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I 

Abstract 

Pedestrian navigation has become one of the most important services in people’

s city lives. The navigation application can be considered as the suggestion system for 

pedestrian travelling behavior. With the development of intelligent wearable devices, 

such as smart glasses, more and more scientists and engineers focus their attention on 

wearable devices based navigation rather than smart phone-based navigation. An 

accurate positioning technology is fundamental to a satisfied navigation service. Even 

though various sensors, such as Global Navigation Satellite System receiver, gyroscope, 

accelerometer and magnetometer sensors, have been integrated into the current smart 

phones, the performance of positioning in city urban is still not satisfied because of 

GNSS signals reflections, the high dynamic of pedestrian activities and disturbance of 

the magnetic field in city environments. On the other hand, visualizing navigation 

information in first person view can bring much more convenience for pedestrians, in 

other words, AR(Augmented Reality) based navigation enables pedestrians perceive 

virtual and real objects as coexisting in the same space.  

This work not only proposes to improve the accuracy of the positioning using the 

camera sensor in smart glasses, but also gives implementation for intersection detection 

and destination recognition using open map source in commercial urban area. The 

visual observation for surround environment provided by camera sensor is compared 

with the available Google Maps Street View to correct positioning errors. By matching 

the geo-tagged pedestrian’s photo with the reference images from Google Maps Street 

View, we cannot only recognize which side of the road the pedestrian is in but also 

achieve 4-meter positioning error. Furthermore, the 2D shape of intersection and 

footprint of destination provided by open street map can be used to segment the local 

3D point cloud which is generated by combining panorama and depth map from Google 

Maps API. The camera pose and pedestrian’s position suggest to visualize guidance 

arrow and destination in first person view. 
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Chapter 1.  

Introduction 
In this work, we researched on improving the positioning accuracy for pedestrian 

wearing smart glasses in urban area with the aid of Google Maps Street View and 

presenting a augmented reality based pedestrian navigation system. This chapter 

introduces the reader to the background, objective and structure of this thesis. 

 

 

1.1. Background 

In recent years, Pedestrian navigation has become one of the most important 

services in people’s city lives. The navigation application can be considered as the 

suggestion system for pedestrian travelling behavior. The quality of navigation service 

highly depends on the accuracy of pedestrian localization.  

Nowadays, smart phones are nowadays far more than merely devices to 

communicate with and they are products that help to make our work and everyday life 

easier. However, with the development of intelligent wearable devices, such as smart 

glasses, more and more scientists and engineers focus their attention on wearable 

devices based navigation rather than smart phone-based navigation. Among them, 

smart glasses integrated various sensors--Global Positioning System receiver, wireless 

receiver, gyroscope, accelerometer, and magnetometer--should be the most useful 

device for pedestrian navigation. These sensors just meet the requirement of state-of-

the-art positioning techniques, which are Global Positioning System positioning, Wi-

Fi-based positioning, PDR-based positioning, and vision-based positioning.  

Global Positioning System (GPS) is the most developed positioning system in the 

world and it is widely applied in the smart devices such as smart phone and smart 

glasses. GPS is capable of providing reliable position information in most cases, which 

is extremely helpful in the researches and daily applications. Usually, at least 4 satellites 

are needed to calculate the positioning result in a GPS system and the positioning 

accuracy will be degrade when the number of received satellite is small or the received 

signals contained errors. In the open sky condition, GPS system can perform high 
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accuracy with a standard deviation about 0.3 meter. However, in the urban city, GPS 

signals are usually influenced by the blockage and the reflection of high buildings as 

shown in Figure 1.1 [2]. In these kinds of situations, errors called non-line-of-sight 

(NLOS) and multipath situations will happened [1].  

 

 
Figure 1.1 The multipath and NLOS effects in an urban canyon. (a) Multipath 

effect. (b) NLOS propagation. 

 
As a result, in urban canyon environment, the positioning accurate of standalone 

GPS system is larger than 10 meters. The huge error of GPS based positioning will lead 

to a mistake in distinguishing the correct side of road and intersection. Even though 

nowadays we can use Russian GLONESS or Japanese QZSS, China Beidou(etc.) 

systems to increase the satellite numbers as a whole system of Global Navigation 

Satellite System(GNSS), it is still suffered the same problem of NLOS and multipath 

effect as standalone GPS system. 

Consider the sensors embedded in the smartphones and smart glasses, there are 

some other commercialized positioning technologies can be used, including the Wi-Fi-

based positioning system and Pedestrian Dead Reckoning (PDR) [3, 5]. Wi-Fi-based 
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positioning system is a newly attractive method to provide navigation services. 

Nowadays, Wireless Local Area Network (WLAN) can be found in almost every 

building. The wide spread infrastructure offers the possibility to using Wi-Fi-based 

positioning even in outdoor environment at urban canyon. The WPS has advantage over 

GPS positioning system for its ability to provide seamless navigation service in both 

indoor and outdoor environment. The Wi-Fi-based positioning is first developed for 

indoor environment and has been well developed. With the rapid increase in Wi-Fi 

access points (APs) in metropolitan areas, some researchers and companies 

implemented Wi-Fi-based positioning in outdoor environment. However, the accuracy 

of Wi-Fi-based positioning in outdoor environment is still not as accurate as WPS in 

indoor environment 

As for PDR, the system uses the inertial measurement unit (IMU) sensors in the 

wearable devices, such as accelerometer, magnetometer and gyroscope, and use the 

circle change of the data from these sensors when the user is walking, to detect every 

step of the pedestrian and calculated step length and moving direction of the pedestrian. 

PDR can produce continues and smooth positioning trajectory. However, PDR can only 

provide relative positioning result but not the absolute positioning result. Therefore, 

PDR need some other positioning systems to provide an initial position. What’s more, 

PDR will suffer from error accumulation in long distance. 

Google Maps Street View is a comprehensive and large database provided by 

Google, which consists of geo-tagged 360º panoramic images of almost all main streets 

and roads in a number of countries. The panoramic images of Google Maps Street View 

are recorded by a spherical arrangement of cameras and the localization comes from 

the high-performance localization system. Because of its characteristics and quality, 

Google Maps Street View attracts more and more attentions in the field of computer 

vision and localization. Beside the panoramic images, we can also get the 

corresponding depth data from the API which is provided by Google. By combining 

the panoramic images and depth map information, local 3D models can be created. By 

using this 3D model, virtual views in all the places can be generated and there will be 

no limitations from the fixed interval position of the panoramic images. 

Considering these limiting problems of GPS and Wi-Fi, with the help of image 

streams provided by smart glasses, we proposes a pedestrian positioning system with 

the technique of visual localization, using the matching between the geo-tagged photo 
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from the camera on the wearable devices and the generated 3D local model from 

Google Maps Street View.  

To get an accurate positioning result, firstly we employ the vanishing point 

detection to obtain the heading angle of pedestrians, then searching a rough position 

using a convergent algorithm which keeps updating position according to translation 

relationship between the query image and reference images for candidate positions. 

Finally, we generate a local 3D model and find the most matched view to be taken as 

positioning results. 

Once we get an accurate positioning result, we focus on presenting a intuitive 

navigation system for smart glasses users. Augmented reality (AR) is a live view of a 

physical world but elements are overlaid by desired geospatial information. There are 

many applications such as education, art, game, and also navigation. The key to the AR 

system is how to combine the expanded object with the actual environment. For camera 

position and heading it is necessary to convert scenes from actual coordinates to camera 

coordinates and overlay the enlarged objects on the scene. Most of augmented reality 

researches focus on how to apply the position and heading information of the camera 

from various sensors integrated on the device. But, as mentioned above, the 

performance of these devices in urban areas is not accurate. Therefore, in order to 

provide realistic AR navigation, it is necessary to provide a vanishing point for 

determining the angle of the road in the pedestrian's field of view. Augmented Reality 

application, on the other hand, relied on predefined and well-modeled content that only 

applies to real world conditions that existed during application development. Therefore, 

in many cases, flexibility is limited because AR applications can only be placed in one 

physical location. This problem gets worse as environmental changes cause 

inconsistencies between previously recorded data and the real world. Such a situation 

may damage the correct function of the application. To solve this problem, we use well-

updated and easy-access open map source to present navigation guidance rather than 

build a database for navigation. 

1.2. Objective 

The goal of this thesis is to implement a navigation system for pedestrian wearing 

smart glasses, which supports people in commercial urban area. We can achieve 4-meter 

positioning accuracy and can also distinguish which side of the road the pedestrian is 

in. When pedestrian walking towards an intersection, an overlaid arrow guidance will 
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be shown in the first person view. When the destination is near, it can also be recognized 

and segmented in first person view. Our work mainly consists of two parts. 

1. First, we propose to improve positioning accuracy by using camera sensor. 

The camera sensor visually checks the surround environment. This 

observation is compared with the available street view from the Google Maps 

Street View and the virtual view from the 3D local model and reduces the 

positioning error. As a results, we can improve the correct side rate to 90% 

and achieve positioning performance of 4 meters. 

2. As for the AR navigation part, we focus on intersection detection and 

destination recognition. We use intersection shapes and building footprint 

both from 2D open map to segment local 3D point cloud which is generated 

by combining panorama and depth map from Google Maps. And by 

coordinates convection, we can draw arrow guidance and segment destination 

in first person view. Figure 1.3 shows the sketch map of the AR navigation 

interface. 

 

 
Figure 1.2 The sketch map of the AR navigation system interface 

 

1.3. Thesis Structure 

This thesis describes the entire process of developing a AR navigation system for 

pedestrian navigation purposes. It is divided into five parts. 

After this introduction chapter, the basic concepts of GPS positioning, PDR-based 

positioning, Wi-Fi-based positioning and the integrating system are explained in 
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Chapter 2. 

In Chapter 3, firstly we introduce the related works about the vision-based 

positioning and the Google Maps Street View is also introduced as it is an important 

source. Then we describe our approach to obtain accurate pedestrian position with the 

aid of Google Maps Street View in the urban area. 

In Chapter 4, at first the related works about intersection detection and destination 

recognition in first person view are introduced. Then we describe how to use open 

source to give reliable AR arrow guide in intersections and how to show destinations in 

pedestrian navigation system. 

Finally, Chapter 5 summarizes this work. It gives an overall conclusion, shows the 

problems that came up and the limitations of the resulting system. In the end of this 

chapter future tasks to enhance this system are listed. 
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Chapter 2.  

Pedestrian Positioning in Urban Canyon 
 

 

In this chapter, we will introduce some basic pedestrian positioning methods, 

including the Global Positioning System (GPS) positioning, Pedestrian Dead 

Reckoning (PDR) based positioning, Wi-Fi based positioning and their related works. 

The fundamental of integrated positioning system will also be introduced in this chapter. 
 

