¥ THE UNIVERSITY OF TOKYO

MASTER THESIS

Research on Advanced Temporal
Matching Kernel toward High
Performance Video Event Retrieval

1 X N D SR EALD 72 D DR
IIRE 7 — 2 LD EIZBE 3 A HF5E

Author: Supervisor:
Fan YANG Prof. Shin’ichi SATOH

A thesis submitted in fulfillment of the requirements
for the degree of Master of Engineering

in the

Information and Communication Engineering
Graduate School of Information Science and Technology

Student ID: 48-166464

February 5, 2018






iii

THE UNIVERSITY OF TOKYO

Abstract

Information and Communication Engineering
Graduate School of Information Science and Technology

Master of Engineering

Research on Advanced Temporal Matching Kernel toward High
Performance Video Event Retrieval

by Fan YANG

This research is addressing the problem of content-based video retrieval in
a large video database. Most of previous approaches for solving this task
are based on bag of features. However, they are incapable of localizing the
content of interest within retrieved videos, while temporal information em-
bedded methods are competent on it. The frustrating fact is that the latter
group of methods showed inferior retrieval performance. In this paper, we
propose novel methods to improve the unsatisfactory performance of tem-
poral matching kernel.

The proposed methods are aiming at alleviating the affects caused by ir-
relevant yet similar frames in a video comparison. In detail, we propose
an embedded stability-sensitive filter for penalizing the contribution made
by similar frames scattered in irrelevant contexts. Moreover, we propose a
burst-survive temporal matching kernel for the same purpose but with less
computational cost. Furthermore, in order to obtain better localization per-
formance, we propose a multi-period method based on Fibonacci numbers.
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Chapter 1

Introduction

1.1 Background

Recent years, along with the exponential growth of video sources, the auxil-
iary analytic tools have been widely developed and studied. Content-based
video retrieval (CBVR), as a genre among the video analyses, is a specific
task to search for semantically similar videos in a large video database, given
a query video. As reported in [13, 21], CBVR addresses various tasks such
as particular event analysis, copy detection and video surveillance, etc. The
broad range of applications motivates the interests of researchers worldwide.
The annual Text REtrieval Conference VIDeo retrieval evaluation (TRECVID),
sponsored by the National Institute of Standards and Technology, provides
a large-scale test collection of videos. The fierce competition in TRECVID's
CBVR tasks shows not only the researchers’” enthusiasm but also the signifi-
cance of CBVR itself.

Most of existing CBVR methods are based on bag of features (BoF) tech-
nique. Since the redundant information are readily constricted by clustering,
those BoF based methods are extolled by their remarkable retrieval quality.
However, other than the retrieval results depicting which video clips contain
the query, or the content of interest, sometimes we still want the information
where the query appears in retrieved videos.

Unfortunately, to localize the query is a task of high computational cost.
Traditionally, this task is solved by using classic Hough voting scheme [23, 8],
whose computational complexity is quadratic to the length of the video. The
temporal information embedded methods were proposed to tackle the com-
putational issue. By embedding temporal information together with frame
descriptors into the video descriptors, the relative temporal offsets or dis-
placements between videos become by-products in CBVR with an acceptable
computational complexity.

However, the retrieval performance of temporal information embedded
methods are generally inferior to BoF based ones. Worse still, since tempo-
ral information are embedded for a better computational performance, any
modification on the method should do no harm to the original embedding
framework.
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1.2 Research Purpose

Consider if you are handling a CBVR task by naked eyes, you may watch the
query video first, and remember the scenes in your mind. Next, you watch
the videos in database for comparison, your decision is possibly made by
such a scheme: instead of focusing on a single frame, you actually compare
the context of the current frame with contents of the query, if the context is
relevant, you may check the following frames and find if there is a continu-
ously similar pattern; if the context is irrelevant, you ignore the current frame
in this comparison. Such an intuitive method is noteworthy because it de-
picts a critical principle in the video retrieval: the similarity is determined by
the context rather than the frames one by one. For example, there are many
video clips you took for your girlfriend in the smart phone. These videos
are related to different events, e.g. eating in a restaurant, playing in the park,
etc. However, your girlfriend shows up in every video. So if you compare
the videos by each frame, the contribution of your girlfriend’s face will be
predominant and makes all videos similar. Instead, by taking the context,
several neighborhood frames, of each frame into consideration, we are able
to rule out some irrelevant yet similar frames. For instance, your girlfriend’s
face showing in an indoor scene are considered irrelevant to the same face
but showing in an outdoor scene. In real video retrieval cases, there also
are many similar contents, e.¢. human bodies, buildings, cars, trees and so
on, which may also cause irrelevant yet similar frames. Since such irrelevant
frames always result in misleading contribution to the video-wise similarity,
we call the frame-wise similarities between those irrelevant frames as noise.

Unfortunately, it is not easy to alleviate the influence of noise. To enable
the offset localization, a video descriptor must contain information of frames
at all positions. It means that all frames are evenly weighted, and none of
them are allowed to be dropped during the construction of video descriptors.
Thus, in the searching stage, even some frames are irrelevant to the query in
its context, we can hardly drop them since they are already embedded into
the video descriptors. The contribution of these frames is still collected, and
serves like noise.

This research is aiming at improving the retrieval performance by elim-
inating the noise caused by irrelevant frames. The relatively new temporal
matching kernel [21] is chosen as the baseline. Even though our main target
is to improve the retrieval and localization performance, since we are dealing
with a retrieval task, we still have to control the computational complexity
on a practical level.

In this paper, we propose two generic methods to circumvent the “noise”
problem: the stability-sensitive filter and burst-survive temporal matching
kernel. Furthermore, we propose a brand-new multi-period method for en-
hancing the localization performance. We show that combining the burst-
survive temporal matching kernel and the new multi-period method gener-
ates significant improvement on the retrieval performance.
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1.3

Paper Organization

Chapter 1:
Introduction to the thesis topic. The purpose is briefly described.

Chapter 2:

We introduce the related works, some of them are prerequisites of the
following discussion. TE on which our proposed methods based is
demonstrated in detail.

Chapter 3:
A stability-sensitive filter is proposed for better retrieval performance,
including an approximation for reducing computational cost.

Chapter 4:

A novel method called BURST as well as its theory is described in
this chapter. The difference between the asymmetric and symmetric
schemes is explained.

Chapter 5:
We visualize the multi-period strategy for ease of understanding. A
method for choosing periods based on the golden ratio is proposed.

Chapter 6:
We show detailed settings of our experiments and the experimental re-
sults in this chapter. Some analyses to the results can be found here.

Chapter 7:
The conclusion and future works are described.






Chapter 2

Related Work

2.1 Content-based Video Retrieval

The problem we are addressing is the Content-Based Video Retrieval (CBVR).
It is abstracted from a practical application that we want to search videos by
videos, which is conceptually similar to the Content-Based Image Retrieval
(CBIR). Supposing that you obtained a video clip in which a lovely girl shows
up, you want more but you have no extra information about her. Then you
may need to conduct CBVR. CBVR is a task of searching relevant videos ac-
cording to the similarity of contents, given a query video. The most relevant
videos are expected to have contents similar to the query. Now that we re-
trieved relevant videos, we still wonder if our searching system can directly
locate the content of interest in the retrieved videos. Hopefully our system is
able to tell us that the contents in query appear in a retrieved video from a
certain time. For instance, a commercial is set as a query to be searched in a
large TV database. The final results are expected to provide the videos that
contains the commercial, and optionally locate where the commercial is, i.e.
the relative offset.

