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Abstract

Recent commodity smartphones have biometric sensing capabilities, allowing their daily use
for authentication and identification. This increasing use of biometric systems motivates me
to design an opportunistic way to sense user’s additional physiological or behavioral data. I
define this concurrent physiological or behavioral data sensing during biometric authentication
or identification as dual-purpose biometrics. As an instance of dual-purpose biometrics, I
develop photoplethysmography (PPG) sensing during mobile fingerprint authentication, called
Auth ’n’ Scan. My system opportunistically extracts cardiovascular information, such as a
heart rate and its variability, while users perform phone unlock of a smartphone. To achieve
this sensing, my Auth ’n’ Scan system attaches four PPG units around a fingerprint sensor. The
system also performs noise removal and signal selection to accurately estimate cardiovascular
information. My system evaluations with 10 participants show that despite a little low precision
(a standard deviation of 3–7), estimation of heart rates with high accuracy (under a mean error
of 1) is possible from PPG data of five seconds and longer if their baseline information is
given. This thesis first introduces the background of my research, discusses the definition
of dual-purpose biometrics, and describes my research contributions. It then presents my
literature survey related to this research. In chapter 3–5, this thesis presents a principle of PPG,
the implementation of hardware and signal processing algorithm, and my system evaluation. I
also report the results of my system evaluations including the heart-related features estimation
and user-interview results. I discuss the feasibility of opportunistic PPG sensing in mobile
fingerprint authentication, and conclude with future research directions.



概要

スマートデバイスの普及により生体認証は日常的に使用できる技術となっている．

生体認証においては認証に必要な情報だけではなく，ユーザの健康に関する情報も

同時に取得できる可能性がある．このような生体認証と同時にユーザの生理学的あ

るいは行動に関するデータを取得するシステムを Dual-purpose biometricsと本研究で
は定義する．本論文では，Dual-purpose biometricsの一例として，指紋認証と同時に
指尖容積脈波を取得するシステム Auth ’n’ Scanを提案し，そのハードウェア・アル
ゴリズム開発とユーザ評価を行った．このシステムはユーザがスマートフォンで指

紋認証を行う際に，同時にその指から心拍数や心拍変動などの心臓に関する情報を

取得する．これを実現するため，Auth ’n’ Scanはスマートフォンの指紋認証センサ
の周囲に複数の指尖容積脈波センサと回路機構を備えている．Auth ’n’ Scanはこれ
ら複数のセンサから取得した信号からノイズを除去し，最も信頼できるチャネルを

選定した後，心臓に関する情報を推定する．10人の実験参加者に対してユーザ評価
を行なった結果，ユーザの平常時心拍数を利用し，かつ 5秒以上信号を取得できれ
ば高い精度（平均誤差 1未満）で心拍数を推定できることがわかった．本論文では
まず研究背景と Dual-purpose biometricsの定義，そして本研究が行なった貢献につい
て述べる．次に関連研究について詳しく述べ，本研究と既存研究の差異を明確化す

る．第 3章から第 5章においては PPGの原理，ハードウェアと信号処理アルゴリズ
ムの実装，そして評価実験の手順について論じる．その後，評価実験で得られたデ

ータを用いて，心臓に関する情報の推定結果やユーザスタディの結果について論じ

る．最後に指尖容積脈波を同時に取得する指紋認証システムの実現可能性と，今後

の研究課題について議論する．
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Chapter 1

Introduction

1.1 Background
Recent identification and authentication systems employ biometrics, physiological or behavior
data that are distinctive among individuals. Such biometric authentication has become
commodity in recent computer devices. For instance, it can allow smartphone users to unlock
their devices with fingerprints, reducing the effort for entering codes or passwords. Prior work
has also revealed that users positively received biometric authentication systems [6, 9]. A
report claims that users who own smartphones with a fingerprint authentication capability
unlock their devices 80 times a day through biometrics [5]. I believe that future ubiquitous and
mobile systems would further integrate biometric authentication/identification, encouraging
its use in a daily life.

This increasing use of biometric authentication motivates me to design an opportunistic
way to sense user’s additional physiological or behavioral data. For instance, when
users unlock a smartphone, a system can sense physiological data (e.g., vital information,
respiration or perspiration) besides fingerprints. Extracted data can benefit a wealth of
applications, including life-logging, personal informatics, and healthcare monitoring. I define
this concurrent physiological or behavioral data sensing during biometric authentication or
identification as dual-purpose biometrics. Figure 1.1 illustrates a conceptual comparison
between existing biometric authentication/identification systems and dual-purpose biometrics.

Dual-purpose biometrics can offer unique benefits to existing biometrics systems.
Additional applications enabled by dual-purpose biometrics may encourage more use of
biometric authentication/identification systems. As dual-purpose biometrics systems perform
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Existing systems	

Dual-purpose Biometrics 

Biometrics	

Security purpose only	

Physiological or behavioral data collection 
in addition to security purposes	

Fig. 1.1 A concept illustration of dual-purpose biometrics. Dual-purpose biometrics
enables concurrent physiological or behavioral sensing during biometric authentication or
identification. This sensing mechanism offers an opportunistic and unobtrusive way to acquire
healthcare information as well as encourages the use of authentication/identification systems
through additional applications enabled.

sensing during authentication or identification, users would not need to perform separate
explicit data recording or wear additional devices. This may lead to improved compliance
of data collection.

In this work, I demonstrate a system that senses user’s cardiovascular data during
fingerprint authentication on a smartphone as an instance of my dual-purpose biometrics
concept. My system, called Auth ’n’ Scan, utilizes custom-made hardware containing multiple
photoplethysmography (PPG) sensors. I design them to surround the fingerprint sensor on a
smartphone. In this manner, users can record their cardiovascular data during authentication1,
and do not need to perform separate explicit measurements. Because my system enables
sensing at different times of the day, it can obtain information that otherwise is difficult to
infer, such as heart rate changes due to the circadian rhythm [38] and distribution transition in
a Poincaré plot (discussed in Section 6.3).

Besides the proposal of dual-purpose biometrics, the main objective of this work is
to demonstrate the feasibility of concurrent sensing of fingerprints for authentication and

1In this work, I mainly refer to authentication scenarios though my concept and system can be applied for
identification systems.
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cardiovascular data for healthcare monitoring applications. When users place fingers for
unlocking smartphones with their fingerprints for at least five seconds, my system extracts
short-term cardiovascular features, such as a heart rate and its variability, with PPG sensors.
In addition, the Auth ’n’ Scan system reconstructs longer-term features (e.g., a feature in a
Poincaré plot) from a series of fragmented measurements if the sensing duration of ten seconds
is allowed. Although my current prototype needs at least five seconds of recording for accurate
heart rate estimation, the majority of participants in my user study agreed that it is acceptable
at the exchange of the benefit by Auth ’n’ Scan.

1.2 Dual-purpose Biometrics
Auth ’n’ Scan is an instance of dual-purpose biometrics, my security system concept
proposal. Dual-purpose biometrics represents an identification or authentication system which
simultaneously senses users’ physiological or behavioral data for additional purposes, such as
healthcare monitoring and life-logging (Figure 1.1). Users frequently engage in activities that
require authentication in a daily life (e.g., unlocking a smartphone, opening an office’s door,
and placing an order in an online system). Various biometrics authentication systems become
available in these scenarios. Dual-purpose biometrics exploits these increasing biometrics
authentication interactions as sensing opportunities. In this work, I demonstrate cardiovascular
sensing in mobile fingerprint authentication for phone unlock as an example of dual-purpose
biometrics. Future work should explore a broader area of dual-purpose biometrics (e.g.,
skin moisture sensing in authentication with fingers or hands; heart rate sensing in face
authentication; and throat disorder detection in voice-based authentication).

Dual-purpose biometrics aims to encourage the use of authentication systems by providing
additional applications it enables. Sasse and Flechais discussed the role of security systems
through the lens of human factor analysis [39]. In a goal-oriented process, there are two
types of tasks: production tasks (tasks that are necessary to complete to achieve the goal) and
supporting tasks (tasks that are not directly essential to achieve the goal but would provide
value or useful functionality for a production task). This analysis can explain why users
often circumvent or disable security systems. According to Sasse and Flechais’ argument,
security is a supporting task. Although security provides protection value, it does not directly
contribute to a production task or offer merits immediately perceivable to users. Thus, security
systems may become a burden, resulting in its abandonment. In dual-purpose biometrics
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systems, authentication can become a production task for the other purposes. For example,
a phone unlock would become an interaction to record heart rate information for a healthcare
application. In this manner, users can obtain more direct benefits from security systems besides
protection. I hope that dual-purpose biometrics would contribute to further persuasion and
penetration of daily security system use.