2.1. GPS Positioning and Problem 

GPS is originally designed to provide position, speed and time information since 

it was initially developed by America in 1973. Nowadays there has been totally 31 GPS 

satellites launched into the space and they almost covers the whole planet as shown in 

Figure 2.1 [4].  

 

 
 

Figure 2.1 The constellation of GPS satellites 

 
Thanks to the high reliability and global coverage, GPS has been opened to public 

and now GPS is the mainly source for position information worldwide and basically 

every airplane, vehicle and mobile device has a GPS receiver built inside to provide 
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customers with position information. Also various kinds of researches have been done 

in this field  

Beside American GPS, other countries also launched their own satellites 

navigation system and all of these satellites has formed the modern Global Navigation 

Satellite System (GNSS). For example, Russia has GLONESS, Europe has Galileo, 

China has BeiDou and Japan has QZSS. Before the year of 2020, all the navigation 

satellite systems will be fully developed and the overall satellites in the orbit will be 

around 80, which means the position information will be much more easy to get and 

more accurate in the future. Most of these satellite systems have the same fundamental 

positioning algorithm and we will mainly introduce the fundamental algorithm of GPS 

in this section. 

2.1.1. Problems of GPS positioning 

When computing the pseudorange and GPS positioning, many kinds of errors will 

influence the result. At first, the satellites will cause the errors of satellite clock bias 

and satellite coordinate bias. These errors has pattern and could be pre-estimate. The 

ephemeris information sent by the satellites contains three clock corrections and they 

can be used to compute the accurate time based on GPS time. Around 5 meters error 

may be caused from the clock bias [6]. Nowadays, with the development of the 

technology, satellites has been equipped with new atomic clock. It can be expected that 

satellite clock bias could be minimized in the future. 

Then, when the signal from the satellite is penetrating the earth atmosphere, it has 

to pass through the ionosphere and troposphere as shown in figure 2.3. The propagation 

speed of the signal will slow down in the ionosphere and troposphere because of the 

sun activity, geomagnetic activity and other atmosphere activities. Temperature, 

humidity, seasons and day night alternation will affect the ionospheric and tropospheric 

errors so it is difficult to predict the exact time delay. Nevertheless, nowadays, there are 

Klobuchar model, which could correct 50% of error caused by ionosphere, and 

Saastamoinen model, which could correct more than 90% of errors caused by 

troposphere [6]. 
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Figure 2.2 The signal propagation through the atmosphere. 
 

Finally, there is also error coming from the receiver's noise. The receiver's noise is 

caused by antenna, cable, shaking and environmental factors. These errors cannot be 

modeled but usually they do not affect the positioning result very much. However, as 

mentioned above, in urban canyon environment, the main error source for GPS is 

coming from non-line-of-sight (NLOS) and multipath. NLOS and multipath does not 

have patterns, and cannot be easily corrected. 

There are many researches about correcting and evaluating GNSS positioning 

results have been done. Some of researches are focusing on GPS/GNSS data itself to 

improve the positioning result. Some others choose to combine other data to improve 

the accuracy. For example, Miura et al. [2] proposed to use 3D map and ray tracing 

algorithm to detect whether the signal is blocked or reflected by buildings. The 3D 

building map can be created based on reliable 2D map and height data of buildings, or 

by scan the buildings from airplanes or cars, which are equipped with radar or some 

other sensors. Then, by using the created 3D map, NLOS and multipath signals can be 

detected from the ray tracing algorithm as shown in Figure2.4 [2]. 

What’s more, the integration of different positioning system to improve the 

positioning accuracy is widely used. Then in this chapter, we will introduce two popular 

positioning method of Pedestrian Dead Reckoning (PDR) based positioning and Wi-Fi 

based positioning and the fundamental of integrated positioning system. 
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Figure 2.3 Ray-tracing simulation with 3D map. 
 

2.2. PDR-based Positioning 

2.2.1. Problems of PDR 

As mentioned above, PDR can only provide relative positioning result but not the 

absolute positioning result. Therefore, PDR need some other positioning systems, such 

as GPS or Wi-Fi, to provide an initial position. And another big problem of PDR is the 

error accumulation. 
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Figure 2.4 Different error accumulation of PDR system. 
 

As shown in Figure 2.8, the error in either the (b, c) stride length estimation or the 

(d) heading estimation may happen and be accumulated at each step. And this error will 

also influence the positioning result in the future time. Finally, the PDR trajectory will 

contain a large deviation.  

Therefore, it is difficult to use PDR itself to provide the positioning result and the 

integration with different positioning system is required. 

 

2.3. Wi-Fi-based Positioning 

Nowadays most public buildings already have well-established Wi-Fi 
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infrastructure, making Wi-Fi becoming an effective aiding resource for indoor 

navigation. Although some companies have provided Wi-Fi-baesd positioning services 

in outdoor environment, the accuracy is still not satisfied. Nevertheless, Wi-Fi-based 

positioning in the urban area is still a research of potential and it is popular to be used 

in integrated positioning system. 

Fingerprinting and trilateration are two main approaches for Wi-Fi-based 

positioning. Then they will be introduced in this section. 

 

2.3.1. Trilateration 

Similar with the trilateration law which GPS fallows as described above, 

trilateration-based Wi-Fi positioning first calculates the ranges between the device and 

available Access Points (APs) through the wireless signal propagation model, which 

can turn measured signal strength to distance. The basic requirements of the method are 

at least three APs. Then, the device's position is estimated through the use of 

trilateration. 

The distance estimate can be used to generate a circle around each AP on which 

the device must be. Therefore, the device must be at the position where the circles from 

each transmitter coincide as shown in Figure 2.9 (a). 

However, in fact the circles will not intersect at a single point at all with imperfect 

information. In this situation an estimate of the position is found by looking for the 

point that simultaneously minimizes the distance to all circles as shown in Figure 2.9 

(b). 

Besides, radio signals are extremely variable, particularly indoors, due to being 

reflected by obstacles or blocked by the walls. Environmental changes such as the 

people around can also affect the signals. It makes the trilateration extremely unreliable 

so this method is rarely researched in recent years. 
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Figure 2.5 Position estimation by trilateration. (a) ideal condition (b) imperfect 

situation. 

2.3.2. Fingerprinting 

Wi-Fi fingerprinting is the widely used positioning approach based on Wi-Fi 

Received Signal Strengths (RSS). This technique does not require knowledge of the 

positions of the APs and the estimation of distance from AP. Therefore, the environment 

will not affect the system like the trilateration approach.  

Wi-Fi fingerprinting usually has two operating phases: the offline training phase 

and the online positioning phase, as shown in Figure 2.10. 

In the training phase, RSS values from available APs and position information are 

collected as fingerprints for creating the radio map database. To generate a reliable 

database, the number of reference points should be big enough to cover the whole area 

of inter-est. And the RSS from available APs are collected for each reference point. The 

red part of Figure 2.10 shows the form of the database.  
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Figure 2.6 Procedure of Wi-Fi fingerprinting. 

 

As shown in Figure 2.10, the fingerprint information at the i-th reference point is 

recorded as: 

 

𝐹𝐹𝑖𝑖 = �𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖,𝜎𝜎𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖,
�𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖,1,𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖,1�, �𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖,2,𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖,2�,

⋯ , �𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖,𝑚𝑚𝑖𝑖 ,𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖,𝑚𝑚𝑖𝑖�
�        (2.6) 

 

The state 𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖 and 𝜎𝜎𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖 are the coordinate of the i-th reference point and its 

accuracy. And the state�𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖,𝑗𝑗 ,𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖,𝑗𝑗� are the MAC address and RSS of the j-th AP 

received at this reference point. The 𝑚𝑚𝑖𝑖  is the number of available APs of this 

reference point. 

Then in the positioning phase, the user location will be estimated by comparing 

the RSS information with that stored in the database. 

Zhang et al [12] introduce the nearest neighbor (NN) method. It selects the 

reference point, which has the minimal signal strength distance as the user's estimated 

position. The position is calculated as: 

 

𝑑𝑑𝑖𝑖 = ���𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟,𝑙𝑙𝑙𝑙
𝑗𝑗 − 𝑅𝑅𝑅𝑅𝐷𝐷𝐷𝐷,𝑖𝑖

𝑗𝑗 �
𝑛𝑛𝑖𝑖

𝑗𝑗=1

 , i ∈ 𝐼𝐼𝑅𝑅𝑅𝑅               (2.7) 
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The state 𝑑𝑑𝑖𝑖 is the signal strength distance at reference point 𝑅𝑅𝑅𝑅𝑖𝑖 in the database. 

𝑅𝑅𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟,𝑙𝑙𝑙𝑙 is the measured RSS vector at 𝑙𝑙𝑙𝑙. The 𝑅𝑅𝑅𝑅𝐷𝐷𝐷𝐷,𝑖𝑖 is the RSS vector at 𝑅𝑅𝑅𝑅𝑖𝑖. The 

𝑛𝑛𝑖𝑖 is the number of Wi-Fi signals received at 𝑅𝑅𝑅𝑅𝑖𝑖.  And 𝐼𝐼𝑅𝑅𝑅𝑅 is the location index set 

of reference points in the database. Then the coordinates of 𝑅𝑅𝑅𝑅𝑖𝑖 which satisfies the 

condition 𝑑𝑑𝑖𝑖∗ = 𝑚𝑚𝑚𝑚𝑛𝑛(𝑑𝑑𝑖𝑖| i ∈ 𝐼𝐼𝑅𝑅𝑅𝑅)  is determined as the position estimation of 𝑙𝑙𝑙𝑙. 

To optimize Wi-Fi positioning, at first they use a threshold 𝑇𝑇ℎ𝑅𝑅𝑅𝑅𝑅𝑅 to filter out 

APs with weak RSS. Then, if the minimal signal strength distance at a certain epoch is 

larger than another given threshold 𝑇𝑇ℎ𝑑𝑑, the fingerprinting results at this epoch will 

not be used because the current user location probably has not been stored as a reference 

points in the database. 

Furthermore, to mitigate the error, the k-NN estimation technique is considered. 

The position is estimated according to k reference points that have the smallest 

distances, namely, the position estimation is obtained by a weighed sum of the positions 

of k nearest RPs as: 

 

𝒓𝒓� = �
𝑐𝑐𝑖𝑖
𝑀𝑀
𝒓𝒓𝒊𝒊                          (2.8)

𝑘𝑘

𝑖𝑖=1

 

 

The state 𝑐𝑐𝑖𝑖 = 1 𝑑𝑑𝑖𝑖⁄  and 𝑀𝑀 = ∑ 𝑐𝑐𝑖𝑖𝑘𝑘
𝑖𝑖=1 . The 𝒓𝒓𝒊𝒊 is the position of the i-th nearest 

reference point. 