However, to implement such a system is not easy. Since videos contain
rich information, e.g. subtitles, audio, and visual content, which can be used
for retrieval, researchers made various attempts. Some of them concerned the
textual and speech information inside videos. Such kind of video retrieval
systems extract textual data by using Optical Character Recognition (OCR)
on keyframes or automatic speech recognition (ASR) on audio [5, 32]. Other
researchers insist in constructing visual descriptors from visual contents. At
the very beginning, they tried to extract low level image-based information,
such as color, texture, and shape, to construct global frame descriptors [1, 24].
In later researches, local descriptors, particularly SIFT and SURF are used in
many Bag of Features (BoF) methods [26, 27, 7]. Video Google [26] is fre-
quently cited as a predecessor to build a visual vocabulary by using descrip-
tors extracted from frames. Some researchers took advantage of videos’ hi-
erarchical structures like chapters, scenes, and shots, whereby redundancies
can be removed for producing compact video descriptors [8, 29, 16]. More
recently, the BoF family has been developed rapidly, most contributed by
the development of image descriptors. Jégou et al. proposed compact frame
descriptors, including VLAD and MVLAD, that achieve good performance
in retrieval [14, 15]. The modern Convolutional Neural Networks (CNN)
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provide better image descriptors than those hand-made previously, and also
greatly facilitate the progress of CBVR.

The methods in the BoF family are superior in creating compact video de-
scriptors and have good retrieval performance. However, they are incapable
of localization. Instead, an additional temporal matching strategy such as
local alignment [33] or voting techniques! are required to ensure temporal
consistency. Since the computational complexity of such a temporal match-
ing strategy is quadratic in the length of video, localizing the relative offsets
afterwards is extremely time consuming. A better choice for localization is
such kind of methods who are initially designed with ability of localization.
We describe these methods in section 2.3.

2.2 Image Feature Extraction

In a content-based video retrieval task, the target is to search for videos shar-
ing similar contents. Focusing merely on the visual contents, the first require-
ment is a measurement on similarity according to contents. As we know, a
video is basically a collection of images, or frames. To measure the similarity
between videos’ contents, one prerequisite is to measure the similarity be-
tween frames. More particularly, for each frame, the features are extracted
and compared.

In addition, it should be mentioned that since videos have rich content,
the data amount is quickly a burden. To perform video analyses on a prac-
tical level, compact frame descriptors are usually required [13]. Traditional
image descriptors are hand-made by local descriptors such as SIFT [18] or
SUREF [3]. The Fisher vector [20] and its variants VLAD 2 and Multi-VLAD [2,
14], designed to be both distinctive and robust, are common choices. Recent
years, the development of deep convolutional neural networks (DCNN) lead
to another kind of promising visual descriptors for images. Those image de-
scriptors based on the activations within DCNN have been proved to yield
state-of-the-art performance in visual recognition [11, 22, 34].

In following sections, we describe some of the typical image descriptors.

2.2.1 VLAD and Multi-VLAD

Jégou et al. introduced VLAD for large scale object instance retrieval, given
a query image [2]. Starting from local descriptors such as SIFT, they apply
a vector quantization for clustering, and then record the difference from the
cluster center. As it is derived from SIFT, VLAD is also invariant to in-plane
rotation and somewhat tolerant to other transformations. Although VLAD is
reported to perform better than conventional Bag of Words (BoW) descriptor,
it still suffers from high memory occupation, especially for very large image
datasets.

1For example, the Hough transform or RANSAC.
2 Abbreviation for “Vector of Locally Aggregated Descriptors”.
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Multi-VLAD (MVLAD) is an advanced version of VLAD, which is lit-
erally multiple VLADs but aggregated through a Gaussian Mixture Model
(GMM). Moreover, whitening and dimension reduction are applied after-
wards. Previous works show that the retrieval performance is improved for
small objects by using MVLADs [14].

We employ MVLADs in some experiments for evaluating our proposed
methods against other state-of-the-arts where MVLADs are used.

2.2.2 DCNN Features

Deep Convolutional Neural Networks (DCNN) have shown their proficiency
in a number of tasks such as image classification. This inspires an application
where the CNN features are extracted as a universal representation.

Previous researches reported that features extracted from DCNN layers
showed a significant increase in performance over traditional approaches [6,
19]. The recent work [10] also proved the superiority of DCNN features espe-
cially those extracted from the ResNet [12] outperform MVLADs in a video
retrieval task. Similar to these applications, we also apply DCNN features in
our experiments.

2.3 Video Retrieval Methods

In this section, we briefly introduce the existing video retrieval methods
along with their pros and cons. These methods can be roughly put into three
categories: 1) per-frame matching methods [8], 2) Bag of Features/Frames
(BoF) methods [9, 10], 3) temporal encoding/embedding methods [23, 21].

Although some retrieval technique such as inverted index are used for ac-
celeration, the intrinsic computational complexity limits the use of per-frame
matching methods for large datasets. While these methods are useful when
precise, on frame level exactly, localization is demanded. BoF methods come
to another extremity. They focus on extracting unique features from videos
by using certain clustering approaches, e.g. k-means, Sign of Stable Com-
ponents (SSC) [9], counting grid [10], etc. These features extracted for each
video are then merged together for generating a extremely compact video
representation with little redundancy. Since videos are represented by com-
pact descriptors, the computation can be very fast, and the retrieval perfor-
mance is good as well. However, because all temporal information are lost
during the irreversible pooling, BoF methods are incapable of localizing the
relative offset.

The choice of temporal encoding /embedding methods is a plausible com-
promise between the above two extremities. Taking advantage of the fre-
quency domain, these methods are not only capable in video retrieval, but
also in temporal localization. As the word “compromise” literally denotes,
the computation cost of temporal encoding/embedding methods is between
that of other two kinds of methods, but is feasible enough though. The prob-
lematical issue lies in the performance. Although previous works [23, 21]
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showed state-of-the-art performance, there is still a plenty of room for im-
provement with respect to BoF methods.

Both Circulant Temporal Encoding (CTE) and Temporal matching kernel
with Explicit feature maps (TE) typify such methods in the third category.
However, they are different in several aspects:

e CTE uses FFT on temporal sequences while TE uses Fourier series in-
stead. Consequently, CTE requires zero padding while TE does not.
Meanwhile, the embedded space of CTE is a complex space due to
properties of FFT, which makes the computation more complicated.

e In CTE, the comparison function for timestamps is fixed as a Dirac
delta, which can be customized in TE.

o A filter is applied in CTE for reducing self-similarities, which greatly
improved the performance of CTE. While there is no counterpart for
TE.

For simplicity and expandability, we choose TE as our baseline.

2.3.1 Temporal Matching Kernel with Explicit Feature Maps

As mentioned in Section 2.2, CBVR requires a feature extraction to videos
at the frame level. Once features of frames are extracted, a video is repre-
sented as a sequence of feature vectors known as frame descriptors. Con-
sider a comparison between two videos, whose frame sequences are denoted
as x = [xg,...,x,...)andy = [yo,...,Yt,...], where x,y; € RY are d-
dimensional frame descriptors. Under the constraint that frame descriptors
are L2 normalized, the similarity between two frames is evaluated by inner
product of their corresponding descriptors. Moreover, following the assump-
tion proposed in [23], the sum of similarities between the frame descriptors
reflects the similarity of the sequences or videos. The metric is denoted as

Katy) =) st =Y (xt,y1a), (2.1)
t=0 t=0

where (-, -) stands for the operator of inner product, s2 represents the simi-
larity between t-th frame in video x and (f + A)-th frame in video y.

In addition, [23] also pointed out that this assumption is not well satisfied
in practice, mainly due to the self-similarity® of videos themselves. From
our perspective, we argue the assumption itself is not robust to the noise as
discussed in section 1.2.

