. More generally, the results of co-articulation, senones are capable
of representing phonemes partially of another language.

This is gives us a hint, that for the same sound segment, the posterior probability distri-
butions are similar in most languages over the world. Figure 5.5 gives an illustration of this
similarity. A correctly produced English vowel /ei/ will most likely have a beautiful distribution
in English model. That is, senones with /ei/ as their central phone have high probabilities while
others are not. Interestingly, Japanese acoustic model will give a similar distribution for the
same English /ei/, except that high probabilities go to senones with adjacent /e/ and /i/ in it.

This property helps with scoring shadowing speech with language independency. We can
score English shadowing speeches using Japanese, or any other acoustic model. “What’s the
point? Doesn’t the native English acoustic model give you the most precise result?” Someone
may ask. The answer is, yes, the native English model does estimate the English utterances the
best, but how about some language you have not even heard about? Some minor languages
do not have enough corpus to build a good acoustic model, and even if it had, there may be
difficulty to collect them and tune the model. Perform scoring on that language may consume
much time and money. However, with this new approach, their shadowing utterances can be
scored using English, Japanese or any other well-developed acoustic models, as long as the
model utterance is provided (which is probably true since this is shadowing).
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Fig. 5.5 An illustration of posterior distributions in both English and Japanese acoustic models
for English /ei/.

In later experiment, we will also compute Japanese posteriors of these English shadowing
speeches, and apply DTW to them. The result is expected to be a little worse than the one
based on English model.



Chapter 6

Experiment

6.1 Experiment settings

We prepared five acoustic models for the experiment:

• GMM_HTK.
GMM_HTK is a set of English phoneme GMM-HMMs trained with the WSJ (Wall
Street Journal) recipe [3] of HTK [2]. The training data includes both WSJ and TIMIT
corpus [5]. This model is used in the previous works.

• GMM_KAL.
GMM_KAL is a triphone GMM-HMM model trained with the WSJ recipe of Kaldi
Speech Recognition Toolkit [23]. This model is preliminary for the DNN model, since
all the alignments for training and feature extraction are done by it. Many normalization
and feature-space transformation techniques are adopted in this model.

• DNN_ENG.
DNN_ENG is a English DNN model which outputs senone (tied triphone state) posterior
probability, trained with the WSJ recipe of Kaldi Toolkit. The parameters are remained
default. There are about 3k senones in the DNN output layer.

• DNN_JP9K.
DNN_JP9K is a Japanese DNN model trained with the CSJ (Corpus of Spontaneous
Japanese) recipe of Kaldi Toolkit. The parameters are remained default, which result in
about 9k senones for the DNN output layer.

• DNN_JP3K.
DNN_JP3K is a Japanese DNN model trained with the CSJ (Corpus of Spontaneous
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Japanese) recipe of Kaldi Toolkit. It is almost identical to DNN_JP9K, except that the
leaf number of decision tree is limited, results in about 3k senones in the DNN output
layer.

Acoustic model configuration details are listed in Table 6.1. The configurations of DNN
models are listed in Table 6.2.

Table 6.1 Details of acoustic model configuration used in experiment.

Model Name Language Corpus #senones Input feature
GMM_HTK English WSJ+TIMIT 8000 MFCC+CMVN

GMM_KAL English WSJ 3458 MFCC+CMN+MLLT+fMLLR

DNN_ENG English WSJ 3458 MFCC+CMN+MLLT+fMLLR

DNN_JP9K Japanese CSJ 9429 MFCC+CMN+MLLT+fMLLR

DNN_JP3K Japanese CSJ 2856 MFCC+CMN+MLLT+fMLLR

Table 6.2 DNN configurations used in experiment.

Model Name DNN Structure Extra Train Method

DNN_ENG

Input:440-dim

Hidden:2048-dim+Sigmoid

Output:3386-dim+softmax

sMBR Stochastic-GD

DNN_JP9K

Input:1400-dim

Hidden:1905-dim+Sigmoid

Output:9429-dim+softmax

sMBR Stochastic-GD

DNN_JP3K

Input:1400-dim

Hidden:1905-dim+Sigmoid

Output:2856-dim+softmax

sMBR Stochastic-GD

Basically, GMM_HTK is trained for comparing results with our previous works. GMM_KAL
is the model generating alignments and input features for DNN models. DNN_ENG are used
to compute DNN-based GOP scores, and all of the DNN models are used to compute DTW
distances between learners’ and model utterances.

As for the collected corpus, since one learner had problems with his recording devices,
finally only 124 learners’ data is used.
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6.2 Results

6.2.1 GMM-based GOP scores

GMM-based GOP scores are computed using model GMM_HTK. The score is produced in
sentence level, so we have 124 ∗ 10 = 1240 scores (10 for each learner). These scores are
further merged into speaker level, and finally we obtained 124 scores (applied by log).

