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Abstract
The contribution of this thesis is to explore a latent space understandable Generative

Adversarial Network (GAN), we name it as Self-excited Generative Adversarial Network
(SelfExGAN). A novel self-excited structure based on adversarial learning. In this thesis,
we take a review of deep learning and many extended versions of GANs. Compared with
the conventional GANs, SelfExGAN consists of three components, which are encoder (E),
generator (G), and discriminator (D). Different from other proposals which directly apply
reconstruction loss between encoder and generator, SelfExGAN introduces Nash equilib-
rium between these three parts in order to discover the correspondence between latent
inputs space and training data space spontaneously. The most attractive point of SelfEx-
GAN is that it can use the learned correspondence to guide G to generate homomorphic
samples given different latent inputs in an unsupervised learning manner. SelfExGAN
learns how to generate new samples, but also determines the correspondence between the
latent inputs space and the training data space.

Our proposed model has various applications, for example, generating training data
with the label for supervised learning, evaluation on the similarity of two samples, and
improving the divergent creation for design. In Chapter 1, we give an introduction of our
work. In Chapter 2, we take a review of deep learning and Generative Adversarial Network.
In Chapter 3, we describe our proposed model: a latent space understandable GAN,
SelfExGAN, as well as with the theoretical results. Its implementation and application
will be introduced in Chapter 4 which show that SelfExGAN performs well in generating
homomorphic images. We present conclusions and future works in Chapter 5.
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Chapter 1

Introduction

In this chapter, we will explain some basic knowledge about Deep Neural Network
(DNNs). We start by the basic concepts behind DNNs. Then we introduce several famous
and important architectures which are LeNet [2], AlexNet [3], DeConvNet [4], VGGNet
[5], GoogleNet [6], and ResNet [7], in chronological order.

1.1 Basic Concepts
The human brain neural network is a very complex nervous system. An artificial neural

network (ANN) is a computational model based on the structure of biological neural
networks. It mimics the way information is processed in the human brain. Typically,
ANNs have an input layer, hidden layers and an output layer. In each layer, there are a
set of connected units called artificial neurons.

It is estimated, that the average human brain contains 86 billion neurons [17]. Together
they form a huge network. Even if we knew the detailed inner structure of the human
brain, we would still not be able to simulate it with current technology because of its
robustness. Our efforts are therefore rather different. We want to build a neural network
with a good ratio between its size and its effectiveness.

Fig. 1.1: Model of biological neuron. Image is taken from Wikipedia.

Deep Neural Network (DNN) refers to artificial neural networks that are composed of
many layers. The earliest deep learning architecture is composed of multiple layers of non-
linear features and it has polynomial activation functions. It is proposed by Ivaknenko and
Lapa in 1965 [18]. In 1979, Fukushima [19] proposed the Convolutional Neural Networks
(CNN), which has multiple pooling and convolutional layers. CNN has the advantage
of avoiding the hand-selected feature extraction, which is time-consuming and requires
expert knowledge, compared to the traditional image processing algorithms.
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Genrally, DNNs consists of a set of artificial neurons. Formally, an aritificial neural has
n inputs represented as a vector x⃗ ∈ Rn. Inputs in an artificial neuron correspond to the
dendrites in a biological neuron, while a single output of an artificial neuron corresponds to
the axon in a biological neuron, which is depicted in Figure 1.1. Each input i, 1 ≤ i ≤ n,
has an assigned weight w1, w2, ..., wn, and bias b1, b2, ..., bn. Weighted input values are
combined and followed by a non-linar activation (see in Chapter 2), as shown in Figure
1.2.

Fig. 1.2: Model of an artificial neuron

DNNs represent images using a multi-layered hierarchy of features and are inspired by
the structure and functionality of the visual pathway of the human brain. Figure 1.3 [20]
shows human’s visual system. Visual information is collected by our eyes, and project to
the retina. Then the information will be transmitted in a stream way (layers by layers.
Actually, different layers in our brain servers as different functionality, in Brain Sciences,
we divide it into V1, V2, V3, V4 regions [1].

Fig. 1.3: Brain Structure [1]. Explain how human’s visual system works.

DNNs also mimic the information flow in a layers by layers way. It works by feeding
the data into the input neurons. The data flow in the direction of oriented edges and
ends when the output neurons are hit. The result is interpreted from the values obtained
in the output neurons. For the input neurons, they together represent an instance of the
problem to be solved by the DNNs. All output neurons have exactly one output, and all
outputs together represent a possible solution to the problem. Between input neurons and
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output neurons, there exist a layers by layers structure. Figure 1.4 shows a Multilayer
perceptron [21] network consists of three layers. A set of hidden neurons consists of the
neurons which are not input, nor output neurons. Their number and organization into
layers may vary even for the same problem, but is a key feature of the network vastly
influencing its performance. The Multilayer perceptron (MLP) is a feed-forward neural
network consisting of multiple mutually interconnected layers of neurons. The layers are
stacked one onto each other. Every neuron in one layer is connected to every neuron in
the following layer. The motivation behind designing multilayer networks is to be able to
solve more complex tasks. The layers in MLP network is built of fully-connected layers
defined in Chapter 2.

Fig. 1.4: A Multilayer perceptron network consists of three layers

Inspired by biological nervous systems, DNNs aim at reaching their versatility through
learning. ANNs are commonly employed in artificial intelligence, machine learning and
pattern recognition. There has been substantial research into how the human brain’s
structure achieves such a high level of versatility. This research has provided some im-
portant insights, however the conclusions are far from completely explaining the complex
functioning of the brain. Even though we have not been able to replicate the brain so
far, the field of artificial intelligence offers very effective solutions to many problems by
simulating the observations of biological research of various nervous systems.

DNNs use the stacked layers structure to solve various problems in real world. For exam-
ple, image classification, speech recognition, language transformation and so on. Based
on my understanding, DNNs can be thought as a huge black box for high-dimensional
approximator. The implementation of DNNs can be easily described by linear transfor-
mation followed by non-linear activation. By stacking these procedures again and again,
DNNs are competent for a variety of tasks.

1.2 Famous DNN Architectures
In this section, we will introduce several important modern DNNs architectures. LeNet

[2] the first successful application of Convolutional neuron networks (CNNs) to digit recog-
nition, developed by Yann LeCun in 1990. It consists of a sequence of Convolutional, Max
Pooling layers followed by a Fully Connected layer. AlexNet [3] popularized CNNs in
computer vision, did really well on the ImageNet ILSVRC [16] challenge in 2012, showing
significant gains in performance. The network has similar architecture to LeNet but is
deeper and bigger and features convolutional layers stacked on top of each other. DeCon-
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vNet [4] demonstrates how to visualize convolutional layer’s learning results. VGG16 [5]
demonstrated the importance of depth as a critical component to good performance; it
was a runner-up in ILSVRC 2014. The architecture consists of a stacked convolutional and
max-pooling layers, with increasing depth and it uses a large number of parameters due
to the final fully connected layers. GoogLeNet [6] proposed from Google won the ILSVRC
2014 challenge. The architecture consists of inception modules that dramatically reduce
the number of parameters; it uses multi-scale 3 × 3, 5 × 5 convolutional filters including
1x1 convolutions for dimensionality reduction. ResNet [7] residual network was the win-
ner of ILSVRC 2015; it introduces skip connections for easier training that enable very
deep architectures and makes use of batch normalization. Each of those famous modern
structures will be introduced in the following subsections.

1.2.1 LeNet

Fig. 1.5: Architecture of LeNet [2].

The LeNet architecture is an excellent “first architecture” for CNN (especially when
trained on the MNIST dataset, an image dataset for handwritten digit recognition).

LeNet is small and easy to understand, yet large enough to provide interesting results.
Furthermore, the combination of LeNet + MNIST is able to run on the CPU, making
it easy for beginners to take their first step in Deep Learning and Convolutional Neural
Networks. Figure 1.5 shows the architecture of LeNet. The LeNet architecture consists
of the following layers which are convolutional layer, pooling layer, and fully-connected
layer.

1.2.2 AlexNet

The one that started it all (Though some may say that Yann LeCun’s paper in 1998
was the real pioneering publication). This paper, titled “ImageNet Classification with
Deep Convolutional Networks” [3], has been cited a total of 17,955 times and is widely
regarded as one of the most influential publications in the field. Alex Krizhevsky, Ilya
Sutskever, and Geoffrey Hinton created a “large, deep convolutional neural network” that
was used to win the 2012 ILSVRC (ImageNet Large-Scale Visual Recognition Challenge).
For those that aren’t familiar, this competition can be thought of as the annual Olympics
of computer vision, where teams from across the world compete to see who has the best
computer vision model for tasks such as classification, localization, detection, and more.
2012 marked the first year where a CNN was used to achieve a top 5 test error rate of
15.4% (Top 5 error is the rate at which, given an image, the model does not output the
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correct label with its top 5 predictions). The next best entry achieved an error of 26.2%,
which was an astounding improvement that pretty much shocked the computer vision
community. Safe to say, CNNs became household names in the competition from then on
out.

Fig. 1.6: Architecture of AlexNet [3].

In the paper, the group discussed the architecture of the network (which was called
AlexNet). They used a relatively simple layout, compared to modern architectures. The
network was made up of 5 conv layers, max-pooling layers, dropout layers, and 3 fully
connected layers. The network they designed was used for classification with 1000 possible
categories. Figure 1.6 shows the architecture of AlexNet. The Main points of AlexNet
includes:

- Trained the network on ImageNet data, which contained over 15 million annotated
images from a total of over 22,000 categories.

- Used data augmentation techniques that consisted of image translations, horizontal
reflections, and patch extractions.

- Implemented dropout layers in order to combat the problem of overfitting to the
training data.

- Trained the model using batch stochastic gradient descent, with specific values for
momentum and weight decay.

The neural network developed by Krizhevsky, Sutskever, and Hinton in 2012 was the
coming out party for CNNs in the computer vision community. This was the first time a
model performed so well on a historically difficult ImageNet dataset. Utilizing techniques
that are still used today, such as data augmentation and dropout, this paper really illus-
trated the benefits of CNNs and backed them up with record-breaking performance in the
competition.

1.2.3 DeConvNet

The basic idea behind how this works is that at every layer of the trained CNN, you
attach a“deconvnet” which has a path back to the image pixels. An input image is fed
into the CNN and activations are computed at each level. This is the forward pass. Now,
let’s say we want to examine the activations of a certain feature in the 4th conv layer. We
would store the activations of this one feature map, but set all of the other activations
in the layer to 0, and then pass this feature map as the input into the deconvnet. This
deconvnet has the same filters as the original CNN. This input then goes through a series
of the un-pooling layer (reverse max-pooling layer), rectify, and filter operations for each
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Fig. 1.7: Visualizations of layer 1 and layer 2 [4]. Each layer illustrated 2 pictures,
one which shows the filters themselves and that shows what part of the image are most
strongly activated by the given filter. For example, in the space labled layer 2, we have
representation of the 16 different filters (on the left)

Fig. 1.8: More visualization on layer 3,4,5 [4].
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preceding layer until the input space is reached. The reasoning behind this whole process
is that we want to examine what type of structures excite a given feature map. Figure
1.7 shows the visualizations of the first and second layers.

The first layer of the ConvNet is always a low-level feature detector that will detect
simple edges or colors in this particular case. Figure 1.8 gives the more visualization on
3,4,5 layers. These layers show a lot more of the higher level features such as dogs’ faces
or flowers. This means the proceeding layer try to learn more high-level features.

1.2.4 VGGNet

Fig. 1.9: The 6 different architectures of VGGNet in original paper [5].

Figure 1.9 shows 6 different architectures of VGGNet. The keypoints in VGGNet in-
cludes:

- The use of only 3 × 3 sized filters is quite different from AlexNet’s 11 × 11 filters
in the first layer and DeConvNet’s 7× 7 filters. The authors’ reasoning is that the
combination of two 3×3 conv layers has an effective receptive field of 5×5. This in
turn simulates a larger filter while keeping the benefits of smaller filter sizes. One of
the benefits is a decrease in the number of parameters. Also, with two conv layers,
we’re able to use two ReLU layers instead of one.

- 3 conv layers back to back have an effective receptive field of 7× 7.
- As the spatial size of the input volumes at each layer decrease (result of the conv
and pool layers), the depth of the volumes increase due to the increased number of
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filters as you go down the network.
- Interesting to notice that the number of filters doubles after each max-pooling layer.
This reinforces the idea of shrinking spatial dimensions, but growing depth.

VGGNet is one of the most influential papers in my mind because it reinforced the notion
that convolutional neural networks have to have a deep network of layers in order for this
hierarchical representation of visual data to work. Keep it deep. Keep it simple.

1.2.5 GoogLeNet

Fig. 1.10: Full inception module architecture [6].

The Inception module has been proposed by GoogLeNet [6]. Figure 1.10 shows the
architecture of a full Inception. GoogLeNet is a 22 layer CNN and was the winner of
ILSVRC 2014 with a top 5 error rate of 6.7%. To my knowledge, this was one of the
first CNN architectures that really strayed from the general approach of simply stacking
convolution and pooling layers on top of each other in a sequential structure. The authors
of the paper emphasized that this new model places notable consideration on memory and
power usage.

In Figure 1.10, the bottom green box is our input and the top one is the output of
the model (Turning this picture right 90 degrees would let you visualize the model in
relation to the last picture which shows the full network). Basically, at each layer of a
traditional ConvNet, you have to make a choice of whether to have a pooling operation
or a conv operation (there is also the choice of filter size). What an Inception module
allows you to do is perform all of these operations in parallel. In an Inception module, we
have a medium sized filter convolution, a largely sized filter convolution, and a pooling
operation. The network in network convolution is able to extract information about the
very fine grain details in the volume, while the 5×5 filter is able to cover a large receptive
field of the input, and thus able to extract its information as well. It also has a pooling
operation that helps to reduce spatial sizes and combat overfitting. On top of all of that,
it has ReLus after each conv layer, which helps improve the nonlinearity of the network.
Basically, the network is able to perform the functions of these different operations while
still remaining computationally considerate.
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Fig. 1.11: A Residual Block [7].

1.2.6 ResNet

Imagine a deep CNN architecture. Take that, double the number of layers, add a couple
more, and it still probably isn’t as deep as the ResNet architecture that Microsoft Research
Asia came up with in late 2015. ResNet is a new 152 layer (the deepest version) network
architecture that set new records in classification, detection, and localization through one
incredible architecture. Aside from the new record in terms of the number of layers,
ResNet won ILSVRC 2015 with an incredible error rate of 3.6% (Depending on their skill
and expertise, humans generally hover around a 5-10% error rate.

Except its depth, ResNet introduce a new module called Residual Block [7] see in Figure
1.11. The idea behind a Residual Block is that you have your input x go through conv-
relu-conv series. This will give you some F (x). That result is then added to the original
input x. Let’s call that H(x) = F (x) + x. In traditional CNNs, your H(x) would just
be equal to F (x). So, instead of just computing that transformation (straight from x to
F (x)), we’re computing the term that you have to add, F (x), to your input x. Basically,
the mini-module shown below is computing a “delta” or a slight change to the original
input x to get a slightly altered representation (When we think of traditional CNNs,
we go from x to F (x) which is a completely new representation that doesn’t keep any
information about the original x). The authors believe that it is easier to optimize the
residual mapping than to optimize the original, unreferenced mapping [7].

