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Abstract

Joint attention often happens during social interactions, in which individuals share
focus on the same object. The understanding of joint attention is of great importance
for many applications such as group activity analysis and autism diagnosis. This
work aims to develop a computer-vision technique for discovering the objects jointly
attended by a group of people during social interactions. As a key tool to discover
objects of joint attention, we rely on a collection of wearable eye-tracking cameras
that provide a first-person view of interaction scenes and also points-of-gaze data of
interacting parties. Specifically, the goal is to temporally localize the time interval
of joint attention, and to spatially segment the objects of joint attention.
The main challenges of this task lie on three aspects: 1) Although points of gaze data
illustrate regions of interest of the camera wearer, the noises in gaze measurement
would downgrade the reliability of information provided by points of gaze data,
which in turn would affect the correct localization of the object of interest. 2)
In natural cluttered scenes, the region around gaze position often includes many
unrelated objects, making it hard to identify the attended object. 3) Usually an
object is composed by parts with different appearance, which causes ambiguity of
segmentation of the attended objects.
To address the above challenges, we propose a new method which alternates tem-
poral localization of joint attention and spatial segmentation of jointly attended
objects. The key insight behind the proposed method is that these two sub-tasks
are closely coupled and the knowledge of one sub-task facilitates the inference of
the other. Technically, we propose a hierarchical conditional random field-based
model that observes as input segment proposals extracted from multiple videos, and
infers as latent variables which segments are attended in each video and whether
joint attention is established between videos. While comparing the visual similarity
of segments that are likely being looked at across multiple videos, we also encode
the temporal consistency between the appearance of segments that are looked at by
individuals and between the binary states of whether joint attention is established.
This makes it possible to discover objects of joint attention reliably even when scenes
are cluttered, and points of gaze are noisy.
We evaluate our proposed method on a newly collected dataset which contains two-
person cases and general cases. Experimental results show that our approach out-
performs state-of-the-art methods for co-segmentation and joint attention discovery.
Furthermore, we discussed the influence of different scales of noises in gaze measure-
ment. Experimental results demonstrates the robustness of our method even in large
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noise of gaze measurements. The failure cases indicate several possible extensions
of our method. Although computationally complicated, 3D geometry is a good in-
formation that compensates the shortcomings of appearance based method. Using
gaze prediction is also a possible extension, since gaze trackers are not convenient
enough for larger scale deployment.
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1. Introduction

1.1. Overview

(1)

(2)

(3)

(1)

(2)

(3)

Figure 1.1.: Discovering Objects of Joint Attention. Joint attention between
persons (1) and (2) is detected (highlighted in red boundaries) from first-person
videos recorded with points of gaze data (green circles in the video frames.)

Joint attention is one of the primitive group behaviors observed during social inter-
actions. In a meeting scene, people sometimes read a document together to share the
information. On the street, there is a certain object like a posted notice that attracts
attention of multiple pedestrians simultaneously. During group work, people may
pay attention the same object at the same time, and the joint attention may happen
many times on different task-dependent objects. Understanding when and to what
such joint attention is established is crucial for multiple disciplines. For instance,
joint attention of children provides an important cue for autism studies [CSBC+97].
Another example would be an automatic robot who would help people get objects of
joint attention, or avoid running into those objects since they are important for mul-
tiple people [SPS15]. Moreover, locations where a group of people jointly focus can
also be used for automatic video summarization [APS+14]. In this work, we aim to
develop a computer-vision technique that can automatically discover objects of joint
attention from multiple video streams recorded during natural social interactions.
We are particularly interested in using wearable eye-tracking cameras, such as Tobii
Glasses1, as a key tool to discover objects of joint attention. Such eye-tracking cam-
eras can provide first-person points-of-view videos that contain what were observed
in the camera wearer’s field of view, and points of gaze data indicating where the

1https://www.tobiipro.com/product-listing/tobii-pro-glasses-2/
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wearer looked at in the first-person videos (see Figure 1.1). Since joint attention is
a group behaviour when different people cast attention onto one same object, the
use of multiple cameras equipped with interaction parties is, therefore, promising
for recording what they attended jointly during interactions.
Technically, we propose a hierarchical conditional random field-based model that can
1) localize events of joint attention temporally and 2) segment objects of joint at-
tention spatially. We show that by alternating these two procedures, objects of joint
attention can be discovered reliably even from cluttered scenes and noisy points-of-
gaze data. Experimental results demonstrate that our approach outperforms several
state-of-the-art methods for both co-segmentation and joint attention discovery.

1.2. Challenges and Contributions

One fundamental challenge of localizing objects of joint attention using point of gaze
data is the inaccuracy of gaze measurement. Since an eye tracker cannot be 100%
accurate, it happens frequently that the camera wearer is fixating on an object,
while measured gaze position fall outside of the object (E.g., Figure (1.2a)). As
a result, although point of gaze data measured by an eye tracker illuminates the
parts of the wearer’s field of view that receive attention, noisy points-of-gaze data
provided by inaccurate eye tracking do not necessarily correspond to where people
actually attend to. Because of this noise in gaze measurement, both the temporal
localization and the spatial segmentation of objects of joint attention will become
difficult.
Another challenge is the description of region being looked at. Naively thinking,
given points of gaze data, we can extract features from the region near the points
of gaze to describe a scene or an object being looked at, then using spatiotemporal
commonality clustering on such feature vectors would be enough to achieve the task
of finding objects of joint attention. But a fundamental problem that arises here is
how to appropriately define a region in first-person videos, from which we extract
features to describe objects being viewed. Although points of gaze inform us the
spatial region the camera wearer is looking at, they do not tell which part is the
region of objects, nor the spatial size of the region. The region of objects around
points of gaze largely depends on object sizes and viewpoints. While some studies
use regions of a specific fixed size around points of gaze [FRR11, LYR15, XML+15],
comparing directly between fixed-size regions does not always work well due to the
variability in the size of objects in first-person videos. In our everyday life, the size of
objects changes drastically in first-person videos because the objects can be seen from
different distances. To deal with such size variability, [KYHS16] used a multiscale
approach for object-feature extraction. They extract features from multiple areas
with different scales around gaze position, generating multiple candidates of objects.
However, the direct use of such multiple scales as the region for feature extraction
becomes problematic when the scene is cluttered, i.e., when different objects are
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(a) Noise in gaze measurement during consecutive frames

(b) cluttered scenes (c) multiple interpretations of object

Figure 1.2.: Challenges of discovering Objects of Joint Attention.

close to each other. In such case (E.g., Figure (1.2b)), a region with large size would
contain other objects as distraction, and a region with small size may only include
part of the object being looked at.
Coupled with the former challenge comes a third challenge, which is the multiple
interpretations of an object. In natural scenes, objects often have different parts,
and each part could also be the object. As shown in Figure (1.2c), if the camera
wearer is looking at the bottom part of the teddy bear, it is difficult to tell whether
the camera wearer is looking at the red shirt, or looking at the whole bear, from
only this single frame of the video. This is an intrinsic problem: "what is an object
and what is a part of an object?" In our method, we do not limit the interpretation
of an object, or object parts, but we demonstrate that by using our model with inter
and intra video temporal consistency, we can obtain a semantically consistent result
of an object of joint attention.
To address the aforementioned problems, we present a new approach of discovering
objects of joint attention, which alternates temporal localization of joint attention
and spatial segmentation of jointly attended objects. The key insight behind the
proposed approach is that, given accurate segments of objects being looked at in
multiple videos, the visual similarity of the segments provides a strong cue for de-
termining whether or not joint attention is occurring. In turn, given the temporal
localization of joint attention, we can know when the visual similarity of the seg-
ments should be enforced more strongly than other cues such as proximity to points
of gaze. This contributes to better segmentation of jointly attended objects.
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We formulate our approach using a conditional random field (CRF) that observes as
input segment proposals extracted from multiple videos, and infers which segments
are attended in each video and whether joint attention is established as latent vari-
ables. Since we use an object segment proposal as a region to extract features, it
is possible for us to accurately describe each object even when the scene is clut-
tered. While comparing the visual similarity of segments that are likely to be a
part of objects being looked at across multiple videos, we also evaluate the temporal
consistency on which segments are looked at by individuals and if joint attention
is established. This makes it possible to discover objects of joint attention reliably
even when points of gaze are noisy, and when object can be differently interpreted.
Our main contributions are three-folded and summarized as follows:
• Firstly, we propose a novel model for temporally localizing and spatially seg-