Dual-purpose biometrics is also regarded as another form of unobtrusive sensing for
daily healthcare monitoring. Some existing healthcare monitoring systems involve explicit
measurements of physiological data or user activities (e.g., using a blood pressure monitor
or making manual annotations upon smoking). Prior work has addressed this issue in the
context of experience sampling [21]. Such measurement burden could also degrade user
compliance and data reliability in healthcare monitoring applications. One possible solution is
unobtrusive sensing, a technology which performs sensing while users are engaging in a main
task [26]. Although unobtrusive sensing is promising to reduce user’s burden, Korhonen et al.
discussed the following three challenges: 1) a requirement for user identification; 2) limitations
on continuous monitoring; and 3) constrained sensing capabilities of physiological data. My
dual-purpose biometrics uniquely solves the first and third issues. As dual-purpose biometrics
concurrently performs authentication and sensing, user identification can be immediately
given under the user’s permission. Upon biometric authentication, users are asked to
steadily expose part of the body. A system thus has a sufficient opportunity to acquire
various physiological data (e.g., cardiovascular information in the Auth ’n’ Scan system).
Dual-purpose biometrics broadens the field of unobtrusive sensing, and encourages further
research in creative exploitation of biometric authentication.

Although it is beyond the scope of this work, dual-purpose biometrics can also contribute
to multimodal biometrics [36]. Multimodal biometrics means using multiple physiological
or behavioral traits to improve security robustness. Dual-purpose biometrics is different
in enabling additional applications instead of reinforcing security. But future dual-purpose
biometrics systems could offer unique security enhancement (e.g., ECG data can be another
evidence for user authentication [37]).



1.3 Contributions 5

1.3 Contributions
The contributions of this work are as follows:

My proposal of the dual-purpose biometrics concept
I introduce the concept of dual-purpose biometrics. As summarized in Figure 1.1,
dual-purpose biometrics systems enable both authentication/identification and
unobtrusive sensing for additional applications. This capability is beneficial for security
systems (e.g., encouraging more use of them) as well as sensing (e.g., unobtrusively
acquiring users’ data).

Hardware for concurrent fingerprint and cardiovascular sensing on a smartphone
I develop custom hardware to attach four PPG units to the periphery of a fingerprint
sensor on a smartphone. My informal evaluation confirms that my hardware design is
robust to different finger placement and ambient light conditions.

Cardiovascular feature inference from short-term PPG data
My algorithm selects a signal among four PPG channels that can best describe
cardiovascular information. It then extracts heart rates and peak-to-peak intervals from
that signal. In addition, my algorithm attempts to reconstruct a Poincaré plot, comprised
of pairs of two adjacent PPIs, from a set of fragmented measurements.

System and user evaluations of Auth ’n’ Scan
I conducted system evaluations with 10 healthy adult participants. My results achieved
accurate heart rate estimation from data in the duration of 5 seconds or longer if the
baseline heart rate data of each participant is given. More specifically, the estimation
error was within 1 and its standard deviation was between 3 and 7. In addition, I
confirm that reconstruction of Poincaré plots is possible for some of my participants
though a sufficient number of adjacent PPI pairs are necessary. My participants agreed
that a 5-second sensing duration was acceptable because Auth ’n’ Scan offers heart rate
information.



Chapter 2

Related Work

2.1 Fingerprint Sensing Technology
A fingerprint is a pattern formed by friction ridges observed in epidermis. As fingerprint
patterns are considered to be distinctive and immutable, they are widely used in authentication.
Fingerprints can be found in several locations of a human body, such as a palm and foot,
but those in fingertips are the most common part for security system use. Although prior
work has studied various matching methods, a typical approach is to use feature points called
minutiae [22]. Minutiae refer to ridge endings and bifurcations in a fingerprint pattern. A
typical fingerprint image contains 20–70 minutiae points [22]. Based on the location and
orientation of each minutiae, a matching algorithm calculates similarity between a given
fingerprint and those in a database, and performs identification (i.e., determines who this
user is) or authentication (i.e., judges whether this user is really the person who she claims
to be) [35].

A broad range of fingerprint sensing approaches exists: optical, capacitive, RF-based (radio
frequency), pressure-based, thermal, and ultrasonic sensors [34]. An RF-based method is
considered to be the most accurate and reliable [42]. An RF fingerprint sensor consists of
a 2D array of tiny antennas each of which produces reading of the depth of a point. Because of
the ability to capture fingerprint images beneath the skin, the RF array-based fingerprint sensor
technology is robust to different skin conditions, environments, and even minor finger surface
contamination [42].

Since Apple integrated this type of sensors into iPhone 5S in 2013, fingerprint
authentication on smartphones becomes common. De Luca et al. showed that one of the main
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decision factors to enable biometrics on smartphones is its usability [9]. Another study reported
that people prefer fingerprint authentication to face recognition or traditional password-based
approaches for phone unlocking because of its usability [6]. According to Apple’s report in
2016, 89% owners of iPhones and iPads with a fingerprint authentication capability regularly
used the Touch ID service [5]. This report also showed that they unlocked their devices with
Touch ID roughly 80 times a day on average. Recent research has demonstrated broader
applications of mobile fingerprint authentication. Holz et al. developed on-demand biometrics,
an alternative way to log into an online service that replaces textual passwords with fingerprint
authentication on a user’s mobile phone [19]. Moreover, many companies have decided to join
FIDO Alliance [14], which is an industry consortium promoting the transition from passwords
to stronger authentication including fingerprint authentication. This is not only because they
have the social responsibility to provide more usable security systems, but also because they
want to contribute to economic loss prevention due to security incidents (e.g., password leakage
and account sharing). I believe that fingerprint authentication will be even more common in
various devices and systems. Although the present demonstration of Auth ’n’ Scan is on a
smartphone, my contributions are conceptually applicable to other form-factors.

2.2 Fingerprint-based Interaction
HCI (Human-Computer Interaction) research has explored several methods to exploit
fingerprints to enable novel interfaces. An early example of fingerprint recognition used for
interaction techniques was a fingerprint user interface demonstrated by Sugiura et al. [44]. A
contact to their device executed a command uniquely assigned to each finger. Their system
utilized a fingerprint authentication mechanism to distinguish user’s fingers. RidgePad used
fingerprint recognition to improve touch accuracy by identifying a user and estimating her
finger posture [17]. Based on the information, it can estimate the user perceived input point
which is a little displaced from the actual contact location. In this manner, RidgePad obtained
1.8 times higher accuracy than the conventional touch input. Fiberio is a tabletop touchscreen
system that authenticates users during touch interaction with their fingerprints [18]. They used
a fiber optic plate which offers both specular reflection and diffuse transmission in order to
capture fingerprints and display images simultaneously. This system enables a wide range of
tabletop interactions with user identification or authentication.
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Prior research has also utilized the specific characteristics of an RF-based fingerprint
sensor for novel applications. Hessar et al. presented an on-body transmission method
with smartphones that leveraged a drive signal from the metal edge of the fingerprint
sensor [16]. They made modifications to be able to control the drive signal to transmit
secret information propagating through human body. In this manner, smartphones can
establish secure communication channels with peripherals, such as doorknobs (door unlock
with fingerprint authentication) and glucose sensors (sending secret information to wearables).

Although my current main scenario is fingerprint authentication on smartphones,
integration of a similar concept to dual-purpose biometrics into the systems above could
be possible. For instance, a future FUI [44] could sense cardiovascular data every time a
user executes a command. My work contributes to demonstrating the feasibility of gathering
physiological data through a short-time interaction (i.e., authentication in this project).

2.3 Unobtrusive Cardiovascular Sensing
Prior work has investigated unobtrusive approaches to sense user’s cardiovascular data. Kang
et al. developed a mobile electrocardiogram (ECG) monitoring system on a smartphone, called
Sinabro [24]. They attached multiple electrodes at the front and back of a smartphone. Sinabro
measures the user’s ECG when she makes contacts with her left and right body parts. Griffiths
et al. integrated an ECG-based heart sensing technique to a chair [15]. Health Chair acquires
ECG through electrodes attached to the armrests. One major limitation of ECG sensing is that
it requires multiple physical contacts with bare skin. Griffiths et al. found that Health Chair was
able to extract user’s heart rate information for even shorter than 1% of typical office hours (i.e.,
8 hours) in their study. Sinabro requires users to hold a device with both hands, and some users
may prefer such bimanual possessing [11]. However, one-handed interaction is also common
in mobile touch-screen devices [25]. Thus, sensing opportunities can greatly vary depending
on their device holding preferences. My Auth ’n’ Scan system allows cardiovascular sensing
during fingerprint authentication, and can co-exist with Sinabro.

Prior research has examined alternative approaches to cardiovascular sensing. One method
is to use reflection of radio frequency waves. Adib et al. developed Vital-Radio, which
can monitor breathing and heart rates of multiple people without physical contacts with the
sensor [2]. Their system can detect respiration and heartbeat changes from signals reflected
on users’ bodies. BodyScan is a wearable system that recognizes various user’s activities and
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status including heart rates [13]. It consists of a wristwatch-like radio transmitter and receiver
with a holster. The system uses the intensity of radio signals to infer user’s heart rates.

Research has also investigated vision-based approaches to detecting heart rates.
Mauka-Mauka used an Webcam attached to a worker’s laptop and confirmed the feasibility
of unobtrusive heart rate sensing in a workplace environment [43]. Poh et al. developed a
Webcam built-in mirror which detects a user’s heart rate while she is looking [33]. Wu et
al.’s image processing method, called Eulerian Video, can also extract heart rates and possibly
other cardiovascular information from images of a person taken by an unmodified camera [47].
Although these vision-basedmethods are very promising, image capturing can be inappropriate
or even prohibited at public contexts. Thus, non-vision approaches can be more appropriate
for mobile cardiovascular sensing.