TE is basically an algorithm to accelerate the computation of Eq. 2.1 by
using explicit feature map proposed in [31]. To achieve its purpose, Eq. 2.1 is

3The property that videos are self-similar in time.
property
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deformed as

Ka(x,y) i i xfypk(t,t' +A) = <ti:)xt®qo(t))T< i Yy ®q0(t’+A)>,

t=01'=0 E’:O

J/

Po(x) Pa(y)
(2.2)

where ® denotes the operator of Kronecker product, k(t,t') is a temporal
similarity kernel approximated by using explicit feature map such that

-T -
Vi Vi
a7 cos( %) a1 cos (%t
i (27T 27T 4/
ay sin(Ft) a1 sin(£Ft)
k(tt') ~ o(H)To(t') = o o , (23)

iy cos(3Emt) iy cos(ZEmt')
y sin(2Emt) | A sin(ZEmt') |

where {a;} are the coefficients of Fourier series*

cies we take, and T is the period.

As some of you might be aware now, the similarity computation between
videos is handed over to independent video descriptors {ga(:)}. A more
attractive fact is that for all shifts {A}, the inner product of video descriptors
is merely conducted once.

Taking 3po(x) as an example, we obtain

, m is the number of frequen-

po(x) = [DT,Cl,st,..., L, STt (2.4)

where

D = \/51_0 Z Xt,
t=0
ad 27,
Ci = /a; Z X} COS (th) , (2.5)
t=0
d . (2,
S, = \/a_intsm — it
t=0 T

are referred to as the Direct Current (DC) component, cosine components,
and sine components respectively. The latter two types are generalized as
Alternating Current (AC) components.
By performing trigonometric transformations, it could be quickly derived
that
Ka(xy) « (DX, DY)

m 2 . )
+ Zcos (%M) <<Cz( ),CZ(Y)> + <Sz( )’Sl(y)>)
i=1

m o om 0 gy _ 1) )
+;sm<T1A> <<Ci ,8;77) —(S;”,C; >>

1=

“For instance, if we set k(t,t') as a Dirac delta function, ag = a; = --- = 1.
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It is clear to see that DC components only provide a baseline, on which
AC components draw the fluctuation with regard to different shifts {A}.

In video searching stage, we are going to return the most relevant videos
to a query from a large database, together with their relative time offsets. Let
the query video be q and the video collection of database be {d;}. For each
video in database, the similarity score is measured as

Sqd; = max Ka(q,d;), (2.7)
while the relative time offset Ay g, between videos q and d; satisfies

Nga;, = arginax Ka(q,d;). (2.8)

Once the video-wise similarity scores are obtained, we only have to sort
them in descending order. The top ranked ones are best-matching videos.

2.3.2 Multiple Periods

As shown in Eq. 2.3, a period T is directly related to the explicitly expanded
temporal kernel. One crucial criterion of choosing the period T is that such a
T should guarantee the uniqueness of the time offset Ag ;- As we know, Ag 4,
can be any value that shows the number of shifted frames between compared
videos, i.e. Agq, € [—q.length +1,d;length]. Moreover, since ¢(t) = ¢(t +
T), for a period T, Ka(q,d;) is evaluated over a period A € [0,T). In one
word, the period T should ensure that [0, T) is not narrow than [—q.length +
1, di.length]. However, [21] controversially chooses T to be larger than the
number of frames of the longest video in database for simplicity.

Unfortunately, the larger T is, the lower the resolution ® Z* will be, which
may lead to an inaccurate offset, or even miss it. In addition, a long period
requires higher frequencies in Fourier series for offset localization, and thus
need more dimensions in timestamps {¢(t)} for keeping the resolution on
an endurable level, which inevitably lead to lengthy video descriptors. After
realizing the problem incurred by a large T, Poullot et al. [21] proposed an
approach to improve the localization accuracy while keeping the video rep-
resentation in a reasonable size. Their idea is to use multiple short periods
instead of a single long period to modulate video descriptors.

Consider a set of short periods {T;}. For each period Tj, the potential
candidates of real time offset between a query video q and a video d; in the

T:
database are {A 'y 4 k;T;}, where k; is an integer. To disambiguate the off-

set, they set these multiple periods as prime numbers. And choose the most
possible offset amongst all potentials. However, we argue that prime periods
are not suitable in practice. The details are introduced in Chapter 5.

5We call it resolution because the smaller it is, there will be less discrepancy between
timestamps ¢(t) and ¢(t + At) where At is a constant standing for an increment on t.
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2.4 Query Expansion

Query expansion is a re-ranking method for event retrieval. There are two
widely used methods presented by Douze et al. [9]: Average Query Expan-
sion (AQE) and Difference of Neighborhood (DoN). DoN is reported to per-
form better than AQE both theoretically and practically.

More importantly, since TE provides relative time offset between a query
and each video in database, TE has a typical functionality to check tempo-
ral consistency among the query and videos in shortlist of retrieved videos®.
Consistency check is very effective to select relevant videos from the short-
list for query expansion. This technique is similar to geometric consistency
check for object retrieval from images [4]. Consider a query video q and
two database videos dy, d,. If they are perfectly consistent, their time offsets
should satisfy Aqq, + Ad,,a, = Aqd,- A small temporal tolerance ¢ is added
for robustness; the constraint is then loosened to

|Aq,d1 + Adl,dz - Aq,dz| S g, (29)

where ¢ is in units of frame. We set its value according to the frame rate of
the videos. In our experiments, we found 10 for 5 fps and 50 for 15 fps are
reasonable choices.

®A small collection of top-ranked retrieved videos corresponding to a query.
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Chapter 3

Temporal Matching Kernel with
Embedded Filter

Before introducing the details of proposed methods, we briefly crystallize the
reason why TE or other temporal information embedded methods perform
unsatisfactorily.

As a method that is capable of localization, the video descriptors of TE
is constructed by all frames in the videos. In a comparison between two
videos, those irrelevant yet sometimes accidentally similar frames may re-
sult in noisy frame-wise similarities, i.e. frames without temporal continuity
are in correspondence instead. Usually matching videos have consecutive
frames in correspondence, the above situation is by no means what we ex-
pect. We argue that existing temporal information embedded methods are
not robust to the noise caused by irrelevant frames.

As discussed in section 1.2, instead of a single frame, it is more reason-
able to judge relevance by the context, the ambient frames of current one.
Since a pair of irrelevant yet similar frames lead to a isolated high frame-wise
similarity while the contexts around them are not relevant. Those frames re-
sult in non-consecutive high frame-wise similarities which are in a shape of
white noise. This naturally give us the hint to apply a low-pass filter on the
frame-wise similarities. A low-pass filter is expected to be effective since it
smooths the noise with high frequencies. Following this intuition, we pro-
pose a stability-sensitive filter, to the frame-wise similarities. We further de-
velop a technique to embed our filter into frame descriptors without deform-
ing TE’s well-designed framework.

We take two examples below for better understanding to our purpose.
Fig. 3.1 shows an example of true match case where consecutive similar con-
tents exist in two relevant videos. The similar contents between pre-aligned
videos result in a section of stable high frame-wise similarities in Fig. 3.1
(B) (blue line), which are usually expected. On the other hand, the remain-
ing contents do not show any continuously similar pattern, but still contain
some similar features, such as human bodies, buildings, etc. As plotted in
Fig. 3.1 (B), the frames in irrelevant contexts (different scenes) causes lots
of noisy frame-wise similarities, where some of them are non-consecutive
high values. Since TE defines the video-wise similarity as a sum of frame-
wise similarities (Eq. 2.1), it is incapable of distinguishing if the contribu-
tion is from consecutive similarities or non-consecutive ones. Our proposed
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(A) Frame sequences of two videos in a true match case.

0.8 —— before filtering
—— after filtering
[%2]
2 0.6
8
E
‘® 0.4
©
2
z
D (.24
E
g
0.0 J

0 100 200 300 400
frame indices
(B) Frame-wise similarities in a true match case before and after filtering.
The scales are adjusted for comparison.

FIGURE 3.1: A true match case: videos are relevant due to con-
secutive similar contents.

stability-sensitive filter is applied for sieving noise from frame-wise similari-
ties. Fig. 3.1 (B) (red line) shows the effectiveness of our filter: stable sections
are emphasized while noise is panelized.