menting objects being looked at jointly by people. To the best of our knowl-
edge, this is the first work that performs co-segmentation on multiple first
person videos with the utilization of point-of-gaze data. Our model addresses
the main challenges that arise in the task of temporal localization and spatial
segmentation of joint attention: 1) object size variability among objects and
views, 2) the noise in gaze measurement, and 3) the different interpretation of
object.
• Secondly, We introduce a new dataset of natural social interactions recorded

with multiple wearable eye-trackers equipped with interaction parties, which
includes annotations of temporal intervals and spatial segments of objects be-
ing looked at jointly. To our best knowledge, this is the first dataset that have
multiple first person videos, with ground truth gaze data, object segmentation
mask and joint attention period labeled.
• Thirdly, we demonstrate that the proposed method achieves state-of-the-art

performance on both tasks of temporal localization and spatial segmentation
of jointly-attended objects.

1.3. Thesis Outlines

The rest of this thesis is organized as follows. In Chapter 2, we first provide an
overview of recent related works on co-segmentation, joint attention estimation and
gaze guided computer vision. After that, four closely related methods are described
in detail. We then present our method in Chapter 3, our method includes the base
model for 2 person cases, and a generalized model for general cases. In Chapter 4, we
evaluate our method and show its superiority over other baseline methods. Current
limitations are also presented and possible solutions and other modifications are
discussed. To analyze the performance of our method in case of the use of other
cheaper unreliable gaze trackers, We discuss the performance of our method and
other baselines in more severe cases where additional synthesis noise is added into
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point-of-gaze data in Chapter 5. Finally, Chapter 6 summarizes this thesis. In
Appendix, we show some more graphical results.
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2. Related Work

Since one of our goal is to spatially segment the object of joint attention using
multiple first person videos, co-segmentation is the closest related topic. [CF13,
TJLFF14, BKP+10, DNWZZ13, ZDlTH13, JBP10, ZZC12, TFNR12, QHZN16,
WSSS17, SBH+13]. Our goal also includes temporally localize joint attention using
point of gaze data, so joint attention [PJS12, SPS15, SPJS13, KYHS16, YCK+17]
and gaze guided computer vision [Yar67, XML+15, FRR11, SRSM13, YPS+13,
ZTMHL+17, KASB17, LRS+17, SPHSSP17], are also related with our work.

2.1. Co-segmentation

One of the popular computer vision topics which is closely relevant to our work
is co-segmentation. Rother et al. [RKMB06] originally introduced the idea of co-
segmentation, and much work has been done recently [CF13, TJLFF14, DNWZZ13,
ZDlTH13, ZJS14]. Ma et al. [MLQH17] used an L1-manifold hypergraph joint-
cut framework for unsupervised multi-class video co-segmentation. Taniai et al.
[TSS16] used a hierarchical Markov Random Field to jointly recover co-segmentation
and dense per-pixel correspondence between two images. Wang et al. [WHS+16]
used a spatio-temporal energy minimization formulation for object co-segmentation
across multiple videos containing irrelevant frames. Similar to our work, [FXZL14]
used general object proposals as candidate regions. They further used a multi-state
selection graph model to jointly optimize the segmentation of multiple objects.

However, one basic assumption behind existing co-segmentation methods is that
the same object instances should be present under different background contexts
for multiple input sources (with some exceptions aimed for dealing with intra-class
variability of foreground objects, E.g., [JBP10, RSLP12]). On the other hand,
the task of discovering objects of joint attention presupposes that multiple cameras
capture exactly the same scene (but possibly from different points of view). This
prevents direct applications of existing co-segmentation methods and requires an
additional cue to identify objects to be discovered, which is the points-of-gaze data
in our work.

In the following subsection, we introduce the most important related study on co-
segmentation. This work uses region proposals for video co-segmentation, but with-
out utilizing gaze information.
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2.1.1. Object Based Multiple Foreground Video
Co-segmentation

Fu et al. [FXZL14] presented a video co-segmentation method that uses category-
independent object proposals as its basic element, which is similar to our work. They
observed that co-segmentation methods based on low-level appearance features may
not adequately discriminate between the foreground and background. Also, object-
based methods designed for single video segmentation do not take advantage of the
joint information between videos.

Consequently, they proposed an Object-based Multiple foreground Video Co-segmentation
method (ObMiC). By utilizing an object-based framework they can robustly and
meaningfully separate foreground and background regions in images and individ-
ual videos, and then by constructing a co-selection graph they can connect each
foreground candidate in multiple videos, thus performing the video co-segmentation
task. Furthermore, since there are often cases where multiple objects appear in
video, they extended the graph model to allow selection of multiple states in each
node. This multistate selection graph is additionally able to accommodate the cases
of a single foreground and/or a single video, and can be optimized by existing energy
minimization techniques.

In the experiments, they evaluated their model in two cases: single foreground video
co-segmentation and multiple foreground video co-segmentation. The baselines in-
clude co-saliency detection [FCT13], object-based proposals [EH10], object based
image co-segmentation [MLLN12], Object-based video segmentation [ZJS13], Multi-
class image co-segmentation [JBP12], and Multi-class video co-segmentation [CF13].
By utilizing both inter video and intra video constraints, their method achieves best
performance in both cases. However, their method assumes the the existence of a
common object proposal among the videos. When common objects exist, but not in
all the videos, our method can still extract them, but will also extract an unrelated
region in videos where the common object is missing.

Our work is different from this work in multiple disciplines. In our case, we use gaze
information to explicitly represent the spatial location of the object of interest, and
we add intra and inter video constraints to avoid the noise of gaze measurement and
to predict object of joint attention. Also, including this work, other works on co-
segmentation are all based on the assumption that the same object instances should
be present under different background contexts for multiple input sources, but since
in our problem setting all first person videos are looking at exactly the same scene,
all the previous image/video co-segmentation methods cannot be directly used in
our work.
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2.2. Joint Attention Estimation

Our work tackles the phenomenon of joint attention, which is of great impor-
tance to social cognition [MN07, See11], early language[TF86], and the research of
autism[CSBC+97]. The pioneering work is first proposed by Kera et al. [KYHS16]
for discovering joint attention using eye-tracking cameras and extended in [HCK+17].
The method in this paper is an extension based on [HCK+17], which differs from
[KYHS16] in multiple aspects. (1) Unlike our method that takes into account ob-
ject segments of joint attention, their method estimates when joint attention occurs
simply by examining feature similarities of spatio-temporal tubes of different sizes
around the points of gaze. As a result, their method tends to be susceptible to error
in point-of-gaze measurements and have difficulty in dealing with cluttered scenes:
when the points-of-gaze data is wrongly measured, the direct use of spatial location
of this wrong gaze position for feature extraction is apparently inappropriate. And
when the scene is cluttered, extracting features from a region with large size would
contain other objects as distraction, and from a region with small size may only
include part of the object being looked at.

