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Abstract

A/B testing is the most widely used method to estimate the effect of an intervention.

For example, it is often used to estimate the effect of a new drug on a certain

disease. It achieves high estimation accuracy when SUTVA (Stable Unit Treatment

Value Assumption) holds. SUTVA states that the outcome of a unit depends only

on its own, and is not affected by other units. However, in social network, users

often interact with each other and the outcome of one user may be interfered by

other users, resulting in the decrease of estimation accuracy. In our research, we

propose various methods to reduce the estimation bias. To this end, we first propose

a new graph partitioning method, which is of great importance for reducing the

interference between the treatment group and control group. Since existing methods

tend to underestimate the effect, we also propose methods that try to correct the

bias. We do the bias correction in two ways, one of which is to make the most of

the structure of the network, and the other is to assume the outcome function and

then estimate its parameters, by which the effect can be further estimated.

Keyword: A/B testing, social network, bias correction, network effects
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Chapter 1

Introduction to A/B Testing

A/B testing, sometimes called randomized experimentation, lies at the core of causal

inference. Causal inference aims to estimate the effect of a certain intervention

(treatment). The standard statistical analysis, such as regression, hypothesis test-

ing, and interval estimation, essentially aims to estimate the parameters of a dis-

tribution from sample data. Then predictions can be made using these estimated

parameters. However, these standard statistical methods can only work on static

data, which means they may not be able to predict the outcome when there exist

some interventions [1]. For example, since the weight and height of a person are

associated and a regression model can be trained to predict one’s height given the

weight. However, if we want to know the answer that will one’s height increase if

his/her weight increases, the regression model cannot be applied, since weight is

not the cause of height despite that they are associated. The concept of causality

is closely related to that of association, but they are essentially different concepts.

Causal inference is the research area dealing with the causality.

1



1.1 A/B Testing without Interference

1.1 A/B Testing without Interference

Traditional A/B testing usually assumes that there are no interference among exper-

iment units. This assumption is plausible in many cases and makes the estimation

be simple. In this section, we first introduce the methods for A/B testing when the

interference among units does not present, and in the next section we will consider

the case that the interference among units presents.

1.1.1 Neyman–Rubin Causal Model and SUTVA

Suppose that we want to estimate the effect of a new medicine for a certain disease.

The ideal way is to recruit some patients as volunteers. For each of them if we can

obtain both the outcome under treatment Y 1 and outcome under control Y 0, then

the individual treatment effect (ITE) for unit i is Y 1(i)−Y 0(i). The average causal

effect (ATE) is the average of the individual treatment effect over the experiment

units, and is written as:

δ =
1

N

N∑
i=1

[Y 1(i)− Y 0(i)] (1.1)

where δ denotes the ATE. Since the difference of the outcome is caused only by

the new medicine, this result is the causal effect for this new medicine. TABLE 1.1

shows an example of the outcomes for this experiment. The ATE in this case is

1/4, which indicates the new medicine actually has effect on the disease1.

However, in reality, it is impossible to know both the outcome under treatment

and the outcome under control. Obtaining both of the outcomes is just like we

are conducting the experiment in two “parallel universes”. The outcomes of real

experiments are like what is shown in TABLE 1.2. We can only obtain one kind

of the outcome, either the outcome under treatment or the outcome under control.

The other is unobservable and is called potential outcome. The Neyman–Rubin

1In fact, in order to draw this conclusion, we should have enough experiment units. But in this
case, for illustration purpose, we only use 8 experiment units.
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1.1 A/B Testing without Interference

patient Y 0 Y 1

A 0 1
B 0 1
C 0 0
D 0 1
E 1 0
F 0 1
G 1 0
H 1 1

Table 1.1: “Ideal” Randomized Experiment

patient Y 0 Y 1

A ? 1
B 0 ?
C ? 0
D 0 ?
E 1 ?
F 0 ?
G ? 0
H ? 1

Table 1.2: Randomized Experiment in Reality

causal model is based on the framework of potential outcomes, and we will explain

it in more detail later.

Given the reason we mentioned above, the ITE is impossible to obtain because it

requires both the outcome under treatment and the outcome under control. Since

the calculation of the ATE also depends on the ITE as shown in EQUATION 1.1,

the ATE is also impossible to obtain. Instead, we need a method to estimate the

ATE.

To make the estimation simple, there is an extremely important assumption for A/B

testing. It is called Stable Unit Treatment Value Assumption (SUTVA), which states

that one unit in the experiment cannot interfere with another unit with regard to the

outcome, and the outcome of each unit only depends on its own assignment and has

nothing to do with other units’ assignments. This assumption is quite reasonable

3



1.1 A/B Testing without Interference

smoking

carrying 

a lighter

lung

cancer

cause?

cause cause

Figure 1.1: Causal graph

in many occasions. For example, for many diseases that are non contagious, the

condition of a patient depends on his/her own treatments and won’t be interfered

by other patients. In this case, the SUTVA holds. In this section, we only discuss

the estimation methods when SUTVA holds.

Neyman-Rubin causal model uses randomization to alleviate the problem caused by

the absence of the potential outcomes. To explain the reason why randomization

is important, we take another example. Suppose we need to investigate that if

carrying a lighter in the pocket often can cause lung caner. We can conduct an

experiment in the following way.

1. Recruiting some volunteers who often carry a lighter (termed group A) and

some volunteers who do not often carry a lighter (termed group B).

2. Taking the ratio of volunteer who have lung cancer in group A as the proba-

bility of getting lung cancer if often carrying a lighter (denoting as P1), and

taking the ratio of volunteer who have lung cancer in group B as the proba-

bility of getting lung cancer if not often carrying a lighter (denoting as P2).

3. Comparing P1 with P2.

The medical knowledge tells us that carrying a lighter cannot cause lung cancer2.

However, the experiment designed above will show us that carrying a lighter has

2We did not try to find the evidence to support this statement, but it is enough to suppose it
is true for our following analysis.
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1.1 A/B Testing without Interference

a higher probability to get lung cancer than not doing so. The reason is as the

following. People who smoke often carrying a lighter, and they are also more likely

to get lung cancer than people who do not smoke. So people carrying a lighter

have a higher probability to be a smoker than nonsmoker, and thus have a higher

probability to get lung cancer. But as we have mentioned above, carrying a lighter

is not the cause of lung cancer. The reason for this counterintuitive example is the

common cause. As shown in FIGURE 1.1, smoking is both the cause of carrying

a lighter and the cause of lung cancer, and it makes people carrying a lighter have

a higher probability to get lung cancer, while in fact they do not have a causal

relationship.

Randomization can solve the problem cased by the common cause. We design a

new experiment, making use of randomization.

1. Recruiting some volunteers who do not have lung cancer, and randomly as-

signing them to group A or group B.

2. Volunteers in group A are told to carry a lighter every day, while volunteers

in group B are kept from carrying a lighter.

3. In the end of the experiment, taking the ratio of volunteer who get lung cancer

in group A as the probability of getting lung cancer if carrying a lighter

(denoting as P1), and taking the ratio of volunteer who get lung cancer in

group B as the probability of getting lung cancer if not carrying a lighter

(denoting as P2).

4. Comparing P1 with P2.

With randomization, volunteers in group A and group B have the same probability

to be either a smoker or a nonsmoker. So the probability of getting lung cancer

will also be the same, which indicates carrying a lighter cannot cause lung cancer

and this result is what we expected. This is achieved by randomization, which

eliminates the difference of common cause (smoking) in the two groups.