For further interpretation, a false match case is illustrated in Fig. 3.2. The
frame sequences in Fig. 3.2 (A) are extracted from videos belonging two irrel-
evant events. However, they are judged to be relevant' because frame-wise
similarities displayed in Fig. 3.2 (B) (blue line) are summed up to a falsely
high similarity score. These frame-wise similarities, apparently, are noisy
ones what we never expected. Fortunately, by applying our filter, the contri-
bution from noise is almost eliminated as Fig. 3.2 (red line) shows.

3.1 Filter Analysis

Regarding frame-wise similarities as a temporal sequence, a reasonable choice
to penalize noise would be to conduct convolution with a linear filter, e.g. a
Gaussian window. However, since frame-wise similarities are aggregated as
a video-wise similarity score afterwards following Eq. 2.1, whatever linear
filter is used the aggregated score will remain unchanged.

For ease of exposition, we denote frame-wise similarities as a temporal se-

quence [SOA, e, stA, -+ -], where s has the same definition with that in Eq. 2.1.

Videos in database are sorted by their similarity scores corresponding to the query, top
ranked ones are inferred as relevant videos.
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(A) Frame sequences of two videos in a false match case.
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(B) Frame-wise similarities in a false match case before and after filtering.
The scales are adjusted for comparison.

FIGURE 3.2: A false match case: videos are irrelevant while the
video-wise similarity score is falsely high.

By introducing a linear filter {h.}, whose width is w = 2/ + 1, we obtain

Raloy) = Y. Z sty Z e Yo s o Ka(xy) = Zst (3.1)

t=0k=—I k=—1 t=0

Thus, linear filters are ineffective due to the existence of a sum function over
frame-wise similarities. Accordingly, we decide to switch to non-linear fil-
ters. We choose a higher-order monomial kernel as the filter instead of other
commonly used non-linear filters. The reason is further demonstrated in sec-
tion 3.3. Intuitively, we combine a linear filter and higher-order monomial
kernel (-)?, p > 1 to compose the stability-sensitive filter as bellow.

i P
(x,y) o« Z ( ) hkstAJrk) , (3.2)

k=-1

where p is the exponent of filter. The settings in Fig. 3.1 (B) and Fig. 3.2 (B)
arep =2,w = 37.

Note that the filter is applied on frame-wise similarities between pre-
aligned frame sequences, which may need a two-step operation: 1) obtain
relative temporal offsets for alignment by using current TE, 2) apply filter
on frame-wise similarities measured between aligned videos. However, we
still prefer to embed the filter into TE in order to complete the computation
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of video-wise similarity in a single step. We show the pipeline of embed-
ding the filter into TE in Fig. 3.3, our filter works on frame-wise similarities
(dashed arrow) in a embedded way (solid arrow).

As shown in Eq. 2.2, TE measure the video-wise similarity by computing
inner product between two independent video descriptors. This arouses a
problem that how can we embed a non-linear filter into a linear computation.
In next section, we formulate the technique to embed our filter into TE.

3.2 Stability-Sensitive Filter

Inspired by the idea of explicit feature map, we explicitly expand our stability-
sensitive filter into an embedded space. Similar to the definitions in sec-
tion 2.3.1, we show an example for a comparison between videos x and y.
The frame-wise similarities when there is a shift A between x,y are denoted
as a temporal sequences [sy, - -+ ,sf, - - -]. The stability-sensitive filter is ap-
plied in form of

!

i p p
§tA = Z hkstAJrk) = ( Z <\/h_kxt+k/ \/h_k!/t+A+k>>
k=-—1 k=—1

h_y(x—) ! V-1 (Yesa-1) ’ (3.3)
= : : = ((Uy, Viza))",
\/h—l(xtH) \/h_l(!/t+A+l)

where

U = [\/h_—l(xt—l)T e \/h_o(xt)T e \/h_l(le)T}T € R™,
Vo= VI (e 1) Vo () \/h—z(ymz)T}T e RY.

For embedding our filter into linear TE, we represent ((Uy, Vi A))p ina
linear form, i.e. ¢,(U;)"¢p,(Viia). [30] has showed the technique for ex-
panding a higher-order monomial kernel explicitly. Following that, when
p = 2,52 is expanded as

(3.4)

A = 2 _ Wdu-v' Wdu-v-
t ((Utlvt+A>) - (1221 1 1) (];l j ])
wd wd
=YY (wiw))(v:0)) = ¢2(Us) @2(Viia),

i=1j=1

where {u.} and {v.} correspond to elements in U; and V;, 5 respectively.
Specifically, ¢, (Uy) refers to

T
‘Pz(Ut) = [ulull sy UpdUypd, \/EuluZ/ \/§u1u3, Tty \/Euwdquwd} . (3.6)
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In the same way, for any value of p, U; can be expanded into ¢,(U;), with
wd+p—1

a dimension of ( i

) . Similar to Eq. 2.2, the linear version of Eq. 3.3 is

[e0]

Ka(x,y) o Z Pp(U) ¢pp(Visa)

- )f 5 ¢p (U (Vo)k(L ' + 1)

t=0+'=0 (3.7)
o T 00
(Z(,)‘PP Ur) @ 9( )) (Z¢P(Vt’)®¢(t/+A)>.
t '—0
ol Paly)

3.3 Approximation
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FIGURE 3.4: Average mAPs of TE embedded with original fil-
ter versus TE embedded with approximate filter on a subset of
EVVE dataset over the filter width w when d = 16.

Noticing that both wd and p have a strong bearing on the dimension of

¢p(-) and §(-), we devise following approximation to the original filter in
Eq. 3.3.

! I p
5% = (U5 Vi) = << Y. Vixesk ) \/h_kyt—l—A+k>> / (3.8)

k=—1 k=—1

where U;,V;,, € RY. Consequently, the dimension of ¢,(U}) becomes

d+§_1 ), i.e. the width w is no longer related to the dimension and can be

adjusted freely. However, the dimension is still quadratic in d, the dimension
of frame descriptors. A dimension reduction is needed when d is large. This
also lead to the rule of choosing filter. Other widely used kernels such as
exponential kernel are not feasible because the explicitly expanded vectors
have infinite dimensions.
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Finally, TE with embedded approximate stability-sensitive filter is formu-
lated as follows.

KA(xy) o« 5 () PAly), (3.9)
where

o0 I
Fi0) =Y 9, ( Y k) o (0

tooo ":l‘l (3.10)
Paly) =) ¢p < Y. yt/+k) @@(t' +A).
=0 k=—1

We particularly use p = 2 throughout the thesis.

To confirm the influence of approximation, we performed a video re-
trieval task on a subset of EVVE (see section 6.1.1) wherein videos are shorter
than 5,000 frames and chose d = 16 for computational reason. The results
are shown in Fig. 3.4, it can be observed that the approximation only brings
trivial performance loss when the width w grows large. Such a loss is accept-
able considering the benefit that the computational cost is greatly reduced
through approximation. We use the approximate version unless otherwise
stated.

3.4 Pros and Cons

Rather than comparing frames one by one, our stability-sensitive filter is
able to compare frames while considering their contexts. Only those simi-
lar frames with concurrently similar neighborhoods contribute to the video-
wise similarity. The effectiveness of the stability-sensitive filter is proved by
the performance in a video retrieval task. The average mAP (mean Average
Precision) gained 2% improvement by using proposed filter, i.e. 35.3% versus
33.3% (see Tab. 6.2).