Our work shares some technical concepts in terms of measuring visual similarity of
regions being looked at, the outputs are completely different. While [KYHS16] only
localizes joint attention temporally, we can also segment objects of joint attention
spatially. (2) When regarding joint attention of multiple persons, our method is
able to treat all the possible sub-groups, while [KYHS16] only considers the joint
attention of all people in the group. (3) the new model proposed in this paper
furthermore takes logical relations of joint attention into account, which further
improves the performance of temporal localization of joint attention.

Other related works include the analysis of "social saliency". Park et al. [PJS12,
SPS15, SPJS13, SHSP17] introduced the notion of 3D social saliency in order to
analyze interactions among people by using their first-person videos. The social
saliency is modeled as an intersection of multiple 3D gaze directions. If multiple
3D gaze directions intersect, that indicates there is something near the intersection
to which multiple people are attended. However, their method cannot differentiate
the case of true joint attention from that of accidentally intersecting gaze directions
where people are looking at different things behind the intersection. This is because
Park et al.’s method is purely 3D geometry based, so intersections of fields-of-view of
multiple wearable cameras do not necessarily correspond to objects of joint attention.

We introduce two closely related works in detail in the following subsections. The
two works both address the problem of discovering the common interest of multiple
people with first person cameras. Although neither of them contains both spatial
segmentation and temporal localization, their goal is very similar to ours.
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2.2.1. 3D Camera Pose Based Social Saliency Prediction

Park et al. [SPS15] presented a method to predict social saliency, i.e., the likelihood
of joint attention in 3D space. They provided an example in which an artificial agent
that is trying to go through the crowd of people in a social scene. The agent tries to
plan its trajectory not only to avoid colliding with people but also avoid occluding
sights of people. To this end, the agent must understand the location attracting the
attention of the social group, i.e., social saliency.

Given a social group and location of each member, they estimate the direction of
joint attention from the center of the mass of the social group. To describe the
distribution of a social group, the authors defined social formulation feature, and
trained a binary ensemble classifier from a collection of such features. A continuous
social saliency map of the target scene is generated with the classifier, which can be
seen as the likelihood of joint attention. Given the situation where multiple groups
exist simutaneously, the authors also presented a method to assort people into their
social groups based on their geometric relationship. They first generate candidates
of social groups based on the spatial distribution of social members and then solved
a minimization problem to select proper set of social groups. The minimization is
designed so that the centers of different social groups are distant and also, each
member in the scene belongs to no more than one group.

In the experiments, they evaluated their method with various social interaction
scenes captured by first-person videos. They used 3D reconstruction of first-person
videos to measure joint attention, locations of associated members, and directions
they are facing to over time. Their experiments demonstrated that their method is
able to discover places in social scenes that attract attentions of people.

In spite of sharing similar goals, since they do not use gaze information, their method
is only able to offer where is attracting the attentions of people, but cannot offer
what is attracting the attentions. In our daily life, it is not unusual that many
objects are closely located. People’s interest can be shifted from objects to objects
with subtle head pose change. For instance, in the Figure 1.1(1) and (2), the camera
wearers are not looking at the objects in the center of their views, but at the cards.
This information cannot be obtained without points of gaze. In this way, it is
difficult to tell which object is focused on by people without points-of-gaze and just
by knowing the social saliency. Furthermore, their work requires 3D models of the
social scenes, which are not always available and are very costly to compute. In
contrast to their work, this thesis presents a method to discover objects of joint
attention, where points-of-gaze data illuminate which part in first-person vision the
wearers are attended to over time. Also, in our work the spatial segment of the object
of joint attention is also estimated, which is more precise than a brief location in 3D
space.
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2.2.2. Discovering Temporal Interval of Shared Attention

Kera et al. [KYHS16] presented a method for temporally localizing objects of shared
attention using multiple first person cameras. This is the pioneering work on dis-
covering objects of joint attention, and our work is inspired and extended from this
work. Similar to this thesis, shared attention (or joint attention in this thesis) is
defined as events that multiple people are looking at the identical object within a
certain time interval. Here objects include boxes, tables, walls, persons, projected
screens, and so forth. Interactions among the people are not required (while these
are expected to exist) for the establishment of joint attention.
One fundamental challenge then arises in discovering the temporal interval contain-
ing objects of joint attention, is how to appropriately define the region of interest,
from which to extract object features for commonality comparison. Although the
point of gaze data illuminates the location of interest in the video, it does not tell
which part is the region of objects. The region of objects around points of gaze
largely depends on object sizes and viewpoints. A region too large may include
many unrelated background, while a region too small may cause a small gaze shift
inside an object be treated as attention shift between objects.
To address these problems, they proposed a multiscale approach for object feature
extraction. In particular, visual features are extracted around points of gaze with
several different areas to take into account the size variability of objects. These
visual features are further used to segment an input video into shots based on several
different affinity criteria so that for each attention on objects there is at least one
shot that properly covers the attention on a single object. This approach allows
them to generate several different scales of spatiotemporal tubes around points of
gaze, where some of them are expected to match closely actual regions of objects
being viewed. A group of tubes with similar features is discovered for each scale
via unsupervised commonality clustering. Discovery results are finally integrated
across scales to find various sizes of objects of shared attention reliably. In their
experiments they showed competitive results against many commonality clustering
and co-localization methods.
Our work originates from this work, and furthermore extended this work in multiple
directions. Technically, we enhanced the method for temporally localization of joint
attention. Wider speaking, we achieve another goal which is that our method is also
able to spatially segment the objects of joint attention. To be precise, our work is
different from this work in three key perspectives: firstly, although in this work the
authors used spatiotemporal tubes, the spatial area is only different sizes around gaze
position, which may be inappropriate under cluttered scenes. This thesis instead use
object segments as region for extracting features, making it possible to find the real
object of attention separately from other objects. Secondly, we not only determine
the temporal interval of joint attention, but also output the spatial segmentation of
joint attention. Thirdly, we extended the definition of joint attention, to enable the
detection of joint attention among sub-groups. This work defined joint attention of
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multiple people to be established only when all of the people in the group jointly
attend to a same object, while our work is able to discover all possible states of joint
attention, between part of people in a group.

2.3. Gaze-guided Computer Vision

The use of gaze information has significantly increased performance of numerous
computer vision tasks [FLR12, SRSM13, YPS+13, XML+15, YRLS15], since point-
of-gaze data illuminates the region of attention in the video or image. In [SRSM13]
higher accuracy of action classification and localization was achieved by using gaze
in the form of a weak supervisory signal. In [XML+15] gaze fixation was explored
to help video summarization, by allowing generation of personalized summaries.
In [YRLS15], eye-gaze patterns are used for multitask clustering to recognize first-
person daily actions. By utilizing gaze information, it is possible for us to pinpoint
the object of joint attention, enabling us to better spatially segment and temporally
localize the objects of joint attention. In contrast to most previous work that used
gaze information only from a single person, our work explore the gaze information
in a collective way for an interesting topic - temporally localizing moments of joint
attention and spatially segmenting objects of joint attention.

The following subsection describes a related work on gaze guided computer vision,
which leverages point of gaze information as a cue for first person action recognition
and other computer vision tasks like segmentation.

2.3.1. First-person Action Recognition Using Gaze

Fathi et al. [FLR12] first adopted gaze information into the task of first-person
action recognition. One of the biggest difference between first-person action recog-
nition and general action recognition is the huge ego-motion included in first-person
videos. While this issue has been addressed in previous works [FRR11], the rela-
tionship between gaze and ego-motion is only first tackled in [FLR12]. As is well
known, human attention and gaze are directed in a top-down task-dependent and
goal-oriented manner [Yar67], this work utilized this fact and developed a top-down
approach that utilizes fixation locations to help better recognize actions.