1.3 Thesis Structure
The structure of this paper listed as follows:
In Chapter 2, the basic concepts of Generative Adversarial Network, which includes

neural network architectures, layers, non-linear activation functions, loss functions and
training methods are introduced.

In Chapter 3 , we introduce the proposed model: a latent space understandable Gen-
erative Adversarial Network. The general idea, structure and the theoretical results are
presented in this chapter.

In Chapter 4, we exhibit the learning ability of our model on various dataset. Imple-
mentation detail and its applications wil be introduced as well.

In Chapter 5, the conclusions, and future works are presented.
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Chapter 2

Generative Adversarial Networks

DNNs have a recursively layer by layer architecture. In this chapter, we introduce the
components in DNNs, and how to train a DNN by seeking a set of parameters for the
network that minimize the objective function. Also, Generative Adversarial Networks [22]
(GAN) will be introduced in this chapter. GAN consists of two DNNs, which are called
generator and discriminator separately. The main idea behind a GAN is to have these two
competing neural network models trying to achieve opposite objectives. Generator takes
random noise as input and tries to generate samples with high authenticity. On the other
hand, discriminator receives samples from both the generator and the training data, and
has to be able to distinguish between these two sources. G and D play a continuous game,
where the generator is learning to produce more realistic samples, and the discriminator
is learning to distinguish generated data from real one. These two networks are trained
simultaneously, and the objective is that the competition will drive the generated samples
to be indistinguishable from real ones. In Section 2.4, we introduce the architecture of
GANs.

2.1 Layers
Even though there are many different architectures for DNNs in the literature, the

majority of them can be built by stacking four main type of layers in different combina-
tions. Namely, the fully connected layer, the convolutional layer, pooling layer and batch
normalization layer. In this section, we will explain those layers.

2.1.1 Fully Connected Layer

Mathematically, we can think of a linear layer as a function which applies a linear
transformation on a vectorial input of dimension I and output a vector of dimension O.
Usually, the layer has a bias parameter:

y = W · x+ b (2.1)

The linear layer is motivated by the basic computational unit of the brain called neuron.
Approximately 86 billion neurons can be found in the human nervous system and they
are connected with approximately 1014 − 1015 synapses [17]. Each neuron receives input
signals from its dendrites and produces output signal along its axon. The linear layer is a
simplification of a group of neurons having their dendrites connected to the same inputs.
Usually, an activation function, such as sigmoid, is used to mimic the 1−0 impulse carried
away from the cell body and also to add non-linearity (See Figure 2.1).
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Fig. 2.1: A cartoon drawing of a biological neuron (left), and its mathematical model
(right). Image is taken from Wikipedia.

2.1.2 Convolutional Layer

The purpose of convolutional layers is to detect the features in the presented images.
It consists of multiple feature maps, each recognizing certain specific feature. The feature
recognition can be thought of as running the sub-image through a filter. The filtering is
essentially done through weight adjustments.

Regular neural networks, only made of linear and activation layers, do not scale well to
full images. For instance, images of size 3 × 224 × 224 (3 color channels, 224 width, 224
hight) would necessitate a first linear layer having 3 ∗ 224 ∗ 224 + 1 = 150129 parameters
for a single neurone (e.g. output). However, convolution layers take advantage of the
fact that their input (e.g. images or feature maps) exhibits many spatial relationships.
In fact, neighboring pixels should not be affected by their location within image. Thus,
a convolutional layer learns a set of Nk filters F = f1, f2, ..., fNk

, which are convolved
spatially with input image x, to produce a set of Nk 2D features maps z:

zk = fk ⊗ x (2.2)

where ⊗ is the convolution operator. When the filter correlates well with a region of the
input image, the response in the corresponding feature map location is strong. Unlike
conventional linear layer, weights are shared over the entire image reducing the number
of parameters per response and equivariance is learned (i.e. an object shifted in the input
image will simply shift the corresponding responses in a similar way). Figure 2.2 shows
2× 2 convolution.

Also, a fully connected layer can be seen as a convolutional layer with filter of sizes
1 × 1 × input size. In addition, in CNNs, each filter fi is replicated across the entire
visual field. These replicated units share the same parameterization (weight vector and
bias) and form a feature map.

2.1.3 Deconvutional Layer

The concept of deconvolution (also be called transposed convolution) is first shown in
the Zeiler’s paper [4] published in 2010. The need for deconvolutions generally arises from
the desire to use a transformation going in the opposite direction of a normal convolution.
Deconvolutions work by swapping the forward and backward passes of a convolution.

Imagine inputting an image into a single convolutional layer. Now take the output,
throw it into a black box and out comes your original image again. This black box does
a deconvolution. It is the mathematical inverse of what a convolutional layer does.
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Fig. 2.2: Convolution with 2× 2 filter. Image is taken from Wikipedia.

A deconvolution is somewhat similar because it produces the same spatial resolution
a hypothetical deconvolutional layer would. However, the actual mathematical operation
that’s being performed on the values is different. A deconvolutional layer carries out
a regular convolution but reverts its spatial transformation. Deconvolutional layers are
adopted by many works, such as scene segmentation [23].

2.1.4 Pooling Layer

In CNNs, a pooling layer is typically present to provide invariance to slightly different
input images and to reduce the dimension of the feature maps (e.g. width, hight):

PR = Pi∈R(zi) (2.3)

where P is a pooling function over the region of pixels R.
Another important concept of CNNs is pooling, which is a form of non-linear down-

sampling. There are several non-linear functions to implement pooling among which max
pooling is the most common. Max pooling is preferred as it avoids cancellation of negative
elements and prevents blurring of the activations and gradients throughout the network
since the gradient is placed in a single location during backpropagation. Figure 2.3 shows
an example of max pooling. In addition to max pooling, the pooling units can use other
functions, such as average pooling.

The pooling layer serves to progressively reduce the spatial size of the representation, to
reduce the number of parameters and amount of computation in the network, and hence
to also control overfitting. It is common to periodically insert a pooling layer between
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Fig. 2.3: Max pooling with a 2× 2 filter and stride = 2

successive convolutional layers in a CNN architecture. The spatial pooling layer is defined
by its aggregation function, the high and width dimensions of the area where it is applied,
and the properties of the convolution (e.g. padding, stride).

2.1.5 Batch Normalization Layer

The Batch Normalization (BN) layer [24] quickly became very popular mostly because
it helps to converge faster. It adds a normalization step (shifting inputs to zero-mean and
unit variance) to make the inputs of each trainable layers comparable across features. By
doing this, it ensures a high learning rate while keeping the network learning.

2.2 Activation Functions
The capacity of the neural networks to approximate any functions, especially non-

convex, is directly the result of the non-linear activation functions. Every kind of ac-
tivation function takes a vector and performs a certain fixed point-wise operation on
it. Mainly, all the activation functions can be divided into two groups, which are free-
parametric activation function and parametric activation functions. In this section, we
will introduce various kinds of non-linear activation function, and how they work.

2.2.1 Non-parametric Activation Functions

In this section, we will introduce some basic activation function with no parameters
need to learn which are Step function, Sigmoid function, Tanh function, ReLu function,
LeakyReLu function [25].
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Step Function

y =

{
1 x > 0

0 x ≤ 0
(2.4)

Fig. 2.4: Step function

Sigmoid Function

y = sigmoid(x) =
1

1 + e−x
(2.5)

Tanh Function

y = tanh(x) =
2

1 + e−2x
− 1 = 2sigmoid(2x)− 1 (2.6)

ReLu Function

y =

{
x x > 0

0 x ≤ 0
(2.7)

LeakyReLu Function

y =

{
x x > 0

λx x ≤ 0
(2.8)

where λ is a small value, often set to 0.2.
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Fig. 2.5: Sigmoid function

Fig. 2.6: Tanh function

2.2.2 Parameterized Activation Functions

In this section, we will introduce another type of non-linear activation function: para-
metric activation function. PReLu [26] (Parametric Rectified Linear Unit).

PReLu

yi =

{
xi xi > 0

λix xi ≤ 0
(2.9)
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Fig. 2.7: ReLu function

Fig. 2.8: LeakyReLu function

As its name suggests, λi are parameter need to be learn. If we set λi to 0, than PReLu
becomes ReLu. If we set λi to a small fixed value, it becomes LeakyReLu.

2.3 Training
The ability to learn is the key concept of neural networks. The aim of the process is

to find the optimal parameters (and structure) of the network for solving the given task.
Before the training process starts, network parameters need to be initialized. Initial values
are often chosen randomly, however using some heuristics may lead to a faster parameter
adjustment towards the optimal values. Learning is then carried out on the training set
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by feeding the training data through the network. It is an iterative process, where the
outputs produced on each input from the training set are analyzed and the network is
repeatedly being adjusted to produce better results. The network is considered to be
trained after reaching the target performance on the training data.

The networks will be trained based on gradient back propagation [27]. Namely, by
computing the difference between the output of a neuron network and the expected output,
we keep propagating the error back through the whole network guiding the parameters
updating. Section 2.3.1 will give more details on back propagation algorithm. How to
define “difference” based on the loss function we define for the network, which will be
introduced in Section 2.3.2. When we updating the network parameters, we can choose
various updating strategy to update the network parameters. In Section 2.3.3, we will
introduce some most often used optimization algorithm for updating parameters.

2.3.1 Back Propagation

Back propagation is a method used in artificial neural networks to calculate the error
contribution of each neuron after a batch of data (in image recognition, multiple images)
is processed. It is a special case of an older and more general technique called automatic
differentiation. In the context of learning, back propagation is commonly used by the gra-
dient descent optimization algorithm to adjust the weight of neurons by calculating the
gradient of the loss function. This technique is also sometimes called backward propaga-
tion of errors, because the error is calculated at the output and distributed back through
the network layers.

The back propagation algorithm has repeatedly been rediscovered and is equivalent
to automatic differentiation in reverse accumulation mode. Back propagation requires a
known, desired output for each input value. It is therefore considered to be a supervised
learning method. Back propagation is also a generalization of the delta rule to multi-
layered feedforward networks, made possible by using the chain rule to iteratively compute
gradients for each layer. It is closely related to the GaussNewton algorithm, and is part
of continuing research in neural backpropagation.

To define the learning process formally and in more details in following sections. Let

us consider P training patterns labeled (x⃗p, d⃗p), where x⃗p is the desired output vector,
and 1 ≤ p ≤ P . Given the current configuration of the network, the input x⃗p yields the

output y⃗p. Then for every pattern p we want y⃗p to be as close to the desired output d⃗p

as possible. Then, we are able to define the error of each neuron j in the output layer as:

epj = ypj − dpj (2.10)

Now we can define the squared error for pattern p as:

Ep =
1

mκ

mκ∑
j=1

(epj )
2 =

1

mκ
(ypj − dpj )

2 (2.11)

where mκ is the number of neurons in the output layer. Note that if the actual output is
exactly the same as the desired output, we get zero for the squared error. In other saying,
the following holds true:

∀j : Ep = 0 ⇌ epj = 0 ⇌ ypj = dpj (2.12)

It may be useful to sum up the average error for all input patterns to assess the network
performance on the whole dataset, which can be achieved simply by computing the mean
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squared error:

Eavg =
1

P

P∑
p=1

Ep (2.13)

When learning, for each interconnected pair of neurons (i, j), where i is a neuron in layer
l, j is a neuron in layer l+ 1 and wi,j weights their connection, we want to adjust wi,j to
minimize the mean squared error Eavg. Provided the activation function is differentiable
everywhere on its domain, Eavg is also differentiable. When adjusting the weight wi,j
of the neuron j located in the output layer κ, we are therefore interested in the partial
derivative:

∂Eavg
∂wi,j

=
1

P

∂

∂wi,j

P∑
p=1

Ep =
1

P

P∑
p=1

∂Ep
∂wi,j

(2.14)

To be able to adjust the network after each presented input pattern, we are actually
interested in the derivative for each given pattern p and its corresponding Ep. In the
following equations we will therefore omit the pattern index p. Applying the chain rule
to Equation (2.14) we can get:

∂E

∂wi,j
=

∂E

∂yj

yj
wi,j

(2.15)

Using Equation (2.11) we can evaluate the first factor as:

E

∂yj
= (yj − dj) (2.16)

Then, we can evaluate the second factor:

∂yj
∂wi,j

=
∂yj
∂ξj

∂ξj
∂wi,j

= f
′
(ξj)

∂

∂wi,j

∑
k

wk,jyk = f
′
(ξj)yi (2.17)

By combining both evaluated factors we can get:

∂E

∂wi,j
= (yj − dj)f

′
(ξj)yi (2.18)

For convenience local gradient term δj for neuron j in the output layer as the following
relation:

δj =
∂E

∂ξj
=

∂E

∂yj

∂yj
∂ξj

= (yj − dj)f
′
(ξj) (2.19)

Then from this, we can convert Equation (2.18) into the following:

∂E

∂wi,j
= δjyi (2.20)

By applying Equation (2.20) we can compute the gradient of the error function for each
of the given patterns p. We need to adjust the weight wi,j proportionally to the gradient
but in the opposite direction. However doing so for every input pattern would produce a
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very unstable system. To combat this problem we can use a learning parameter 0 < η < 1.
The weight adjustment is then computed by:

∆wi,j = −η
∂E

∂wi,j
= −ηδjyi (2.21)

The weight adjustment ∆wi,j in Equation (2.21) is only applicable to the neurons in
the output layer. Computation of the adjustment for neurons in the hidden layers is more
complicated. For instance, consider 3 neurons i, j, and k, all following each other on the
same path along the layers l － 1, l and l + 1, respectively, as illustrated in Figure 2.9.
Then the adjustment of wi,j needs to be done carefully, because besides influencing the
output of neuron i itself, it also impacts all the outputs (and thus errors) in all layers
following l. Minding this, let us bring our attention to the layers l < L in the following
text.

Fig. 2.9: Illustration showing how a change in the weight wi,j of the neuron in the hidden
layer l − 1 influence the weight wj,k of the neron in the following layer l.

Note that Equation (2.18) still applies to hidden layers. However, we need to look at
the definition of the local gradient again. In the previous Equation (2.19), we are using
the desired output dj to calculate ∂E/∂yj . Of course, there is no desired output known
in hidden layers. It is actually dependent on the network design. Because of this, we need
to step back and use the following definition for δj :

δj =
∂E

∂ξj
=

∂E

∂yj

∂yj
∂ξj

=
∂E

∂yj
f

′
(ξj) (2.22)

Now we need to redefine ∂E/∂yj for hidden layers. For any hidden layer l, the following
layer l+1 must exist (otherwise l would be the output layer). Given the neurons i, j and
k each in a different layer as illustrated in Figure 2.9, we can use the potential ξk:

∂E

∂yj
=

ml+1∑
k=1

∂E

∂ξk

∂ξk
∂yj

=

ml+1∑
k=1

∂E

∂ξk
wj,k =

ml+1∑
k=1

δkwj,k (2.23)

combining Equation (2.22) and Equation (2.23), we can get:

δj = (

ml+1∑
k=1

δkwj,k)f
′
(ξj) (2.24)
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From Equation (2.24), we can know that the local gradient of neuron k in layer l+ 1, we
can calculate the local gradient for neuron j in layer l. This fact will allow us to recursively
adjust the network weights going layer by layer in the direction from the output to the
input (backwards).