However, even we apply the approximation, the dimension of ¢, (Uj}) is
still quadratic in d, the dimension of frame descriptors. Thus, although our
proposed filter is able to alleviate the problem caused by noise, the compu-
tational cost is hindering its application. In next section, we show a totally
different method for the same purpose with a low computational cost.
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Chapter 4

Burst-Survive Temporal Matching
Kernel

We have introduced two kinds of match cases in Fig. 3.1 and Fig. 3.2. When
we dig into the results of video retrieval, we always find that false matches
were responsible for poor performance of TE. These cases are caused by irrel-
evant videos yet shared scattered similar frames. The falsely matched videos
indeed share similar visual elements such as faces, streets, banners, etc. The
only difference between true and false matches is the distribution of similar
frames. Particularly, in true match cases, similar frames are normally con-
centrated on specific time spans; while in false match cases, similar frames
are scattered globally in the videos. We proposed stability-sensitive filter in
Chapter 3 to circumvent false match issues. Filtering noise inside frame-wise
similarities is indeed an effective way to achieve better retrieval performance.
However, with embedded stability-sensitive filter, the dimension of video
descriptors grows inevitably and lead to higher computational cost.

Inspired by the interleaving technique for error correction with respect to
burst errors, we devise a novel method to focus on bursts, i.e. the pattern
where continuously high frame-wise similarities last for a short time span.
Since the method statistically rules out contributions from noisy frame-wise
similarities, only contributions from bursts survive in other words, we name
it as BURst-Survive Temporal matching kernel (BURST). BURST provides a
similar effect as the stability-sensitive filter, while the concomitant computa-
tional burden is trivial.

The intuition is straightforward. Since the frame-wise similarities in a
false match case is shaped like white noise, it can be inferred that the frame-
wise similarities between a pair of shuffled videos in a false match will still
be like white noise. However, in a true match case, the similar frames are
aligned continuously along the time and lead to the bursts. When we de-
liberately shuffle the videos in a true match, the alignment between frames
will disappear and the frame-wise similarities between shuffled videos be-
come white noise. The proposed BURST method is designed following this
phenomenon. More details are discussed in next section.
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0.022 0.024 0.026 0.028 0.030 0.032
video-wise similarities
FIGURE 4.1: Probability density approximated by video-wise
similarities {/Cx(x, ¥)} obtained from 10,000 times shuffle. The
red line shows the original video-wise similarity K (x, y) with-
out shuffle.

4.1 Shuffle Strategy Analysis

Before consider real cases in video retrieval, we would like to show a toy
model for ease of understanding. Say we have two arrays of same length n
containing random binary values, e.g. a = [1,1,0,1,---], b =[0,1,1,0,- - - .
We can measure their similarity by simply computing

n
K(a,b) =Y 645 (4.1)
t=0

where ¢ is a Kronecker’s delta function, while a; stands for t-th value in a
as well as b; in b. Supposing that each binary value obeys the Bernoulli dis-
tributioni.e. a; ~ B(1,pa), bt ~ B(1,pp)!, the distribution of 8, ;, is then
determined as B(1,p), where p = papp + (1 — pa)(1 — pp). Furthermore,
K(a,b) follows a binomial distribution B(n, p). As far as we know, B(n, p)
is approximately a normal distribution when 7 is large enough?. Thus, the
value K(a,b) is most likely distributed near the mean, the expected value.
Now we shuffle array b to b, since the distributions of each value are un-
changed, there is a high probability that K (a, b) is a very close to K(a,b). In
other words, K(a,b) — K(a,b) ~ 0.

Let’s move on to another situation, given arrays a, b with the same defi-
nitions above. However, a and b are observed to have a continuously similar
or same section, i.e. a burst. That means K(a,b) is initially a large value (far
larger than the expected value), due to the contribution of the burst. In a
statistic view, K(a, b) is less likely to be far from the mean, which also means
the burst is kind of a rare case in return. Obviously, if we deliberately shuffle
b to b, we can hardly expect the rare bursts appear again, or K (a, b) is still as

'Here, B(n, p) stands for a binomial distribution by convention. n € N is the number of
trials, p € [0, 1] is the probability of getting success in each trial.
%In real cases, the number of frames in a video is usually large.
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FIGURE 4.2: A comparison between frame-wise similarities
{s8} (before shuffle) and {57} (after shuffle) in a false match
case.

large as C(a, b). As a result, it is totally plausible that K(a,b) — K(a, B) >0,
and is even large enough.

We only have to do few changes on the toy model for real cases. The bi-
nary values in arrays are displaced by frame descriptors, and the Kronecker’s
delta in Eq. 4.1 are switched to a frame-wise similarity measurement as in
Eq. 2.1. Taking videos x and y as example again, frame-wise similarities are
s8,- -+ ,sp,- -] where s2 = xly;. a. As we know, noise among frame-wise
similarities is caused by haphazard similar frames in irrelevant videos. Thus,
in a false match case where {s2} are merely composed of noise, even if we
shuffle the order of frames in y, the pattern of frame-wise similarities is still
noise-like (Fig. 4.2). Denoting shuffled y as § and its frame sequences as

(G0, - , 9, - - |, frame-wise similarities between x and ¥ are [§€, e ,§tA, e,

where 82 = x/ ;5. Since probabilistically no bursts appear in similarities
before and after shuffle, we can expect the same conclusion in the toy model
for false match cases:

ICA (X, y) — ICA (X, y) ~ 0. (4.2)

To substantiate our assumption, we test on several false match cases.
Firstly, a video pair is obtained from a false match case. We say the two
videos are x and y in conformity with the above statement. For proving that
Eq. 4.2 satisfies probabilistically, we shuffle video y 10,000 times by different
permutations, and evaluate the video-wise similarity following Eq. 2.1 be-
tween x and the shuffled y. The 10,000 video-wise similarities are then used
for plotting Fig. 4.1, a probability density graph.

As can be easily seen, the probability density shows a bell-shaped curve
which is apparently the characteristic of a normal distribution. The original
video similarity before shuffle is very close to the mean as we conjectured.
For further demonstration, we show the frame-wise similarities before and
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0.06 0.08 0.10 0.12 0.14 0.16 0.18
video-wise similarities
FIGURE 4.3: Probability density approximated by video-wise
similarities {/Ca(x,¥)} obtained from 10,000 times shuffle. The
red line shows the original video-wise similarity /Cx (x, y) with-
out shuffle.

after shuffle for clearer comparison in Fig. 4.2. Both {s2} and {32} are noisy
which make Eq. 4.2 reasonably satisfied.

In a real match case, since the rare situation that two videos have consec-
utive similar frames will be crumbled after a deliberate shuffle, the original
video-wise similarity is far away from the expected similarity after shuffle.
We conduct the same test on some true match cases, the distribution of video-
wise similarities is shown in Fig. 4.3.

Similarly, we show the frame-wise similarities before and after shuffle for
the true match case in Fig. 4.4. It can be observed that the contribution from
the burst, a section of continuously high frame-wise similarities caused by
consecutive similar frames, is strong enough to survive in a subtraction such
that

Ka(xy) — Ka(x,9) > 0. (43)

Nevertheless, all our analyses begin with an assumption that the ele-
ments in compared sequences are randomly distributed to some extent. More
specifically, we suppose the elements are generated by information sources
having a relatively high entropy. For the videos where frames are time-
varying, our shuffle strategy works well; while for other videos who are
almost stationary over time, the shuffle has even no effect. We should pay
attention to this situation in the design of an advanced temporal matching
kernel.

To summarize the above theory, we conclude three points below.

1. In a comparison of two sequences, we can differentiate if there are
bursts by using the shuffle strategy;

2. The shulffle strategy works well when the sequences are long enough
according to our assumption;
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FIGURE 4.4: A comparison between frame-wise similarities
{s®} (before shuffle) and {52} (after shuffle) in a true match
case.

3. The shuffle strategy has virtually no effect when either sequence is al-
most stationary.

We design our novel burst-survive temporal matching kernel following
these points.