To describe the relationship between the egocentric action and the gaze location in
each frame of an image sequence, they proposed a generative probabilistic model
that observes object and appearance features as input, and infers both gaze posi-
tions and action labels. In particular, the features they used include object based
features, since objects play important roles in action recognition. They also used
appearance features to better describe the objects, since same object will have dif-
ferent appearances in different stages of an action. Furthermore, they introduced
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future manipulation features, based on the fact in the psychology literature that the
gaze is usually ahead of the hands in the hand-eye coordinate system [LH01].
Since there’s no first person video dataset containing gaze information together
with action object labels at the time, they proposed two datasets, GTEA Gaze
and GTEA Gaze+ and used both of them in their experiments. Both datasets are
recorded when different subjects are cooking meals, using eye-trackers to capture
gaze data and are manually labeled action labels. Compared with GTEA Gaze,
GTEA Gaze+ is more organized as they subjects were asked to make certain dishes
with fixed recipe. In their experiment, the accuracy of action recognition given gaze
(47%) is significantly higher than that without the aid of gaze information (27%).
Inversely, gaze prediction results given action labels is also improved. Finally, the
joint inference of gaze positions and action labels got best performance in both gaze
prediction task and action recognition task.
While this work utilize gaze information, our work utilize gaze information in a
collective way. We use synchronized point-of-gaze data from multiple first-person
camera wearers for a different task - temporally localize and spatially segment the
objects of joint attention.
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3. Proposed Method

3.1. Model Architecture

Our model bases a hierarchical CRF that comprises several linear-chain CRFs as
a sub-module. For simplicity of explanation, here we exclusively present a simple
case for modeling joint attention of two persons. Figure 3.1 (a) depicts the overall
architecture of the two-person case. Later we will show that our model can be easily
extended to general cases where more than two people exist.
Let jt ∈ {0, 1} be a latent binary variable indexed by time-frame, where jt = 1
means the two people establish joint attention at frame t and jt = 0 otherwise. For
the p-th video recorded by the p-th person (we here consider p ∈ {1, 2} for two-
person cases), we denote by R(p)

t = {r(p)
t,1 , r

(p)
t,2 , . . . }, a set of region proposals (spatial

segments) at frame t. This can be generated by any region proposal method such

st
(2) st+1

(2)

st
(1) st+1

(2)

jt jt+1

gt
( p) gt+1

( p)

gt
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Figure 3.1.: Proposed Hierarchical CRF Model for discovering joint attention
of two persons. The model accepts points of gaze g(p)

t as the input (green circles
in (b), p ∈ {1, 2}) and estimate segments s(p)

t being looked at (red boundaries in
(b)) as well as binary state jt indicating whether the two persons establish joint
attention or not.
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as selective search [UvdSGS13] that provides spatial segments as object candidates.
Then, the object segment looked at by the p-th person is described by s(p)

t ∈ R(p)
t

(e.g., red boundaries in Figure 3.1 (b)). We regard s(p)
t as a latent variable as noisy

points of gaze are not necessarily located inside the segment actually being looked
at. Finally, we let g

(p)
t ∈ R2

+ be a 2D point of gaze data at frame t (green circles in
Figure 3.1 (b)), which is recorded in synchronization with the p-th video.
Now we construct the proposed model. The p-th sub-module takes points-of-gaze
data G(p) = (g(p)

1 , . . . , g
(p)
T ) as observations and segments being looked at S(p) =

(s(p)
1 . . . , s

(p)
T ) as latent variables. As a connection across the two sub-modules, two

segments s(1)
t and s(2)

t further depend on joint attention variable jt, which intuitively
means that what each person looks at depends on if the two persons look at the
same object or not. The objective function is then formulated as follows:

Ψ(S(1), S(2), J | G(1), G(2)) =
∑

p∈{1,2}
ΨGO(S(p) | G(p))

+
∑

p∈{1,2}
ΨTS(S(p))

+ ΨJA(J, S(1), S(2) | G(1), G(2))
+ ΨTJ(J),

(3.1)

where the terms ΨGO,ΨTS,ΨJA,ΨTJ are given concretely in the next section.

3.1.1. General cases

Our model can be extended to cases where N ≥ 2 persons are present. Taking
M = N(N − 1)/2 pairs of first-person videos and points-of-gaze data as input, our
extended model comprisesM linear-chain CRFs as a sub-module. Given S = {S(p) |
p = 1, . . . , N}, G = {G(p) | p = 1, . . . , N}, and J = {J (p,q) | p, q = 1, . . . , N, p 6= q},
where J (p,q) denotes the joint attention between p and q-th persons, Eq. (3.1) is then
modified as follows:

Ψ(S,J | G) =
∑

p∈{1,...,N}
ΨGO(S(p) | G(p))

+
∑

p∈{1,...,N}
ΨTS(S(p))

+
∑

p,q∈{1,...,N},p 6=q

ΨJA(J (p,q), S(p), S(q) | G(p), G(q))

+
∑

p,q∈{1,...,N},p 6=q

ΨTJ(J (p,q))

+ ΨLJ(J ).

(3.2)

In the experiments we apply this extended model to discover joint attention of four
persons.
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(1) (2) (3) (4)

Figure 3.2.: Examples of image segments with different gaze proximity
and objectness. Compared with (2), (1) should have a higher score of being the
region of interest, since the region’s shape is more convex. Compared with (4),
(3) should have a higher score of being the region of interest, since the gaze point
is closer to the region’s center of mass.

3.2. Cues for Discovering Joint Attention

Our technical interests lie in how various cues about inputs (first-person videos
and points of gaze data) and outputs (temporal intervals and spatial segments
of joint attention) can be incorporated into the proposed model. The previous
work [KYHS16] just focuses on the visual similarity of regions being looked at across
multiple videos, which becomes problematic under practical cases when videos have
cluttered scenes and points of gaze are noisy. In what follows we define the four
terms ΨGO,ΨTS,ΨJA,ΨTJ to cope with such cases.

3.2.1. Gaze proximity and objectness

Since point-of-gaze data illuminates the region of interest in first person videos, a
segment near gaze point should be more likely to be the region of interest, than
a segment relatively far away from the gaze point. Also, the object that attracts
people’s attention should be of regular shape, a random-shaped region is not likely
to be the region of interest of the camera wearer, e.g., Figure (3.2). We base this
intuition and propose the following term ΨGO.
ΨGO describes how likely segment s(p)

t is to be looked at by p-th person given a
point of gaze g

(p)
t (gaze proximity) and how likely the segment is to be an object

(objectness). We evaluate the gaze proximity by the spatial distance between s
(p)
t

and g
(p)
t while the objectness is measured based on the shape of segments as follows:

ΨGO(S(p) | G(p)) =
T∑

t=1

λGO1
‖C(s(p)

t )− g
(p)
t ‖2

|s(p)
t |

1
2

+ λGO2
(
1− |s(p)

t |
|H(s(p)

t )|

) , (3.3)

where C(s(p)
t ) is the 2D centroid of segment s(p)

t , H(s(p)
t ) is the convex hull of s(p)

t , and
|x| is here the area of region x. The second term in the right-hand side intuitively
means that a segment with large concavities is less likely to be an object. λGO1 and
λGO2 are weight parameters that we will give concretely in Section 3.5.
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Frame t Frame t+1 (1) Frame t+1 (2)

Figure 3.3.: An example of temporal consistency of segments. The seg-
ment in "frame t+1 (1)" should be more likely to be the following segment of
"frame t", than the segment in "frame t+1 (2)".

3.2.2. Temporal consistency of segments

While the gaze proximity and objectness of segments are evaluated independently
for each time frame, segments being looked at should be visually consistent over
time as long as the people look at the same object, e.g., Figure (3.3). We, therefore,
consider the temporal consistency of segments in ΨTS. This is measured by the
visual similarity of consecutive segments as follows:

ΨTS(S(p)) = λTS

T−1∑
t=1

(
1− fsim(s(p)

t , s
(p)
t+1)

)
, (3.4)

where λTS is a weight parameter. The similarity function fsim gives the cosine simi-
larity of appearance-based features extracted from segments, which will be explained
in detail in Section 3.5. This cost term helps us to track objects over time even if
noisy points of gaze are scattered across various segments in a cluttered scene.