5



1.1 A/B Testing without Interference

1.1.2 Estimation with Uniform Sampling

Using randomization, the assignment of an experiment unit is randomized decided.

The most simple way to do this is to let the assignment Z ∼ Bernoulli(0.5), that is,

to treat or to control a unit with the same probability. Then the treatment group is

the group of users who are treated, denoting as T = {i | Z(i) = 1}, and the control

group is the group of users who are controlled, denoting as C = {i | Z(i) = 0}. The
ATE can thus be estimated as

δ̂ =
1

nt

∑
i∈T

Y 1(i)− 1

nc

∑
i∈C

Y 0(i) (1.2)

where nt and nc is the number of units in treatment group and control group

respectively. This estimator is often called difference-in-means estimator.

The difference-in-means estimator is an unbiased estimator for the ATE. To prove

the this, we first calculate the expected value of the left term in EQUATION 1.2.

E
[
1

nt

∑
i∈T

Y 1(i)

]
=

1

nt

E
[∑

i∈T

Y 1(i)

]
=

1

nt

ntȲ 1

= Ȳ 1

=
1

N

N∑
i=1

Y 1(i)

(1.3)

where Ȳ 1 is the mean value of Y 1 for all units and is unobservable.

6



1.1 A/B Testing without Interference

we also calculate the expected value of the right term in EQUATION 1.2.

E
[
1

nc

∑
i∈T

Y 0(i)

]
=

1

nc

E
[∑

i∈T

Y 0(i)

]
=

1

nc

ncȲ 0

= Ȳ 0

=
1

N

N∑
i=1

Y 0(i)

(1.4)

where Ȳ 0 is the mean value of Y 0 for all units and is unobservable.

Combining EQUATION 1.2 ∼ 1.4, we have

E[δ̂] = E
[
1

nt

∑
i∈T

Y 1(i)− 1

nc

∑
i∈C

Y 0(i)

]
= E

[
1

nt

∑
i∈T

Y 1(i)

]
−
[
1

nc

∑
i∈C

Y 0(i)

]

=
1

N

N∑
i=1

Y 1(i)− 1

N

N∑
i=1

Y 0(i)

= δ

(1.5)

Therefore, difference-in-means estimator with uniform sampling is a unbiased esti-

mator for the ATE.

1.1.3 Estimation with Cluster Randomized Sampling

Using cluster randomized sampling, we first divide all the units into M clusters,

C1, C2, . . . , CM , and then randomly assign treatment or control on cluster level.

We denote the assignment of a cluster as W , W ∼ Bernoulli(0.5) and ∀i ∈ Cj,

Z(i) = W (j).

7



1.1 A/B Testing without Interference

Although all units have the same probability of being treated or controlled, the

difference-in-means estimator using cluster randomized sampling is no longer un-

biased. We derive the bias in the remaining of this subsection following [2]. The

difference-in-means estimator with cluster randomized sampling is written as

δ̂ =

∑
j∈C1

nj∑
i=1

Y 1(ij)∑
j∈C1

nj

−

∑
j∈C0

nj∑
i=1

Y 0(ij)∑
j∈C0

nj

(1.6)

where Y (ij) is the outcome of the unit j in cluster i, nj is the number of units in

cluster j, C0 and C1 are the set of treated clusters and the set of controlled clusters

respectively, and |C0| = mc, |C1| = mt. In this equation, nt =
∑

j∈C1 nj and

nc =
∑

j∈C0 nj depend on the size of the clusters, and thus are random variables,

while in EQUATION 1.2, nt and nc are fixed numbers. In general, for two random

variables U and V (V > 0), we have

E[
U

V
] =

1

E[V ]

[
E[U ]− Cov(

U

V
, V )

]
(1.7)

8



1.1 A/B Testing without Interference

So the expected value of the estimator in EQUATION 1.6 is

E[δ̂] = E

[∑
j∈C1

nj∑
i=1

Y 1(ij)∑
j∈C1

nj

]
−

[∑
j∈C0

nj∑
i=1

Y 0(ij)∑
j∈C0

nj

]

=
1

Nmt/M

[
Ȳ 1Nmt

M
− Cov

(∑
j∈C1

nj∑
i=1

Y 1(ij)∑
j∈C1

nj

,
∑
j∈C1

nj

)]

− 1

Nmc/M

[
Ȳ 0Nmc

M
− Cov

(∑
j∈C0

nj∑
i=1

Y 0(ij)∑
j∈C0

nj

,
∑
j∈C0

nj

)]

= (Ȳ 1 − Ȳ 0)− M

N

[
1

mt

Cov

(∑
j∈C1

nj∑
i=1

Y 1(ij)∑
j∈C1

nj

,
∑
j∈C1

nj

)

− 1

mc

Cov

(∑
j∈C0

nj∑
i=1

Y 0(ij)∑
j∈C0

nj

,
∑
j∈C0

nj

]

(1.8)

Since Ȳ 1 − Ȳ 0 = 1
N

∑N
i=1 Y

1(i)− 1
N

∑N
i=1 Y

0(i) = δ, the bias of δ̂ is

δ̂ − δ =
M

N

[
1

mt

Cov

(∑
j∈C1

nj∑
i=1

Y 1(ij)∑
j∈C1

nj

,
∑
j∈C1

nj

)
− 1

mc

Cov

(∑
j∈C0

nj∑
i=1

Y 0(ij)∑
j∈C0

nj

,
∑
j∈C0

nj

]

(1.9)

According to our analysis above, when cluster randomized sampling is used, the

9



1.2 A/B Testing with Interference

user A user B

(1) The algorithm recommends more

interesting tweets to user A

(2) User A retweets more

(3) more interesting retweets

go to user B's timeline

(3) User B find more interesting

tweets in the timeline

(4) user B retweets more

user B follows user A

Figure 1.2: Illustration for the example of recommend algorithm.

difference-in-means estimator is not unbiased and the bias is expressed in EQUA-

TION 1.9. In section 2.3.2, we will discuss the Horvitz-Thompson estimator, which

is an unbiased estimator for cluster randomized sampling when SUTVA holds.

1.2 A/B Testing with Interference

In many cases, SUTVA can hold as we discussed above. But there are also many

cases that it is unreasonable to assume SUTVA, especially when we conduct A/B

testing experiment in social network. For example, if we developed a recommenda-

tion algorithm that recommends interesting tweets to each user, and the outcome

we are interested is the number of retweets of a user, then users are very likely to

interfere with each other. To gain a better insight into this example, we assume

the recommendation algorithm is indeed effective and users who are treated will

retweet more. Then the users who follow the treated users can also find more in-

teresting tweets in their timelines. As a result, their number of retweets will also

increase. This example is illustrated in FIGURE 1.2. As ATE is the difference of

the outcomes between the treatment group and control group, when the outcome of

controlled units increase due to the interference, the ATE will be underestimated.

In this thesis, we mainly deal with the estimation for the ATE in A/B testing when

interference is presented, and in this section, we first introduce some useful concepts.

10



1.2 A/B Testing with Interference

1.2.1 Network Effects

Network effects are the effects on a unit that received from other units in the net-

work. Depending on the context, network effects are also called “peer effects”,

“spillover effects”, “social effects” and etc. This kind of effects is commonly ob-

served in many the social and economical phenomena. For example, an individual’s

demand for a product is influenced by other individual’s demand in the market [3].

