

異方性エッチングにより作製した シリコン単電子トランジスタの室温動作

Room Temperature Operation of Silicon Single Electron Transistors Fabricated by Anisotropic Etching Technique

平本俊郎^{*} · 高橋信義^{**} · 石黒仁揮^{***} · 齋藤真澄^{*} Toshiro HIRAMOTO, Nobuyoshi TAKAHASHI, Hiroki ISHIKURO and Masumi SAITOH

1. はじめに

シリコン単電子トランジスタ(SET)は、将来の超低消 費電力集積デバイスとして大いに注目されている。シリコ ンSETでは、ドット中の電子数をクーロンブロッケード 現象によりゲート電圧を用いて一つ一つ制御することが可 能である。デバイスが消費するエネルギーは、そのデバイ ス中に存在する電子数にほぼ比例するので、SETは究極の 低消費電力デバイスであるといえる。また、シリコンを用 いてLSIプロセスと互換性のある作製方法でSETが集積 化できれば、既存のCMOS回路との整合性もよく、将来 の有望な集積化デバイス候補となりうる。

シリコンナノプロセスの進展によりごく小さなデバイスの 作製が可能となり,室温でクーロンブロッケード振動を示す デバイスが報告されるようになった^{1~4)}.ところが,多くの 場合,振動のピーク・バレー電流比 (PVCR) はほとんど1 であった.より大きな PVCR を室温で得るためには,チャネ ル中のドットサイズを 5 nm 以下にする必要がある.一方, 極めて細いチャネル中にシリコンドットが自然に形成される メカニズムについても研究が進んでおり⁵⁶⁾,量子閉じ込め 効果と酸化時の圧縮応力が影響していると考えられている.

本報告では、室温で PVCR が2という大きなクーロンブ ロッケード振動について報告をする.このデバイスはポイ ントコンタクト型の MOSFET であり、ゲート酸化膜は減 圧化学気相堆積法(LP-CVD)で形成したものである.一 電子付加エネルギーやドットサイズを実験結果から導出 し、またドット形成機構についても考察を行った.

2. デバイス作製法

図1は試作したポイントコンタクト MOSFETの模式図

生産研究

図1 ポイントコンタクト型 SET の模式図

である. SIMOX による (100) 方向の SOI 基板を用いた. 埋め込み酸化膜の厚さは403 nm である.まず、初期膜厚 205 nmの表面シリコン層を、熱酸化とウェットエッチン グの繰り返しにより34 nm まで薄膜化する、次に、マスク となる膜厚7nmの熱酸化膜を形成する.レジスト塗布後, ポイントコンタクトのパターンを電子ビームリソグラフィ により描画する.現像後,パターンを酸化膜マスクに緩衝 HFにより転写する. ここで, tetramethylammonium-hydroxide (TMAH) によるシリコンの異方性エッチングを行い、 ポイントコンタクトチャネルを形成する。このエッチング で(111) 面が露出するので、レジストパターンの揺らぎ はきれいに除去される⁴⁾. 35 nm 厚のゲート酸化膜を LP-CVDにより堆積し、酸化膜の膜質を強化するため。850℃ で1分間のアニールを1Torrの真空中で行う.ゲート電極 は 200 nm 厚のポリシリコンで形成する. Pイオンをゲー ト,ソース,ドレイン領域に注入し、保護酸化膜、コンタ クトホール, Al 配線を形成してデバイスは完成する. 最 終的なシリコン膜厚は約25nmである.

^{*}東京大学生産技術研究所 物質·生命大部門 **松下電器産業 K.K

^{***}K.K東芝

究

谏

報

3. 測定結果

図2にさまざまな温度におけるドレイン電流のゲート電 圧依存性を示す.図2(a)は27Kから77K,図2(b)は 150 Kから 300 Kの範囲で温度を変化させている.このゲ ート電圧の範囲内では2つのクーロンブロッケード振動の ピークが観測されている. 最初のピークは温度の上昇とと もに不明瞭になっていくが、2番目のピークは室温でもは っきり観測されており、その PVCR は 1.99 である.図3

図2 さまざまな温度における SET のドレイン電流 Id とゲート電 圧 Vg との関係. (a)27 Kから 77 K. (b)150 Kから 300 K.

4. デバイスパラメータの導出

これらの電流-電圧特性から、この SET の各種デバイ スパラメータを導出した.ゲート電圧 V。がΔV。だけ変化 すると、量子ドット中のポテンシャル ϕ_{dot} は $\Delta \phi_{dot} =$ $C_{g}\Delta V_{g}/C_{dot} = \alpha \Delta V_{g}$ だけ変化する.ここで、 C_{g} はゲートー ドット間の容量, C_{dot} はドットの総容量, α はゲイン変調 係数である.αは電流ピークの半値全幅 FWHM の温度依 存性から、FWHM = $4.35k_{a}T/(\alpha e)^{8}$ なる関係式を用いて 求められる.ここでkaはボルツマン係数,Tは温度,eは 電荷素量である、図4に第2のピークのFWHMの温度依 存性を示す.両者には線形な関係があり、αの値は0.151 と求められる.