Fingerprinting usually provides more accurate position solutions with the cost of 

survey work in the training phase. However, if the environments changes dramatically, 

the system may give degraded results and the database needs to be trained again. 

Even in the indoor environment, fingerprinting is faced with some problems, such 

as the multipath effect in some certain environment, or the human body absorb, refract, 

reflect the signal. And as mentioned above, the outdoor environment will be more 

complicated and there will be a challenge for Wi-Fi-based positioning to work 

standalone. Then the integration of different positioning systems will be introduced in 

next part.  
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Chapter 3.  
 

Pedestrian Positioning with the Aid of 

Google Maps Street View 
 

 

Nowadays, the intelligent mobile devices such as smartphone and smart glasses 

are widely equipped with embedded camera, commercial level GPS receiver, wireless 

receiver, and some other sensors such as gyroscope, accelerometer, and magnetometer. 

It makes visual data associated with geographical tags and camera pose can be easily 

produced from these devices in our daily lives. However, as mentioned above, the 

accuracy of these sensor are easily influenced in the urban area and it will be not 

satisfied if we directly use the data from these sensors for positioning or camera pose 

estimation. Therefore, to estimate an accurate positioning result, beside the methods to 

improve the accuracy of positioning performance of them or integrate GPS positioning, 

Wi-Fi-based positioning, PDR-based positioning these kinds of basic positioning 

methods, visual information is also an popular source to be used for positioning. Then, 

in this chapter, at first we will introduce some related works about vision-based 

positioning method. Because Google Maps Street View is an important source in our 

proposed method, before introducing our proposed method about pedestrian positioning 

with the aid of Google Maps Street View, how to get the information and how to use or 

analyze the information form Google Maps Street View should be introduced. 

 

3.1. Vision-based positioning and related works 

Vision-based positioning fallows the same basic principles of landmark-based and 

map-based positioning. But vision-based positioning relies on optical sensors rather 

than GPS, wireless, pedestrian dead reckoning and inertial sensors. The advantage of 

these types of sensors lies in their ability to directly provide position information of 

distance information. However, as mentioned above, recent techniques based on these 

types of sensors have several limiting problems in the urban area, such as the NLOS 

and multipath of GPS, the drift of PDR, and the variation of Wi-Fi signals. At that time, 
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visual sensing can provide the pedestrian with an incredible amount of reliable 

information about its environment. Especially the camera on the new generation of 

intelligent eyeglass-type wearable device named smart glasses, which can provide a 

same view as what the pedestrian saw in his eyes as shown. Figue 3.1 shows the smart 

glasses of EPSON Moverio BT-300 which has a camera built into the headset. For video 

resolution, it supports up to 1920x1080 pixels which can satisfy our requirement. The 

camera will make the device can recognize the environment in pedestrian’s scene and 

help to generated the AR navigation guide on the screen of the smart glasses. 

 

 
Figure 3.1 EPSON Moverio BT-300 and the position of camera sensor 

 

Before talking about different vision-based positioning method and sources, the 

model of the vision sensor, the camera, need to be introduced. 

 

3.1.1. Camera Model 

Photometric cameras using an optical lens can be modelled as a pinhole camera. 

Figure 3.2 shows the geometry of a pinhole camera model and Figure 3.3 shows the 

process of projecting a feature in the world coordinates 𝑅𝑅 = (𝑈𝑈,𝑉𝑉,𝑊𝑊) into the pixel 

coordinates (𝑢𝑢, 𝑣𝑣). 
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Figure 3.2 The geometry of a pinhole camera model 

 

 
Figure 3.3 The process of projecting a feature in the world coordinates into the 

pixel coordinates 
 

As shown in Figure 3.2 and Figure 3.3, to project a feature in the world 

coordinates 𝑅𝑅 = (𝑈𝑈,𝑉𝑉,𝑊𝑊) into the pixel coordinates (𝑢𝑢, 𝑣𝑣), there are many steps 

[15]. 

At first, when the camera is moving in the real world, to project a point in the real 

world to the camera film, the rotation and translation of the camera around the scene in 
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the world need to be used to transform the coordinates in the world coordinate system 

to the camera coordinate system as shown in Figure 3.2. 
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where  

 

𝑅𝑅 = �
𝑟𝑟11 𝑟𝑟12 𝑟𝑟13
𝑟𝑟21 𝑟𝑟22 𝑟𝑟23
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�                       (3.2) 

 
is the rotation matrix and 

 

𝑡𝑡 = �
𝑡𝑡1
𝑡𝑡2
𝑡𝑡3
�                           (3.3) 

 

is the translation matrix. The joint matrix (𝑅𝑅|𝑡𝑡) is called camera extrinsic parameters. 

The camera extrinsic parameters is used to describe the camera motion around a static 

scene. 

Then camera coordinates are transformed to the film coordinate by the perspective 

matrix equation as: 

 

�
𝑥𝑥′
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0
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𝑍𝑍
1

�                    (3.4) 

𝑥𝑥 = 𝑓𝑓 𝑋𝑋
𝑍𝑍

= 𝑥𝑥′

𝑧𝑧′
                            (3.5) 

𝑦𝑦 = 𝑓𝑓 𝑌𝑌
𝑍𝑍

= 𝑦𝑦′

𝑧𝑧′
                            (3.6) 

 

where 𝑓𝑓 is the camera focal length in distance unit. 

At last the pixel coordinates comes from the sampling of the CCD sampling.  
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𝑢𝑢 = 1
𝑠𝑠𝑥𝑥
𝑓𝑓 𝑋𝑋
𝑍𝑍

+ 𝑐𝑐𝑥𝑥 = 𝑓𝑓𝑥𝑥
𝑋𝑋
𝑍𝑍

+ 𝑐𝑐𝑥𝑥                            (3.7) 

𝑦𝑦 = 1
𝑠𝑠𝑦𝑦
𝑓𝑓 𝑌𝑌
𝑍𝑍

+ 𝑐𝑐𝑦𝑦 = 𝑓𝑓𝑦𝑦
𝑌𝑌
𝑍𝑍

+ 𝑐𝑐𝑦𝑦                            (3.8) 

 

where 𝑠𝑠𝑥𝑥 and 𝑠𝑠𝑦𝑦 are the dimension of pixel in frame grabber. The 𝑓𝑓𝑥𝑥,𝑓𝑓𝑦𝑦 are the 

focal lengths expressed in pixel units and �𝑐𝑐𝑥𝑥, 𝑐𝑐𝑦𝑦� is the principal point in 

the image because normally the principal point in the film coordinates is 
the upper left corner but in the pixel coordinates the principal point should 

the center of the image. 
Finally the whole process of the projection can be shown in the equation as: 
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where  

 

K = �
𝑓𝑓𝑥𝑥 0 𝑐𝑐𝑥𝑥
0 𝑓𝑓𝑦𝑦 𝑐𝑐𝑦𝑦
0 0 1

�                      (3.10) 

 

is the camera intrinsic parameters matrix. If an image from the camera is scaled by a 

factor, all of these parameters should be scaled by the same factor. The matrix of 

intrinsic parameters does not depend on the scene viewed. So, once estimated, it can be 

re-used as long as the focal length is fixed 

From Figure3.2, we can see that the range information is lost in this projection, 

but the angle or orientation of the feature can be obtained if the focal length is known 

and the lens does not cause distortion. So a single camera only provides only 

information about the direction of the features exist in the pedestrian's view, while as it 

doesn’t provide any information regarding the depth. To get the three-dimensional 

location of a feature, multiple images from different viewpoints are required. The 

multiple images from different viewpoints can be get from a monocular camera while 

it is moving and structure from motion (SfM) technique can be used to estimate three-

dimensional structures from two-dimensional image sequences. And there is a type of 
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camera with two or more lenses with a separate image sensor or film frame for each 

lens named stereo camera. This allows the camera to simulate human binocular vision, 

and therefore gives stereo camera the ability to capture three-dimensional location of 

the observed features in the environment. Figure 3.4 shows the image from one of the 

eyes in a stereo camera and the depth map calculated from the images of it. 

 

 
Figure 3.4 Stereo camera images. (a) Image from the left camera; (b) Depth map 

 

Although the smart glasses of HoloLens form Microsoft is equipped with stereo 

camera to recognize the three-dimensional scene and provide high quality AR 

applications, considering that nowadays most of smartphones and other kinds of smart 

glasses only have monocular camera, we choose to focusing on the vision-based 

positioning utilizing the monocular camera. 

 

3.1.2. Simultaneous Localization and Mapping (SLAM) 

The problem of vision-based positioning is to determine the position and 

orientation of the pedestrian camera by matching the sensed visual features in an image 

or sequence to the object features provided by landmarks or maps. Despite mapping 

and localization can be performed as independent tasks, they are closely related. In 

order to build a map, the pose of the structures and the obstacles of the environment 

needs to be known. On the other hand, during localization, the pose of the agent is 

computed against a reference map. When there is no map information, the problem 

becomes to Simultaneous Localization and Mapping (SLAM). 
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SLAM is widely used in robot navigation. It is the problem for a mobile robot to 

be placed at an unknown location in an unknown environment and for the robot to 

incrementally build a consistent map of this environment while simultaneously 

determining its location within this map [16]. 

In the SLAM, both the trajectory of the platform and the location of all landmarks 

are estimated on-line without the need for any a priori knowledge of location. 

 

 
Figure 3.5 Process of the SLAM. 

 

Figure 3.5 [16] shows the process of the SLAM problem. In a SLAM problem, a 

simultaneous estimate of both robot and landmark locations is required. The true 

locations are never known or measured directly. Observations are made between true 

robot and landmark locations. 

Consider a mobile robot moving through an environment taking relative 

observations of a number of unknown landmarks using a sensor located on the robot. 

At a time instant k, the location and orientation of the robot is described as 𝑥𝑥𝑘𝑘. And 𝑢𝑢𝑘𝑘 

is the control vector which is applied at time k-1 to drive the robot to the state 𝑥𝑥𝑘𝑘 at 
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time k. The vector 𝑚𝑚𝑖𝑖 is used to describe e location of the i-th landmark, whose true 

location is assumed time invariant. And 𝑧𝑧𝑖𝑖𝑘𝑘 is an observation taken from the vehicle 

of the location of the i-th landmark at time k. When there are multiple landmark 

observations at any one time or when the specific landmark is not relevant to the 

discussion, the observation will be written simply as 𝑧𝑧𝑘𝑘. Therefore, the objective of the 

SLAM problem is to compute the probability distribution at time k as: 

 

P(𝑥𝑥𝑘𝑘,𝑚𝑚 | 𝑍𝑍0:𝑘𝑘,𝑈𝑈0:𝑘𝑘, 𝑥𝑥0)                      (3.11) 

 

The state 𝑍𝑍0:𝑘𝑘 is the set of all landmark observations and 𝑈𝑈0:𝑘𝑘 is the history of 

control inputs. This probability distribution describes the joint posterior density of the 

landmark locations and robot state at time k given the recorded observations and control 

inputs up to and including time k together with the initial state of the robot. The SLAM 

algorithm is now implemented in a standard two-step recursive prediction (time-update) 

correction (measurement-update) form. 