Researchers have explored the use of inertial sensors for mobile cardiovascular sensing.
Aly et al. developed a respiratory rate estimation system, called Zephyr, using accelerometer
and gyroscope sensors of a smartphone [4]. When a user places her smartphone onto her chest,
Zephyr captures the chest movements caused by breathing. Mohamed et al. expanded this
method to enable heart rate estimation [29]. Their system, HeartSense, also captures users’
chest movements using an off-the-shelf smartphone, but it only uses gyroscope sensor data
based on observations on heart motion mechanisms. These methods are robust and accurate,
and do not require any additional hardware equipment. However, measurements with these
systems require users to perform explicit interaction (i.e., users have to be still and keep their
smartphone on their chests).

PPG is also an optical approach though image capture and processing are not necessary in
general. Another advantage of PPG sensors is that their form-factor can be small (e.g., one
pair of an LED and photo-detector). Chigira et al. integrated a PPG sensor into a tumbler [8].
It can detect a user’s heart rate during beverage consumption. Poh et al. and Holz et al.
demonstrated integration of PPG sensors into an earphone [32] and glasses [20], respectively.
These devices enable continuous cardiovascular sensing while users are wearing them. These
projects demonstrated a potential of PPG sensors. But PPG sensors are susceptible to ambient
light, and use scenarios in the projects above are limited to dark conditions. For example, a
user’s hand holding the tumbler blocks PPG sensors from ambient light [8]. Effect by ambient
light is negligible inside an ear canal [32]. A PPG sensor is a promising approach, but its use
under a normal light condition is challenging.



2.4 Summary 10

2.4 Summary
I discussed the literature about fingerprint-related technology and interfaces as well as
unobtrusive cardiovascular sensing. Although much research on these areas exists, one of my
contributions is to exploit fingerprint authentication for phone unlock to perform cardiovascular
sensing through PPG. My work is similar to Chigira et al.’s project in terms of exploiting user’s
frequent activities as a sensing opportunity.

As I already discussed in the previous section, my dual-purpose biometrics concept
can address two of the major challenges in unobtrusive sensing. This work contributes to
broadening the field of unobtrusive sensing and applications of biometric technologies.

Exploiting phone unlock for data collection has also been investigated. Truong et al.
demonstrated an interface to replace an unlock slider with swipe gestures for completing
microtasks [45]. This interface design allows smartphone users to participate in lightweight
data collection about themselves and their contexts. Vaish et al. explored a similar concept for
microtask crowdsourcing [46]. Similar to these projects, Auth ’n’ Scan exploits phone unlock
for physiological sensing, which would benefit a variety of healthcare applications.



Chapter 3

Photoplethysmography (PPG)

I use photoplethysmography (PPG) in the current Auth ’n’ Scan prototype. PPG requires
physical contacts, but it can be acquired from a single sensing location unlike ECG.
Furthermore, its hardware can be simple and easily downsized. These characteristics are
desirable in my main use scenario (i.e., phone unlock with fingerprints), and I decided to use
PPG in this work though other technologies can be considered in future work. In this section,
I explain its principle and physiological information derived from PPG signals.

3.1 Sensing Principle
PPG is an opto-electrical and non-invasive measurement technique that can detect blood
volume changes in the microvascular bed of tissue [3]. A simple construction of a PPG sensor
comprises an LED and photo-detector. A periphery of the body, such as a fingertip or earlobe,
is a commonly-used contact point for PPG. Light from the LED is partially reflected on the
skin, and captured by the photo-detector. When blood volume changes occur, the amount of
light absorption varies. The photo-detector then detects this variability as an electrical signal.

One of the most common medical applications of PPG is pulse oximetry which can
monitor oxygen saturation as well as heart rates in a non-invasive manner. Oxyhemoglobin
and deoxyhemoglobin exhibit different absorption performance of red and infrared light. A
pulse oximeter utilizes this phenomenon to determine the proportion of hemoglobin bound to
oxygen [7]. I used CMS-50E, an FDA-approved fingertip pulse oximeter, to obtain ground
truth PPG signals.
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PPI

Peak
Trough

Fig. 3.1 An example of a photoplethysmography signal with CMS-50E. The output can take a
discretized value between 0 and 127. Peaks, troughs, and a PPI are annotated.

Figure 3.1 shows a typical waveform gained through CMS-50E with an adult who does not
have any major cardiovascular disease. As shown in this figure, a PPG waveform in general
demonstrates periodical repetitions. Features in the PPG waveform are denoted as follows:

Peak A local maximum in one cycle.

Trough A local minimum in one cycle.

Peak-to-peak interval (PPI) A time interval between two adjacent peaks.

3.2 Physiological Information Derived from PPG Signals
From raw PPG signals, I can obtain the following physiological information beneficial for
personal healthcare applications.

Heart Rate It is derived from the number of peaks per minute. It is one of the most
frequently-used cardiovascular features.

Heart rate variability (HRV) It is calculated as the variance of PPIs. It is regarded as a
useful feature for assessing an autonomic nervous system.

Poincaré plot It is a plot of two adjacent PPI values. The distribution can be indicative of
heart dysfunction [23].
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Acceleration plethysmogram It is the second derivative of PPG signals. It can indicate
distensibility of the peripheral artery.

Respiration rate It is derived from the frequency of an envelope wave of PPG signals. It is
another common cardiovascular feature. Figure 3.2 illustrates how the user’s respiratory
rate can be derived from a PPG signal.
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Fig. 3.2 A respiration rate can be derived from the frequency of the envelope of a PPG signal.

Heart rate variability (HRV) is traditionally derived from ECG, but medical research shows
that HRV is reliably estimated from PPG [41]. HRV is a well-used feature for assessment of
autonomic nervous system dysfunction, but this information can lead to additional observations
on cardiovascular activities through a Poincaré plot. In this plot, each point represents
two adjacent PPI values. Figure 3.3 illustrates an example Poincaré plot generated from a
five-minute long PPG signal with a healthy adult user. A Poincaré plot with healthy users
normally demonstrates a distribution that can be approximated as 2D Gaussian [23]. But
patients with heart dysfunction can exhibit skewed or dispersed distributions. In general,
the creation of a Poincaré plot requires sufficiently-long sampling of PPI, generally for five
minutes. Such long sampling is unfortunately impossible in my target application because
users would place their fingers for phone unlock only for a couple of seconds. This work
examines feasibility to reconstruct a Poincaré plot from a set of short PPG signals.

In a Poincaré plot, 𝑆𝐷1/𝑆𝐷2 is considered to be one of themost important features. 𝑆𝐷1 is
the standard deviation of the differences of two adjacent PPIs. 𝑆𝐷2 is the root of the subtract of
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(𝑆𝐷1)2 from the variance of PPIs. 𝑆𝐷1/𝑆𝐷2 is a ratio of these two values. Medical research
shows that this metric varies for people with heart or cardiovascular disease [1], and I examine
the feasibility of Auth ’n’ Scan to extract this feature.
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Fig. 3.3 A Poincaré plot generated from PPI data. The shape of the plot can be indicative of a
person’s heart functionality.



Chapter 4

Implementation

4.1 Sensor Hardware
To instantiate the concept of dual-purpose biometrics in mobile fingerprint authentication,
I developed a custom PPG sensor circuit. My circuit is designed to place LEDs and
photo-detectors around the fingerprint sensor in a commercially available smartphone. I had
the four design considerations in my hardware.

DC-A. Co-existence with a fingerprint sensor:
My system performs physiological sensing during fingerprint authentication. As
the main application still lies in authentication, my hardware should not degrade or
compromise its performance and accuracy. Existing PPG sensors are designed for users
to place fingers at the center, but this would not be feasible in my use case. Thus, my
hardware should sense PPG from the side of a user’s finger.

DC-B. Sensing under a normal light condition:
Many PPG sensors function well under sufficiently dark conditions created by finger
occlusion or with covers. However, achieving such a dark condition is difficult in typical
mobile fingerprint authentication scenarios. My sensors, thus, have to function even
under a normal light condition.

DC-C. Noise and individual difference robustness:
Users may put their fingers on a fingerprint sensor differently. For instance, users may
use a thumb because it allows one-handed interaction, but others may prefer using an
index finger. Such a variation can occur even within the same user (e.g., a person may
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switch to another thumb for unlock). Even if people use the same finger, placement may
be different in each authentication trial. My hardware thus should be able to acquire PPG
signals regardless of the user’s finger placement.

DC-D. Instant sensing activation upon touch:
Because authentication with fingerprint takes only a couple of seconds, my sensor should
acquire PPG signals immediately after users place fingers.

Prior work investigated different PPG sensor hardware designs for accurate signal
acquisition [3]. However, no circuit design has achieved consensus among the research
community. I decided to utilize the PulseSensorAmped [30] hardware for my sensor design.
It is an open source PPG sensor project, and its hardware design achieves reliable signal
acquisition even under ambient light noise. This hardware includes a differential amplifier with
an op-amp, and a raw signal is normalized at 2.5 V and amplified. However, my preliminary
investigation found that PPG signals from PulseSensorAmped were saturated for the first few
seconds of sensing. When users place a finger on the sensor, a drastic brightness change occurs,
which is the main cause of this signal saturation. This is undesirable because a sensing duration
in my use scenario is limited.