3.2.3. Joint attentionness

Similar to [KYHS16], we introduce the inter-video similarity of segments being
looked at. Here we make simple assumptions that 1) when people look at the same
object (jt = 1), segments across multiple videos, s(1)

t and s
(2)
t , should be visually

consistent and 2) when people pay attention to objects, their head is kept stable. A
positive and a negative example of joint attention is shown in Figure (3.4). These
two assumptions are implemented in ΨJA in the following fashion:

ΨJA(J, S(1), S(2) | G(1), G(2)) =
T∑

t=1

(
λJA1Y (jt, s

(1)
t , s

(2)
t , g

(1)
t , g

(2)
t ) + λJA2Z(jt)

)
, (3.5)

where λJA1, λJA2 are weight parameters. The term Y (jt, s
(1)
t , s

(2)
t , g

(1)
t , g

(2)
t ) measures

the visual similarity of the two segments s(1)
t and s(2)

t :

Y (jt, s
(1)
t , s

(2)
t , g

(1)
t , g

(2)
t ) = jt

(
1− fsim(s(1)

t , s
(2)
t )

)
+ (1− jt)α(g(1)

t , g
(2)
t ), (3.6)
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(1) (2) (3) (4)

Figure 3.4.: An example of joint attentionness measurement of two per-
sons. In this example, (1) and (2) are likely to have joint attention, while (3) and
(4) only have very low probability of having joint attention.

where fsim is given by the cosine similarity between two segments across videos as
in Eq. (3.4). The first term in Eq. (3.6) encourages the two segments s(1)

t , s
(2)
t to

be visually consistent when jt = 1. On the other hand, the second term is needed
in order to avoid a trivial solution where jt becomes always zero. Please note that
α(g(1)

t , g
(2)
t ) measures the cosine similarity between regions around points of gaze g

(1)
t

and g
(2)
t , instead of s(1)

t and s(2)
t . This is because the similarity of the segments s(1)

t

and s(2)
t is irrelevant when no joint attention exists, and we expect that the people

are more likely to be looking at different objects with different visual appearances.
More details on how α(g(1)

t , g
(2)
t ) is computed will be given in Section 3.5.

Z(jt) in the second term of Eq. (3.5) takes Z(jt) = jt if the magnitude of global
motion between consecutive frames is over threshold δm for either of the two videos,
and Zt(jt) = 0 otherwise. This penalizes joint attention that occurs under large
head motion and, as a result, allows us to discover joint attention only when the
two people keep their head stable.

3.2.4. Temporal consistency of joint attention

Finally, we observe that joint attention typically continues for a certain time, e.g.,
Figure (3.5). This motivates us to introduce another temporal consistency term ΨTJ
on joint attention variables J as follows:

ΨTJ(J) = λTJ

T−1∑
t=1
|jt − jt+1|, (3.7)

where λTJ is a weight parameter. ΨTJ prevents frequent onsets and offsets of joint
attention.

3.2.5. Logical consistency of joint attention

In general cases (with 3 or more people), there is logical constraints between states of
joint attention of different pairs of people. For example, if person 1 and 2 are sharing
joint attention, and meanwhile person 2 and 3 are also sharing joint attention, then it
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Frame t+1Frame t

P1

P2

1

1

0

Figure 3.5.: Example of temporal consistency of joint attention. Person
P1 and P2 are determined to have joint attention in frame t. In frame t+1, they
are more likely to maintain their state of joint attention, than to suddenly change
their state of joint atteniton.

is logical to assert that person 1 and 3 should have joint attention as well. Therefore,
we introduce the term in ΨLJ to address the logical consistency of joint attention in
general cases:

ΨLJ(J ) = λLJ

T∑
t=1

flv(Jt) (3.8)

where λLJ is a weight parameter. The function flv gives the number of logical
violations taking as input the pairwise joint attention states Jt = {j(p,q)

t |p, q ∈
{1, . . . , N}, p 6= q} for all N persons at time t. The procedure for computing flv is
given in Algorithm 1.

3.3. Parameter learning

Model parameters are jointly learned from training data which weight different com-
ponents of the model. At the parameter learning stage, annotations of object masks
and joint attention periods, and the measured points-of-gaze data are used. We
apply the annotated object masks and the measured points-of-gaze to Eq. (3.3) to
get gaze proximity and objectness scores. Similarly, we apply the annotated object
masks and the joint attention periods to Eq. (3.5) to get joint attentionness scores.
Temporal consistency scores of segments and joint attention are obtained by apply-
ing object masks and joint attention periods to Eq. (3.4) and Eq. (3.7) respectively.
Then, we use a maximum likelihood approach to estimate the optimal model pa-
rameters {λGO1, λGO2, λTS, λJA1, λJA2, λTJ, λLJ} with which the model (3.1) achieves
highest potential on the training data.
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Algorithm 1: ComputeLogicalV iolation(Jt)
X ← {{p, q}|j(p,q)

t = 1, j(p,q)
t ∈ Jt} ;

n0 ← |X | ;
repeat
S ← ∅ ;
foreach pair of Xi, Xj in X do

P ← Xi ∩Xj ;
Q← Xi ∪Xj ;
if P 6= ∅ and Q \ P /∈ X then
S ← S ∪Q \ P ;

end
end
X ← X ∪ S ;

until S = ∅;
return |X | − n0;

3.4. Model inference

Minimizing Eq. (3.1) with respect to S(1), S(2), J gives us both of the temporal
localization and the spatial segmentation of objects being looked at jointly. Here we
describe the details of model optimization for the two-person case for simplicity of
description. The two-person case can be extended easily to general cases of more
than two persons by summing the energy functions of all possible pairs and adding
the term ΨLJ(J ). Since exhaustive search on the space of all possible combinations of
object segments S(1), S(2) and joint attention states J is computationally intractable,
we take an alternative inference algorithm to optimize the model. We divide the
whole optimization procedure into three parts, each of which can be optimized
separately using Viterbi algorithm [SM+12]:
Initialization At the beginning, we use gaze proximity, objectness, and temporal
consistency of the object segments of attention to initialize S(1) and S(2) indepen-
dently:

S(1)∗, S(2)∗ = arg min
S(1),S(2)

∑
p∈{1,2}

ΨGO(S(p) | G(p)) +
∑

p∈{1,2}
ΨTS(S(p)) (3.9)

Note that this part is also used as Baseline 2 in our paper.
Temporal localization Fixing object segments obtained from the initialization
part or the spatial segmentation part, we temporally localize joint attention by uti-
lizing joint attentionness (visual similarity between object segments of two videos),
and temporal consistency of joint attention:

J∗ = arg min
J

ΨJA(J | S(1), S(2), G(1), G(2)) + ΨTJ(J) (3.10)
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(1) (2) (3) (4)

(5) (6) (7) (8)

Figure 3.6.: Example output of Selective Search [UvdSGS13]. (1) is the
original image, and (2) - (8) are the visualized different hierarchy of the output
of Selective Search. This method enables us to generate object segment proposals
of different scales.

Spatial segmentation Fixing joint attention states obtained from the temporal
localization part, we optimize object segments using information as in the initializa-
tion part, and also the information from the other video if joint attention happens.

S(1)∗, S(2)∗ = arg min
S(1),S(2)

∑
p∈{1,2}

ΨGO(S(p) | G(p))

+
∑

p∈{1,2}
ΨTS(S(p)) + ΨJA(S(1), S(2) | J)

(3.11)

As summarized in Algorithm 2, the initialization part is executed only once at
the beginning. After that, we alternatively run the temporal localization part and
spatial segmentation part until the change rate of J is below a certain threshold ξ
(set as 0.02).