The network effects are even more common in social network services (SNSs), such

as Twitter, Facebook, and Instgram. In these SNSs, users can share contents freely,

and those contents will then appear on the timeline of their friends or followers. Like

the example of recommend algorithm we mentioned previously, one user’s behavior

may be influenced by other users. This kind of effects can also propagate through

the social network. That is, if user A is influenced by user B, and user B is influenced

by user C, then user A is indirectly influenced by user C, which indicates that the

influence propagates from user C to user A through user B. When the social network

is large, the network effects are significant.

1.2.2 Outcome Function

In an A/B testing experiment, we need outcomes to estimate the ATE using estima-

tor such as difference-in-means estimator. The whole process is like the following:

(1) sampling; (2) carrying out the experiment (treating and control corresponding

units) and collecting the outcomes in the end of the experiment; (3) estimating the

1. Sampling: randomly assigning each experiment unit to either treatment group

or control group.

2. Collecting outcomes: carrying out the experiment (applying treatment to the

treatment group and controlling the units in the control group), and collecting

the outcomes in the end of the experiment.

11



1.2 A/B Testing with Interference

Representation Example Meaning
uppercase normal letter X random variable
uppercase bold letter X random vector or matrix3

lowercase bold letter x vector
lowercase normal letter x scalar

Table 1.3: Notations of Different Types of Symbols

3. Estimating: estimating the ATE.

The outcomes can always be observed in this case, and once the outcomes are

available, the estimation can be made.

However, even through the outcomes are observable, we can only obtain the es-

timated ATE like what expressed in EQUATION 1.2, while the true ATE which

expressed in EQUATION 1.1 is impossible to be obtained. In consequence, we do

not have a ground truth to compare with.

This problem can be alleviated by using a synthetic outcome function. The out-

comes can be expressed Y(Z) = f(Z), where Y is a random vector and Yi is the

outcome of unit i, Z is also a random vector and Zi is the assignment of unit i.

For clarification purpose, we list the notations frequently used in this thesis in TA-

BLE 1.3. Using a synthetic outcome function, the true ATE can be obtained as

Y(Z = 1)−Y(Z = 0), and the outcomes under the experiment assignments z are

Y(Z = z).

Some design principles for outcome functions are discussed in [4]. In this thesis, we

use the linear-in-means model [3][5], which is a model usually used to capture the

interaction of social and economic phenomenon. The linear-in-means model can be

written as the following Equation in matrix form.

Yt∗ = α + λ1Z+ λ2
AYt−1

D
+Ut

Yt = g
(
Yt∗) (1.10)

3This can be differentiated based on the context.
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1.2 A/B Testing with Interference

where Y is the outcome vector4, α is a baseline value, λ1 is the direct treatment

effect, λ2 is the network effect, Z is the assignment vector, A is the adjacency

matrix (a binary matrix), D is diagonal matrix and Dii is the degree (out degree

for directed network) of unit i, U is a vector representing user specific traits and

∀i ∈ [1, N ], Ui ∼ N (0, 1).

The outcome is generated by running this model iteratively until the mean of Y

converges, and Y is initialized as zero vector. The superscript ‘t’ in Equation 1.10

is the iteration step. Hence, Yt=0 = 0 according to our initialization.

To make Equation 1.10 more clear, we can rewrite it as the following Equation.

Yt∗
i = α + λ1Zi + λ2

1

Dii

∑
{j;Aij=1}

Yt−1
j +Ut

i

Yt = g
(
Yt∗) (1.11)

Here we can see the outcome Y is summed up by 4 components.

• α: α is the baseline value which is a constant here. It simply means that even

if there is no treatment, the outcome may still be non-zero. For example, if

the outcome is the number of retweets, it is non-zero even if a new feature is

not added.

• λ1Zi: Zi = 1 if user i is treated, and Zi = 0 if controlled. Therefore, the

outcome of a user will increase by λ1 if it’s treated compared with the case

that it’s controlled. So we call λ1 direct treatment effect.

• λ2
1

Dii

∑
{j;Aij=1}Y

t−1
j : this component is the average outcome of user i’s neigh-

bors 5 at the previous iteration step multiplied by a coefficient λ2. λ2 is the

network effect. A large λ2 indicates the outcome of a user is interfered more

by the neighbors, a small λ2 indicates the outcome of a user is interfered less

4Vectors are represented as column vectors, unless otherwise stated.
5In directed graph, we use neighbors to mean the successors (nodes pointed to by directed

edges from a starting node)
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1.2 A/B Testing with Interference

by the neighbors. In particular, when λ2 = 0 the outcome of a user does not

depend on other users, which is equal to SUTVA.

• Ui: Since every user is reasonable to respond differently to the treatment due

to some user specific traits, like the age, personality, occupation, etc., we use

a Gaussian random variable to capture these traits.

1.2.3 Problems Caused by Network Effects

When the network effects are presented, the notation of ATE in EQUATION 1.1

also need to be changed. First the ITE (individual treatment effect) of unit i is

Yi(Z = 1)−Yi(Z = 0). Note that Z = 1 indicates all units are treated and Z = 0

indicates all units are controlled. Since units can interfere with each other, the ITE

is the difference of user i’s outcomes between the case that all users are treated and

the case that all users are controlled. Then the ATE is expressed as

δ =
1

N
1⊺[Y(Z = 1)−Y(Z = 0)] (1.12)

which is the average ITE over all units.

We discussed the estimation of ATE when SUTVA holds in the previous section. In

that case, the difference-in-means estimator with uniform sampling is an unbiased

estimator. But when there exist network effects, the estimator is biased. We give

an example to explain the reason.

As shown in FIGURE 1.3(b), unit 2 follows unit 1 and unit 3, unit 3 follows unit 4,

and unit 4 follows unit 2. Unit 1 and unit 2 are treated (marked as red), while unit 3

and unit 4 are controlled (marked as blue). So the assignment vector z = (1, 1, 0, 0).

In FIGURE 1.3(a) all users are controlled and in FIGURE 1.3(c) all users are

treated. From FIGURE 1.3(a)∼ FIGURE 1.3(c), according to the outcome function

in EQUATION 1.10 we have the following observations.
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1.2 A/B Testing with Interference
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(a) all controlled (b) uniform sampling (c) all treated

Figure 1.3: Illustration for The Problem with Network Effect

• In FIGURE 1.3(b), unit 4 follows unit 2 who is treated, so Y4,b > Y4,a, and

thus Y3,b > Y3,a because unit 3 follows unit 4. Therefore, the outcomes of

units in the control group are larger than the outcomes of them when all users

are controlled.

• In FIGURE 1.3(b), unit 2 follows unit 3 who is treated, so Y2,b < Y2,c, and

thus Y1,b < Y1,c because unit 1 follows unit 2. Therefore, the outcomes of

units in the treatment group are smaller than the outcomes of them when all

users are treated.

From the observations above, we have

1

nt

∑
{i;Zi=1}

Yi(Z = z) <
1

N

N∑
i=1

Yi(Z = 1) (1.13)

1

nc

∑
{i;Zi=0}

Yi(Z = z) >
1

N

N∑
i=1

Yi(Z = 0) (1.14)
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Furthermore, we have the following result

δ̂ =
1

nt

∑
{i;Zi=1}

Yi(Z = z)− 1

nc

∑
{i;Zi=0}

Yi(Z = z)

< N
N∑
i=1

Yi(Z = 1)−N
N∑
i=1

Yi(Z = 0)

= δ

(1.15)

This result indicates the difference-in-means estimator always underestimates the

ATE when linear-in-means outcome function is assumed.