Figure 6.1a and Figure 6.1b show the plots where the Y-axis is the GMM-based GOP
score and the X-axis is learners’ TOEIC scores and speaker-level manual scores. Note that the
speaker-level manual scores are the sum of three assessing aspects (i.e., P+S+C) and averaged
by three scorers.

(a) The plot of GMM-based GOP scores and
TOEIC scores. CC=0.19.

(b) The plot of GMM-based GOP scores and
manual scores (P+S+C). CC=0.41.

Fig. 6.1 The results for GMM-based GOP scores.

The CCs between TOEIC scores and manual scores are both not high, although the one
with manual scores is a little better then TOEIC scores. The reason may be that the feature
used for GMM_HTK is very plain without much preprocessing, so it is not robust against noisy
speeches. Our corpus is most collected in CALL classrooms and home by students themselves,
so some noise is inevitable. This also gives us a hint that this mini-TOEIC test can hardly
reflect the true proficiency of shadowing learners.

6.2.2 DNN-based GOP scores

DNN-based GOP scores are computed using model DNN_ENG. The computation details are
described in Section 5.1.2.
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First we take a look at the correlation between speaker-level DNN-based GOP scores and
TOEIC scores. The result is in Figure 6.2a. As you can see, the CC is as low as 0.37, indicating
a weak correlation with TOEIC scores. On the other hand, the correlation between DNN-GOP
and manual scores (which is the sum of three aspects) is plotted in Figure 6.2b. The CC is
as high as 0.83, which is close to the inter-rating CC among three scorers (the best is 0.87).
Several conclusions can be made so far:

1. TOEIC scores are not suitable for this task. DNN-GOP is a much better indicator in
terms of correlation with manual scores (P+S+C) at least by these three scorers.

2. DNN-GOP with plenty of preprocessing transformations gives a very good result. The
CC is almost as high as those between manual scores from three scorers.

3. GMM-GOP did not work out well in current settings of experiment. The low CC=0.41 is
much lower than our expectation.

The reason why GMM-GOP did not work out well may be the noise as previously mentioned.
We would like to investigate the performance of GMM and DNN models under the same
condition, but we have faced some technical problems when implementing the GMM one.
Anyway, we remained this as a future work.

(a) The plot of DNN-based GOP scores and
TOEIC scores. CC=0.37.

(b) The plot of DNN-based GOP scores and
manual scores (P+S+C). CC=0.83.

Fig. 6.2 Plots for DNN-based GOP scores and TOEIC scores and manual scores.

To further investigate the relationships between DNN-GOP and three aspects of the man-
ual scores, we computed CCs for each of the aspect. The results are shown in Figure 6.3.
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Figure 6.3a, Figure 6.3b and Figure 6.3c are plotted graphs for phoneme, prosody and correct-
ness aspect, respectively. Among of them, the prosody score has the highest correlation with
DNN-GOP (CC=0.84).

(a) The plot of DNN-based
GOP scores and manual scores
(Phoneme). CC=0.72.

(b) The plot of DNN-based
GOP scores and manual scores
(Prosody). CC=0.84.

(c) The plot of DNN-based GOP
scores and manual scores (Cor-
rectness). CC=0.70.

Fig. 6.3 Plots for DNN-based GOP scores and three aspects of manual scores.

On the other hand, although the automatic estimation is usually from automatic scores
to manual scores, we performed a linear regression using phoneme, prosody and correctness
scores to estimate DNN-GOP in order to find the importance of each aspect. The analysis result
is:

DNN-GOP = 0.024P+0.072S+0.004C−0.0048 (6.1)

where P represents phoneme, S represents prosody and C represents correctness score.
We can easily tell that about 70% of the weights is on prosody aspect, while nearly none

weight goes to correctness aspect. This is consistent with the previous result that prosody
score has the highest correlation with DNN-GOP. This is actually not what we expected first
because the input feature used in acoustic models are all MFCCs. None of the prosodic features
like F0 are fed. The key reason for this may be the importance of stress in English. Stress
is categorized in prosody aspect, but represented by the power of spectrum, which is where
MFCCs come from. It seems that the three teachers all focused on the stress for prosodic aspect
in their scoring.

One another thing is that the correctness aspect contributes little to the DNN-GOP. The
reason may be that every learner did quite well in their forth recording in terms of understanding
the contents, resulting in high correctness scores for most learners. This makes this aspect less
discriminative in DNN-GOP estimation.
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6.2.3 DTW distance using native acoustic models

The next experiment is to investigate the relationship between DTW distances and manual
scores. Here, the DTW distances are computed using English acoustic model DNN_ENG,
which means the each dimension of posterior vector represents the probability for a senone in
English. Due to the unreliability of TOEIC scores (proved in previous experiments), we no
longer do the same computation for the TOEIC scores. Details of the computation process can
be found in Section 5.2.