The time-update is: 

 

P(𝑥𝑥𝑘𝑘,𝑚𝑚 | 𝑍𝑍0:𝑘𝑘−1,𝑈𝑈0:𝑘𝑘, 𝑥𝑥0) 

= �P(𝑥𝑥𝑘𝑘 | 𝑥𝑥𝑘𝑘−1,𝑢𝑢𝑘𝑘) × P(𝑥𝑥𝑘𝑘−1,𝑚𝑚 | 𝑍𝑍0:𝑘𝑘−1,𝑈𝑈0:𝑘𝑘−1, 𝑥𝑥0)𝑑𝑑𝑥𝑥𝑘𝑘−1   (3.12) 

 

And the measurement-update is: 

 

P(𝑥𝑥𝑘𝑘,𝑚𝑚 | 𝑍𝑍0:𝑘𝑘,𝑈𝑈0:𝑘𝑘,𝑥𝑥0) 

=
P(𝑥𝑥𝑘𝑘,𝑚𝑚 | 𝑥𝑥𝑘𝑘,𝑚𝑚) × P(𝑥𝑥𝑘𝑘,𝑚𝑚 | 𝑍𝑍0:𝑘𝑘−1,𝑈𝑈0:𝑘𝑘−1, 𝑥𝑥0)𝑑𝑑𝑥𝑥𝑘𝑘−1

P(𝑧𝑧𝑘𝑘 | 𝑍𝑍0:𝑘𝑘−1,𝑈𝑈0:𝑘𝑘)     (3.13) 

 

Like many inference problems, the solutions to inferring the two variables together 

can be found, to a local optimum solution, by alternating updates of the two beliefs. 

 

3.1.3. Descriptors in vision-based positioning 

In order to perform mapping and localization tasks using vision, it is necessary to 

describe the acquired images and be able to compare these descriptions. Consequently, 
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the quality of the map and the posterior localization will directly rely on the method 

used for visually describing the different environment locations. Therefore, according 

to the description method, different approaches can be classified as approaches based 

on global descriptors and approaches based on local features [17]. 

Global descriptors describe the image in a holistic manner, using the full image as 

input to the process. These descriptors are normally very fast to compute, what 

simplifies the matching process between images and reduces the computational needs 

of mapping and localization tasks. This kind of descriptor has been used in several 

applications comprising scene classification, giving good results in all cases. 

Histograms, the Gist descriptor, vertical regions and the Discrete Fourier Transform 

(DFT) and some other approaches can be used as global descriptors. 

Global descriptions work well for capturing the general structure of the scene, but 

they are not able to cope well with several visual problems like partial occlusions or 

camera rotations. These problems have been addressed more intensively through the 

recent development of local features. 

During the extraction step, a set of distinctive local features, which capture the 

essence of the image, are detected. These features can be derived from the application 

of a neighborhood operation or searching for specific structures within the image, such 

as corners, blobs or regions. Then, a description step is performed, where some 

measurements are taken from the vicinity of each local feature to form a descriptor. 

Initially, descriptors were formed as a multi-dimensional floating-point vectors.  

In order to identify the same local features in other images, local features need to 

be invariant to certain properties, such as camera rotations or affine transformations. 

Therefore, a good feature detector should have the properties of repeatability, 

distinctiveness, locality, quantity, accuracy and efficiency. The most important 

property is repeatability, that can be achieved either by invariance, when large 

deformations are expected because of relevant view changes, or by robustness, in case 

of relatively small deformations. 

Scale-Invariant Feature Transform (SIFT) feature is the most popular feature 

nowadays. SIFT is widely used in the computer vision and image processing algorithm. 

And even many other local features are based on SIFT. The SIFT features are local 

and based on the appearance of the object at particular interest points, and are invariant 

to image scale and rotation. They are also robust to changes in illumination, noise, and 
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minor changes in viewpoint. In addition to these properties, they are highly distinctive, 

relatively easy to extract and allow for correct object identification with low 

probability of mismatch. They are relatively easy to match against a (large) database 

of local features but however the high dimensionality can be an issue, and generally 

probabilistic algorithms such as k-d trees with best bin first search are used. Object 

description by set of SIFT features is also robust to partial occlusion; as few as three 

SIFT features from an object are enough to compute its location and pose. Recognition 

can be performed in close-to-real time, at least for small databases and on modern 

computer hardware. 

Speeded Up Robust Features (SURF) is another famous scale and rotation 

invariant descriptor for detecting features from image. The detection process is based 

on the Hessian matrix. SURF descriptors are based on sums of two-dimensional Haar 

wavelet responses, calculated in a 4 × 4  subregion around each interest point. It 

detects region features from an image and obtains the location and the descriptor 

vector of each interest point. 

Harris corner is probably the most widely interesting point detector used due to its 

strong invariance to scale, rotation and illumination variations, as well as image noise. 

The basic idea behind this algorithm is to evaluate the derivative of the intensity with 

respect to the location. The edges are then detected where the derivative gets very 

large. To cover changes of intensity in each direction, the Harris Corner calculates the 

derivative in the x-direction and in the y-direction. 

Not only these famous features, other feature like line features, edge features or 

plane features can also be used in the vision-based positioning. 

Although the popular features like SIFT is invariant to image rotation, it is still 

faced with a challenge when the view point changes a lot. In this kind of situation, 

they cannot find enough matched key features. 

Considering that the behaviors of pedestrians are complex and we hope to find a 

match in most of situations, so the ASIFT method [18] could be a choice. ASIFT 

simulates a set of sample views of the initial images, obtainable by varying the two 

camera axis orientation parameters, namely the latitude and the longitude angles. Then 

it applies the SIFT method itself to all these images to find and match SIFT descriptors. 

Although ASIFT shows good performance to find key features matches in the situation 

with a large transition tilts, it is still hard to deal with the transition tilts more than 32. 
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In the experiment, we found it is difficult to match the reference images with the 

pedestrian’s heading angle changes a lot from it. So we need to change to some other 

features. 

Then Virtual Line Descriptor (kVLD) [19] is found to deal with important changes 

from viewpoint, illumination and occlusion in urban area. The kVLD is applied to 

determine the inlier feature point correspondences. It is a SIFT-like descriptor by 

signing virtual lines to the points with geometrical consistency. The algorithm 

computes and matches a k connected virtual line graph to reject the outliers. This 

algorithm evaluates a geometric consistent match by searching for at least K other 

matches in the neighborhood of that potential match. However, although kVLD deal 

well with large view changes, it is time-consuming and in our case, a real-time 

response is desirable. 

 GMS (Grid-based Motion Statistics) [20][JiaWang Bian, Wen-Yan Lin, 

Yasuyuki Matsushita, Sai-Kit Yeung, Tan Dat Nguyen, Ming-Ming Cheng, GMS: 

Grid-based Motion Statistics for Fast, Ultra-robust Feature Correspondence, 

Conference on Computer Vision and Pattern Recognition (CVPR), 2017] is a simple 

means of encapsulating motion smoothness as the statistical likelihood of a certain 

number of matches in a region. It enables translation of high match numbers into high 

match quality which provides a real-time, ultra-robust correspondence system. 

Considering the performance for both matching quality and execute efficiency, we 

choose GMS as our image matching algorithm. 

 

 

 
Figure 3.6 Matching between a reference image (left) with the query image 

(right) based on GMS 
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Figure 3.6 show one of the matching result in the experiment using GMS, in which 

situation it is difficult to find enough reliable matched key features from SIFT 

standalone and ASIFT method. Therefore, GMS was choose in our proposed method. 

3.1.4. Related works on positioning with the aid of Google Maps Street View. 

After choosing a reliable descriptor, then the map is needed for vision-based 

positioning as mentioned above.  

Google Maps Street View can be considered as a very comprehensive and large 

database provided by Google, which consists of geo-tagged 360º panoramic images of 

almost all main streets and roads in a number of countries. The panoramic images of 

Google Maps Street View are recorded by a spherical arrangement of cameras and the 

localization comes from the Inertial Measurement Unit (IMU) and GNSS. There is a 

distance with range of 5 to 20 meters between two successive panoramic images. 

Because of its characteristics and quality, Google Maps Street View attracts more and 

more attentions in the field of computer vision, especially for localization. We found 

that beside the panoramic images, we could also get the depth map of each panoramic 

images from the API, which is provided by Google. By combining the panoramic 

images and depth map information, local 3D models can be created. By using this 3D 

model, virtual views in all the places can be generated and there will be no limitations 

from the fixed interval position of the panoramic images. 

Robertson et al. [26] build a database of views of building facades to determine 

the pose of a query view provided by the user, using a novel wide-baseline matching 

algorithm that can identify corresponding building facades in two views despite 

significant changes of viewpoint and lighting. Figure 3.7 [26] shows the building 

facades database they build and the transferred building outlines recovered from the 

matching results. This research suggest us that using the building facades database in 

the image matching can help us to recognize the shape changing of the building walls 

in the views when pedestrian is moving and rotating.  

Majdik et al. [20, 21] use Street View images to localize a Micro Aerial Vehicle 

by matching images with strong view point changes by generating virtual affine views 

to Google Maps Street View images and add 3D models of buildings as input to 

improve its accuracy. Torii et al. [22] match descriptors computed directly on queried 

image and multiple Google Maps Street View panoramas with learning a distinctive 

bag-of-word model to localize. Kim et al. [27] address the problem of accurate 
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localization of a place depicted in a query image using a large geotagged image 

database. Features that often mislead to false locations are the ones that are unstable 

maintain alignment to the corresponding feature in the same object under viewpoint  

 
Figure 3.7 Building facades database and matching results. (a) Building facades 

in the database are associated with a meaningful coordinate system using a map. 

(b) Illustrative database retrieval results and transferred building outlines. 
 

and illumination changes, or the ones prevalent in space such as features belong to 

pedestrians and cars. Therefore, they discover features that are both robust and 

distinctive by performing geometric verification of images depicting the same scene 

and proposed a novel method for classifying reliable features for place recognition by 

learning a weighted linear SVM classifier on examples of geometrically verified 

features and those that are not verified. Knopp et al. [28] also address the key problems 

in place recognition that the presence of objects such as trees or road markings, which 

frequently occur in the database and hence cause significant confusion between 

different places. To avoid features leading to confusion of particular places, they use 

geotags attached to database images from the Google Maps Street View as a form of 

supervision and develop a method for automatic detection of image-specific and 
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spatially-localized groups of confusing features, and demonstrate that suppressing 

them significantly improves place recognition performance while reducing the 

database size. However, these methods only solve the place recognition problem and 

provide topological localization via image matching. 