Algorithm 2: Alternative inference algorithm
Result: Optimized S(1), S(2) and J
Initialize segmentation S(1) and S(2) using Eq. (3.9) ;
while Change rate ≥ ξ do

Optimize J by fixing S(1), S(2) using Eq. (3.10);
Optimize S(1), S(2) by fixing J using Eq. (3.11);
Estimate Change rate of J ;

end
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3.5. Implementation Details

We generate segment sets R(p)
t by Selective Search [UvdSGS13] per frame, making

use of region masks and the bounding boxes. An example of the output region
proposal is shown in Figure (3.6). For the region features extracted for comparing
visual similarity, we first compute 1000-dimensional deep descriptors by feeding a
pre-trained deep neural network (we used pre-trained network model from [SZ14])
using the cropped, warped box with the background of the region masked out (with
the mean image), like [HAGM14]. We also compute HSV color histogram by dis-
cretizing each color channel into 16 bins, normalizing them independently and then
concatenating them into 48-dimensional feature vectors. We then concatenate those
features to form a final 1048 dimensional feature vector for comparing region visual
similarity.
To compute global motion of videos we use the Lucas-Kanade method, and set the
threshold to δm < 1.5. For computing α(g(1)

t , g
(2)
t ), we first compare the visual

similarity of circular regions around points of gaze at multiple scales (15, 25, 50
pixel-radius) similar to [KYHS16] and then select the maximum similarity.
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4. Experiments

To evaluate the performance of the proposed approach on both tasks of temporal
localization and spatial segmentation of jointly attended objects, we collected a new
dataset that recorded realistic social interaction scenes with multiple wearable eye-
tracking cameras. We divide our dataset into two parts: two persons cases and
general cases, to test our proposed algorithms on such two situations.

Figure 4.1.: Example images in our dataset. Our dataset include two-person
cases (top-left), and general cases: three-person cases on the top-right, and four-
person cases at bottom.
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4.1. Two persons cases

Following [KYHS16], we first address the cases where two persons in interactions
establish joint attention under several different formations and will particularize
more general cases in the following section.

4.1.1. Experimental Setting

For each of the formations side-by-side (SbS) and face-to-face (FtF) originally
presented in [KYHS16], we further divide it into two different scenarios where people
shift attention between objects with large head motion or small head motion. For
the first scenario (SbS), objects are placed close to each other, which requires only
a slight shift in attention with little head motion. For the other scenario, objects
are placed on two tables distant to each other, which induces large head rotations
(over 90 degrees) to shift attention between the objects. As a result, we evaluate
the methods for four different recording conditions in total: SbS-large, SbS-small,
FtF-large, FtF-small.
Our dataset is collected in four different indoor environments. For each environ-
ment, we use a diverse set of objects for joint attention. During each recording,
subjects were asked to establish joint attention on different objects placed at dif-
ferent locations, just as what they do in everyday interactions. In the two-person
cases, 24 pairs of first-person videos and points-of-gaze data were recorded in total.
The dataset is now publicly available online1. Each participant was equipped with a
Tobii Pro Glass 2 that was calibrated and manually synchronized for each recording.
During recording, one subject first describes or interacts with an object, and then
the other subject turns attention to it. This is repeated several times to form a
whole sequence. Videos were recorded at 25-fps with the resolution of 1920× 1080.
Ground-truth labels for temporal localization were annotated by manual inspections
from all participants of each recording. Then we used GrabCut [RKB04] to generate
binary masks of objects being looked at jointly for a total of 1250 sampled frames,
as ground-truth labels for the segmentation task.
We first address the task of spatially segmenting jointly attended objects. The
intersection-over-union (IoU) ratio is used as an evaluation metric. We adopt the
following three baselines:

ObMiC [FXZL14]. This method is one of the most relevant method to our work as
it used region proposals and considered temporal consistency for co-segmenting
objects across multiple videos. We introduce this baseline to see how points-
of-gaze information guides the segmentation of objects being looked at jointly
since this baseline method is not utilizing the information from point-of-gaze
data.

1https://github.com/cai-mj/UTJA_dataset
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Figure 4.2.: Segmenting Objects of Joint Attention: Examples. Red
boundaries indicate jointly-attended object segments and green circles describe
points of gaze. The first two rows describe the ground truth segments for the two
input videos. The remaining rows show segmentation results in the second video,
performed by our method and the three other baselines.

Baseline1. In order to see if points-of-gaze information alone works well for seg-
menting objects of joint attention, this simplified version of the proposed model
employs the only ΨGO, the first term of Eq. (3.1), while abnegating temporal
consistency between segments and the effect of joint attention.

Baseline2. In this baseline, we aim to see how the cue of temporal consistency
helps stable segmentation under cluttered scenes and noisy points of gaze.
Specifically, we use ΨGO and ΨTS, which means that we optimize multiple
linear-chain CRF sub-modules independently without considering the cues
about joint attention.

Quantitative results are shown in Table 4.1. The proposed model clearly outper-
forms ObMiC [FXZL14] that did not use gaze information. The proposed model
also performs consistently better than the two baselines, indicating the necessity of
temporal consistency cue ΨTS and joint attention cues ΨJS,ΨTJ. By comparing the
four recording conditions, it can be seen that FtF formations are generally more
challenging than SbS ones. This is typically due to a large difference of viewpoints
between the two persons in the FtF formation, causing object appearance inconsis-
tent across videos. In addition, the segmentation performance often degrades under
large head motion due to unstable eye tracking and motion blur.
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Method FtF-large FtF-small SbS-large SbS-small Avg.
ObMiC [FXZL14] 0.287 0.212 0.065 0.336 0.225
Baseline1 0.552 0.599 0.681 0.691 0.631
Baseline2 0.611 0.629 0.723 0.726 0.672
Ours 0.633 0.660 0.730 0.735 0.690

Table 4.1.: Quantitative Comparisons on Segmentation Task of Two-
person Cases: Intersection-over-union (IoU) ratio for four different recording
conditions of two persons.

Method FtF-large (%) FtF-small (%) SbS-large (%) SbS-small (%) Avg. (%)
P R P R P R P R F1 score

Kera et al. 74.5 89.7 69.7 93.8 72.9 96.5 67.1 83.4 79.0
Ours 91.9 92.8 84.7 86.5 94.3 92.6 79.7 98.7 89.3

Table 4.2.: Quantitative Comparisons on Temporal Localization Task:
Precision (P) and recall (R) scores for each condition as well as the F1 score
averaged over all the conditions.

Figure 4.2 shows some qualitative results of our experiment on two person cases.
Without using gaze information, ObMiC [FXZL14] may not be able to correctly
localize the attended object, resulting a poor performance on IoU. As shown in the
examples (a) and (b), the proposed model is able to find the correct object segment
even when the noisy point-of-gaze is outside the object of attention by taking into
account temporal consistency. Baseline methods under-segment or over-segment
objects in the examples (c), (d), and (e), (f), while our method can perform a stable
segmentation thanks to the cues of joint attention. Additionally as shown in example
(d), our method is able to segment a consistent interpretation of the object of joint
attention: the whole teddy bear, but not jumping between the interpretations of
"the head of the bear" and "the whole bear".

More importantly, we observe in the experiments that the per-frame score of ob-
jective function monotonically decreases at each step of iteration (see Figure 4.3),
which validates our claim that accurate segmentation guides accurate temporal lo-
calization, and vice versa.