To avoid saturation, I added two Zener diodes (AZ23C3V3-7-F, 3.3V) to the feedback loop
of the negative input channel of an op-amp. Figure 4.1 shows the circuit schematic of my PPG
sensor. With these Zener diodes, the amplification rate of this circuit becomes zero when the
output voltage would become beyond the range of 0–5 V otherwise. In this manner, my circuit
achieves an appropriate gain even when drastic changes in light intensity occur. In addition,
I maintain the robustness that the original PulseSensorAmped has. Figure 4.2 illustrates an
example observation of PPG signals obtained through PulseSensorAmped and my sensor. I
also added a capacitive sensor to the surface of the sensor. This sensor enables instant activation
of the PPG sensors. I measured the activation time with an oscilloscope, which turned out to
be approximately 300 μsecs. Thus, my hardware design satisfies the design considerations of
DC-B and DC-D.
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Fig. 4.1 The circuit schematic of my PPG sensor unit. I introduce Zener diodes into negative
feedback of an op-amp to avoid signal saturation.
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Fig. 4.2 A comparison of an output from my sensor (red), that from the original
PulseSensorAmped (green), and the derivative of a PPG signal obtained from CMS-50E
(yellow). Note that PulseSensorAmped and a PPG sensing unit in my circuit board return
a discretized value between 0 and 1023. The plot of PulseSensorAmped includes negative
values caused by a band-pass filter.
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Fig. 4.3 A comparison between an output from my sensor (red) and the derivative of a PPG
signal obtained from CMS-50E (yellow). The two signals resemble well.

As my circuit and PulseSensorAmped include differential operations, the appearance of
the signal from my sensor is different from a wave shown in Figure 3.1. Figure 4.3 shows
a comparison between my sensor output and the first derivative of a signal obtained from
CMS-50E. I did not conduct a formal quantitative analysis on the similarity between two
signals. However, my preliminary examination confirmed that peaks in at least one of PPG
signals correspond well with those in the ground truth. I report accuracy performance of heart
rates and HRV from PPG signals in a later section.

Figure 4.4 (C, D) shows the circuit board of my sensor. This circuit board has a space
at the top center to fit to the fingerprint sensor on a smartphone (Nexus 5X). The fingerprint
sensor on Nexus 5X is attached to the backside of the device. For DC-A and DC-C, I place
four PPG sensing units to surround the fingerprint sensor instead of installation at a single
particular location. Figure 4.4 (A, B) shows an installation example of my hardware to Nexus
5X. In my current prototype, the sensor is connected to an external computer though more
direct integration into a smartphone is possible.

Figure 4.5 illustrates an example of four PPG signals with my sensor. In this example,
Channel #4 demonstrates the most similar waveform to the ground truth (the first derivative of
CMS-50E signals). A channel which exhibits the most desirable signal is different depending
on how users place a finger. My signal processing module automatically selects such a signal
as well as extracts features from the raw data, which I explain in the later section.
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Fig. 4.4MyAuth ’n’ Scan prototype hardware. (A)My current prototype is designed for Nexus
5X. (B) The back view of the device. The circuit board places four PPG sensing units around
the fingerprint sensor. (C) The back of my circuit. (D) The front of my circuit (without the
touch sensor). The LEDs and photo-detectors are designed to be exposed.
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Fig. 4.5An example of four PPG signals with my sensor and the first derivative of CMS-50E’s
output. In this example, the Channel #4 (light blue) demonstrates clear peaks that correspond
to those in the ground truth signal (yellow) well.



4.2 Informal Hardware Evaluation 20

4.2 Informal Hardware Evaluation
I conducted two informal evaluations to validate the robustness of my sensor against ambient
noise and finger placement. I used CMS-50E to obtain ground truth data in each experiment.

4.2.1 Ambient light robustness
I recorded PPG signals with my sensor for 10 seconds under the 5 different ambient light
conditions. The five conditions included two outdoor and three indoor settings, and the light
intensity ranged from 0 to 17280 lux.

Figure 4.6 shows experimental settings and acquired PPG signals. Signals for the first
1500 ms are removed due to large amplitude fluctuation caused by finger contacts as explained
in Figure 4.5. My informal test revealed that at least one channel in the sensor demonstrates
clear peaks that correspond to the ground truth signal (in yellow) in all conditions. Even under
the brightest ambient light condition (the daytime outdoor setting), the peaks in the signal in
Channel #2 (in green) match well to the ground truth. I thus concluded that my sensors are
robust enough under various ambient light conditions.

4.2.2 Finger placement robustness
I also tested how different finger placement could impact on PPG signals. Similar to the
previous informal evaluation, I recorded PPG signals for 10 seconds with 5 different finger
directions illustrated in Figure 4.7a. I confirmed that the smartphone could be successfully
unlocked by fingerprint authentication at all directions. Measurements were performed under
a normal indoor light condition.

Figure 4.7 (b∼f) shows PPG signals acquired under each condition. Again, at least one
channel in the sensor shows clear peaks that correspond to the ground truth signal in all
conditions. In my current prototype with Nexus 5X, Direction B and D (figure 4.7c and 4.7e)
are the most likely finger placement for unlocking with fingerprints. As finger directions vary,
the channels which exhibit clear peaks also change (Channel #1 and #2 for Direction B and
Channel #3 and #4 for Direction D). This informal study thus validates my sensor design and
confirms the robustness against different finger placement.
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(a) The daytime outside condition (17280 lux). (b) The evening outside condition (2390 lux).

(c) The bright indoor condition (with both
sunlight and room light; 621 lux).

(d) The shadowed indoor condition (with sunlight
through a window only; 18 lux).

(e) The dark indoor condition (0 lux).

Fig. 4.6 PPG signals under five different ambient light conditions. At least one channel in the
sensor demonstrates clear peaks that correspond to the ground truth signal (in yellow) in all
conditions.



4.2 Informal Hardware Evaluation 22

(a) The five finger directions tested.
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(b) Direction A.
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(c) Direction B.

425
430
435
440
445
450
455
460
465

channel 1

430
435
440
445
450
455
460

channel 2

430
435
440
445
450
455
460
465

channel 3

200
300
400
500
600
700
800

channel 4

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

derivative of cms-50e

Measurement Time [ms]

A
D

C

(d) Direction C.
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(e) Direction D.

441.0
441.5
442.0
442.5
443.0
443.5
444.0
444.5
445.0

channel 1

438
440
442
444
446
448
450
452

channel 2

441
442
443
444
445
446
447
448
449

channel 3

434
436
438
440
442
444
446
448

channel 4

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

derivative of cms-50e

Measurement Time [ms]

A
D

C

(f) Direction E.

Fig. 4.7 PPG signals under different finger placement conditions. (a): I tested five directions.
(b) to (f): Similar to the robustness test against different ambient light, the sensor captured
clear peaks at least one channel.
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4.3 Frequency-domain Signal Analysis
Although my hardware enables immediate PPG sensing when finger contacts are made,
acquired data may have some noise as seen in Figure 4.2. In addition, a sensing duration in my
target use scenario is limited to at most a few of seconds unlike conventional PPG systems. I
thus need novel PPG signal processing; more specifically, my algorithm has to accurately infer
a heart rate and HRV given four few-second PPG signals.

I first conducted a signal analysis using features in the frequency to estimate heart rate from
PPG signals [3]. More specifically, I executed the following procedure.

1. Perform a Discrete Fourier Transform (DFT) on each channel of PPG signals with the
rectangular window function (w(𝑡) = 1, if 0 ≤ 𝑡 ≤ 10).

2. Detect peaks from the frequency spectra.
3. Select the largest amplitude peak between 0.5 and 3 Hz.
4. Calculate an estimated heart rate as 60 × the frequency of the peak.

Figure 4.8 illustrates an example of the frequency domain spectra for 10-second PPG
signals. Plots on the left side show four PPG signals with my sensor and a reference signal with
CMS-50E. The graph next to each PPG signal plot displays its frequency spectrum. Inside the
right figures, I annotated the estimated heart rate of each signal as well as the reference value
acquired from CMS-50E. Although channel #4 demonstrates the most similar waveform to the
reference signal, a large difference of roughly 7 beats occur between the reference heart rate
(67.3) and estimated heart rate (74.4) obtained in the frequency domain. For comparison, my
heart rate estimation method (explained later) estimated 66.7.

The imprecise estimation is due to the frequency resolution in the spectra. The frequency
resolution of a DFT is defined as below:

Δ𝑓 = 𝑓𝑠
𝑁 = 1

𝑇
where 𝑓𝑠 is the sampling frequency, 𝑁 is the number of data points, and 𝑇 is the sampling
time. From this equation, I can derive the relationship among the sampling time, frequency
resolution, and heart rate resolution, summarized in Table 4.1.

This table means that precise estimation would become difficult with shorter sampling
time. Therefore, I conclude that frequency domain analysis is unsuitable for my purpose as my
system would need to estimate accurate heart rate in shorter seconds.
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Fig. 4.8An example of PPG signals and frequency spectra. Left figures show four PPG signals
with my sensor and a reference signal with CMS-50E. Right figures show the corresponding
frequency domain signals.