Some other researches choose to focusing on localizing images in large scale 

metrical maps built from Structure from Motion (SfM). Irschara et al. [23] build 

accurate point clouds using structure from motion and then compute the camera 

coordinates of the query image. Zamir et al. [24] leverage a structured dataset of about 

100,000 images build from Google Maps Street View as the reference images and 

proposed a localization method in which the SIFT descriptors of the detected SIFT 

interest points in the reference images are indexed using a tree. In order to localize a 

query image, the tree is queried using the detected SIFT descriptors in the query image. 

A novel GPS-tag-based pruning method removes the less reliable descriptors and a 

smoothing step with an associated voting scheme is utilized. It allows each query 

descriptor to vote for the location its nearest neighbor belongs to, in order to accurately 

localize the query image. A parameter called Confidence of Localization which is 

based on the Kurtosis of the distribution of votes is defined to determine how reliable 

the localization of a particular image is. In addition to localizing single images, they 

propose a novel approach to localize a non-sequential group of images. Agarwal et al. 

[25] estimate the 3D position of tracked feature points from short monocular camera 

sequences and then compute the rigid body transformation between the Google Maps 

Street View panoramas and these estimated points by model the problem as a non-

linear least squares problem of two objectives. Sattler et al. [29] also use large scale 

3D models of urban scenes for accurate image-based localization and focus on the 

important bottleneck which is the computation of 2D-to-3D correspondences required 

for pose estimation. They derive a direct matching framework based on visual 

vocabulary quantization and a prioritized correspondence search to improve the 

performance of direct 2D-to-3D matching methods. 

Although these works have good performance on image-based positioning, there 

is still a considerable potential for improving the positioning accuracy performance. 

Based on the advantages and disadvantages of the dataset generation and positioning 

method of the related works, we proposed a method to provide accurate pedestrian 

positioning in urban areas with the aid of visual matching with the dataset from Google 
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Maps Street View. Considering that Google Maps Street View is the important source 

in our proposed method, in the next part, we will introduce the pipeline of Google 

Maps Street View. 

 

3.2. Proposed method 

3.2.1. Objective 

The geo-tagged images captured by the camera on the smart glasses is the input of 

our system. But the geographic information is not accurate, the accuracy of  

commercial GPS is about 20 meters and the error of magnetometer is about 20 degrees. 

As for the source, we use street view images from the Google Street View Image API 

and the textured local 3D model from the depth map and panorama image.  

 

 
Figure 3.8 Virtual view from textured local 3D model 

 

The objective of our proposed method is to search a virtual view image from 

Google Street View which is the most similar with the query image from smart glasses. 

After the best-matched virtual view image is found, the pedestrian’s position can be 

decided as the location information of this virtual view image, as shown in  Figure 

3.14.  
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Figure 3.9 Objective of the proposed method 

 

 

 
Figure 3.10 The flowchart of our proposed method. 

 

Figure 3.15 shows the flowchart of our proposed method. As can be seen from the 

figure, there are three main steps, which are the heading angle detection, coarse-

positioning and fine-positioning. 

In this work, the similarity between a virtual view image and the query image is 
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evaluated by the average distance of each matched key features. The dissimilarity is 

formulated as:  

𝑒𝑒 =
1
𝑁𝑁
���𝑥𝑥𝑅𝑅𝑟𝑟𝑑𝑑𝑟𝑟𝑠𝑠𝑃𝑃𝑟𝑟𝑖𝑖𝑃𝑃𝑛𝑛,𝑖𝑖 − 𝑥𝑥𝑉𝑉𝑖𝑖𝑟𝑟𝑃𝑃𝑙𝑙𝑃𝑃𝑙𝑙𝑉𝑉𝑖𝑖𝑟𝑟𝑉𝑉,𝑖𝑖�

2
+ �𝑦𝑦𝑅𝑅𝑟𝑟𝑑𝑑𝑟𝑟𝑠𝑠𝑃𝑃𝑟𝑟𝑖𝑖𝑃𝑃𝑛𝑛,𝑖𝑖 − 𝑦𝑦𝑉𝑉𝑖𝑖𝑟𝑟𝑃𝑃𝑙𝑙𝑃𝑃𝑙𝑙𝑉𝑉𝑖𝑖𝑟𝑟𝑉𝑉,𝑖𝑖�

2
(3.14) 

 

where �𝑥𝑥𝑅𝑅𝑟𝑟𝑑𝑑𝑟𝑟𝑠𝑠𝑃𝑃𝑟𝑟𝑖𝑖𝑃𝑃𝑛𝑛,𝑖𝑖,𝑦𝑦𝑅𝑅𝑟𝑟𝑑𝑑𝑟𝑟𝑠𝑠𝑃𝑃𝑟𝑟𝑖𝑖𝑃𝑃𝑛𝑛,𝑖𝑖� is the pixel coordinates of the i-th matched features 

in the pedestrian image and �𝑥𝑥𝑉𝑉𝑖𝑖𝑟𝑟𝑃𝑃𝑙𝑙𝑃𝑃𝑙𝑙𝑉𝑉𝑖𝑖𝑟𝑟𝑉𝑉,𝑖𝑖,𝑦𝑦𝑉𝑉𝑖𝑖𝑟𝑟𝑃𝑃𝑙𝑙𝑃𝑃𝑙𝑙𝑉𝑉𝑖𝑖𝑟𝑟𝑉𝑉,𝑖𝑖� is the i-th matched features 

in the virtual view. Therefore, the main purpose is to search a coordinates of 

(𝑙𝑙𝑙𝑙𝑡𝑡, 𝑙𝑙𝑙𝑙𝑛𝑛,ℎ𝑒𝑒𝑙𝑙𝑑𝑑𝑚𝑚𝑛𝑛𝑒𝑒) to make the virtual view reach the minimum value of the error e 

as: 

 

𝑉𝑉𝑚𝑚𝑟𝑟𝑡𝑡𝑢𝑢𝑙𝑙𝑙𝑙𝑉𝑉𝑚𝑚𝑒𝑒𝑉𝑉(𝑙𝑙𝑙𝑙𝑡𝑡, 𝑙𝑙𝑙𝑙𝑛𝑛, ℎ𝑒𝑒𝑙𝑙𝑑𝑑𝑚𝑚𝑛𝑛𝑒𝑒) = 𝑙𝑙𝑟𝑟𝑒𝑒𝑚𝑚𝑚𝑚𝑛𝑛 𝐞𝐞             (3.15) 

 

To solve this equation, we should decide one parameter at first. 

 

3.2.2. Heading angle detection from vanishing point 

Heading angle indicates the compass heading of the camera direction which can 

be obtained from attitude determination, which is a critical point in navigation systems. 

In the urban area, the environment will easily influence magnetometer and the error 

may become 20 degrees sometimes. Kessler et al [32] addressed configuration of 

projected edges in the camera image, which is shown as Vanishing Points (VPs) and 

Vanishing Lines (VLs). This method can be used to determine the camera orientation. 

Figure 3.16 [32] show the projection of a line to the camera image plane. 

The vanishing point may also be referred to as the direction point, as lines having 

the same directional vector, will have the same vanishing point or converge at the same 

vanishing points. Therefore, as shown in the Figure 3.17 [32], in the environment like 

urban area, in where the buildings are normally in a same direction next to a road, the 

vanishing points should be fixed when the heading angle of the camera did not change. 
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Figure 3.11 Projecction of a line in 3D-space onto the camera image plane 

 

 
Figure 3.12 Vanishing Line and Vanishing Points within that line in the 3D 

vision. 
 

Considering the camera model which was introduces above, the coordinates of the 

vanishing point in the image plane should be: 

 

𝑉𝑉 = �
𝑓𝑓𝑥𝑥 sin𝜃𝜃
𝑓𝑓𝑦𝑦 sin𝜑𝜑�                         (3.16) 

 

where 𝜃𝜃 is the heading angle with 0 and 180 indicating the direction of the road. 

In our proposed method, at first a Canny edge detector was used to find local edges 

in the pedestrian image. Then a Hough line detector was used to detect the lines in the 

edges detected from Canny. The vanishing points detection and line grouping method 

from Duan et al. [33] was used to estimate the vanishing point. 
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Figure 3.13 Process of vanishing point detection 

 

 
(a)                                     (b) 

Figure 3.14 Heading angle detection from vanishing point. 
 

Figure 3.18 shows the process of the vanishing point detection and Figure 3.19 
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shows the results of lines detection and vanishing points detection. (a) is the query 

image and (b) shows the results of vanishing point detection. After the vanishing point 

is detected, we can use equation 3.16 to estimate the camera orientation. Therefore, the 

problem of equation 3.15 becomes to: 

 

𝑉𝑉𝑚𝑚𝑟𝑟𝑡𝑡𝑢𝑢𝑙𝑙𝑙𝑙𝑉𝑉𝑚𝑚𝑒𝑒𝑉𝑉(𝑙𝑙𝑙𝑙𝑡𝑡, 𝑙𝑙𝑙𝑙𝑛𝑛) = 𝑙𝑙𝑟𝑟𝑒𝑒𝑚𝑚𝑚𝑚𝑛𝑛ℎ𝑟𝑟𝑃𝑃𝑑𝑑𝑖𝑖𝑛𝑛𝑒𝑒∗ 𝐞𝐞             (3.17) 

3.2.3. Coarse-positioning by searching similar street view image 

In order to calculate the accurate positioning result, we propose a coarse-to-fine 

two-stage method. In the coarse positioning step, at first we determine the roads with 

vertical distance less than 20 meters from its geo-tag.  Then we search the candidate 

positions as shown in Figure 3.21. Rather than creating a building facades datasets with 

the distance less than 20 meters to the vertical point on each of these roads as the 

reference dataset, we use a convergence method to reduce the processing time of image 

matching.  

Firstly, considering the maximum error of GPS is 20 meters, we require two 

locations less than 20 meters to the vertical point on both left and right side as the initial 

dataset, as  and  in  Figure 3.21. We can get the new reference position  based on 

feature matching between reference image and query images and transition matrix 

gained from homography matrix. For each candidate position, we collect the reference 

image with the heading angle of query image. Then we use GMS matching algorithm 

to evaluate the similarity between the query image and the images from the dataset. In 

addition, for each reference images, the geographic coordinates and heading angle are 

tagged, which suggesting the we can get rotation translation matrix from homography 

matrix and camera intrinsic parameters matrix. Then we keep the more similar one and 

discard the other location. Once we find the similarity score reaches the highest, that 

new position will be chosen as the coarse position. We can see the process of it in 

Algorithm1.  
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Figure 3.15 Coarse-positioning by searching similar street view image. 