Finally, we can summarize the parameter adjustment applicable to all the layers in a
given network:

∆wi,j = −η
∂E

∂wi,j
= −ηδjyi (2.25)

where

∀j in layer l < L δj = (

ml+1∑
k=1

δkwj,k)f
′
(ξj)

∀j in layer L δj = (yj − dj)f
′
(ξj)

(2.26)

The above explanation is based on a fully-connected layer with no bias added. More
details about derivation can be found on [28]. It is the same case in the other types of
layers. The idea is that we compute the error between the output of network and our
expected value. Then, we back propagate the gradient from behind to the head of the
neuron network for updating the weights.

2.3.2 Loss Functions

Loss function is an important part in training DNNs, which is used to measure the
inconsistency between predicted value ŷ and actual label y. It is a non-negative value,
where the robustness of model increases along with the decrease of the value of loss
function. Loss function is the hard core of empirical risk function as well as a significant
component of structural risk function. Generally, the structural risk function of a model
is consist of empirical risk term and a regularization term, which can be represented as:

θ∗ = argmin
θ

£(θ) + λ · Φ(θ) = (2.27)

argmin
θ

1

n

n∑
i=1

L(yi, ŷi) + λ · Φ(θ) = (2.28)

argmin
θ

1

n

n∑
i=1

L(yi, f(xi, θ)) + λ · Φ(θ) (2.29)

Where Φ(θ) is the regularization term or penalty term, θ is the parameters of model to
be learned, f(.) represents the activation function and xi = {xi1, xi2, ..., xim} denotes the a
training sample.

In this context, we only concentrate on the empirical risk term (loss function):

£(θ) =
1

n

n∑
i=1

L(yi, f(x
i, θ)) (2.30)

Mean Squared Error
Mean Squared Error (MSE), or quadratic, loss function is widely used in linear regres-

sion as the performance measure, and the method of minimizing MSE is called Ordinary
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Least Squares (OSL), the basic principle of OSL is that the optimized fitting line should
be a line which minimizes the sum of distance of each point to the regression line, i.e.,
minimizes the quadratic sum. The standard form of MSE loss function is defined as:

£ =
1

n

n∑
i=1

(yi − ŷi)2 (2.31)

where (yi − ŷi) is named as residual, and the target of MSE loss function is to minimize
the residual sum of squares. It is worthing to mention that if using sigmoid function as
the non-linear activation function, the quadratic loss function would suffer the problem of
slow convergence (learning speed), for other activation functions, it would not have such
problem.

For example, by using sigmoid:

ŷi = σ(zi) = σ(θTxi) (2.32)

Simply case, if we only consider one sample, say that, (y − σ(z))2, and it derivative can
be computed by the following:

∂£

∂θ
= −(y − σ(z)) · σ

′
(z) · x (2.33)

according to the shape and feature of Sigmoid, when σ(z) tends to 0 or 1, σ(z)
′
is close

to zero, and when σ(z) close to 0.5, σ(z)
′
will reach it maximum. In this case, when the

difference between predicted value and true label (y －σ(z)) is large, σ(z)
′
will close to 0,

which decreases the convergence speed, this is improper, since we expect that the learning
speed should be fast when the error is large.

Mean Squared Logarithmic Error
Based on our understanding, Mean Squared Logarithmic Error (MSLE) loss function is

a variant of MSE, which is defined as:

£ =
1

n

∑
i=1

n(log(yi + 1)− log(ŷi + 1))2 (2.34)

MSLE is also used to measure the difference between actual and predicted. By taking
the log of the predictions and actual values, what changes is the variance that you are
measuring. It is usually used when you do not want to penalize huge differences in the
predicted and the actual values when both predicted and true values are huge numbers.
Another thing is that MSLE penalizes under-estimates more than over-estimates.

L2 norm
L2 loss function is the square of the L2 norm of the difference between actual value and

predicted value. It is mathematically similar to MSE, only do not have division by n, it
is computed by the following:

£ =

n∑
i=1

(yi − ŷi)2 (2.35)

L2 is often used in various aspect, for more details, typocally in mathematic, please refer
to [29] which gives more comprehensive explanation about L2 loss.
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Mean Absolute Error
Mean Absolute Error (MAE) is a quantity used to measure how close forecasts or

predictions are to the eventual outcomes, which is computed by the following:

£ =
1

n

n∑
i=1

|yi − ŷi| (2.36)

where | · | denotes the absolute value. Albeit, both MSE, and MAE are used in predic-
tive modeling, there are several differences between them. MSE has nice mathematical
properties which make it easier to compute the gradient. However, MAE requires more
complicated tools such as linear programming to compute the gradient. Because of the
square, large errors have a relatively greater influence on MSE than do the smaller error.
Therefore, MAE is more robust to outliers since it does not make use of square. On
the other hand, MSE is more useful if concerning about large errors whose consequences
are much bigger than equivalent smaller ones. MSE also corresponds to maximizing the
likelihood of Gaussian random variables.

L1 norm
L1 loss function is a sum of absolute errors of the difference between actual value and

predicted value. Similar to the relation between MSE and L2, L1 is mathematically similar
to MAE, only do not have division by n, and it is defined as the following:

£ =

n∑
i=1

|yi − ŷi| (2.37)

Kullback Leibler Divergence
Kullback Leibler Divergence (KL), also known as relative entropy, information diver-

gence/gain, is a measure of how one probability distribution diverges from a second ex-
pected probability distribution. KL divergence loss function is computed by the following:

£ =
1

n

n∑
i=1

(yi · log(yi))︸ ︷︷ ︸
entropy

− 1

n

n∑
i=1

(yi · log(ŷi))︸ ︷︷ ︸
cross entropy

(2.38)

where the first term is entropy and another is cross entropy (another kind of loss function
which will be introduced later). KL divergence is a distribution-wise asymmetric measure
and thus does not qualify as a statistical metric of spread. In the simple case, a KL diver-
gence of 0 indicates that we can expect similar, if not the same, behavior of two different
distributions, while a KL divergence of 1 indicates that the two distributions behave in
such a different manner that the expectation given the first distribution approaches zero.

Cross Entropy
Cross Entropy is commonly-used in binary classification (labels are assumed to take

values 0 or 1) as a loss function (For multi-classification, use Multi-class Cross Entropy),
which is computed by the following:

£ = − 1

n

n∑
i=1

[yilog(ŷi) + (1− yi)log(1− ŷi)] (2.39)



2.3 Training 23

Cross entropy measures the divergence between two probability distribution, if the cross
entropy is large, which means that the difference between two distribution is large, while
if the cross entropy is small, which means that two distribution is similar to each other.
As we have mentioned in MSE that it suffers slow divergence when using sigmoid as

activation function, here the cross entropy does not have such problem. Samely, ŷi =
σ(zi) = σ(θTxi), and we only consider one training sample, by using sigmoid, we have
£ = ylog(σ(z)) + (1− y)log(1− σ(z)), and compute it derivative as the following:

∂£

∂θ
= (y − σ(z)) · x (2.40)

compare to the derivative in MSE, it eliminates the term σ(z)
′
, where the learning speed

is only controlled by (y－σ(z)). In this case, when the difference between predicted value
and actual value is large, the learning speed, i.e., convergence speed, is fast, otherwise,
the difference is small, the learning speed is small, this is our expectation. Generally,
comparing to a quadratic cost function, cross entropy cost function has the advantages
that fast convergence and is more likely to reach the global optimization.

Negative Logarithmic Likelihood
Negative Log Likelihood loss function is widely used in neural networks, it measures

the accuracy of a classifier. It is used when the model outputs a probability for each
class, rather than just the most likely class. It is a “soft” measurement of accuracy
that incorporates the idea of probabilistic confidence. It is intimately tied to information
theory. And it is similar to cross entropy (in binary classification) or multi-class cross
entropy (in multi-classification) mathematically. Negative log-likelihood is computed by
the following:

£ = − 1

n

n∑
i=1

log(ŷi) (2.41)

Poisson
Poisson loss function is a measure of how the predicted distribution diverges from the

expected distribution, the Poisson as loss function is a variant from Poisson distribution,
where the Poisson distribution is widely used for modeling count data. It can be shown to
be the limiting distribution for a normal approximation to a binomial where the number
of trials goes to infinity and the probability goes to zero and both happen at such a rate
that np is equal to some mean frequency for the process. The Poisson loss function is
computed by the following:

£ =
1

n

n∑
i=1

(ŷi − yi · log(ŷi)) (2.42)

Cosine Proximity
Cosine Proximity loss function computes the cosine proximity between predicted value

and actual value, which is defined as:

£ = − y · ŷ
||y||2 · ||ŷ||

(2.43)

where y = {y1, y2, ..., yn} ∈ Rn, and ŷ = {ŷ1, ŷ2, ..., ŷn} ∈ Rn. It is same as Cosine
Similarity, which is a measure of similarity between two non-zero vectors of an inner
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product space that measures the cosine of the angle between them. In this case, note
that unit vectors are maximally “similar” if they’re parallel and maximally “dissimilar”
if they’re orthogonal (perpendicular). This is analogous to the cosine, which is unity
(maximum value) when the segments subtend a zero angle and zero (uncorrelated) when
the segments are perpendicular.

Hinge
Hinge Loss, also known as max-margin objective, is a loss function used for training

classifiers. The hinge loss is used for “maximum-margin” classification, most notably
for support vector machines (SVMs) [30]. For an intended output y(i) = ± 1, i.e., binary

classification and a classifier score ŷi, the hinge loss of the prediction y is defined as

£ =
1

n

n∑
i=1

max(0, 1− yi · ŷi) (2.44)

Note that ŷi should be the “raw” output of the classifier’s decision function, not the

predicted class label. It can be seen that when yi and ŷi have the same sign (meaning ŷi

predicts the right class) and |ŷi| > 1, the hinge loss equals to zero, but when they have

opposite sign, hinge loss increases linearly with ŷi (one-sided error). However, there is a
more general expression as the following:

£ =
1

n

n∑
i=1

max(0,m− yi · ŷi) (2.45)

where m margin is a customized value. More details about extending to multi-
classification.

2.3.3 Optimization Algorithms

In this section, we will introduce some basic algorithms for finding the optimal weights
when training DNNs. This section focuses on one particular case of optimization: nding
the parameters of a neural network that signicantly reduce a cost function J(θ), which
typically includes a performance measure evaluated on the entire training set. We will
start with introducing the most fundamental algorithm Gradient Decent, then some more
advanced algorithm will be introduced.

Gradient Descent
Gradient Descent (GD) is a first-order iterative optimization algorithm for finding the

minimum of a function. To find a local minimum of a function using gradient descent, one
takes steps proportional to the negative of the gradient (or of the approximate gradient) of
the function at the current point. Gradient descent is one of the most popular algorithms
to perform optimization and by far the most common way to optimize neural networks.
At the same time, every state-of-the-art Deep Learning library contains implementations
of various algorithms to optimize gradient descent (e.g. tensorflow’s [31], theano’ [32],
and caffe’s [33] documentation). Figure 2.10 illustrates the GD algorithm on a serise of
level sets.

Gradient descent is based on the observation that if the multi-variable function F (x) is
defined and differentiable in a neighborhood of a point a , then F (x) decreases fastest if
one goes from a in the direction of the negative gradient of F at a, −∇F (a)). It follows
that, if:

an+1 = an − γ∇F (an) (2.46)
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Fig. 2.10: Illustration of gradient descent algorithm on a serise of level sets. Image is
taken from Wikipedia.

for γ small enough, then F (an) ≥ F (an+1). In other words, the term γ∇F (a) is sub-
tracted from a because we want to move against the gradient, toward the minimum.
With this observation in mind, one starts with a guess x0 for a local minimum of F , and
considers the sequence x0,x1,x2, . . ., such that:

xn+1 = xn − γn∇F (xn), n ≥ 0 (2.47)

we have:

F (x0) ≥ F (x1) ≥ F (x2) ≥ · · · (2.48)

So hopefully the sequence (xn) converges to the desired local minimum. Note that the
value of the step size γ is allowed to change at every iteration. With certain assumptions
on the function F and particular choices of γ. The following term:

γn =
(xn − xn−1)

T [∇F (xn)−∇F (xn−1)]

||∇F (xn)−∇F (xn−1)||2
(2.49)

convergence to a local minimum can be guaranteed. When the function F is convex,
all local minima are also global minima, so in this case, gradient descent can converge to
the global solution.

This process is illustrated in the adjacent picture (Figure 2.10). Here F is assumed
to be defined on the plane, and that its graph has a bowl shape. The blue curves are
the contour lines, that is, the regions on which the value of F is constant. A red arrow
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originating at a point shows the direction of the negative gradient at that point. Note
that the (negative) gradient at a point is orthogonal to the contour line going through
that point. We see that gradient descent leads us to the bottom of the bowl, that is, to
the point where the value of the function F is minimal.

Stochastic Gradient descent
Stochastic gradient descent (SGD) in contrast performs a parameter update for each

training example x(i) and label y(i):

θ = θ − η · ∇θJ(θ;xi; yi) (2.50)

batch gradient descent performs redundant computations for large datasets, as it recom-
putes gradients for similar examples before each parameter update. SGD does away with
this redundancy by performing one update at a time. It is therefore usually much faster
and can also be used to learn online. SGD performs frequent updates with a high vari-

Fig. 2.11: SGD fluctuation. Figure is taken from Wikipedia

ance that cause the objective function to fluctuate heavily as in Figure 2.11. While batch
gradient descent converges to the minimum of the basin the parameters are placed in,
SGD’s fluctuation, on the one hand, enables it to jump to new and potentially better
local minima. On the other hand, this ultimately complicates convergence to the exact
minimum, as SGD will keep overshooting. However, it has been shown that when we
slowly decrease the learning rate, SGD shows the same convergence behavior as batch
gradient descent (use a batch of samples in one iteration), almost certainly converging to
a local or the global minimum for non-convex and convex optimization respectively.

Momentum
Further proposals include the momentum method, which appeared in Rumelhart, Hin-

ton and Williams’ seminal paper on backpropagation learning [27]. Stochastic gradient
descent with momentum remembers the update ∆w at each iteration, and determines the
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next update as a linear combination of the gradient and the previous update [34]:

∆w := α∆w − η∇Qi(w) (2.51)

w := w +∆w (2.52)

that leads to:

w := w − η∇Qi(w) + α∆w (2.53)

where the parameter w which minimizes Q(w) is to be estimated, and η is a step size
(sometimes called the learning rate in machine learning)

The name momentum stems from an analogy to momentum in physics: the weight vec-
tor w, thought of as a particle traveling through parameter space [27], incurs acceleration
from the gradient of the loss (”force”). Unlike in classical stochastic gradient descent,
it tends to keep traveling in the same direction, preventing oscillations. Momentum has
been used successfully for various cases. Figure 2.12 describe the training process between
SGD and SGD with momentum.

Fig. 2.12: Trainging process between SGD (left), and SGD with momentum (right).

AdaGrad
AdaGrad (for adaptive gradient algorithm) is a modified stochastic gradient descent

with per-parameter learning rate, first published in 2011 [35], [36]. Informally, this in-
creases the learning rate for more sparse parameters and decreases the learning rate for
less sparse ones. This strategy often improves convergence performance over standard
stochastic gradient descent in settings where data is sparse and sparse parameters are
more informative. Examples of such applications include natural language processing and
image recognition [35]. It still has a base learning rate η, but this is multiplied with the
elements of a vector Gj,j which is the diagonal of the outer product matrix.