4.2 Burst-Survive Temporal Matching Kernel
Based on the theory proposed in section 4.1, the design of the BURst-Survive

Temporal matching kernel (BURST) is rather simple. With the same defini-
tion used in Eq. 2.1, we extend Eq. 4.2 and Eq. 4.3 as follows,

Kalxy—¥) = Kalxy) = Kalx,§) =

<2xt®(p(t )

N

uMg

= Z(xt/yi-i-A —Jtra)
t=0

yt’_yt’ ® @(t +A)>
=0

lPo(X ¥ (Y ¥)
(4.4)

Notice that since we maintain the form of TE, we can still enjoy the ben-
efits of TE’s framework. As explained in Eq. 2.6, DC components provide a
baseline on which a fluctuation is drawn by AC components on each shift A
for localizing the offset between videos. In other words, DC components are
mainly responsible for the retrieval performance while AC components are
in charge of the localization performance. However, when the frame descrip-
tors of y are subtracted by their shuffled ones to construct a burst-survive
video descriptor P (y — 7), the DC component (Eq. 2.5) in a(y — §) will be
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a zero vector because it is proportional to the sum aggregation of {y — 7}.
This will directly result in a huge drop on the retrieval performance. Thus,
after obtaining AC components through shuffle strategy, we have to supple-
ment a DC component to 5 (y — 7). Since we mainly focus on the local-
ization functionality in our proposed method, we only employ a naive sum
aggregation for computing the DC component. For even better retrieval per-
formance, a more exquisite BoF feature, such as the counting grid aggrega-
tion [10] can also be applied.

More importantly, by designating DC component to the sum-aggregated
frame descriptors or other BoF descriptors, we can circumvent the problem
caused by near-stationary videos mentioned in section 4.1.

It should also be noticed that the shuffle strategy is only needed to be per-
formed on one video in a pair of videos for comparison. We call it an asym-
metric scheme. One may be curious about the symmetric scheme though, it
is defined as

Ka(x=%y—79) = Kalxy) = Ka(x§) — Ka(%y) + Ka(%,9)
o0 T o0
Xt — Xt) v — Yy "+ A) ).
(Z ® ¢ )) (t/_o(y ) @ (' + ))

t=0
. -~ - ~ 7

Po(x—%) Pa(y—9)

(4.5)
Although the asymmetric scheme is already effective for our purpose, how-
ever, we actually use a symmetric scheme in practice. The reason is twofold.
First, we have no idea which video in comparison is longer than the other,
and shuffling a short video is not always effective enough, while a symmetric
scheme can always ensure that the long video is shuffled. Second, a symmet-
ric scheme provides convenience in the implementation.
Similar to Eq. 2.4, the burst-survive video descriptors are obtained as bel-
low.

go(x) = DT, CT,81,...,CL,STT, (4.6)
where .
D~ Vo Z Xt,

t

0

A > 27T,
Ci~ /a; )_(xt — &) cos (Tnzt) , (4.7)

t=0
\/_i (x¢ — %) sin z—zt
F— %) T

The DC component and AC components are separately L2 normalized.
Moreover, we multiply a coefficient A on the DC component to balance the
contributions of DC and AC components. A is empirically set as 0.4 in our
experiments.
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(A) Frame sequences of two near-stationary videos, where
frames have little changes over time.

video-wise similarities

0 2000 4000 6000 8000 10000
A

(B) Video-wise similarities obtained from a comparison between
two near-stationary videos.

FIGURE 4.5: An example of the comparison between
near-stationary videos.

4.3 Effectiveness of BURST

The burst-survive temporal matching kernel is designed for eliminating the
noise in frame-wise similarities which seems to lead to false matches. We
arbitrarily choose several true matches and false matches obtained from TE’s
results, and compare the results of TE and BURST to show the effectiveness
of BURST.

Fig. 4.6 shows the results. The black lines show the inner products of
DC components obtained by sum aggregation with a L2 normalization ap-
plied afterwards. Based on them, AC components from TE and BURST draw
curves over A, which are used for localizing the offsets. It can be observed
from the top two figures that by using BURST, video-wise similarities remain
high enough where its value is mainly contributed from bursts. Another two
tigures in the bottom are false match cases. Their video-wise similarities are
circumscribed a lot, since BURST are capable of “killing” noise as discussed
in Eq. 4.2.

For near-stationary videos, the AC components in the BURST are less use-
ful though. Fig. 4.5 shows that videos are almost unchanged over time, our
assumption for the shuffle strategy is not satisfied in this case. Since almost
each frame in video x is the same with its shuffled version X, x; — £ ~ 0
which makes AC components are approximately zero vectors according to
Eq. 4.7. Fortunately, the supplemented DC component set for such situation
ensures the video similarity score is still a reasonable value (the peak value
of the red line). The effectiveness of BURST is further proved in Chapter 6.
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FIGURE 4.6: Results of TE and BURST. The top two are true
matches, while bottom ones are false matches. Black line shows
the inner products of sum-aggregated descriptors (DC compo-
nents).
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Chapter 5

Golden Ratio Based Multi-Period
Strategy

5.1 Multi-Period Strategy

Given two videos x and y, we usually map each temporal position of a frame
to a unique value inside a period. A toy model is visualized in Fig. 5.1. For
simplicity, we measure frame-wise similarities by colors, same colors output
1, and 0 otherwise. In this example, the query video x comprises 4 frames,
and a retrieved video has 16 frames. When we set the period as a relatively
large value, T = 16 in this case, we are able to locate a sole peak among video-
wise similarities (the red dot), whose value is the video similarity score while
its position represents the offset, AT y = 9 here.

| .IDII
IIDIIIIDDIDIIIDD

period = 16
| |
_________________________________________________________________________________________ @
———————————— o o @
@ *—0—© A L L *—@ o

FIGURE 5.1: An example showing the localization of the rela-
tive offset between two toy videos, by using a single period.

A single long period works theoretically, however, there are some prac-
tical issues. Firstly, a long period directly leads to a low resolution for the
offset’s localization. Moreover, the only way to increase the resolution is to
employ more dimensions in the temporal vector ¢(t) for exploiting higher
frequencies. Since more dimensions lead to higher computational cost, it is
definitely not a wise idea.

As introduced in section 2.3.2, a multi-period strategy is proposed for
sidestepping the problems caused by a single long period. The idea is quite
straightforward. Now that a short period provides high resolution but is
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FIGURE 5.2: An example showing the localization of the rela-
tive offset between two toy videos, by using two short periods
who are not relatively prime.

unable to exactly locate the offset, we can combine the offset candidates ob-
tained by several short periods to construct a real offset. For instance, we
choose two periods T; = 4, T, = 8, and show the results in Fig. 5.2.

As we know, ¢(t) is a periodic function whose period is T. Thus, a t-th
frame has the same timestamp with (¢ + kT')-th frame since ¢(t) = @(t +kT),
where k can be any integer. After embedding, we evaluate the video-wise
similarities over [0, T), and the peak is denoted as A,{ y € [0, T). The potential
candidates of the real offset are {A{ ; + kT} correspondingly. In Fig. 5.2, those
candidates are {A}  + 8k = 8k +1} and {A%, + 4] = 4l + 1}, where k,] € Z.
As a result, there are two possible potentials at {1,9} (denoted by red circles).
Unfortunately, we cannot discriminate which one is the real offset. Some
of you may already find the problem, we cannot obtain a sole peak in the
concerned range if we choose short periods whose Greatest Common Divisor
(GCD) is not small enough.

A plausible solution proposed by Poullot et al. [21] is to choose periods
who are relatively prime. For example, we set periods as Ty = 5,1, = 7
in Fig. 5.3. Now the offset candidates become {Az,y +7k = 7k +2} and
{A,5(,y + 51 = 5] + 4}, where k,I € Z. The real offset 9 is then constructed by
these potentials, and is unique in [—x.length + 1, y.length] because the Least
Common Multiple (LCM) of 5,7 is greater than x.length + y.length.
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FIGURE 5.3: An example showing the localization of the rela-
tive offset between two toy videos, by using two short periods
who are relatively prime.