Algorithm1: Coarse-positioning by searching similar street image 
Input: Geo-tagged query image I 

Output: Interested area position 𝑫𝑫 (λ, φ) 

Initialize reference dataset 𝑹𝑹 with 2 street view images {𝑹𝑹𝒍𝒍,𝑹𝑹𝒓𝒓} in position 𝑫𝑫𝒍𝒍 and 𝑫𝑫𝒓𝒓 

with heading angle 𝜽𝜽 

    For image r 𝛜𝛜 𝐑𝐑 do    

           n =  GMS_Matches (r, 𝑰𝑰) 

           S =  GMS_Matches_Scores (r, 𝑰𝑰) 

           m =  Similarity (s, 𝒏𝒏) 

           𝑯𝑯 =  Homography (r, 𝑰𝑰) 

           If  m < threshold 𝝉𝝉  do 

                   Discard r 

           Else 

      update 𝑫𝑫     𝑫𝑫𝒏𝒏𝒏𝒏𝒏𝒏 = 𝒇𝒇(𝒅𝒅𝒊𝒊𝒇𝒇𝒇𝒇𝒏𝒏𝒓𝒓(𝑯𝑯𝒊𝒊−𝟏𝟏,𝑯𝑯𝒊𝒊),𝒅𝒅𝒊𝒊−𝟏𝟏,𝒊𝒊)      

           update 𝑹𝑹 = {𝑫𝑫𝒏𝒏𝒏𝒏𝒏𝒏, 𝜽𝜽}                                        

           End  if  

           If 𝑺𝑺𝒊𝒊+𝟏𝟏 < = 𝑺𝑺𝒊𝒊 then 𝑫𝑫𝒊𝒊+𝟏𝟏 = 𝑫𝑫𝒊𝒊 

      End for 

Return 𝑫𝑫𝒊𝒊(𝝀𝝀,𝝋𝝋) 
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Both the query image recorded by the camera, the downloaded building facade 

images from Google Maps Street View, and the virtual view image can be considered 

as taken from a pinhole camera model. 

As we mentioned above, the whole process of the projection can be shown in the 

equation as: 

 

𝑠𝑠 �
𝑢𝑢
𝑣𝑣
1
� = �

𝑓𝑓𝑥𝑥 0 𝑐𝑐𝑥𝑥
0 𝑓𝑓𝑦𝑦 𝑐𝑐𝑦𝑦
0 0 1

0
0
0
��

𝑟𝑟11 𝑟𝑟12 𝑟𝑟13
𝑟𝑟21 𝑟𝑟22 𝑟𝑟23
𝑟𝑟31 𝑟𝑟32 𝑟𝑟33

𝑡𝑡1
𝑡𝑡2
𝑡𝑡3

0    0    0 1

��
𝑈𝑈
𝑉𝑉
𝑊𝑊
1

�      (3.18) 

 

Because there is no resize or re-sampling of the images, so the scale factor s should 

be 1 and the equations becomes: 

 

�
𝑢𝑢
𝑣𝑣
1
� = �

𝑓𝑓𝑥𝑥 0 𝑐𝑐𝑥𝑥
0 𝑓𝑓𝑦𝑦 𝑐𝑐𝑦𝑦
0 0 1

0
0
0
��

𝑟𝑟11 𝑟𝑟12 𝑟𝑟13
𝑟𝑟21 𝑟𝑟22 𝑟𝑟23
𝑟𝑟31 𝑟𝑟32 𝑟𝑟33

𝑡𝑡1
𝑡𝑡2
𝑡𝑡3

0    0    0 1

��
𝑈𝑈
𝑉𝑉
𝑊𝑊
1

�       (3.19) 

 

When features in matched image pairs of query image and building façade image, 

virtual view images and building façade image, we can consider that these matched 

features are the same feature match 𝑅𝑅 = (𝑈𝑈,𝑉𝑉,𝑊𝑊) in the world coordinates.  

Because the camera pose of the building façade images are known in the dataset, 

we can consider these building façade images as static scenes. So we can get features 

in the query image as (𝑢𝑢𝑟𝑟, 𝑣𝑣𝑟𝑟): 

 

�
𝑢𝑢𝑟𝑟
𝑣𝑣𝑟𝑟
1
� = 𝐾𝐾𝑟𝑟(𝑅𝑅𝑟𝑟|𝑡𝑡𝑟𝑟)�

𝑈𝑈
𝑉𝑉
𝑊𝑊
1

�                   (3.20) 

 

where 𝐾𝐾𝑟𝑟 is the camera intrinsic parameters matrix of the smart phone camera, which 

is known. (𝑅𝑅𝑟𝑟|𝑡𝑡𝑟𝑟) is the rotation-translation matrix from the camera pose of matched 

building façade image to the camera pose of query image. 

Also, in a same way, we can get the matched features in the generated virtual view 
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images as (𝑢𝑢𝑣𝑣, 𝑣𝑣𝑣𝑣): 

 

�
𝑢𝑢𝑣𝑣
𝑣𝑣𝑣𝑣
1
� = 𝐾𝐾𝑣𝑣(𝑅𝑅𝑣𝑣|𝑡𝑡𝑣𝑣)�

𝑈𝑈
𝑉𝑉
𝑊𝑊
1

�                    (3.21) 

where 𝐾𝐾𝑣𝑣 is the camera intrinsic parameters matrix of the virtual camera. Because we 

calibrate the parameters of the virtual camera with the camera parameter of our real 

camera. 

 

𝐾𝐾𝑣𝑣 = 𝐾𝐾𝑟𝑟                         (3.22) 

 

(𝑅𝑅𝑣𝑣|𝑡𝑡𝑣𝑣)  is the rotation-translation matrix from the camera pose of matched 

building façade image to the virtual view image. 

Because the reference dataset is composed of images perpendicular to the 

building’s walls, to simplify the problem, we can assume that all the features are places 

on a plane, whose 𝑊𝑊 = 0. Then the equation 3.20 becomes: 

 

�
𝑢𝑢𝑟𝑟
𝑣𝑣𝑟𝑟
1
� = 𝐾𝐾𝑟𝑟 �

𝑟𝑟𝑟𝑟11 𝑟𝑟𝑟𝑟12 𝑟𝑟𝑟𝑟13
𝑟𝑟𝑟𝑟21 𝑟𝑟𝑟𝑟22 𝑟𝑟𝑟𝑟23
𝑟𝑟𝑟𝑟31 𝑟𝑟𝑟𝑟32 𝑟𝑟𝑟𝑟33

𝑡𝑡𝑟𝑟1
𝑡𝑡𝑟𝑟2
𝑡𝑡𝑟𝑟3

0    0    0 1

��
𝑈𝑈
𝑉𝑉
0
1

�              (3.23) 

 

�
𝑢𝑢𝑟𝑟
𝑣𝑣𝑟𝑟
1
� = 𝐾𝐾𝑟𝑟 �

𝑟𝑟𝑟𝑟11 𝑟𝑟𝑟𝑟12 𝑡𝑡𝑟𝑟1
𝑟𝑟𝑟𝑟21 𝑟𝑟𝑟𝑟22 𝑡𝑡𝑟𝑟2
𝑟𝑟𝑟𝑟31 𝑟𝑟𝑟𝑟32 𝑡𝑡𝑟𝑟3

� �
𝑈𝑈
𝑉𝑉
1
�                 (3.24) 

 

�
𝑢𝑢𝑟𝑟
𝑣𝑣𝑟𝑟
1
�~𝐾𝐾𝑟𝑟(𝑟𝑟𝑟𝑟1, 𝑟𝑟𝑟𝑟2, 𝑡𝑡𝑟𝑟)�

𝑈𝑈
𝑉𝑉
1
�                    (3.25) 

 
where 𝑟𝑟c1, 𝑟𝑟c2 are the first and second column of the rotation matrix. Our main goal is 

to estimate the position of the query image from the translation matrix and this 

assumption does not affect the values in the translation matrix. So this simplification 

can work in our research. 

Also, in a same way, we can get the equation 3.21 becomes: 
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�
𝑢𝑢𝑣𝑣
𝑣𝑣𝑣𝑣
1
�~𝐾𝐾𝑣𝑣(𝑟𝑟𝑣𝑣1, 𝑟𝑟𝑣𝑣2, 𝑡𝑡𝑣𝑣)�

𝑈𝑈
𝑉𝑉
1
�                   (3.26) 

 

Because the building façade image is considered as the static scene, there will be 

no parameter of �𝑅𝑅𝑒𝑒|𝑡𝑡𝑒𝑒�. Therefore, features in the reference image can be projected 

as �𝑢𝑢𝑒𝑒, 𝑣𝑣𝑒𝑒�: 

 

�
𝑢𝑢𝑒𝑒
𝑣𝑣𝑒𝑒
1
�~𝐾𝐾𝑒𝑒 �

𝑈𝑈
𝑉𝑉
1
�                       (3.27) 

 

where 𝐾𝐾𝑒𝑒 is the camera intrinsic parameters matrix of Google Maps Street View. Since 

Google didn’t provide the intrinsic parameters of their cameras, we use offline 

calibration to get the focal lengths and select the center of the image as the principal 

point. 

In the image matching, if multiple features pairs has been matched, the perspective 

transformation between two images can be calculated as a Homography matrix 𝐿𝐿. So 

we can associate �𝑢𝑢𝑒𝑒, 𝑣𝑣𝑒𝑒� and (𝑢𝑢𝑟𝑟, 𝑣𝑣𝑟𝑟) by the 3 × 3 matrix 𝐿𝐿𝑟𝑟 as: 

 

�
𝑢𝑢𝑟𝑟
𝑣𝑣𝑟𝑟
1
� = 𝐿𝐿𝑟𝑟 �

𝑢𝑢𝑒𝑒
𝑣𝑣𝑒𝑒
1
�                       (3.28) 

 

We also can associate �𝑢𝑢𝑒𝑒, 𝑣𝑣𝑒𝑒� and (𝑢𝑢𝑣𝑣, 𝑣𝑣𝑣𝑣) by the matrix 𝐿𝐿𝑣𝑣 as: 

 

�
𝑢𝑢𝑣𝑣
𝑣𝑣𝑣𝑣
1
� = 𝐿𝐿𝑣𝑣 �

𝑢𝑢𝑒𝑒
𝑣𝑣𝑒𝑒
1
�                       (3.29) 

 

So, by jointing equations 3.25, 3.27 and 3.28, we can get the rotation-translation 

matrix of query image as 

 

(𝑟𝑟𝑟𝑟1, 𝑟𝑟𝑟𝑟2, 𝑡𝑡𝑟𝑟) = 𝐾𝐾𝑟𝑟−1𝐿𝐿𝐾𝐾𝑒𝑒                     (3.30) 
 

By jointing equations 3.26, 3.27 and 3.29, we can get the rotation-translation 
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matrix of virtual view image as 

 

(𝑟𝑟𝑣𝑣1, 𝑟𝑟𝑣𝑣2, 𝑡𝑡𝑣𝑣) = 𝐾𝐾𝑣𝑣−1𝐿𝐿𝐾𝐾𝑒𝑒                     (3.31) 
 

We can estimate a pair of latitude and longitude from the relative offset between 

the query image and a matched building facade image and a pair of latitude and 

longitude between the virtual view image and the same building facade image. 