G =

t∑
τ=1

gτg
T
τ (2.54)

where gτ = ∇Qi(w), the gradient, at iteration τ . The diagonal is given by the following:

Gj,j =

t∑
τ=1

g2τ,j (2.55)

This vector is updated after every iteration. The formula for an update is now become:

w := w − η diag(G)−
1
2 ◦ g (2.56)

or, can be writted as per-parameter updates:

wj := wj −
η√
Gj,j

gj . (2.57)
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Each G(i,i) gives rise to a scaling factor for the learning rate that applies to a single

parameter wi. Since the denominator in this factor,
√

Gi =

√√√√ t∑
τ=1

g2τ is the L2 norm of

previous derivatives, extreme parameter updates get dampened, while parameters that
get few or small updates receive higher learning rates [37].

RMSProp
RMSProp (for Root Mean Square Propagation) is also a method in which the learning

rate is adapted for each of the parameters. The idea is to divide the learning rate for a
weight by a running average of the magnitudes of recent gradients for that weight [38].
So, first the running average is calculated in terms of means square :

v(w, t) := γv(w, t− 1) + (1− γ)(∇Qi(w))
2 (2.58)

where, γ is the forgetting factor. And the parameters are updated as the following:

w := w − η√
v(w, t)

∇Qi(w) (2.59)

RMSProp has shown excellent adaptation of learning rate in different applications.

Adam
Adam (short for Adaptive Moment Estimation) [39] is an update to the RMSProp

optimizer. In this optimization algorithm, running averages of both the gradients and the
second moments of the gradients are used. Given parameters w(t) and a loss function L(t),
where t indexes the current training iteration (indexed at 1), Adam’s parameter update
is given by the following:

m(t+1)
w ← β1m

(t)
w + (1− β1)∇wL(t) (2.60)

v(t+1)
w ← β2v

(t)
w + (1− β2)(∇wL(t))2 (2.61)

m̂w =
m

(t+1)
w

1− βt1
m̂w =

m
(t+1)
w

1− βt1
(2.62)

v̂w =
v
(t+1)
w

1− βt2
v̂w =

v
(t+1)
w

1− βt2
(2.63)

w(t+1) ← w(t) − η
m̂w√
v̂w + ϵ

(2.64)

2.4 Generative Adversarial Networks
Generative adversarial networks (GANs) are a class of artificial intelligence algorithms

used in unsupervised machine learning, implemented by a system of two neural networks
contesting with each other in a zero-sum game framework. GANs are generative models
devised by Goodfellow et al. [22] in 2014. In a GAN setup, two differentiable functions,
represented by neural networks, are locked in a game. The two players (the generator G
and the discriminator D) have different roles in this framework. Figure 2.13 shows the
framework of a basic Generative Adversarial Network (GAN). A normal GAN consist of
two sub network, G and D. G takes the input as a random noise. The noise is allowed
to be sampled from any random distribution such as Gaussian or Unifrom distribution.
The output of G is fake data, in our case, image. On the other hand, D will take the
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Fig. 2.13: Generative Adversarial Network framework.

input as images, and output prediction on distinguishing this input is real one or a fake
one. The generator tries to produce data that come from some probability distribution.
That would be you trying to reproduce the party’s tickets. The discriminator acts like a
judge. It gets to decide if the input comes from the generator or from the true training
set. That would be the party’s security comparing your fake ticket with the true ticket to
find flaws in your design.

In summary, the game follows with:

1. The generator trying to maximize the probability of making the discriminator mis-
takes its inputs as real.

2. The discriminator guiding the generator to produce more realistic images.

The training process itself will follow the belowing minimax game with network G and
D:

min
G

max
D

Ex∼pX(x)[logD(x)] + Ez∼pZ(z)[log(1−D(G(z)))] (2.65)

The generator G implicitly defines a probability distribution pg as the distribution of
the samples generated by the generator G when the input z is sample from distribution
pz. Therefore, we can prove that when at the global minimal of Equation (2.65), we can
have the distribution modeled by G is exactly the same distribution of our training data
pdata. The proof is followed with the material given in the original GAN paper [22].

Theorem 1: At the global minimal of Equation (2.65), pg = pdata We first consider
the optimal discriminator D for any given generator G.

Propostion 1: For G fixed, the optimal discriminator D is:

D∗
G(x) =

pdata(x)

pdata(x) + pg(x)
(2.66)

Proof. The training criterion for the discriminator D, given any generator G, is to maxi-
mize the quantity V (G,D) :

V (G,D) =

∫
x

pdata(x)log(D(x))dx+

∫
z

pz(z)log(1−D(G(z)))dz (2.67)

=

∫
x

pdata(x)log(D(x)) + pg(x)log(1−D(x))dx
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For any (a, b) ∈ R2

{0, 0}, the function y → alog(y) + blog(1− y) achieves its maximum in [0, 1] at a
a+b .

Note that the training objective for D can be interpreted as maximizing the log-
likelihood for estimating the condional probability P (Y = y|x), where Y indicates whether
x comes from pdata (with y = 1) or from pg (y = 0). The minimax game in Equation
(2.65) can now be reformulated as the following:

C(G) = max
D

V (G,D) (2.68)

= Ex∼pdata
[logD∗

G(x)] + Ez∼pz [log(1−D∗
G(G(z)))] (2.69)

= Ex∼pdata
[logD∗

G(x)] + Ex∼pg [log(1−D∗
G(x))] (2.70)

= Ex∼pdata
[log

pdata(x)

pdata(x) + pg(x)
] + Ex∼pg [log

pg(x)

pdata(x) + pg(x)
] (2.71)

(2.72)

Now we can prove with Theorem 1

Proof. For pg = pdata, D
∗
G(x) = 1

2 (consider in Equation (2.66)). Hence, by inspecting

Equation (2.68) at D∗
G(x) =

1
2 , we find C(G) = log 1

2 + log 1
2 = −log4. To see that this

the best possible value of C(G), reached only for pg = pdata, observe that:

Ex∼pdata
[−log2] + Ex∼pg [−log2] = −log4

and that by subtracting this expression from C(G) = V (D∗
G, G), we obtain:

C(G) = −log(4) +KL(pdata||
pdata + pg

2
) +KL(pg||

pdata + pg
2

) (2.73)

where KL is the Kullback-Leibler divergence. We recognize in the previous expression
the Jensen-Shannon divergence between the model’s distribution and the data generating
process :

C(G) = −log(4) + 2× JSD(pdata||pg) (2.74)

Since the Jensen-Shannon divergence between two distributions is always non-negative
and zero only when they are equal, we have shown that C∗ = −log(4) is the global
minimum of C(G) and that the only solution is pg = pdata. i.e., the generative model
perfectly replicating the data generating process.

Theoretically, in the perfect Nash equilibrium [40], the generator would capture the
general training data distribution. As a result, the discriminator would always be unsure
of whether its inputs are real or not.

For better improve the learning ability of GAN, Deep Convolutional Generative Adver-
sarial Network (DCGAN) [8] has been proposed. Figure 2.14 shows the architecture of
generator G in DCGAN. In DCGAN paper the authors describe the combination of some
deep learning techniques as key for training GANs. These techniques include:

1. Use the all convolutional layer
2. Use Batch Normalization (BN).

The first emphasizes strided convolutions (instead of pooling layers) for both: increasing
and decreasing feature’s spatial dimensions. And the second normalizes the feature vectors
to have zero mean and unit variance in all layers. This helps to stabilize learning and to
deal with poor weight initialization problems. Notice that in G, deconvolutional layers
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Fig. 2.14: Adapted from the DCGAN paper [8]. The Generator network implemented
here. Note the non-existence of fully connected and pooling layers.

are used to “up sample” the feature maps. Use the all convolutional layer (along with
deconvolutional layer) favours the learning in GAN based model. Our implementation
also based on DCGAN’s structure, see in Chapter 4 for more details.
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Chapter 3

Lantent Space Understandable

Generative Adversarial Netork

This chapter describes a latent space understandable network: Self-excited Generative
Adversarial Network (SelfExGAN), a novel self-excited structure based on adversarial
learning. Compared with the conventional generative adversarial networks, SelfExGAN
consists of three components, which are encoder (E), generator (G), and discriminator
(D). Different from other papers which directly apply reconstruction loss between en-
coder and generator, SelfExGAN introduces Nash equilibrium [40] between these three
parts in order to discover the correspondence between latent inputs and training data
spontaneously. Compared with other GAN based networks only take latent variable z as
random input, SelfExGAN is trained to discover the “meaning” behind z. SelfExGAN is
able to determine the correspondence between latent input space and training data space.
SelfExGAN is trained in a self-excited way. That is, E takes the input from G’s output, G
takes the input sampled from E’s output. E and G together constitute a positive feedback
in SelfExGAN. The most attractive point of SelfExGAN is that it can use the learned
correspondence to guide G to generate homomorphic samples given different latent inputs
in an unsupervised learning manner. We demonstrate the learning ability and as well as
its applications in Chapter 4.

3.1 Introduction and Intuition
Generative Adversarial Networks (GANs) [22], are neural networks that learn to create

new samples similar to the training data. A GAN is composed of two sub-neural networks
which are called generator (G) and discriminator (D) respectively. The main idea behind
a GAN is to have these two competing neural network models trying to achieve opposite
objectives. Generator takes random noise as input and tries to generate samples with high
authenticity. On the other hand, discriminator receives samples from both the generator
and the training data, and has to be able to distinguish between these two sources. G
and D play a continuous game, where the generator is learning to produce more realistic
samples, and the discriminator is learning to distinguish generated data from real one.
These two networks are trained simultaneously, and the objective is that the competition
will drive the generated samples to be indistinguishable from real ones.

GANs are a powerful approach to unsupervised and semi-supervised learning where the
goal is to discover the hidden structure within data without relying on external labels.
Traditional Machine Learning (ML) is mostly discriminative – the goal being to discover
a map from inputs to outputs, like images to class names presented in it. GANs, on the
other hand, learn in a different way. They try to recreate the rich imagery of the world



3.1 Introduction and Intuition 33

in which they will be used. Instead of discriminating the inputs, they try to replicate
the (hidden) statistical process that is behind the data being observed. They start by
generating “hypothesis” that become more realistic and plausible as the learning process
evolves. Thus, these models have more powerful expression capabilities as they explore
regulation in data and try to reason about the structure and possibilities of the world that
are consistent with given observations.

The goal of training GANs is to find a Nash equilibrium between two players G and
D. The optimization of Equation (3.5) essentially has no closed form, unlike standard
loss functions like log-loss or squared error. Unfortunately, finding a Nash equilibrium
in GANs remains remarkable difficult to train, we are not aware of any algorithms exists
guarantee that the training of GAN can be converged [41],[8]. Thus, optimizing this loss
function is very hard and requires a lot of trial-and-error regarding the network structure
and training protocol.

Based on the idea of data creation, GANs can compensate the limitation of current
machine learning technologies and be used in various applications. Including density esti-
mation, image denoising (creating high-quality images from low resolution or noisy ones)
and inpainting (recovering the whole image after a partial occlusion), data compression,
scene understanding, representation learning, 3D scene construction, video generation,
semi-supervised classification or even hierarchical control [42] [43] [44] [45].

Even though the expectation for GANs is high, there is one fatal issue needs to be
improved which is the “model collapse” [46]. In such a scenario, generator will exhibit
very poor diversity among generated samples regardless of the variations in the latent
input which limits the learning ability when training GANs. Several recent papers intro-
duced various sophisticated methods which focus on improving the stability of training
the GANs. Salimans et al. proposed five useful techniques to encourage the divergent
creation, which are feature matching, batch discrimination, historical averaging, one-sided
label smoothing and virtual batch normalization [41]. Mirzaet al. and Odena et al. pro-
posed to condition both generator and discriminator of GANs on side information to
perform category conditioned image generation. The labels of training data is used as
extra information to guide the training [47] [48]. Besides, some papers indicated partic-
ular architecture bless the training as well. Radford et al. replaced pooling layers with
strided convolutions, removed fully connected hidden layers for deeper architectures, and
used LeakyReLU activation instead of ReLU activation [8]. Isola et al. proposed a novel
structure with skip connection in generator called “U-Net” to let the useful information
directly flow across the net [49]. Moreover, how to design the training processing also
affects the divergence of generated data, e.g. the excessive optimal D will hinder G learn
better [50].

From our experience, other methods could be using specific optimiser for specific case,
e.g. use SGD for D and Adam [39] for G; avoid sparse gradients e.g. do not use max pool
or ReLU; during every iteration, update G twice,then update D, we find in order to get
better results, we cannot train D too well at each time. Because the excessive optimal D
will hinder G learn better [51].

Compared with other generative model e.g. Bayesian-based model, GANs do not formu-
late a prior distribution for observing new training data. Specifically, GANs only require
any random latent inputs without any assumption, and G is trained to learn the mapping
from z to “fake” samples. We argue that this could be the most attractive point of GANs,
but also the reason behind of the unstable training problem. Because there is no intervene
path between z and the generator, sometimes very different z vectors will produce nearly
the same generated data, even though G still can accomplish its goal. i.e. G trends not to
consider the data diversity, it starts to generate a few samples which are the most similar
ones to training data. In such case, G will fall in an aimless learning and incur producing
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only a minimal number of unique examples similar to training data.
GANs sometimes map very different z into exactly same sample which inevitably incurs

training falls in a aimless learning; ie generator will not become better during training, the
generated sample will lose divergence. It’s called “model collapse”. [50] and [52] present
a thorough mathematic analysis that proves in original GANs [22] the probability of fake
data manifold learned by G and true data manifold match on a big part of the space is
identically equal to 0. If there always exists an optimal D can distinguish fake data and
true data, JS divergence based GANs will never converge. According to their mathematic
induction, they demonstrate a more power generative model called Wasserstein GAN.

In this paper, we propose a latent space understandable network – Self-excited Gen-
erative Adversarial Network (SelfExGAN), which not only learns how to generate new
samples, but also determines the correspondence between the latent inputs and the train-
ing data. In addition, SelfExGAN is able to use the learned correspondence to guide G
to generate homomorphic sample given different latent input.

On another view point, this paper presents a new way to fix “model collapse”. We
present SelfExGAN not only learns to generate new samples but also learns to discriminate
the characteristics in training data. SelfExGAN does not try to directly map a latent input
z vector into arbitrary generated data, but learns to map different z vectors to specific
different generated samples which are similar to training data.

We propose a SelfExGAN which can emulate the meaning of z by itself in a completely
unsupervised learning manner; i.e. SelfExGAN can think for itself, during training, it
can understand what kind of z will lead to generate what kind of fake data. Because of
that, the learned fake data distribution by G can be easily dragged close to true data
distribution.

3.2 Related Works
Our idea is mainly inspired by [10] and [11]. Concretely speaking, [10] presented sev-

eral techniques for sampling and visualizing the latent spaces of generative models involves
both Variational Autoencoders (VAEs) [53] and GANs. In [10], the authors introduce sev-
eral techniques for sampling and visualizing the latent spaces of generative models. Such
as: replacing linear interpolation with spherical linear interpolation prevents diverging
from a model’s prior distribution and produces sharper samples. For example, a vector
can be computed which represents the smile attribute, which by shorthand we call a smile
vector. Following (Larsen et al. [54]), the smile vector can be computed by simply sub-
tracting the mean vector for images without the smile attribute from the mean vector for
images with the smile attribute. This smile vector can then be applied to in a positive or
negative direction to manipulate this visual attribute on samples taken from latent space.
Figure 3.1 demonstrate the results of traversals along the generated results from a smile
vector.