Table 4.1 Relationship among the sampling time, frequency resolution, and heart rate
resolution.

Sampling time (𝑇 ) [sec] Frequency resolution (Δ𝑓 ) [Hz] Heart rate resolution [beats]
10 0.1 6
5 0.2 12
3 0.33 20
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4.4 Heart Rate Estimation Algorithm
The previous section revealed that an approach using frequency spectra is challenging. I thus
determined to investigate heart rate estimation methods using time-domain characteristics.

To be informed of the algorithm design, I conducted a pilot study with five people. I asked
them to record PPG data with my hardware from the index finger of their dominant hands.
After close examinations on the collected data, I obtained two major findings: 1) at least one
of the four channels provided clear peaks and good correspondence with the ground truth;
2) such a channel was consistent during sensing. In this example of Figure 4.5, Channel #4
exhibits the clearest signal, but the other channels show noisy signals. The channel which offers
the clearest signal varies depending on how users place fingers. But my hardware captures
seemingly reliable signals at least one of the channels in most cases. In addition, the most
desirable channel does not change within one sensing trial. This is because users do not move
fingers or hands; otherwise, authentication may fail. Thus, my algorithm needs to choose the
most desirable channel which leads to accurate inference of heart rates and HRV.

To the end, it executes two kinds of processing within and across the channels: 1) finding
the earliest point from when PPG gives most plausible results of heart rates and PPIs within
each channel; and 2) choosing a channel that shows most peak points and plausible PPI data.
In the following explanation, I suppose that the system has obtained four PPG signals for the
duration of 𝑇 seconds. I also denote the signal data of Channel #𝑖 between time of 𝑡1 and 𝑡2 as
𝐷𝑖[𝑡1, 𝑡2] (𝑖 = 1, 2, 3, 4).

The algorithm first determines the earliest point (𝜏 𝑖) from which PPG signals provides
plausible heart rates and PPI information in Channel #𝑖. My algorithm applies a bandpass
filter between 0.5 and 3 Hz to a raw signal in each channel. This frequency range corresponds
to a heart rate between 30 and 180 per minute. The algorithm assumes that major noise caused
by initial finger placement occurs at most within the first half (between 0 and 𝑇 /2 seconds)
of the entire signals. With this assumption, it extracts 𝐷𝑖[𝑡, 𝑇 ] by varying 𝑡 from 0 to 𝑇 /2 by
200 ms (i.e., 𝑡 ∈ {0, 200, 400, ..., 𝑇 /2}).

For each 𝐷𝑖[𝑡, 𝑇 ], it then performs peak detection with the Automatic Peak Detection in
Noisy Periodic and Quasi-Periodic Signals method [40]. The algorithm calculates the number
of the detected peaks (𝑃 𝑖(𝑡)) as well as the mean and standard deviation of the observed PPIs. I
then derive a relative standard deviation of the observed PPIs, defined as a ratio of the standard
deviation over the mean, denoted as 𝐶𝑉 𝑖

𝑝𝑝𝑖(𝑡). I also calculate the relative standard deviation
of all the peak height values in 𝐷𝑖[𝑡, 𝑇 ], denoted as 𝐶𝑉 𝑖

𝑝ℎ(𝑡).
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After statistics for all 𝐷𝑖[𝑡, 𝑇 ] are calculated, the algorithm next searches 𝜏 𝑖 using 𝑃 𝑖(𝑡),
𝐶𝑉 𝑖

𝑝𝑝𝑖(𝑡) and 𝐶𝑉 𝑖
𝑝ℎ(𝑡) for each 𝑡. The algorithm calculates themean and standard deviation from

all values of 𝐶𝑉 𝑖
𝑝𝑝𝑖(𝑡). It then removes all 𝑡 such that 𝐶𝑉 𝑖

𝑝𝑝𝑖(𝑡) is beyond one standard deviation
from the mean. As this filtering adaptively changes its threshold, I expect that the system could
accommodate data obtained from patients with heart or cardiovascular disease. Similarly, the
algorithm removes all 𝑡 such that 𝐶𝑉 𝑖

𝑝ℎ(𝑡) is beyond one standard deviation from the mean. A
large spike is often observed at the time when a user has made a contact on the fingerprint
sensor. This filtering aims to remove signals which contain such drastic fluctuations.

In the remaining set of 𝑡, the algorithm further selects 𝑡 with which 𝐷𝑖[𝑡, 𝑇 ] contained the
largest number of peaks. The largest value among such a set of 𝑡 is chosen as 𝜏 𝑖. This is
intended to avoid fluctuations that occurred near the beginning of sensing (caused by a finger
contact). After choosing 𝜏 𝑖 for each channel, the algorithm selects a channel which exhibits
the lowest value of 𝐶𝑉 𝑖

𝑝𝑝𝑖(𝜏 𝑖) × 𝐶𝑉 𝑖
𝑝ℎ(𝜏 𝑖)/𝑃 𝑖

𝜏𝑖 (i.e., a channel which contains many peaks, and
stable PPI and peak height).



Chapter 5

System and User Evaluation

To quantitatively evaluate the performance of Auth ’n’ Scan, I conducted cardiovascular
data collection with 10 participants. The following experimental protocol was approved by
Research Ethics Committee in School of Engineering, The University of Tokyo (Approval
number: KE17-21).

5.1 Data Collection Procedure
At the beginning of the data collection, participants were asked to visit our laboratory at the day
when theywere available throughout the daytime. After they signed a consent form, I explained
the protocol and apparatus to be used. I instructed the participants to see the experimenter every
one hour (except the lunch time), eight times in total. For instance, if data collection started
at 9 am, the eight sessions occurred at 9:00, 10:00, 11:00, 13:00, 14:00, 15:00, 16:00, and
17:00. All participants started the first session at least at 10:30 so that I collected data during
the daytime. HRV is known to have some variability throughout the day [48]. Therefore, this
session design is important for me to acquire PPG data at different time of the day.

In each session, participants were asked to perform up to two of the following data
collection tasks. During data collection tasks, the participants were seated. Table 5.1 illustrates
the design of the eight sessions.
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Table 5.1 Tasks in each data collection session.

Data collection Tasks
Session #1 ShortNormal × 6 times

LongNormal × 1 time
Session #2 ShortNormal × 6 times
Session #3 ShortHigh × 6 times
Session #4 ShortNormal × 6 times
Session #5 ShortNormal × 6 times
Session #6 ShortHigh × 6 times
Session #7 ShortNormal × 6 times
Session #8 ShortNormal × 6 times

LongNormal × 1 time

ShortNormal Participants unlocked a smartphone equipped with Auth ’n’ Scan with their
dominant hand, and kept holding fingers for 10 seconds. They also wore CMS-50E on
another finger on the non-dominant hand. This data was used for evaluating sensing
durations for accurate cardiovascular data inference and reconstructing Poincaré plots. I
also recorded if unlock was successful in each trial.

LongNormal Participants attached CMS-50E to a finger on their dominant hand, and recorded
PPG for five minutes. This data was used to create ground truth Poincaré plots.

ShortHigh This is the same task as ShortNormal except that participants engaged in
lightweight physical exercise (e.g., climbing up and down stairs) before data collection.
This simulated a situation in which users have higher heart rates than normal.

I stored all sensor data for later analysis. Before starting the first session, the experimenter
registered the fingerprint of each participant’s index finger. All sessions were conducted in an
office under a normal indoor light condition.

After completing the last session, they were invited to provide subjective impressions about
the Auth ’n’ Scan system. I first let the participants experience the Auth ’n’ Scan system with
sensing duration of five and ten seconds. I then conducted a short semi-structured interview
to deepen understanding of their Likert scale question responses. None of my participants was
native in English. I thus conducted interviews in Japanese and translated quotes to English as
faithfully as possible for the report in this thesis.
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5.2 Participants
I recruited 10 participants (8male, Pm1–Pm8; 2 female, Pf1 and Pf2; 22.9 years old on average;
7 right-handed) from my institute for my data collection. Table 5.2 shows the average heart
rate for each participant at the beginning of ShortNormal and ShortHigh tasks. None of them
claimed to have any known cardiovascular disease, and regularly engaged in intense physical
training. All participants were offered approximately 25 USD in a local currency at the end of
the data collection.

Table 5.2 Average ground truth heart rates at the beginning of ShortNormal and ShortHigh
tasks. I used an pulse oximeter (CMS-50E) to obtain these ground truth heart rates.

Participant ShortNormal ShortHigh
Pf1 69.8 90.6
Pf2 77.4 100.4
Pm1 69.7 67.5
Pm2 65.9 75.1
Pm3 71.0 117.2
Pm4 70.8 120.6
Pm5 66.8 92.0
Pm6 63.0 95.7
Pm7 79.8 99.8
Pm8 66.3 94.6



Chapter 6

Results

6.1 CMS-50E Heart Rate Data Validation
I obtained 360 and 120 PPG signal data samples in total for the ShortNormal and ShortHigh
tasks, respectively. I first created cardiovascular features from the ground truth signals.
Although CMS-50E provides its estimated heart rates, I found that those data exhibited
non-negligible fluctuations particularly at the beginning of measurements. This fluctuation
affected later heart rate measurements for a relatively long time. Figure 6.1 shows one example
measurement observed in my experiment. CMS-50E seems to record a heart rate value
every second. However, a log file produced by its accompanying software does not include
timestamps, and I was not able to quantitatively validate how much the sampling rate was and
how consistent it was. As shown in Figure 6.1, my informal examination found that 20–40
samples were necessary for stable heart rate measurements (which roughly corresponds to
20–40 seconds). In my ShortNormal and ShortHigh tasks, the sensing duration was up to 10
seconds to make each session as short as possible. However, this means that heart rate values
provided by CMS-50E may not be stable or accurate in first several trials. I thus decided to
examine the raw PPG signal from CMS-50E and extract the heart rate with my algorithm to
create ground truth data.