5.2 Design with Golden Ratio

However, we find that this solution is debatable, especially in practice. We
select video x!' as a query and y? as a compared video, their relative off-
set is confirmed to be around —145 frames (15 fps). We conduct offset lo-
calization experiments by using three pairs of periods, (233,311), (233,367)
and (233,377). The offset are obtained by two steps: 1) evaluate video-wise
similarities over the shift A for each periods, 2) aggregate these video-wise
similarities to an overall similarities and locate the peak. Fig. 5.4 shows the
results. As everyone knows, 233,311,367 are all primes. However, neither
(233,311) nor (233, 367) gives correct answer, which is totally contrary to our
expectations since primes are indeed effective in the toy model. The reason
is sort of ridiculous. Because 37 ~ 2 and %2 ~ 2, even they are primes,
their approximated LCMs are merely 933 and 700 respectively, which are
too small to disambiguate offset candidates. Interestingly though, the pair
(233,377) successfully locates an accurate offset. The secret behind this set-
ting is the golden ratio. A golden ratio is the number which is most hardly
to be approximated by a fraction. Thus we can simply choose periods who
have a golden ratio proportion. Furthermore, a well-known fact is that the ra-
tio between two adjacent numbers in the Fibonacci sequence asymptotically
approaches the golden ratio. To unveil the truth, 233 and 377 are exactly a
pair of adjacent numbers selected from the Fibonacci sequence. Since the

Ihttp://wuw.youtube . com/watch?v=1MuBD439BY4.
2http://www.youtube.com/watch?v=PkT2WJQ_KdQ
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Fibonacci sequence is proved to be a strong divisibility sequence, i.e.

ged(F, ) = ged(m,n) (5.1)

where Ffy = 0,F; = 1,F,41 = F, + F,_ following the general definition.
The adjacent numbers in the Fibonacci sequence are always co-prime. It is
safe to say, if only the product of the two adjacent numbers in the Fibonacci
sequence is larger than x.length + y.length, we can choose them as a pair of
periods.
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Chapter 6

Experiments and Results

6.1 Datasets and Evaluation Protocol

6.1.1 EVVE Dataset

The EVVE dataset! is an event retrieval dataset introduced in [23]. Instead
of an event detection task, this dataset is dedicated to the retrieval of partic-
ular events. The whole dataset contains 620 query videos and 2,375 videos
in database, categorized into 13 events. Videos were down-sampled at 15
fps, and each frame was processed to a 1,024-d MVLAD [14] descriptor by
the provider. The shortest video only contains 12 frames, while the longest
one contains 59,810 frames, which makes this dataset more challenging. We
evaluated the performance in terms of the mean Average Precision (mAP)
for each event and the average mAP for all events, following the standard
protocol.

6.1.2 TV CBCD 2011 Dataset

To evaluate the offset localization performance, we used the content-based
copy detection set of the TRECVID 20112 evaluation campaign [28]. It con-
tains 1,608 queries 16,776 reference videos, extracted at 30 fps. The queries
are programmatically created from 201 videos. Except some queries made by
non-reference videos, there are 134 original queries having their correspon-
dences in database, and each of them is processed into 8 queries by using
different transformations.

We matched each transformed query video with its original reference
video. The offsets estimated by TE and our proposed method are compared
with the ground-truth.

6.2 Implementation Details

6.2.1 Frame-level descriptor

For EVVE dataset, we collected MVLAD descriptors for a fair competition
with other state-of-the-arts who are evaluated with MVLADs. Moreover, we

Inttp://pascal.inrialpes.fr/data/evve/
Zhttp://www-nlpir.nist.gov/projects/tv2011/#ccd
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extract descriptors by using pre-trained CNN models for both EVVE and
CBCD 2011. We finally adopt the last convolutional layer of a ResNet-50
after evaluating the baseline with descriptors extracted from AlexNet [17],
VGG [25], and ResNet [12]. The dimension of raw frame descriptors ex-
tracted from ResNet-50 is 2,048.

6.2.2 PCA Whitening

PCA whitening is reported to provide significant benefits on an image or
video retrieval task [14]. By taking videos in CBCD 2011 dataset as distractors
for EVVE, we fit a PCA by using the sum-aggregated video descriptors of
CBCD 2011. Before modulating the TE and BURST video descriptors, we
apply the PCA on frame descriptors as a pre-process. The dimension of frame
descriptors extracted from ResNet-50 is reduced to 1,024 after PCA.

6.2.3 Re-ranking by Query Expansion

Since both TE and BURST provide the ability of consistency check, we em-
ploy DoN for query expansion as mentioned in section 2.4. We set the num-
ber of retrieved videos in the short list (N7) as 10, and the number of videos
in the far list for subtraction (N3) as 2000.

6.2.4 Computational Complexity

Thanks to the elegant framework of TE, each video is embedded as a single
descriptor. Instead of a heavy process on videos, we only have to handle
video descriptors.

When the dimension of frame descriptors is d and the number of frequen-
cies we used in the temporal kernel (Eq. 2.3) is m, the dimension of a video
descriptor becomes d x m. The heaviest computation is the inner product be-
tween two video descriptors, whose complexity is O(d x m). The offset local-
ization is related to the period T, the computational complexity is O(T x m).
Thus, we desire a small T and m for better computational performance. The
multi-period strategy satisfies this request.

6.3 Results

6.3.1 Results of Stability-Sensitive Filter

Embedding the stability-sensitive filter into TE enlarges the video descriptors
and results in high computational cost. To conduct the retrieval task on a
practical level, a dimension reduction is applied on the frame descriptors.
Tab. 6.1 shows the average mAPs evaluated under different dimension d by
using TE.

We use 256-d frame descriptors to embed the stability-sensitive filter. An-
other important parameter is w, the width of the filter. As section 3.3 points
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TABLE 6.1: Results of TE with Different d

dimensiond 1,024 256 128 64 32 16
avg-mAP  0.3341 0.3327 0.3182 0.3071 0.2886 0.2421

0.33}
0.325¢
o
<
£ 032} _
> moving-average
E’ 0.315 - Gaussian
© triangular
031 — — — baseline
0.305

10 20 30 40 50 60
filter width (w)
FIGURE 6.1: Average mAPs of TE with embedded stability-

sensitive filter on EVVE dataset. {h} is selected as a moving-
average, Gaussian, and triangular filter (d = 64).

out, the original embedding (Eq. 3.3) is approximated by Eq. 3.8 for compu-
tational reason. The parameter w can be adjusted freely since it is no longer
related to the dimension of video descriptors after approximation. We simply
choose w that leads to best retrieval performance.

The stability-sensitive filter is defined as a combination of a linear filter
{hx} and a monomial (-)? (Eq. 3.2). Besides the monomial kernel fixed to
be a square, we tried different types of the linear filter, i.e. moving average,
Gaussian, and triangular filter, for seeking better performance. However,
Fig. 6.1 shows that the type of the linear filter affects the stability 3 over w
while has limited effect on precision. We simply choose moving-average fil-
ter because it achieves the peak mAP with smallest w. When w is around
37 frames, corresponding to 2.5 seconds of time (15 fps), we obtain the peak
mAP. Hence, we set w = 37.

Tab. 6.2 compares Temporal matching kernel with Embedded Stability-
Sensitive Filter (TESSF) and original TE on EVVE dataset. The results show
that our method achieves better performance compared to the baseline of TE
(d = 256), 33.27% versus 35.30%, and is even better than the baseline of TE
(d = 1,024), 33.41%. Furthermore, we conducted query expansion by using
DoN strategy. The results also show the effectiveness of our filter.