We computed distances using all three kinds of local distances: Euclid distance (E, Equa-
tion 5.5), Bhattacharya distance (B, Equation 5.6), Kullback–Leibler divergence (K, Equa-
tion 5.7).

The results are shown in Figure 6.4. Note that different from DNN-GOP scores, distances
are the shorter, the better. So the CCs between DTW distances and manual scores are all
negative. We should focus on their absolute values. BD and KL-div based DTW distances
seem to work out very well, especially for BD (CC=−0.80), which has close performance to
DNN-GOP (CC=0.84). Again, we have to emphasize that, DTW distance computation does
not require any information about the language nor the transcription of shadowed utterances,
making it a more difficult task for DNN-GOP. Despite that, close performance is achieved
by using Bhattacharya distance. On the other hand, Euclid distance-based DTW distances
performed much worse comparing to BD and KL-div. This is probably because Euclid distance
is too general to consider the features of probability vectors.

(a) DTW distances (Euclid
distance) and manual scores
(P+S+C). CC=−0.42.

(b) DTW distances (Bhat-
tacharya distance) and manual
scores (P+S+C). CC=−0.80.

(c) DTW distances (KL-
divergence) and manual scores
(P+S+C). CC=−0.76.

Fig. 6.4 Plots for DTW distances and manual scores.

However, the above experiment forgot to take the duration of model utterances into account.
For example, which distance is larger if we have a 10s model utterance and an one-hour model
utterance? The answer is, even if the one-hour one is shadowed better, the effect of accumulated
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noise and errors would definitely larger than the 10s one due to the duration, which is not what
we expected. So we further normalized the DTW distances by the duration of their model
utterances. The results are shown in Figure 6.5. There are no significant changes in the CCs
(The one for Euclid distance is slightly better). But we will still normalize the DTW distances
in later experiments because it is more stable.

(a) Normalized DTW distances
(Euclid distance) and manual
scores (P+S+C). CC=−0.43.

(b) Normalized DTW dis-
tances (Bhattacharya distance)
and manual scores (P+S+C).
CC=−0.80.

(c) Normalized DTW distances
(KL-divergence) and manual
scores (P+S+C). CC=−0.76.

Fig. 6.5 Plots for normalized DTW distances and manual scores.

To investigate how these DTW distances are obtained, we print out the DTW paths for three
local distances in Figure 6.6. It can be clearly seen that, this is a good speaker and both BD and
KL-div tracks the mapping paths well. By contrast, EUC does not track the path well. We can
see many corners on its path, which means the two audio segments seem the same to the EUC
approach.

6.2.4 DTW distance using non-native acoustic models

Next we repeat the DTW distance computation under the same conditions of previous one. How-
ever, we changed the English acoustic model DNN_ENG into Japanese models DNN_JP9K and
DNN_JP3K. We believe that both Japanese models will generate similar results to DNN_ENG.
Someone may ask why Japanese models, but not French models or Chinese models. This is not
because our learners are from Japan. Actually, it is better to use acoustic models from a third
language so we can investigate the language independency more clearly. But unfortunately,
we have not collected the training or shadowing corpus from other languages, so we trained
Japanese models using CSJ instead. Still, we remain this as a future work.

We plotted two graphs of manual scores (P+S+C) and speaker-level DTW distances com-
puted using DNN_JP9K and DNN_JP3K. Since BD performs the best in previous experiments,
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Fig. 6.6 The DTW paths between one learner’s and model utterance.

we only adopted BD as the local distance. The distances are normalized by the durations of
their model utterances. Note that the only difference between DNN_JP9K and DNN_JP3K is
their amounts of senones.

The results are shown in Figure 6.7. Figure 6.7a is the result based on DNN_JP9K and
Figure 6.7b is based on DNN_JP3K. The one with fewer senones (about 3k) had much better
performance than the larger one (CC=−0.74 against CC=−0.54), which is surprising. There
may be two reasons for this result.

1. The performance of these two models. In our experiment, we ran some Japanese speech
recognition tasks to see the WERs (Word Error Rate) of these two Japanese models.
DNN_JP3K is slightly better DNN_JP9K, which means the former one can produce
posterior probabilities more precisely.

2. The granularity of assessment. Unlike native speakers, second-language learners usually
cannot handle the articulation very well. So using a very strict acoustic model may bot
be suitable in shadowing assessment. On the other hand, a loose model can take some
pronunciation errors in some degree, which is similar to manual scoring strategy.