I conducted a comparison to validate whether my algorithm with CMS-50E PPG signal
data offered accurate heart rate estimation. In each trial and participant, I had roughly 80
seconds of a PPG signal data from CMS-50E because she was asked to keep placing a finger
of the non-dominant hand during a session. I assumed that the participant’s heart rate would
not drastically change throughout the session, and thus I used the average of last 20 heart rate
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Fig. 6.1 Typical erroneous heart rate measurements in CMS-50E. Note that the sensor seems
to record a heart rate approximately every second though no quantitative evidence is available.
As shown in these two plots, it can take time to obtain stable heart rate measurements even if
a person is sitting at a desk.

samples CMS-50E reports as a reference (𝐻𝑅𝑟). I then executed my algorithm on PPG signal
data from CMS-50E and estimated heart rates (𝐻𝑅𝑒) for my comparison against the reference
values.

Figure 6.2 shows the plot of 𝐻𝑅𝑟 and 𝐻𝑅𝑒. I conducted a linear regression analysis, and
the result yielded to a line of 𝐻𝑅𝑟 = 0.987×𝐻𝑅𝑒 +2.069 with 𝑅2 = 0.92. As the goodness of
fit was high, I concluded that my estimation was sufficient to reliably convert 𝐻𝑅𝑒 to 𝐻𝑅𝑟. In
subsequent analysis, I calculated 𝐻𝑅𝑟 given 𝐻𝑅𝑒 extracted from a PPG signal with CMS-50E
by using the regression formula above, and regarded it as ground truth heart rate values.

6.2 Heart Rate Estimation
I examined the tradeoff between the sensing duration and accuracy of estimated cardiovascular
features. To this end, I created signals with eight different durations (i.e., 𝑇 ∈
{3, 4, 5, 6, 7, 8, 9, 10}) from original data, and execute my algorithm. I removed clear outliers
where the ground truth signals were not reliable. The outliers met at least one of the following
criteria: 1) the detected heart rate in ground truth data was above 160; 2) the detected heart
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Fig. 6.2 A plot of the reference and estimated heart rate values using CMS-50E. The reference
heart rate was the average of the last 20 recording of heart rate values directly produced by
CMS-50E. The estimated heart rate is a value my algorithm extracted from the raw CMS-50E
PPG signal.

rate in ground truth data was 0; and 3) the standard deviation of PPIs in ground truth data was
over 200. As a result, 29 data points (about 6%) were excluded.

I considered five different contexts for heart rate estimation: 1) Both ShortNormal and
ShortHigh data (without outliers); 2) ShortNormal data only; 3) ShortHigh data only; and 4)
ShortNormal data only with the baseline heart rate information for each participant given; and
5) ShortHigh data only with the baseline. The fourth and fifth conditions are considered as a
situation where users would perform baseline measurements similar before starting to use the
system. Because fingerprint authentication requires registration before its use, such baseline
measurements are plausible. I used the average value of the heart rates detected from the
ground truth ShortNormal data for the baseline heart rate estimation. I assumed that heart rates
in ShortNormal should be within ± 20 from this normal-condition value (e.g., if a participant
had an average heart rate of 60 under a normal condition, estimation below 40 or above 80
would be discarded). After light exercise, heart rates become faster than in the normal context.
I thus performed similar filtering for the fifth condition by ignoring data whose estimation was
beyond ± 20 from the addition of 20 to normal-condition values.

Table 6.1 shows the average differences between the ground truth and estimated heart rates
under the five conditions. As expected, a longer duration resulted in higher estimation accuracy.
For example, my estimation error can be up to 1.7 even without baseline heart rate information
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Table 6.1 The mean differences of the estimated heart rates from the ground truth data. A
positive value represents over estimation. The values in parentheses represent the standard
deviations.

Duration (𝑇 ) [sec] Without the baseline heart rate information
ShortNormal and ShortHigh ShortNormal ShortHigh

10 1.37 ( 13.3 ) 1.69 ( 13.3 ) 0.42 ( 13.1 )
9 1.72 ( 14.1 ) 2.30 ( 13.7 ) 0.03 ( 15.0 )
8 3.66 ( 18.3 ) 4.90 ( 17.2 ) -0.03 ( 20.6 )
7 6.50 ( 22.5 ) 8.51 ( 23.0 ) 0.56 ( 19.7 )
6 11.5 ( 25.7 ) 12.5 ( 25.5 ) 8.68 ( 26.0 )
5 16.1 ( 30.5 ) 17.2 ( 30.5 ) 12.9 ( 30.4 )
4 30.2 ( 34.2 ) 33.7 ( 34.4 ) 19.9 ( 31.3 )
3 40.2 ( 35.4 ) 44.8 ( 35.4 ) 26.8 ( 31.6 )

Duration (𝑇 ) [sec] With the baseline heart rate information
ShortNormal ShortHigh

10 -0.92 ( 2.93 ) 1.09 ( 7.73 )
9 -0.69 ( 3.07 ) -0.87 ( 7.47 )
8 -0.39 ( 3.92 ) 1.57 ( 6.59 )
7 -0.79 ( 3.90 ) 1.45 ( 7.84 )
6 0.01 ( 5.69 ) 5.75 ( 15.6 )
5 0.44 ( 6.89 ) 5.96 ( 15.3 )
4 1.76 ( 9.81 ) 6.40 ( 16.2 )
3 4.14 ( 7.96 ) 9.55 ( 18.1 )

under 𝑇=10 seconds. However, the standard deviations were relatively large even under the
conditions of 𝑇=10. As 𝑇 got shorter, the estimation became further less precise. This result
indicates that heart rate estimation without baseline information is challenging.

On the other hand, my estimation was accurate with baseline heart rate information. Even
in the case of 𝑇=5 seconds, the average difference from the ground truth data was under 1
although the standard deviation was 6.9. In a shorter sensing duration, the average difference
did not change greatly but the standard deviation became much larger. The results in the
sensing duration of three seconds seemingly showed decent performance. However, I note
that many data samples were filtered out in this case. Therefore, I concluded that the best 𝑇 in
my experiment was five seconds.

Figure 6.3 and 6.4 show a visual comparison of scatter plots between the ground truth
and estimated heart rates for three durations (3, 5, and 10 seconds) with and without baseline
heart rate information. This comparison clearly illustrates the positive effect of the baseline
heart rate information. As shown in Figure 6.4, filtering successfully maintained many data
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Fig. 6.3A scatter plot of heart rate estimation fromShortNormal data without the baseline heart
rate information. As the sensing duration becomes shorter, more of erroneous data samples
are observed.
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Fig. 6.4 A scatter plot of heart rate estimation from ShortNormal data with the baseline heart
rate information. Compared to Figure 6.3, erroneous data samples are successfully removed.

samples that are highly correlated with the ground truth data. This successful filtering resulted
in greatly improved accuracy and precision on heart rate estimation.

My results also revealed that accuracy of heart rate estimation was not largely different
between ShortNormal and ShortHigh under the absence of baseline heart rate information.
However, this result differed if the baseline heart rate information was available. The accuracy
was improved in both settings, but the standard deviations were much larger with ShortHigh
data than ShortNormal. This suggests that heart rate sensing after light exercise is challenging
though this work shows a potential.
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6.3 Poincaré Plot Feature Estimation
I examined how accurately I can obtain features in Poincaré plots by reconstructing them
from ShortNormal data. I first investigated how many PPIs can be extracted given 𝑇 . As a
PPI requires two peaks, the necessary sensing duration would be longer than for heart rate
estimation. Table 6.2 shows the mean number of extracted PPIs across different 𝑇 . In the
heart rate estimation, 𝑇=5 was the best; however, this value would result in a limited number
of PPI data points. To examine the best estimation performance of Poincaré reconstruction, I
decided to set 𝑇=10 in this part of my evaluations.

Table 6.2 The mean PPI data points that were able to be extracted in different sensing duration
𝑇 . The values in parentheses represent the standard deviations. In later analysis on Poincaré
reconstruction, I used 𝑇=10 as it provided a sufficient number of samples.

Duration (𝑇 ) [sec] Mean # of PPI data points
10 135.5 (16.8)
9 100.7 (16.3)
8 70.4 (11.9)
7 45.7 (10.9)
6 26.3 (6.39)
5 11.8 (6.79)
4 1.90 (1.64)
3 0.20 (0.40)

I evaluated differences of 𝑆𝐷1/𝑆𝐷2 between the ground truth signal and ShortNormal
data with 𝑇=10. Figure 6.5 and 6.6 illustrate these differences across all participants. As HRV
data can vary throughout the day, I compared estimated 𝑆𝐷1/𝑆𝐷2 from all ShortNormal data
for each participant with her LongNormal data gathered in the first and last sessions separately.
These plots suggest that estimation of 𝑆𝐷1/𝑆𝐷2 was fairly accurate for four participants (Pm3,
Pm6, Pm7, and Pm8) though not all.