4.1.2. Temporal Localization Task

Next, we address the task of temporal localization of joint attention. Here we
compare our approach against [KYHS16] which is the only relevant work for the
same task to the best of our knowledge. As shown in Table 4.2, the baseline
method [KYHS16] is prone to obtain higher recall/lower precision scores, indicating
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Figure 4.3.: Per-frame objective function score at each iteration. Note that not all
video pairs enter Iteration 3, and the scores of those which terminate at Iteration
2 are treated as static in Iteration 3.

that irrelevant temporal intervals tend to be judged as joint attention periods. On
the other hand, our approach can obtain more balanced precision and recall scores
and a much higher F1 score (by more than 10%).
By comparing four different recording conditions, the performance on FtF cases
are worse than that on SbS cases due to object appearance disparity. However,
our method performs better under large head motion since head motion works as a
constraint (as shown in Eq. (3.5)) in predicting joint attention.

4.2. General cases

We also collected three and four-persons interaction data to evaluate the extended
version of our model presented in Section 3.1.

4.2.1. Experiment Settings

Without loss of generality, we use three and four person cases to represent general
cases where a group of people collaboratively doing tasks. In three or four person
cases, people take round formulation naturally (triangle formulation for three people,
and square formulation for four). In three persons case, three participants were asked
to sit in triangle formation around a table, as shown in Figure (1.1), to play a card
game. In four persons cases, participants took square formation, and were asked to
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perform tasks such as passing-receiving, assembling building blocks. The formation
makes it hard to separate people as FtF or SbS, so we evaluate performances people-
orientedly. Here we collected 11 groups of first person videos with synchronized
points-of-gaze data, in which there are 8 four-person groups and 3 three-person
group. We manually synchronize the videos between different persons and label the
ground truth of all the data. Other settings are congruent with that of two person
cases.

t
P3

P2

P1

P3

P2

P1

(a) (b) (c) (d)

Person Ground Truth

Predicted

Figure 4.4.: Joint Attention Discovery for Three Persons Case. The top
half shows the ground truth and predicted results of temporal localization. The
bottom half depicts some segmentation results in pink boundaries and points
of gaze in green circles. Images highlighted in pink borders are judged as joint
attention periods by the proposed model.

4.2.2. Three persons cases

As three person cases are only the sub-problems of four person cases, without loss
of generality, we only show the qualitative results on both tasks for the sake of
simplicity.
Figure (4.4) depicts qualitative results. We confirm that joint attention is discovered
correctly when (a) persons P1 and P3 jointly pay attention to the same card in P3’s
hand and (d) P1, P2, P3 all look at the same card on the table. On the other hand,
false negative (P1 and P2, P3 are jointly looking at the same cards but P1 is not
considered as one participant of joint attention) and false positive (P1 and P3 are
looking at different set of cards but they are determined to be establishing joint
attention in this time period) results are found in (b) and (c), respectively. These
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Method Person1 Person2 Person3 person4 Avg.
ObMiC 0.016 0.087 0.039 0.181 0.081
Baseline1 0.524 0.446 0.635 0.438 0.511
Baseline2 0.656 0.572 0.696 0.606 0.632
Huang et al. 0.707 0.592 0.740 0.601 0.660
Ours 0.713 0.622 0.721 0.613 0.667

Table 4.3.: Quantitative Comparisons on Segmentation Task: Intersection-
over-union (IoU) for four different persons in four persons cases.

failure cases imply some potential limitations of our approach, which we will discuss
in the next chapter.

4.2.3. Four person cases

We mainly use four person cases to analyze the performance of our extended model,
since three person cases are only a sub-problem of four person cases. In the temporal
localization task, we again use IoU as evaluation metric. Other than the two base-
lines discussed in section 4.1.1, we add another baseline (Huang et al.[HCK+17]),
which is our model without the extension of logical relationship. In this baseline,
we would like to see how the accuracy of joint attention state effect the segmenta-
tion IoU ratio. We show qualitative results of both tasks in Figure (4.5). We can
conclude from the figure that our method successfully detected the case of no joint
attention in (a), the case of joint attention of two two-person sub-group in (b), the
joint attention of a three-person sub-group in (c), and the case where all of the four
persons establish joint attention in (e). (d) represents a failure case where P1, P2
and P3 are all casting attention to the teddy bear, while P3 is not determined to
be establishing joint attention together with P1 and P2, because of the viewpoint
difference enlarged the appearance difference, and our method is purely appearance
based.
Quantitative results are shown in Table (4.3). The proposed model outperforms all
baselines on average IoU ratios. From the comparison of Huang et al.and our method
with the extension of logical relationship, we can conclude two points. Firstly,
the use of logical relationship benefits the temporal localization of joint attention.
Secondly, (shown in Figure 4.6) with more accurate temporal localization of joint
attention state, the spatial segmentation result can also be improved.
Quantitative results of the temporal localization task is shown in Figure (4.6). We
use three baselines here. Other than [KYHS16] and [HCK+17], we consider the
segment only method (segment-based), which is our model only using only ΨGO, the
first term of Eq.(3.3). Here we consider several definitions of joint attention: pair is
the smallest condition where we consider the joint attention of each pair of persons.
Triplet indicates we consider joint attention from a triplet’s perspective (e.g. there
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P3

P2

P1

(a) (b) (c) (d)

P4

(e)

Figure 4.5.: Examples of temporal localization and spatial segmentation results
of 4 persons cases dataset. In each image, green circle indicates gaze position.
Object segment is highlighted using red boundaries inside each image. Images
borders highlited using same color are judged as joint attention periods by our
proposed model.

are three different triplets in a group of four): whether three people jointly attend
to one object simultaneously. Quadruplet is the case where we consider the group
as a whole, whether all of the four people attend to the object or not. We observed
that our method achieves best performance (in F1 scores) in all cases. From the
comparison of [KYHS16] and the segment-based method, we can see that the use of
image segment as regions for feature extraction is a better choice for describing the
object of interest, since as we have discussed, less background and less regions of
other objects would be included. From the comparison of our model with [HCK+17],
we can conclude that the use of logical consistency of joint attention is helpful for
the temporal localization task.
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Figure 4.6.: Quantitative Comparisons on Temporal Localization Task:
Precision-recall scores for different methods and different definitions of joint
attention.
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5. Discussion

5.1. Impact of noise in gaze measurements

Our dataset is collected using a relatively expensive wearable eye-tracking camera
- Tobii Glass 2, which has more stable gaze measurement than other cheaper wear-
able eye-tracking devices. Such device is not suitable for large scale deployment.
Although appropriate for larger scale deployment, a cheaper wearable eye-tracking
camera may include larger noise in gaze measurement.
To have a better knowledge about the impact of noise in gaze measurements on the
task performance, which may come from a cheaper eye-tracking device, calibration
error, or a more complex interaction scene, we add additional synthetic Gaussian
noises of different scales to the points-of-gaze data recorded by Tobii Glass 2 in our
dataset. We then compare the performance of temporal localization task and spatial
segmentation task between our method and several baselines: Huang et al. is our
model without considering logic relationships, and Segment based is our simplified
model that only uses gaze information, the first term of Eq. (3.3). We use the four
person dataset in this comparison experiment.
We add Gaussian noises with zero means and different standard deviations (σ =
2.5, 5, 7.5, 10, 12.5, 15 pixels) to simulate different scales of gaze noises. Note that
the reduced image resolution in process is 480×270 pixels, and the average distance
between the measured gaze position and the nearest object border is 10.28 pixels.
As noise scale increases, our method’s performance degrade but still gets the best
performance.
We also add Gaussian noises with different means (µ = [2.5, 2.5], [5, 5], ..., [15, 15])
to simulate different scales of gaze bias, possibly caused by calibration error. Quan-
titative results are shown in Figure (5.1). With small gaze bias so that the mean of
the noised gaze positions is within most of the attended objects (i.e., µ ≤ [10, 10]),
our method can still get a reliable performance. With larger gaze bias, our method
can still outperform the two baselines.
According to Figure (5.1), our method consistently outperform the two baselines
temporal localization task. We observe our method have a high recall score when
noise scale or bias is larger than 10 pixels. Since gaze position get consistently out of
object boundary in such circumstances, our method tend to look at the background
and consider all the frames as joint attention. This indicates a weakness of out
method, which we will discuss in the following section.
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Figure 5.1.: Impact of gaze noise: F1 scores of temporal localization task with
different types of noise added to gaze data. Noise scale is indicated by standard
deviation of zero-mean Gaussian noises in pixels (px) with image resolution of
480 × 270. Noise bias is indicated by Gaussian mean in pixels with standard
deviation = 1.
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5.2. Limitation of appearance-based methods