Because the parameter of Kv and Kg are manually decide so we cannot directly 

use the decomposed translation matrix to estimate the position of query image and 

virtual. Bus the difference between the estimated translation matrixes tc and tv can 

be used to suggest which side of road and the distance we should move.  

 

3.2.4. Fine-positioning by matching virtual view with query image  

After we get the coarse position, a reference virtual view will be generated in the 

center of the road near that coarse position by using the textured local 3D model from 

the depth map and panorama image provided by Google Street View API. 

Similar with the coarse position estimation, we use Algorithm 1 to find the best-

matched candidate in 3D model.  

 

 
Figure 3.16  GMS based matching result. 

 

 

3.3. Experiment Result 

We selected the Ginza area in Tokyo as the experiment spot. Because of the density 

of the tall and similar buildings, pedestrians are often confused to find their position 

and destination in this area. Our goal is to estimate an accurate positioning result in this 



 
 

41 

kind of areas. In the experiment, the smart glasses Epson Moverio BT-300 was used. 

The image matching was conducted based on images captured from the camera on this 

smart glasses. To simulate the situation when a visitor is walking on the sidewalk in a 

new environment, we looked around while walking in the trajectory to capture images 

from the camera and collect GNSS positioning data simultaneously.  

As shown in Figure 3.26, there are 5 routes in our experiment. The blue lines with 

green dots are our positioning results while the purple dots are the ground truth. The 

ground truth is obtained by experimenter walking along the pre-decided routes, the 
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average error of ground truth is no more than 14.2cm. 

 

 
Figure 3.17 Walking trajectory of the experiments in Ginza: walking trajectory 

(blue line), positioning result (green dot), and ground truth (purple dot) 
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Figure 3.18 Errors in virtual view images 

 

We adopt the distance error, correct side rate and the positioning availability to 

evaluate the performance of the proposed method. Positioning availability indicates the 

successful positioning rate of our proposed method. From Table 1, we can see our 

results shows very high correct side rate in each test. But the positioning availability 

rate of Route 3 and Route 4 is lower than other routes. This problem is coming from 

the error in the depth map from Google Maps Street View. This error leads to the failure 

of image matching. Thus, the positioning result cannot be provided in these cases. Table 

2 shows the distance error of the proposed method in each test route. We can see that 

the lateral error is lower than longitude error, the cause is the virtual view images in 

longitude direction are very similar. When we move a small distance, the detected 

features of images won’t change a lot, which may cause a relative large error.  

Table 3 compares our results with others. Same with us, Zamir et al [22] also used 

images from Google Map Street View as the dataset, but our matching algorithm is 

more effective and we use a coarse-to-fine positioning method which including the 

generation of virtual view. Sattler et al. [13] used large scale 3D models of urban scenes 

for accurate image-based localization, which reduces the computation time but the 

accuracy is relatively low. Deng et al.[23] built scene 3D point cloud which requires 

more computation resources and they reached a mean error of 4.729m. Table III shows 

that the accuracy of our method outperforms others, compared with other state-of-the-

art works, our average accuracy increases at least 0.4m. 

From Table 1, we can see that the positioning availability is not 100%, because the 

images captured from some of the places cannot find a match from the references 

images. The reason in most of this kind of situations is coming from the quality of the 
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reference. When the camera of Google is too close facing a wall, there will be less 

interest features to match with the query image. In addition, if either the query image 

or the reference image is in a strong sunlight or a deep shadow, the image matching will 

also be influenced. Also from Table 1, we found that the positioning availability of 

Route 3 and Route 4 is lower than the positioning availability in other routes. This 

problem is coming from the blur errors in the virtual view generated from Google Maps 

Street View, as shown in Figure 3.27. The red boxes show the errors in the generated 

virtual view images, which lead to the deformation or blur on some of the building 

walls. This deformation or blur will make it hard to find a correct virtual view. 

 

Table 1 Correct Side Rate and Availability. 

 Route 1 Route 2 Route 3 Route 4 Route 5 
Correct Side 

Rate 98.20% 100% 92.39% 91.75% 100% 

Positioning 
Availability 92.00% 86.36% 78.57% 76.92% 90.91% 

 
 

Table 2 Distance Error of the Proposed Method 

 Mean Error(m) Lateral Error(m) Longitude 
Error(m) Std (m) 

Route1 2.893 1.542 2.448 1.227 

Route2 3.233 1.259 2.914 1.450 

Route3 3.541 1.405 3.169 2.692 

Route4 3.550 1.406 3.223 1.191 

Route5 1.859 0.763 1.638 0.607 

 
 

Table 3 The Comparison between Our Method and Others 

 Our method Zamir et 
al.[22] 

Sattler et 
al.[13] Deng et al.[23] 

Mean error(m) 4.37 12.43 14.9 4.729 
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Chapter 4.  
 

Augmented Reality based Pedestrian 

Navigation 
 

 

Nowadays AR is becoming a very handy tool for various aspects of life such as 

medical, education, gaming, engineering, and mobile applications that become a very 

powerful tool if combined with AR. An AR based navigation application can 

superimpose computer-generated images such as direction guidance, distance 

information and building information on top of view of reality, thus provide 

straightforward navigation service for pedestrians. In this chapter, at first the related 

works about intersection detection and destination recognition in first person view are 

introduced. Then we describe how to use open source to give reliable AR arrow guide 

in intersections and how to show destinations in pedestrian navigation system. 

4.1. Related works 

4.1.1. Smart phone based navigation 

       Smartphone-based measurement system for road vehicle traffic monitoring and 

usage-based insurance (UBI) attracts peoples’ attentions[36]. Through the aid of a 

hierarchical model to modularize the description, the functionality is described as 

spanning from sensor-level functionality and technical specification to the topmost 

business model. The designer of a complex measurement system has to consider the 

full picture from low-level sensing, actuating, and wireless data transfer to the topmost 

level, including enticements for the individual smartphone owners, i.e., the end users 

who are the actual measurement probes. The measurement system provides two data 

streams: a primary stream to support road vehicle traffic monitoring and a secondary 

stream to support the UBI program. The former activity has a clear value for a society 

and its inhabitants, as it may reduce congestion and environmental impacts. The latter 

data stream drives the business model and parts of the revenue streams, which ensure 

the funding of the total measurement system and create value for the end users, the 
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service provider, and the insurance company. In addition to the presented framework, 

outcome from a measurement campaign is presented, including road vehicle traffic 

monitoring (primary data stream) and a commercial pilot of UBI based on the driver 

profiles (secondary data stream). The measurement system is believed to be sustainable 

due to the incitements offered to the individual end users, in terms of favorable pricing 

for the insurance premium. The measurement campaign itself is believed to have an 

interest in its own right, as it includes smartphone probing of road traffic with a number 

of probes in the vicinity of the current state of the art, given by the Berkeley Mobile 

Millennium Project. During the ten-month run of the project, some 4500 driving h/250 

000 km of road vehicle traffic data were collected. 

4.1.2. Driving navigation  

Recently, there has been suggested a device that detects a decrease and the like in 

the concentration level of a driver who drives a vehicle and that informs the driver of 

the decrease in the concentration level. For example, in Patent Literature 1, there is 

disclosed a device that predicts the future occurrence of sleepiness, fatigue, and the like 

of a driver until the driver reaches a predetermined position on the basis of biometric 

information such as heart rate, respiratory rate, blink speed, and the like of the driver 

of a vehicle and on the basis of load exerted on the driver by a road until the vehicle 

reaches the predetermined position. The device of Patent Literature 1 calls to the 

attention of the driver in advance on the basis of the sleepiness of the driver at the 

predetermined position. 

In the above technology, however, attention of the driver may be called even when 

calling attention of the driver and the like are not necessarily required. Thus, the driver 

may feel inconvenienced. 

 

One embodiment of the present invention is devised with consideration of the 

problem above, and an object thereof is to provide a driving assistance device, a driving 

assistance method, an information-providing device, an information-providing method, 

a navigation device, and a navigation method, in which a driver feels less 

inconvenienced by performing driving assistance that is more appropriate for a situation 

where a vehicle is traveling. 
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4.2. Intersection detection 

4.2.1. Objective 

 
 

Figure 19 Objective of intersection detection  
 

When pedestrians walk along way to their destination, there is high possibilities 

that they will make a turn at an road intersection. And it is easy to be confused for 

people who are not familiar with surrounding environment, which is the scenario we 

want to solve. So if we can detect there is an intersection and know the direction of 

links for the intersection in front of a pedestrian, it will help us simply the navigation 

problem. When the route is given, our objective is to present intuitive arrow guidance 

in the gap of the intersection in the first person view, as Figure 4.1 shows.  

 

4.2.2. Generating point clouds with Google Street View 

The overall generation process can be divided into three parts: composing a 

panorama, computing the depth map and creating the point cloud. Firstly we have to 

deal with retrieving the panorama image closest to the specified initial position. By 

making a call to Google Maps REST API at the following address: 

https://maps.google.com/cbk?output=json&hl=x-

local&ll=LAT,LNG&cb_client=maps_sv&v=3 

it is possible to obtain the unique identifier of the panorama. Google Street View 

Service Javascript API allows us to retrieve some information to be used in the next 

https://maps.google.com/cbk?output=json&hl=x-local&ll=LAT,LNG&cb_client=maps_sv&v=3
https://maps.google.com/cbk?output=json&hl=x-local&ll=LAT,LNG&cb_client=maps_sv&v=3
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step: the panorama identifier, the available resolutions for the whole panorama, the 

resolution of the single tiles composing it, the world heading, the real coordinates and 

eventual neighboring panoramas. Despite Google Street View may provide resolutions 

up to 13312x6656 pixels, we considered the resolution of 3328x1664 pixels more than 

sufficient for our purposes. In this particular case, the objective is to compose in a single 

image 7x4 tiles having a resolution of 512x512 pixels, since Google doesn’t allow to 

download directly the panoramic image. So, we need to download each of the 28 tiles 

by using the REST API: 

https://cbks2.google.com/cbk?cb_client=maps_sv.tactile&authuser=0&hl=en&panoid

=PANORAMAID&output=tile&zoom=QUALITY&x=XPOS&y=YPOS&TIMESTA

MP 

where in our case QUALITY is 3 and XPOS and YPOS correspond respectively to the 

position of the desired square tile in the 7x4 image grid. After having combined all of 

them in a single image by partially overlapping their borders, we obtain a 3328x1664 

RGB image corresponding to the desired panorama. 