1.3 Goal of Our Research

In the previous sections, we introduced A/B testing with and without interference,

and discussed the problem that the difference-in-means estimator, which is an unbi-

ased estimator combining with uniform sampling when no interference among units

exists, tends to underestimate the ATE when the outcome function is linear-in-

means model. So the goal of our research is to propose new estimation method to

increase the estimation accuracy.

In Chapter 2 we introduce the related work about A/B testing in social network,

and in Chapter 3 we introduce our proposed methods.
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Chapter 2

Related Work

With the rise of social network services (SNSs), such as Twitter, Facebook and

LinkedIn, more and more people are connected online. To improve the usability,

many new features are continuously added to those SNSs. When adding a new

feature, estimating the effect of the new feature is often necessary. If it has much

positive effect, more features like this should be developed. If it has nearly no effect,

some modifications are needed. And if it has noticeable negative effect, this kind of

feature should be avoided. For some features, like adding a new button to the user

interface, users usually do not affect each other, and the SUTVA holds. But for

some other features, like adding an recommendation algorithm, which we mentioned

in the previous chapter, make SUTVA not hold. Therefore, estimation methods

taking the interference among units into consideration are of great importance to

A/B testing in social network.

To estimate the average outcome when adding a new feature, which only takes effect

when a user and at least d neighbors are treated, the problem called Network Bucket

Testing is formulated and discussed in [6][7]. It differs from A/B testing in that its

goal is to estimate the average outcome on a small portion of users before releasing

the new feature, rather than to estimate the effect.
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2.1 A/B Testing Process

To reduce the estimation bias of ATE, the use of cluster randomized sampling

was introduced [8][9][4], and some unbiased estimators are also proposed [2]. Al-

though those unbiased estimators are based on cluster randomized sampling, they

assume SUTVA. Therefore, they are not truly unbiased when there exist interfer-

ences among clusters. [9] also used bias correction to further reduce the estimation

bias by assuming the outcome is a linear function of the assignment and the treated

ratio of neighbors.

Other than the estimation of ATE, there are also some other work trying to estimate

or test the existence of the network effect [10][11][12].

2.1 A/B Testing Process

The whole A/B testing process contains the following steps:

1. Sampling: randomly assigning each experiment unit to either treatment group

or control group.

2. Collecting outcomes: carrying out the experiment (applying treatment to the

treatment group and controlling the units in the control group), and collecting

the outcomes in the end of the experiment.

3. Estimating: estimating the ATE.

In this section, we explain these steps in more detail.

2.1.1 Step 1: Sampling

Sampling is the process that deciding which unit to be treated and which unit

to be controlled. In SECTION 1.1, we have introduced uniform sampling, which

gives each unit the same probability of being treated and being controlled, and
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2.1 A/B Testing Process

cluster randomized sampling, which partitions units into clusters and then uniformly

samples on cluster level. We will talk more about the sampling methods in the next

section.

Sampling methods also have close relationship with estimators. For different sam-

pling methods, the probability of being treated and being controlled may be differ-

ent, so to keep the estimation unbiased or to reduce the estimation bias, different

estimator may be needed.

2.1.2 Step 2: Collecting Outcomes

In an A/B testing, the experiment is carried out by treating and controlling the

corresponding units for a reasonable long period. For example, to estimate the

effect of a new drug, when sampling is finished, units are assigned to treatment

group and control group, and then units in the treatment group are treated using

the new drug, while units in the control group are controlled. Depending on the

actual case, this may be lasting for several days or even several years. In the end of

the experiment, the outcomes, such as blood pressures and weights, can be collected.

The outcomes are vital to the estimation of the ATE.

In SECTION 1.2 we also mentioned that although outcomes are observable, the ATE

is unobservable, and thus a synthetic outcome function is needed. With a synthetic

outcome function, not only the ATE can be obtained, but also the experimentation

becomes simpler because in this way we do not need to carry out a real experiment

and wait for a long time to collect the outcome data. In this thesis, we mainly

focus on the outcome function expressed in EQUATION 1.10. With the assignment

Z = z, the observed outcomes are Y(Z = z). And the ATE is written as

δ = Y(Z = 1)−Y(Z = 0) (2.1)
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2.2 Sampling Methods

2.1.3 Step 3: Estimating

Once the outcomes Y are available, the estimation can be made. We denote the

estimated ATE as δ̂, and the estimation bias is thus δ̂ − δ. When interferences

among units present, the choosing of sampling method and estimator is vital to the

estimation. In other words, to reduce the estimation bias, we can try to change the

sampling method or the estimator. In the remaining of this chapter, we introduce

the sampling methods and estimators that used in related work.

2.2 Sampling Methods

In this section, we introduce 3 kinds of sampling methods, and explain the advan-

tages of each of them.

2.2.1 Uniform Sampling

As we discussed in SECTION 1.1, the randomization is essential to Neyman–Rubin

causal model for A/B testing, this is still the case when interferences among units

present. Uniform sampling decides the assignment of each unit totally randomly by

setting Zi ∼ Bernoulli(0.5).

When interferences present among units, this kind of full randomization brings

much bias. For a treated unit, half of its neighbors are controlled, according to

the outcome function in EQUATION 1.10, the outcome is smaller compared with

the case that all its neighbors are treated. And likewise, the outcome of a con-

trolled user is larger compared with the case that all its neighbors are controlled.

Hence, a treated unit needs more treated neighbors and a controlled unit needs

more controlled neighbors, and this is done by using cluster randomized sampling.
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Figure 2.1: Illustration for Cluster Randomized Sampling

2.2.2 Cluster Randomized Sampling

As we mentioned above, although the sampling should be randomized, we need also

let treated users, as well as controlled users, gathered as closely as possible. Cluster

randomized sampling does this kind of trade-off.

We illustrate the cluster randomized sampling in FIGURE 2.1, in which there are 12

units and they are partitioned into 4 clusters. We use W to denote the assignment

vector of the clusters, and since cluster 0 and cluster 2 (the top left and bottom

right ones) are treated, and cluster 1 and cluster 3 (the top right and bottom left

ones) are controlled, W = (1, 0, 1, 0) in this case. ∀i ∈ Cj, we let Zi = Wj, where

Cj is the jth cluster. So Z = (1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0) in this example.

Many ready-to-use graph partitioning or community detections algorithms [13][14]

can be applied to partitioning the units for the cluster randomized sampling. In [8],

the author also proposed a graph partitioning algorithm to reduce the estimation

variance based on their analysis.

To show the difference between uniform sampling and cluster randomized sam-

pling, we generated the sampling result using the linear-in-means outcome function

and “soc-Slashdot0811” graph. The results are shown in FIGURE 2.2, where the
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2.2 Sampling Methods

(a) Uniform Sampling

(b) Cluster Randomized Sampling

Figure 2.2: Outcome vs. neighbor treated portion plot using uniform sampling
and cluster randomized sampling. Red points represent treated users and blue
points represent controlled user. The data are generated using the linear-in-means
outcome function in EQUATION 1.10 by setting λ0 = 3, λ1 = 8, λ2 = 0.6. The

graph data used is “soc-Slashdot0811” from [15].

outcome is plotted versus the neighbor treated ratio, which is the ratio of treated

neighbors to all neighbors of a unit. We denote neighbor treated ratios as σ, and

define it as

∀i ∈ [1, N ], σi =

∑
{j;Aij=1}

Zj

Dii

(2.2)

We can observe that using uniform sampling, the points are centered at the position
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2.2 Sampling Methods

where σ = 0.5 and distribute similarly on the left and right side, and when using

cluster randomized sampling, most red points are distributed on the right side which

implies a higher neighbor treated ratio for treated units and most blue points are

distributed on the left side which implies a lower neighbor treated ratio for controlled

units. Therefore, cluster randomized sampling makes the treatment group more

closer to the cases that all units are treated, and the control group more closer to

the case that all units controlled.