However, as discussed in section 3.3, the dimension of frame descriptors

3Moving average filter is slightly less stable compared to Gaussian and triangular filter.
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TABLE 6.2: Performance of TE with embedded stability-
sensitive filter compared with TE by using MVLADs on EVVE
dataset, where T = 65,537.

d avg-mAP
TE 1,024 0.3341
TE 256 0.3327
TESSF 256 0.3530

TE (DoN) 1,024  0.4033
TESSF (DoN) 256  0.4114

70%

---- TE: 1 period, m=32
60% 1 BURST (asymmetric): 1 period, m=32
—— BURST (symmetric): 1 period, m=32
---- TE: 1 period, m=16

—— BURST (asymmetric): 1 period, m=16
BURST (symmetric): 1 period, m=16

_____

50% 1

40% 1

30% -

20% 1

queries better localized than §

10% 1

—
_____

0% . !
1 frame 1s 10s
localization error §

FIGURE 6.2: Localization accuracies of original TE, asymmet-
ric and symmetric BURST with a single period, on CBCD 2011
dataset. m is the number of frequencies in timestamps (Eq. 2.3).

after embedding the stability-sensitive filter will be quadratic in d and con-
sequently result in high computational cost. So even the stability-sensitive
filter is proved to be effective for improving the performance, the computa-
tional burden carried by it can not be neglected in practice. In next section,
we show that BURST is superior to TESSF in all aspects.

6.3.2 Results of BURST

We mainly demonstrate the effectiveness of BURST from three perspectives:
retrieval performance, localization performance and computational complex-
ity.

First of all, since BURST efficiently razes the misleading noise from false
matches, the retrieval performance will be improved in theory. We evaluated
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the performance of BURST by using the same period T = 65,537, and ob-
tained the average mAP 31.42%. To our disappointment, BURST performed
even worse than TE. Does it mean that BURST is useless? No, we just used it
in a wrong way.

An intuitive explanation to the bad performance is that the power of
BURST is only released when bursts can be found. However, bursts are easily
missed due to the low resolution related to a single long period. A single long
period is not suitable for the BURST method. Hence, a good retrieval perfor-
mance is dependent on a good localization performance. Fig. 6.2 shows the
localization accuracy of TE, asymmetric and symmetric BURST. The localiza-
tion performance was evaluated by the percentage of queries better localized
than an certain error (higher is better), in CBCD 2011 dataset. It is obvious
that the more frequencies, corresponding to a greater m, we use for modula-
tion, the better localization performance we will achieve. By using a certain
number of frequencies, it is shown that the symmetric BURST generally has
a better localization performance than the rest. This is reasonable because
the offset obtained by BURST is exactly where the bursts shows, instead of
where noise exists, while TE is unable to tell the difference.

Last but not least, the computational complexity of BURST never out-
grows that of TE. The shuffle and subtraction (Eq. 4.7) are the only extra op-
erations, which are totally negligible.

6.3.3 Results with Multiple Periods

Following our golden ratio based multi-period strategy, we evaluated the lo-
calization performance of symmetric BURST by using periods selected from
the Fibonacci sequence adjacently. Fig. 6.3 shows that a proper pair of peri-
ods, e.. (233,377) performs better than others. It should be noticed that the
BURST modulated by a single long period (m = 32) is grossly worse than
the BURST modulated by two short periods (m = 16 for each period). Gen-
erally speaking, the choice of periods is related to the length of videos. It
is much safer to use more than two periods, e.g. (233,377,610,987). In our
experiments, four periods indeed outperformed an adjacent pair.

For someone who may be curious about the performance of periods who
are not adjacent Fibonacci numbers, we show the results of four different
pairs of periods in Fig. 6.4. Except the pair (233,367) which is composed
of prime numbers, the numbers in other pairs are all selected from the Fi-
bonacci sequence. Actually, 233,377, 610,987 are continuous numbers in the
Fibonacci sequence. It can be seen that the adjacent pair (233,377) achieved
the best performance. It should be again emphasized that the periods should
be selected as adjacent numbers in the Fibonacci sequence.

Tab. 6.3 shows the results of the sum-aggregated video descriptors?, TE,
and BURST by using multiple periods. Same as we expected, BURST with
multiple periods showed the best performance among them.

4The video descriptor created by summing up all frame descriptors with a L.2 normaliza-
tion afterwards.
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TABLE 6.3: Performance of BURST compared with baselines on
EVVE by using multiple periods, where m = 16.

Method Periods Feature fps avg-mAP

- MVLAD 15 0.334
- ResNet-50 5 0.461

(2027,3019,5003,7019) MVLAD 15 0.332

Sum-aggregated

TE (144,233,377,610)  ResNet-50 5  0.461
(2027,3019,5003,7019) MVLAD 15  0.413

TE (DoN) (144,233377,610)  ResNet-50 5  0.558
BURST (1597,2584,4181,6765) MVLAD 15  0.383
(144,233,377,610)  ResNet-50 5  0.496

BURST (Don)  (1597258441816765)  MVLAD 15 0453

(144,233,377,610) ResNet-50 5 0.573

Comparison with other state-of-the-arts is shown in Tab. 6.4. Our method
gives undoubtedly best retrieval performance among methods who are ca-
pable of offset localization. It should be pointed out we achieved +4.8%
(38.3% versus 33.5%) improvement to our TE baseline by using MVLAD:s,
and +3.5% (49.6% versus 46.1%) by using ResNet-50 features. And our tem-
poral information embedded method BURST achieved even better perfor-
mance than the typical BoF method SHP, which is a real breakthrough.

Even though the recent Counting Grid Aggregation (CGA) has updated
the record of BoF methods, it does not provide localization functionality, and
we found its computational complexity of learning the counting grid with
EM algorithm is extremely high thus only viable on lots of GPUs. We are
confident to allege that our BURST with multi-period strategy is outstand-
ing among the state-of-the-arts due to its good performance in both retrieval
and localization. Furthermore, by grafting other BoF descriptors into the DC
component should be a feasible way to achieve better performance. On the
other hand, the AC components in BURST can be annexed to any other video
descriptors to provide localization ability and better retrieval performance.



TABLE 6.4: Retrieval performance of BURST compared with other state-of-the-art methods,
the dimension d of frame descriptors is set as 1,024.

Chapter 6. Experiments and Results

Method Localization Feature avg-mAP avg-mAP (DoN)
MMV [23] X MVLAD 0.334 -
SHP [9] X MVLAD 0.363 0.440
CTE [23] v MVLAD 0.352 -
MMV+CTE 4 MVLAD 0.376 .
TE 4 MVLAD 0.335 0.413
BURST v MVLAD 0.383 0.453
Sum-aggregated X ResNet-50 0.467 0.551
X ResNet-50 0.512 -
CCATI0] X AlexNet+ResNet-50 0.523 0.601
TE v ResNet-50 0.461 0.558
BURST 4 ResNet-50 0.496 0.573

42
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Chapter 7

Conclusion

7.1 Summary

For localizing relative time offsets, the information of each frame are embed-
ded into the video descriptors. However, such a video descriptor contains
too much redundant information will result in too much noise in frame-wise
similarities, which is responsible for the false matches and the unsatisfac-
tory retrieval performance. It seems to be a paradox that the functionality
of temporal offset localization and a good retrieval performance cannot be
obtained at the same time. In this thesis, we showed the possibility that there
are generic methods for designing a temporal matching kernel with a good
retrieval performance, and a good localization performance as well.

Starting from the purpose to rule out false matches, we focused on penal-
izing the noise in frame-wise similarities. Both stability-sensitive filter and
burst-survive temporal matching kernel are designed for this purpose. The
multi-period strategy is not directly designed for improving the retrieval per-
formance, but achieves a better localization performance which improves the
retrieval performance in return. We also showed the principle of choosing
periods. The combination of BURST and the multi-period strategy achieved
significant improvement on retrieval performance with trivial extra compu-
tational cost. We also showed that our proposed method is competitive with
other state-of-the-arts.

7.2 Future Works

Sooth to say, the work proposed in this thesis is in its completed shape. I
may not further dig into this method in the future, but I will be pleasant to
apply this method into other applications. Although the temporal matching
kernel is solving a 1d matching problem along the temporal axis, some of its
idea is hopefully to be reused in a 2d problem, e.g. embedding the spatial
information of objects on an image. I believe that our method should be
compatible with semantic-spatial image search topics.
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