The most important thing is, DNN_JP9K actually achieved a very close result to the one
with native acoustic model (CC=−0.80). This confirms our thoughts about the language
independency of this approach. The posterior distributions are still similar even in two very
different languages, English and Japanese.
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(a) Normalized DTW distances (DNN_JP9K)
and manual scores (P+S+C). CC=−0.54.

(b) Normalized DTW distances (DNN_JP3K)
and manual scores (P+S+C). CC=−0.74.

Fig. 6.7 The correlation between non-native based DTW distances and manual scores.

Table 6.3 Summarization of all results.

CC TOEIC P+S+C P S C
GMM-GOP 0.19 0.41 - - -

DNN-GOP 0.37 0.83 0.72 0.84 0.70

DTW-E - -0.43(-0.42) - - -

DTW-B - -0.80(-0.80) - - -

DTW-K - -0.76(-0.76) - - -

DTW-JPL - -0.54 - - -

DTW-JPS - -0.74 - - -

We also print out the DTW path based on DNN_JP9K and DNN_JP3K for the same
learner’s utterance in Figure 6.8. Although the path seems a little irregular at the end, it has
nearly the same path shape as the one in Figure 6.6. This confirms the effectiveness of the
language independency approach.

6.2.5 Summarization

We summarized all results in Table 6.3. Symbol explanation:

• CC. Correlation coefficient.

• TOEIC. Speaker-level TOEIC score.
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Fig. 6.8 The non-native model based DTW paths between one learner’s and model utterance.

• P. Speaker-level phoneme aspect score.

• S. Speaker-level prosody aspect score.

• C. Speaker-level correctness aspect score.

• P+S+C. Speaker-level sum score of phoneme, prosody and correctness.

• GMM-GOP. Speaker-level GMM-based GOP score.

• DNN-GOP. Speaker-level DNN-based GOP score.

• DTW-E. Speaker-level DTW distance based on DNN_ENG using Euclid distance as
local distance.

• DTW-B. Speaker-level DTW distance based on DNN_ENG using Bhattacharya distance
as local distance.

• DTW-B. Speaker-level DTW distance based on DNN_ENG using KL divergence as
local distance.

• DTW-JPL. Speaker-level DTW distance based on DNN_JP9K model using Bhattacharya
distance as local distance.
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• DTW-JPS. Speaker-level DTW distance based on DNN_JP3K model using Bhattacharya
distance as local distance.



Chapter 7

Conclusions and future works

7.1 Conclusions

In this thesis, we mainly aimed to: 1. improve the accuracy of shadowing speech scoring; 2.
find a language and transcription independent approach to perform shadowing speech scoring.

First, we collected English shadowing utterances from 125 college students in Japan. To
investigate the reliability of using TOEIC scores as the ground truth of learners’ shadowing
proficiencies, we manually scored each utterance in three aspects: phoneme, prosody and
correctness. The result showed that the correlation coefficient between speaker-level manual
scores and their TOEIC scores is as low as 0.48, which means TOEIC scores cannot represent
learners’ proficiencies well.

Our first approach is using GOP score based on DNN model. A significant improvement
of correlation coefficient with manual scores is seen comparing to traditional GMM-HMM
based GOP score. The second approach is using DTW distance between learner’s and model
utterances to assess. The merit is that the transcription of model utterance is no longer needed,
and the language of acoustic model could be different from the shadowing language. This
approach further allows scoring on expressive shadowing, which is not possible for the GOP
approach. The result shows that although the accuracy of DTW approaches using both native
and non-native language model drops down a little bit, it is still very close to the GOP approach.
Language-independent shadowing scoring is realized to some degree.

7.2 Future works

• Use the same input features for GMM and DNN models. In this work, GMM and DNN
models have different input features. They both take MFCCs at first, but the DNN one
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applied many feature-space transformations to make the features more robust. We would
like to make these conditions same, however it is difficult since they are trained by
different toolkits. In the future, we would like to train the models by a single toolkit to
make a fair comparison.

• Optimize the number of senones in DNN models. In this work, only one English DNN
and two Japanese DNNs with different amount of senones are investigated. The result
showed that the performances of these two Japanese DNN models are very different,
giving us an idea that there should be a DNN with the best granularity in terms of
maximizing the correlation with manual scores. We would like to find it by making the
number of senones variable in the future.

• Add an extra regression stage. In this work, the computed automatic scores are directly
used as the estimation of learner’s shadowing proficiency. It is reasonable to perform
another regression by introducing more features, such as word omission rate and silence
duration. [27] has adopted this technique to improve the accuracy of GMM-GOP scores.
We are planning to do the same things too in the future.
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