Now that we have the panorama image, we need to retrieve its corresponding depth 

map. Google Maps REST API allows us to download a compressed JSON 

representation of the depth image from the url: 

http://maps.google.com/cbk?output=json&cb_client=maps_sv&v=4&dm=1&pm=1&

ph=1&hl=en&panoid=PANORAMAID 

which contains the distance from the camera to the nearest surface at each pixel of the 

panorama. After having decoded from Base64 the data and having converted it to an 

array of unsigned 8-bit integers, we can fetch its header information obtaining useful 

values, like the number of referenced planes. In fact, each pixel in a grid of 512x256 

pixels is corresponding to one of several planes, which are given by its normal vector 

and its distance to the camera. Therefore, in order to calculate the depth at a pixel, we 

have to determine the intersection point of a ray starting at the center of the camera and 

the plane corresponding to the pixel. Iterating for all the planes, we can then populate 

our depth map as 32-bit float array of 512x256 elements - which is much lower than 

the resolution of our RGB panorama image. As for the computation, for each point we 

consider its associated plane and we compute its distance as 

 

 

https://cbks2.google.com/cbk?cb_client=maps_sv.tactile&authuser=0&hl=en&panoid=PANORAMAID&output=tile&zoom=QUALITY&x=XPOS&y=YPOS&TIMESTAMP
https://cbks2.google.com/cbk?cb_client=maps_sv.tactile&authuser=0&hl=en&panoid=PANORAMAID&output=tile&zoom=QUALITY&x=XPOS&y=YPOS&TIMESTAMP
https://cbks2.google.com/cbk?cb_client=maps_sv.tactile&authuser=0&hl=en&panoid=PANORAMAID&output=tile&zoom=QUALITY&x=XPOS&y=YPOS&TIMESTAMP
http://maps.google.com/cbk?output=json&cb_client=maps_sv&v=4&dm=1&pm=1&ph=1&hl=en&panoid=PANORAMAID
http://maps.google.com/cbk?output=json&cb_client=maps_sv&v=4&dm=1&pm=1&ph=1&hl=en&panoid=PANORAMAID
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Algorithm2: Depth map computation 
For all: indeces x, y do 

planeIndex ← indices[y ∗width+x] 

φ ← 
2

2*
1

1 ππ +
−
−−

w
xw

 

θ ← π*
1

1
−
−−

h
yh

 

v ← [sinθ cosφ, sinθ sinφ, cosφ] 

If planeIndex > 0 then 

    plane ← planes[planeIndex] 

    t = 
nplanev

dplane
.*

.  

        v ← v * t 

       vvxwwydepth *)]1(*[ ←−−+  

    else 

        ∞←−−+ )]1(*[ xwwydepth  

     end 

end 

 

where indices is an array containing the plane associated to each pixel.  

Now that we have the depth information for each pixel, we need to create our point 

cloud and map each point to its original color in the panorama obtained at step 1. 

Considering n spo int
 = w*h points, we define two n spo int

 *3 float arrays containing the 

3D space position and the color of each point. Then we have to consider that the points 

of the panorama image originally belonged to a spherical image, so we have to reproject 

them in space by using the following algorithm: 
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Algorithm3: Point cloud generation 

For 0←ydepth
 to hdepth

do 

90−←
h
y

depth

depthlat  

180
*cos πlatr ←  

For 0←xdepth
 to wdepth

 do 

depth ← depthMap [ )(* xwwy depthdepthdepthdepth
−+ ] 

180360*)1(ln −−←
w
x

depth

depthg  

180
*lncos* πgrxpos −←  

180
*sin πlatypos

←  

180
*lnsin* πgrz pos ←  

depthzyxpos pospospospo
*],,[

int
←  

w
xxnorm

−
←=

1
 

h
yynorm

←=  

)*int( wxx colornormcolor ←  

)*int( wyy colornormcolor
←  

4*4** xwycolor colorcolorcolorindex +←  

255/][int colorimagecolor indexcolorpo ←  

     end 

end 

 

Notice that, in addition to the reprojection, it was necessary to normalize the pixels 

positions in 2D in order to retrieve colors from the panoramic colored image, which has 

a different resolution.  
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(a) 

 
(b) 

Figure 20 Local 3D point cloud for an intersection in Ginza 

 
We can see the generated point cloud in Figure 43, both (a) and (b) are point clouds 

for the same intersection, but center of the depth map is different. We can see the point 

cloud is well-formed, the links and gaps are clear and easy to distinguish.  

 

4.2.3. Segment intersection from point cloud using OpenStreetMap 

 
Since Google Maps API do not provide the 2D intersection geographic 
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information, we use OpenStreetMap to obtain the shape and coordinates information of 

intersection. We can extract the shape of intersection from OSM as Figure 44 shows. 

We can segment the intersection in point cloud using the shape and coordinates 

provided by OSM, Figure 45 shows the result after segmentation. 

 

 
Figure 21. An example of intersection shape from OSM. 

 

 
Figure 22 Intersection segmented from local point cloud by 2D map  

 

4.2.4. Visualization for intersection detection  

As we already know the camera pose and pedestrian position, we can get the 

camera view of the intersection in 3D local point cloud, like Figure 46 (a) shows. Then 

we can extract the contour as (b) shows. And finally, we overly the contour of 
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intersection in first person view as (c) shows. 

 

 
(a) 

 
(b) 

 
(c) 

Figure 23 Process of intersection detection visualization in first person view.   

4.2.5. Results of intersection detection 

We compose the guidance arrow in the gap in an intuitive way, the results are show 

in Figure 47. When the pedestrian’s heading angle is not in the desired direction, the 

system will show an alarm arrow icon toward the right direction, as shown in Figure 

48(d), (e), the icon is placed in the center of opposite gap when the desired gap is not 
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in the view. 

 
Figure 24 Results of intersection detection 

 
To evaluate our results, we ask 5 volunteers to experience the navigation process. 

Two of them think the arrow guidance is easy to understand, two of them think for more 

than half of total cases they can follow the guidance, and one volunteer gave feedback 

that less than half of total cases the guidance is reliable. 
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4.3. Destination recognition 

4.3.1. Objective 

When pedestrian moves towards the destination, he or she may do not know what 

the destination building looks like. This fact motivate us to visualize segmentation of 

destination in the first person view. When the pedestrian can see the destination through 

smart glasses, we want to segment it using semi-transparent colors, as Figure shows. 

 
Figure 25 Goal of destination recognition[35] 
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4.3.2. Proposed method 

     As the same approach in intersection detection part, we also employ point cloud 

and OpenStreetMap to visualize destination segmentation in first person view. 

 

 

 

 
Figure 26 Process of building segmentation in local point cloud using OSM 

 

 

Figure 49 shows the process of building segmentation in local point cloud. First 
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of all, we can generate point cloud using panorama and its corresponding depth data 

provided by Google Maps API, then we can obtain the shapefile of buildings in the 

same area from OSM, we can see the segmented results in the last image. 

 
(a) 

 
(b) 
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(c) 

Figure 27 Visualization of destination recognition in first person view 

Figure 50 shows the visualization of destination recognition in first person view, 

as we know the position of camera and camera pose, we can get the camera view in the 

segmented point cloud as (a), so that we can project the 3D coordinates of building into 

the 2D image, as shown in (b). Also we can list all the building names and their 

corresponding color in the view as (c) shows. Note that the interface does not support 

Japanese, so some names of buildings cannot be shown.  

4.3.3. Experiment results 
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Figure 28 Experiment results for destination recognition 

Figure 51 shows the visualized destination recognition results. We employ the 

percentage of overlay area between our results to evaluate our method. We use the OSM 

building shapefile as our groundtruth, as Figure 52 shows. If the overlaid percentage is 

higher than 80%, we take it as a successful result; if lower than 80%, we take it as a 

unsuccessful result. The results can be seen in table 4. 

 

Table 4 Success Rate for Destination Recognition 

 Route1 Route2 Route3 Route4 Route5 

Success rate 73.35% 69.45% 55.26% 58.17% 65.97% 
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Figure 29 Groundtruth for destination recognition. 
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Chapter 5.  

Conclusions 
 

 

In this thesis, we present a study on pedestrian navigation system with image-

based positioning method and the aid of Google Maps Street View in urban canyon 

environment. 

This observation is compared with the available virtual views and interested area 

datasets from Google Maps Street View in order to correct positioning errors. 

At first we use vanishing point to estimate the heading angle of pedestrian query 

image.  

Then we build a building facade images dataset from Google Street View Image 

API and the building facade images dataset is used to search the interested area with 

the geo-tagged query image. 

Shape and size of the matched interested building wall is used to suggest us which 

side of road and the distance we should move to estimate the lateral position of the 

query image. 

Finally, the translation matrix decomposed from Homography matrix will suggest 

us which direction on the road and the distance we should move to find a virtual view 

with minimum e as the position of the positioning result of the query image. 

With the visual matching between the geo-tagged pedestrian’s photo and the 

reference virtual views from Google Maps Street View, we can improves the correct 

side rate to 90% and achieves 4-meter positioning performance. 

From the positioning result, we get the conclusion that the positioning accuracy in 

our proposed method rely on the quality of the 3D model. When the 3D model or the 

texture is not correct, it will make the input query image from the pedestrian unable to 

get an accurate positioning result or even cannot find a matched virtual, then the 

positioning will be lost. Also the 3D model should contain the textures in different kinds 

situations such as both daytime and night view. 

After getting a reliable positioning result, to provide a more intuitive navigation 

service to the pedestrians, we considered to introduce the Augmented Reality (AR) into 



 
 

62 

the system 

We divide objective into two kinds of situations: pedestrian is far from next 

checkpoint and pedestrian is near to the checkpoint. 

When pedestrian is far from next checkpoint, in order to provide a realistic and 

intuitive AR navigation, we use vanishing point to estimate the directions of roads in 

the pedestrian’s view and use the image matching of interested area to recognize where 

we need to turn. Then the guide arrow can be drown on the scene. 

When pedestrian is near to the checkpoint, we directly project the guidance route 

in the matched virtual view to the pedestrian view. 

The research should continue to focusing on how to make a more correct and 

natural arrow and guidance. 
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