Fig. 3.1: Traversals along the smile vector. Train on CelebA dataset [9]. Quote from
original paper [10].
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[11] adds some independent random variables with z learning together, and they found
varying those variables in the latent space will have the specific meaning when observing
generated data in several datasets. Figure 3.2 demonstrates when varying the additional
dimension in the latent space, the generated output digital number changes accordingly.
For example, changing on the c1 dimension, the digital type will change accordingly. From
their results, we realize that we can make the model learn the correspondence between
the latent space ΩZ and real data space ΩX .

Fig. 3.2: Demonstration on changing independent addtional dimension. When changing
the addtional dimension on latent space, the generated sample will change accordingly.
Quote from original paper [11].

Other papers such as Conditional GAN [47], Stack GAN [55] use label as extra infor-
mation to training the Generative Adversarial Network for finding the correspondence
between the hidden space and data space. Conditional GAN uses the label of belong-
ing classes to generate fake image with a specific label. Stack GAN uses the label of
corresponding text to generate according photos.

Works like [54] combine the model of GAN with VAE to discover the hidden space.
Figure 3.3 shows the basic structure of this idea. The discussion of VAE is out of range
in this thesis.

Consider on the architecture, the most similar work to us is proposed in paper Adver-
sarial Feature Learning by Jeff Donahue et al. [12]. They named their model by BiGAN.
Figure 3.4 shows the structure of BiGAN. BiGAN also consists of three parts which are
encoder, generator, and discriminator. The difference compared with our works is, the
discriminator in BiGAN is to try to distinguish the input comes from the generator or the
encoder. In our proposed model, discriminator tries to distinguish the fake pair with the
real pair. See next section for more details. Another very different point is that in BiGAN,
no discriminate judge on the fake samples, they directly introduce a reconstruction loss
for the data input. On the other hand, BiGAN aims to follow this adversarial training for
better feature extraction. Figure 3.5 shows the training results on different convolutional
filter of three modules E, G, D in BiGAN. Table 3.1 demonstrates the learning ability on
adversarial training with convolution layers.

In paper IVE-GAN [13], they use a similar structure with BiGAN. Figure 3.6 shows
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Fig. 3.3: Basic structure of combing GAN with VAE.

Fig. 3.4: The structure of BiGAN. Quote from original paper [12]

Fig. 3.5: The convolutional filter learned by E, G, D, in BiGAN. Quote from original
paper [12]
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Table 3.1: Classification accuracy of BiGAN for Imagenet dataset[16] compare with other
methods.

Methods conv1 conv2 conv3 conv4 conv5
Noroozi et al. [56] 48.5 41.0 34.8 27.1 12.0
Wang et al. [57] 51.8 46.9 42.8 38.8 29.8
Doersh et al. [58] 53.1 47.6 48.7 45.6 30.4

BiGAN 56.2 54.4 49.4 43.9 33.3

the architecture of IVE-GAN. They introduce another sub net named “translator” for
making the discriminator easy to distinguish the pair relation. Figure 3.7 visualizes the
latent space representation results with CelebA dataset.

Fig. 3.6: Illustration of the IVE-GAN architecture. Quote from original paper [13]

Dmitry Ulyanov et al. [15] present a new autoencoder-type architecture that is trainable
in an unsupervised mode, sustains both generation and inference, and has the quality of
conditional and unconditional samples boosted by adversarial learning. Unlike previous
hybrids of autoencoders and adversarial networks, the adversarial game in their approach
is set up directly between the encoder and the generator. Figure 3.8 presents the idea in
their approach which are use ecoder to build the bridge between the latent space and data
space. They mention in their paper that on external mapping is used during training.
Actually, in their official implementation, they do add reconstruction loss as bellow in
their code:

LX(Gθ, Eψ) = Ex∼X ||x−Gθ(Eψ(x))||1 (3.1)

LZ(Gθ, Eψ) = Ez∼Z ||z − Eψ(Gθ(z))||2 (3.2)

3.3 Self-excited Generative Adversarial Network
SelfExGAN consists of three components, which are encoder (E), generator (G), and

discriminator (D). The overall model is depicted in Fig. 3.9. At first sight, the proposed
model seems a little common compared with existing models. Zhu et al. applied the similar
structure to accomplish unpaired image mapping, called Cycle-Consistent Adversarial
Networks [59]. Kim et al. introduced two pairs of generators with sharing parameters as
two pairs of autoencoders serving as mapping from domain A to domain B and vice versa
[60]. Jeff et al. proposed a learning of the inverse mapping in GANs, named Bidirectional
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Fig. 3.7: Visualization of the 2-dimensional t-SNE [14] of the latent space representation.
Quote from original paper [13]

Fig. 3.8: Idea of AGE. Green region: modelled by G; Blue region: modelled by E; Gray
region: latent space; Objective: blue overlap with green, and be full of gray space. Quote
from original paper [15]

Generative Adversarial Networks as a means of better feature learning and representation
[12].

Our proposed model is distinct from existing models mainly in three aspects:
(1) We do not apply reconstruction loss between encoder and generator, instead of that,
we introduce another adversarial loss between E, G, and D.
(2) The meaning of latent input will be learned by SelfExGAN in an adversarial and self-
excited way, not directly sampled from a fix distribution such as Uniform or Gaussian
distribution. On the other hand, we introduce a matching loss for E to output a random
distribution, see Chapter 4 for more details.
(3) There is no sharing parameters between E and G. During training, the parameters
of both E and G will be updated separately.

Fig. 3.9 describes our proposed model Self-excited Generative Adversarial Network
(SelfExGAN). The most distinctive thing is SelfExGAN no longer takes the input as the
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random meaningless z, but learn the correspondence between latent input and training
data. In Section 3.3.1 we will give a detail explanation on how SelfExGAN works. Math-
ematic intuition will be demonstrated in Section 3.3.2. In Section 3.3.3 we view our work
in a different way, compare it with Compressive Sensing [61].

Fig. 3.9: The structure of SelfExGAN. Our model contains of three parts which are E,
G, and D. pE(x, z) denotes the joint distribution learned by E, pG(z, x) denotes the joint
distribution learned by G. pg(x) denotes the distribution learned by G for mapping z
into x, pe(z) denotes the distribution learned by E for mapping x to z. D1 trying to
distinguish the generated x̂ and real x, D2 trying to distinguish the fake pair (z, x̂), (x, ẑ),
and real pair (z, x).

3.3.1 Structure of SelfExGAN

SelfExGAN contains of three parts which are E, G, and D. We denotes the real data
distribution as pX , x is the training data sampled from pX . During training, E models a
joint distribution between x and latent variable z denoted as pE(x, z). Likewise, G induces
a joint distribution pG(z, x). pe(z) denotes the distribution learned by E mapping data x
into z, likewise for pg(x) (see Figure 3.9).

Different from conventional GANs, SelfExGAN on longer takes the latent inputs as ran-
dom and meaningless information. That is, during training, the input of G will be sampled
from the output of E. There exist two groups of adversarial learning in SelfExGAN. One
is the same with general GANs, discriminator D1 is trained to separate generated data x̂
and real data x. Another adversarial learning is induced in SelfExGAN, D2 is trained to
differentiate the fake pair (z, x̂), (x, ẑ) from real pair (z, x) (Because both x̂ and ẑ come
from generator G, we consider those fake pairs, see Fig. 3.9). In SelfExGAN, encoder E
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discovers the corresponding low dimensional latent space representation for the original
data x in high dimensional data space ΩX . In next section, we will prove that based on
this structure the generated data x̂ is the corresponding sample in ΩX given the particular
z mathematically.

It is worthy to mention that SelfExGAN will be trained in a self-excited fashion. That
is, along with training, E will produce better z for representing corresponding x; this
results in G generating more plausible sample given that z. Then, E will take the more
real sample generated by G as a new training input. Thus, E and G will form a positive
feedback in a self-excited way. According to adversarial learning, when Nash equilibrium
achieved between E, G, and D, D will no longer be able to distinguish the generated
data with real one and generated pair with real pair. Namely, given specific latent input
z, SelfExGAN will precisely generate the corresponding sample reckoning by itself (see
Chapter 4). We argue that it is important for the model to learn that given different z
what kind of sample is the most suitable one to generate. Otherwise, G tends to do aimless
learning, the generated samples will keep losing divergence; i.e. even far distinguished z
vector may produce the nearly identical sample.

3.3.2 Theoretical Results

In SelfExGAN, we have not only one adversarial training involves between G and D,
but with another one between E, G, and D. The latent input z will be determined by E
which additionally train to discover a bijection relationship between space ΩX and ΩZ .
The discriminator in SelfExGAN will have two group of goals: one is output 1 if the
input is real data, 0 for fake one; the other is output 1 if the input is real pair, 0 for fake
pair. Next, we will prove based on the above structure we are able to achieve learning the
correspondence between space ΩX and ΩZ .

According to our description in the former section, the objective of SelfExGAN can be
defined as a min-max learning on value function V (G,E,D):

min
G,E

max
D

V (G,E,D) (3.3)

where

V (G,E,D) =

E(x,z)∼pE(·,x)[log(D(x, z)]+

E(x,z)∼pG(·,z)[log(1− (D(x, z))] (3.4)

We optimize this min-max objective using the same alternating moment based opti-
mization. See Chapter 4 for implementation detail. Fig. 3.9 gives a clear description of
Equation (3.4). If we consider pe(z) as one kind of prior distribution pZ(z) assuming for
z, then the objective of SelfExGAN degenerates into Equation (3.5):

min
G

max
D

Ex∼pX(x)[logD(x)]+

Ez∼pZ(z)[log(1−D(G(z)))] (3.5)

Goodfellow et al. [22] proved the optimal discriminator has the shape of:

D∗ =
pX(x)

pX(x) + pg(x)

and that V (G,D∗) = 2DJS(pX(x)||pg(x))−2log2 (seeDefinitions), so min-maxing Equa-
tion (3.3) still guarantee that pX(x) ≃ pg(x). For indicating SelfExGAN is able to discover
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the correspondence between space ΩX and ΩZ , next, we will prove that if and only if at
global minimum pG(x, z) ≃ pE(x, z) and that must exists a bijection pair between ΩX
and ΩZ ; i.e. G(E(x)) = x and vice versa.

Definitions : Let pG(x, z) = pGZ(x|z)pZ(z) and pE(x, z) = pEX(z|x)pX(x) be the joint
distribution modelled by G and E respectively, Ω = ΩX × ΩZ be the joint latent and
data space. We assume both G and E are deterministic functions; i.e. with conditionals
pGZ(x|z) = δ(x − G(z)) and pEX(z|x) = δ(z − E(x)) defined as δ functions. Then the
measure for a region R ⊆ Ω is:

PE(R) =

∫
Ω

pE(x, z)1[(x,z)∈R]d(x, z)

=

∫
ΩX

pX(x)

∫
ΩZ

pEX(z|x)1[(x,z)∈R]dzdx

=

∫
ΩX

pX(x)(

∫
ΩZ

δ(z − E(x))1[(x,z)∈R]dz)dx

=

∫
ΩX

pX(x)1[(x,E(x))∈R]dx

PG(R) =

∫
Ω

pG(x, z)1[(x,z)∈R]d(x, z)

=

∫
ΩZ

pZ(z)

∫
ΩX

pGZ(x|z)1[(x,z)∈R]dxdz

=

∫
ΩZ

pZ(z)(

∫
ΩX

δ(x−G(z))1[(x,z)∈R]dx)dz

=

∫
ΩZ

pZ(z)1[(G(z),z)∈R]dz

DKL(P ||Q) and DJS(P ||Q) respectively denote the Kullback-Leibler (KL) and Jensen-
Shannon (JS) divergences between two probability measure P and Q with the following
definition:

DKL(P ||Q) = Ex∼p[log(fPQ(x))

DJS(P ||Q) =
1

2
[DKL(P ||

P +Q

2
) +DKL(Q||

P +Q

2
)]

where fPQ = dP
dQ is the Radon-Nikodym (RN) derivative of measure P with respect to

measure Q.

Proposition : For any E and G, the optimal discriminator D∗
EG = argmaxDV (G,E,D)

is the RN derivative fEG = dPE

d(PE+PG) of measue PE with respect to measure PE + PG.

Proof. For measures P and Q on space Ω, with P absolutely continuous with respect to
Q, the RN derivative fPQ = dP

dQ exists, and we have:

Ex∼p[g(x)] =
∫
Ω

gdP =

∫
Ω

g
dP

dQ
dQ

=

∫
Ω

gfPQdQ = Ex∼q[fPQ(x)g(x)] (3.6)
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Let the probability measures PEG = PE+PG

2 denote the average of measures PE and
PG. Both PE and PG are each absolutely continuous with respect to PEG. Hence the RN
derivatives fEG = dPE

d(PE+PG) =
1
2
dPE

dPEG
and fGE = dPG

d(PE+PG) =
1
2
dPG

dPEG
exist and sum to 1:

fEG + fGE =
d(PE + PG)

d(PE + PG)
= 1 (3.7)

Then, use Equation (3.6), (3.7) we can rewrite Equation (3.3) as a single expectation
under measure PEG as following:

V (G,E,D)

= E(x,z)∼pE(·,x)[log(D(x, z)]+

E(x,z)∼pG(·,z)[log(1− (D(x, z))]

= E(x,z)∼pEG
[2fEG(x, z)logD(x, z)]+

E(x,z)∼pEG
[2fGE(x, z)log(1− (D(x, z)]

= 2E(x,z)∼pEG
[fEG(x, z)logD(x, z)+

fGE(x, z)log(1−D(x, z))]

= 2E(x,z)∼pEG
[fEG(x, z)logD(x, z)+

(1− fEG(x, z))log(1−D(x, z))]

Note that argmaxy[xlog(y) + (1 − x)log(1 − y)] = x for any x ∈ [0, 1]. Thus, D∗
EG =

fEG.

Theorem 1: The global minimum of Equation (3.3) can be achieved if and only if
PE = PG. At that point, the measure between PE and PG is 2log2.

Proof. Using Propositon along with 1 − D∗
EG = 1 − fEG = fGE , PEG = PE+PG

2 (see in
Proposition ), we can rewrite Equation (3.3) as following:

V (G,E,D∗
EG)

= E(x,z)∼pE(·,x)[log(D
∗
EG(x, z)]+

E(x,z)∼pG(·,z)[log(1− (D∗
EG(x, z))]

= E(x,z)∼pE(·,x)[log(fEG(x, z)]+

E(x,z)∼pG(·,z)[log(fGE(x, z))]

= E(x,z)∼pE(·,x)[log(2fEG(x, z)]+

E(x,z)∼pG(·,z)[log(2fGE(x, z))]− 2log2

= DKL(PE ||PEG) +DKL(PG||PEG)− 2log2

= DKL(PE ||
PE + PG

2
) +DKL(PG||

PE + PG
2

)− 2log2

= 2DJS(PE ||PG)− 2log2

Thus, if and only if PE = PG we can reach the global minimum, at that point the measure
between PE and PG are 2log2.

This proof is similar to the proof in the basic GAN framework [22]. It is worthy to
mention that, in SelfExGAN, we optimize a Jensen-Shannon divergence between a joint
distribution involves both training data space ΩX and latent space ΩZ . Compared with
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general GANs, this approach allows the proposed model to learn the representation of
the original data in the low dimensional manifold ΩZ . Next, we will give a mathematic
explanation about the reason why we induce D2 in SelfExGAN; i.e. there must exist a
bijection between ΩX and ΩZ .