While the proposed approach outperforms existing co-segmentation [FXZL14] and
joint-attention discovery [KYHS16] methods, there are some limitations on our
appearance-based approach. First, currently we can’t segment objects with quite
dissimilar appearances from different viewpoints. This limitation causes the failure
in Figure 4.4 (b) and degrades the performance in the FtF conditions in Table 4.1.
In addition, different objects with similar appearance, like the cards in Figure 4.4
(c), cannot be distinguished by our approach. Finally, our assumption about stable
head pose during joint attention will not always hold for more challenging scenarios
where people can move (e.g., walking) during interactions. One possible solution
to address these limitations is by making use of 3D geometric relationship of the
people, though it requires costly computation for stable 3D reconstructions. We
leave this for our future work.
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6. Conclusion and Future work

In this thesis, we propose a new method for temporally localizing and spatially seg-
menting objects of joint attention in multiple first person videos recorded with gaze
data. Since objects of joint attention reflect the contexts of the social interactions
in our daily life, discovering such objects should be helpful for the further under-
standing of first-person visions. Since objects of joint attention also reflect group
behaviour, the deeper research on discovering objects of joint attention will help
the anthropological or psychological analysis of human group behaviours. The main
challenges to be solved for this task is how to deal with the object size variabil-
ity across objects, the noise in gaze measurement, and how to deal with different
interpretations of one object.

The key idea of our approach presented in this thesis is to use object segment
proposals together with intra and inter video consistency. The use of object segment
proposals can address the challenge of object size variability, and the utilization of
inter and intra video consistency tackles the noise in gaze measurement, and can
produce a semantically consistent interpretation of objects. For the general cases
with more than two persons, we furthermore add the logical consistency of joint
attention. The two coupled tasks are solved together in a unified framework, which
alternates temporal localization of joint attention and spatial segmentation of jointly
attended objects. A new dataset is collected for evaluating the performance of
different methods. Our experimental results include the experiment on two person
cases and more general cases. The experiment results demonstrate that our approach
is able to achieve state-of-the-art performance in both temporal localization task and
spatial segmentation task. Since our dataset is collected using a relatively expensive
equipment which is not always available for larger scale applications, we simulated
the situations when a cheaper equipment is used to capture point-of-gaze data, by
adding synthetic noise into the point-of-gaze data. Our extra experiment results
demonstrate that our method works better than the baselines even when point-of-
gaze data is noisy.

We also analyzed the limitations of our method and will tackle those in our future
work. Some limitations are caused by that our method only uses the appearance-
based feature to describe objects. With such features, it is difficult to match objects
which largely differ in their appearances across views due to lighting conditions or
object designs, also it is difficult to distinguish the situation where different objects
share too similar visual features 6.1. Another limitation is the assumption of stable
head movement, which is not always true in real social interactions. Currently, our
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(1) (2) (3) (4)

Figure 6.1.: Example failure cases produced by our method. (1) and (2)
are different pieces of paper, but due to their visual similarity, they are predicted
as object of joint attention by our method, even though they are not one object.
(3) and (4) are the same set of cards. However, since their appearance appear
too differently due to the two subject’s view point difference, these cards are not
predicted as object of joint attention by our method.

method only works well when the object is static so that the camera wearer would
have stable head motion during fixation. However, if in the case where two persons
are both looking at a moving car, our method will fail. Additionally, although the
use of gaze data provided a significant cue for the object of attention, the gaze data
itself is not always available.
Based on the analysis of limitations and the insights we obtained from the results
of the experiments, we list up several future directions of this work.

Incorporating non-appearance-based features As already discussed in Section
5.2, incorporating non-appearance-based features will be helpful for temporal lo-
calizing objects of joint attention in more difficult cases, and in turn enhance the
performance of spatial segmentation task. With geometric relationships (E.g., where
he/she is, which direction he/she is facing to) among people in a group, we can avoid
matching different objects that share similar appearance that two persons are facing
to different places. We can also avoid wasteful computation with such information
when people are obviously looking at different directions.

Enabling more general motion situations In this thesis, we only consider the
case where both people are looking at a static object as joint attention. However,
as is discussed in Section 5.2, a more realistic setting should not limit the camera
wearer’s head motion. An obvious extension of this work is to enable more general
motion situations. This requires the joint use of appearance feature and motion
patterns. When two persons match motion patterns and share similar appearance
features, it is possible that joint attention is established upon a moving object.

Using gaze estimation Although relatively accurate in gaze measurement, the
Tobii Glasses 2 we used in this thesis is relatively expensive for daily use. An
interesting extension of this work would then be detecting objects of joint attention
without using measured gaze data, but using estimated gaze data. The use of
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estimated gaze data would certainly affect the performance of the task, but would
make this research more applicable.

Using object re-identification The problem of re-identification [ZYH16] is an
emerging topic in recent years. Although most of the work only deals with person
or pedestrians, the idea of re-identification is very suitable for our task of discov-
ering objects of joint attention. During our experiment, we observed that during
one specific task, there are certain objects that will attract joint attention multiple
times. By adopting the idea of object re-identification, we may be able to find the
most relevant object of joint attention, which may be of use for future studies on
psychology and group behaviour.
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A. Additional Results

Our dataset is collected in three different indoor environments. For each environ-
ment, we use a diverse set of objects for joint attention. Figure (A.1) and Fig-
ure (A.2) show some additional qualitative results on different environments and
different object sets. In all figures, green lines represent the ground truth temporal
interval of joint attention. The broken parts of the green lines indicate there’s no
joint attention during such time. Red lines demonstrate the predicted temporal in-
terval of joint attention status in a similar fashion. In each experiment we manually
visualize some samples of spatial segmentation results produced by our method. The
visualized samples include both successful cases and failure cases.
We also show some figures of three and four person cases. Figure (A.3) shows an
example qualitative result on a three person case. In (a) of this figure, the three
subjects are actually jointly attending the smart-phone placed on top of the laptop.
However, Although our method successfully detected the temporal interval of joint
attention, but the spatial segment is incorrect. As we have already discussed in
chapter 1, the multiple interpretation of object is a big challenge here. We may
think the laptop and the smart-phone as a same combined object, or we may think
they are two separated objects. Our experimental result is consistent with our claim
that we output a semantically consistent spatial segment of the object. Figure (A.5)
and (A.4) show two examples of four person cases. In four person cases, since there
may be multiple sub-groups jointly attending at different objects, we distinguish
them by using slightly different colors. In (a) of Figure (A.5), P1 and P2 are not
determined to have joint attention since P2 has large head motion, and is actually
taking a glance at the can P1 is looking at.
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Figure A.1.: Qualitative results in different indoor environments.
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Figure A.2.: Qualitative results for different object sets in the same indoor
environment.
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Figure A.3.: Additional qualitative results for three person cases.
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Figure A.4.: Additional qualitative results for four person cases.
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Figure A.5.: Additional qualitative results for four person cases. In case of differ-
ent sub-group of joint attention appears, the temporal state of joint attention is
denoted using 2 different colors as shown in the legends.
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