ドットへ電子を1個付加するために必要な1電子付加エ ネルギーE。は、クーロン帯電エネルギーe²/C_{dot}とドット 中の量子エネルギーレベル間隔ΔEの合計でよく近似でき る. 即ち.

$$E_a = \frac{e^2}{C_{dot}} + \Delta E \qquad (1)$$

である. α を用いると, E_a とピーク間の電圧 ΔV_g との関係 は

 $[\]overline{m}$ は微分コンダクタンスの等高線をドレイン電圧とゲート電 圧の関数でプロットしたものである. クーロンブロッケー ドによる菱形の形状が室温でも観測されている.図2(b) で、第2のピークの高さは温度の上昇とともに急激に高く なっている.これは、高温では熱励起によりトンネル障壁 を越えて伝導する電子電流が支配的になっていくからであ Z7).

図5 1電子付加エネルギー、クーロン帯電エネルギー、量子エ ネルギーレベル間隔の計算結果.ドットの直径の関数で表 してある.

で与えられる. 図2より, ΔV_g (第1のピークと第2のピークとの間隔) は約1.66 V である. 1電子付加エネルギー E_a は式(2)より251 meV と求められ,これは室温における熱エネルギーの約10倍もの値である. 従って,このデバイスはSET 回路等において安定な室温動作が可能である⁹.

クーロン帯電エネルギーと量子エネルギーレベル間隔を 簡単な計算によって推定した.図5は、シリコン酸化膜中 に埋め込まれた球形のドットを仮定して式(1)により1 電子付加エネルギーを計算し、ドットの直径の関数で表し たものである.シリコンと酸化膜との伝導帯オフセットは 3.1 eVと仮定した. 図5より、1電子付加エネルギー 251 meV は直径約4.5 nm に相当することがわかる.この 場合,量子エネルギーレベルの間隔は87 meV.クーロン 帯電エネルギーは164 meV である.このような極めて小 さなドットでは量子レベルの間隔がクーロン帯電エネルギ ーと同程度にまで大きくなる¹⁰⁾.図5より、ドットサイズ がさらに小さくなると、量子レベルの間隔の方が支配的に なることがわかる.この計算では、球形のドットを仮定し 自己容量を用いたため、量子レベル間隔と帯電エネルギー を過大評価していると考えられる、従って、実際にはドッ トサイズはさらに小さいものと思われる.

5. ドット形成機構

極めて狭窄されたチャネルで1つのシリコンドットと2 つのトンネル障壁が形成される機構についてはこれまでに 研究が行われている⁵⁶⁾.最も可能性の高い説明は,量子 閉じ込め効果によるバンドギャップの拡大⁵⁾と,熱酸化 時の圧縮応力によるバンドギャップの縮小⁶⁾の競合であ る.ところが,本デバイスでは,35 nm厚のゲート酸化膜 は熱酸化ではなくLP-CVDで形成した.酸化膜堆積後に 酸素雰囲気中でアニールを行っているが,アニール条件と CVD酸化膜の厚さを考えると,アニール中に進行する酸 化の厚さは1 nmより遙かに小さいと予想される.従って, このデバイスでは,測定結果にみあうような小さなドット とトンネル障壁が酸化時の圧縮応力で形成されたとは考え にくい.他の要因でドットが自然形成された可能性が考え られるが,その機構については現在不明である.

6. 結 論

SETとして動作するシリコンポイントコンタクト型 MOSFETを異方性エッチング法を用いて作製し,室温に おいて大きなクーロンブロッケード振動を観測した.ドッ トへの1電子付加エネルギーは251 meVと極めて大きく, ドットサイズは4.5 nm以下と推定される.ドットとトン ネル障壁の形成機構は未解明であり,今後さらなる研究が 必要である.

(2000年12月26日受理)

参考文献

- Y. Takahashi, M. Nagase, H. Namatsu, K. Kurihara, K. Iwadate, Y. Nakajima, S. Horiguchi, K. Murase and M. Tabe: *Electron. Lett.* 31 (1995)136.
- H. Ishikuro, T. Fujii, T. Saraya, G. Hashiguchi, T. Hiramoto and T. Ikoma, *Appl. Phys. Lett.* 68 (1996)3585.
- L. Zhuang, L. Guo and S. Y. Chou, Appl. Phys. Lett. 72 (1998)1205.
- 4) H. Ishikuro and T. Hiramoto, Appl. Phys. Lett. 71 (1997)3691.
- 5) H. Ishikuro and T. Hiramoto, Appl. Phys. Lett. 74 (1999)1126.
- 6) K. Shiraishi, M. Nagase, S. Horiguchi, H. Kageshima, M. Uematsu, Y. Takahashi and K. Murase, *Physica E* 7 (2000)337.
- 7) K. A. Matveev and L. I. Glazmann, *Phys. Rev. B* 54 (1996)10339.
- 8) C. W. J. Beenakker, *Phys. Rev. B* 44 (1991)1646.
- 9) K. K. Likharev, Proc. IEEE 87 (1999)606.
- 10) T. Hiramoto and H. Ishikuro, Superlattices Microstruct. 25 (1999)263.