2.2.3 Balanced Cluster Randomized Sampling

In SECTION 1.2, we analyzed the bias of difference-in-means estimator when cluster

randomized sampling is used and SUTVA is assumed. The bias is expressed in

EQUATION 1.9. We write it here again for clarification purpose.

δ̂ − δ =
M

N

[
1

mt

Cov

(∑
j∈C1

nj∑
i=1

Y 1(ij)∑
j∈C1

nj

,
∑
j∈C1

nj

)
− 1

mc

Cov

(∑
j∈C0

nj∑
i=1

Y 0(ij)∑
j∈C0

nj

,
∑
j∈C0

nj

]

(2.3)

The bias come from the correlation between the average outcome and the size of

treatment group (control group). Therefore, if the cluster sizes are balanced, which

means all clusters have almost the same size, then the size of treatment group

(control group) is a constant, and hence the correlation is 0, making the difference-

in-means estimator an unbiased estimator in this case1.

To make the cluster sizes balanced, we need balanced graph partitioning algorithms.

[9] used a label-swap based method. They first randomly partition the graph into

equally sized clusters and then repeat the following two steps until convergence:

1. For each pair of units, if swapping the cluster labels of them can decrease the

cross-cluster cuts, then swap them.

1It is unbiased when we assume SUTVA.
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2. Randomly swap the labels of 5% pairs of units to break the local minimum.

There are also some streaming balanced graph partitioning algorithms that also aim

to speed up the partition task when the target graph is very large [16][17][18].

2.3 Estimators

In this section, we introduce 3 kinds of estimators, and explain the advantages and

disadvantages of them.

2.3.1 Difference-in-means Estimator

We have mentioned the difference-in-means estimators many times, which estimates

the ATE using the difference of average outcomes between treated users and con-

trolled users. This estimator is written as

δ̂ =
1

nt

∑
{i;Zi=1}

Yi(Z = z)− 1

nc

∑
{i;Zi=0}

Yi(Z = z) (2.4)

So taking FIGURE 2.2 as an example, the estimate ATE using difference-in-means

estimator is the difference of average outcomes between the red points and the blue

points.

The neighborhood exposure conditions can also be defined as an approach to re-

ducing the estimation bias [8][9]. For example, the following three neighborhood

exposure conditions can be used.

• Full neighborhood exposure: unit i and all its neighbors receive the same

assignment.

• Absolute k-neighborhood exposure: unit i and at least k neighbors of i receive

the same assignment.
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• Fractional q-neighborhood exposure: unit i and at least q ∗Dii neighbors of i

receive the same assignment2.

Based on the fractional q-neighborhood exposure condition, the estimated ATE is

δ̂ =
1

n∗
t

∑
{i;σi≥q}

Yi(Z = z)− 1

n∗
c

∑
{i;σi≤1−q}

Yi(Z = z) (2.5)

where n∗
t is the number of treated units who satisfy the q-neighborhood exposure

condition, n∗
c is the number of controlled units who satisfy the q-neighborhood

exposure condition, σ is the neighbor treated ratios defined in EQUATION 2.2.

The reason that exposure conditions are used is that when units have more neighbors

who receive the same assignment as them, it is more closer to the case that all users

are treated or controlled. This is also the reason we make use of cluster randomized

sampling. The exposure conditions also introduce some new bias because the data

of units who do not satisfy the condition are disposed.

The advantage of the difference-in-means estimator is that it is applicable to almost

any A/B testing task, while the disadvantage is that the bias of it may be large,

and we will show this in the experiment part in CHAPTER 4.

2.3.2 Horvitz-Thompson Estimator

When the cluster sizes are not balanced, the difference-in-means estimator is biased.

Again here we say an estimator is biased or unbiased based on SUTVA. In the

next subsection we will introduce the linear model estimator which correct the bias

without assuming SUTVA, and in CHAPTER 3 we will introduce our proposed bias

correction methods which also do not assume SUTVA.

2Recall that D is a diagonal matrix with Dii being the number of neighbors of unit i.
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Horvitz-Thompson estimator is an unbiased estimator when cluster randomized

sampling is used and SUTVA is assumed [2]. It is written as

δ̂ =
M

N

[
1

mt

∑
{i;Zi=1}

Yi(Z = z)− 1

mc

∑
{i;Zi=0}

Yi(Z = z)

]
(2.6)

where mt is the number of treated clusters and mc is the number of controlled

clusters. And we prove its unbiasedness by

E[δ̂] =
M

N
E
[
1

mt

∑
{i;Zi=1}

Yi(Z = z)

]
− M

N
E
[
1

mc

∑
{i;Zi=0}

Yi(Z = z)

]
=

M

N
Y 1,C − M

N
Y 0,C

= Y 1 − Y 0

= E[Y 1]− E[Y 0]

= δ

(2.7)

where Y 1,C (Y 0,C ) is the average outcome of a cluster when all clusters are treated

(controlled), and is thus unobservable.

Remember that Horvitz-Thompson estimator is unbiased based on SUTVA. Com-

pared with the difference-in-means estimator, it does not require the cluster size

be balanced. However, it usually produce larger estimation variance than the

difference-in-means estimator does.

2.3.3 Linear Model Estimator

Both the difference-in-means estimator and Horvitz-Thompson estimator try to

estimate the ATE by assuming SUTVA. Even though they can be unbiased based

on SUTVA, when there are interferences among units, especially in social network,

the estimation bias can still be large.
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2.3 Estimators

Figure 2.3: Illustration for the linear model estimator. The two green lines are
the trained linear model when setting Zi as 1 and 0 respectively. The right top
black point is the predicted value when Zi = 1,σi = 1, and the left bottom black

point is the predicted value when Zi = 0,σi = 0.

A linear model estimator is proposed in [9]. It differs with other estimators in that

it is not the pure statistic obtained from the collected data, but the predicted value

based on the assumption of outcome function. It assumes the outcome function is a

linear function which depends on the assignment Z and the neighbor treated ratio

σ. It is written as

Yi = α + βZi + γσi (2.8)

Since Y, Z and σ are all observable, the parameters α, β and γ can be estimated

using linear regression as shown in Figure 2.3. Since when all user are treated, we

have Z = 1,σ = 1, the average outcome when all users are treated is predicted by

setting both Z and σ to 1, which is the right top black point in Figure 2.3. And

likewise, the average outcome when all users are controlled is predicted by setting

both Z and σ to 0, which is the left bottom black point in Figure 2.3. Finally,

the ATE is estimated as the difference between those two values. Therefore, the
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estimated ATE is written as

δ̂ =
1

N

N∑
i=1

[
Ŷi(Zi = 1,σi = 1)− Ŷi(Zi = 0,σi = 0)

]
=

1

N

N∑
i=1

[
(α̂ + β̂ + γ̂)− α̂

]
= β̂ + γ̂

(2.9)

As we discussed in SECTION 1.2.3, the difference-in-means estimator tends to

underestimate the ATE, which is shown in EQUATION 1.15. Since the predicted

average outcome when all users are treated is larger than the average observed

outcome of treated users, and the predicted average outcome when all users are

controlled is smaller than the average observed outcome of controlled users, the

estimated ATE using linear model estimator is more close to the true ATE than

that using the difference-in-means estimator, and thus the bias is smaller.