Theorem 2: If the learned E and G are the optimal encoder and generator, then there
must hold bijection between G and E almost everywhere. More concretely speaking,
G(E(x)) = x for all the x ∈ ΩX and E(G(z)) = z for all the z ∈ ΩZ .

Proof. Let R0
Z = {z ∈ ΩZ : z ̸= E(G(z))} be the region of ΩZ where the bijection does

not hold true. Let R0 = {(x, z) ∈ Ω : x = G(z) ∧ z ∈ R0
Z} be the region of Ω where

(G(z), z) ∈ R0 if and only z ∈ R0
Z . Next, we will prove the measure of z on R0

Z is 0.
Follow the same procedure, we can prove R0

X = 0 as well.
For proving Theorem 2, we will use the definitions of PE and PG for deterministic E
and G from Definitions. The measure on region R0

Z is:

PZ(R
0
Z)

=

∫
ΩZ

pZ(z)1[z∈R0
Z ]dz

=

∫
ΩZ

pZ(z)1[(G(z),z)∈R0]dz

= PG(R
0) = PE(R

0)

=

∫
ΩX

pX(x)1[(x,E(x))∈R0]dx

=

∫
ΩX

pX(x) 1[x=G(E(x))∧E(x)∈R0
Z ]︸ ︷︷ ︸

E(G(E(x)))=E(x) and E(G(E(x))) ̸=E(x)

dx

=

∫
ΩX

pX(x)0dx = 0

Thus, there must a bijective mapping between x and z everywhere on ΩX and ΩZ . Account
for that, we introduce a pair wise adversarial loss in SelfExGAN.

Our experiment shows SelfExGAN is able to learn the relationship between the latent
space and data space (see Chapter 4).

3.3.3 Related to Compressive Sensing

As we discussed in the previous sections, we argue that SelfExGAN is able to learn the
correspondence between the latent space ΩZ and ΩX . Here we interpret that SelfExGAN
can be considered as a Bayesian Compressive Sensing (CS) [62] approach for implying the
high dimensional data can be reconstructed accurately in a low dimensional space. Our
experiments show that SelfExGAN can generate prospective samples given the character-
istic input data. CS theory relies on the empirical observation that signals (in our case,
images) have a sparse representation in terms of a suitable basis. In SelfExGAN, encoder
E serves as this functionality. Roughly speaking, learning process in SelfExGAN has a
Bayesian perspective. For iteration t, we have a prior belief (determined in iteration t−1)
that the basis learned by E should be able to represent input data in a sparse form (on
ΩZ space). And the training objective of SelfExGAN is to provide a posterior belief for
sampling z from the learned representation by E, G can generate more real “fake” data to
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“fool” discriminator D. During updating the parameter in each iteration, we estimate the
underlying generated “fake” data with an “error bars” offering by D in SelfExGAN. In
SelfExGAN, we induce adversarial loss instead of normal reconstruction loss. Specifically,
adversarial learning between E, G, and D mimics a reconstruction loss with ℓ0 norm.

Follow the Definitions, a KL divergence term of JS divergence in Theorem 1 is:

DKL(PE ||
PE + PG

2
) = log2 +

∫
Ω

log
dPE

d(PE + PG)
dPE

= log2 +

∫
Ω

logfEGdPE = log2 +

∫
Ω

logfdPE (3.8)

Where, f = fEG. Then the integral term of the KL divergence expression given in
Equation (3.8) over a region R (omiting the 1

2 scale factor) is:

F (R) =

∫
R

logfdPE (3.9)

Next, we will show that F is equivalent to a reconstruction loss based on ℓ0 norm. i.e. F
is zero for any region in which G(E(x)) ̸= x, and non-zero otherwise.

Proposition 1: f > 0 always holds.

Proof. Let Rf=0 = {(x, z) ∈ Ω : f(x, z) = 0} be the region of Ω in which f = 0. Then the
measure pE(R

f=0) =
∫
Rf=0 fd(PE + PG) = 0. Hence f > 0 always holds. Proposition

1 ensures Equation (3.9) is always well-defined.

Proposition 2: F outside the support of PG is zero. i.e. F (Ω \ supp(PG)) = 0

Proof. We’ll show in region RS = Ω \ supp(PG), f = 1 always holds. Let Rf<1 =
{(x, z) ∈ Rs : f(x, z) < 1 be the region of Rs in which f < 1. Then PE(R

f<1) =∫
Rf<1 fd(PE+PG) =

∫
Rf<1 f︸︷︷︸

⩽ε⩽1

dPE+

∫
Rf<1

fdPG︸ ︷︷ ︸
=0

⩽ εPE(R
f<1) < PE(R

f<1). where ε is

a constant smaller than 1. But PE(R
f<1) < PE(R

f<1) is a contradiction. Hence, logf = 0
in Rs, then we have F outside the support of PG is zero. Notice that, by definition,
F (Ω \ supp(PE)) = 0 always holds. So, only in region R1 = supp(PE) ∩ supp(PG), F can
be non-zero.

Proposition 3: f < 1 holds in R1

Proof. Let Rf=1 = {(x, z) ∈ R1 : f(x, z) = 1} be the region in which f = 1. Let’s assume
that the set Rf=1 ̸= ∅ is not empty. By definition of support, we have PE(R

f=1) > 0,
PG(R

f=1) > 0. On the other hand, the Radon Nikodym derivative on Rf=1 can be
computed as: PE(R

f=1) =
∫
Rf=1 fd(PE + PG) =

∫
Rf=1 1d(PE + PG) = PE(R

f=1) +

PG(R
f=1), which implies PG(R

f=1) = 0, and contradicts with the definition of support.
Hence, f < 1 holds in R1.

Next, we will prove SelfExGAN introduce a ℓ0 based reconstruction: Theorem 2:
Equation (3.3) mimic a ℓ0 based autoencoder.

V (G,E,D∗
EG)

= Ex∼pX [1[E(x)∈Ωs
Z∧G(E(x))=x]logf(x,E(x))]+

Ez∼pZ [1[G(z)∈Ωs
X∧E(G(z))=z]log(1− f(G(z), z))]
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Proof. Proposition 2 implies that R1 is the only region of Ω where F may be non-zero.
If we denote that:

supp(PE) = {(x,E(x)) : x ∈ ΩsX}
supp(PG) = {(G(z), z) : z ∈ ΩsZ}

where supp(PX) = ΩsX , supp(PZ) = ΩsZ . Then R1 = supp(PE)∩ supp(PG) = {(x, z) : x ∈
ΩsX ∧ z ∈ ΩsZ ∧ E(x) = z ∧G(z) = x}. Then the KL divergence of Equation (3.8) can be
rewritten as (notice we can omit the x ∈ ΩsX condition from inside an expectation over
PX):

DKL(PE ||
PE + PG

2
)− log2

= F (Ω) = F (R1)

=

∫
R1

logf(x, z)dPE

=

∫
Ω

1[(x,z)∈R1]logf(x, z)dPE

= E(x,z)∼pE [1[(x,z)∈R1]logf(x, z)]

= Ex∼pX [1[(x,E(x))∈R1]logf(x,E(x))]

= Ex∼pX [1[E(x)∈Ωs
Z∧G(E(x))=x]logf(x,E(x))] (3.10)

Along with the same flow for deduction Equation (3.10), we can have:

DKL(PG||
PE + PG

2
)− log2

= Ez∼pZ [1[G(z)∈Ωs
X∧E(G(z))=z]logfGE(G(z), z)]

= Ez∼pZ [1[G(z)∈Ωs
X∧E(G(z))=z]log(1− f(G(z), z))] (3.11)

Then given the optimal D∗
EG, and substitute Equation (3.10),(3.11) into Equation (3.4),

we have the ℓ0 based reconstruction value function as:

V (G,E,D∗
EG) = 2DJS(PE ||PG)− 2log2

= Ex∼pX [1[E(x)∈Ωs
Z∧G(E(x))=x]logf(x,E(x))]+

Ez∼pZ [1[G(z)∈Ωs
X∧E(G(z))=z]log(1− f(G(z), z))]

Our experiments show excellent results on reconstruction for the input data.
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Chapter 4

Experiments and Applications

In this chapter, we first present our implementation details with our model which in-
cludes the model architectures and hyper-parameter settings. Then we give some discus-
sion on our experimental results. In Section 4.2 we show our theory can have various
applications.

4.1 Experiments
In this section, we give our implementation details with our model on different datasets:

MNIST [2], SVHN [63], Cifar10 [64], Imagenet [3], CelebA [9], and cartoon face datasets.

4.1.1 Implementation Details

Our model consists of four sub-nets which are generator (G), encoder (E), and two
different discriminator D1 and D2. The input in G net is a vector, given different datasets,
we use the different length of vecotr. Generally speaking, a more complicated dataset will
use the longer vector. The output in G net is generated image. We basically adapt
the architecture of the DCGAN [8] implementation i.e. use deconvolutional layer for
translating a vector into image. The architecture of E is similar to Alexnet [3]. The input
in E is the image with size 32×32 or 64×64 depend on the dataset. The output of E is a
vector sharing the same length with the input in G. Discriminator D1 tries to distinguish
the real image with generated fake one, as we introduced in Chapter 3, the input in D is
the image, the output is the probability of this input is whether a real one. D1 also uses
an architecture in DCGAN [8]. The objective of discriminator D2 is distinguishing real
pair with a fake pair, its input is the image with the latent vector. Similar to D1, the
output is the probability of determining whether the input is a real pair. We use a MLP
like [21] architecture to manage this job. In Section 4.1.2, we exhibit the proposed model
architectures for different datasets. As we mentioned in Chapter 3, we do not use any
extra tricks in architectures design as well as in training procedure. We use Adam solver
[39] with β1 = 0.9, β2 = 0.99, learning rate: 0.001 for all the four sub-nets. We choose
Adam because of its stable gradient backpropagation.

Another implementation detail we would like to mention is the generating for the latent
vector. In normal GAN, the latent vector will be sampled from a random distribution, for
example, Gaussian distribution. In our case, we learn the latent vector introduced by E
along with sampling from a Gaussian distribution. When the latent vector is sampled from
Gaussian distribution, D2 will not work (cause there exist no pair at all), the gradient
computed from discriminator side will only by D1. The objective of SelfExGAN is to
determine the correspondence between latent space and data space. When adapting the
latent vector which is computed by E, we are setting an anchor point on latent space make
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it corresponds to a point in data space. When sampling latent vector from a Gaussian
distribution, we are setting the point around our anchor points. For preventing E project
the data concentratedly to some specific region on the latent space, we start by projecting
the latent vector into a sphere:

1. Step 1: Write the point in a coordinate system centered at the center of sphere
(x0, y0, z0):

P = (x′, y′, z′) = (x− x0, y − y0, z − z0) (4.1)

2. Step 2: Compute the length of the vector:

|P | = sqrt(x′2 + y′2 + z′2) (4.2)

3. Step 3: Scale the vector so that it has length equal to the radius of the sphere:

Q = (radius/|P |) ∗ P (4.3)

4. Step 4: Change back to your original coordinate system to get the projection:

R = Q+ (x0, y0, z0) (4.4)

then apply KL divergence from output of E to a unit Gaussian distribution as below:

KL(E(x)||N(0, 1) = −M

2
+

1

M

M∑
i=1

σi
2 + µi

2

2
− log(σi) (4.5)

M is length of the latent vector, µi is the mean of ith dimension on the latent vector, σi
is the variance of the latent vector. For the derivation of Equation (4.5), please refer to
Appendix A

4.1.2 Model Architectures

In this section, we give the tables summarize our net architectures for different datasets
as well as the results.

Figure 4.1 shows our results on MNIST dataset. Figure 4.1a is the real samples of
MNIST dataset. Figure 4.1b shows the reconstruction one on Figure 4.1a. i.e., we put
real images into encoder, then use the computed latent vector to generate images. Figure
4.1 shows when sampling the latent vector on a unit Gaussian distribution. Tabel 4.1
summarizes the architecture for MNIST dataset. The image size of original MNIST is
28× 28, in our implementation, we resize it to 32× 32. The length of latent vector is 64.
We use 30000 images for training.

Figure 4.2 shows our results on SVHN dataset. Figure 4.2a is the real samples of SVHN
dataset. Figure 4.2b shows the reconstruction one on Figure 4.2a. i.e., we put real images
into encoder, then use the computed latent vector to generate images. Figure 4.2c shows
when sampling the latent vector on a unit Gaussian distribution. Tabel 4.2 summarizes
the architecture for SVHN dataset. Input size as for MNIST dataset, 32 × 32, we use
40000 images for training, latent vector length as 128.

Figure 4.3 shows our results on Cifar10 dataset. Figure 4.3a is the real samples of
Cifar10 dataset. Figure 4.3b shows the reconstruction one on Figure 4.3a. i.e., we put
real images into encoder, then use the computed latent vector to generate images. Figure
4.3c shows when sampling the latent vector on a unit Gaussian distribution. Tabel 4.3
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(a) Samples on MNIST dataset. (b) Reconstructions on MNIST dataset.

(c) Generated images on MNIST data.

Fig. 4.1: Results on MNIST dataset.
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Table 4.1: MNIST model parameter setting.

Operations Kernel Strides Feature map Use BN ? Non-linearity
G(z) input: z
(z) - 1× 1× 64:
Fully-connect 1× 1× 4096 yes ReLU
Reshape 4× 4× 256
Deconv 5× 5 2 8× 8× 128 yes ReLU
Deconv 5× 5 2 16× 16× 64 yes ReLU
Deconv 5× 5 2 32× 32× 1 no Tanh

E(x) input: x
(x) - 32× 32× 1:
Conv 3× 3 1 32× 32× 64 yes ReLu
Max-pool 2× 2 16× 16
Conv 3× 3 1 16× 16× 128 yes ReLu
Max-pool 2× 2 8× 8
Conv 3× 3 1 8× 8× 256 yes ReLu
Max-pool 2× 2 4× 4
Flatten
Fully-connect 1× 1× 64 no Sigmoid

D1(x) input: x
(x) - 32× 32× 1:
Conv 5× 5 2 16× 16× 64 yes ReLu
Conv 5× 5 2 8× 8× 128 yes ReLu
Conv 5× 5 2 4× 4× 256 yes ReLu
Conv 5× 5 2 2× 2 yes ReLu
Flatten
Fully-connect 1× 1× 1 no Sigmoid

D2(x,z) inputs: [x ,z]
(x) - 32× 32× 1:
Flatten
Fully-connect 1× 1× 32 ∗ 32 yes ReLu
Fully-connect 1× 1× 256 yes ReLu
Fully-connect 1× 1× 64 no ReLu
(z) - 1× 1× 64:
Concat 1× 1× 128
Fully-connect 1× 1× 256 no ReLu
Fully-connect 1× 1× 128 yes ReLu
Fully-connect 1× 1× 64 yes ReLu
Fully-connect 1× 1× 1 no Sigmoid
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(a) Samples on SVHN dataset. (b) Reconstructions on SVHN dataset.

(c) Generated images on SVHN data.

Fig. 4.2: Results on SVHN dataset.
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Table 4.2: SVHN model parameter setting.