Figure 6.7 shows the Poincaré plots created with the LongNormal and ShortNormal data for
Pm6. In his case, the two Poincaré plots produced with the two LongNormal data were similar
(the left and center plots in Figure 6.7). As a result, reconstruction from his ShortNormal data
also yielded to a small difference in 𝑆𝐷1/𝑆𝐷2.

Figure 6.8 shows the Poincaré plots created with the LongNormal and ShortNormal data
for Pm1. His Poincaré plots produced with the two LongNormal data showed different
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Fig. 6.5 Differences of 𝑆𝐷1/𝑆𝐷2 in Poincaré plots between all ShortNormal data and
LongNormal of the first session.
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Fig. 6.6 Differences of 𝑆𝐷1/𝑆𝐷2 in Poincaré plots between all ShortNormal data and
LongNormal of the last session.

distributions (the left and center plots in Figure 6.8). The plots moved toward the top right
as it became later of the day. This tendency was also observed in the reconstructed Poincaré
plot with his ShortNormal data (the right plot in Figure 6.8). This may be one reason for
inaccurate estimation of 𝑆𝐷1/𝑆𝐷2. A future algorithm can be time-sensitive to obtain more
accurate reconstruction (e.g., using only data gathered in a particular time period).

In conclusion, although individual differences need to be considered, reconstruction of
Poincaré plots from a set of fragmented data can be possible if a sensing duration was long
enough (e.g., 10 seconds).
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6.4 Acceleration Plethysmogram Feature Estimation
I also examined whether I could acquire acceleration plethysmogram features from the signals
of my sensors. Figure 6.9 shows an example of acceleration plethysmogram, which is the
second derivative of a PPG signal. An early systolic positive and negative wave are called
a-wave and b-wave, respectively. The ratio of amplitudes of b-wave to a-wave (b/a ratio) is
positively correlated to the risk of cardiovascular heart disease [12]. I examined how accurately
my algorithm can estimate this ratio. I used the average value of the ratios over the selected
channel’s time segment chosen by my algorithm.

0.0 0.5 1.0 1.5 2.0

Measurement Time [s]

0.06

0.04

0.02

0.00

0.02

0.04

a-wave

b-wave

Fig. 6.9An example of acceleration plethysmogram signals. The signal is the second derivative
of PPG signals. A-waves and b-waves are annotated. I used the ratio of heights of b-wave to
a-wave as a feature of acceleration plethysmogram signals.

Figure 6.10 illustrates a scatter plot of b/a ratio estimation created from the ShortNormal
data with the baseline data (𝑇=10). I conducted a linear regression analysis, and I could not
see almost any relationship between the b/a ratio of CMS-50E and Auth ’n’ Scan (𝑅2 = 0.023).
The plot suggests that the current prototype of Auth ’n’ Scan cannot accurately infer b/a ratios.
In order to investigate why accurate estimation was difficult, I compared the difference of b/a
ratio to the absolute difference of the heart rate (Auth ’n’ Scan - CMS-50E). Figure 6.11 shows
the scatter plot of the comparison. Even when my system was able to accurately estimate a
heart rate, a b/a ratio failed to be inferred. A b/a ratio is vulnerable to even small noise. Such
noise in original signals can become non-negligible for estimation of b/a ratios.
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Fig. 6.10A scatter plot of b/a ratio estimation
from ShortNormal with the baseline data. No
clear relationship was observed between the
reference and estimated b/a ratios.
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Fig. 6.11 A scatter plot between the
difference of a b/a ratio to the error of heart
rate estimation. Estimation of b/a ratios was
imprecise even for the cases where heart rate
inference was precise.

Figure 6.12 shows an example that I was able to perform good b/a ratio estimation from
Pm8 data. In this example, the derived acceleration signal (right figure, blue) was clear and
similar to the reference acceleration signal (right figure, yellow). The estimated b/a ratio (1.41)
was also close to the reference ratio (1.39). However, my result suggests that precise b/a ratio
estimation is challenging in the current prototype.
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Fig. 6.12 An example of b/a ratio estimation (data from Pm8). Left figures show PPG signals
acquired with my sensors and CMS-50E. Right figures show acceleration plethysmograms. In
this example, the estimated b/a ratio (1.41) was very close to the reference (1.39).

6.5 Fingerprint Authentication Success Rate
I also examined how the Auth ’n’ Scan hardware can impact on the performance of unlocking
with fingerprint authentication. All participants were invited to come back for this part of
the study in another day. In each trial, the participants were asked to unlock the phone with
their fingerprints. Each participant performed 48 trials with and without the Auth ’n’ Scan
hardware. I defined a trial in which participants were able to unlock a phone as a success.
Table 6.3 shows the result of unlock success rates with and without Auth ’n’ Scan. The mean
unlock success rate with Auth ’n’ Scan was the same (96.9%) though the standard deviations
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were different (2.46 and 4.20 for with and without Auth ’n’ Scan, respectively). I did not
observe clear differences in the handedness and gender (right-handed: 96.7% (𝑆𝐷=2.65);
left-handed 96.7% (𝑆𝐷=2.41); male: 97.4% (𝑆𝐷=1.85); and female: 94.8% (𝑆𝐷=4.42)).
I ran mixed effect linear regression against the following factors: Condition (1: with and 0:
without Auth ’n’ Scan); Gender (1: male and 0: female); and Handedness (1: right- and 0:
left-handed). None of the coefficients for the three factors were significant. The estimated
coefficients for Condition, Gender, and Handedness were 0.00 (SE: 1.58), -0.73 (SE: 2.21),
and -0.21 (SE: 1.94), respectively. Overall, the accuracies were high in both conditions, and I
did not see clear degradation on authentication by introducing Auth ’n’ Scan.

Table 6.3 Mean unlock success rate comparison. The values in parentheses represent the
standard deviations.

Participants With Auth ’n’ Scan Without Auth ’n’ Scan
All 96.9% (2.46) 96.9% (4.20)

Right-handed 96.7% (2.65) 97.0% (4.79)
Left-handed 97.2% (2.41) 96.5% (3.18)

Male 97.4% (1.85) 96.1% (4.38)
Female 94.8% (4.42) 100% (0)

6.6 Subjective Results
Before the semi-structured interview, I asked each participant to respond to the five 7-point
Likert scale questions in Table 6.4.

6.6.1 Acceptability of Auth ’n’ Scan
As shown in Table 6.4, my participants expressed their interests in Auth ’n’ Scan for everyday
use. Comments from my participants were in line with this result.

It’s not like I want to know health information by wearing wearable devices, but I would
want to record it if I can by routine interaction [on a smartphone]. [Pf2]

They also appreciated the unobtrusiveness of sensing by Auth ’n’ Scan.

I would easily give up if I have to do recording by myself. But a system like this would
be easy to use because it automatically collects information. [Pm1]
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Table 6.4 Questions and responses about subjective impressions on Auth ’n’ Scan.

Question Median Quartile Mode Max Min
As a dual-purpose biometrics system, how
much would you like to use Auth ’n’ Scan in a
real life? (1: do not want to use at all – 7: want
to use it every day)

7 6.25 (1st)
7 (3rd) 7 7 5

How acceptable would it be to wait for 5
seconds when you use fingerprint
authentication? (1: definitely unacceptable –
7: definitely acceptable)

5.5 4.25 (1st)
6 (3rd) 6 7 3

How acceptable would it be to wait for 10
seconds when you use fingerprint
authentication? (1: definitely unacceptable –
7: definitely acceptable)

2 2 (1st)
3.75 (3rd) 2 6 1

How acceptable did you think the interference
by my hardware was? (1: definitely
unacceptable – 7: definitely acceptable)

5.5 4.25 (1st)
6 (3rd) 6 7 3

How acceptable would it be to monitor your
cardiovascular information with Auth ’n’ Scan
from the perspective of privacy? (1: definitely
unacceptable – 7: definitely acceptable)

7 7 (1st)
7 (3rd) 7 7 7

6.6.2 Acceptable sensing duration
My system evaluation found that Auth ’n’ Scan would need five seconds for accurate heart
rate estimation. The responses from my participants generally showed that this duration was
acceptable. My qualitative results also corroborated with this result.

I didn’t feel (5 seconds) was that long. I don’t want to wait when I am in a rush, but I
don’t mind either because it’s just a little long. [Pm3]

Fingerprint authentication does not respond quickly with my finger anyway. So five
seconds don’t matter to me. [Pm2]

However, two of the participants (Pm1 and Pm6) expressed that five seconds were slightly
unacceptable. Furthermore, when the sensing duration became ten seconds, my participants
mostly agreed that it was not acceptable. With this duration, they felt that sensing became
rather obtrusive. These results suggest that the sensing duration of five seconds is acceptable
though a shorter duration would further improve the acceptability of Auth ’n’ Scan.
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6.6.3 Perceived interference by hardware
As shown in Table 6.4, my participants did not feel that the sensor board strongly interfered
with their fingerprint authentication. This result also positively supports my concept. Three of
the participants, though, felt a little discomfort due to the thickness of the hardware (2.3 mm
thick in the current prototype). However, as I showed in Section 6.5, the installation of the
hardware did not significantly degrade the authentication performance.