The linear model estimator further increase the estimation accuracy by making an

assumption of the outcome function, which is known to the us. But the disadvantage

of the linear model estimator is that when the real outcome function is quite different

from the linear function in EQUATION 2.8, the bias may be even larger than the

estimators which make no assumption of the outcome function. We can also see

that making a correct assumption of the outcome function is a good way to improve

the estimation accuracy.
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Chapter 3

Proposed Methods

In the previous chapters, we explained the problem of estimating the ATE in A/B

testing when interferences among units present. We also introduced two main ways

to reduce the estimation bias: improving the sampling method and improving the

estimator. In this chapter, we introduce our proposed bias reduction methods that

are based on these two kinds of approaches.

3.1 Proposed Sampling Method

To reduce the estimation bias, our sampling methods should obey the following two

guidelines.

1. The assignment of a unit should be independent of the assignments of other

units as far as possible, this is for the purpose of randomization.

2. There should be as few interactions across the treatment group and the control

group as possible, and equivalently as many interactions inside the treatment

group and the control group. This is to make the treatment group more similar
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3.1 Proposed Sampling Method

to the case that all users are treated, and also make the control group more

similar to the case that all users are controlled.

The first guideline is contradicting with the second guideline because more ran-

domization brings more interactions across the treatment group and control group.

Uniform sampling is an example of full randomization, and in this case every unit

has about half neighbors who are treated and about half neighbors who are con-

trolled and there are a lot of interactions across the two groups. On the other hand,

if we partition the graph to two clusters by minimizing the cross-cluster cuts, the

interactions are largely reduced, but the assignments of all units in the same cluster

are correlated, resulting in the insufficiency of randomization1.

The cluster randomized sampling does the trade-off between these two guidelines.

Producing more clusters (smaller cluster size) ensures more randomization, and

producing less clusters (larger cluster size) reduces the cross-group interactions. In

this section, we propose weighted cluster randomized sampling to further reduce

the cross-group interactions when producing the same number of clusters.

3.1.1 Weighted Cluster Randomized Sampling

FIGURE 3.1 shows an example of a directed network. Unit 2 has three out edges,

which indicates that it is influenced by three other units, unit 0, 1, and 3. On

the contrary, unit 4 only has one edge pointing to unit 3, which indicates unit 4

only receives influence from unit 3. When a unit has more out edges, the influence

propagated through each of those edges is likely to be less. Therefore, when we

partition the graph, each edge should not have equal importance.

1Imaging that the two clusters are men and women in the social network, since men and women
may react very differently to the same feature, this sampling method brings a lot of bias.
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Figure 3.1: Example of a directed network

For many graph partitioning algorithms [9][16][17][18], the objective is to minimize

the number of edges across clusters, and it can be expressed as

minimize
∣∣{eij | C(i) ̸= C(j),Aij = 1,∀i, j ∈ [1, N ]}

∣∣ (3.1)

where eij is the edge pointing from unit i to unit j, C(i) is the cluster to which unit

i belongs, A is the adjacency matrix.

We assign each edge a weight to represent the its importance. Then our objective

is to minimize the total weight across clusters, and it is expressed as

minimize
∑

{eij ;C(i)̸=C(j)}

w(eij) (3.2)

where w(eij) is the weight of eij. When w(e) = 1,∀e ∈ E, where E is the set of all

edges, EQUATION 3.2 degenerates to EQUATION 3.1.　 In the remaining of this

section, we propose two weighted cluster randomized sampling methods based on

different weight assignment strategies.

3.1.2 Degree Based Weighted Cluster Randomized Sam-

pling

If we assume that for a unit, every out edge of it has the same importance, then

the weight of edge eij is w(eij) =
1

Dii
, where Dii is the number of out edges of unit
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Figure 3.2: Illustration for the LinkRank based weighted cluster randomized
sampling

i. Using this weight assignment strategy, the weight of each edge in FIGURE 3.1

are e2,0 = e2,1 = e2,3 = 1/3, e4,3 = 1, e5,3 = 1.

3.1.3 LinkRank Based Weighted Cluster Randomized Sam-

pling

In FIGURE 3.2, if we use degree based weighted cluster randomized sampling, the

weight of all edges is 1, but through e1,3 only unit 1 is influenced, while through

e3,0 unit 3 is influenced and the influence is further propagated through unit 3.

Therefore, more influence is propagated through e3,0 than through e1,3.

Borrowing the terminology in social network services, Followers of a unit are the

units who have an edge pointing to that unit. Unit 3 has more followers than

unit 1 does. So unit 3 can influence more units, and we can say unit 3 is more

important than unit 1. Although the number of followers can be used to indicate the

importance of an unit, PageRank [19] is more suitable, which is originally proposed

to evaluate the importance of a web page. Based on PageRank, we can assign

weight to each edge using LinkRank [20], which evaluates the importance of the
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3.2 Proposed Estimators

Figure 3.3: Different outcomes obtained by setting different treatment proba-
bility.

edges. LinkRank is defined as

w(eij) = πiGij (3.3)

where π is the PageRank vector, G is Google Matrix.

3.2 Proposed Estimators

We explained the problem of underestimation in SECTION 1.2.3. Even using cluster

randomized sampling, the cross-group interactions cannot be fully eliminated, which

means for a unit, there are still many neighbors who receive the opposite assignment.

The example of neighbor treated ratio distribution can be found in Figure 2.2(b) for

cluster randomized sampling. Most treated units have roughly 40% ∼ 80% treated

neighbors, which indicates they have about 20% ∼ 60% controlled neighbors. To

put it simply, the observed average outcome of the treatment group is smaller than

the average outcome when all users are treated, and likewise, the observed average

outcome of the control group is larger than the average outcome when all users are

controlled, resulting the underestimation of ATE, as shown in EQUATION 1.15.
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3.2 Proposed Estimators

In Figure 3.3, we show different outcomes in treatment group obtained by setting

different treatment probability (0.5, 0.7, 0.9). When we conduct an A/B testing

experiment, usually the treatment probability is 0.5, and the outcomes are plotted

in red points. When we increase the treatment probability, the average outcome

also increases, as the yellow and green points show. When all users are treated, the

treatment probability is 1, and therefore the average outcome will be even larger in

the treatment group.

Therefore, we need estimators that can correct this kind of underestimation. In the

section, we propose two estimators, one of correct the bias based on the network

structure, and the other is based on the assumption of the outcome function.

3.2.1 Bias Correction Based on The Network Structure

In SECTION 2.3.3, we introduced the linear model estimator, which assumes the

outcome function is a linear function depending on the assignment and neighbor

treated ratio. However, since the influence can propagate through edges, a unit

can be influenced by not only its neighbors, but also its neighbors of neighbors, its

neighbors of neighbors of neighbors, and so on. To take the influence of other units

into consideration, we define the neighbor treated strength as

σ∗
i =

1

Dii

∑
{j;Aij=1}

(
p1Zj + p2

1

Djj

∑
{k;Ajk=1}

σ∗
k

)
(3.4)

where p1 and p2 are two parameters satisfying p1 > 0, p2 > 0, p1 + p2 = 1. p1

controls the weight of the assignment of the neighbor, and p2 controls the weight

of the neighbor treated strength of the neighbor’s neighbors. When p1 = 1, p2 = 0,

this is exactly the same as the neighbor treated ratio defined in 2.2.