Operations Kernel Strides Feature map Use BN ? Non-linearity
G(z) input: z
(z) - 1× 1× 128:
Fully-connect 1× 1× 4096 yes ReLU
Reshape 4× 4× 256
Deconv 5× 5 2 8× 8× 128 yes ReLU
Deconv 5× 5 2 16× 16× 64 yes ReLU
Deconv 5× 5 2 32× 32× 3 no Tanh

E(x) input: x
(x) - 32× 32× 3:
Conv 3× 3 1 32× 32× 64 yes ReLu
Max-pool 2× 2 16× 16
Conv 3× 3 1 16× 16× 128 yes ReLu
Max-pool 2× 2 8× 8
Conv 3× 3 1 8× 8× 256 yes ReLu
Max-pool 2× 2 4× 4
Flatten
Fully-connect 1× 1× 128 no Sigmoid

D1(x) input: x
(x) - 32× 32× 3:
Conv 5× 5 2 16× 16× 64 yes ReLu
Conv 5× 5 2 8× 8× 128 yes ReLu
Conv 5× 5 2 4× 4× 256 yes ReLu
Conv 5× 5 2 2× 2 yes ReLu
Flatten
Fully-connect 1× 1× 2 no Softmax

D2(x,z) inputs: [x ,z]
(x) - 32× 32× 3:
Flatten
Fully-connect 1× 1× 32 ∗ 32 yes ReLu
Fully-connect 1× 1× 256 yes ReLu
Fully-connect 1× 1× 128 no ReLu
(z) - 1× 1× 128:
Concat 1× 1× 256
Fully-connect 1× 1× 512 no ReLu
Fully-connect 1× 1× 256 yes ReLu
Fully-connect 1× 1× 128 yes ReLu
Fully-connect 1× 1× 64 yes ReLu
Fully-connect 1× 1× 2 no Softmax
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(a) Samples on cifar10 dataset. (b) Reconstructions Cifar10 dataset.

(c) Generated images on cifar10 dataset.

Fig. 4.3: Results on Cifar10 dataset.
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Table 4.3: Cifar10 model parameter setting.

Operations Kernel Strides Feature map Use BN ? Non-linearity
G(z) input: z
(z) - 1× 1× 128:
Fully-connect 1× 1× 4096 yes ReLU
Reshape 4× 4× 256
Deconv 5× 5 2 8× 8× 128 yes ReLU
Deconv 5× 5 2 16× 16× 64 yes ReLU
Deconv 5× 5 2 32× 32× 3 no Tanh

E(x) input: x
(x) - 32× 32× 3:
Conv 5× 5 1 32× 32× 64 yes LeakyReLu
Max-pool 2× 2 16× 16
Conv 5× 5 1 16× 16× 128 yes LeakyReLu
Max-pool 2× 2 8× 8
Conv 5× 5 1 8× 8× 256 yes LeakyReLu
Max-pool 2× 2 4× 4
Flatten
Fully-connect 1× 1× 128 no Sigmoid

D1(x) input: x
(x) - 32× 32× 3:
Conv 5× 5 2 16× 16× 64 yes LeakyReLu
Conv 5× 5 2 8× 8× 128 yes LeakyReLu
Conv 5× 5 2 4× 4× 256 yes LeakyReLu
Conv 5× 5 2 2× 2 yes LeakyReLu
Flatten
Fully-connect 1× 1× 2 no Softmax

D2(x,z) inputs: [x ,z]
(x) - 32× 32× 3:
Flatten
Fully-connect 1× 1× 32 ∗ 32 yes ReLu
Fully-connect 1× 1× 256 yes ReLu
Fully-connect 1× 1× 128 no ReLu
(z) - 1× 1× 128:
Concat 1× 1× 256
Fully-connect 1× 1× 256 no ReLu
Dropout (0.1)
Fully-connect 1× 1× 512 yes ReLu
Dropout (0.1)
Fully-connect 1× 1× 256 yes ReLu
Fully-connect 1× 1× 128 yes ReLu
Fully-connect 1× 1× 64 yes ReLu
Fully-connect 1× 1× 2 no Softmax
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summarizes the architecture for Cifar10 dataset. The input size 32 × 32, we use 35000
images for training, latent vector length as 128.

Figure 4.4 shows our results on Imagenet dataset. Figure 4.4a is the real samples of
Imagenet dataset. Figure 4.4b shows the reconstruction one on Figure 4.4a. i.e., we put
real images into encoder, then use the computed latent vector to generate images. Figure
4.4c shows when sampling the latent vector on a unit Gaussian distribution. Tabel 4.4
summarizes the architecture for Imagenet dataset. The input size 32 × 32, we use 40000
images for training, latent vector length as 128.

For better observing the facial detail, we also do experiment on a center cropped face
dataset (64 × 64 center crop on CelebA dataset). Figure 4.5 shows our results. Figure
4.5a is the real samples. Figure 4.5b shows the reconstruction one on Figure 4.4a. i.e.,
we put real images into encoder, then use the computed latent vector to generate images.
Figure 4.5c shows when sampling the latent vector on a unit Gaussian distribution. Tabel
4.5 summarizes the architecture for cropped face dataset. The input size 64× 64, we use
40000 images for training, latent vector length as 64.

Figure 4.6 shows our results on CelebA dataset. Figure 4.6a is the real samples of
CelebA dataset. Figure 4.6b shows the reconstruction one on Figure 4.6a. i.e., we put
real images into encoder, then use the computed latent vector to generate images. Figure
4.6c shows when sampling the latent vector on a unit Gaussian distribution. Tabel 4.6
summarizes the architecture for CelebA dataset. The input size 64 × 64, we use 40000
images for training, latent vector length as 128.

For better show the learning ability of our proposed model. We crawl a dataset of
cartoon dataset. Figure 4.7 shows our results on the collected cartoon dataset. Figure
4.7a is the real samples of cartoon dataset. Figure 4.7b shows the reconstruction one on
Figure 4.7a. i.e., we put real images into encoder, then use the computed latent vector to
generate images. Figure 4.7c shows when sampling the latent vector on a unit Gaussian
distribution. Tabel 4.7 summarizes the architecture for cartoon dataset. The input size
64× 64, we use 40000 images for training, latent vector length as 128.

4.1.3 Discussion

Figure 4.8 shows that given a testing image (feed it into E and input the corresponding
z into G) when iteratively keep feeding with the former generated sample, the generated
image will gradually change from one number to another number (Figure 4.8a), one face
to another (Figure 4.8b). We observe the similar phenomenon on the other datasets. This
demonstrates that the proposed SelfExGAN is able to discover the hidden relationship
lying behind the training data. Moreover, SelfExGAN can determine the correspondence
between the latent input and its memorized training data. Along with the latent input
changing, the generated image will change accordingly. Given a latent input, SelfExGAN
can reckon by itself and generate a corresponding sample but not a likeness of any specific
training data. Otherwise, SelfExGAN cannot keep gradually generating different faces
iteratively. The interesting thing is when the input sample has a unique pattern that does
not share any feature with other samples, SelfExGAN can not generating from one sample
to another. For example, it fails to generate number 1 to another sample (Figure 4.8a),
or generate from a man with sunglass cover most part of his face to another face (Figure
4.8b). This act makes sense because when projecting a unique data into latent space, in
latent space, it will still keep its uniqueness.
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(a) Samples on Imagenet dataset. (b) Reconstructions on Imagenet dataset.

(c) Generated images on Imagenet dataset.

Fig. 4.4: Results on Imagenet dataset.
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Table 4.4: Imagenet model parameter setting.

Operations Kernel Strides Feature map Use BN ? Non-linearity
G(z) input: z
(z) - 1× 1× 128:
Fully-connect 1× 1× 4096 yes ReLU
Reshape 4× 4× 256
Deconv 5× 5 2 8× 8× 128 yes ReLU
Deconv 5× 5 2 16× 16× 64 yes ReLU
Deconv 5× 5 2 32× 32× 3 no Tanh

E(x) input: x
(x) - 32× 32× 3:
Conv 5× 5 1 32× 32× 64 yes LeakyReLu
Max-pool 2× 2 16× 16
Conv 5× 5 1 16× 16× 128 yes LeakyReLu
Max-pool 2× 2 8× 8
Conv 5× 5 1 8× 8× 256 yes LeakyReLu
Max-pool 2× 2 4× 4
Flatten
Fully-connect 1× 1× 128 no Sigmoid

D1(x) input: x
(x) - 32× 32× 3:
Conv 5× 5 2 16× 16× 64 yes LeakyReLu
Conv 5× 5 2 8× 8× 128 yes LeakyReLu
Conv 5× 5 2 4× 4× 256 yes LeakyReLu
Conv 5× 5 2 2× 2 yes LeakyReLu
Flatten
Fully-connect 1× 1× 2 no Softmax

D2(x,z) inputs: [x ,z]
(x) - 32× 32× 3:
Flatten
Fully-connect 1× 1× 32 ∗ 32 yes ReLu
Fully-connect 1× 1× 256 yes ReLu
Fully-connect 1× 1× 128 no ReLu
(z) - 1× 1× 128:
Concat 1× 1× 256
Fully-connect 1× 1× 256 no ReLu
Fully-connect 1× 1× 512 yes ReLu
Dropout (0.1)
Fully-connect 1× 1× 1024 yes ReLu
Dropout (0.1)
Fully-connect 1× 1× 512 yes ReLu
Dropout (0.1)
Fully-connect 1× 1× 256 yes ReLu
Fully-connect 1× 1× 128 yes ReLu
Fully-connect 1× 1× 64 yes ReLu
Fully-connect 1× 1× 2 no Softmax



4.1 Experiments 57

(a) Samples on CelebA dataset (with cropped). (b) Reconstructions reuslts.

(c) Generated images on CelebA dataset with cropped.

Fig. 4.5: Results on CelebA crop dataset.
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Table 4.5: CelebA(with center crop) model parameter setting.

Operations Kernel Strides Feature map Use BN ? Non-linearity
G(z) input: z
(z) - 1× 1× 64:
Fully-connect 1× 1× 4096 yes ReLU
Reshape 4× 4× 256
Deconv 3× 3 2 8× 8× 128 yes LeakyReLU
Deconv 3× 3 2 16× 16× 64 yes LeakyReLU
Deconv 3× 3 2 32× 32× 64 yes LeakyReLU
Deconv 5× 5 2 32× 32× 3 no Tanh

E(x) input: x
(x) - 64× 64× 3:
Conv 3× 3 1 64× 64× 64 yes ReLu
Max-pool 2× 2 32× 32
Conv 3× 3 1 32× 32× 64 yes ReLu
Max-pool 2× 2 16× 16
Conv 3× 3 1 16× 16× 128 yes ReLu
Max-pool 2× 2 8× 8
Conv 3× 3 1 8× 8× 256 yes ReLu
Max-pool 2× 2 4× 4
Flatten
Fully-connect 1× 1× 64 no Sigmoid

D1(x) input: x
(x) - 64× 64× 3:
Conv 5× 5 2 32× 32× 64 yes LeakyReLu
Conv 5× 5 2 16× 16× 64 yes LeakyReLu
Conv 5× 5 2 8× 8× 128 yes LeakyReLu
Conv 5× 5 2 4× 4× 256 yes LeakyReLu
Conv 5× 5 2 2× 2 yes LeakyReLu
Flatten
Fully-connect 1× 1× 2 no Softmax

D2(x,z) inputs: [x ,z]
(x) - 64× 64× 3:
Conv 5× 5 2 32× 32× 64 yes LeakyReLu
Conv 5× 5 2 16× 16× 64 yes LeakyReLu
Conv 5× 5 2 8× 8× 128 yes LeakyReLu
Fully-connect 1× 1× 64 no LeakyReLu
(z) - 1× 1× 64:
Concat 1× 1× 128
Fully-connect 1× 1× 256 no ReLu
Fully-connect 1× 1× 128 yes ReLu
Fully-connect 1× 1× 64 yes ReLu
Fully-connect 1× 1× 2 no Softmax
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(a) Samples on CelebA dataset. (b) Reconstructions on CelebA dataset.

(c) Generated images on CelebA dataset.

Fig. 4.6: Results on CelebA dataset.
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Table 4.6: CelebA(with resized to 64× 64) model parameter setting.

Operations Kernel Strides Feature map Use BN ? Non-linearity
G(z) input: z
(z) - 1× 1× 128:
Fully-connect 1× 1× 4096 yes ReLU
Reshape 4× 4× 256
Deconv 3× 3 2 8× 8× 128 yes LeakyReLU
Deconv 3× 3 2 16× 16× 64 yes LeakyReLU
Deconv 3× 3 2 32× 32× 64 yes LeakyReLU
Deconv 5× 5 2 32× 32× 3 no Tanh

E(x) input: x
(x) - 64× 64× 3:
Conv 3× 3 1 64× 64× 64 yes ReLu
Max-pool 2× 2 32× 32
Conv 3× 3 1 32× 32× 64 yes ReLu
Max-pool 2× 2 16× 16
Conv 3× 3 1 16× 16× 128 yes ReLu
Max-pool 2× 2 8× 8
Conv 3× 3 1 8× 8× 256 yes ReLu
Max-pool 2× 2 4× 4
Flatten
Fully-connect 1× 1× 128 no Sigmoid

D1(x) input: x
(x) - 64× 64× 3:
Conv 5× 5 2 32× 32× 64 yes LeakyReLu
Conv 5× 5 2 16× 16× 64 yes LeakyReLu
Conv 5× 5 2 8× 8× 128 yes LeakyReLu
Conv 5× 5 2 4× 4× 256 yes LeakyReLu
Conv 5× 5 2 2× 2 yes LeakyReLu
Flatten
Fully-connect 1× 1× 2 no Softmax

D2(x,z) inputs: [x ,z]
(x) - 64× 64× 3:
Conv 5× 5 2 32× 32× 64 yes LeakyReLu
Conv 5× 5 2 16× 16× 64 yes LeakyReLu
Conv 5× 5 2 8× 8× 128 yes LeakyReLu
Fully-connect 1× 1× 64 no LeakyReLu
(z) - 1× 1× 128:
Concat 1× 1× 256
Fully-connect 1× 1× 256 no ReLu
Fully-connect 1× 1× 128 yes ReLu
Fully-connect 1× 1× 64 yes ReLu
Fully-connect 1× 1× 2 no Softmax
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(a) Samples on cartoon dataset. (b) Reconstrations on cartoon dataset.

(c) Generated images on cartoon dataset.

Fig. 4.7: Results on cartoon dataset.
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Table 4.7: Cartoon model parameter setting.