6.6.4 Privacy concerns
I obtained unanimous strong agreement from the participants that recording cardiovascular
information with the Auth ’n’ Scan does not raise privacy concerns. Representative reasons
were: heart rate information cannot be directly used for identification (3 participants); heart
rate information is not sensitive data (3 participants); and it is acceptable as long as data are
securely kept (2 participants). Existing mobile apps can also collect heart rate information
and potentially more intimate physiological data. My participants thus did not have strong
reluctance for heart rate sensing with Auth ’n’ Scan.



Chapter 7

Discussion and Limitation

7.1 Discussion
My results on the heart rate estimation found that inference was accurate when baseline heart
rate information is available though its precision needs improvements. In particular, a sensing
duration of and above five seconds can lead to accurate heart rate estimation. Such baseline
measurements are feasible when users are asked to register their fingerprints before the use
of an authentication feature. Because my hardware performs PPG sensing from the side of
a finger unlike existing systems, accurate heart rate estimation is challenging. In addition, I
conducted my evaluations under a normal light condition. My work, thus, still offers unique
contributions for heart rate estimation with a limited sensing duration.

My evaluations also revealed that the sensing duration should be at least five seconds with
my current prototype. This is longer than time users would normally spend for unmodified
fingerprint authentication. However, subjective responses frommy participants confirmed that
the sensing duration of five seconds was acceptable. Their quotes suggested that this positive
response was mainly because my system does not require separate explicit measurements of
heart rates. Future work should investigate how to improve the acceptability of the system
besides shortening the sensing duration. A future system, for example, could offer a quick
way to opt in and out opportunistic PPG sensing by pressure-sensitive contacts. When users
make a contact with pressure, the systemwould not execute sensing and simply unlock a phone.
Otherwise, it would perform PPG sensing for five seconds (and even longer if users are willing)
and execute phone unlock. I admit that future work should further investigate how to shorten
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the sensing duration. But my work demonstrates sufficient feasibility of opportunistic PPG
sensing during fingerprint authentication.

The results confirmed that heart rate estimation becomes unreliable without baseline
information. Although the performance degradation was expectable, my results showed its
strong effect. In particular, standard deviations of estimated heart rates were large; in most
cases without the baseline, they were over ten. Possible factors may have caused this large
variance. In some trials, finger placement may not have been close enough and PPG sensing
became noisy. I also observed that participants unintentionally performed observable motions,
causing large fluctuations in PPG signals (e.g., adjusting their holding of the device). Such
motions occurred regardless of the presence of the Auth ’n’ Scan hardware, and could have
contributed to similar authentication failure rates. Without the baseline heart rate information,
my algorithm cannot remove outliers caused by the factors above. This led to large performance
degradation.

My results revealed that heart rate estimation often becomes inaccurate after participants
took light exercise. One possible reason for this phenomenon is that jittering of the hand and
arm holding the device was observable, potentially caused by harder respiration. Smartphones
can easily distinguish whether a person has engaged in light exercise with inertial sensors [27].
Thus, a future system can ignore samples after exercise or perform necessary adjustment on
estimated heart rates.

I also examined the feasibility of reconstructing Poincaré plots from a set of fragmented
PPI values extracted from my sensor data (𝑇=10). The results showed that it can be possible,
but future work should examine improvements which handle variability observed over time.
As I briefly discussed in the result section, a time-sensitive algorithm may help. A future
system could encourage users to unlock a device if enough data samples are necessary for a
short period (e.g., deliberately introducing a notification about minor events when users may
feel boredom [31]). Future systems should investigate how to exploit user’s interruptability
for more frequent data collection as well as improve my algorithm in order to obtain reliable
estimation results.

My quantitative examinations also confirmed that integration of Auth ’n’ Scan did not
degrade fingerprint authentication performance. As none of my participants owned the same
smartphone used in Auth ’n’ Scan (i.e., Nexus 5X), they did not have prior experience with its
particular fingerprint sensor. Some participants also commented that they often could not find
finger sensor location precisely because it is on the back of the device. In my tasks, participants
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were instructed not to re-adjust their finger placement even if they failed to unlock. Thus, my
results could be considered as one of the worst performance cases. Nevertheless, the results
showed comparable success unlock rates regardless of the presence of the Auth ’n’ Scan sensor.
I concluded that Auth ’n’ Scan did not greatly diminish authentication accuracy upon phone
unlock in my experiment.

Subjective responses from my participants also confirmed positive aspects of the current
Auth ’n’ Scan prototype. Despite the bulkiness of the prototype, the participants did
not feel strong discomfort. As future systems may employ thinner hardware or more
direct integration into a smartphone, physical interference caused by the hardware could be
minimized. The participants unanimously agreed that collecting cardiovascular information
through Auth ’n’ Scan would not create strong privacy concerns. This is an encouraging result
for Auth ’n’ Scan and a larger set of dual-purpose biometrics systems. Although additional
user studies would be necessary to investigate social acceptability and privacy concerns in a
realistic setting, this work demonstrates a potential of the viability of Auth ’n’ Scan.

7.2 Limitation
My results suggest that opportunistic PPG sensing during fingerprint authentication on a
smartphone is feasible. I now discuss several limitations of this work for clarifying its
contributions and possible future research.

I employed a naïve heuristics with baseline heart rate information to remove noisy data.
Using built-in sensors, smartphones can sense activities which lead to different levels of heart
rates (e.g., sitting, walking, and running). However, users may exhibit different frequencies of
carrying smartphones [10, 28]. Thus, an assumption that Auth ’n’ Scan can adjust heart rate
inference using built-in sensors may not hold for some users. Future work should investigate
other methods for intelligently calibrating baseline heart rates.

I examined the performance of opportunistic PPG acquisition during fingerprint
authentication on Nexus 5X, and the results may change with other smartphones. In particular,
the fingerprint sensor in Nexus 5X is on the backside of the device, designed to be interacted
using an index finger. However, other devices have fingerprint sensors on the front side,
allowing users to interact with a thumb (e.g., an iPhone). A similar hardware design is
conceptually applicable to other devices, but its performance should be carefully re-examined.
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This work demonstrates opportunistic PPG sensing in a smartphone, and my demonstration
can be extended to other fingerprint authentication scenarios. For instance, a fingerprint sensor
installed into an office door can perform PPG sensing when an employee is unlocking it. In
such a context, more direct integration of PPG sensing into a fingerprint sensor is possible.
However, regardless of user context and sensor architecture, users would steadily hold fingers
on top of a sensor. Thus, future work can explore a similar idea to this work in other contexts
and my results would offer reference performance information.

My system evaluation did not include patients with heart or cardiovascular disease.
Understanding medical implications of extracted cardiovascular features is beyond the scope
of this work. I thus do not claim that my sensing technology would offer professional medical
recording. Nevertheless, my results revealed that cardiovascular features extracted by the
Auth ’n’ Scan system can be close to those from the ground truth signals. In addition, my
work has demonstrated a potential to extract longer-term features, such as Poincaré plots, from
a series of fragmented PPG data if a sufficient number of PPIs are available. This work thus
still shows a strong potential of opportunistic PPG sensing during fingerprint authentication.

My work did not include a long-term study on user experience of Auth ’n’ Scan. My
results found that the sensing duration of five seconds was acceptable though this is still longer
than time for unmodified fingerprint authentication. Users might be discouraged to continue
to use the Auth ’n’ Scan system due to this sensing duration in long-term use. Future work
should investigate the user adaptation and experience of Auth ’n’ Scan through deployment
user studies. The focus of this work primarily lies in the system performance of the current
Auth ’n’ Scan prototype and demonstration of the feasibility of the dual-purpose biometrics
concept in mobile fingerprint authentication.



Chapter 8

Conclusion and Future Work

As the use of biometric authentication is increasing, research can exploit such interaction
as a sensing opportunity. I propose a novel security system concept, called dual-purpose
biometrics. Dual-purpose biometrics enables concurrent physiological or behavioral sensing
during biometric authentication or identification. As an instance of dual-purpose biometrics,
I demonstrate Auth ’n’ Scan, enabling opportunistic PPG sensing during fingerprint
authentication on a smartphone. With my hardware and signal processing algorithm, I achieve
heart rate estimation only for five-second sampling if the baseline heart rate of a user is
given. My evaluations also show that a feature observed in Poincaré plots, which in general
require long sampling of PPIs, can be potentially inferable from a set of fragmented PPG
data. Although further improvements on sensing durations and estimation accuracy would
increase the viability of the Auth ’n’ Scan system, my work well demonstrates the feasibility
of concurrent PPG sensing during mobile fingerprint authentication.

As discussed above, future work should investigate how to improve sensing performance
as well as user experience of Auth ’n’ Scan. Future work should examine how people
would use Auth ’n’ Scan in their smartphones through a deployment study. Extending
Auth ’n’ Scan to other fingerprint authentication scenarios is also an interesting future research
direction. I believe that this work serves as a foundation for exploration of a broader context
of dual-purpose biometrics.
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