The linear model estimator in EQUATION 2.8 can then be rewritten as

Yi = α + βZi + γσ∗
i (3.5)
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3.2 Proposed Estimators

EQUATION 2.9 which is used to estimate the ATE still holds.

The definition of neighbor treated strength requires us choose the parameters p1

and p2. Setting p1 = 1 and p2 = 0, it is equal to the linear model estimator with

neighbor treated ratio. When the network effect is large, setting a larger p2 can

reduce the estimation bias. But since the network effect is unknown, some prior

knowledge of it is needed.

3.2.2 Bias Correction Based on The Assumption of Out-

come Function

I propose a new linear model estimator by assuming the outcome is a linear function

depending on the assignment and the outcome of the neighbors.　

Yi = α + βZi + γYnbr
i (3.6)

where Ynbr
i = (AY

D
)i is the average outcome of unit i’s neighbors. Since Y, Z and

Ynbr are all observable, the parameters α, β and γ can all be estimated using linear

regression in the same way as the linear model estimator in EQUATION 2.8 does.

For the sake of readability, it is written here again:

Yi = α + βZi + γσi (3.7)

Since when all units are treated, Z = 1, σ = 1, and when all units are controlled,

Z = 0, σ = 0, the estimator in EQUATION 3.7, when all the parameters are
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3.2 Proposed Estimators

estimated, ATE is estimated as:

δ̂ =
1

N

N∑
i=1

[
Ŷi(Zi = 1,σi = 1)− Ŷi(Zi = 0,σi = 0)

]
=

1

N

N∑
i=1

[
(α̂ + β̂ + γ̂)− α̂

]
= β̂ + γ̂

(3.8)

However, if using the proposed linear model, although Z can be set to 1 when all

units are treated and 0 when all units are controlled, Ynbr is unknown. So the

estimation cannot be made in the same way.

To estimate the ATE using the new proposed linear model estimator, first let the

following equation be assumed:

E[Y ] ≈ E[Y nbr] (3.9)

Then the ATE can be estimated in the following way:

E[Y 1] = a+ b+ cE[Y 1,nbr] ≈ a+ b+ cE[Y 1]

⇒ E[Y 1] ≈ a+ b

1− c

(3.10)

E[Y 0] = a+ cE[Y 0,nbr] ≈ a+ cE[Y 0]

⇒ E[Y 0] ≈ a

1− c

(3.11)

δ = E[Y 1]− E[Y 0] ≈ a+ b

1− c
− a

1− c
=

b

1− c
(3.12)

δ̂ ≈ b̂

1− ĉ
(3.13)

Although Y is impossible to predict using the proposed linear model, the expected

value E[Y 1] and E[Y 0] can be approximated. So the ATE can sill be estimated using

EQUATION 3.13.

There are two problems with the proposed linear estimator. The first problem is
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3.2 Proposed Estimators

Figure 3.4: Plot for the smoothing function. The red line is the function y = x,
and the curve line is the smoothing function. Although its domain is [0, 1], it is

plotted in the domain of [−1, 1] to make it more clear.

that when c is close to 1, 1 − c will be close to 0, and the estimated ATE δ̂ = b
1−c

will be extremely large. To prevent this unexpected result, we need a smoothing

function h(x) such that when x is too small, it can be scaled up, and when x is not

too small, it is kept unchanged. The domain is [0, 1], and h(x) should be a strictly

increasing function.

We use the following function as the smoothing function:

h(x) = 0.1x0.0001 + 0.4x+ 0.5x1.5 (3.14)

This smoothing function is plotted in FIGURE 3.4 along with the linear function

y = x.

The second problem is that when the estimated ĉ is greater than or equal to 1, the

proposed estimator does not work properly because δ̂ = ∞ if c = 1 and δ̂ < 0 if

c > 12. So if c >= 1, the linear model estimator based on neighbor treated ratio is

used.

2The ATE can be negative when λ1 is negative, but whether λ1 is negative is related to the
parameter b in the proposed linear model estimator, and has noting to do with c.
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Chapter 4

Evaluation

In this chapter, the proposed methods are evaluated by comparing with baseline

methods on various data sets, with respect to the estimation bias.

4.1 Experiment Settings

Before showing the experiment results, in this section, I first introduce the experi-

ment settings.

4.1.1 Datasets

The graph data sets used in the experiment are from [15]. The graph dataset

information is summarized in TABLE 4.1. These graph are originally directed

graphs. For the evaluation of sampling method, When comparing the proposed

estimators, they are converted to undirected graphs, and dangling nodes (nodes

with degree being 0) are removed.
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4.1 Experiment Settings

Graph Name Nodes Edges Description
wiki-Vote 7,115 103,689 Wikipedia who-votes-on-whom network
soc-Epinions1 75,879 508,837 Who-trusts-whom network of Epinions.com
soc-Slashdot0811 77,360 905,468 Slashdot social network from November 2008

Table 4.1: Graph dataset information

4.1.2 Outcome Generation

A synthetic outcome function is used to generate the outcomes in the experiment.

The reason why a synthetic outcome function is used is discussed in SECTION 1.2.2.

The synthetic outcome function in EQUATION 1.10 is used. And it is written here

again.

Yt∗ = α + λ1Z+ λ2
AYt−1

D
+U(t)

Yt = g
(
Yt∗) (4.1)

By setting different regularization function g and different parameters, the following

4 different outcome functions are used in the experiment.

1. Outcome function f1: g(x) = x, α = 3

2. Outcome function f2: g(x) =

1, x > 0

0, x ≤ 0
, α = −1.5

3. Outcome function f3: g(x) = 0.7x, α = 3

4. Outcome function f4: g(x) = x0.7, α = 3
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4.1 Experiment Settings

(a) wiki-Vote

(b) soc-Epinions1

(c) soc-Slashdot0811

Figure 4.1: Results of different sampling methods for outcome function f1

40



4.1 Experiment Settings

(a) wiki-Vote

(b) soc-Epinions1

(c) soc-Slashdot0811

Figure 4.2: Results of different sampling methods for outcome function f2.
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4.2 Results of Proposed Sampling Methods

Method Weight Estimator
Baseline method 1 difference-in-means estimator
Degree based method 1/d difference-in-means estimator
Linkrank based method Linkrank value difference-in-means estimator

Table 4.2: The summarization of methods using different sampling method

4.2 Results of Proposed Sampling Methods

In this section, the proposed degree based randomized cluster sampling method and

Linkrank based randomized cluster sampling method are evaluated. These methods

along with the baseline method are compared on the directed graphs.

4.2.1 Baseline Method

The graph partitioning algorithm used in this experiment is the label swap based

method proposed in [9]. The baseline method sets the weight of all edges to 1, the

proposed degree based method sets the weight of an edge to 1/d, where d is its

out-degree, the proposed Linkrank based method sets the weight of an edge to its

Linkrank value. These methods are summarized in TABLE 4.2.