Operations Kernel Strides Feature map Use BN ? Non-linearity
G(z) input: z
(z) - 1× 1× 128:
Fully-connect 1× 1× 4096 yes ReLU
Reshape 4× 4× 256
Deconv 5× 5 2 8× 8× 128 yes LeakyReLU
Deconv 5× 5 2 16× 16× 64 yes LeakyReLU
Deconv 5× 5 2 32× 32× 64 yes LeakyReLU
Deconv 5× 5 2 32× 32× 3 no Tanh

E(x) input: x
(x) - 64× 64× 3:
Conv 5× 5 1 64× 64× 64 yes ReLu
Max-pool 2× 2 32× 32
Conv 5× 5 1 32× 32× 64 yes ReLu
Max-pool 2× 2 16× 16
Conv 5× 5 1 16× 16× 128 yes ReLu
Max-pool 2× 2 8× 8
Conv 3× 3 1 8× 8× 256 yes ReLu
Max-pool 2× 2 4× 4
Flatten
Fully-connect 1× 1× 128 no Sigmoid

D1(x) input: x
(x) - 64× 64× 3:
Conv 5× 5 2 32× 32× 64 yes LeakyReLu
Conv 5× 5 2 16× 16× 64 yes LeakyReLu
Conv 5× 5 2 8× 8× 128 yes LeakyReLu
Conv 5× 5 2 4× 4× 256 yes LeakyReLu
Conv 5× 5 2 2× 2 yes LeakyReLu
Flatten
Fully-connect 1× 1× 2 no Softmax

D2(x,z) inputs: [x ,z]
(x) - 64× 64× 3:
Conv 5× 5 2 32× 32× 64 yes LeakyReLu
Conv 5× 5 2 16× 16× 64 yes LeakyReLu
Conv 5× 5 2 8× 8× 128 yes LeakyReLu
Fully-connect 1× 1× 64 no LeakyReLu
(z) - 1× 1× 128:
Concat 1× 1× 256
Fully-connect 1× 1× 256 no ReLu
Fully-connect 1× 1× 128 yes ReLu
Fully-connect 1× 1× 64 yes ReLu
Fully-connect 1× 1× 2 no Softmax
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(a) Iterative feeding on MNIST dataset.

(b) Iterative feeding on CelebA dataset with cropped.

Fig. 4.8: Given a real image, then iteratively keep feeding with the former generated
sample.

4.2 Applications
In this section, we introduce three application with our proposed model and theory,

which are generating training data with label for supervised learning, evaluation on the
similarity of two samples, and improving the divergent creation for design.

4.2.1 Generating Training Data for Supervised Learning

Compare with unsupervised learning, supervised learning still takes a great portion
in artificial intelligence applications. In this section, we show our proposed model can
generate the training data for supervised learning.

For generating data with labels, let’s consider in a classification mission. Our approach
includes two steps. First, use the encoder E to project our target data in the latent space.
Then with adding a noise on that encoded vector, we feed it with our generator for getting
our synthesized data. Figure 4.9 shows a visualization of the 2-dimensional t-SNE [14] of
the latent space representation on MNIST dataset. Figure 4.10 shows we can generate
the fake data for training on MNIST, Cifar10, Imagenet datasets.

4.2.2 Similarity Evaluation

Our model can propose an application for similarity evaluation. For example, face
comparing can be used in face-based user verification and personal identification. Figure
4.11 shows how we can check the likelihood of two faces by generating its “neighborhood”
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Fig. 4.9: Visualization of the 2-dimensional t-SNE [14] of the latent space representation
on MNIST dataset.

fake faces. It can be done by using the encoder to project the face into latent space, then
use the generator to generate with the projected vector with noise adding. In Figure 4.11,
we can understand the up two faces have lot of similarities, and the down face does look
like to the up two.

4.2.3 Improving the Creation of Design

For a designer, a creative and open mind is very important. However, when a designer
invents something, it usually happens that he or she will be restricted by his or her
inertia thinking of the former design. Our proposed model introduces an application for
improving the creation on the design shown in Figure 4.12. Say you design a cartoon face,
and not sure if it is the best design. Then you can use our proposed model to manage
an exploitation of your design. Figure 4.12 shows three type of results when adding with
three different scales of noises.
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(a) Generated data for MNIST dataset.

(b) Generated data for cifar10 dataset.

(c) Generated data on Imagenet dataset.

Fig. 4.10: Generate data for supervised learning.
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Fig. 4.11: Similarity evaluation with human faces.

Fig. 4.12: Improving the divergent Creation.
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Chapter 5

Conclusion and Future Works

In this thesis, we present a Generative Adversarial Network for latent space under-
standing. In Chapter 1, we give an introduction about deep learning along with some
classic network architectures. In Chapter 2, we introduce the components in DNNs and
GANs, and how to train a DNN by seeking a set of parameters for the network that
minimize the objective function. Generative Adversarial Networks consists of two DNNs,
which are called generator and discriminator separately. The main idea behind a GAN
is to have these two competing neural network models trying to achieve opposite objec-
tives. Generator takes random noise as input and tries to generate samples with high
authenticity. On the other hand, discriminator receives samples from both the generator
and the training data, and has to be able to distinguish between these two sources. G
and D play a continuous game, where the generator is learning to produce more realistic
samples, and the discriminator is learning to distinguish generated data from real one.
These two networks are trained simultaneously, and the objective is that the competition
will drive the generated samples to be indistinguishable from real ones. In Chapter 3, we
introduce a latent space understandable GAN – SelfExGAN. SelfExGAN consists of three
components, which are encoder (E), generator (G), and discriminator (D). Compared
with other GAN based networks only take latent variable z as random input, SelfExGAN
is trained to discover the “meaning” behind z. SelfExGAN is able to determine the corre-
spondence between latent input and training data. SelfExGAN is trained in a self-excited
way. That is, E takes the input from G’s output, G takes the input sampled from E’s
output. E and G together constitute a positive feedback in SelfExGAN. The most at-
tractive point of SelfExGAN is that it can use the learned correspondence to guide G to
generate homomorphic samples given different latent inputs in an unsupervised learning
manner. In Chapter 4, we first give our implementation details with our model which
includes the model architectures and parameter settings. Then we give some discussion
based our experiment results. Also, we show our theory can have various applications.

Note that we only do our experiment on small size of images with straightforward
network architectures. In our understanding, we consider the neural network as the dif-
ferentiable high-level function approximator. That means, for high-resolution image, we
can just substitute straightforward network architectures with a more complicated net-
work for the implementation of generator, encoder, and discriminators. However, our work
does have some theoretical imitation. In our provided mathematical proof, we consider
the two discriminators D1 and D2 as a holistic discriminator. This is not a strict proof.
For the future works, we will fix our theory and expand our theory to other fields as well.
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[12] J. Donahue, P. Krähenbühl, and T. Darrell, “Adversarial feature learning,” CoRR,
vol. abs/1605.09782, 2016.

[13] R. Winter and D.-A. Clevert, “Ive-gan: Invariant encoding generative adversarial
networks,” arXiv preprint arXiv:1711.08646, 2017.

[14] L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,” Journal of Machine
Learning Research, vol. 9, no. Nov, pp. 2579–2605, 2008.

[15] D. Ulyanov, A. Vedaldi, and V. Lempitsky, “Adversarial generator-encoder net-
works,” arXiv preprint arXiv:1704.02304, 2017.

[16] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpa-
thy, A. Khosla, M. Bernstein, et al., “Imagenet large scale visual recognition chal-
lenge,” International Journal of Computer Vision, vol. 115, no. 3, pp. 211–252, 2015.

[17] Y. Huang and L. Mucke, “Alzheimer mechanisms and therapeutic strategies,” Cell,



71

vol. 148, no. 6, pp. 1204–1222, 2012.
[18] A. Ivakhnenko and V. Lapa, Cybernetic Predicting Devices. Jprs report, CCM Infor-

mation Corporation, 1973.
[19] K. Fukushima, “Neural network model for a mechanism of pattern recognition un-

affected by shift in position- neocognitron,” Electron. & Commun. Japan, vol. 62,
no. 10, pp. 11–18, 1979.

[20] J. J. DiCarlo, D. Zoccolan, and N. C. Rust, “How does the brain solve visual object
recognition?,” Neuron, vol. 73, no. 3, pp. 415–434, 2012.

[21] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal representa-
tions by error propagation,” tech. rep., California Univ San Diego La Jolla Inst for
Cognitive Science, 1985.

[22] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, “Generative adversarial nets,” in Advances in neural
information processing systems, pp. 2672–2680, 2014.

[23] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for seman-
tic segmentation,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 3431–3440, 2015.

[24] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by
reducing internal covariate shift,” in International Conference on Machine Learning,
pp. 448–456, 2015.

[25] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities improve neural
network acoustic models,” in Proc. ICML, vol. 30, 2013.

[26] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification,” in Proceedings of the IEEE
international conference on computer vision, pp. 1026–1034, 2015.

[27] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by
back-propagating errors,” nature, vol. 323, no. 6088, pp. 533–536, 1986.

[28] J. Christopher M.Bishop, M.Jordan, Pattern Recognition and Machine Learning.
Springer, 2006.

[29] K. Janocha and W. M. Czarnecki, “On loss functions for deep neural networks in
classification,” arXiv preprint arXiv:1702.05659, 2017.

[30] J. A. Suykens and J. Vandewalle, “Least squares support vector machine classifiers,”
Neural processing letters, vol. 9, no. 3, pp. 293–300, 1999.

[31] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,
A. Davis, J. Dean, M. Devin, et al., “Tensorflow: Large-scale machine learning on
heterogeneous distributed systems,” arXiv preprint arXiv:1603.04467, 2016.

[32] J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. Desjardins,
J. Turian, D. Warde-Farley, and Y. Bengio, “Theano: A cpu and gpu math com-
piler in python,” in Proc. 9th Python in Science Conf, pp. 1–7, 2010.

[33] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama,
and T. Darrell, “Caffe: Convolutional architecture for fast feature embedding,” in
Proceedings of the 22nd ACM international conference on Multimedia, pp. 675–678,
ACM, 2014.

[34] I. Sutskever, J. Martens, G. Dahl, and G. Hinton, “On the importance of initialization
and momentum in deep learning,” in International conference on machine learning,
pp. 1139–1147, 2013.

[35] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online learning
and stochastic optimization,” Journal of Machine Learning Research, vol. 12, no. Jul,
pp. 2121–2159, 2011.

[36] J. Perla, “Notes on adagrad,”
[37] M. D. Zeiler, “Adadelta: an adaptive learning rate method,” arXiv preprint



72 Reference

arXiv:1212.5701, 2012.
[38] G. Hinton, N. Srivastava, and K. Swersky, “Rmsprop: Divide the gradient by a

running average of its recent magnitude,” Neural networks for machine learning,
Coursera lecture 6e, 2012.

[39] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint
arXiv:1412.6980, 2014.

[40] J. F. Nash et al., “Equilibrium points in n-person games,” Proceedings of the national
academy of sciences, vol. 36, no. 1, pp. 48–49, 1950.

[41] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen, “Im-
proved techniques for training gans,” in Advances in Neural Information Processing
Systems, pp. 2234–2242, 2016.

[42] J. Wu, C. Zhang, T. Xue, B. Freeman, and J. Tenenbaum, “Learning a probabilistic
latent space of object shapes via 3d generative-adversarial modeling,” in Advances in
Neural Information Processing Systems, pp. 82–90, 2016.

[43] C. Vondrick, H. Pirsiavash, and A. Torralba, “Generating videos with scene dynam-
ics,” in Advances In Neural Information Processing Systems, pp. 613–621, 2016.

[44] J. Bao, D. Chen, F. Wen, H. Li, and G. Hua, “CVAE-GAN: fine-grained image
generation through asymmetric training,” CoRR, vol. abs/1703.10155, 2017.

[45] A. Kumar, P. Sattigeri, and P. T. Fletcher, “Improved semi-supervised learning with
gans using manifold invariances,” CoRR, vol. abs/1705.08850, 2017.

[46] L. Metz, B. Poole, D. Pfau, and J. Sohl-Dickstein, “Unrolled generative adversarial
networks,” CoRR, vol. abs/1611.02163, 2016.

[47] M. Mirza and S. Osindero, “Conditional generative adversarial nets,” arXiv preprint
arXiv:1411.1784, 2014.

[48] A. Odena, C. Olah, and J. Shlens, “Conditional image synthesis with auxiliary clas-
sifier gans,” arXiv preprint arXiv:1610.09585, 2016.

[49] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation with
conditional adversarial networks,” arXiv preprint arXiv:1611.07004, 2016.

[50] M. Arjovsky and L. Bottou, “Towards principled methods for training generative
adversarial networks,” arXiv preprint arXiv:1701.04862, 2017.

[51] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. Courville, “Improved
training of wasserstein gans,” arXiv preprint arXiv:1704.00028, 2017.

[52] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein gan,” arXiv preprint
arXiv:1701.07875, 2017.

[53] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv preprint
arXiv:1312.6114, 2013.

[54] A. B. L. Larsen, S. K. Sønderby, H. Larochelle, and O. Winther, “Autoencoding
beyond pixels using a learned similarity metric,” arXiv preprint arXiv:1512.09300,
2015.

[55] H. Zhang, T. Xu, H. Li, S. Zhang, X. Huang, X. Wang, and D. Metaxas, “Stackgan:
Text to photo-realistic image synthesis with stacked generative adversarial networks,”
arXiv preprint arXiv:1612.03242, 2016.

[56] M. Noroozi and P. Favaro, “Unsupervised learning of visual representations by solving
jigsaw puzzles,” in European Conference on Computer Vision, pp. 69–84, Springer,
2016.

[57] X. Wang and A. Gupta, “Unsupervised learning of visual representations using
videos,” in Proceedings of the IEEE International Conference on Computer Vision,
pp. 2794–2802, 2015.

[58] C. Doersch, A. Gupta, and A. A. Efros, “Unsupervised visual representation learn-
ing by context prediction,” in Proceedings of the IEEE International Conference on
Computer Vision, pp. 1422–1430, 2015.



73

[59] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image translation
using cycle-consistent adversarial networks,” arXiv preprint arXiv:1703.10593, 2017.

[60] T. Kim, M. Cha, H. Kim, J. Lee, and J. Kim, “Learning to discover cross-domain
relations with generative adversarial networks,” arXiv preprint arXiv:1703.05192,
2017.

[61] M. Fornasier and H. Rauhut, “Compressive sensing,” in Handbook of mathematical
methods in imaging, pp. 187–228, Springer, 2011.

[62] S. Ji, Y. Xue, and L. Carin, “Bayesian compressive sensing,” IEEE Transactions on
Signal Processing, vol. 56, no. 6, pp. 2346–2356, 2008.

[63] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng, “Reading digits
in natural images with unsupervised feature learning,” in NIPS workshop on deep
learning and unsupervised feature learning, vol. 2011, p. 5, 2011.

[64] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from tiny images,”
2009.



74

A

Derivation for Equation (4.5)

Suppose p is the density of a normal random variable with mean µ1 and variance σ1
2,

and q is the density of a normal random variable with mean µ2 and variance σ2
2. Then

KL divergence from p to q is:∫
[log(p(x))− log(q(x))] p(x)dx (A.1)

=

∫ [
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Note that:

(X − µ2)
2 = (X − µ1 + µ1 − µ2)

2 = (X − µ1)
2 + 2(X − µ1)(µ1 − µ2) + (µ1 − µ2)

2

So Equation (A.8) equates to:

= log

(
σ2

σ1

)
+

1

2σ2
2

[
E1

{
(X − µ1)

2
}
+ 2(µ1 − µ2)E1 {X − µ1}+ (µ1 − µ2)

2
]
− 1

2
(A.9)

= log

(
σ2

σ1

)
+

σ2
1 + (µ1 − µ2)

2

2σ2
2

− 1

2
(A.10)



75

If the latent vector has M dimension, and the mean and variance for each dimension
is denoted as µi and σi, and µ2 = 0, σ2 = 1, then, we can have the KL divergence from
E(x) to a unit Gaussian is below:

KL(E(x)||N(0, 1) = −M

2
+

1

M

M∑
i=1

σi
2 + µi

2

2
− log(σi) (A.11)

where µi is the mean of ith dimension on the latent vector, σi is the variance of the latent
vector.