Although the linear model estimator can usually achieve higher estimation accuracy

than the difference-in-means estimator, the latter is used in this experiment. The

reason is that when linear model estimator is used, the bias correction made the

sampling method less important, and it is harder to see the difference among these

sampling methods. Although the estimation accuracy is lower, the difference-in-

means estimator is applicable without any assumption of the outcome function,

while the linear model estimator performs well when the outcome can be indeed

assumed to be a linear function which depends on the neighbor treated ratio.
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4.2 Results of Proposed Sampling Methods

Graph Name Edges Edges in largest SCC Edges in largest WCC
wiki-Vote 103,689 39,456 (0.381) 103,663 (1.000)
soc-Epinions1 508,837 443,506 (0.872) 508,836 (1.000)
soc-Slashdot0811 9,054,680 888,662 (0.981) 905,468 (1.000)

Table 4.3: Information about the largest strongly connected component in the
graph datasets.

4.2.2 Results

The results for outcome function f1 is shown in FIGURE 4.1 and the results for

outcome function f2 is shown in FIGURE 4.2. As shown in the FIGURES, on

the wiki-Vote dataset, the proposed degree based method and link based method

outperforms the baseline methods for both f1 and f2. On the other two datasets,

the three methods achieved almost the same estimation accuracy with respect to

the bias. The two proposed methods produce similar estimation bias on all datasets.

Since for f3 and f4, the experiment demonstrates that the results are similar to that

of f1 and f2, the results are not shown here.

One possible explanation for the result that the proposed methods only outperform

the baseline method on wiki-Vote is that wiki-Vote is less strongly connected than

the other two graphs. As shown in TABLE 4.3, the largest SCC (strongly connected

component) contains 38.1% of all the nodes in the graph, which is far less than that

of the other two graphs. With respect to the largest WCC (weakly connected com-

ponent), for all there datasets, almost all edges are contained in the largest WCC.

So the number of edges in the largest SCC being small indicates there are some

edges propagating the influence from one SCC to another but no edge propagating

the influence in the reverse direction. If this kind of edges are assigned smaller

weight, then they will be cut when partitioning the graph, and the SCCs is more

likely to be partitioned to different clusters, result in the reduction of interference

among clusters.
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4.3 Results of Proposed Estimators

4.3 Results of Proposed Estimators

In this section, the two proposed methods are compared with the baseline method

separately. In this experiment, the graphs are converted into undirected graph and

dangling nodes are removed, because for the directed graph, if it is not strongly

connected, the influence cannot fully propagated. All these estimator are based on

the baseline cluster randomized sampling in the previous section.

4.3.1 Baseline Method

The baseline method is the linear model estimator in EQUATION 2.8. The two

proposed methods: the bias corrected estimator based on network structure and

the bias corrected estimator based on assumption, are compared with the baseline

method separately in the remaining of this section.

4.3.2 Results of Bias Corrected Estimator Based on Net-

work Structure

Experiments conducted on the four outcome functions are shown in FIGURE 4.3

∼ 4.6. In each of the graphs, there are three green lines, which are the results

of the proposed method plotted by setting different parameter (p2 in EQUATION

3.4). As shown in the results, by choosing a good parameter p2, the bias can be

effectively corrected, but if p2 is too large, the proposed estimator will overestimate

the ATE. Therefore, choosing a small p2 is less like to result in overestimation and in

particular, when p2 = 0, the proposed method is equivalent to the baseline method.
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4.3 Results of Proposed Estimators

(a) wiki-Vote

(b) soc-Epinions1

(c) soc-Slashdot0811

Figure 4.3: Results of bias corrected estimator based on network structure for
outcome function f1. Proposed method are plotted by setting p2 to 0.2, 0.5, 0.8.

The larger the p2, the higher of the position of the green line.
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4.3 Results of Proposed Estimators

(a) wiki-Vote

(b) soc-Epinions1

(c) soc-Slashdot0811

Figure 4.4: Results of bias corrected estimator based on network structure for
outcome function f2. Proposed method are plotted by setting p2 to 0.1, 0.2, 0.3.

The larger the p2, the higher of the position of the green line.

46



4.3 Results of Proposed Estimators

(a) wiki-Vote

(b) soc-Epinions1

(c) soc-Slashdot0811

Figure 4.5: Results of bias corrected estimator based on assumption for outcome
function f3. Proposed method are plotted by setting p2 to 0.3, 0.5, 0.7. The larger

the p2, the higher of the position of the green line.
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4.3 Results of Proposed Estimators

(a) wiki-Vote

(b) soc-Epinions1

(c) soc-Slashdot0811

Figure 4.6: Results of bias corrected estimator based on assumption for outcome
function f4. Proposed method are plotted by setting p2 to 0.1, 0.2, 0.3. The larger

the p2, the higher of the position of the green line.
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4.3 Results of Proposed Estimators

4.3.3 Results of Bias Corrected Estimator Based on As-

sumption

Experiments conducted on the four outcome functions are shown in FIGURE 4.7 ∼
4.10. As shown in the results, for f1, the proposed method outperforms the baseline

method on all three datasets, but for f2, the baseline method is better. For f3 and

f4, the proposed method wins on wiki-Vote and soc-Epinions, and is defeated on

soc-Slashdot0811.

It can also be observed that when the direct treatment effect is small, the proposed

method has relatively large bias. The possible reason is that when the direct treat-

ment effect is small, the outcome and average neighbor outcome is dominated by

the Gaussian noise, and in consequence, the proposed linear model assuming the

linear relationship between the outcome and average neighbor outcome cannot work

properly.
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4.3 Results of Proposed Estimators

(a) wiki-Vote

(b) soc-Epinions1

(c) soc-Slashdot0811

Figure 4.7: Results of bias corrected estimator based on assumption for outcome
function f1.
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4.3 Results of Proposed Estimators

(a) wiki-Vote

(b) soc-Epinions1

(c) soc-Slashdot0811

Figure 4.8: Results of bias corrected estimator based on assumption for outcome
function f2.
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4.3 Results of Proposed Estimators

(a) wiki-Vote

(b) soc-Epinions1

(c) soc-Slashdot0811

Figure 4.9: Results of bias corrected estimator based on assumption for outcome
function f3.
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4.3 Results of Proposed Estimators

(a) wiki-Vote

(b) soc-Epinions1

(c) soc-Slashdot0811

Figure 4.10: Results of bias corrected estimator based on assumption for out-
come function f4. Note that the vertical axis is the absolute value of bias.
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Chapter 5

Conclusion

When network effects present among the experiment units in A/B testing, the

tradition method using difference-in-means estimator with uniform sampling tends

to underestimated the ATE. In particular, the network effects are very common

in the social network services, on which In this thesis, facing with the problem of

network effects, two kinds of methods are proposed to reduce the bias, one of which

tries to improve the sampling method by minimizing the interference between the

treatment group and the control group while keeping the uniformity of sampling as

far as possible, the other tries to correct the bias by making the most the network

structure or making an assumption of the outcome function.

The proposed sampling methods is only applicable to directed network. They out-

perform the baseline method when the network is not strongly connected.

The proposed estimators aim to correct the bias by assuming the outcome function

is a linear function which depending on the assignment and the neighbor treatment

ratio (or average neighbor outcome). The proposed estimator based on network

structure can effective correct the bias if the parameter p2 is properly chosen. And

another estimator based on the assumption that the outcome has linear relationship

with the average neighbor outcome can correct the bias without the requirement of

choosing parameters.
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